WO2023210691A1 - Active ingredient-containing solution treatment device and extracorporeal active ingredient-containing solution circulation system - Google Patents

Active ingredient-containing solution treatment device and extracorporeal active ingredient-containing solution circulation system Download PDF

Info

Publication number
WO2023210691A1
WO2023210691A1 PCT/JP2023/016454 JP2023016454W WO2023210691A1 WO 2023210691 A1 WO2023210691 A1 WO 2023210691A1 JP 2023016454 W JP2023016454 W JP 2023016454W WO 2023210691 A1 WO2023210691 A1 WO 2023210691A1
Authority
WO
WIPO (PCT)
Prior art keywords
active ingredient
containing solution
cells
blood
processing device
Prior art date
Application number
PCT/JP2023/016454
Other languages
French (fr)
Japanese (ja)
Inventor
昌治 竹内
淳 澤山
文智 小沢
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Publication of WO2023210691A1 publication Critical patent/WO2023210691A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • C12M3/06Tissue, human, animal or plant cell, or virus culture apparatus with filtration, ultrafiltration, inverse osmosis or dialysis means

Definitions

  • Patent Document 2 discloses a configuration that performs a process of imparting nutritional substances to blood via hollow fibers as an extracorporeal active ingredient-containing solution circulation system.
  • the active ingredient-containing solution processing device and the extracorporeal active ingredient-containing solution circulation system of Patent Document 1 use a blood component regulator in addition to a blood purification device, a problem arises in that the device becomes larger.
  • the active ingredient-containing solution processing device and the extracorporeal active ingredient-containing solution circulation system of Patent Document 2 are provided with a nutritional substance supply channel and a body fluid supply channel in addition to the blood circulation channel, so they are different from Patent Document 1. Similarly, a problem arises in that the device becomes larger. Furthermore, as the device becomes larger, there is also the problem that the amount of blood to be circulated outside the body increases.
  • the present invention has been made in consideration of the above points, and provides an active ingredient-containing solution processing device and an extracorporeal active ingredient-containing solution circulation system that can reduce the size of the device and suppress the amount of active ingredient-containing solution to be circulated outside the body.
  • the purpose is to provide
  • the active ingredient-containing solution processing device of the first aspect and a pump that circulates at least the component in the active ingredient-containing solution from the introduction part to the discharge part of the chamber are provided.
  • An extracorporeal active ingredient-containing solution circulation system is provided.
  • FIG. 1 is a diagram showing a schematic configuration of an extracorporeal blood circulation system 100.
  • the extracorporeal blood circulation system 100 circulates at least some components of the blood outside the body of the living body LB, and performs predetermined processing on some of the blood components in the blood processing device 1.
  • the extracorporeal blood circulation system 100 includes a blood processing device 1, an infusion reservoir 10, a first introduction piping system 11, a first discharge piping system 12, a second introduction piping system 13, and a second discharge piping system 14. , a first pump 21, a second pump 22, a third pump 23, and a fourth pump 24.
  • the infusion fluid reservoir 10 stores infusion fluid.
  • the second introduction piping system 13 includes piping that introduces the infusion discharged from the infusion reservoir 10 into the blood processing apparatus 1 .
  • the second discharge piping system 14 includes piping that discharges the infusion fluid discharged from the blood processing device 1 toward the infusion fluid reservoir 10 .
  • the third pump 23 is provided in the second introduction piping system 13 and sends the transfusion toward the blood processing apparatus 1 .
  • the fourth pump 24 is provided in the second discharge piping system 14 and sends the infusion from the blood processing device 1 toward the infusion reservoir 10 .
  • the blood processing device 1 includes a chamber 30 and a linear member F.
  • the chamber 30 includes a chamber body 31, a lid 40, a fiber support (support) 50, and filters 61 and 62.
  • the chamber body 31 has a cylindrical shape extending in the vertical direction.
  • the chamber body 31 is open at the top.
  • the chamber body 31 includes a bottom wall 32 , a peripheral wall 33 , a top wall 34 , and a processing space 35 .
  • the pedestal portion 51 is located at the lower end of the fiber support 50.
  • the pedestal portion 51 has a flange shape extending in the radial direction.
  • the pedestal portion 51 has an annular magnet 51A facing downward.
  • the support shaft 52 has a cylindrical shape extending upward from the pedestal portion 51.
  • the diameter of the support shaft 52 is smaller than the diameter of the pedestal portion 51.
  • a linear member F (details will be described later) is wound around the outer periphery of the support shaft 52. As shown in FIG.
  • the fitting convex portion 53 has a cylindrical shape extending upward from the upper end of the support shaft 52.
  • the diameter of the fitting convex portion 53 is smaller than the diameter of the support shaft 52.
  • the fitting protrusion 53 is inserted into and fitted into the fitting recess 40a of the lid 40 from below.
  • the fitting protrusion 53 is removable from the fitting recess 40a.
  • the fitting recess 54 is recessed upward from the lower surface of the pedestal 51 .
  • the fitting protrusion 32B of the bottom wall portion 32 is inserted into the fitting recess 54 from below and fitted therein.
  • the through channel 55 passes through the fiber support 50 in the vertical direction.
  • the lower end of the through passage 55 opens into the fitting recess 54 .
  • the fitting recess 54 is removable from the fitting protrusion 32B.
  • the fiber support 50 When the fitting protrusion 53 fits into the fitting recess 40a of the lid 40, the fiber support 50 is positioned on the lid 40, and the through passage 55 communicates with the through passage 40b.
  • the fitting protrusion 32B fits into the fitting recess 54 the fiber support 50 is positioned in the chamber body 31, and the through passage 55 communicates with the introduction port 32D. That is, the fiber support 50 is detachably attached to the chamber 30.
  • the introduction port 32D, the through channel 55, and the through channel 40b communicate with each other.
  • the blood processing apparatus 1 in which the fiber support 50 is arranged in the processing space 35 of the chamber body 31 has a maximum diameter of about 2 cm and a maximum length of about 10 cm.
  • the filter 61 is arranged at the boundary 60A between the through-flow path 55 and the through-flow path 40b.
  • Boundary 60A is a discharge part from which blood is discharged in chamber 30.
  • the filter 62 is arranged at a boundary 60B between the introduction port 32D and the through flow path 55.
  • Boundary 60B is an introduction part into which blood is introduced into chamber 30.
  • the filters 61 and 62 stop the linear member F inside the chamber 30.
  • the mesh size of the filters 61 and 62 is smaller than the size of the linear member F.
  • the filter 62 also at the boundary 60B, which is the introduction part, in consideration of causing the liquid to flow back when performing air removal or the like.
  • the core part 210 has a hydrogel filled with a plurality of cells 115.
  • Shell portion 220 covers the outer periphery of core portion 210 .
  • the shell portion 220 is a hydrogel that is dissociable from the hydrogel forming the core portion 210 .
  • FIG. 4 is a schematic diagram illustrating the manufacturing process of cell fiber F.
  • the microfluidic device 140 includes an introduction port 110 for introducing a first liquid material to form a core section 210, an introduction port 120 for introducing a second liquid material for forming a shell section 220, and a shell section 220. It has an introduction port 130 for introducing the third liquid material to be gelled.
  • extracellular matrix components include, but are not limited to, collagen (type I, type II, type III, type V, type XI, etc.), mouse EHS tumor extract (type IV collagen, laminin, heparan sulfate proteoglycan, etc.). (including) reconstituted basement membrane components, gelatin, agar, agarose, fibrin, glycosaminoglycans, hyaluronic acid, proteoglycans, thrombin, aprotinin, alginic acid, and the like.
  • pH-responsive gelling solution examples include an alginate solution, a chitosan solution, a carboxymethyl cellulose solution, and an acrylic acid-based synthetic solution.
  • the injection speed of the solution at the introduction ports 110 and 120 is not particularly limited, but if the diameter of the microfluidic device 140 is about 50 ⁇ m to 2 mm, it may be about 10 to 500 ⁇ L/min. By adjusting the injection speed of the solution at the inlets 110 and 120, the diameter of the core portion and the coating thickness of the shell portion can be adjusted as appropriate.
  • the injection speed of the solution at the introduction port 130 is not particularly limited, but may be, for example, about 1 to 10 mL/min.
  • the core portion 210 contains various growth factors suitable for maintaining, proliferating, or expressing functions of the cells 115, such as epidermal growth factor (EGF), platelet-derived growth factor (PDGF), transforming growth factor (TGF), insulin-like Growth factors (IGF), fibroblast growth factors (FGF), nerve growth factors (NGF), etc. may be included.
  • EGF epidermal growth factor
  • PDGF platelet-derived growth factor
  • TGF transforming growth factor
  • IGF insulin-like Growth factors
  • FGF fibroblast growth factors
  • NGF nerve growth factors
  • an appropriate concentration can be selected depending on the type of growth factor.
  • the amount of blood to be used can be adjusted using a small device. becomes possible to suppress.
  • the polysaccharide is at least one selected from the group consisting of alginic acid, starch, glycogen, cellulose, xanthan gum, hyaluronic acid, carrageenan, pectin, pullulan, and salts thereof.
  • the hydrophilic polymers include polyethylene glycol, polyethyleneimine, polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyvinyl alcohol, polyvinylpyrrolidone, polyvinylacetamide, polyamine, poly(4-styrene sulfonic acid), poly(allylamine hydrochloride), At least one selected from the group consisting of poly(vinylsulfonic acid, sodium salt), poly(diallyldimethylammonium chloride), and poly(2-methacryloyloxyethylphosphorylcholine).
  • a cell fiber F is obtained in which the core portion 210 is occupied by cells 115 and the shell portion 220 is gelled.
  • the shell part 220 contains the block copolymer, so by adjusting the temperature to a temperature below LCST, the block copolymer becomes water-soluble, and by stirring the cell fiber F in water, the block copolymer becomes water-soluble. , block copolymers can be removed.
  • a cellular fiber F in which the core portion 210 is filled with cells and the shell portion 220 is macroporous (porous) is obtained.
  • FIG. 5 is a fluorescence image at 37° C. of a cell fiber F having a shell portion 220 with a macroporous structure in which the core portion is filled with fluorescent nanoparticles with a diameter of 100 nm.
  • FIG. 6 is a fluorescence image of the cell fiber F in FIG. 5 when the temperature reached 4° C. after 1 hour. As shown in FIG. 5, it was confirmed that when the shell portion was at 37° C., the fluorescent nanoparticles with a diameter of 100 nm could not pass through the shell portion and remained in the core portion. As shown in FIG. 6, when the shell portion was at 4° C., no fluorescent nanoparticles with a diameter of 100 nm were observed in the core portion, and it was confirmed that the fluorescent nanoparticles passed through the shell portion.
  • S protein spike protein
  • S protein beads that can mimic the cell infection mechanism of SARS-CoV-2 will be produced.
  • S protein beads bound by the affinity of Ni-NTA and His tag were prepared.
  • the binding between the red fluorescent beads and the S protein was confirmed by measuring the fluorescence resonance energy transfer from the S protein to the red fluorescent beads.
  • a rat was used as a living LB in the extracorporeal blood circulation system 100, the first introduction piping system 11 and the first discharge piping system 12 were connected to the rat's vein, and a solution containing 4 ⁇ g/mL of S protein beads was injected into the vein. .
  • the amount of S protein beads was measured in the first introduction piping system 11 for 45 minutes every 5 minutes after the solution containing S protein beads was injected. Injection of a solution containing S protein beads and measurement of S protein beads every 5 minutes were performed for a sample in which cell fiber F was filled with VeroE6 cells and a sample in which cell fiber F was not filled with cells. .
  • Figure 8 shows the relationship between the time after injection of a solution containing S protein beads and the measured amount of S protein beads for a sample filled with VeroE6 cells and a sample in which cell fiber F is not filled with cells.
  • FIG. 8 it was confirmed that in the sample using VeroE6 cells, S protein beads decreased more over time than in the sample not using cells. This is because membrane proteins in VeroE6 cells come into contact with S protein beads and are instantly bound (infected) and captured, reducing the amount of S protein beads contained in the blood in the biological LB and purifying the blood. This is thought to be the result of
  • FIG. 9 is a fluorescence image of a sample in which cell fiber F is not filled with cells.
  • FIG. 10 is a fluorescence image of a sample in which cell fiber F was filled with VeroE6 cells. As shown in FIG. 9, in the sample in which cell fiber F was not filled with cells, capture of S protein beads was not confirmed. On the other hand, as shown in FIG. 10, in the sample in which the cell fiber F was filled with VeroE6 cells, blood purification due to the capture of S protein beads was confirmed.
  • the cell fiber F which is filled with affinity cells that have an affinity for viruses and has a length of several tens of meters, is used, so that the virus can be captured without reducing the removal ability. can do.
  • Physiologically active substances released into circulating blood include albumin, proteins such as enzymes, hormones such as insulin, exosomes, MicroRNA, sugars, lipids, and the like.
  • Exocrine cells that release albumin, a physiologically active substance, into circulating blood as an exocrine secretion include hepatocytes.
  • Exocrine cells that release enzymes, which are physiologically active substances, into circulating blood as exocrine secretions include enzyme-producing cells.
  • Exocrine cells that release hormones such as insulin, which are physiologically active substances, into circulating blood as exocrine secretions include hormone-producing cells such as ⁇ cells.
  • Exocrine cells that release exosomes, which are physiologically active substances, into the circulating blood include airway epithelial cells.
  • physiologically active substances can be replenished into the circulating blood.
  • blood exhibiting hypoalbuminemia etc. can be supplemented with albumin
  • blood exhibiting lysosomal diseases etc. can be supplemented with enzymes. That is, the extracorporeal blood circulation system 100 of this embodiment functions as a physiologically active substance. According to this embodiment, there is no need to separately provide a physiologically active substance supply channel in addition to a blood circulation channel, and it is possible to downsize the device and suppress the amount of blood to be circulated outside the body.
  • human albumin was detected in all four samples. Since human albumin is normally not detected in rats, it was confirmed that human albumin released from exocrine cells in cell fiber F was replenished into circulating blood via cell fiber F.
  • the cell fibers F can be used to connect affinity cells that express a membrane protein that has an affinity for a specific substance contained in blood, and exocrine cells that release physiologically active substances as exocrine substances into the blood.
  • the cell fiber F may include both the above-mentioned affinity cells and exocrine cells. In this case, by using the extracorporeal blood circulation system 100, both blood purification processing and physiologically active substance replenishment processing can be performed.
  • the extracorporeal blood circulation system 100 has a configuration in which the infusion circulation path is provided, but a configuration in which the infusion circulation path is not provided may also be used.
  • a configuration may be adopted in which the first discharge piping system 12 provided with the second pump 22 is connected to the discharge section 33B.
  • blood in the processing space 35 is sent from the discharge section 33B toward the living body LB via the first discharge piping system 12 by driving the second pump 22.
  • the linear member F may have a structure including a holding portion 220 that holds the cells 115 and allows at least some components of blood to pass therethrough.
  • the holding portion 220 in this configuration is formed into a linear shape using, for example, alginic acid having the above-mentioned macroporous structure.
  • the active ingredient-containing solution may be, for example, an infusion solution containing water, electrolytes, nutrients, etc., or an antibody production solution.
  • the chamber has at least an introduction part into which the component in the active ingredient-containing solution is introduced, and a discharge part from which at least the component in the active ingredient-containing solution is discharged, Of the introduction part and the discharge part, at least the discharge part is provided with a filter for keeping the linear member inside the chamber.
  • the active ingredient-containing solution processing device according to Supplementary Note 1. (Additional note 3)
  • the holding part is a mixture containing a polysaccharide and a block copolymer of a polymer having a lower critical solution temperature and a hydrophilic polymer.
  • the specific substance is a virus
  • the affinity cells are angiotensin converting enzyme 2 (ACE2) expressing cells
  • ACE2 angiotensin converting enzyme 2
  • the physiologically active substance is albumin
  • the exocrine cell is a hepatocyte
  • the physiologically active substance is an enzyme
  • the exocrine cell is an enzyme-producing cell
  • the linear member is a core portion filled with a plurality of the cells; A shell part that covers the outer periphery of the core part as the holding part; is a cell fiber having The active ingredient-containing solution processing device according to any one of Supplementary Notes 1 to 7.
  • An active ingredient-containing solution processing device according to any one of Supplementary Notes 1 to 8;
  • An extracorporeal active ingredient-containing solution circulation system comprising: a pump that circulates at least the components of the active ingredient-containing solution from an inlet to an outlet of the chamber.
  • the present invention can be applied to an active ingredient-containing solution treatment device and an extracorporeal active ingredient-containing solution circulation system.
  • Blood processing device active ingredient-containing solution processing device

