WO2023207634A1 - 调控方法、信息处理方法、信号调节装置、设备及介质 - Google Patents

调控方法、信息处理方法、信号调节装置、设备及介质 Download PDF

Info

Publication number
WO2023207634A1
WO2023207634A1 PCT/CN2023/088440 CN2023088440W WO2023207634A1 WO 2023207634 A1 WO2023207634 A1 WO 2023207634A1 CN 2023088440 W CN2023088440 W CN 2023088440W WO 2023207634 A1 WO2023207634 A1 WO 2023207634A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
signal conditioning
vector
conditioning device
communication device
Prior art date
Application number
PCT/CN2023/088440
Other languages
English (en)
French (fr)
Inventor
陈艺戬
窦建武
杨军
鲁照华
方敏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023207634A1 publication Critical patent/WO2023207634A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters

Definitions

  • the present application relates to the field of communication technology, especially a control method, an information processing method, a signal conditioning device, equipment and a medium.
  • the signal conditioning device is a surface electromagnetic active wireless environment. Every part of the wireless environment can emit and receive electromagnetic fields. If these electromagnetic fields can be controlled intelligently, it is possible to concentrate energy in three-dimensional space for transmission and reception, improving capabilities. efficiency and reduce interference.
  • the signal conditioning device may be an Intelligent Surface.
  • the embodiments of the present application provide a control method, an information processing method, a signal conditioning device, equipment and a medium, which can effectively improve the measurement efficiency of the control information of the signal conditioning device.
  • embodiments of the present application provide a method for regulating a signal conditioning device, which includes: obtaining indication information; and determining a set of measurement regulation parameters according to the indication information, wherein the set of measurement regulation parameters includes a plurality of signal regulation parameters.
  • Measurement control information of the device according to the measurement control information, control the electromagnetic characteristics of the electromagnetic unit in the signal conditioning device so that the electromagnetic unit reflects pilot information to the second communication device to measure the signal conditioning device target control information.
  • embodiments of the present application also provide an information processing method applied to a second communication device.
  • the method includes: in response to the pilot information sent by the signal conditioning device, sending feedback information to the first communication device to The target control information of the signal conditioning device is measured; wherein the pilot information is sent by the signal conditioning device by executing the control method of the signal conditioning device as described in the first aspect.
  • embodiments of the present application also provide an information processing method, applied to a first communication device.
  • the method includes: sending pilot information, so that the signal conditioning device performs the signal processing as described in the first aspect.
  • the control method of the adjustment device reflects the pilot information to the second communication device; obtains feedback information from the second communication device; and calculates according to the feedback information, the measurement control parameter set and the setting pattern of the measurement control parameter set. Target regulatory information.
  • embodiments of the present application also provide an information processing method applied to a communication system.
  • the communication system includes a first communication device, a signal conditioning device and a second communication device.
  • the method includes: the first communication device.
  • the communication device performs the information processing method as described in the third aspect;
  • the signal conditioning device performs the control method of the signal conditioning device as described in the first aspect;
  • the second communication device performs the information processing as described in the second aspect method.
  • embodiments of the present application also provide an information processing method, applied to the first communication device.
  • the method includes: determining at least one target basic vector, wherein the target basic vector is information obtained by processing the first channel information and the second channel information through a first preset function, and is used to characterize the first channel information and the third channel information.
  • the difference between the two channel information; the first channel is the channel between the first communication device and the signal conditioning device, and the second channel is the channel between the signal conditioning device and the second communication device;
  • the target basic vector is processed by a second preset function to obtain target control information.
  • embodiments of the present application further provide a signal conditioning device, including: a first memory, a first processor, and a computer program stored in the first memory and executable on the first processor.
  • a processor executes the computer program, the control method as described in the first aspect is implemented.
  • embodiments of the present application further provide a communication device, including: a second memory, a second processor, and a computer program stored in the second memory and executable on the processor, the second processor When the computer program is executed,: the information processing method as described in the second aspect; or the information processing method as described in the third aspect.
  • embodiments of the present application further provide a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are used to execute: the control method of the signal conditioning device as described in the first aspect; Or, the information processing method as described in the second aspect or the third aspect.
  • the control method provided in the first aspect of the embodiment of the present application is to obtain indication information, determine a set of measurement control parameters according to the indication information, and control the electromagnetic characteristics of the electromagnetic unit in the signal conditioning device according to the measurement control information, So that the electromagnetic unit reflects the pilot information to the second communication device to measure the target regulation information of the signal conditioning device.
  • Embodiments of the present application effectively improve the measurement efficiency of the control information of the signal conditioning device by regulating the electromagnetic characteristics of the electromagnetic unit in the signal conditioning device according to the instruction information.
  • Figure 1 is a schematic diagram of a system architecture for executing an information processing method provided by an embodiment of the present application
  • Figure 2 is a flow chart of an information processing method on the first communication device side provided by an embodiment of the present application
  • Figure 3 is a flow chart of a control method on the smart panel side provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of the setting pattern of four pilots in the control method provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of the setting pattern of 8 pilots in the control method provided by an embodiment of the present application.
  • Figure 6 is a flow chart of an information processing method on the second communication device side provided by an embodiment of the present application.
  • Figure 7 is a flow chart of an information processing method on the second communication device side provided by another embodiment of the present application.
  • Figure 8 is a flow chart of an information processing method on the second communication device side provided by another embodiment of the present application.
  • Figure 9 is a flow chart of an information processing method on the first communication device side provided by an embodiment of the present application.
  • Figure 10 is a flow chart of an information processing method on the first communication device side provided by another embodiment of the present application.
  • Figure 11 is a flow chart of an information processing method of a communication system provided by an embodiment of the present application.
  • the signal conditioning device is a surface electromagnetic active wireless environment. Every part of the wireless environment can emit and receive electromagnetic fields. If these electromagnetic fields can be controlled intelligently, it is possible to concentrate energy in three-dimensional space for transmission and reception, improving capabilities. efficiency and reduce interference.
  • the intelligent panel is also called a smart surface, a reconfigurable electromagnetic surface (Reconfigurable Intelligent Surface, RIS), etc., by changing the elements (Intelligent Surface Element) in the panel, or it is called a controllable electromagnetic unit.
  • the electromagnetic characteristics can produce an adjustable radiation electric field and obtain the desired radiation characteristics, thereby enabling large-scale multiple-in multiple-out (MIMO) beamforming when transmitting or reflecting signals. Effect.
  • Signal conditioning devices can be used in different scenarios such as wireless communications, wireless charging and remote sensing, making the physical environment “smart" and interactive.
  • the electromagnetic properties that can be controlled and changed include: Phase characteristic, Amplitude characteristic, Frequency characteristic, Polarization characteristic, Angular Momentum, etc. Because smart panels have the ability to change electromagnetic properties, electromagnetic waves can be controlled in the way we expect.
  • the main application of the signal conditioning device is to use its reflection effect to assist communication, improve coverage or increase the number of transmission layers.
  • the model is shown in Figure 1.
  • you want to effectively change the electromagnetic characteristics of each part of the signal conditioning device you need to accurately obtain the channel information between the base station and the smart panel and the channel information between the smart panel and the mobile terminal.
  • the control method, information processing method, signal conditioning device, equipment and medium provided in the first aspect of the embodiment of the present application obtain the instruction information, determine the measurement control parameter set according to the instruction information, and control the signal adjustment according to the measurement control information.
  • the electromagnetic characteristics of the electromagnetic unit in the device are such that the electromagnetic unit reflects the pilot information to the second communication device to measure the target regulation information of the signal conditioning device.
  • Embodiments of the present application effectively improve the measurement efficiency of the control information of the signal conditioning device by regulating the electromagnetic characteristics of the electromagnetic unit in the signal conditioning device according to the instruction information.
  • the signal conditioning device as a smart panel
  • the first communication device as a base station
  • the second communication device as a user terminal
  • Figure 1 is a schematic diagram of a system architecture platform 100 for executing an information processing method provided by an embodiment of the present application.
  • the system architecture platform 100 includes a base station 110 , a smart panel 120 and a user terminal 130 .
  • the smart panel 120 is provided with multiple electromagnetic units 121 and controllers (not shown in the figure).
  • the base station 110 can communicate with the user terminal. 130 communication connection.
  • the base station 110 can also communicate with the user terminal 130 through the controller of the smart panel 120.
  • the controller of the smart panel 120 can also communicate with the base station.
  • the controller is used to receive instruction information from the base station to adjust the electromagnetic unit.
  • the technical solution of this embodiment mainly solves the problems existing in the structure of communication connection between the base station 110 and the user terminal 130 through the smart panel 120.
  • the smart panel 120 can be a Reconfigurable Intelligent Surface (RIS), which can realize wireless communication, wireless charging and remote sensing, making the physical environment “smart” and interactive.
  • RIS Reconfigurable Intelligent Surface
  • the smart panel 120 can intelligently control the channel environment, providing greater transmission capacity, higher wireless charging efficiency, and stronger robustness.
  • the smart panel 120 can support access to very large-scale terminals.
  • the smart panel 120 in this embodiment can be extended to a physical surface electromagnetic active wireless environment. Each part of the wireless environment can emit and receive electromagnetic fields. If these electromagnetic fields can be intelligently controlled, it is possible to concentrate energy in Transmit and receive in three-dimensional space, improving capacity efficiency and reducing interference.
  • smart panels can be used in many aspects, including solving high-frequency non-line-of-sight transmission problems, solving coverage holes, reducing electromagnetic pollution, and passive interconnection of everything. , low-cost large-scale transmission and reception, and increased spatial freedom of the channel.
  • the basic principle of the smart panel 120 is to generate an adjustable radiation electric field by changing the array of the smart panel, or by regulating the electromagnetic characteristics of the electromagnetic unit, to obtain the required radiation characteristics, and achieve large-scale multi-input and multi-input during emission or reflection.
  • the electromagnetic characteristics that can be controlled and changed in theory include but are not limited to: phase characteristics, amplitude characteristics, frequency characteristics, polarization characteristics and angular momentum. Because smart panels have the ability to change electromagnetic characteristics, electromagnetic waves can be controlled according to user expectations, and have a very wide range of application prospects.
  • the number and arrangement of the electromagnetic units 121 provided on the smart panel 120 can be set according to actual conditions, and are not specifically limited in this embodiment.
  • the base station 110 is an interface device for mobile devices to access the Internet, and is also a form of a radio station. It refers to the communication with mobile phones through a mobile communication switching center in a certain radio coverage area.
  • a radio transceiver station that transfers information between terminals.
  • it can be a base station (Base Transceiver Station, referred to as "BTS") in the GSM system or CDMA, a base station (NodeB, NB) in the WCDMA system, or an evolutionary base station (Evolutional Node B, eNodeB), which can be a 5G base station or a base station corresponding to the subsequently evolved network.
  • the user terminal 130 may also be called user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device , user terminal, terminal, wireless communication device, user agent or user device.
  • the user terminal 130 in the embodiment of the present application can be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) user terminal, or an augmented reality (Augmented Reality, AR)
  • User terminals wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security Wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, etc.
  • system architecture platform can be applied to 2G, 3G, 4G, 5G, 6G communication network systems and subsequently evolved mobile communication network systems, etc. This embodiment does not specifically limit this.
  • system architecture platform shown in Figure 1 does not limit the embodiments of the present application, and may include more or fewer components than shown, or combine certain components, or use different Component placement.
  • the reception of the kth user equipment (User Equipment, UE for short, which can be used as the second communication device below) Signal and K are used.
  • the received signals at the user terminal can be modeled as:
  • the received signal of the kth user terminal is the received signal of the kth user terminal.
  • the received signal of the k-th user terminal and the received signal of the K user terminals can be modeled as:
  • the received signal of the kth user terminal is the received signal of the kth user terminal.
  • Each electromagnetic unit of the smart panel can add a configurable phase adjustment factor to the signal reflected by it: Since this phase adjustment factor is configurable, the phase of the signal received by the smart panel can be adjusted to form a beam direction facing the target user. In addition, the phase adjustment factor can also be adjusted to
  • is the target control information
  • is the diagonal matrix related to the dimension of the electromagnetic unit
  • the diagonal elements that change with the electromagnetic unit are not equal.
  • the smart panel has N electromagnetic units, so the target control information ⁇ should be a diagonal matrix with N*N elements. For example, for a smart panel with an electromagnetic unit dimension of 16*16, there are a total of 256 electromagnetic units, and the target control information ⁇ can be a 256*256 diagonal matrix.
  • the smart panel may include an amplitude adjustment part and a phase adjustment part, or only a phase adjustment part.
  • the dimension of ⁇ can be N ⁇ N, N ⁇ n t , or n t ⁇ r.
  • the target control information ⁇ can be obtained, from Targeted control of data transmission can generate a reflection path signal with strong power, thereby solving the problem of high-frequency non-line-of-sight transmission, solving the problem of coverage holes, reducing electromagnetic pollution, and achieving passive interconnection of everything and low-cost Large-scale transmission and reception, increasing the spatial freedom of the channel and other effects. It is very critical to obtain accurate channel information related to smart reflective surfaces. However, in practice, due to the low cost requirements of smart panels, channel measurement devices cannot be installed on smart panels, making it impossible for smart panels to accurately obtain channel information and cannot fully exploit its performance.
  • the present application provides an information processing method applied to a first communication device.
  • the method includes:
  • Step S1100 Determine at least one target basic vector, where the target basic vector is the information obtained by processing the first channel information and the second channel information through the first preset function, and is used to represent the relationship between the first channel information and the second channel information. The difference; the first channel is the channel between the first communication device and the signal conditioning device, and the second channel is the channel between the signal conditioning device and the second communication device;
  • Step S1200 The target basic vector is processed by a second preset function to obtain target control information.
  • the phase adjustment matrix ⁇ on the smart panel can be determined based on h 2,k and H 1.
  • the relevant technical method is to measure h 2,k and H 1 respectively. H 1 , and then calculate the optimal target regulation information ⁇ based on it.
  • the first channel information and the second channel information can be processed by a first preset function to obtain the target basic vector, and then the target basic vector can be processed by a second preset function by performing step S1200 to obtain the target control information. Therefore, the technical problem of measuring h 2, k and H 1 respectively is transformed into the technical problem of measuring the target basic vector.
  • the operation of the channel information between the second communication devices can therefore avoid the problem of being unable to measure the channel information through the smart panel due to the low cost requirement of the smart panel, so that the performance of the smart panel can be fully utilized.
  • step S1100 at least one target basic vector is determined, where the target basic vector is information obtained by processing the first channel information and the second channel information through a first preset function, and is used to characterize the first channel information and the second channel information. Differences between second channel information include:
  • Step S1110 perform left singular vector transformation on the first channel to obtain left singular vector information
  • Step S1120 perform right singular vector transformation on the second channel to obtain right singular vector information
  • Step S1130 construct a first vector function used to represent the difference information between the left singular vector information and the right singular vector information
  • Step S1140 Use the DFT vector corresponding to the first vector function as the target basis vector.
  • the first preset function may be a correlation function that performs singular vector processing.
  • steps S1110 to S1140 may be used to process the first channel information and the second channel information.
  • the first channel information and the second channel information are processed.
  • the first communication device may interact with the second communication device to obtain the target basis vector according to feedback information from the second communication device to calculate the first vector, where the first vector is used to characterize the first channel.
  • the first channel is the channel between the first communication device and the smart panel
  • the second channel is the channel between the smart panel and the second communication device. channel.
  • the first communication device can interact with the second communication device. It can actively send information to the second communication device, or passively receive information sent from the second communication device. It can also mainly require the second communication device to send information.
  • the first communication device can obtain the feedback information sent from the second communication device to obtain the target basic vector to calculate the first vector, where the first vector is used to represent the left side of the first channel.
  • Singular vector information and the right singular vector of the second channel Difference information between information, where the first channel is the channel between the first communication device and the smart panel, the second channel is the channel between the smart panel and the second communication device, and the difference information is used to calculate the target control information.
  • the target basis vector is processed by a second preset function to obtain target control information, including:
  • Step S1210 obtain the weight coefficient corresponding to the target basic vector
  • Step S1220 Calculate the first vector based on the target base vector, weight coefficient and first vector function
  • Step S1230 Diagonalize the first vector to obtain target control information.
  • the first communication device may measure the target basis vector using feedback information obtained from the second communication device to calculate the target regulation information.
  • the target control information can be used to instruct the smart panel to adjust the phase of the received information, or can be used to instruct the smart panel to adjust the amplitude of the received information, or can be used to instruct the smart panel to adjust the phase of the received information.
  • the frequency of the received information is adjusted, or it can also be used to instruct the smart panel to adjust the polarization of the received information. This embodiment does not specifically limit the target control information.
  • the first communication device may send target control information to the smart panel, so that the smart panel adjusts the electromagnetic unit in the smart panel according to the target control information.
  • the first communication device can send the target control information obtained according to the target basic vector to the smart panel, so that the smart panel adjusts the electromagnetic unit in the smart panel according to the target control information. Since the embodiment of this solution passes Obtain a first vector that can represent the difference information between the channel information between the first communication device and the smart panel and the channel information between the smart panel and the second communication device, and then obtain based on the first vector that can measure the electromagnetic energy in the smart panel.
  • the target control information adjusted by the unit does not need to perform the operations of obtaining the channel information between the first communication device and the smart panel and obtaining the channel information between the smart panel and the second communication device in the related technology. Therefore, it is possible to avoid The low-cost requirement of the panel causes the problem that the channel information cannot be measured through the smart panel, so that the performance of the smart panel can be fully utilized.
  • the smart panel adjusts the phase characteristics, amplitude characteristics, frequency characteristics, polarization characteristics, angular momentum and other electromagnetic characteristics of the electromagnetic unit in the smart panel based on the target control information.
  • step S1100 and step S1200 are described in detail below using an example.
  • the difference information between the left singular vector information of the first channel and the right singular vector information of the second channel is measured, and then calculated using the difference information Obtain target control information.
  • singular value decomposition can be performed on the second channel information h 2,k and the first channel information H 1 respectively, that is, as follows:
  • v 2,k is the right singular vector information of the second channel
  • u 1 is the left singular vector information of the first channel.
  • the smart panel adjusts the phase of the electromagnetic unit according to the target control information ⁇ to minimize the distance between v 2, k and u 1 , thereby making the transmission performance of the smart panel optimal.
  • the method of selecting appropriate target regulation information ⁇ can be expressed in mathematical form as follows:
  • distance represents a distance function, which can adopt a variety of distance definitions in mathematics, such as chord distance.
  • the first preset function can be a function group including the above formulas (1), (2) and (3); v 2, k and u 1 can be vectors; they can also be composed of multiple vectors.
  • the subspace (matrix) is not specifically limited in this embodiment.
  • first channel information H 1 appropriate precoding can be set by the first communication device (such as a base station) to convert becomes a scalar (such as 1), so for the first channel information H 1 only the left singular vector information u 1 needs to be considered.
  • the first communication device such as a base station
  • the design idea of this application is to find a suitable target control information ⁇ , so that the right singular vector v 2,k of the second channel information h 2,k is equal to the left singular vector of the first channel information H 1 u 1 matches.
  • the design idea of this application is to find a suitable target control information ⁇ , so that the right singular vector v 2,k of the second channel information h 2,k is equal to the left singular vector of the first channel information H 1 u 1 matches.
  • the embodiment of the present application does not need to measure both channels, but converts them into It is necessary to measure the difference information between v 2, k and u 1 , because v 2, k is a target that u 1 should be as close to as possible after rotation (because the product of u 1 and the target control information ⁇ is actually done to u 1 a rotation).
  • the information processing method of this technical solution does not need to obtain accurate h 2,k , H 1 , but only needs to obtain the difference information of v 2,k and u 1 , and can determine the better target control information ⁇ , so that the smart panel can achieve Better transmission performance.