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Zoology (AREA)
  • Vascular Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Sustainable Development (AREA)
  • Cardiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Water Supply & Treatment (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • External Artificial Organs (AREA)

Abstract

The purpose of the present invention is to provide an active ingredient-containing solution treatment device that can reduce the amount of an active ingredient-containing solution to be circulated in an extracorporeal manner, by reducing the size of the device. The present invention is provided with: a chamber into which at least a portion of components in the blood is introduced; and a cellular fiber that is disposed inside the chamber and that has a core part filled with multiple cells and a shell part that covers the outer circumference of the core part. The cells include: affinitive cells in which a membrane protein having affinity with a specific substance contained in a component in the blood is expressed; and/or external secretory cells that release a bioactive substance into the blood as an external secretion.

Description

活性成分含有溶液処理装置および体外活性成分含有溶液循環システムActive ingredient-containing solution processing equipment and in vitro active ingredient-containing solution circulation system
 本発明は、活性成分含有溶液処理装置および体外活性成分含有溶液循環システムに関する。
 本願は、2022年4月27日に、日本に出願された特願2022-073502号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an active ingredient-containing solution treatment device and an extracorporeal active ingredient-containing solution circulation system.
This application claims priority based on Japanese Patent Application No. 2022-073502 filed in Japan on April 27, 2022, the contents of which are incorporated herein.
 体外活性成分含有溶液循環システムの一例としては、例えば採血した活性成分含有溶液である血液から老廃物や余分な水分を除去する透析を行い、血液を浄化処理する血液透析装置を有する構成が知られている(例えば、特許文献1)。 As an example of an extracorporeal active ingredient-containing solution circulation system, a configuration is known that includes a hemodialysis device that performs dialysis to remove waste products and excess water from collected blood, which is an active ingredient-containing solution, and purifies the blood. (For example, Patent Document 1).
 また、特許文献2には、体外活性成分含有溶液循環システムとして、中空線維を介して血液に栄養物質を付与する処理を行う構成が開示されている。 Additionally, Patent Document 2 discloses a configuration that performs a process of imparting nutritional substances to blood via hollow fibers as an extracorporeal active ingredient-containing solution circulation system.
国際公開第2020/137756号International Publication No. 2020/137756 特表2001-525705号公報Special Publication No. 2001-525705
 特許文献1の活性成分含有溶液処理装置および体外活性成分含有溶液循環システムは、血液浄化デバイスに加えて血液成分調整器を用いているため、装置が大型化するという問題が生じる。特許文献2の活性成分含有溶液処理装置および体外活性成分含有溶液循環システムは、血液の循環路に加えて栄養物質の補給流路と体液の補給流路をそれぞれ設けているため、特許文献1と同様に装置が大型化するという問題が生じる。
 また、装置が大型化することで、体外で循環させる血液の量が増えるという問題も生じる。
Since the active ingredient-containing solution processing device and the extracorporeal active ingredient-containing solution circulation system of Patent Document 1 use a blood component regulator in addition to a blood purification device, a problem arises in that the device becomes larger. The active ingredient-containing solution processing device and the extracorporeal active ingredient-containing solution circulation system of Patent Document 2 are provided with a nutritional substance supply channel and a body fluid supply channel in addition to the blood circulation channel, so they are different from Patent Document 1. Similarly, a problem arises in that the device becomes larger.
Furthermore, as the device becomes larger, there is also the problem that the amount of blood to be circulated outside the body increases.
 本発明は、以上のような点を考慮してなされたもので、装置を小型して体外で循環させる活性成分含有溶液の量を抑制できる活性成分含有溶液処理装置および体外活性成分含有溶液循環システムを提供することを目的とする。 The present invention has been made in consideration of the above points, and provides an active ingredient-containing solution processing device and an extracorporeal active ingredient-containing solution circulation system that can reduce the size of the device and suppress the amount of active ingredient-containing solution to be circulated outside the body. The purpose is to provide
 本発明の第1の態様に従えば、少なくとも活性成分含有溶液における一部の成分が導入されるチャンバーと、前記チャンバーの内部に配置され、複数の細胞と、前記細胞を保持し前記成分を透過させる保持部とを有する線状部材と、を備え、前記細胞は、前記活性成分含有溶液における前記成分に含まれる特定物質と親和性を有する膜タンパク質を発現した親和性細胞と、前記活性成分含有溶液に外分泌物として生理活性物質を放出する外分泌性細胞と、の少なくとも一方を含む、活性成分含有溶液処理装置が提供される。 According to a first aspect of the present invention, there is provided a chamber into which at least some components of an active ingredient-containing solution are introduced, a plurality of cells disposed inside the chamber, and a plurality of cells that hold the cells and permeate the components. and a linear member having a holding portion, wherein the cell is an affinity cell expressing a membrane protein having an affinity for a specific substance contained in the component in the active ingredient-containing solution, and An active ingredient-containing solution processing device is provided that includes at least one of exocrine cells that release a physiologically active substance as an exocrine secretion into a solution.
 本発明の第2の態様に従えば、第1の態様の活性成分含有溶液処理装置と、少なくとも前記活性成分含有溶液における前記成分を前記チャンバーの導入部から排出部に至って循環させるポンプと、を有する、体外活性成分含有溶液循環システムが提供される。 According to a second aspect of the present invention, the active ingredient-containing solution processing device of the first aspect and a pump that circulates at least the component in the active ingredient-containing solution from the introduction part to the discharge part of the chamber are provided. An extracorporeal active ingredient-containing solution circulation system is provided.
 本発明では、装置を小型して体外で循環させる活性成分含有溶液の量を抑制できる活性成分含有溶液処理装置および体外活性成分含有溶液循環システムを提供することができる。 The present invention can provide an active ingredient-containing solution processing device and an extracorporeal active ingredient-containing solution circulation system that can reduce the size of the device and suppress the amount of active ingredient-containing solution that is circulated outside the body.
本発明の実施の形態を示す図であって、体外血液循環システム100の概略構成を示す図である。1 is a diagram illustrating an embodiment of the present invention, and a diagram illustrating a schematic configuration of an extracorporeal blood circulation system 100. FIG. ファイバ支持体50の断面図である。5 is a cross-sectional view of a fiber support 50. FIG. 細胞ファイバFにおける先端部分の模式図である。It is a schematic diagram of the tip part of cell fiber F. 細胞ファイバFの製造過程を説明する模式図である。It is a schematic diagram explaining the manufacturing process of cell fiber F. 細胞ファイバFの37℃における蛍光画像である。This is a fluorescence image of cell fiber F at 37°C. 細胞ファイバFの4℃における蛍光画像である。This is a fluorescence image of cell fiber F at 4°C. Sタンパク質ビーズの作製を説明する模式図である。FIG. 2 is a schematic diagram illustrating the production of S protein beads. Sタンパク質ビーズを含む溶液を注入後の時間と、計測されたSタンパク質ビーズ量との関係を示す図である。FIG. 2 is a diagram showing the relationship between the time after injection of a solution containing S protein beads and the measured amount of S protein beads. 細胞ファイバFに細胞を充填しないサンプルの蛍光画像である。This is a fluorescence image of a sample in which cell fiber F is not filled with cells. 細胞ファイバFにVeroE6細胞が充填されたサンプルの蛍光画像である。This is a fluorescence image of a sample in which cell fiber F is filled with VeroE6 cells. 細胞ファイバFにVeroE6細胞が1時間反応した後の蛍光画像である。This is a fluorescence image after VeroE6 cells reacted with cell fiber F for 1 hour. 細胞ファイバFにVeroE6細胞が2時間反応した後の蛍光画像である。This is a fluorescence image after VeroE6 cells reacted with cell fiber F for 2 hours. コロナウイルスのシュードタイプレンチウイルスを用い、細胞ファイバFに細胞を充填しないサンプルにおいて、循環6日後の蛍光画像である。This is a fluorescence image after 6 days of circulation in a sample in which a coronavirus pseudotyped lentivirus was used and the cell fiber F was not filled with cells. コロナウイルスのシュードタイプレンチウイルスを用い、細胞ファイバFにVeroE6細胞を用いたサンプルにおいて、循環6日後の蛍光画像である。This is a fluorescence image after 6 days of circulation in a sample using coronavirus pseudotype lentivirus and using VeroE6 cells as cell fiber F. 外分泌性細胞を有する細胞ファイバFと、外分泌性細胞を有さない細胞ファイバFを用いて血液を循環させた場合の血漿内のアルブミン濃度を示す図である。It is a figure which shows the albumin concentration in plasma when blood is circulated using the cell fiber F which has an exocrine cell, and the cell fiber F which does not have an exocrine cell. 体外血液循環システム100の変形例を示す概略構成図である。It is a schematic block diagram which shows the modification of the extracorporeal blood circulation system 100. 線状部材の変形例を示す模式図である。It is a schematic diagram which shows the modification of a linear member.
 以下、本発明の活性成分含有溶液処理装置および体外活性成分含有溶液循環システムの実施の形態を、図1から図17を参照して説明する。
 なお、以下の実施形態は、本発明の一態様を示すものであり、この発明を限定するものではなく、本発明の技術的思想の範囲内で任意に変更可能である。また、以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数等を異ならせている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of an active ingredient-containing solution treatment device and an extracorporeal active ingredient-containing solution circulation system of the present invention will be described below with reference to FIGS. 1 to 17.
Note that the following embodiments illustrate one aspect of the present invention, and do not limit the present invention, and can be arbitrarily modified within the scope of the technical idea of the present invention. In addition, in the following drawings, in order to make each structure easier to understand, the scale, number, etc. of each structure are different from the actual structure.
 本実施形態では、活性成分含有溶液の少なくとも一部として血液を処理する血液処理装置を活性成分含有溶液処理装置として説明し、体外において少なくとも活性成分含有溶液として血液における一部の成分を循環させる体外血液循環システムを体外活性成分含有溶液循環システムとして説明する。 In this embodiment, a blood processing device that processes blood as at least a part of an active ingredient-containing solution will be described as an active ingredient-containing solution processing device, and an extracorporeal device that circulates some components of blood as at least a part of an active ingredient-containing solution outside the body. The blood circulation system will be explained as an extracorporeal active ingredient-containing solution circulation system.
 図1は、体外血液循環システム100の概略構成を示す図である。
 図1に示すように、体外血液循環システム100は、生体LBの体外において少なくとも血液における一部の成分を循環させ、血液処理装置1において血液における一部の成分に対して所定の処理を行う。
FIG. 1 is a diagram showing a schematic configuration of an extracorporeal blood circulation system 100.
As shown in FIG. 1, the extracorporeal blood circulation system 100 circulates at least some components of the blood outside the body of the living body LB, and performs predetermined processing on some of the blood components in the blood processing device 1.
 体外血液循環システム100は、血液処理装置1と、輸液貯溜部10と、第1導入配管系11と、第1排出配管系12と、第2導入配管系13と、第2排出配管系14と、第1ポンプ21と、第2ポンプ22と、第3ポンプ23と、第4ポンプ24とを備えている。 The extracorporeal blood circulation system 100 includes a blood processing device 1, an infusion reservoir 10, a first introduction piping system 11, a first discharge piping system 12, a second introduction piping system 13, and a second discharge piping system 14. , a first pump 21, a second pump 22, a third pump 23, and a fourth pump 24.
 第1導入配管系11は、生体LBから少なくとも血液における一部の成分を血液処理装置1に導入する配管を含む。第1排出配管系12は、血液処理装置1から排出される少なくとも血液における一部の成分を生体LBに向けて排出する配管を含む。第1ポンプ21と第2ポンプ22は、少なくとも血液における一部の成分を第1導入配管系11から第1排出配管系12に至って循環させるポンプである。第1ポンプ21は、第1導入配管系11に設けられ少なくとも血液における一部の成分を血液処理装置1に向けて送液する。第2ポンプ22は、第1排出配管系12に設けられ少なくとも血液における一部の成分を生体LBに向けて送液する。 The first introduction piping system 11 includes piping that introduces at least some components of blood from the living body LB into the blood processing apparatus 1. The first discharge piping system 12 includes piping that discharges at least some components of the blood discharged from the blood processing apparatus 1 toward the living body LB. The first pump 21 and the second pump 22 are pumps that circulate at least some components of blood from the first introduction piping system 11 to the first discharge piping system 12. The first pump 21 is provided in the first introduction piping system 11 and delivers at least some components of blood toward the blood processing apparatus 1 . The second pump 22 is provided in the first discharge piping system 12 and sends at least some components of blood toward the living body LB.
 なお、少なくとも血液における一部の成分とは、生体LBから採血される血液、または生体LBから採血される血液のうち、血液から分離された特定の成分(例えば、血漿等)である。血液から分離された特定の成分を循環させる場合、第1導入配管系11には、生体LBから採血される血液のうち、血液から特定の成分を分離する分離器と、分離器から血液処理装置1に至る配管が含まれる。以下の説明では、血液から分離された特定の成分についても単に血液と呼ぶ場合がある。 Note that at least some components of the blood are blood collected from the living body LB, or specific components (for example, plasma, etc.) separated from the blood of the blood collected from the living body LB. When circulating specific components separated from blood, the first introduction piping system 11 includes a separator that separates specific components from the blood collected from the living body LB, and a blood processing device from the separator. 1 is included. In the following description, specific components separated from blood may also be simply referred to as blood.
 輸液貯溜部10は、輸液を貯留する。第2導入配管系13は、輸液貯溜部10から排出される輸液を血液処理装置1に導入する配管を含む。第2排出配管系14は、血液処理装置1から排出される輸液を輸液貯溜部10に向けて排出する配管を含む。第3ポンプ23は、第2導入配管系13に設けられ輸液を血液処理装置1に向けて送液する。第4ポンプ24は、第2排出配管系14に設けられ血液処理装置1からの輸液を輸液貯溜部10に向けて送液する。 The infusion fluid reservoir 10 stores infusion fluid. The second introduction piping system 13 includes piping that introduces the infusion discharged from the infusion reservoir 10 into the blood processing apparatus 1 . The second discharge piping system 14 includes piping that discharges the infusion fluid discharged from the blood processing device 1 toward the infusion fluid reservoir 10 . The third pump 23 is provided in the second introduction piping system 13 and sends the transfusion toward the blood processing apparatus 1 . The fourth pump 24 is provided in the second discharge piping system 14 and sends the infusion from the blood processing device 1 toward the infusion reservoir 10 .