  • the right singular vector v 2,k of the second channel information h 2,k and the left singular vector u 1 of the first channel information H 1 are mathematically converted into a weighted combination of the target basis vectors; Physically, the right singular vector v 2,k of the second channel information h 2,k and the left singular vector u 1 of the first channel information H 1 are actually one or more paths formed by the first channel and the second channel. Overlay. That is, the number of target basis vectors is related to the number of paths formed by the first channel and the second channel.
  • the processing process of the first preset function can be further deduced and explained in detail:
  • v 2, k and u 1 are decomposed respectively, and the cumulative form of v 2, k and u 1 can be obtained, as shown in the following formula:
  • (:,l) represents the lth column, and is a base vector.
  • the base vector may be a DFT vector or may be in the form of a Kronecker product of a DFT vector, which is not specifically limited in this embodiment.
  • the electromagnetic unit of a linear array can choose the DFT vector as the basic vector;
  • the rectangular area array can choose the Kronecker product form of the DFT vector as the basic vector.
  • phase adjustment matrix on the reflective panel can be described as follows:
  • phase adjustment matrix (target adjustment information) ⁇ can be expressed as a vector constructed by the hardamad product of v 2, k (:, l), u 1 (:, l) diagonal form. Represents the Hadamard product operation, and diag represents diagonalizing an N-dimensional vector to obtain a diagonal matrix, whose diagonal elements are elements in the vector.
  • a first vector function for characterizing the difference information between the left singular vector information and the right singular vector information is constructed.
  • formula (7) is the first vector function.
  • the target adjustment information ⁇ can be expressed as the diagonalization of the first vector C, and the first vector C can be expressed as linear merge form.
  • the first vector C can be expressed as linear merge form.
  • the difference information of v 2, k and u 1 can be expressed as The linear combination form, that is, when the difference information of v 2, k and u 1 needs to be fed back, it can be converted into feedback and its linear combination weighting coefficient information.
  • the DFT vector corresponding to the first vector function can be used as the target basis vector, and by executing step S1200, the target basis vector can be passed through the second preset function (the second preset function can be according to the above formula ( 6) The obtained corresponding relationship function) is processed to obtain the target regulation information ⁇ .
  • the method proposed in this application can convert the first vector into Set to a linear combination of DFT vectors (or the Kronecker product form of multiple DFT vectors), taking the DFT vector as an example, the first vector It can be expressed as:
  • a m is a preset weighting coefficient
  • X t is a preset set
  • a m and X t can be used for each Set separately for joint measurement feedback. It should be noted that for different t, X t has intersection.
  • the first communication device can obtain the feedback information sent from the second communication device to obtain the first vector, which is used to represent the left singular vector information of the first channel and the second The difference information between the right singular vector information of the channel, where the first channel is the channel between the first communication device and the smart panel, the second channel is the channel between the smart panel and the second communication device, and then the first communication
  • the device can use the first vector calculation to obtain the target control information, and then send the target control information to the smart panel, so that the smart panel adjusts the electromagnetic unit in the smart panel according to the target control information.
  • the embodiment of this solution obtains Feed back information and use calculations to be able to characterize
  • the first vector of the difference information between the channel information between the first communication device and the smart panel and the channel information between the smart panel and the second communication device is obtained, and then the electromagnetic unit in the smart panel can be adjusted based on the first vector.
  • the target control information does not need to perform the operations of obtaining the channel information between the first communication device and the smart panel and obtaining the channel information between the smart panel and the second communication device in the related technology. Therefore, it is possible to avoid the low performance of the smart panel. Due to cost requirements, the channel information cannot be measured through smart panels, so that the performance of smart panels can be fully utilized.
  • T phase adjustment matrices can be set and will form a set in, They are all obtained by diagonalizing N vectors (including candidate basis vectors). It should be noted that the values of T and N can be preset according to the needs of the application scenario, and are not specifically limited in this embodiment.
  • a set ⁇ rs where ⁇ rs consists of a set of complete DFT vectors or vectors constructed by their Kronecker products.
  • T pilot resources are required, and each pilot resource uses a phase adjustment matrix on the smart panel.
  • the phase adjustment matrices are respectively Then measurement and feedback are performed based on T pilot resources to select the appropriate
  • the first communication device needs to send T pilots to the second communication device and then obtain the feedback information of T pilot resources before it can be measured. information.
  • the DFT vector included in refers to a type of vector in which the elements in the vector have the same module value and the phase difference between adjacent elements is a fixed value.
  • the DFT vector can be defined as:
  • N is the dimension of the DFT vector
  • O is the oversampling factor.
  • the oversampling factor is 1, and when 0 to 2 ⁇ is divided into O *
  • M is the index of the DFT vector, indicating the mth DFT vector.
  • phase change gradient of the DFT vector ranges from 0 to 2 ⁇
  • a DFT vector can be determined by specifying the dimensions and phase change gradient of a DFT vector.
  • the phase value of the DFT vector is between 0 and 2 ⁇ , which is a finite set.
  • the phase value of the DFT vector is related to the direction of the electromagnetic unit. In some embodiments, how many parts the phase value of the DFT vector is divided into between 0 and 2 ⁇ depends on the accuracy required by the system. Theoretically, the phase value of the DFT vector can be divided into an infinite number of parts between 0 and 2 ⁇ . In this case, the system accuracy is high; the phase value of the DFT vector between 0 and 2 ⁇ can also be divided into a smaller number of parts, such as 2 parts. or 4 parts, the system accuracy is low at this time.
  • the number of parts the phase value of the DFT vector is divided into between 0 and 2 ⁇ is related to the number of electromagnetic units.
  • a smart panel has N D electromagnetic units in the horizontal direction and N D electromagnetic units in the vertical direction.
  • the horizontal and vertical dimensions can be processed independently.
  • the DFT vector in the horizontal direction and the DFT vector in the vertical direction are processed.
  • Kronecker product Taking the horizontal direction as an example, if there are N D electromagnetic units in the horizontal direction, the phase value of the DFT vector in the horizontal direction needs to be divided into N D *2 parts between 0 and 2 ⁇ to achieve lossless decomposition.
  • the accuracy of the DFT vector needs to be divided into 16 ⁇ 2 parts in the horizontal direction and 16 ⁇ 2 parts in the vertical direction, that is, horizontal
  • 32 pilot information corresponding to the direction there are 32 pilot information corresponding to the vertical direction.
  • the number of electromagnetic units is large, such as 10,000.
  • 20,000 pilot information needs to be sent, and the pilot overhead is huge.
  • this method requires a lot of pilot overhead when the value of T is very large. For example, at high frequencies, the number of electromagnetic units in a smart panel can reach more than 10,000, which requires tens of thousands of pilot resources. The pilot overhead is very large, and the pilots need to be sent using different symbols in time. Find suitable target vector information This results in significant delays while working.
  • the control method provided by the embodiment of the present application can obtain the instruction information, determine the measurement control parameter set according to the instruction information, and control the electromagnetic characteristics of the electromagnetic unit in the signal conditioning device according to the measurement control information, so that the electromagnetic unit reflects
  • the pilot information is sent to the second communication device to measure the target regulation information of the signal conditioning device.
  • Embodiments of the present application effectively improve the measurement efficiency of the control information of the signal conditioning device by regulating the electromagnetic characteristics of the electromagnetic unit in the signal conditioning device according to the instruction information.
  • a control method of a signal conditioning device, applied to the signal conditioning device includes:
  • Step S2100 obtain instruction information
  • Step S2200 Determine a measurement control parameter set according to the instruction information, where the measurement control parameter set includes measurement control information of multiple signal conditioning devices;
  • Step S2300 According to the measurement control information, the electromagnetic characteristics of the electromagnetic unit in the signal conditioning device are controlled so that the electromagnetic unit reflects the pilot information to the second communication device to measure the target control information of the signal conditioning device.
  • the first vector can be Set to a linear combination of DFT vectors (or the Kronecker product form of multiple DFT vectors), taking the DFT vector as an example, the first vector It can be expressed as:
  • a m is a preset weighting coefficient
  • X t is a preset set
  • a m and X t can be used for each Set separately for joint measurement feedback.
  • the target basic vector is measured first and then the weighted measurement is performed. In actual operation, it can be obtained by sending pilot information and obtaining feedback information. Information.
  • the signal conditioning device sends pilot information to measure the second communication device by executing steps S1100 to S1300, even if Containing only one DFT vector component, there will also be multiple measurement results among the measurement results of multiple pilot information, which can measure the received power that is not weak. That is, the embodiment of the present application precodes the pilot information according to the measurement control parameter set. If the first vector contains the corresponding DFT vector in the measurement control parameter set, then the receiving end (second pass The signal equipment) should be able to measure the received power with good quality.
  • the indication information can be used to reasonably configure the measurement control parameter set to save the number of pilot information transmissions.
  • the pilots that can receive not weak received power are also very sparse, which is actually a waste of pilot resources.
  • smart panel applications generally speaking, smart panels have a larger number of electromagnetic units (also called array elements or arrays) and are often used in high-frequency situations. In high-frequency situations, the wavelength is shorter and more arrays can be deployed. element, for this kind of representation of channel information Its components are all sparse, so using the technical solution of this implementation, the pilot utilization rate will be higher.
  • the first vector is not reduced
  • the number of DFT vectors is reduced by "grouping" the number of pilots used in feedback. For example, if the first vector contains only one of the 16 DFT vectors (candidate base vectors). In related technologies, pilot information needs to be sent 16 times to test the first vector. Which DFT vector is included, and the first vector can be tested through 4 pilots after "grouping" according to the embodiment of the present application. Which DFT vector is included in , which improves measurement efficiency. And, the first vector The sparser (the fewer) the DFT vectors contained in , the more obvious the effect of the embodiments of the present application on improving measurement efficiency.
  • steps S2100 to S2300 can be implemented in the controller of the smart panel.
  • the signal conditioning apparatus may obtain indication information from an external device, for example, it may be indication information from a first communication device (such as a base station) or indication information from a second communication device (such as a user terminal).
  • the external device may also be other network elements, which is not limited in the embodiments of this application.
  • target regulatory information includes target basis vectors.
  • the plurality of measurement control information in each measurement control parameter set includes different candidate basis vectors or different candidate basis vector combinations;
  • step S2300 regulates the electromagnetic characteristics of the electromagnetic unit in the signal conditioning device according to the measurement control information, so that the electromagnetic unit reflects the pilot information to the second communication device to measure the target control information of the signal conditioning device, including:
  • Step S2310 Regulate the electromagnetic characteristics of the electromagnetic unit in the signal conditioning device according to the measurement regulation information, so that the electromagnetic unit reflects the pilot information to the second communication device to measure and determine at least one of the plurality of candidate basis vectors according to the measurement results.
  • Target basis vector Regulate the electromagnetic characteristics of the electromagnetic unit in the signal conditioning device according to the measurement regulation information, so that the electromagnetic unit reflects the pilot information to the second communication device to measure and determine at least one of the plurality of candidate basis vectors according to the measurement results.
  • Target basis vector Target basis vector.
  • the embodiments of the present application precode the pilot information according to the measurement control parameter set. If the first vector contains the corresponding DFT vector in the measurement control parameter set, the receiving end (second communication device) should The received power with good quality can be measured, and the receiving end transmits feedback information on whether the pilot information has been received to the first communication device.
  • the first communication device can calculate the corresponding DFT vector based on the received feedback information, and The target basis vector contained as the first vector.
  • the measurement control parameter set can be reasonably configured through the indication information to save the number of pilot information transmissions.
  • measuring a set of regulatory parameters It may be pre-stored in the signal conditioning device, or it may be automatically generated by the signal conditioning device based on the instruction information.
  • the signal conditioning device pre-stores multiple sets of measurement control parameters. each Includes measurement and control information for multiple signal conditioning devices For example, multiple control parameter sets They are:
  • Each set of control parameters They are all preset patterns, corresponding to certain test models.
  • the first communication device transmits pilot information, and the signal conditioning device sets The pilot information is reflected to the second communication device.
  • the second communication device feeds back the reception status of the pilot information to the first communication device.
  • the first communication device then calculates the corresponding target basis vector according to the preset pattern.
  • the set of measured control parameters is sent by the first communication device to the signal conditioning device for storage in the signal conditioning device.
  • the signal conditioning device pre-stores multiple measurement control parameter sets, and the indication information is used to directly indicate the index information of the measurement control parameter set;
  • the set of measurement control parameters is determined to include:
  • Step S2210 determine the index information of the measurement control parameter set according to the instruction information
  • Step S2220 Determine a corresponding measurement control parameter set from multiple pre-stored measurement control parameter sets based on the index information.
  • the smart panel saves multiple control parameter sets each Includes measurement and control information for multiple signal conditioning devices
  • multiple control parameter sets They are:
  • the indication information includes index information used to directly indicate the measurement control parameter set.
  • the signal conditioning device (such as a smart panel) finds the pre-stored corresponding set of measurement and control parameters based on the index information in the indication information. That is to say, the signal conditioning device knows in advance through the indication information that the target control information only exists in the control parameter set corresponding to the index information. , compared with sending all measurement control information, a large amount of pilot resources can be saved.
  • the signal conditioning device pre-stores multiple measurement control parameter sets and preset correspondence tables
  • the indication information includes basic vector prior information, and the corresponding relationship table includes the corresponding relationship between the basic vector prior information and multiple measurement control parameter sets;
  • step S2200 according to the instruction information, it is determined that the measurement control parameter set includes:
  • Step S2230 Query the correspondence table to determine the corresponding measurement control parameter set according to the basic vector prior information.
  • the smart panel saves multiple control parameter sets each Includes measurement and control information for multiple signal conditioning devices
  • multiple control parameter sets They are:
  • the indication information includes basic vector prior information
  • the basic vector prior information may include the number of vectors. and/or vector distribution range, etc., wherein the vector number is used to characterize the number or quantity range of candidate basis vectors, and the vector distribution range is used to characterize the distribution range of candidate basis vectors.
  • the basic vector a priori information may include the number of vectors, that is, the first communication device/second communication device may notify the signal conditioning device of the vector number (number) of the target basic vector, and the specific notification form is not limited.
  • the number of vectors allows the signal conditioning device to know how many pilots I should send and how to send them. For example, according to the agreement between the first communication device and the signal conditioning device, a vector number of 1 means that there is only one multipath, that is, there is only one target basic vector, and the signal conditioning device only sends the control parameters corresponding to a target basic vector of 1. gather That’s it, there is no need to send all the measurement and control information.
  • the basic vector prior information may include the vector distribution range.
  • the phase distribution range of the DFT vector is 0 to 2 ⁇ .
  • the phase distribution range of the DFT vector may be a smaller range, such as 0 ⁇ 2/ ⁇ , so the signal conditioning device does not need to send all vectors, but only needs to send a set of control parameters matching the phase distribution range of 0 ⁇ 2/ ⁇ That’s it, there is no need to send all the measurement and control information.
  • the number of DFT vectors (number of vectors) contained in the first vector is related to the number of channel paths. In some embodiments, the number of DFT vectors (number of vectors) corresponds to the channel path one-to-one. For example, if the number of DFT vectors (number of vectors) contained in the first vector is 1, then the number of channel paths is also 1 (if there is only one LOS path); if the number of DFT vectors (number of vectors) is 2, then the number of channel paths The number is also 2 (if there is one LOS path and one NLOS path (reflection path)).
  • the smart panel can determine the set of control parameters from Table 2 based on prior information such as the number of vectors or vector distribution range.
  • the indication information includes basis vector prior information
  • step S2200 determines the measurement control parameter set according to the instruction information, including:
  • Step S2240 Generate a measurement control parameter set according to the first preset rule based on the basic vector prior information.
  • the set of measurement control parameters may also be automatically generated by the signal conditioning device based on the instruction information.
  • the signal conditioning device can pre-store a method for generating a set of measurement control parameters, and generate a corresponding set of measurement control parameters based on basic vector prior information (such as the number of vectors and/or vector distribution range, etc.).
  • the basis vector prior information includes at least one of vector number or vector distribution range, wherein the vector number is used to characterize the number or quantity range of candidate basis vectors, and the vector distribution range is used to characterize the distribution of candidate basis vectors. scope.
  • the first preset rules include:
  • the number of measurement control information in the measurement control parameter set is N and satisfies:
  • Q is the number of bits of feedback information of the second communication device in response to the pilot information
  • M is the number of possible combinations of candidate basis vectors.
  • each control parameter set They are all preset patterns, corresponding to certain test models.
  • the design of the pattern can be designed according to the resolution corresponding to the required situation.
  • the DFT vector is divided into 16 parts between 0-2 ⁇
  • the number of vectors is 1 or 2
  • the corresponding pattern needs to contain a vector number of 1 or 2 all measurement regulation information.
  • the number of vectors is 1, it means that one of the 16 DFT vectors needs to be selected as the target basic vector.
  • the number of times N of transmitting pilot information (the number of measurement control information N) needs to be able to cover 136 situations.
  • Sending pilot information 8 times can meet the test requirement of obtaining the target basic vector, without sending pilot information 136 times.
  • the second communication device is required to send feedback information to the first communication device at the measurement time point of the pilot information, regardless of whether it receives a signal or not.
  • the number of bits Q of the feedback information is a positive integer greater than or equal to 2, since the feedback information can represent multiple states, fewer pilot information transmissions are required. For example, when Q is 4, the number of measurement control information is N and only needs to satisfy That’s it, and can achieve more economical pilot overhead.
  • the number of bits Q of the feedback information is 1, and the feedback information is used to represent whether pilot information is received; that is, 1 bit of information represents "yes" or "no".
  • the feedback information is multi-bit, that is, Q is a positive integer greater than or equal to 2.
  • the feedback information can be used to represent one or more of the following information: whether pilot information is received, the signal strength of the received pilot information, the received Phase of pilot information, etc.
  • the first vector The sparser (the fewer) the DFT vectors contained in , the more obvious the effect of the embodiments of the present application on improving measurement efficiency.
  • the accuracy of DFT vector division is determined. After the accuracy of DFT vector division is determined, the number of transmitted pilots depends on the first vector. The number of DFT vectors contained in .
  • the indication information can be determined to contain 1 DFT vector, 4 can be sent to the pilot information to determine the DFT vector; if the indication information can be determined to contain 2 DFT vectors, then 8 can be sent to the pilot information to determine the DFT vector.
  • the indication information can determine that the DFT vector contained is 1 (at this time, the number of paths in the corresponding physical environment is 1, for example, there is only one LOS between the first communication device and the second communication device path) when originally 2000 pieces of pilot information need to be sent, according to the method of the embodiment of the present application, 11 pieces of pilot information can be sent, which can greatly reduce pilot overhead and improve measurement efficiency.
  • the plurality of measured control information in each set of measured control parameters includes linearly merged combinations of different candidate basis vectors.
  • the embodiments of the present application precode the pilot information according to a linear combination of different candidate basis vectors that the measurement control information contains. If the first vector contains the corresponding DFT vector in the linear combination, the receiving end (Second communication equipment) should be able to measure the received power with good quality.
  • Each set of control parameters All preset patterns refer to designing linear combinations of multiple measurement control information containing different candidate basis vectors, so that the feedback information corresponding to these combinations can determine the first vector. DFT vector contained in .
  • the number of measurement control information in each measurement control parameter set is N to satisfy:
  • Q is the number of bits of feedback information of the second communication device in response to the pilot information
  • M is the number of possibilities of linear combination combinations of candidate basis vectors.
  • the method for measuring the amount of control information designed for N is as mentioned above and will not be described in detail here.
  • FIG. 4 it is a preset pattern, assuming that it is known is very sparse, and Contains only 1 DFT vector (target vector information), but the specific DFT vector (target vector information) is unknown.
  • the black square in Figure 4 indicates that the DFT vector (candidate vector information) belongs to the A linear merge combination of vectors (candidate vector information), C2 includes a linear merge combination of DFT vectors (candidate vector information) with index 1/2/4/5/7/8/11/14, C3 includes a linear merge combination with index 1/3 Linear merge combination of DFT vectors (candidate vector information) of /4/5/6/8/10/13, C4 includes the DFT vector (candidate vector information) with index 1/2/3/4/6/7/9/12 information).
  • the second communication device feedbacks whether a signal has been measured or not.
  • the first communication device will receive the measurement results of the four pilots. From the status of these four measurement results, it can be deduced. What is included is 1 DFT vector (target vector information), and determine which target vector information is included.
  • the target vector information contains DFT1
  • its receiving status is that C1, C2, C3, and C4 have all received signals, and the others are 0;
  • the receiving status is that C1, C2, and C4 receive signals, and the others are 0;
  • the receiving status is that C1, C3, and C4 receive signals, and the others are 0;
  • the receiving status is that C2, C3, and C4 receive signals, and the others are 0;
  • the receiving status is that C1, C2, and C3 receive signals, and the others are 0;
  • the receiving status is that C3 and C4 receive the signal, and the others are 0;
  • the receiving status is that C2 and C4 receive the signal, and the others are 0;
  • the receiving status is that C2 and C3 receive the signal, and the others are 0;