 血液処理装置1は、導入された血液に対して所定の処理を行う。血液に対する所定の処理は、導入された血液に含まれる特定物質を捕捉して血液を浄化する処理と、導入された血液に対して生理活性物質を放出する処理の少なくとも一方である。 The blood processing device 1 performs predetermined processing on the introduced blood. The predetermined treatment for blood is at least one of a process for purifying the blood by capturing a specific substance contained in the introduced blood, and a process for releasing a physiologically active substance from the introduced blood.
 血液処理装置1は、チャンバー30と、線状部材Fと、を有する。チャンバー30は、チャンバ本体31と、蓋40と、ファイバ支持体(支持体)50と、フィルター61、62と、を有する。
 チャンバ本体31は、上下方向に延びる筒状である。チャンバ本体31は、上側が開口している。チャンバ本体31は、底壁部32と、周壁部33と、天壁部34と、処理空間35と、を有する。
The blood processing device 1 includes a chamber 30 and a linear member F. The chamber 30 includes a chamber body 31, a lid 40, a fiber support (support) 50, and filters 61 and 62.
The chamber body 31 has a cylindrical shape extending in the vertical direction. The chamber body 31 is open at the top. The chamber body 31 includes a bottom wall 32 , a peripheral wall 33 , a top wall 34 , and a processing space 35 .
 底壁部32は、チャンバ本体31の下端に位置する。底壁部32は、段部32Aと、嵌合突部32Bと、血液導入部32Cと、導入口32Dと、を有する。段部32Aは、処理空間35の下端から上側に突出する円柱状である。嵌合突部32Bは、段部32Aから上側に突出する軸状である。嵌合突部32Bの外径は、段部32Aの外径よりも小さい。血液導入部32Cは、底壁部32の下側に突出する。血液導入部32Cには、第1導入配管系11が接続される。導入口32Dは、段部32A、嵌合突部32Bおよび血液導入部32Cを上下方向に貫通する。生体LBからの血液は、第1ポンプ21の駆動により第1導入配管系11および血液導入部32Cを介して導入口32Dからチャンバー30の内部に導入される。 The bottom wall portion 32 is located at the lower end of the chamber body 31. The bottom wall portion 32 includes a step portion 32A, a fitting protrusion 32B, a blood introduction portion 32C, and an introduction port 32D. The step portion 32A has a cylindrical shape that projects upward from the lower end of the processing space 35. The fitting projection 32B has a shaft shape that projects upward from the stepped portion 32A. The outer diameter of the fitting protrusion 32B is smaller than the outer diameter of the stepped portion 32A. The blood introduction part 32C protrudes below the bottom wall part 32. The first introduction piping system 11 is connected to the blood introduction section 32C. The introduction port 32D vertically passes through the stepped portion 32A, the fitting protrusion 32B, and the blood introduction portion 32C. Blood from the living body LB is introduced into the chamber 30 from the introduction port 32D via the first introduction piping system 11 and the blood introduction part 32C by driving the first pump 21.
 周壁部33は、底壁部32の外縁から上側に延びる円筒状である。周壁部33は、輸液導入部33Aと、輸液排出部33Bと、を有する。輸液導入部33Aと輸液排出部33Bとは、上下方向に互いに離れて配置されている。輸液導入部33Aは、周壁部33における処理空間35の下端近傍に位置する。輸液導入部33Aには、第2導入配管系13が接続される。輸液貯溜部10からの輸液は、第3ポンプ23の駆動により第2導入配管系13および輸液導入部33Aを介して処理空間35に導入される。輸液排出部33Bは、周壁部33における輸液導入部33Aよりも上側の処理空間35の上端近傍に位置する。処理空間35の液体は、第4ポンプ24の駆動により輸液排出部33Bおよび第2排出配管系14を介して輸液貯溜部10に向けて送られる。 The peripheral wall portion 33 has a cylindrical shape extending upward from the outer edge of the bottom wall portion 32. The peripheral wall portion 33 has an infusion solution introduction section 33A and an infusion solution discharge section 33B. The infusion solution introduction section 33A and the infusion solution discharge section 33B are arranged vertically apart from each other. The infusion introduction part 33A is located near the lower end of the processing space 35 in the peripheral wall part 33. The second introduction piping system 13 is connected to the infusion solution introduction section 33A. The infusion from the infusion reservoir 10 is introduced into the processing space 35 via the second introduction piping system 13 and the infusion introduction part 33A by driving the third pump 23. The infusion discharge part 33B is located near the upper end of the processing space 35 above the infusion introduction part 33A in the peripheral wall part 33. The liquid in the processing space 35 is sent toward the infusion reservoir 10 via the infusion discharge part 33B and the second discharge piping system 14 by driving the fourth pump 24.
 天壁部34は、周壁部33の上端から径方向外側に延びる円環状である。天壁部34の上面には、処理空間35における開口部の周囲に円環状の溝部34aが形成されている。溝部34aには、シール材34bが配置されている。シール材34bは、一例として、Oリングである。処理空間35は、底壁部32と周壁部33に囲まれた空間であり、上下方向に延びる。 The top wall portion 34 has an annular shape extending radially outward from the upper end of the peripheral wall portion 33. An annular groove 34 a is formed on the upper surface of the ceiling wall 34 around the opening in the processing space 35 . A sealing material 34b is arranged in the groove 34a. The sealing material 34b is an O-ring, for example. The processing space 35 is a space surrounded by the bottom wall part 32 and the peripheral wall part 33, and extends in the vertical direction.
 蓋40は、チャンバ本体31の上側に設けられる。蓋40は、上側から天壁部34にシール材34bを介して接合することで、処理空間35を液密に閉塞する。蓋40が処理空間35を液密に閉塞することで、処理空間35に導入された液体が漏れることを抑制できる。蓋40は、下側から上側に延びる嵌合凹部40aと、上下方向に貫通する貫通流路40bと、を有している。 The lid 40 is provided above the chamber body 31. The lid 40 liquid-tightly closes the processing space 35 by joining the top wall portion 34 from above through the sealing material 34b. By liquid-tightly closing the processing space 35 with the lid 40, leakage of the liquid introduced into the processing space 35 can be suppressed. The lid 40 has a fitting recess 40a extending from the bottom to the top, and a through passage 40b penetrating in the vertical direction.
 ファイバ支持体50は、処理空間35に配置される。図2に示すように、ファイバ支持体50は、台座部51と、支持軸52と、嵌合凸部53と、嵌合凹部54と、貫通流路55と、溝部56と、を有する。 The fiber support 50 is placed in the processing space 35. As shown in FIG. 2, the fiber support 50 includes a pedestal 51, a support shaft 52, a fitting protrusion 53, a fitting recess 54, a through channel 55, and a groove 56.
 台座部51は、ファイバ支持体50の下端に位置する。台座部51は、径方向に延びるフランジ状である。台座部51は、下側に臨んで円環状の磁石51Aを有する。支持軸52は、台座部51から上側に延びる円筒状である。支持軸52の直径は、台座部51の直径よりも小さい。支持軸52の外周には、図1に示すように、線状部材F(詳細は後述)が巻き付けられる。 The pedestal portion 51 is located at the lower end of the fiber support 50. The pedestal portion 51 has a flange shape extending in the radial direction. The pedestal portion 51 has an annular magnet 51A facing downward. The support shaft 52 has a cylindrical shape extending upward from the pedestal portion 51. The diameter of the support shaft 52 is smaller than the diameter of the pedestal portion 51. As shown in FIG. 1, a linear member F (details will be described later) is wound around the outer periphery of the support shaft 52. As shown in FIG.
 嵌合凸部53は、支持軸52の上端から上側に延びる円筒状である。嵌合凸部53の直径は、支持軸52の直径よりも小さい。嵌合凸部53は、蓋40の嵌合凹部40aに下側から挿入されて嵌合する。嵌合凸部53は、嵌合凹部40aに対して離脱可能である。嵌合凹部54は、台座部51の下面から上側に窪んで形成される。嵌合凹部54には、底壁部32の嵌合突部32Bが下側から挿入されて嵌合する。貫通流路55は、ファイバ支持体50を上下方向に貫通する。貫通流路55の下端は、嵌合凹部54に開口する。嵌合凹部54は、嵌合突部32Bに対して離脱可能である。 The fitting convex portion 53 has a cylindrical shape extending upward from the upper end of the support shaft 52. The diameter of the fitting convex portion 53 is smaller than the diameter of the support shaft 52. The fitting protrusion 53 is inserted into and fitted into the fitting recess 40a of the lid 40 from below. The fitting protrusion 53 is removable from the fitting recess 40a. The fitting recess 54 is recessed upward from the lower surface of the pedestal 51 . The fitting protrusion 32B of the bottom wall portion 32 is inserted into the fitting recess 54 from below and fitted therein. The through channel 55 passes through the fiber support 50 in the vertical direction. The lower end of the through passage 55 opens into the fitting recess 54 . The fitting recess 54 is removable from the fitting protrusion 32B.
 嵌合凸部53が蓋40の嵌合凹部40aに嵌合したときに、ファイバ支持体50は蓋40に位置決めされ、貫通流路55は貫通流路40bと連通する。嵌合凹部54に嵌合突部32Bが嵌合したときに、ファイバ支持体50はチャンバ本体31に位置決めされ、貫通流路55は導入口32Dと連通する。つまり、ファイバ支持体50は、チャンバー30に対して着脱自在に取り付けられる。ファイバ支持体50がチャンバー30に取り付けられたときに、導入口32D、貫通流路55および貫通流路40bは連通する。 When the fitting protrusion 53 fits into the fitting recess 40a of the lid 40, the fiber support 50 is positioned on the lid 40, and the through passage 55 communicates with the through passage 40b. When the fitting protrusion 32B fits into the fitting recess 54, the fiber support 50 is positioned in the chamber body 31, and the through passage 55 communicates with the introduction port 32D. That is, the fiber support 50 is detachably attached to the chamber 30. When the fiber support 50 is attached to the chamber 30, the introduction port 32D, the through channel 55, and the through channel 40b communicate with each other.
 溝部56は、支持軸52において貫通流路55から径方向外側に延びて支持軸52の外周面に開口する。溝部56は、貫通流路55と処理空間35とを径方向に繋ぐ。チャンバー30の内部に導入された血液は、溝部56を介して貫通流路55と処理空間35との間を流動可能である。溝部56は、周方向に間隔をあけて複数(本実施形態では4つ)配置されている。周方向に複数配置された溝部56の組みは、上下方向に間隔をあけて2組設けられている。 The groove portion 56 extends radially outward from the through passage 55 in the support shaft 52 and opens on the outer circumferential surface of the support shaft 52 . The groove portion 56 connects the through flow path 55 and the processing space 35 in the radial direction. Blood introduced into the chamber 30 can flow between the through channel 55 and the processing space 35 via the groove 56 . A plurality of grooves 56 (four in this embodiment) are arranged at intervals in the circumferential direction. Two sets of grooves 56 arranged in the circumferential direction are provided at intervals in the vertical direction.
 ファイバ支持体50がチャンバ本体31の処理空間35に配置された血液処理装置1は、最大直径が約2cmであり、最大長さが約10cmである。 The blood processing apparatus 1 in which the fiber support 50 is arranged in the processing space 35 of the chamber body 31 has a maximum diameter of about 2 cm and a maximum length of about 10 cm.
 フィルター61は、貫通流路55と貫通流路40bとの境界60Aに配置されている。境界60Aは、チャンバー30において血液が排出される排出部である。フィルター62は、導入口32Dと貫通流路55との境界60Bに配置されている。境界60Bは、チャンバー30において血液が導入される導入部である。フィルター61、62は、線状部材Fをチャンバー30の内部に止める。フィルター61、62のメッシュサイズは、線状部材Fの大きさよりも小さい。線状部材Fが血液とともに貫通流路40bに排出されないために、少なくともフィルター61を排出部である境界60Aに配置することが好ましい。血液処理の準備として、空気抜き等を実施する際に液体を逆流させることを考慮して、フィルター62を導入部である境界60Bにも配置することが好ましい。 The filter 61 is arranged at the boundary 60A between the through-flow path 55 and the through-flow path 40b. Boundary 60A is a discharge part from which blood is discharged in chamber 30. The filter 62 is arranged at a boundary 60B between the introduction port 32D and the through flow path 55. Boundary 60B is an introduction part into which blood is introduced into chamber 30. The filters 61 and 62 stop the linear member F inside the chamber 30. The mesh size of the filters 61 and 62 is smaller than the size of the linear member F. In order to prevent the linear member F from being discharged into the through-flow path 40b together with the blood, it is preferable to arrange at least the filter 61 at the boundary 60A, which is the discharge portion. In preparation for blood treatment, it is preferable to arrange the filter 62 also at the boundary 60B, which is the introduction part, in consideration of causing the liquid to flow back when performing air removal or the like.
 線状部材Fは、図3に示すように、複数の細胞115と、細胞115を保持し少なくとも血液における一部の成分を透過させる保持部220とを有する。本実施形態の線状部材Fは、コア部とシェル部とを有するコア/シェル構造である。以下の説明では、線状部材については、コア部210と、シェル部220と、を有する細胞ファイバFと呼ぶ。 As shown in FIG. 3, the linear member F includes a plurality of cells 115 and a holding section 220 that holds the cells 115 and allows at least some components of blood to pass therethrough. The linear member F of this embodiment has a core/shell structure having a core part and a shell part. In the following description, the linear member will be referred to as a cellular fiber F having a core portion 210 and a shell portion 220.
 コア部210は、複数の細胞115が充填されたハイドロゲルを有する。シェル部220は、コア部210の外周を被覆する。シェル部220は、コア部210を形成するハイドロゲルとは解離性を有するハイドロゲルである。 The core part 210 has a hydrogel filled with a plurality of cells 115. Shell portion 220 covers the outer periphery of core portion 210 . The shell portion 220 is a hydrogel that is dissociable from the hydrogel forming the core portion 210 .
  細胞ファイバFの作製方法は特に限定されないが、例えば、図4に示すような二重の同軸マイクロ流体装置(coaxial microfluidic device)140を用いることにより簡便に作製することができる。2つの流体を同軸となるようにコア部及びシェル部に分けて射出することができるマイクロ流体装置140は、例えば、Wonje Jeong, et al., Hydrodynamic microfabrication via "on the fly" photopolymerization of microscale fibers and tubes, Lab Chip, 2004, 4, 576-580 のFig.1にも具体的に説明されている。 Although the method for producing the cell fiber F is not particularly limited, it can be easily produced, for example, by using a double coaxial microfluidic device 140 as shown in FIG. The microfluidic device 140 that can coaxially separate and inject two fluids into a core part and a shell part is described, for example, by Wonje Jeong, et al., Hydrodynamic microfabrication via "on the fly" photopolymerization of microscale fibers and Fig. tubes, Lab Chip, 2004, 4, 576-580. 1 is also explained in detail.
 図4は、細胞ファイバFの製造過程を説明する模式図である。
 マイクロ流体装置140は、コア部210を形成するための第1液状体を導入する導入口110と、シェル部220を形成するための第2液状体を導入する導入口120と、シェル部220をゲル化させる第3液状体を導入する導入口130と、を有する。
FIG. 4 is a schematic diagram illustrating the manufacturing process of cell fiber F.
The microfluidic device 140 includes an introduction port 110 for introducing a first liquid material to form a core section 210, an introduction port 120 for introducing a second liquid material for forming a shell section 220, and a shell section 220. It has an introduction port 130 for introducing the third liquid material to be gelled.
 コア部210を形成するための第1液状体としては、細胞115および細胞外マトリックス成分を含む溶液を例示することができる。第1液状体に含まれる細胞としては、特に限定されないが、内分泌細胞、外分泌細胞、神経系細胞、骨格筋系細胞、血液細胞、間質細胞等が挙げられる。ここで、内分泌細胞としては、例えば、神経分泌細胞、下垂体細胞、甲状腺細胞、副甲状腺細胞、膵島細胞、胃腸内分泌細胞、心筋細胞、肝細胞、腎臓細胞、脂肪細胞、副腎細胞、性腺細胞等が挙げられる。また、外分泌細胞としては、例えば、消化管上皮細胞等が挙げられる他に、生理活性物質を放出する細胞が挙げられる。生理活性物質を放出する細胞としては、アルブミンを放出する肝細胞、酵素を放出する酵素産生細胞等が挙げられる。また、神経系細胞としては、神経幹細胞、中枢神経細胞、末梢神経細胞、グリア細胞等が挙げられる。また、骨格筋系細胞としては、骨細胞、軟骨細胞等が挙げられる。また、血液細胞としては、造血幹細胞、白血球、赤血球、血小板等が挙げられる。また、間質細胞としては、繊維芽細胞、血管細胞等が挙げられる。また、血液浄化を目的として、血液に含まれる特定物質と親和性を有する膜タンパク質を発現した親和性細胞を用いることができる。血液に含まれる特定物質としては、ウイルスやサイトカイン等が挙げられる。これらの細胞はiPS細胞やES細胞等から分化誘導された細胞であってもよい。 An example of the first liquid for forming the core portion 210 is a solution containing the cells 115 and an extracellular matrix component. The cells contained in the first liquid body include, but are not particularly limited to, endocrine cells, exocrine cells, nervous system cells, skeletal muscle cells, blood cells, interstitial cells, and the like. Here, examples of endocrine cells include neurosecretory cells, pituitary cells, thyroid cells, parathyroid cells, pancreatic islet cells, gastrointestinal endocrine cells, cardiomyocytes, hepatocytes, kidney cells, adipocytes, adrenal cells, gonadal cells, etc. can be mentioned. Examples of exocrine cells include gastrointestinal epithelial cells and cells that release physiologically active substances. Examples of cells that release physiologically active substances include hepatocytes that release albumin, enzyme-producing cells that release enzymes, and the like. Furthermore, examples of nervous system cells include neural stem cells, central nerve cells, peripheral nerve cells, and glial cells. Further, examples of skeletal muscle cells include bone cells, cartilage cells, and the like. Further, examples of blood cells include hematopoietic stem cells, white blood cells, red blood cells, platelets, and the like. Furthermore, examples of interstitial cells include fibroblasts, vascular cells, and the like. Furthermore, for the purpose of blood purification, affinity cells expressing membrane proteins that have an affinity for specific substances contained in blood can be used. Specific substances contained in blood include viruses, cytokines, and the like. These cells may be cells induced to differentiate from iPS cells, ES cells, or the like.
 細胞外マトリックス成分としては、特に限定されないが、例えば、コラーゲン(I型、II型、III型、V型、XI型など)、マウスEHS腫瘍抽出物(IV型コラーゲン、ラミニン、ヘパラン硫酸プロテオグリカンなどを含む)より再構成された基底膜成分、ゼラチン、寒天、アガロース、フィブリン、グリコサミノグリカン、ヒアルロン酸、プロテオグリカン、スロンビン、アプロチニン、アルギン酸などを例示することができる。 Examples of extracellular matrix components include, but are not limited to, collagen (type I, type II, type III, type V, type XI, etc.), mouse EHS tumor extract (type IV collagen, laminin, heparan sulfate proteoglycan, etc.). (including) reconstituted basement membrane components, gelatin, agar, agarose, fibrin, glycosaminoglycans, hyaluronic acid, proteoglycans, thrombin, aprotinin, alginic acid, and the like.
 シェル部220を形成するための第2液状体としては、金属イオンの存在下でゲル化する溶液、温度に応答してゲル化する溶液、pHに応答してゲル化する溶液、ゲル化する溶液、磁場に応答してゲル化する溶液等を用いることができる。 The second liquid for forming the shell portion 220 may include a solution that gels in the presence of metal ions, a solution that gels in response to temperature, a solution that gels in response to pH, and a solution that gels. , a solution that gels in response to a magnetic field, etc. can be used.
 金属イオンの存在下でゲル化する溶液としては、二価又は三価の金属イオンの存在下でゲル化するアルギン酸溶液を、カルシウムイオンやカリウムイオンの存在下でゲル化するカラギーナン溶液、ナトリウムイオンの存在下でゲル化するアクリル酸系合成溶液等が挙げられる。 Solutions that gel in the presence of metal ions include alginic acid solutions that gel in the presence of divalent or trivalent metal ions, carrageenan solutions that gel in the presence of calcium and potassium ions, and solutions that gel in the presence of sodium ions. Examples include acrylic acid-based synthetic solutions that gel in the presence of the solvent.
 温度応答性ゲル化溶液としては、ポリ(N-イソプロピルアクリルアミド)をポリエチレングリコールで架橋した温度応答性ゲル化溶液、メチルセルロース、ヒドロキシプロピルセルロース、ポリ乳酸とポリエチレングリコールの共重合体、ポリエチレングリコールとポリプロピレンオキシドのトリブロック共重合体(市販名:プルロニック(登録商標)、ポロキサマー)、アガロース、ポリビニルアルコール等が挙げられる。 Temperature-responsive gelling solutions include temperature-responsive gelling solutions in which poly(N-isopropylacrylamide) is crosslinked with polyethylene glycol, methylcellulose, hydroxypropylcellulose, copolymers of polylactic acid and polyethylene glycol, and polyethylene glycol and polypropylene oxide. (commercial name: Pluronic (registered trademark), poloxamer), agarose, polyvinyl alcohol, etc.
 pH応答性ゲル化溶液としては、アルギン酸塩溶液、キトサン溶液、カルボキシメチルセルロース溶液、アクリル酸系合成溶液等が挙げられる。 Examples of the pH-responsive gelling solution include an alginate solution, a chitosan solution, a carboxymethyl cellulose solution, and an acrylic acid-based synthetic solution.
 光応答性ゲル化溶液としては、骨格にアゾベンゼンとシクロデキストリンを組み合わせた合成ゲル化溶液、フマル酸アミドをスペーサーとした超分子からなるゲル化溶液、ニトロベンジル基を介して架橋されたないしは結合されているゲル化溶液等が挙げられる。 Examples of photoresponsive gelling solutions include synthetic gelling solutions that combine azobenzene and cyclodextrin in the skeleton, gelling solutions that consist of supramolecular molecules with fumaric acid amide spacers, and gelling solutions that are cross-linked or bonded via nitrobenzyl groups. Examples include gelling solutions.
 磁場応答性ハイドロゲルとしては、磁性粒子を含有させた架橋ポリ(N-イソプロピルアクリルアミド)からなるゲル化溶液等が挙げられる。 Examples of magnetic field-responsive hydrogels include gel solutions made of crosslinked poly(N-isopropylacrylamide) containing magnetic particles.
 一例として、コア部210の材料にコラーゲン溶液を用い、シェル部220の材料に架橋前のアルギン酸ナトリウム溶液を用いて細胞ファイバFを製造する際には、まず、マイクロ流体装置140の導入口110から、細胞115を含むコラーゲン溶液を導入して射出する。また、マイクロ流体装置140の導入口120から、架橋前のアルギン酸ナトリウム溶液を導入して射出する。また、マイクロ流体装置140の導入口130から、塩化カルシウム溶液を導入して射出する。すると、シェル部のアルギン酸ナトリウム溶液がゲル化し、シェル部220がアルギン酸ゲルである細胞ファイバFを製造することができる。また、細胞ファイバ200を37℃程度で数分から1時間程度加熱することにより、コア部210の細胞115を含むコラーゲン溶液をゲル化させることができる。 As an example, when manufacturing the cell fiber F using a collagen solution as the material for the core part 210 and a sodium alginate solution before crosslinking as the material for the shell part 220, first, from the inlet 110 of the microfluidic device 140, , a collagen solution containing cells 115 is introduced and injected. Further, a sodium alginate solution before crosslinking is introduced and injected from the inlet 120 of the microfluidic device 140. Further, a calcium chloride solution is introduced and injected from the inlet 130 of the microfluidic device 140. Then, the sodium alginate solution in the shell portion is gelled, and a cell fiber F in which the shell portion 220 is made of alginate gel can be manufactured. Further, by heating the cell fiber 200 at about 37° C. for several minutes to about an hour, the collagen solution containing the cells 115 in the core portion 210 can be gelled.
 導入口110及び120における溶液の射出速度は特に限定されないが、マイクロ流体装置140の口径が50μm~2mm程度である場合には、10~500μL/分程度であってもよい。導入口110及び120における溶液の射出速度を調節することにより、コア部の直径及びシェル部の被覆厚みを適宜調節できる。導入口130における溶液の射出速度は特に限定されないが、例えば1~10mL/分程度であってもよい。 The injection speed of the solution at the introduction ports 110 and 120 is not particularly limited, but if the diameter of the microfluidic device 140 is about 50 μm to 2 mm, it may be about 10 to 500 μL/min. By adjusting the injection speed of the solution at the inlets 110 and 120, the diameter of the core portion and the coating thickness of the shell portion can be adjusted as appropriate. The injection speed of the solution at the introduction port 130 is not particularly limited, but may be, for example, about 1 to 10 mL/min.
 細胞ファイバFの外径は特に限定されず、例えば10μm~2mm、例えば200μm~2mm、例えば50μm~1mm程度であってもよい。細胞ファイバFの長さは特に限定されず、数mm~数m程度であってもよい。細胞ファイバFの断面形状としては、円形、楕円系、四角形や五角形等の多角形等が挙げられる。 The outer diameter of the cell fiber F is not particularly limited, and may be, for example, about 10 μm to 2 mm, for example, 200 μm to 2 mm, and, for example, about 50 μm to 1 mm. The length of the cell fiber F is not particularly limited, and may be approximately several mm to several meters. Examples of the cross-sectional shape of the cell fibers F include a circle, an ellipse, and a polygon such as a quadrangle and a pentagon.
 細胞ファイバFを培養液中で培養することにより、細胞を増殖させることができる。細胞ファイバFは、培養液を適切に交換することにより、数か月培養することもできる。 By culturing cell fibers F in a culture solution, cells can be grown. Cell fibers F can also be cultured for several months by appropriately replacing the culture medium.
 コア部210には、細胞115の維持、増殖又は機能発現等に適した各種の成長因子、例えば上皮成長因子(EGF)、血小板由来成長因子(PDGF)、トランスフォーミング成長因子(TGF)、インスリン様成長因子(IGF)、線維芽細胞成長因子(FGF)、神経成長因子(NGF)等を含有させてもよい。成長因子を含有させる場合には、成長因子の種類に応じて適宜の濃度を選択することができる。 The core portion 210 contains various growth factors suitable for maintaining, proliferating, or expressing functions of the cells 115, such as epidermal growth factor (EGF), platelet-derived growth factor (PDGF), transforming growth factor (TGF), insulin-like Growth factors (IGF), fibroblast growth factors (FGF), nerve growth factors (NGF), etc. may be included. When containing a growth factor, an appropriate concentration can be selected depending on the type of growth factor.
 上記のようにして得られた細胞ファイバFは、ピンセット等を用いて容易に操作することができるが、本実施形態では、ファイバ支持体50における支持軸52の外周に巻き付けられる。具体的には、図2に示すように、予め培養液が貯留されたメスシリンダーMSにファイバ支持体50を浸漬させておき、図示しない磁石が埋設された回転盤RPをメスシリンダーMSの下側に設置しておく。連続的に製造される細胞ファイバFをメスシリンダーMSに導入しつつ、回転盤RPの回転を磁力でファイバ支持体50に伝達してファイバ支持体50を回転させることで、支持軸52の外周に細胞ファイバFを連続的に巻き付けることができる。これにより、長さ数十メートルにもおよぶ細胞ファイバFを支持軸52の外周に容易に巻き付けることが可能になる。 The cell fiber F obtained as described above can be easily manipulated using tweezers or the like, but in this embodiment, it is wound around the outer periphery of the support shaft 52 in the fiber support 50. Specifically, as shown in FIG. 2, the fiber support 50 is immersed in a graduated cylinder MS in which a culture solution is stored in advance, and a rotary plate RP in which a magnet (not shown) is embedded is placed under the graduated cylinder MS. Set it to . While introducing the continuously manufactured cellular fibers F into the measuring cylinder MS, the rotation of the rotary disk RP is transmitted to the fiber support 50 by magnetic force to rotate the fiber support 50, thereby causing the fibers to be attached to the outer periphery of the support shaft 52. The cell fiber F can be wound continuously. This makes it possible to easily wrap the cell fiber F, which is several tens of meters long, around the outer periphery of the support shaft 52.
 支持軸52の外周に細胞ファイバFが巻き付けられたファイバ支持体50は、ファイバーカートリッジFCを構成する。ファイバーカートリッジFCは、例えば、培養液が貯留された遠沈管に浸漬させ攪拌することで、細胞115を培養しつつ保管することができる。そして、血液処理装置1における血液処理を実施する際に、細胞ファイバFが巻き付けられたファイバ支持体50は、図1に示したように、チャンバー30に装着される。 The fiber support body 50 in which the cell fibers F are wound around the outer periphery of the support shaft 52 constitutes a fiber cartridge FC. The fiber cartridge FC can be stored while culturing the cells 115, for example, by immersing it in a centrifuge tube in which a culture solution is stored and stirring it. When carrying out blood processing in the blood processing apparatus 1, the fiber support 50 around which the cell fibers F are wound is mounted in the chamber 30, as shown in FIG.
[血液浄化処理の第1実施形態]
 体外血液循環システム100を用いて、生体LBから採血される血液を浄化するには、細胞ファイバFに充填された細胞115として、血液に含まれる捕捉対称となる特定物質と親和性を有する膜タンパク質を発現した親和性細胞を用いることができる。ここでは、捕捉対称となる特定物質が、細胞ファイバFにおけるシェル部220を透過可能であるものとして説明する。
[First embodiment of blood purification process]
In order to purify blood collected from a living body LB using the extracorporeal blood circulation system 100, a membrane protein having an affinity for a specific substance contained in the blood and to be captured is used as the cells 115 filled in the cell fiber F. can be used. Here, explanation will be given assuming that the specific substance to be captured can pass through the shell portion 220 in the cell fiber F.
 まず、第1ポンプ21の駆動により、生体LBからの血液が、第1導入配管系11から導入口32D、貫通流路55および溝部56を介して処理空間35に流入する。また、第3ポンプ23の駆動により輸液貯溜部10からの輸液が、第2導入配管系13および輸液導入部33Aを介して処理空間35に導入される。処理空間35においては、下側から輸液が導入されることで、処理空間35に導入された血液の濃度が低くなるとともに、濃度勾配が生じる。処理空間35において細胞ファイバFにおけるシェル部220を透過した特定物質は、膜タンパク質を介して細胞115と結合して捕捉される。細胞ファイバFに特定物質が捕捉されて浄化処理された血液は、第2ポンプ22の駆動により溝部56から貫通流路55、貫通流路40bおよび第1排出配管系12を介して生体LBに向けて送液される。 First, by driving the first pump 21, blood from the living body LB flows into the processing space 35 from the first introduction piping system 11 through the introduction port 32D, the through channel 55, and the groove 56. Further, by driving the third pump 23, the infusion from the infusion reservoir 10 is introduced into the processing space 35 via the second introduction piping system 13 and the infusion introduction part 33A. In the processing space 35, the infusion fluid is introduced from below, so that the concentration of the blood introduced into the processing space 35 becomes low and a concentration gradient occurs. The specific substance that has passed through the shell portion 220 of the cell fiber F in the processing space 35 is captured by binding to the cell 115 via the membrane protein. The purified blood with specific substances captured by the cell fibers F is directed from the groove 56 to the living body LB via the through channel 55, the through channel 40b, and the first discharge piping system 12 by driving the second pump 22. The liquid is delivered.
 このように、本実施形態では、血液成分調整器等を用いることなく、細胞ファイバFに充填された複数の細胞115により捕捉対称の特定物質を捕捉するため、小型の装置により、用いる血液の量を抑制することが可能になる。 In this way, in this embodiment, in order to capture the specific substance to be captured by the plurality of cells 115 filled in the cell fiber F without using a blood component regulator or the like, the amount of blood to be used can be adjusted using a small device. becomes possible to suppress.
[血液浄化処理の第2実施形態]
 特定物質が、ウイルスの場合、直径が約100nmであり、シェル部220を形成するための第2液状体として、例えば、アルギン酸ゲルを用いた場合には、ゲルの孔径サイズを大きく変えることが困難であり、上述したウイルス、分泌物、細菌の透過が妨げられる場合がある。シェル部220におけるゲルの孔径サイズを制御するためには、シェル部220を例えば、多糖類と、下限臨界溶液温度(LCST)を有する高分子と親水性高分子とのブロック共重合体とを含む混合物とすることができる。上記多糖類とブロック共重合体とを混合することにより、その混合物において相分離を起こさせ、その後ブロック共重合体を除去することにより、マクロポーラス構造を有するシェル部220を形成することができる。
[Second embodiment of blood purification process]