  • the receiving status is that C1 and C4 receive the signal, and the others are 0;
  • the receiving status is that C1 and C3 receive the signal, and the others are 0;
  • the receiving status is that C1 and C2 receive the signal, and the others are 0;
  • DFT12 When DFT12 is included, its receiving status is C4 receiving the signal, and the others are 0;
  • DFT13 When DFT13 is included, its receiving status is C3 receiving the signal, and the others are 0;
  • DFT14 When DFT14 is included, its receiving status is C2 receiving the signal, and the others are 0;
  • the receiving status is C1 receiving the signal, and the others are 0;
  • DFT16 When DFT16 is included, its receiving status is that C1, C2, C3, and C4 cannot receive signals, or the received signals are all 0.
  • the known Contains a linear combination of 2 DFT vectors (target vector information).
  • 8 measurement pilots need to be sent, for each There will be a corresponding Based on which a received power intensity value can be measured.
  • the second communication device feedbacks whether a signal has been measured or not.
  • the first communication device will receive the measurement results of 8 pilots.
  • the first communication device can infer the status of the 8 measurement results. Contained are 2 DFT vectors (target vector information).
  • the target vector information contains DFT1 and DFT2
  • its receiving status is that C1 and C2 receive the signal, and the others are 0
  • when it contains DFT1 and DFT3, its receiving status is C1 and C3 receive the signal, and the others are 0
  • the receiving status is C1, C2, and C3 receive the signal, and the others are 0
  • DFT1 and DFT4 are included, the receiving status is C1, C2, and C4.
  • the others are 0; when DFT2 and DFT4 are included, the receiving status is C2 and C4 receiving the signal, and the others are 0; when DFT1 and DFT5 are included, the receiving status is C1, C3, C4 receiving the signal, and the others are 0 ; When DFT4 and DFT5 are included, the receiving status is that C1, C2, and C5 receive the signal, and the others are 0; when DFT2 and DFT5 are included, the receiving status is that C1, C2, C3, and C5 receive the signal, and the others are 0; with And so on.
  • the first vector It may be synthesized from multiple DFT vectors, and the weight coefficient (weighting coefficient) corresponding to each DFT vector synthesis needs to be further measured. You can measure the weight coefficient after obtaining the target basis vector through the aforementioned measurement, which will be more accurate.
  • the target control information also includes weight coefficients
  • step S2300 the electromagnetic characteristics of the electromagnetic unit in the signal conditioning device are regulated according to the measurement regulation information, so that the electromagnetic unit reflects the pilot information to the second communication device to measure the target regulation information of the signal conditioning device, Also includes:
  • Step S2320 regulate the electromagnetic characteristics of the electromagnetic unit in the signal conditioning device so that the electromagnetic unit reflects the pilot information to the second communication device to measure the weight coefficient (weighted value) corresponding to the at least one target basic vector. coefficient).
  • the weighting coefficient Am can be further obtained by performing step S2320 to further calculate the first vector.
  • the first vector is calculated The steps are performed in the first communication device.
  • step S2320 is to regulate the electromagnetic characteristics of the electromagnetic unit in the signal conditioning device according to the basic vector, so that the electromagnetic unit reflects the pilot information to the second communication device to measure the weight corresponding to at least one target basic vector. coefficients, including:
  • Step S2321 Receive at least one target basic vector sent from the first communication device, and regulate the electromagnetic characteristics of the electromagnetic unit in the signal conditioning device so that the electromagnetic unit reflects the pilot information to the second communication device to measure at least one target basic vector. The corresponding weight coefficient.
  • the first communication device after the first communication device obtains the target basic vector by measuring the aforementioned method, it can send the target basic vector to the signal conditioning device, so that the signal conditioning device controls the electromagnetic energy of the electromagnetic unit in the signal conditioning device according to the target basic vector. characteristics, so that the electromagnetic unit reflects the pilot information to the second communication device.
  • the second communication device After receiving the pilot information, the second communication device sends feedback information to the first communication device, so that the first communication device measures the corresponding target basic vector. right value coefficient.
  • the feedback information should usually include more specific information, such as received signal strength information, phase information, etc.
  • the 5th DFT vector and the 10th DFT vector measured through the aforementioned method are the target basis vectors.
  • pilot information can be sent on the beams corresponding to the 5th DFT vector and the 10th DFT vector.
  • the second communication device After receiving the pilot information, the second communication device sends feedback information to the first communication device, so that the second communication device A communication device calculates the weight coefficients corresponding to the two target basis vectors based on the feedback information. For example, the signal strength of the feedback information can be used as the weight coefficient.
  • the control method provided by the embodiment of the present application obtains indication information, determines a set of measurement control parameters according to the indication information, and controls the electromagnetic characteristics of the electromagnetic unit in the signal conditioning device according to the measurement control information, so that the electromagnetic unit reflects the pilot information to
  • the second communication device is used to measure the target regulation information of the signal conditioning device.
  • Embodiments of the present application effectively improve the measurement efficiency of the control information of the signal conditioning device by regulating the electromagnetic characteristics of the electromagnetic unit in the signal conditioning device according to the instruction information.
  • This embodiment of the present application also provides an information processing method, which is applied to the second communication device.
  • the information processing method includes:
  • Step S3100 in response to the pilot information sent by the signal conditioning device, send feedback information to the first communication device to measure the target regulation information of the signal conditioning device;
  • the pilot information is sent by the signal conditioning device by executing the aforementioned control method of the signal conditioning device.
  • the signal conditioning device executes the pilot information sent from the aforementioned steps S2100 to S2300.
  • the second communication device may be a user terminal, and the user terminal may be a mobile user terminal or a non-mobile user terminal.
  • Mobile user terminals can be mobile phones, tablets, laptops, PDAs, vehicle-mounted user terminals, wearable devices, super mobile personal computers, netbooks, personal digital assistants, CPE, UFI (wireless hotspot equipment), etc.; non-mobile user terminals can be It is a personal computer, a television, a teller machine or a self-service machine, etc.; there is no specific limitation in the implementation plan of this application.
  • the first communication device transmits pilot information
  • the signal conditioning device adjusts the signal according to the control parameter set corresponding to the indication information.
  • the pilot information is reflected to the second communication device.
  • the second communication device feeds back the reception status of the pilot information to the first communication device.
  • the first communication device then calculates the corresponding target basis vector according to the preset pattern.
  • the second communication device needs to send feedback information to the second communication device regardless of whether the second communication device receives the pilot information or not.
  • step S3100 before sending feedback information to the first communication device in response to the pilot information sent by the signal conditioning device to measure the target regulation information of the signal conditioning device, also includes:
  • Step S3200 receive a mode switching instruction from the first communication device
  • Step S3300 Enter the measurement state according to the mode switching instruction.
  • the measurement state is: generating feedback information for both pilot information and sending the feedback information to the first communication device.
  • the second communication device since the second communication device needs to maintain full feedback of the pilot information during the process of measuring the target control information, increasing the resource (such as energy consumption resources, computing resources, etc.) overhead of the second communication device, therefore,
  • the feedback state of the second communication device can be switched through a mode switching instruction, that is, the measurement state is entered only after receiving the switching instruction, so as to save resource overhead of the second terminal.
  • the mode switching instruction may come from the first communication device or from other Equipment, the embodiments of this application are not limited to this.
  • step S3100 before sending feedback information to the first communication device in response to the pilot information sent by the signal conditioning device to measure the target regulation information of the signal conditioning device, also includes:
  • Step S3400 Send instruction information to the signal conditioning device so that the signal conditioning device determines the measurement control parameter set.
  • the second communication device may be used to send instruction information to the signal conditioning device, so that the signal conditioning device performs the aforementioned steps to determine the set of measurement regulation parameters.
  • the signal conditioning device executes the aforementioned step S2100 and step S2200 to determine the measurement control parameter set.
  • the information processing method provided by the embodiment of the present application measures the target regulation information of the signal conditioning device by sending feedback information to the first communication device in response to the pilot information sent by the signal conditioning device in the measurement state; wherein, the pilot The information is sent by the signal conditioning device by executing the control method of the signal conditioning device as described above.
  • Embodiments of the present application effectively improve the measurement efficiency of the control information of the signal conditioning device by regulating the electromagnetic characteristics of the electromagnetic unit in the signal conditioning device according to the instruction information.
  • This embodiment of the present application also provides an information processing method, which is applied to the first communication device.
  • the method includes:
  • Step S4100 Send pilot information so that the signal conditioning device reflects the pilot information to the second communication device by executing the aforementioned control method of the signal conditioning device; for example, the signal conditioning device reflects the pilot information by executing the aforementioned step S2100 to step S2300. information to a second communications device;
  • Step S4200 obtain feedback information from the second communication device
  • Step S4300 Calculate target control information based on the feedback information, the measurement control parameter set, and the setting pattern of the measurement control parameter set.
  • the first communication device may be a base station or other device with network service functions, which is not limited in the embodiments of the present application.
  • a base station is an interface device for mobile devices to access the Internet, and is also a form of radio station. It refers to the connection between mobile phone terminals and mobile phone terminals through a mobile communication switching center in a certain radio coverage area.
  • a radio transceiver station that transmits information between stations.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNodeB evolutionary base station
  • 5G base station a base station or a base station corresponding to the subsequently evolved network.
  • the first communication device transmits pilot information
  • the signal conditioning device adjusts the signal according to the control parameter set corresponding to the indication information.
  • the pilot information is reflected to the second communication device.
  • the second communication device responds to the pilot information and feeds back the reception status of the pilot information to the first communication device through feedback information.
  • the first communication device then calculates the corresponding value according to the preset pattern.
  • the corresponding target basis vector At the time point when the pilot information is sent, the second communication device needs to send feedback information to the second communication device regardless of whether the second communication device receives the pilot information or not.
  • the first communication device needs to know the measurement control parameter set and the setting pattern of the measurement control parameter set in order to calculate the target control information based on the feedback information received from the second communication device.
  • the setting pattern of the measurement control parameter set can be generated according to the pattern design method described in the control method of the signal conditioning device, that is, each control parameter set They are all preset patterns, corresponding to certain test models.
  • the design of the pattern can be designed according to the resolution corresponding to the required situation, and will not be described in detail here.
  • the set of measured regulation parameters is sent by the first communication device to the signal conditioning device to be stored in the signal in the adjustment device.
  • the target control information includes a target basis vector; the plurality of measurement control information in the measurement control parameter set include different candidate basis vectors or different candidate basis vector combinations;
  • the target control information is calculated, including:
  • Step S4310 Determine at least one target basis vector among multiple candidate basis vectors based on the feedback information, the measurement control parameter set, and the setting pattern of the measurement control parameter set.
  • the first vector can be Set to a linear combination of DFT vectors (or the Kronecker product form of multiple DFT vectors), taking the DFT vector as an example, the first vector It can be expressed as:
  • a m is a preset weighting coefficient
  • X t is a preset set
  • a m and X t can be used for each Set separately for joint measurement feedback.
  • the first communication device can obtain the Information.
  • the signal conditioning device performs the aforementioned steps S1100 to S1300 to measure the second communication device by reflecting the pilot information, even if Containing only one DFT vector component, there will also be multiple measurement results among the multiple pilot information measurement results that can measure the received power that is not weak.
  • the second communication device returns feedback information at the corresponding time point when the pilot information is sent. to the first communication device. That is, the embodiment of this application precodes the pilot information according to the measurement control parameter set. If the first vector contains the corresponding DFT vector in the measurement control parameter set, the receiving end (second communication device) should be able to detect that the quality is good.
  • the received power of Determine at least one target basis vector in .
  • step S4100 before sending pilot information, also includes:
  • Step S4400 Send instruction information to the signal conditioning device so that the signal conditioning device determines the measurement control parameter set.
  • the first communication device may be used to send instruction information to the signal conditioning device, so that the signal conditioning device performs the aforementioned steps to determine the set of measurement regulation parameters.
  • the signal conditioning device executes the aforementioned step S2100 and step S2200 to determine the measurement control parameter set.
  • the target control information also includes weight coefficients
  • the target control information is calculated based on the feedback information, the measurement control parameter set and the setting pattern of the measurement control parameter set, which also includes:
  • Step S4311 send pilot information so that the signal conditioning device regulates the electromagnetic characteristics of the electromagnetic unit in the signal conditioning device according to at least one target basic vector and reflects the pilot information to the second communication device;
  • Step S4312 receive feedback information from the terminal
  • Step S4313 Calculate the weight coefficient corresponding to at least one target basis vector according to the feedback information.
  • step S4311 is to send pilot information so that the signal conditioning device regulates the electromagnetic characteristics of the electromagnetic unit in the signal conditioning device according to at least one target basis vector and reflects the pilot information to the second communication device.
  • Step S4314 Send at least one target basis vector to the signal conditioning device.
  • the first communication device after the first communication device obtains the target basic vector by measuring the aforementioned method, it can send the target basic vector to the signal conditioning device, so that the signal conditioning device controls the electromagnetic energy of the electromagnetic unit in the signal conditioning device according to the target basic vector. characteristics, so that the electromagnetic unit reflects the pilot information to the second communication device. After receiving the pilot information, the second communication device sends feedback information to the first communication device, so that the first communication device measures the corresponding target basic vector. weight coefficient. It should be noted that during the process of measuring the weight coefficient, the feedback information should usually include more specific information, such as received signal strength information, phase information, etc.
  • the first communication device can send the two target basis vectors to the signal conditioning device.
  • the first communication device sends pilot information
  • the signal conditioning device can regulate the electromagnetic characteristics of the electromagnetic unit in the signal conditioning device according to the target basic vector, and reflect the pilot information to the second communication device to achieve the fifth DFT vector. Pilot information is sent on the beam corresponding to the 10th DFT vector.
  • the second communication device After receiving the pilot information, the second communication device sends feedback information to the first communication device, so that the first communication device calculates weight coefficients corresponding to the two target basis vectors based on the feedback information. For example, the signal strength of the feedback information can be used as the weight coefficient.
  • the first vector It may be synthesized from multiple DFT vectors, and the weight coefficient (weighting coefficient) corresponding to each DFT vector synthesis needs to be further measured. You can measure the weight coefficient after obtaining the target basic vector through the aforementioned measurement, which will be more accurate.
  • the weighting coefficient Am can be further obtained by performing steps S4311 to 4313 to further calculate the first vector.
  • the first vector is calculated The steps are performed in the first communication device.
  • the information processing method provided by the embodiment of the present application causes the signal conditioning device to reflect the pilot information to the second communication device by executing the control method of the signal conditioning device as described above by sending pilot information; and obtains feedback information from the second communication device. ; Calculate the target control information based on the feedback information, the measurement control parameter set and the setting pattern of the measurement control parameter set.
  • Embodiments of the present application effectively improve the measurement efficiency of the control information of the signal conditioning device by regulating the electromagnetic characteristics of the electromagnetic unit in the signal conditioning device according to the instruction information.
  • inventions of the present application also provide an information processing method applied to a communication system.
  • the communication system includes a first communication device, a signal conditioning device and a second communication device.
  • the method includes:
  • the first communication device executes the aforementioned information processing method applied to the first communication device
  • the signal conditioning device executes the aforementioned control method of the signal conditioning device
  • the second communication device executes the aforementioned information processing method applied to the second communication device.
  • the first communication device may be a base station
  • the signal conditioning device may be a smart panel
  • the second communication device may be a user terminal.
  • the communication system structure diagram is shown in Figure 1 .
  • the measurement process of the communication system is: the first communication device performs the aforementioned steps. S4400, send the instruction information to the signal conditioning device, so that the signal conditioning device performs the aforementioned steps S2100 and S2200 to obtain the instruction information, and determines the measurement control parameter set according to the instruction information; the first communication device executes the aforementioned step S4100, sends the instruction frequency information to the signal conditioning device, so that the signal conditioning device performs the aforementioned step S2300, and regulates the electromagnetic characteristics of the electromagnetic unit of the signal conditioning device according to the measurement control information, so that the electromagnetic unit reflects the pilot information to the second communication device; during measurement In this state, the second communication device executes the aforementioned step S3100, responds to the pilot information sent by the signal conditioning device, and sends feedback information to the first communication device; the first communication device executes the aforementioned step S4200 and step S4300, and obtains feedback information from the second communication device. feedback information, and calculate the target control information based on
  • Embodiments of the present application effectively improve the measurement efficiency of the control information of the signal conditioning device by regulating the electromagnetic characteristics of the electromagnetic unit in the signal conditioning device according to the instruction information.
  • an embodiment of the present application also provides a signal conditioning device, including: a first memory, a first processor, and a computer program stored in the first memory and executable on the first processor.
  • a processor implements the aforementioned control method when executing the computer program.
  • the first processor and the first memory may be connected through a bus or other means.
  • the first memory as a non-transitory computer-readable storage medium, can be used to store non-transitory software programs and non-transitory computer executable programs.
  • the first memory may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid-state storage device.
  • the first memory may include memory located remotely relative to the first processor, and the remote memory may be connected to the first processor through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • the signal conditioning device in this embodiment can be applied to, for example, the smart panel 120 in the embodiment shown in Figure 1
  • the communication device in this embodiment can constitute, for example, the system architecture in the embodiment shown in Figure 1
  • the non-transient software programs and instructions required to implement the information processing method of the above embodiment are stored in the memory.
  • the control method in the above embodiment is executed, for example, the method in Figure 3 described above is executed. Step S2100 to step S2300.
  • an embodiment of the present application also provides a communication device, including: a second memory, a second processor, and a computer program stored in the second memory and executable on the processor, the second processor When executing said computer program achieves:
  • the information processing method for the second communication device is as described above.
  • the second processor and the second memory may be connected through a bus or other means.
  • the second memory as a non-transitory computer-readable storage medium, can be used to store non-transitory software programs and non-transitory computer executable programs.
  • the second memory may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid-state storage device.
  • the second memory may include memory located remotely relative to the second processor, and the remote memory may be connected to the second processor through a network. Examples of the above networks include, but are not limited to, the Internet, corporate intranets, local area networks, Mobile communication networks and combinations thereof.
  • the communication device in this embodiment can be applied as a first communication device or a second communication device.
  • the communication device When the communication device is applied as the first communication device, it may be the base station 110 in the embodiment shown in Figure 1; when the communication device is applied as the second communication device, it may be the user terminal 130 in the embodiment shown in Figure 1. That is to say, the communication device in this embodiment can form part of the system architecture in the embodiment shown in Figure 1.
  • the non-transitory software programs and instructions required to implement the information processing methods of the above embodiments are stored in the memory.
  • the information processing methods in the above embodiments are executed, for example, executing the above described FIG. 6 Method step S3100, method steps S3200 to S3100 in Figure 7, method steps S3400 to S3100 in Figure 8, and method steps S4100 to S4300 in Figure 9.
  • the communication device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separate, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • an embodiment of the present application also provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are executed by a processor or controller, for example, by the above-mentioned Execution by a processor in the communication device embodiment can cause the above-mentioned processor to execute the control method in the above-mentioned embodiment, for example, execute the above-described method steps S2100 to step S2300 in Figure 3; or, execute the above-mentioned embodiment.
  • the information processing method for example, executes the above-described method step S3100 in Figure 6, method steps S3200 to S3100 in Figure 7, method steps S3400 to S3100 in Figure 8, and method steps S4100 to S4300 in Figure 9.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disk (DVD) or other optical disk storage, magnetic cassettes, tapes, disk storage or other magnetic storage devices, or may Any other medium used to store the desired information and that can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Stereo-Broadcasting Methods (AREA)