When the specific substance is a virus, the diameter is approximately 100 nm, and when, for example, alginate gel is used as the second liquid material for forming the shell portion 220, it is difficult to greatly change the pore size of the gel. Therefore, the permeation of the above-mentioned viruses, secretions, and bacteria may be hindered. In order to control the pore size of the gel in the shell portion 220, the shell portion 220 may include, for example, a block copolymer of a polysaccharide, a polymer having a lower critical solution temperature (LCST), and a hydrophilic polymer. It can be a mixture. By mixing the polysaccharide and the block copolymer, phase separation is caused in the mixture, and then the block copolymer is removed, thereby forming the shell portion 220 having a macroporous structure.
 上記多糖類は、アルギン酸、デンプン、グリコーゲン、セルロース、キサンタンガム、ヒアルロン酸、カラギーナン、ペクチンおよびプルラン、並びにこれらの塩からなる群から選ばれる少なくとも1つである。 The polysaccharide is at least one selected from the group consisting of alginic acid, starch, glycogen, cellulose, xanthan gum, hyaluronic acid, carrageenan, pectin, pullulan, and salts thereof.
 上記下限臨界溶液温度を有する高分子は、ポリ(N-アルキルアクリルアミド)、ポリ(N-ビニルアルキルアミド)およびポリビニルアルキルエーテルからなる群から選ばれる少なくとも1つである。 The polymer having the above lower critical solution temperature is at least one selected from the group consisting of poly(N-alkylacrylamide), poly(N-vinylalkylamide), and polyvinylalkyl ether.
 上記親水性高分子は、ポリエチレングリコール、ポリエチレンイミン、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、ポリビニルアルコール、ポリビニルピロリドン、ポリビニルアセトアミド、ポリアミン、ポリ(4-スチレンスルホン酸)、ポリ(アリルアミン塩酸塩)、ポリ(ビニルスルホン酸、ナトリウム塩)、ポリ(ジアリルジメチルアンモニウムクロリド)、およびポリ(2-メタクリロイルオキシエチルホスホリルコリン)からなる群から選ばれる少なくとも1つである。 The hydrophilic polymers include polyethylene glycol, polyethyleneimine, polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyvinyl alcohol, polyvinylpyrrolidone, polyvinylacetamide, polyamine, poly(4-styrene sulfonic acid), poly(allylamine hydrochloride), At least one selected from the group consisting of poly(vinylsulfonic acid, sodium salt), poly(diallyldimethylammonium chloride), and poly(2-methacryloyloxyethylphosphorylcholine).
 上記LCSTを有する高分子と親水性高分子とのブロック共重合体は、それぞれの高分子に官能基を付加しておいて、官能基同士を反応させることにより、合成することができる。
 例えば、マレイミド基はチオール基(SH基)と反応して安定なチオエーテル基を形成するため、親水性高分子にSH基、LCSTを有する高分子にマレイミド基を付加して両者を反応させればよい。
The block copolymer of a polymer having LCST and a hydrophilic polymer can be synthesized by adding functional groups to each polymer and allowing the functional groups to react with each other.
For example, since a maleimide group reacts with a thiol group (SH group) to form a stable thioether group, if a maleimide group is added to a hydrophilic polymer having an SH group and a polymer having LCST and the two are allowed to react. good.
 上記の多糖類とブロック共重合体の混合物において相分離構造を形成した後に、ブロック共重合体を除去することで、ポアサイズが100-1000nmで多糖類により形成されたマクロポーラス構造を有するシェル部220が得られる。
 マクロポーラス構造を有するシェル部220に細胞115等の生体関連物質を導入する場合は、4℃~37℃の温度範囲に調節することが必要である。
After forming a phase-separated structure in the mixture of the polysaccharide and block copolymer, the block copolymer is removed, resulting in a shell portion 220 having a macroporous structure with a pore size of 100 to 1000 nm and formed from the polysaccharide. is obtained.
When introducing biological substances such as cells 115 into the shell portion 220 having a macroporous structure, it is necessary to adjust the temperature to a range of 4°C to 37°C.
 マクロポーラス構造のシェル部220を有する細胞ファイバFを製造するには、マイクロ流体装置140の導入口110から、細胞懸濁液が注入され導入口120に向けて射出される。導入口120から多糖類とブロック共重合体の混合物を注入し導入口130に向けて射出すると、コア部210を細胞懸濁液が占め、上記混合物が細胞周囲を覆ってシェル部220を形成し、同軸のコア・シェル状の流体を形成する。導入口130からカルシウムイオン含有水溶液を(例えば、CaCl含有水溶液)を注入することで、流体のシャル部がゲル化される。その結果、コア部210が細胞115で占められ、シェル部220がゲル化された細胞ファイバFが得られる。この段階では、シェル部220には、ブロック共重合体が含まれるため、これをLCST以下の温度に調節することで、ブロック共重合体は水溶性となり、細胞ファイバFを水中で攪拌することにより、ブロック共重合体を除去できる。これにより、コア部210に細胞が充填され、シェル部220がマクロポーラス状(多孔質)となった細胞ファイバFが得られる。得られた細胞ファイバFにおいては、コア部の直径100~200μm、細胞充填率2~10×10cells/mを目標として、コア部の直径160μm、細胞充填率2×10cells/mを達成できた。 To manufacture the cell fiber F having the macroporous shell portion 220, a cell suspension is injected from the introduction port 110 of the microfluidic device 140 and ejected toward the introduction port 120. When a mixture of polysaccharide and block copolymer is injected from the inlet 120 and injected toward the inlet 130, the cell suspension occupies the core part 210, and the mixture covers the cells to form the shell part 220. , forming a coaxial core-shell fluid. By injecting an aqueous solution containing calcium ions (for example, an aqueous solution containing CaCl 2 ) from the inlet 130, the shell portion of the fluid is gelled. As a result, a cell fiber F is obtained in which the core portion 210 is occupied by cells 115 and the shell portion 220 is gelled. At this stage, the shell part 220 contains the block copolymer, so by adjusting the temperature to a temperature below LCST, the block copolymer becomes water-soluble, and by stirring the cell fiber F in water, the block copolymer becomes water-soluble. , block copolymers can be removed. As a result, a cellular fiber F in which the core portion 210 is filled with cells and the shell portion 220 is macroporous (porous) is obtained. The obtained cell fiber F has a core diameter of 100 to 200 μm and a cell filling rate of 2 to 10×10 7 cells/m, with a core diameter of 160 μm and a cell filling rate of 2×10 7 cells/m. I was able to achieve it.
 マクロポーラス構造のシェル部220を有する細胞ファイバFを用いることで、血液に含まれるウイルスはシェル部220を透過できる。そのため、細胞115として、血液に含まれる捕捉対称となるウイルスと親和性を有する膜タンパク質を発現した親和性細胞を用いることでができる。
 これにより、本実施形態では、第1実施形態で説明したように、生体LBからの血液に含まれるウイルスは、処理空間35において細胞ファイバFにおけるシェル部220を透過し、膜タンパク質を介して細胞115と結合して捕捉される。細胞ファイバFにウイルスが捕捉されて浄化処理された血液は、生体LBに向けて送液される。
By using the cellular fiber F having the macroporous shell portion 220, viruses contained in blood can permeate the shell portion 220. Therefore, as the cells 115, affinity cells expressing a membrane protein having an affinity for the virus to be captured contained in the blood can be used.
Accordingly, in this embodiment, as described in the first embodiment, the virus contained in the blood from the living body LB permeates the shell portion 220 of the cell fiber F in the processing space 35 and enters the cell via the membrane protein. 115 and is captured. The blood that has been purified with viruses trapped in the cell fibers F is sent toward the living body LB.
 図5は、コア部に直径100nmの蛍光ナノ粒子が充填されたマクロポーラス構造のシェル部220を有する細胞ファイバFの37℃における蛍光画像である。図6は、図5の細胞ファイバFが1時間経過後に4℃となったときの蛍光画像である。図5に示すように、シェル部が37℃であるときには、直径100nmの蛍光ナノ粒子はシェル部を透過できずにコア部に止まっていることを確認できた。図6に示すように、シェル部が4℃であるときには、コア部に直径100nmの蛍光ナノ粒子を確認できず、蛍光ナノ粒子はシェル部を透過したことを確認できた。 FIG. 5 is a fluorescence image at 37° C. of a cell fiber F having a shell portion 220 with a macroporous structure in which the core portion is filled with fluorescent nanoparticles with a diameter of 100 nm. FIG. 6 is a fluorescence image of the cell fiber F in FIG. 5 when the temperature reached 4° C. after 1 hour. As shown in FIG. 5, it was confirmed that when the shell portion was at 37° C., the fluorescent nanoparticles with a diameter of 100 nm could not pass through the shell portion and remained in the core portion. As shown in FIG. 6, when the shell portion was at 4° C., no fluorescent nanoparticles with a diameter of 100 nm were observed in the core portion, and it was confirmed that the fluorescent nanoparticles passed through the shell portion.
[模擬ウイルス]
 特定物質としてのウイルスのうち、SARS-CoV-2の細胞感染機構を模倣可能なSタンパク質(スパイクタンパク質)ビーズを作製する。
 図7に示すように、赤色蛍光ビーズにNi-NTAが付加され、緑色蛍光タンパク質にHisタグが付加されたSタンパク質を用い、Ni-NTAとHisタグのアフィニティにより結合したSタンパク質ビーズを作製した。赤色蛍光ビーズとSタンパク質の結合は、Sタンパク質から赤色蛍光ビーズへの蛍光共鳴エネルギー移動を測定することで確認できた。
[Mock virus]
Among viruses as specific substances, S protein (spike protein) beads that can mimic the cell infection mechanism of SARS-CoV-2 will be produced.
As shown in Figure 7, using S protein in which Ni-NTA was added to red fluorescent beads and His tag was added to green fluorescent protein, S protein beads bound by the affinity of Ni-NTA and His tag were prepared. . The binding between the red fluorescent beads and the S protein was confirmed by measuring the fluorescence resonance energy transfer from the S protein to the red fluorescent beads.
[親和性細胞]
 上記Sタンパク質ビーズを捕捉可能なアンジオテンシン変換酵素2(ACE2)発現細胞としては、レンチウイルスベクターを用いた遺伝子導入による各種ACE2発現細胞(VeroE6細胞、VeroE6/TMPRSS細胞、Hela細胞、Hela/ACE2細胞)の作製を行った。また、上記Sタンパク質ビーズとの反応性評価と、フローサイトメーターによる定量比較を行った。上記の細胞のうち、Sタンパク質ビーズの捕捉効率が50%以上であり、最大であったVeroE6細胞をACE2発現細胞として選定した。
[Affinity cells]
Examples of angiotensin-converting enzyme 2 (ACE2)-expressing cells capable of capturing the S protein beads include various ACE2-expressing cells (VeroE6 cells, VeroE6/TMPRSS cells, Hela cells, Hela/ACE2 cells) by gene transfer using a lentiviral vector. was created. In addition, reactivity evaluation with the above-mentioned S protein beads and quantitative comparison using a flow cytometer were performed. Among the above cells, VeroE6 cells, which had the highest S protein bead capture efficiency of 50% or more, were selected as ACE2-expressing cells.
[血液浄化療法への実証]
 体外血液循環システム100における生体LBとしてラットを用い、第1導入配管系11および第1排出配管系12をラットの静脈に接続し、当該静脈に4μg/mLのSタンパク質ビーズを含む溶液を注入した。Sタンパク質ビーズを含む溶液を注入してから5分毎に、第1導入配管系11においてSタンパク質ビーズの量を45分間計測した。Sタンパク質ビーズを含む溶液の注入と、5分毎のSタンパク質ビーズの計測は、細胞ファイバFにVeroE6細胞が充填されたサンプルと、細胞ファイバFに細胞を充填しないサンプルとに対してそれぞれ行った。
[Demonstration for blood purification therapy]
A rat was used as a living LB in the extracorporeal blood circulation system 100, the first introduction piping system 11 and the first discharge piping system 12 were connected to the rat's vein, and a solution containing 4 μg/mL of S protein beads was injected into the vein. . The amount of S protein beads was measured in the first introduction piping system 11 for 45 minutes every 5 minutes after the solution containing S protein beads was injected. Injection of a solution containing S protein beads and measurement of S protein beads every 5 minutes were performed for a sample in which cell fiber F was filled with VeroE6 cells and a sample in which cell fiber F was not filled with cells. .
 図8は、Sタンパク質ビーズを含む溶液を注入後の時間と、計測されたSタンパク質ビーズ量との関係を、VeroE6細胞が充填されたサンプルと、細胞ファイバFに細胞を充填しないサンプルとについてそれぞれ示す図である。
 図8に示されるように、VeroE6細胞を用いたサンプルでは、細胞を用いないサンプルよりも、時間の経過とともにSタンパク質ビーズが大きく減ることを確認できた。これは、VeroE6細胞における膜タンパク質がSタンパク質ビーズと接触することで瞬時に結合(感染)して捕捉されることで、生体LB内の血液に含まれるSタンパク質ビーズが減少して血液が浄化された結果と考えられる。
Figure 8 shows the relationship between the time after injection of a solution containing S protein beads and the measured amount of S protein beads for a sample filled with VeroE6 cells and a sample in which cell fiber F is not filled with cells. FIG.
As shown in FIG. 8, it was confirmed that in the sample using VeroE6 cells, S protein beads decreased more over time than in the sample not using cells. This is because membrane proteins in VeroE6 cells come into contact with S protein beads and are instantly bound (infected) and captured, reducing the amount of S protein beads contained in the blood in the biological LB and purifying the blood. This is thought to be the result of
 図9は、細胞ファイバFに細胞を充填しないサンプルの蛍光画像である。図10は、細胞ファイバFにVeroE6細胞が充填されたサンプルの蛍光画像である。
 図9に示すように、細胞ファイバFに細胞を充填しないサンプルでは、Sタンパク質ビーズの捕捉が確認されなかった。一方、図10に示すように、細胞ファイバFにVeroE6細胞が充填されたサンプルでは、Sタンパク質ビーズの捕捉による血液浄化を確認できた。
FIG. 9 is a fluorescence image of a sample in which cell fiber F is not filled with cells. FIG. 10 is a fluorescence image of a sample in which cell fiber F was filled with VeroE6 cells.
As shown in FIG. 9, in the sample in which cell fiber F was not filled with cells, capture of S protein beads was not confirmed. On the other hand, as shown in FIG. 10, in the sample in which the cell fiber F was filled with VeroE6 cells, blood purification due to the capture of S protein beads was confirmed.
 図11は、細胞ファイバFにVeroE6細胞が1時間反応した後の蛍光画像である。図12は、細胞ファイバFにVeroE6細胞が2時間反応した後の蛍光画像である。図11および図12に示されるように、反応時間が1時間よりも2時間の方がSタンパク質ビーズの捕捉量が多いことから、反応時間に依存してSタンパク質ビーズの捕捉量が増加することを確認できた。 FIG. 11 is a fluorescence image after VeroE6 cells reacted with cell fiber F for 1 hour. FIG. 12 is a fluorescence image after VeroE6 cells reacted with cell fiber F for 2 hours. As shown in FIGS. 11 and 12, the amount of S protein beads captured is larger when the reaction time is 2 hours than when the reaction time is 1 hour, indicating that the amount of S protein beads captured increases depending on the reaction time. I was able to confirm.
[ウイルス感染]
 血液中の特定物質として、コロナウイルスのスパイクタンパク質エンベロープを持つCoV S-protein シュードタイプレンチウイルスを用いて血液を循環させた。図13は、コロナウイルスのシュードタイプレンチウイルスを用い、細胞ファイバFに細胞を充填しないサンプルにおいて、循環6日後の蛍光画像である。図14は、コロナウイルスのシュードタイプレンチウイルスを用い、細胞ファイバFにVeroE6細胞を用いたサンプルにおいて、循環6日後の蛍光画像である。
 図13に示されるように、細胞ファイバFに細胞を充填しないサンプルでは、明確なウイルス感染は確認できなかった。図14に示されるように、細胞ファイバFにVeroE6細胞を用いたサンプルでは、ウイルスがVeroE6細胞の核内に移行して蛍光が生じておりウイルス感染を確認できた。
[Virus infection]
As a specific substance in the blood, a CoV S-protein pseudotype lentivirus with the coronavirus spike protein envelope was used to circulate the blood. FIG. 13 is a fluorescence image after 6 days of circulation in a sample using coronavirus pseudotyped lentivirus and without filling cell fiber F with cells. FIG. 14 is a fluorescence image after 6 days of circulation in a sample using coronavirus pseudotype lentivirus and using VeroE6 cells as cell fiber F.
As shown in FIG. 13, clear virus infection could not be confirmed in the sample in which cell fiber F was not filled with cells. As shown in FIG. 14, in the sample in which VeroE6 cells were used as cell fiber F, the virus migrated into the nucleus of the VeroE6 cells and fluorescence was generated, confirming virus infection.