Abstract

本申请实施例提供了一种调控方法、信息处理方法、信号调节装置、设备及介质,涉及通信技术领域。信号调节装置的调控方法通过获取指示信息,根据所述指示信息,确定测量调控参数集合,所述测量调控参数集合包括多个信号调节装置的测量调控信息,根据所述测量调控信息,调控所述信号调节装置中的电磁单元的电磁特性,以使所述电磁单元反射导频信息到第二通信设备,以测量所述信号调节装置的目标调控信息。

Description

调控方法、信息处理方法、信号调节装置、设备及介质
相关申请的交叉引用
本申请基于申请号为202210453625.8、申请日为2022年04月27日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信技术领域,尤其是一种调控方法、信息处理方法、信号调节装置、设备及介质。
背景技术
信号调节装置为表面电磁活跃的无线环境,该无线环境的每个部分都可以发射和接收电磁场,如果能够智能地控制这些电磁场,就有可能将能量集中在三维空间中进行传输和接收,提高能力效率并减小干扰。例如,信号调节装置可以是智能面板(Intelligent Surface)。
在相关技术中,若想要有效改变信号调节装置每个部分的电磁特性,需要准确获取第一通信设备与信号调节装置之间的信道信息以及信号调节装置与第二通信设备之间的信道信息,如通过导频反馈方式测量信道信息以得到调控信息,测量效率较低。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了一种调控方法、信息处理方法、信号调节装置、设备及介质,能够有效提高信号调节装置的调控信息的测量效率。
第一方面,本申请实施例提供了一种信号调节装置的调控方法,包括:获取指示信息;根据所述指示信息,确定测量调控参数集合,其中,所述测量调控参数集合包括多个信号调节装置的测量调控信息;根据所述测量调控信息,调控所述信号调节装置中的电磁单元的电磁特性,以使所述电磁单元反射导频信息到第二通信设备,以测量所述信号调节装置的目标调控信息。
第二方面,本申请实施例还提供了一种信息处理方法,应用于第二通信设备,所述方法包括:响应于信号调节装置发送的导频信息,发送反馈信息到第一通信设备,以测量信号调节装置的目标调控信息;其中,所述导频信息是信号调节装置通过执行如第一方面所述的信号调节装置的调控方法发送的。
第三方面,本申请实施例还提供了一种信息处理方法,应用于第一通信设备,所述方法包括:发送导频信息,使得所述信号调节装置通过执行如第一方面所述的信号调节装置的调控方法反射所述导频信息到第二通信设备;获取来自第二通信设备的反馈信息;根据所述反馈信息、测量调控参数集合及所述测量调控参数集合的设置图样,计算得到目标调控信息。
第四方面,本申请实施例还提供了一种信息处理方法,应用于通信***,所述通信***包括第一通信设备、信号调节装置和第二通信设备,所述方法包括:所述第一通信设备执行如第三方面所述的信息处理方法;所述信号调节装置执行如第一方面所述的信号调节装置的调控方法;所述第二通信设备执行如第二方面所述的信息处理方法。
第五方面,本申请实施例还提供了一种信息处理方法,应用于第一通信设备,所述方法 包括:确定至少一个目标基础矢量,其中,所述目标基础矢量为第一信道信息和第二信道信息经过第一预设函数处理得到的信息,用于表征所述第一信道信息和所述第二信道信息之间的差异;所述第一信道为所述第一通信设备和信号调节装置之间的信道,所述第二信道为所述信号调节装置和第二通信设备之间的信道;对所述目标基础矢量经过第二预设函数处理,得到目标调控信息。
第六方面,本申请实施例还提供了一种信号调节装置,包括:第一存储器、第一处理器及存储在第一存储器上并可在第一处理器上运行的计算机程序,所述第一处理器执行所述计算机程序时实现如第一方面所述的调控方法。
第七方面,本申请实施例还提供了一种通信设备,包括:第二存储器、第二处理器及存储在第二存储器上并可在处理器上运行的计算机程序,所述第二处理器执行所述计算机程序时实现:如第二方面所述的信息处理方法;或者,如第三方面所述的信息处理方法。
第八方面,本申请实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行:如第一方面所述的信号调节装置的调控方法;或者,如第二方面或第三方面所述的信息处理方法。
本申请实施例第一方面提供的调控方法,通过获取指示信息,根据所述指示信息,确定测量调控参数集合,根据所述测量调控信息,调控所述信号调节装置中的电磁单元的电磁特性,以使所述电磁单元反射导频信息到第二通信设备,以测量所述信号调节装置的目标调控信息。本申请实施例通过根据指示信息调控信号调节装置中的电磁单元的电磁特性,有效提高了信号调节装置的调控信息的测量效率。
可以理解的是,上述第二方面至第八方面与相关技术相比存在的有益效果与上述第一方面与相关技术相比存在的有益效果相同,可以参见上述第一方面中的相关描述,在此不再赘述。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是本申请一个实施例提供的用于执行信息处理方法的***架构的示意图;
图2是本申请一个实施例提供的第一通信设备侧的信息处理方法的流程图;
图3是本申请一个实施例提供的智能面板侧的调控方法的流程图;
图4是本申请一个实施例提供的调控方法中4个导频的设置图样示意图;
图5是本申请一个实施例提供的调控方法中8个导频的设置图样示意图;
图6是本申请一个实施例提供的第二通信设备侧的信息处理方法的流程图;
图7是本申请另一个实施例提供的第二通信设备侧的信息处理方法的流程图;
图8是本申请另一个实施例提供的第二通信设备侧的信息处理方法的流程图;
图9是本申请一个实施例提供的第一通信设备侧的信息处理方法的流程图;
图10是本申请另一个实施例提供的第一通信设备侧的信息处理方法的流程图;
图11是本申请一个实施例提供的通信***的信息处理方法的流程图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
信号调节装置为表面电磁活跃的无线环境,该无线环境的每个部分都可以发射和接收电磁场,如果能够智能地控制这些电磁场,就有可能将能量集中在三维空间中进行传输和接收,提高能力效率并减小干扰。
以智能面板(Intelligent Surface)为例,智能面板又称为智能表面、可配置电磁表面(Reconfigurable Intelligent Surface,RIS)等,通过改变面板中的阵子(Intelligent Surface Element),或者称为可调控电磁单元的电磁特性,可以产生可调的辐射电场,获取所期望的辐射特性,从而能够在发射信号或者反射信号时,实现大规模多进多出(Multiple-In Multiple-Out,MIMO)的波束赋形效果。信号调节装置可以应用于无线通信、无线充电和遥感等不同场景,使得物理环境能够变得“智能”和交互式。理论上可以调控改变的电磁特性包括:相位特征Phase,幅度特征Amplitude,频率特性Frequency,极化特性Polarization,角动量Angular Momentum等等。因为智能面板具备了改变电磁特性的能力,电磁波能够根据我们期望的方式进行控制。
信号调节装置的主要应用是利用其反射效果辅助通信,改善覆盖或增加传输层数,其模型如图1所示。在相关技术中,若想要有效改变信号调节装置每个部分的电磁特性,需要准确获取基站与智能面板之间的信道信息以及智能面板与移动终端之间的信道信息,但是,由于信号调节装置的低成本要求,往往无法通过信号调节装置进行信道测量以得到对应的调控信息,如通过导频反馈测量,测量效率较低。
基于此,本申请实施例第一方面提供的调控方法、信息处理方法、信号调节装置、设备及介质,通过获取指示信息,根据指示信息,确定测量调控参数集合,根据测量调控信息,调控信号调节装置中的电磁单元的电磁特性,以使电磁单元反射导频信息到第二通信设备,以测量信号调节装置的目标调控信息。本申请实施例通过根据指示信息调控信号调节装置中的电磁单元的电磁特性,有效提高了信号调节装置的调控信息的测量效率。
下面结合附图,对本申请实施例作进一步阐述。仅以信号调节装置为智能面板、第一通信设备为基站、第二通信设备为用户终端为例进行说明。
如图1所示,图1是本申请一个实施例提供的用于执行的信息处理方法的***架构平台100的示意图。
在图1的示例中,该***架构平台100包括基站110、智能面板120和用户终端130,智能面板120设置有多个电磁单元121和控制器(图中未展示),基站110可以与用户终端130通信连接,基站110也可以通过智能面板120的控制器与用户终端130进行通信连接,智能面板120的控制器也可以与基站进行通信连接,控制器用于接收基站的指令信息对电磁单元进行调整,本实施例的技术方案主要解决基站110通过智能面板120与用户终端130进行通信连接的结构所存在的问题。
需要说明的是,智能面板120可以是可配置电磁表面(Reconfigurable Intelligent Surface,RIS),能够实现无线通信、无线充电和遥感,使得物理环境变得“智能”和交互式。一方面,智能面板120可以智能控制信道环境,提供更大的传输容量、更高的无线充电的效率,以及更强的鲁棒性。另外一方面,智能面板120可以支持超大规模终端的接入。本实施例中的智能面板120可以拓展到物理上的表面电磁活跃的无线环境,该无线环境的每个部分都可以发射和接收电磁场,如果能够智能地控制这些电磁场,就有可能将能量集中在三维空间中进行传输和接收,提高能力效率并减小干扰。因此这些表面将带来全新的电磁环境通信、传感和控制能力;智能面板可以用在很多方面,包括解决高频非视距传输问题、解决覆盖空洞、减小电磁污染,无源的万物互联,低成本的大规模收发,以及增加信道的空间自由度。
其中,智能面板120的基本原理是,通过改变智能面板阵子,或者可调控电磁单元的电磁特性,产生可调的辐射电场,获取需要的辐射特性,在发射或者反射时,实现大规模多进多出(Multiple Input Multiple Output,MIMO)的波束赋形效果。理论上可以调控改变的电磁特性包括但不限于:相位特征、幅度特征、频率特性、极化特性和角动量。因为智能面板具备改变电磁特性的能力,使得电磁波能够根据用户期望的方式进行控制、具有非常广泛的应用前景。
需要说明的是,设置在智能面板120的电磁单元121的数量以及排列形式可以根据实际情况设置,本实施例对其不作具体限定。
本领域技术人员可以理解的是,基站110,是移动设备接入互联网的接口设备,也是无线电台站的一种形式,是指在一定的无线电覆盖区中,通过移动通信交换中心,与移动电话终端之间进行信息传递的无线电收发信电台。例如,可以是GSM***或CDMA中的基站(Base Transceiver Station,简称为“BTS”),可以是WCDMA***中的基站(NodeB,NB),可以是LTE***中的演进型基站(Evolutional Node B,eNodeB),可以是5G基站,还可以是后续演进的网络对应的基站。
本领域技术人员可以理解的是,用户终端130,也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的用户终端130可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)用户终端、增强现实(Augmented Reality,AR)用户终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
本领域技术人员可以理解的是,该***架构平台可以应用于2G、3G、4G、5G、6G通信网络***以及后续演进的移动通信网络***等,本实施例对此并不作具体限定。
本领域技术人员可以理解的是,图1中示出的***架构平台并不构成对本申请实施例的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
基于上述***架构平台,下面对本申请的信息处理方法、调控方法的各个实施例进行详细描述。
在一些实施例中,参照图1,对于有视距无线传输(Line of Sight,LOS)径的场景,第k个用户终端(User Equipment,简称UE,可作为下文的第二通信设备)的接收信号和K个用 户终端的接收信号分别可以建模为:
第k个用户终端的接收信号:
对于无LOS径的场景,第k个用户终端的接收信号和K个用户终端的接收信号分别可以建模为:
第k个用户终端的接收信号:
上述两个公式中的各个参数的定义如下表一所示:
表一
智能面板的每个电磁单元可以对经其反射的信号加上一个可配置的相位调整因子:由于此相位调整因子可配置,能够对智能面板所接收的信号的相位进行调整处理,从而形成面向目标用户的波束方向。另外,也可以根据智能面板的能力对相位调整因子调整为
需要说明的是,当需要对电磁单元的相位进行调整时,Φ为目标调控信息,Φ为与电磁单元维度相关的对角矩阵,对随电磁单元变化的角线元素不相等。智能面板有N个电磁单元,那么目标调控信息Φ的应该是具有N*N个元素的对角矩阵。举例来说,对于电磁单元维度为16*16的智能面板,共有256个电磁单元,目标调控信息Φ可以为256*256对角矩阵。
需要说明的是,根据智能面板能力,智能面板可以包括幅度调整部分和相位调整部分,或者只包含相位调整部分。Φ的维度可以为N×N,可以为N×nt,也可以为nt×r。
如果能获取准确的第一信道信息H1和第二信道信息h2,k,可以获得目标调控信息Φ,从 而针对性地控制数据传输,能够产生一个功率较强的反射路径信号,从而实现解决高频非视距传输问题、解决覆盖空洞问题、减小电磁污染,以及无源的万物互联、低成本的大规模收发、增加信道的空间自由度等效果。获取准确的智能反射面相关的信道信息是非常关键的,但在实际中,由于智能面板的低成本要求,在智能面板上无法设置信道测量器件,使得智能面板无法准确的获取信道信息,不能充分发挥其性能。
参照图2,在一些实施例中,本申请提供一种信息处理方法,应用于第一通信设备,方法包括:
步骤S1100,确定至少一个目标基础矢量,其中,目标基础矢量为第一信道信息和第二信道信息经过第一预设函数处理得到的信息,用于表征第一信道信息和第二信道信息之间的差异;第一信道为第一通信设备和信号调节装置之间的信道,第二信道为信号调节装置和第二通信设备之间的信道;
步骤S1200,对目标基础矢量经过第二预设函数处理,得到目标调控信息。
基于前述介绍可以看出,如果获取准确的h2,k,H1,可以根据h2,k,H1确定智能面板上的相位调节矩阵Φ,相关技术的方法是分别测量h2,k,H1,然后基于其计算出最佳的目标调控信息Φ。在本申请一些实施例中,可以对第一信道信息和第二信道信息经过第一预设函数处理得到目标基础矢量,然后通过执行步骤S1200对目标基础矢量经过第二预设函数处理,得到目标调控信息。从而将分别测量h2,k,H1的技术问题转化为测量目标基础矢量的技术问题,由于不需要执行相关技术中的获取第一通信设备与智能面板之间的信道信息以及获取智能面板与第二通信设备之间的信道信息的操作,因此能够避免由于智能面板的低成本要求而导致的无法通过智能面板进行信道信息的测量的问题,从而可以充分发挥智能面板的性能。
在一些实施例,步骤S1100中,确定至少一个目标基础矢量,其中,目标基础矢量为第一信道信息和第二信道信息经过第一预设函数处理得到的信息,用于表征第一信道信息和第二信道信息之间的差异,包括:
步骤S1110,对第一信道进行左奇异矢量变换得到左奇异矢量信息;
步骤S1120,对第二信道进行右奇异矢量变换得到右奇异矢量信息;
步骤S1130,构建用于表征左奇异矢量信息和右奇异矢量信息之间的差异信息的第一矢量函数;
步骤S1140,将第一矢量函数对应的DFT矢量作为目标基础矢量。
在一些实施例中,第一预设函数可以是进行奇异向量处理的相关函数,例如,对第一信道信息和第二信道信息经过第一预设函数处理,可以是利用步骤S1110至步骤S1140对第一信道信息和第二信道信息进行处理。
在一些实施例中,第一通信设备可以与第二通信设备进行信息交互,以根据第二通信设备的反馈信息获取目标基础矢量以计算第一矢量,其中,第一矢量用于表征第一信道的左奇异矢量信息和第二信道的右奇异矢量信息之间的差异信息,第一信道为第一通信设备和智能面板之间的信道,第二信道为智能面板和第二通信设备之间的信道。具体地,第一通信设备能够与第二通信设备进行信息交互,可以主动向第二通信设备发送信息,也可以被动接收来自第二通信设备处所发送的信息,还可以主要要求第二通信设备发送所需要的信息,如本实施例中,第一通信设备可以获取来自第二通信设备所发送的反馈信息获取目标基础矢量以计算第一矢量,其中,第一矢量用于表征第一信道的左奇异矢量信息和第二信道的右奇异矢量 信息之间的差异信息,其中,第一信道为第一通信设备和智能面板之间的信道,第二信道为智能面板和第二通信设备之间的信道,差异信息用于计算目标调控信息。
在一些实施例,步骤S1200中,对目标基础矢量经过第二预设函数处理,得到目标调控信息,包括:
步骤S1210,获取目标基础矢量对应的权值系数;
步骤S1220,根据目标基础矢量、权值系数和第一矢量函数,计算得到第一矢量;
步骤S1230,对第一矢量进行对角化处理得到目标调控信息。
在一些实施例中,第一通信设备可以利用从第二通信设备所获取的反馈信息测量得到目标基础矢量,以计算得到目标调控信息。可以理解的是,目标调控信息可以用于指示智能面板对所接收的信息的相位进行调整处理,或者可以用于指示智能面板对所接收的信息的幅度进行调整处理,或者可以用于指示智能面板对所接收的信息的频率进行调整处理,或者还可以用于指示智能面板对所接收的信息的极化进行调整处理,本实施例对目标调控信息不作具体限定。
在一些实施例中,第一通信设备可以向智能面板发送目标调控信息,使得智能面板根据目标调控信息对智能面板中的电磁单元进行调整。具体地,第一通信设备可以将根据目标基础矢量所得到目标调控信息向智能面板进行发送,以使智能面板根据该目标调控信息对智能面板中的电磁单元进行调整,由于本方案的实施例通过获取能够表征第一通信设备与智能面板之间的信道信息以及智能面板与第二通信设备之间的信道信息的差异信息的第一矢量,然后根据该第一矢量得到能够对智能面板中的电磁单元进行调整的目标调控信息,不需要执行相关技术中的获取第一通信设备与智能面板之间的信道信息以及获取智能面板与第二通信设备之间的信道信息的操作,因此能够避免由于智能面板的低成本要求而导致的无法通过智能面板进行信道信息的测量的问题,从而可以充分发挥智能面板的性能。
需要说明的是,智能面板根据目标调控信息对智能面板中的电磁单元的相位特征、幅度特征、频率特性、极化特性以及角动量等等电磁特性进行调整。
下面以一示例对步骤S1100和步骤S1200的处理过程进行详细说明。
在一些实施例中,可无需测量准确h2,k,H1,而是测量的第一信道的左奇异矢量信息和第二信道的右奇异矢量信息之间的差异信息,再通过差异信息计算得到目标调控信息。
在一些实施例中,可以对第二信道信息h2,k和第一信道信息H1分别进行奇异值分解,即有:

其中,v2,k为第二信道的右奇异矢量信息,u1为第一信道的左奇异矢量信息。
然后通过在一个测量调控参数集合中选择合适的目标调控信息Φ,智能面板根据目标调控信息Φ对电磁单元的相位进行调整可以最小化v2,k和u1两者的距离,从而可以使得智能面板的传输性能最佳。可以通过数学形式对选择合适的目标调控信息Φ的方法进行如下表示:
其中distance表示的是距离函数,其可以采用的数学中的多种距离定义,例如弦距离chord distance。
需要说明的是,第一预设函数可以是包含上述公式(1)、(2)和(3)的函数组;v2,k,u1可以是矢量;也可以是多个矢量张成的子空间(矩阵),本实施例对其不作具体限定。
需要说明的是,对于第一信道信息H1,可以通过第一通信设备(如基站)设置合适的预编码,以将公式(2)中的变成标量(如1),因此对于第一信道信息H1仅需考虑左奇异矢量信息u1
在一些实施例中,本申请的设计思路是找到一个合适的目标调控信息Φ,使得第二信道信息h2,k的右奇异矢量v2,k,与第一信道信息H1的左奇异矢量u1相适配。原理上,如果我把Φ乘以第一信道信息H1看成是一个整体的话,这个整体越接近v2,k越好。那也就是说,如果我把H1分解之后,然后再在它的左边再乘以Φ,所以技术问题就可以转化成寻找一个比较合适的目标调控信息Φ,可以使v2,k和u1的距离尽可能的最小。因此,本申请实施例想要寻找一个比较合适的目标调控信息Φ,对于两段信道(第一信道和第二信道),本申请实施例不用把两段的信道都测出来,而是转换为要测出把v2,k和u1的差异信息,因为v2,k是u1旋转后要尽量靠近的一个目标(因为u1与目标调控信息Φ的乘积,其实就是对u1做了一个旋转)。
因此本技术方案的信息处理方法无需获取准确的h2,k,H1,只需获取v2,k和u1的差异信息,可以确定较佳的目标调控信息Φ,从而使得智能面板能够达到较佳的传输性能。
接下来说明如何获取v2,k和u1的差异信息。在一些实施例中,对于第二信道信息h2,k的右奇异矢量v2,k和第一信道信息H1的左奇异矢量u1,在数学上转换成目标基础矢量的加权的合并;在物理上,第二信道信息h2,k的右奇异矢量v2,k和第一信道信息H1的左奇异矢量u1实际是第一信道和第二信道形成的一条或多条路径的叠加。即目标基础矢量的数量与第一信道和第二信道形成的路径数量相关。
在一些实施例中,可对第一预设函数的处理过程进行进一步推导以及详细说明:
首先,根据无线信道的特征和天线的拓扑结构,把v2,k和u1分别进行分解处理,能够得到v2,k和u1的累加形式,如下公式所示:

其中,(:,l)表示第l列,为基础矢量,需要说明的是,基础矢量可以是DFT矢量或者可以是DFT矢量的克罗内克积(Kronecker product)形式,本实施例对其不作具体限定。例如:线性阵列的电磁单元可以选取DFT矢量作为基础矢量;又例如:矩形的面阵可以选择DFT矢量的克罗内克积形式作为基础矢量。公式中为复数形式的加权系数。
接着,反射面板上的相位调节矩阵可以描述为以下形式:
从相位调节矩阵的公式可以发现,相位调节矩阵(目标调节信息)Φ可以表示成v2,k(:,l),u1(:,l)的哈达玛积(hardamad product)构造的矢量的对角化形式。表示哈达玛积运算,diag表示对N维的矢量进行对角化处理得到一个对角矩阵,其对角线元素为该矢量中的元素。
可以定义矢量然后通过上述分析可以推导得到第一矢量C:
即通过执行步骤S1130,构建用于表征左奇异矢量信息和右奇异矢量信息之间的差异信息的第一矢量函数,在一些实施方式中,公式(7)即为第一矢量函数。
对上述公式进行分析可以发现,目标调节信息Φ可以表示成第一矢量C的对角化,第一矢量C可以表示为的线性合并形式。其中需要说明的是,如果为DFT矢量或DFT矢量的克罗内克积,那么也为DFT矢量或DFT矢量的克罗内克积。v2,k和u1的差异信息可以表示成的线性合并形式,即当需要反馈v2,k和u1的差异信息时,可以转化为反馈及其线性合并的加权系数信息。因此,可以通过执行步骤S1140,将第一矢量函数对应的DFT矢量作为目标基础矢量,并通过执行步骤S1200,对目标基础矢量经过第二预设函数(第二预设函数可以是根据上述公式(6)得到的对应关系函数)处理,得到目标调控信息Φ。
例如,在一些实施例中,本申请提出的方法,可以将第一矢量设置成DFT矢量(或者多个DFT矢量的克罗内克积形式)的线性合并,以DFT矢量为例,第一矢量可以表示为:
其中Am为预设的加权系数,Xt为一个预设的集合,Am和Xt可以针对每个分别设置,进行联合的测量反馈。需要说明的是,对于不同的t,Xt存在交集。
即在本方案的实施例中,第一通信设备可以获取来自第二通信设备所发送的反馈信息,以得到第一矢量,该第一矢量用于表征第一信道的左奇异矢量信息和第二信道的右奇异矢量信息之间的差异信息,其中,第一信道为第一通信设备和智能面板之间的信道,第二信道为智能面板和第二通信设备之间的信道,然后第一通信设备可以利用第一矢量计算得到目标调控信息,再将目标调控信息向智能面板进行发送,以使智能面板根据该目标调控信息对智能面板中的电磁单元进行调整,由于本方案的实施例通过获取反馈信息,并利用计算能够表征 第一通信设备与智能面板之间的信道信息以及智能面板与第二通信设备之间的信道信息的差异信息的第一矢量,然后根据该第一矢量得到能够对智能面板中的电磁单元进行调整的目标调控信息,不需要执行相关技术中的获取第一通信设备与智能面板之间的信道信息以及获取智能面板与第二通信设备之间的信道信息的操作,因此能够避免由于智能面板的低成本要求而导致的无法通过智能面板进行信道信息的测量的问题,从而可以充分发挥智能面板的性能。
为了得到第一矢量C,需要通过导频测量以得到接下来说明如何测量反馈信息,以得到
如直接发送导频信息测量会导致导频资源开销大(第一通信设备需要发送大量的导频信息),测量效率低的问题。
例如,可设置T个相位调节矩阵(候选调控信息)并将构成一个集合其中,均是由N个矢量(包含候选基础矢量)进行对角化处理所得到。需要说明的是,T和N的数值可以根据应用场景需要进行预设定,本实施例对其不作具体限定。
然后,将构成的一个集合ξrs,其中ξrs由一组完备的DFT矢量或者其克罗内克积构造的矢量组成。
为了从集合中选择出合适的第一矢量,则需要T个导频资源,而每个导频资源采用一种智能面板上的相位调节矩阵,相位调节矩阵分别为接着基于T个导频资源进行测量和反馈,从而选择合适的
即在相关方法中,需要第一通信设备向第二通信设备发送T次导频,然后获取T个导频资源的反馈信息才能够测量出信息。
需要说明的是,中包含的DFT矢量是指矢量中元素模值相同,而且相邻元素的相位差为固定值的一类矢量。例如可以定义DFT矢量为:
需要说明的是,相邻的元素相位都相差一个固定值。
需要说明的是,在公式(9)中,N是DFT矢量的维度,O为过采样因子,例如:当把0至2π分成N份时,过采样因子为1,当把0至2π分成O*N份时,过采样因子为O;M为DFT矢量的索引,表示第m个DFT矢量。那么两个DFT矢量的克罗内克积形式可以表示为:
需要说明的是,DFT矢量的相位变化梯度的取值范围为0至2π,指定一个DFT矢量的维度和相位变化梯度可以确定一个DFT矢量。
需要说明的是,完备DFT矢量集合指的是m的取值为0至(O*N-1);还可以推广到m1和m2的取值情形,即T=O*N,或者是T=O1*O2*N1*N2。
需要说明的是,DFT矢量的相位取值在0~2π之间,是一个有限的集合,DFT矢量的相位取值与电磁单元的方向相关。在一些实施例中,DFT矢量的相位取值在0~2π之间分成多少份取决于***要求的精度。理论上,DFT矢量的相位取值在0~2π之间可以分成无穷多份,此时***精度高;DFT矢量的相位取值在0~2π之间也可以分成较少份数,比如2份或者4 份,此时***精度较低。
在一些实施例中,DFT矢量的相位取值在0~2π之间分成多少份是与电磁单元的数量相关。比如智能面板的水平方向有ND个电磁单元、垂直方向有ND个电磁单元,可对水平方向和垂直方向两个维度独立处理的,最后将水平方向的DFT矢量和垂直方向的DFT矢量做克罗内克积。以水平方向为例,水平方向上ND个电磁单元,则水平方向上DFT矢量的相位取值在0~2π之间需要分成ND*2份,以实现无损分解。例如,智能面板的水平方向有16个电磁单元、垂直方向有16个电磁单元,则DFT矢量的精度在水平方向上需要分成16×2份,在垂直方向上需要分成16×2份,即水平方向上对应有32个导频信息,垂直方向上对应有32个导频信息。这样,对于高频***,电磁单元数量多,如10000个,此时为了实现无损分解和合成,需要发送20000个导频信息,导频开销巨大。
从上述分析可以发现,这种方法在T的取值很大时,存在导频开销需要非常多的问题。例如在高频时智能面板的电磁单元的数量可以达到10000个以上,则需要几万个导频资源,导频开销非常大,并且导频需要在时间上采用不同的符号发送,全部发完才能找到合适目标矢量信息导致工作时会出现很大的延迟。
基于此,本申请实施例提供的调控方法,可通过获取指示信息,根据指示信息,确定测量调控参数集合,根据测量调控信息,调控信号调节装置中的电磁单元的电磁特性,以使电磁单元反射导频信息到第二通信设备,以测量信号调节装置的目标调控信息。本申请实施例通过根据指示信息调控信号调节装置中的电磁单元的电磁特性,有效提高了信号调节装置的调控信息的测量效率。
请参照图3,一种信号调节装置的调控方法,应用于信号调节装置,调控方法包括:
步骤S2100,获取指示信息;
步骤S2200,根据指示信息,确定测量调控参数集合,其中,测量调控参数集合包括多个信号调节装置的测量调控信息;
步骤S2300,根据测量调控信息,调控信号调节装置中的电磁单元的电磁特性,以使电磁单元反射导频信息到第二通信设备,以测量信号调节装置的目标调控信息。
在一些实施例中,可以将第一矢量设置成DFT矢量(或者多个DFT矢量的克罗内克积形式)的线性合并,以DFT矢量为例,第一矢量可以表示为:
其中Am为预设的加权系数,Xt为一个预设的集合,Am和Xt可以针对每个分别设置,进行联合的测量反馈。
需要说明的是,对于不同的t,Xt存在交集。
假设Am=1,即先测量选择目标基础矢量后再进行加权测量。实际操作中,可通过发送导频信息和获取反馈信息以获取的信息。在本实施的技术方案中,信号调节装置通过执行步骤S1100至步骤S1300,发送导频信息对第二通信设备进行测量,即使只包含一个DFT矢量分量,那么多个导频信息的测量结果中也会有多个测量结果是可以测量到不弱的接收功率。即本申请实施例根据测量调控参数集合对导频信息做预编码,如果第一矢量包含该测量调控参数集合中对应的DFT矢量,则接收端(第二通 信设备)应该能测到质量还不错的接收功率,因此,可利用指示信息合理配置测量调控参数集合,实现节省导频信息发送次数。相对于在相关技术中,如果的成分是稀疏的,则在T次测量中,能够收到不弱的接收功率的导频也是非常稀疏的,这实际上是对导频资源的一种浪费。而在智能面板应用中,一般来说智能面板的电磁单元(或称为阵元、阵子)数目较多,而且常用于高频情况,在高频情况下波长较短,可以部署更多的阵元,对于这种表征信道信息的其成分都是稀疏的,所以采用本实施的技术方案的方法,其导频利用率会更高。
需要说明的是,本申请实施例中并没有降低表示第一矢量的DFT矢量的个数,而是在反馈的时候通过“分组”的方式减少反馈时用到的导频数量。例如,如第一矢量中只包含16个DFT矢量(候选基础矢量)中的一个,相关技术中需要发送16次导频信息才能测试出第一矢量包含的是哪个DFT矢量,而采用本申请实施例“分组”后通过4次导频就能测试出第一矢量中包含的是哪个DFT矢量,提高了测量效率。并且,第一矢量中包含的DFT矢量越稀疏(越少),本申请实施例提高测量效率的效果越明显。
需要说明的是,步骤S2100至步骤S2300可以在智能面板的控制器中实现。步骤S2100中,信号调节装置可以获取来自外部设备的指示信息,例如,可以是来自第一通信设备(如基站)的指示信息,也可以是来自第二通信设备(如用户终端)的指示信息。显然的,外部设备也可以时其他网元,本申请实施例对此不作限定。
在一些实施例中,目标调控信息包括目标基础矢量。每一测量调控参数集合中的多个测量调控信息包含不同的候选基础矢量或不同的候选基础矢量组合;
对应的,步骤S2300,根据测量调控信息,调控信号调节装置中的电磁单元的电磁特性,以使电磁单元反射导频信息到第二通信设备,以测量信号调节装置的目标调控信息,包括:
步骤S2310,根据测量调控信息,调控信号调节装置中的电磁单元的电磁特性,以使电磁单元反射导频信息到第二通信设备,以测量并根据测量结果在多个候选基础矢量中确定至少一个目标基础矢量。
在一些实施例中,即本申请实施例根据测量调控参数集合对导频信息做预编码,如果第一矢量包含该测量调控参数集合中对应的DFT矢量,则接收端(第二通信设备)应该能测到质量还不错的接收功率,接收端将是否收到导频信息的反馈信息传输给第一通信设备,第一通信设备可根据接收到的反馈信息计算得到对应的DFT矢量,并将其作为第一矢量包含的目标基础矢量。可通过指示信息合理配置测量调控参数集合,实现节省导频信息发送次数。
在一些实施例中,测量调控参数集合可以是预存在信号调节装置中的,也可以是信号调节装置根据指示信息自动生成的。
在一些实施例中,信号调节装置预存有多个测量调控参数集合每个包括多个信号调节装置的测量调控信息例如多个调控参数集合分别为:

……
每个调控参数集合均为预设设置好的图样,对应一定的测试模型。第一通信设备发射导频信息,信号调节装置根据对应的调控参数集合反射导频信息到第二通信设备,第二通信设备将对导频信息的接收状态反馈到第一通信设备,第一通信设备再根据预设的图样对应计算出对应的目标基础矢量。在一些实施例中,测量调控参数集合是由第一通信设备发送给信号调节装置以存储在信号调节装置中的。
在一些实施例中,信号调节装置预存有多个测量调控参数集合,指示信息用于直接指示测量调控参数集合的索引信息;
对应的,根据指示信息,确定测量调控参数集合包括:
步骤S2210,根据指示信息,确定测量调控参数集合的索引信息;
步骤S2220,根据索引信息,从预存的多个测量调控参数集合中,确定对应的测量调控参数集合。
在一实施例中,智能面板保存有多个调控参数集合每个包括多个信号调节装置的测量调控信息例如多个调控参数集合分别为:

……
指示信息包括用于直接指示测量调控参数集合的索引信息。信号调节装置(如智能面板)接收到指示信息后,根据指示信息中索引信息找到预存的对应的测量调控参数集合。即是说,信号调节装置通过指示信息提前知道目标调控信息只存在于索引信息对应的调控参数集合中,相对于发送全部测量调控信息,可节省大量导频资源。
在一些实施例中,信号调节装置预存有多个测量调控参数集合和预设的对应关系表;
指示信息包括基础矢量先验信息,对应关系表包括基础矢量先验信息与多个测量调控参数集合的对应关系;
对应的,步骤S2200,根据指示信息,确定测量调控参数集合包括:
步骤S2230,根据基础矢量先验信息,查询对应关系表以确定对应的测量调控参数集合。
在一实施例中,智能面板保存有多个调控参数集合每个包括多个信号调节装置的测量调控信息例如多个调控参数集合分别为:

……
在一些实施例中,指示信息包括基础矢量先验信息,基础矢量先验信息可包括矢量数目 和/或矢量分布范围等,其中,矢量数目用于表征候选基础矢量的数量或数量范围,矢量分布范围用于表征候选基础矢量的分布范围。
具体的,例如基础矢量先验信息可包括矢量数目,即第一通信设备/第二通信设备可以通知信号调节装置目标基础矢量的矢量数目(数量),具体通知形式不限。矢量数目能够让信号调节装置知道我的到导频应该发多少个、如何发。例如,根据第一通信设备与信号调节装置的约定,矢量数目为1对应表示多径的数量只有一个,也就是目标基础矢量只有一个,则信号调节装置只发送目标基础矢量为1对应的调控参数集合即可,无需发送全部的测量调控信息。又如,基础矢量先验信息可包括矢量分布范围,根据前文可知,DFT矢量的相位分布范围是0到2π,在一些实施例中,DFT矢量的相位分布范围可能是更小的范围,例如0~2/π,这样信号调节装置无需发送全部矢量,只需发送匹配0~2/π相位分布范围的调控参数集合即可,无需发送全部的测量调控信息。
需要说明的是,第一矢量中含有的DFT矢量的数量(矢量数目)与信道路径的数量相关。在一些实施例中,DFT矢量的数量(矢量数目)与信道路径是一一对应的。例如,第一矢量中含有的DFT矢量的数量(矢量数目)为1,则信道路径的数量也为1(如只有一个LOS径);DFT矢量的数量(矢量数目)为2,则信道路径的数量也为2(如有一个LOS径和一个NLOS径(反射径))。
例如,智能面板可以根据矢量数目或矢量分布范围等先验信息从表二中确定调控参数集合
表二
由表二可知,当指示信息中包含指令基础矢量数目为1、基础矢量分布范围为2,则信号调节装置测量过程中对应发送的调控参数集合为以此类推。
在一些实施例中,指示信息包括基础矢量先验信息;
对应的,步骤S2200,根据指示信息,确定测量调控参数集合,包括:
步骤S2240,根据基础矢量先验信息,按照第一预设规则生成测量调控参数集合。
在一些实施例中,测量调控参数集合也可以是信号调节装置根据指示信息自动生成的。例如,信号调节装置可以预存测量调控参数集合的生成方法,根据基础矢量先验信息(如矢量数目和/或矢量分布范围等),生成对应的测量调控参数集合。
在一些实施例中,基础矢量先验信息包括矢量数目或矢量分布范围中的至少一个,其中,矢量数目用于表征候选基础矢量的数量或数量范围,矢量分布范围用于表征候选基础矢量的分布范围。第一预设规则包括:
测量调控参数集合中的测量调控信息的数量为N满足:
其中,Q为第二通信设备响应于导频信息的反馈信息的比特数,M为候选基础矢量的组合的可能性的数量。
如前述,每个调控参数集合均为预设设置好的图样,对应一定的测试模型。图样的设计可以根据所需的情况对应的分辨率设计。
以候选DFT矢量(候选基础矢量)总共有16个(如DFT矢量在0-2π之间被分为16份)为例,当矢量数目为1或2,即对应的图样需要包含矢量数目为1或2的所有测量调控信息。当矢量数目为1,即需要在16个DFT矢量中挑选1个作为目标基础矢量,包含的可能组合情况有种;当矢量数目为2,即需要在16个DFT矢量中挑选2个作为目标基础矢量,包含的可能组合情况有种;包含矢量数目为1或2的所有测量调控信息的组合情况M=16+120=136种。即是说,理论上发送导频信息的次数N(测量调控信息的数量N)需要能够覆盖136种情况。当反馈信息的比特数Q为1时,由于一个比特可表示两种状态,2的7次方为128,小于136,2的8次方为256,大于136,因此对应N可以取8,即测量调控信息的数量为N=8,发送8次导频信息即可满足测试得到目标基础矢量的要求,而无需发送136次导频信息。在另一些实施例中,如果可以确定136种情况种某一些情况时不可能出现的,可以排除掉,从而把包含矢量数目为1或2的所有测量调控信息的组合情况M控制在128种情况以内,则可以通过7次导频信息即可满足测试得到目标基础矢量的要求,即测量调控信息的数量为N=7。可以通过图样和先验信息(指示信息)的配合设计,实现减少测量调控信息的数量,从而减少发送导频的次数。此时,要求第二通信设备在导频信息的测量时间点,无论有没有接收到信号,都需要发送反馈信息给到第一通信设备。
在一些实施例中,当反馈信息的比特数Q为大于等于2的正整数时,由于反馈信息可以表示的状态有多个,这样需要的导频信息发送次数就更少了。例如,当Q为4时,测量调控信息的数量为N只需要满足即可,可实现更节约的导频开销。
在一些实施例中,反馈信息的比特数Q为1,反馈信息用于表征是否接收到导频信息;即1bit信息表征“是”或者“否”。
或者,
反馈信息为多比特,即Q为大于等于2的正整数,反馈信息可用于表征以下的一种或多种信息:是否接收到导频信息、接收到的导频信息的信号强度、接收到的导频信息的相位等。
在一些实施例中,第一矢量中包含的DFT矢量越稀疏(越少),本申请实施例提高测量效率的效果越明显。如前文,对于固定电磁单元数量的智能面板,决定了DFT矢量划分的精度,而DFT矢量划分的精度确定后,发送导频的数量取决于第一矢量中包含的DFT矢量的数量。例如,对于精度为16(如DFT矢量在0-2π之间被分为16份)的***,如果指示信息可确定包含的DFT矢量为1个,则可发送4个到导频信息可以确定该DFT矢量;如果指示信息可确定包含的DFT矢量为2个,则可发送8个到导频信息可以确定该DFT矢量。对于有1000个电磁单元的智能面板,如果指示信息可确定包含的DFT矢量为1个(此时对应的物理环境时路径数量为1,如第一通信设备和第二通信设备之间只有一条LOS径)当本来需要发送2000个导频信息,按本申请实施例的方法,可以发送11个导频信息即可,可大幅度减少导频开销,提高测量效率。
在一些实施例中,每一测量调控参数集合中的多个测量调控信息包含不同的候选基础矢量的线性合并组合。
在一些实施例中,本申请实施例根据测量调控信息包含不同的候选基础矢量的线性合并组合对导频信息做预编码,如果第一矢量包含该线性合并组合中对应的DFT矢量,则接收端(第二通信设备)应该能测到质量还不错的接收功率。每个调控参数集合均为预设设置好的图样指的是设计多个测量调控信息包含不同的候选基础矢量的线性合并组合,使得这些组合对应的反馈信息可以确定第一矢量中包含的DFT矢量。
在一些实施例中,每一测量调控参数集合中的测量调控信息的数量为N满足:
其中,Q为第二通信设备响应于导频信息的反馈信息的比特数,M为候选基础矢量的线性合并组合的可能性的数量。
测量调控信息的数量为N设计的方法如前述,在此不作赘述。
在一实施例中,参照图4,为预设设置好的图样,假设已知是非常稀疏的,且只包含1个DFT矢量(目标矢量信息),但具体的DFT矢量(目标矢量信息)是未知的。图4中的黑色方格表示DFT矢量(候选矢量信息)属于Xt集合(编号顺序从右向左),比如C1包括索引为1/2/3/5/9/10/11/15的DFT矢量(候选矢量信息)的线性合并组合,C2包括索引为1/2/4/5/7/8/11/14的DFT矢量(候选矢量信息)的线性合并组合,C3包括索引为1/3/4/5/6/8/10/13的DFT矢量(候选矢量信息)的线性合并组合,C4包括索引为1/2/3/4/6/7/9/12的DFT矢量(候选矢量信息)的线性合并组合。针对每个会有一个对应的基于其可以测量到一个接收功率的强度值的情况下。第二通信设备反馈有测量到信号或者没有测量到信号,第一通信设备会接收到4个导频的测量结果,通过这4个测量结果的状态,可以反推出所包含的是1个DFT矢量(目标矢量信息),且确定包含的目标矢量信息是哪一个。
示例性的,如图4预设设置好的图样,其中:
目标矢量信息包含DFT1时,其接收状态为C1、C2、C3、C4均收到信号,其它为0;
包含DFT2时,其接收状态为C1、C2、C4收到信号,其它为0;
包含DFT3时,其接收状态为C1、C3、C4收到信号,其它为0;
包含DFT4时,其接收状态为C2、C3、C4收到信号,其它为0;
包含DFT5时,其接收状态为C1、C2、C3收到信号,其它为0;
包含DFT6时,其接收状态为C3、C4收到信号,其它为0;
包含DFT7时,其接收状态为C2、C4收到信号,其它为0;
包含DFT8时,其接收状态为C2、C3收到信号,其它为0;
包含DFT9时,其接收状态为C1、C4收到信号,其它为0;
包含DFT10时,其接收状态为C1、C3收到信号,其它为0;
包含DFT11时,其接收状态为C1、C2收到信号,其它为0;
包含DFT12时,其接收状态为C4收到信号,其它为0;
包含DFT13时,其接收状态为C3收到信号,其它为0;
包含DFT14时,其接收状态为C2收到信号,其它为0;
包含DFT15时,其接收状态为C1收到信号,其它为0;
包含DFT16时,其接收状态为C1、C2、C3、C4均收到不到信号,或者说收到的信号均为0。
在一实施例中,参照图5,假设已知的包含2个DFT矢量(目标矢量信息)的线性组合,此时需要发送8个测量导频,针对每个会有一个对应的基于其可以测量到一个接收功率的强度值的情况下。第二通信设备反馈有测量到信号或者没有测量到信号,第一通信设备会接收到8个导频的测量结果,第一通信设备通过8个测量结果的状态可以反推出所包含的是2个DFT矢量(目标矢量信息)。
示例性的,如图5预设设置好的图样,其中,目标矢量信息包含DFT1和DFT2时,其接收状态为C1和C2收到信号,其它为0;包含DFT1和DFT3时,其接收状态为C1、C3收到信号,其它为0;包含DFT2和DFT3时,其接收状态为C1、C2、C3收到信号,其它为0;包含DFT1和DFT4时,其接收状态为C1、C2、C4收到信号,其它为0;包含DFT2和DFT4时,其接收状态为C2、C4收到信号,其它为0;包含DFT1和DFT5时,其接收状态为C1、C3、C4收到信号,其它为0;包含DFT4和DFT5时,其接收状态为C1、C2、C5收到信号,其它为0;包含DFT2和DFT5时,其接收状态为C1、C2、C3、C5收到信号,其它为0;以此类推。
在一些实施例中,参照前述公式(8),第一矢量可能是由多个DFT矢量合成的,需要进一步测量各DFT矢量合成对应的权值系数(加权系数)。可以在前述测量得到目标基础矢量后,在测量权值系数,这样会更准确。
在一些实施例中,目标调控信息还包括权值系数;
在一些实施例,步骤S2300中,根据测量调控信息,调控信号调节装置中的电磁单元的电磁特性,以使电磁单元反射导频信息到第二通信设备,以测量信号调节装置的目标调控信息,还包括:
步骤S2320,根据至少一个目标基础矢量,调控信号调节装置中的电磁单元的电磁特性,以使电磁单元反射导频信息到第二通信设备,以测量至少一个目标基础矢量对应的权值系数(加权系数)。
在一些实施例中,参照前述公式(8),在通过执行步骤S2310测量得到目标基础矢量后,可以进一步通过执行步骤S2320得到加权系数Am,以进一步计算得到第一矢量通常,计算第一矢量的步骤是在第一通信设备中执行。
在一些实施例中,步骤S2320,根据基础矢量,调控信号调节装置中的电磁单元的电磁特性,以使电磁单元反射导频信息到第二通信设备,以测量至少一个目标基础矢量对应的权值系数,包括:
步骤S2321,接收来自第一通信设备发送的至少一个目标基础矢量,调控信号调节装置中的电磁单元的电磁特性,以使电磁单元反射导频信息到第二通信设备,以测量至少一个目标基础矢量对应的权值系数。
在一些实施例中,第一通信设备通过前述方法测量得到目标基础矢量后,可以将目标基础矢量发送给信号调节装置,以使信号调节装置根据目标基础矢量调控信号调节装置中的电磁单元的电磁特性,以使电磁单元反射导频信息到第二通信设备,第二通信设备接收到导频信息后,将反馈信息发送给第一通信设备,以使第一通信设备测量该目标基础矢量对应的权 值系数。需要说明的是,测量权值系数过程中,反馈信息通常应当包含更为具体的信息,如接收的信号强度信息、相位信息等等。
举例来说,总共有16个候选基础矢量,通过前述方法测量得到第5个DFT矢量和第10个DFT矢量为目标基础矢量。此时,可在第5个DFT矢量和第10个DFT矢量对应的波束上发送导频信息,当第二通信设备接收到导频信息后,将反馈信息发送给第一通信设备,以使第一通信设备根据反馈信息计算这两个目标基础矢量对应的权值系数。例如,可将反馈信息的信号强度作为权值系数。
需要说明的是,当只有一个目标基础矢量,则不需要测量加权系数,因为此时对应的第一矢量不是基础矢量的线性合并。
本申请实施例提供的调控方法,通过获取指示信息,根据指示信息,确定测量调控参数集合,根据测量调控信息,调控信号调节装置中的电磁单元的电磁特性,以使电磁单元反射导频信息到第二通信设备,以测量信号调节装置的目标调控信息。本申请实施例通过根据指示信息调控信号调节装置中的电磁单元的电磁特性,有效提高了信号调节装置的调控信息的测量效率。
另外,请参照图6,本申请实施例还提供一种信息处理方法,应用于第二通信设备,信息处理方法包括:
步骤S3100,响应于信号调节装置发送的导频信息,发送反馈信息到第一通信设备,以测量信号调节装置的目标调控信息;
其中,导频信息是信号调节装置通过执行如前述的信号调节装置的调控方法发送的。例如,信号调节装置执行前述步骤S2100至步骤S2300发送的导频信息。
需要说明的是,第二通信设备可以是用户终端,用户终端可以为移动用户终端,也可以为非移动用户终端。移动用户终端可以为手机、平板电脑、笔记本电脑、掌上电脑、车载用户终端、可穿戴设备、超级移动个人计算机、上网本、个人数字助理、CPE、UFI(无线热点设备)等;非移动用户终端可以为个人计算机、电视机、柜员机或者自助机等;本申请实施方案不作具体限定。
在一些实施例中,第一通信设备发射导频信息,信号调节装置根据指示信息对应的调控参数集合反射导频信息到第二通信设备,第二通信设备将对导频信息的接收状态反馈到第一通信设备,第一通信设备再根据预设的图样对应计算出对应的目标基础矢量。第二通信设备在导频信息发送的时间点,无论第二通信设备有没有收到导频信息,均需要发送反馈信息给到第二通信设备。
请参照图7,在一些实施例中,步骤S3100,响应于信号调节装置发送的导频信息,发送反馈信息到第一通信设备,以测量信号调节装置的目标调控信息之前,还包括:
步骤S3200,接收来自第一通信设备的模式切换指令;
步骤S3300,根据模式切换指令进入测量状态,测量状态为:对导频信息均生成反馈信息,并发送反馈信息到第一通信设备。