 このように、本実施形態では、上記血液浄化処理の第1実施形態と同様の作用・効果が得られることに加えて、100nm以上の大きな直径を有するウイルス、分泌物、細菌であっても、シェル部220を透過させてコア部210の親和精細胞と結合させて血液浄化処理を実施することができる。そのため、本実施形態では、ウイルスが血流に侵入し全身へ回ってしまったウイルス血症等に対して効果的である。また、特定物質はウイルスに限定されず、特定物質と親和性を有する膜タンパク質を発現した親和性細胞を選択することで、例えば、C型肝炎、HIV、ラッサ熱、エボラ熱、ジカ熱等の感染症にも適用可能である。 In this way, in this embodiment, in addition to obtaining the same actions and effects as in the first embodiment of the blood purification treatment, even viruses, secretions, and bacteria having a large diameter of 100 nm or more can be treated. Blood purification can be performed by passing through the shell portion 220 and combining with the affinity sperm cells of the core portion 210. Therefore, this embodiment is effective against viremia, etc., in which the virus enters the bloodstream and spreads throughout the body. In addition, the specific substance is not limited to viruses, and by selecting affinity cells that express membrane proteins that have affinity for the specific substance, for example, hepatitis C, HIV, Lassa fever, Ebola fever, Zika fever, etc. It is also applicable to infectious diseases.
 また、ウイルスを含む血液を浄化するには、ビーズに抗体を担持させることも考えられるが、この構成では、ウイルスの除去能が徐々に低下する。これに対して、本実施形態では、ウイルスと親和性を有する親和性細胞が充填され長さが数十メートルにもおよぶ細胞ファイバFを用いているため、除去能が低下することなくウイルスを捕捉することができる。 Additionally, in order to purify blood containing viruses, it is possible to have beads carry antibodies, but with this configuration, the ability to remove viruses gradually decreases. In contrast, in this embodiment, the cell fiber F, which is filled with affinity cells that have an affinity for viruses and has a length of several tens of meters, is used, so that the virus can be captured without reducing the removal ability. can do.
[生理活性物質の放出]
 上記実施形態では、循環する血液に含まれる特定物質と親和性を有する膜タンパク質を発現した親和性細胞を、細胞ファイバFが有する構成について説明した。本実施形態では、血液に外分泌物として生理活性物質を放出する外分泌性細胞を細胞ファイバFが有する構成について説明する。
[Release of physiologically active substances]
In the embodiment described above, a configuration in which the cell fiber F has affinity cells expressing a membrane protein having an affinity for a specific substance contained in circulating blood has been described. In this embodiment, a configuration in which the cell fiber F has exocrine cells that release physiologically active substances as exocrine substances into the blood will be described.
 循環する血液に放出される生理活性物質としては、アルブミン、酵素等のタンパク質、インスリン等のホルモン、エクソソーム、MicroRNA、糖類、脂質等が挙げられる。
 循環する血液に生理活性物質であるアルブミンを外分泌物として放出する外分泌性細胞は、肝細胞が挙げられる。
 循環する血液に生理活性物質である酵素を外分泌物として放出する外分泌性細胞は、酵素産生細胞が挙げられる。
 循環する血液に生理活性物質であるインスリン等のホルモンを外分泌物として放出する外分泌性細胞は、β細胞等のホルモン産生細胞が挙げられる。
 循環する血液に生理活性物質であるエクソソームを外分泌物として放出する外分泌性細胞は、気道上皮細胞が挙げられる。
Physiologically active substances released into circulating blood include albumin, proteins such as enzymes, hormones such as insulin, exosomes, MicroRNA, sugars, lipids, and the like.
Exocrine cells that release albumin, a physiologically active substance, into circulating blood as an exocrine secretion include hepatocytes.
Exocrine cells that release enzymes, which are physiologically active substances, into circulating blood as exocrine secretions include enzyme-producing cells.
Exocrine cells that release hormones such as insulin, which are physiologically active substances, into circulating blood as exocrine secretions include hormone-producing cells such as β cells.
Exocrine cells that release exosomes, which are physiologically active substances, into the circulating blood include airway epithelial cells.
 上記の外分泌性細胞を有する細胞ファイバFを用いて血液を循環させることにより、循環する血液に生理活性物質を補充することができる。例えば、低アルブミン血症等を呈する血液にはアルブミンを補充することができ、ライソゾーム病等を呈する血液には酵素を補充することができる。すなわち、本実施形態の体外血液循環システム100は、生理活性物質として機能することになる。本実施形態によれば、血液の循環路に加えて生理活性物質の補給流路を別途設ける必要がなくなり、装置の小型化および体外で循環させる血液量の抑制を実現できる。 By circulating blood using the cell fiber F having exocrine cells described above, physiologically active substances can be replenished into the circulating blood. For example, blood exhibiting hypoalbuminemia etc. can be supplemented with albumin, and blood exhibiting lysosomal diseases etc. can be supplemented with enzymes. That is, the extracorporeal blood circulation system 100 of this embodiment functions as a physiologically active substance. According to this embodiment, there is no need to separately provide a physiologically active substance supply channel in addition to a blood circulation channel, and it is possible to downsize the device and suppress the amount of blood to be circulated outside the body.
 図15は、ラットに対して、外分泌性細胞を有する細胞ファイバFを用いて血液を循環させた場合と、外分泌性細胞を有さない細胞ファイバFを用いて血液を循環させた場合の血漿内のアルブミン濃度を示す図である。図15においては、4つのサンプルに対して、それぞれヒトアルブミンを外分泌物として放出する外分泌性細胞を有する細胞ファイバFを用いて血液を循環させた。 Figure 15 shows the blood plasma in rats when blood was circulated using cell fiber F with exocrine cells and when blood was circulated using cell fiber F without exocrine cells. It is a figure showing the albumin concentration of. In FIG. 15, blood was circulated for four samples each using cell fiber F having exocrine cells that release human albumin as an exocrine secretion.
 図15に示されるように、4つのサンプル全てにおいてヒトアルブミンが検出された。本来ラットからはヒトアルブミンが検出されないことから、細胞ファイバFにおける外分泌性細胞から放出されたヒトアルブミンが、循環する血液に細胞ファイバF経由で補充されたと確認できた。 As shown in Figure 15, human albumin was detected in all four samples. Since human albumin is normally not detected in rats, it was confirmed that human albumin released from exocrine cells in cell fiber F was replenished into circulating blood via cell fiber F.
 以上、添付図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 Although preferred embodiments of the present invention have been described above with reference to the accompanying drawings, it goes without saying that the present invention is not limited to such examples. The various shapes and combinations of the constituent members shown in the above example are merely examples, and can be variously changed based on design requirements and the like without departing from the gist of the present invention.
 例えば、上記実施形態では、細胞ファイバFが、血液に含まれる特定物質と親和性を有する膜タンパク質を発現した親和性細胞と、血液に外分泌物として生理活性物質を放出する外分泌性細胞とのいずれか一方を含む構成を例示したが、この構成に限定されない。例えば、細胞ファイバFが上述した親和性細胞と外分泌性細胞の双方を含む構成であってもよい。この場合、体外血液循環システム100を用いることで、血液浄化処理と、生理活性物質補充処理の双方を実施できる。 For example, in the above embodiment, the cell fibers F can be used to connect affinity cells that express a membrane protein that has an affinity for a specific substance contained in blood, and exocrine cells that release physiologically active substances as exocrine substances into the blood. Although a configuration including one of the two is illustrated, the configuration is not limited to this. For example, the cell fiber F may include both the above-mentioned affinity cells and exocrine cells. In this case, by using the extracorporeal blood circulation system 100, both blood purification processing and physiologically active substance replenishment processing can be performed.
 また、上記実施形態では、体外血液循環システム100が輸液の循環路を有する構成を例示したが、輸液の循環路が設けられない構成であってもよい。
 例えば、図16に示すように、第2ポンプ22が設けられた第1排出配管系12が排出部33Bに接続される構成であってもよい。
 図16に示す体外血液循環システム100では、処理空間35の血液は、第2ポンプ22の駆動により、排出部33Bから第1排出配管系12を介して生体LBに向けて送液される。
Furthermore, in the embodiment described above, the extracorporeal blood circulation system 100 has a configuration in which the infusion circulation path is provided, but a configuration in which the infusion circulation path is not provided may also be used.
For example, as shown in FIG. 16, a configuration may be adopted in which the first discharge piping system 12 provided with the second pump 22 is connected to the discharge section 33B.
In the extracorporeal blood circulation system 100 shown in FIG. 16, blood in the processing space 35 is sent from the discharge section 33B toward the living body LB via the first discharge piping system 12 by driving the second pump 22.
 また、上記実施形態では、線状部材がコア部とシェル部とを有するコア/シェル構造を有する構成を例示したが、この構成に限定されない。例えば、図17に変形例として示すように、線状部材Fは、細胞115を保持し少なくとも血液における一部の成分を透過させる保持部220とを有する構成であってもよい。この構成における保持部220は、例えば、上述したマクロポーラス構造を有するアルギン酸等で線状に形成される。 Further, in the above embodiment, a configuration in which the linear member has a core/shell structure including a core portion and a shell portion is illustrated, but the present invention is not limited to this configuration. For example, as shown in FIG. 17 as a modification, the linear member F may have a structure including a holding portion 220 that holds the cells 115 and allows at least some components of blood to pass therethrough. The holding portion 220 in this configuration is formed into a linear shape using, for example, alginic acid having the above-mentioned macroporous structure.
 また、上記実施形態では、活性成分含有溶液が血液である構成を例示したが、この構成に限定されない。活性成分含有溶液としては、例えば、水・電解質、栄養等を含む輸液、抗体産生溶液等であってもよい。 Furthermore, in the above embodiment, a configuration in which the active ingredient-containing solution is blood is illustrated, but the configuration is not limited to this. The active ingredient-containing solution may be, for example, an infusion solution containing water, electrolytes, nutrients, etc., or an antibody production solution.
 以下、本発明の諸態様を付記としてまとめて記載する。
(付記1)
 少なくとも活性成分含有溶液における一部の成分が導入されるチャンバーと、
 前記チャンバーの内部に配置され、複数の細胞と、前記細胞を保持し前記成分を透過させる保持部とを有する線状部材と、
 を備え、
 前記細胞は、
 前記活性成分含有溶液における前記成分に含まれる特定物質と親和性を有する膜タンパク質を発現した親和性細胞と、
 前記活性成分含有溶液に外分泌物として生理活性物質を放出する外分泌性細胞と、
 の少なくとも一方を含む、活性成分含有溶液処理装置。
(付記2)
 前記チャンバーは、少なくとも前記活性成分含有溶液における前記成分が導入される導入部と、少なくとも前記活性成分含有溶液における前記成分が排出される排出部とを有し、
 前記導入部と前記排出部のうち、少なくとも前記排出部に前記線状部材を前記チャンバーの内部に止めるフィルターが設けられる、
 付記1に記載の活性成分含有溶液処理装置。
(付記3)
 前記保持部は、多糖類と、下限臨界溶液温度を有する高分子と親水性高分子とのブロック共重合体とを含む混合物である、
 付記1または付記2に記載の活性成分含有溶液処理装置。
(付記4)
 前記特定物質は、ウイルスであり、
 前記親和性細胞は、アンジオテンシン変換酵素2(ACE2)発現細胞である、
 付記1から3のいずれか一項に記載の活性成分含有溶液処理装置。
(付記5)
 前記生理活性物質はアルブミンであり、
 前記外分泌性細胞は肝細胞である、
 付記1から4のいずれか一項に記載の活性成分含有溶液処理装置。
(付記6)
 前記生理活性物質は酵素であり、
 前記外分泌性細胞は酵素産生細胞である、
 付記1から5のいずれか一項に記載の活性成分含有溶液処理装置。
(付記7)
 前記チャンバー内に配置され、外周に巻き付けられた前記線状部材を支持する支持体を有し、
 前記支持体は、前記チャンバーに対して着脱自在に取り付けられる、
 付記1から6のいずれか一項に記載の活性成分含有溶液処理装置。
(付記8)
 前記線状部材は、
  複数の前記細胞が充填されたコア部と、
  前記保持部として、前記コア部の外周を被覆するシェル部と、
 を有する細胞ファイバである、
 付記1から7のいずれか一項に記載の活性成分含有溶液処理装置。
(付記9)
 付記1から8のいずれか一項に記載の活性成分含有溶液処理装置と、
 少なくとも前記活性成分含有溶液における前記成分を前記チャンバーの導入部から排出部に至って循環させるポンプと、を有する、体外活性成分含有溶液循環システム。
Hereinafter, various aspects of the present invention will be collectively described as supplementary notes.
(Additional note 1)
a chamber into which at least some of the components in the active ingredient-containing solution are introduced;
a linear member disposed inside the chamber and having a plurality of cells and a holding part that holds the cells and allows the components to pass through;
Equipped with
The cell is
Affinity cells expressing a membrane protein that has an affinity for a specific substance contained in the component in the active ingredient-containing solution;
exocrine cells that release physiologically active substances as exocrine secretions into the active ingredient-containing solution;
An active ingredient-containing solution processing device comprising at least one of the above.
(Additional note 2)
The chamber has at least an introduction part into which the component in the active ingredient-containing solution is introduced, and a discharge part from which at least the component in the active ingredient-containing solution is discharged,
Of the introduction part and the discharge part, at least the discharge part is provided with a filter for keeping the linear member inside the chamber.
The active ingredient-containing solution processing device according to Supplementary Note 1.
(Additional note 3)
The holding part is a mixture containing a polysaccharide and a block copolymer of a polymer having a lower critical solution temperature and a hydrophilic polymer.
The active ingredient-containing solution processing device according to Supplementary Note 1 or 2.
(Additional note 4)
The specific substance is a virus,
The affinity cells are angiotensin converting enzyme 2 (ACE2) expressing cells,
The active ingredient-containing solution processing device according to any one of Supplementary Notes 1 to 3.
(Appendix 5)
the physiologically active substance is albumin,
the exocrine cell is a hepatocyte;
The active ingredient-containing solution processing device according to any one of Supplementary Notes 1 to 4.
(Appendix 6)
the physiologically active substance is an enzyme;
the exocrine cell is an enzyme-producing cell;
The active ingredient-containing solution processing device according to any one of Supplementary Notes 1 to 5.
(Appendix 7)
a support body disposed in the chamber and supporting the linear member wound around the outer periphery;
The support body is detachably attached to the chamber,
The active ingredient-containing solution processing device according to any one of Supplementary Notes 1 to 6.
(Appendix 8)
The linear member is
a core portion filled with a plurality of the cells;
A shell part that covers the outer periphery of the core part as the holding part;
is a cell fiber having
The active ingredient-containing solution processing device according to any one of Supplementary Notes 1 to 7.
(Appendix 9)
An active ingredient-containing solution processing device according to any one of Supplementary Notes 1 to 8;
An extracorporeal active ingredient-containing solution circulation system, comprising: a pump that circulates at least the components of the active ingredient-containing solution from an inlet to an outlet of the chamber.
 本発明は、活性成分含有溶液処理装置および体外活性成分含有溶液循環システムに適用できる。 The present invention can be applied to an active ingredient-containing solution treatment device and an extracorporeal active ingredient-containing solution circulation system.
 1…血液処理装置(活性成分含有溶液処理装置)、 21…第1ポンプ(ポンプ)、 22…第2ポンプ(ポンプ)、 30…チャンバー、 50…ファイバ支持体(支持体)、 60A…境界(排出部)、 61、62…フィルター、 100…体外血液循環システム(体外活性成分含有溶液循環システム)、 115…細胞、 210…コア部、 220…シェル部(保持部)、 F…細胞ファイバ(線状部材) 1... Blood processing device (active ingredient-containing solution processing device), 21... First pump (pump), 22... Second pump (pump), 30... Chamber, 50... Fiber support (support), 60A... Boundary ( discharge part), 61, 62...filter, 100...extracorporeal blood circulation system (extracorporeal active ingredient-containing solution circulation system), 115...cell, 210...core part, 220...shell part (holding part), F...cell fiber (wire) shaped member)