在一些实施例中,由于第二通信设备在测量目标调控信息过程中,需要保持对导频信息的全反馈,增加第二通信设备的资源(如能耗资源、计算资源等)开销,因此,可通过模式切换指令对第二通信设备的反馈状态进行切换,即只有接收到切换指令,才进入到测量状态,以节省第二终端的资源开销。模式切换指令可以是来自第一通信设备的,也可以时来自其他 设备,本申请实施例对此不作限定。
请参照图8,在一些实施例中,步骤S3100,响应于信号调节装置发送的导频信息,发送反馈信息到第一通信设备,以测量信号调节装置的目标调控信息之前,还包括:
步骤S3400,发送指示信息到信号调节装置,以使信号调节装置确定测量调控参数集合。
在一些实施例中,第二通信设备可以用于发送指示信息到信号调节装置,以使信号调节装置执行前述步骤以确定测量调控参数集合。例如,信号调节装置执行前述步骤S2100和步骤S2200以确定测量调控参数集合。
本申请实施例提供的信息处理方法,通过在测量状态下,响应于信号调节装置发送的导频信息,发送反馈信息到第一通信设备,以测量信号调节装置的目标调控信息;其中,导频信息是信号调节装置通过执行如前述的信号调节装置的调控方法发送的。本申请实施例通过根据指示信息调控信号调节装置中的电磁单元的电磁特性,有效提高了信号调节装置的调控信息的测量效率。
另外,请参照图9,本申请实施例还提供一种信息处理方法,应用于第一通信设备,方法包括:
步骤S4100,发送导频信息,使得信号调节装置通过执行如前述的信号调节装置的调控方法反射导频信息到第二通信设备;例如,信号调节装置通过执行如前述步骤S2100至步骤S2300反射导频信息到第二通信设备;
步骤S4200,获取来自第二通信设备的反馈信息;
步骤S4300,根据反馈信息、测量调控参数集合及测量调控参数集合的设置图样,计算得到目标调控信息。
在一些实施例中,第一通信设备可以是基站,也可以是其他具有网络服务功能的设备,本申请实施例对此不作限定。本领域技术人员可以理解的是,基站是移动设备接入互联网的接口设备,也是无线电台站的一种形式,是指在一定的无线电覆盖区中,通过移动通信交换中心,与移动电话终端之间进行信息传递的无线电收发信电台。例如,可以是GSM***或CDMA中的基站(Base Transceiver Station,简称为“BTS”),可以是WCDMA***中的基站(NodeB,NB),可以是LTE***中的演进型基站(Evolutional Node B,eNodeB),可以是5G基站,还可以是后续演进的网络对应的基站。
在一些实施例中,第一通信设备发射导频信息,信号调节装置根据指示信息对应的调控参数集合反射导频信息到第二通信设备,第二通信设备响应于导频信息,将导频信息的接收状态通过反馈信息反馈到第一通信设备,第一通信设备再根据预设的图样对应计算出对应的目标基础矢量。第二通信设备在导频信息发送的时间点,无论第二通信设备有没有收到导频信息,均需要发送反馈信息给到第二通信设备。
在一些实施例中,步骤S4300,第一通信设备需要知道测量调控参数集合及测量调控参数集合的设置图样,才能根据接收到的来自第二通信设备的反馈信息,计算得到目标调控信息。
在一些实施例中,测量调控参数集合的设置图样可根据前述信号调节装置的调控方法中描述的图样设计方式生成,即使得每个调控参数集合均为预设设置好的图样,对应一定的测试模型。图样的设计可以根据所需的情况对应的分辨率设计,在此不作赘述。
在一些实施例中,测量调控参数集合是由第一通信设备发送给信号调节装置以存储在信 号调节装置中的。
在一些实施例中,目标调控信息包括目标基础矢量;测量调控参数集合中的多个测量调控信息包含不同的候选基础矢量或不同的候选基础矢量组合;
对应的,根据反馈信息、测量调控参数集合及测量调控参数集合的设置图样,计算得到目标调控信息,包括:
步骤S4310,根据反馈信息、测量调控参数集合及测量调控参数集合的设置图样,在多个候选基础矢量中确定至少一个目标基础矢量。
在一些实施例中,可以将第一矢量设置成DFT矢量(或者多个DFT矢量的克罗内克积形式)的线性合并,以DFT矢量为例,第一矢量可以表示为:
其中Am为预设的加权系数,Xt为一个预设的集合,Am和Xt可以针对每个分别设置,进行联合的测量反馈。
需要说明的是,对于不同的t,Xt存在交集。
假设Am=1,即先测量选择目标基础矢量后再进行加权测量。实际操作中,第一通信设备可通过发送导频信息和获取反馈信息以获取的信息。在本实施的技术方案中,信号调节装置通过执行前述步骤S1100至步骤S1300,反射导频信息对第二通信设备进行测量,即使只包含一个DFT矢量分量,那么多个导频信息的测量结果中也会有多个测量结果是可以测量到不弱的接收功率,第二通信设备在导频信息发送对应的时间点返回反馈信息给到第一通信设备。即本申请实施例根据测量调控参数集合对导频信息做预编码,如果第一矢量包含该测量调控参数集合中对应的DFT矢量,则接收端(第二通信设备)应该能测到质量还不错的接收功率,因此,第一通信设备可利用指示信息合理配置信号调节装置的测量调控参数集合,再根据述反馈信息、测量调控参数集合及测量调控参数集合的设置图样,在多个候选基础矢量中确定至少一个目标基础矢量。
请参照图10,在一些实施例中,步骤S4100,发送导频信息之前,还包括:
步骤S4400,发送指示信息到信号调节装置,以使信号调节装置确定测量调控参数集合。
在一些实施例中,第一通信设备可以用于发送指示信息到信号调节装置,以使信号调节装置执行前述步骤以确定测量调控参数集合。例如,信号调节装置执行前述步骤S2100和步骤S2200以确定测量调控参数集合。
在一些实施例中,目标调控信息还包括权值系数;
对应的,根据反馈信息、测量调控参数集合及测量调控参数集合的设置图样,计算得到目标调控信息,还包括:
步骤S4311,发送导频信息,以使信号调节装置根据至少一个目标基础矢量,调控信号调节装置中的电磁单元的电磁特性,反射导频信息到第二通信设备;
步骤S4312,接收来自终端的反馈信息;
步骤S4313,根据反馈信息,计算至少一个目标基础矢量对应的权值系数。
在一些实施例中,步骤S4311,发送导频信息,以使信号调节装置根据至少一个目标基础矢量,调控信号调节装置中的电磁单元的电磁特性,反射导频信息到第二通信设备之前,还包括:
步骤S4314,发送至少一个目标基础矢量到信号调节装置。
在一些实施例中,第一通信设备通过前述方法测量得到目标基础矢量后,可以将目标基础矢量发送给信号调节装置,以使信号调节装置根据目标基础矢量调控信号调节装置中的电磁单元的电磁特性,以使电磁单元反射导频信息到第二通信设备,第二通信设备接收到导频信息后,将反馈信息发送给第一通信设备,以使第一通信设备测量该目标基础矢量对应的权值系数。需要说明的是,测量权值系数过程中,反馈信息通常应当包含更为具体的信息,如接收的信号强度信息、相位信息等等。
举例来说,总共有16个候选基础矢量,通过前述方法测量得到第5个DFT矢量和第10个DFT矢量为目标基础矢量,第一通信设备可以发送两个目标基础矢量到信号调节装置。此时,第一通信设备发送导频信息,信号调节装置可根据目标基础矢量调控信号调节装置中的电磁单元的电磁特性,反射导频信息到第二通信设备,以实现在第5个DFT矢量和第10个DFT矢量对应的波束上发送导频信息。当第二通信设备接收到导频信息后,将反馈信息发送给第一通信设备,以使第一通信设备根据反馈信息计算这两个目标基础矢量对应的权值系数。例如,可将反馈信息的信号强度作为权值系数。
需要说明的是,当只有一个目标基础矢量,则不需要测量加权系数,因为此时对应的第一矢量不是基础矢量的线性合并。
在一些实施例中,参照前述公式(8),第一矢量可能是由多个DFT矢量合成的,需要进一步测量各DFT矢量合成对应的权值系数(加权系数)。可以在前述测量得到目标基础矢量后,再测量权值系数,这样会更准确。
在一些实施例中,参照前述公式(8),在通过执行步骤S4310测量得到目标基础矢量后,可以进一步通过执行步骤S4311至4313得到加权系数Am,以进一步计算得到第一矢量通常,计算第一矢量的步骤是在第一通信设备中执行。
本申请实施例提供的信息处理方法,通过发送导频信息,使得信号调节装置通过执行如前述的信号调节装置的调控方法反射导频信息到第二通信设备;获取来自第二通信设备的反馈信息;根据反馈信息、测量调控参数集合及测量调控参数集合的设置图样,计算得到目标调控信息。本申请实施例通过根据指示信息调控信号调节装置中的电磁单元的电磁特性,有效提高了信号调节装置的调控信息的测量效率。
另外,本申请实施例还提供一种信息处理方法,应用于通信***,通信***包括第一通信设备、信号调节装置和第二通信设备,方法包括:
第一通信设备执行前述应用于的第一通信装置的信息处理方法;
信号调节装置执行前述的信号调节装置的调控方法;
第二通信设备执行前述应用于的第二通信装置的信息处理方法。
在一些实施例中,通信***中,第一通信设备可以为基站、信号调节装置为智能面板、第二通信设备为用户终端,通信***结构图如图1所示。
请参照图11,在一些实施例中,通信***的测量流程为:第一通信设备执行前述步骤 S4400,发送指示信息到信号调节装置,以使信号调节装置执行如前述步骤S2100和步骤S2200,获取指示信息,并根据指示信息,确定测量调控参数集合;第一通信设备执行前述步骤S4100,发送导频信息到信号调节装置,以使信号调节装置执行如前述步骤S2300,根据测量调控信息,调控信号调节装置的电磁单元的电磁特性,以使电磁单元反射导频信息到第二通信设备;在测量状态下,第二通信设备执行前述步骤S3100,响应于信号调节装置发送的导频信息,发送反馈信息到第一通信设备;第一通信设备执行前述步骤S4200和步骤S4300,获取来自第二通信设备的反馈信息,并根据反馈信息、测量调控参数集合及测量调控参数集合的设置图样,计算得到目标调控信息。
本申请实施例通过根据指示信息调控信号调节装置中的电磁单元的电磁特性,有效提高了信号调节装置的调控信息的测量效率。
另外,本申请的一个实施例还提供了一种信号调节装置,包括:第一存储器、第一处理器及存储在第一存储器上并可在第一处理器上运行的计算机程序,所述第一处理器执行所述计算机程序时实现如前述的调控方法。
第一处理器和第一存储器可以通过总线或者其他方式连接。
第一存储器作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序。此外,第一存储器可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,第一存储器可包括相对于第一处理器远程设置的存储器,这些远程存储器可以通过网络连接至该第一处理器。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
需要说明的是,本实施例中的信号调节装置,可以应用为例如图1所示实施例中的智能面板120,本实施例中的通信设备能够构成例如图1所示实施例中的***架构的一部分,这些实施例均属于相同的构思,因此这些实施例具有相同的实现原理以及技术效果,此处不再详述。
实现上述实施例的信息处理方法所需的非暂态软件程序以及指令存储在存储器中,当被处理器执行时,执行上述实施例中的调控方法,例如,执行以上描述的图3中的方法步骤S2100至步骤S2300。
另外,本申请的一个实施例还提供了一种通信设备,包括:第二存储器、第二处理器及存储在第二存储器上并可在处理器上运行的计算机程序,所述第二处理器执行所述计算机程序时实现:
如前述用于第一通信设备的信息处理方法;
或者,
如前述用于第二通信装置的信息处理方法。
第二处理器和第二存储器可以通过总线或者其他方式连接。
第二存储器作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序。此外,第二存储器可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,第二存储器可包括相对于第二处理器远程设置的存储器,这些远程存储器可以通过网络连接至该第二处理器。上述网络的实例包括但不限于互联网、企业内部网、局域网、 移动通信网及其组合。
需要说明的是,本实施例中的通信设备,可以应用为第一通信设备或第二通信设备。当通信设备应用为第一通信设备时,可以是图1所示实施例中的基站110;当通信设备应用为第二通信设备时,可以是图1所示实施例中的用户终端130。即是说,本实施例中的通信设备能够构成例如图1所示实施例中的***架构的一部分,这些实施例均属于相同的构思,因此这些实施例具有相同的实现原理以及技术效果,此处不再详述。
实现上述实施例的信息处理方法所需的非暂态软件程序以及指令存储在存储器中,当被处理器执行时,执行上述实施例中的信息处理方法,例如,执行以上描述的图6中的方法步骤S3100、图7中的方法步骤S3200至S3100、图8中的方法步骤S3400至S3100、图9中的方法步骤S4100至S4300。
以上所描述的通信设备实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
此外,本申请的一个实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个处理器或控制器执行,例如,被上述通信设备实施例中的一个处理器执行,可使得上述处理器执行上述实施例中的调控方法,例如,执行以上描述的图3中的方法步骤S2100至步骤S2300;或者,执行上述实施例中的信息处理方法,例如,执行以上描述的图6中的方法步骤S3100、图7中的方法步骤S3200至S3100、图8中的方法步骤S3400至S3100、图9中的方法步骤S4100至S4300。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、***可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本申请的较佳实施进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请本质的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (29)