Claims (9)

  1.  少なくとも活性成分含有溶液における一部の成分が導入されるチャンバーと、
     前記チャンバーの内部に配置され、複数の細胞と、前記細胞を保持し前記成分を透過させる保持部とを有する線状部材と、
     を備え、
     前記細胞は、
     前記活性成分含有溶液における前記成分に含まれる特定物質と親和性を有する膜タンパク質を発現した親和性細胞と、
     前記活性成分含有溶液に外分泌物として生理活性物質を放出する外分泌性細胞と、
     の少なくとも一方を含む、活性成分含有溶液処理装置。
    a chamber into which at least some of the components in the active ingredient-containing solution are introduced;
    a linear member disposed inside the chamber and having a plurality of cells and a holding part that holds the cells and allows the components to pass through;
    Equipped with
    The cell is
    Affinity cells expressing a membrane protein that has an affinity for a specific substance contained in the component in the active ingredient-containing solution;
    exocrine cells that release physiologically active substances as exocrine secretions into the active ingredient-containing solution;
    An active ingredient-containing solution processing device comprising at least one of the above.
  2.  前記チャンバーは、少なくとも前記活性成分含有溶液における前記成分が導入される導入部と、少なくとも前記活性成分含有溶液における前記成分が排出される排出部とを有し、
     前記導入部と前記排出部のうち、少なくとも前記排出部に前記線状部材を前記チャンバーの内部に止めるフィルターが設けられる、
     請求項1に記載の活性成分含有溶液処理装置。
    The chamber has at least an introduction part into which the component in the active ingredient-containing solution is introduced, and a discharge part from which at least the component in the active ingredient-containing solution is discharged,
    Of the introduction part and the discharge part, at least the discharge part is provided with a filter for keeping the linear member inside the chamber.
    The active ingredient-containing solution processing device according to claim 1.
  3.  前記保持部は、多糖類と、下限臨界溶液温度を有する高分子と親水性高分子とのブロック共重合体とを含む混合物である、
     請求項1に記載の活性成分含有溶液処理装置。
    The holding part is a mixture containing a polysaccharide and a block copolymer of a polymer having a lower critical solution temperature and a hydrophilic polymer.
    The active ingredient-containing solution processing device according to claim 1.
  4.  前記特定物質は、ウイルスであり、
     前記親和性細胞は、アンジオテンシン変換酵素2(ACE2)発現細胞である、
     請求項1から3のいずれか一項に記載の活性成分含有溶液処理装置。
    The specific substance is a virus,
    The affinity cells are angiotensin converting enzyme 2 (ACE2) expressing cells,
    The active ingredient-containing solution processing device according to any one of claims 1 to 3.
  5.  前記生理活性物質はアルブミンであり、
     前記外分泌性細胞は肝細胞である、
     請求項1から3のいずれか一項に記載の活性成分含有溶液処理装置。
    the physiologically active substance is albumin,
    the exocrine cell is a hepatocyte;
    The active ingredient-containing solution processing device according to any one of claims 1 to 3.
  6.  前記生理活性物質は酵素であり、
     前記外分泌性細胞は酵素産生細胞である、
     請求項1から3のいずれか一項に記載の活性成分含有溶液処理装置。
    the physiologically active substance is an enzyme;
    the exocrine cell is an enzyme-producing cell;
    The active ingredient-containing solution processing device according to any one of claims 1 to 3.
  7.  前記チャンバー内に配置され、外周に巻き付けられた前記線状部材を支持する支持体を有し、
     前記支持体は、前記チャンバーに対して着脱自在に取り付けられる、
     請求項1から3のいずれか一項に記載の活性成分含有溶液処理装置。
    a support body disposed in the chamber and supporting the linear member wound around the outer periphery;
    The support body is detachably attached to the chamber,
    The active ingredient-containing solution processing device according to any one of claims 1 to 3.
  8.  前記線状部材は、
      複数の前記細胞が充填されたコア部と、
      前記保持部として、前記コア部の外周を被覆するシェル部と、
     を有する細胞ファイバである、
     請求項1から3のいずれか一項に記載の活性成分含有溶液処理装置。
    The linear member is
    a core portion filled with a plurality of the cells;
    A shell part that covers the outer periphery of the core part as the holding part;
    is a cell fiber having
    The active ingredient-containing solution processing device according to any one of claims 1 to 3.
  9.  請求項1から3のいずれか一項に記載の活性成分含有溶液処理装置と、
     少なくとも前記活性成分含有溶液における前記成分を前記チャンバーの導入部から排出部に至って循環させるポンプと、を有する、体外活性成分含有溶液循環システム。
    The active ingredient-containing solution processing device according to any one of claims 1 to 3,
    An extracorporeal active ingredient-containing solution circulation system, comprising: a pump that circulates at least the components of the active ingredient-containing solution from an inlet to an outlet of the chamber.
PCT/JP2023/016454 2022-04-27 2023-04-26 Active ingredient-containing solution treatment device and extracorporeal active ingredient-containing solution circulation system WO2023210691A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-073502 2022-04-27
JP2022073502 2022-04-27

Publications (1)

Publication Number Publication Date
WO2023210691A1 true WO2023210691A1 (en) 2023-11-02

Family

ID=88519109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016454 WO2023210691A1 (en) 2022-04-27 2023-04-26 Active ingredient-containing solution treatment device and extracorporeal active ingredient-containing solution circulation system

Country Status (1)

Country Link
WO (1) WO2023210691A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5981211A (en) * 1988-05-23 1999-11-09 Regents Of The University Of Minnesota Maintaining cells for an extended time by entrapment in a contracted matrix
WO2015178427A1 (en) * 2014-05-20 2015-11-26 国立大学法人 東京大学 Hollow microfiber
WO2020032221A1 (en) * 2018-08-10 2020-02-13 持田製薬株式会社 Alginate hollow microfiber
CN112375737A (en) * 2020-11-12 2021-02-19 常州市第一人民医院 Biological adsorption material, preparation method, virus adsorption system and auxiliary dialysis circulation system
WO2023085441A1 (en) * 2021-11-10 2023-05-19 国立大学法人東京大学 Macroporous structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5981211A (en) * 1988-05-23 1999-11-09 Regents Of The University Of Minnesota Maintaining cells for an extended time by entrapment in a contracted matrix
WO2015178427A1 (en) * 2014-05-20 2015-11-26 国立大学法人 東京大学 Hollow microfiber
WO2020032221A1 (en) * 2018-08-10 2020-02-13 持田製薬株式会社 Alginate hollow microfiber
CN112375737A (en) * 2020-11-12 2021-02-19 常州市第一人民医院 Biological adsorption material, preparation method, virus adsorption system and auxiliary dialysis circulation system
WO2023085441A1 (en) * 2021-11-10 2023-05-19 国立大学法人東京大学 Macroporous structure

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANDREI MARIA; STANESCU PAUL O.; DRAGHICI CONSTANTIN; TEODORESCU MIRCEA: "Degradable thermosensitive injectable hydrogels with two-phase composite structure from aqueous solutions of poly(N-isopropylacrylamide-co-5,6-benzo-2-methylene-1,3-dioxepane)—poly(ethylene glycol) triblock copolymers and biopolymers", COLLOID & POLYMER SCIENCE, SPRINGER VERLAG, HEIDELBERG, DE, vol. 295, no. 10, 21 July 2017 (2017-07-21), DE , pages 1805 - 1816, XP036321074, ISSN: 0303-402X, DOI: 10.1007/s00396-017-4161-2 *
MAZARI-ARRIGHI ELSA, OKITSU TERU, TERAMAE HIROKI, AOYAGI HOSHIMI, KIYOSAWA MAHIRO, YANO MARIKO, CHATELAIN FRANÇOIS, FUCHS ALEXANDR: "In vitro proliferation and long-term preservation of functional primary rat hepatocytes in cell fibers", SCIENTIFIC REPORTS, vol. 12, no. 1, XP093105228, DOI: 10.1038/s41598-022-12679-3 *
NAGATA SHOGO, OZAWA FUMISATO, NIE MINGHAO, TAKEUCHI SHOJI: "3D culture of functional human iPSC-derived hepatocytes using a core-shell microfiber", PLOS ONE, vol. 15, no. 6, pages e0234441, XP093105227, DOI: 10.1371/journal.pone.0234441 *

Similar Documents

Publication Publication Date Title
JP5524824B2 (en) Improved bioreactor surface
JP3692147B2 (en) Filter device
JP4112616B2 (en) Solid phase support for use in cell culture, especially for culturing hepatocytes, biological reactors comprising said solid phase support, and their use in bioartificial liver systems
CA2736533C (en) Polymer membrane irradiated in oxygen for cell culture
US8435751B2 (en) Membrane for cell expansion
CN110392733B (en) Somatic cell production system
US20210337783A1 (en) Perfusion bioreactor, perfusion device, artificial liver system, and related methods
WO2020250929A1 (en) Red blood cell removal device, mononuclear cell collector, cell culture device, cell culture system, cell culture method, and mononuclear cell collection method
US20230030031A1 (en) Cell treatment device, suspension culture vessel, and stem cell induction method
US10898863B2 (en) Hollow-fiber membrane and hollow-fiber module for cell culture
WO2023210691A1 (en) Active ingredient-containing solution treatment device and extracorporeal active ingredient-containing solution circulation system
JP7052480B6 (en) Manufacturing method of anti-curing agent or therapeutic agent for crystalline lens
WO2023085441A1 (en) Macroporous structure
JP7052439B6 (en) Anti-curing or therapeutic agent for the crystalline lens
JP7306647B2 (en) Grafts and their uses
WO2021090767A1 (en) Cell culture device
WO2020250927A1 (en) Erythrocyte removal device, mononuclear cell collector, cell culture device, cell culture system, cell culture method, and method for collecting mononuclear cells
US20230203434A1 (en) Scaffold, method for producing scaffold, cell culture construct, method for culturing cell
CN115554469A (en) Bionic bioartificial liver chip and preparation method and application thereof
JP2003026580A (en) Substitute for plasma

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796431

Country of ref document: EP

Kind code of ref document: A1