  1. 一种信号调节装置的调控方法,包括:
    获取指示信息;
    根据所述指示信息,确定测量调控参数集合,其中,所述测量调控参数集合包括多个信号调节装置的测量调控信息;
    根据所述测量调控信息,调控所述信号调节装置中的电磁单元的电磁特性,以使所述电磁单元反射导频信息到第二通信设备,以测量所述信号调节装置的目标调控信息。
  2. 根据权利要求1所述的信号调节装置的调控方法,其中,
    所述目标调控信息包括目标基础矢量;
    每一所述测量调控参数集合中的多个所述测量调控信息包含不同的候选基础矢量或不同的候选基础矢量组合;
    所述根据所述测量调控信息,调控所述信号调节装置中的电磁单元的电磁特性,以使所述电磁单元反射导频信息到第二通信设备,以测量所述信号调节装置的目标调控信息,包括:
    根据所述测量调控信息,调控所述信号调节装置中的电磁单元的电磁特性,以使所述电磁单元反射导频信息到第二通信设备,以测量并根据测量结果在多个候选基础矢量中确定至少一个所述目标基础矢量。
  3. 根据权利要求2所述的信号调节装置的调控方法,其中,所述信号调节装置预存有多个所述测量调控参数集合,所述指示信息用于直接指示所述测量调控参数集合的索引信息;
    对应的,所述根据所述指示信息,确定测量调控参数集合包括:
    根据所述指示信息,确定所述测量调控参数集合的索引信息;
    根据所述索引信息,从预存的多个所述测量调控参数集合中,确定对应的所述测量调控参数集合。
  4. 根据权利要求2所述的信号调节装置的调控方法,其中,
    所述信号调节装置预存有多个所述测量调控参数集合和预设的对应关系表;
    所述指示信息包括基础矢量先验信息,所述对应关系表包括基础矢量先验信息与多个所述测量调控参数集合的对应关系;
    对应的,所述根据所述指示信息,确定测量调控参数集合包括:
    根据所述基础矢量先验信息,查询所述对应关系表以确定对应的所述测量调控参数集合。
  5. 根据权利要求4所述的信号调节装置的调控方法,其中,所述基础矢量先验信息包括矢量数目和/或矢量分布范围,其中,所述矢量数目用于表征所述候选基础矢量的数量或数量范围,所述矢量分布范围用于表征所述候选基础矢量的分布范围。
  6. 根据权利要求2所述的信号调节装置的调控方法,其中,
    所述指示信息包括基础矢量先验信息;
    对应的,所述根据所述指示信息,确定测量调控参数集合,包括:
    根据所述基础矢量先验信息,按照第一预设规则生成所述测量调控参数集合。
  7. 根据权利要求6所述的信号调节装置的调控方法,其中,所述基础矢量先验信息包括矢量数目或矢量分布范围中的至少一个,其中,所述矢量数目用于表征候选基础矢量的数量或数量范围,所述矢量分布范围用于表征候选基础矢量的分布范围。
  8. 根据权利要求6或7所述的信号调节装置的调控方法,其中,所述第一预设规则包括:
    所述测量调控参数集合中的所述测量调控信息的数量为N满足:
    其中,Q为第二通信设备响应于所述导频信息的反馈信息的比特数,M为所述候选基础矢量的组合的可能性的数量。
  9. 根据权利要求2至7任一项所述的信号调节装置的调控方法,其中,每一所述测量调控参数集合中的多个所述测量调控信息包含不同的候选基础矢量的线性合并组合。
  10. 根据权利要求9所述的信号调节装置的调控方法,其中,每一所述测量调控参数集合中的所述测量调控信息的数量为N满足:
    其中,Q为第二通信设备响应于所述导频信息的反馈信息的比特数,M为所述候选基础矢量的线性合并组合的可能性的数量。
  11. 根据权利要求2所述的信号调节装置的调控方法,其中,所述目标调控信息还包括权值系数;
    所述根据所述测量调控信息,调控所述信号调节装置中的电磁单元的电磁特性,以使所述电磁单元反射导频信息到第二通信设备,以测量所述信号调节装置的目标调控信息,还包括:
    根据至少一个所述目标基础矢量,调控所述信号调节装置中的电磁单元的电磁特性,以使所述电磁单元反射导频信息到第二通信设备,以测量至少一个目标基础矢量对应的权值系数。
  12. 根据权利要求11所述的信号调节装置的调控方法,其中,
    所述根据所述基础矢量,调控所述信号调节装置中的电磁单元的电磁特性,以使所述电磁单元反射导频信息到第二通信设备,以测量至少一个目标基础矢量对应的权值系数,包括:
    接收来自第一通信设备发送的至少一个所述目标基础矢量,调控所述信号调节装置中的电磁单元的电磁特性,以使所述电磁单元反射导频信息到第二通信设备,以测量至少一个目标基础矢量对应的权值系数。
  13. 根据权利要求1、2、3、4、5、6、7、10、11或12所述的信号调节装置的调控方法,其中,所述信号调节装置为智能面板。
  14. 一种信息处理方法,应用于第二通信设备,所述方法包括:
    响应于信号调节装置发送的导频信息,发送反馈信息到第一通信设备,以测量信号调节装置的目标调控信息;
    其中,所述导频信息是信号调节装置通过执行如权利要求1至13任一项所述的信号调节装置的调控方法发送的。
  15. 根据权利要求14所述的一种信息处理方法,其中,
    所述反馈信息的比特数为1,所述反馈信息用于表征是否接收到所述导频信息;
    或者,
    所述反馈信息为多比特,所述反馈信息用于表征以下的一种或多种信息:是否接收到所述导频信息、接收到的导频信息的信号强度、接收到的导频信息的相位。
  16. 根据权利要求14或15所述的一种信息处理方法,其中,所述响应于信号调节装置发 送的导频信息,发送反馈信息到第一通信设备,以测量信号调节装置的目标调控信息之前,还包括:
    接收来自第一通信设备的模式切换指令;
    根据所述模式切换指令进入测量状态,所述测量状态为:对所述导频信息均生成反馈信息,并发送所述反馈信息到所述第一通信设备。
  17. 根据权利要求14或15所述的一种信息处理方法,其中,所述响应于信号调节装置发送的导频信息,发送反馈信息到第一通信设备,以测量信号调节装置的目标调控信息之前,还包括:
    发送指示信息到所述信号调节装置,以使所述信号调节装置确定测量调控参数集合。
  18. 一种信息处理方法,应用于第一通信设备,所述方法包括:
    发送导频信息,使得所述信号调节装置通过执行如权利要求1至13任一项所述的信号调节装置的调控方法反射所述导频信息到第二通信设备;
    获取来自第二通信设备的反馈信息;
    根据所述反馈信息、测量调控参数集合及所述测量调控参数集合的设置图样,计算得到目标调控信息。
  19. 根据权利要求18所述的信息处理方法,其中,所述目标调控信息包括目标基础矢量;所述测量调控参数集合中的多个所述测量调控信息包含不同的候选基础矢量或不同的候选基础矢量组合;
    对应的,所述根据所述反馈信息、测量调控参数集合及所述测量调控参数集合的设置图样,计算得到目标调控信息,包括:
    根据所述反馈信息、测量调控参数集合及所述测量调控参数集合的设置图样,在多个候选基础矢量中确定至少一个所述目标基础矢量。
  20. 根据权利要求19所述的信息处理方法,其中,所述发送导频信息之前,还包括:
    发送指示信息到所述信号调节装置,以使所述信号调节装置确定测量调控参数集合。
  21. 根据权利要求19所述的信息处理方法,其中,所述目标调控信息还包括权值系数;
    对应的,所述根据所述反馈信息、测量调控参数集合及所述测量调控参数集合的设置图样,计算得到目标调控信息,还包括:
    发送导频信息,以使所述信号调节装置根据至少一个所述目标基础矢量,调控所述信号调节装置中的电磁单元的电磁特性,反射所述导频信息到第二通信设备;
    接收来自终端的反馈信息;
    根据所述反馈信息,计算至少一个所述目标基础矢量对应的权值系数。
  22. 根据权利要求21所述的信息处理方法,其中,所述发送导频信息,以使所述信号调节装置根据至少一个所述目标基础矢量,调控所述信号调节装置中的电磁单元的电磁特性,反射所述导频信息到第二通信设备之前,还包括:
    发送所述至少一个所述目标基础矢量到所述信号调节装置。
  23. 一种信息处理方法,应用于通信***,所述通信***包括第一通信设备、信号调节装置和第二通信设备,所述方法包括:
    所述第一通信设备执行如权利要求18至22任一项所述的信息处理方法;
    所述信号调节装置执行如权利要求1至13任一项所述的信号调节装置的调控方法;
    所述第二通信设备执行如权利要求14至17任一项所述的信息处理方法。
  24. 一种信息处理方法,应用于第一通信设备,所述方法包括:
    确定至少一个目标基础矢量,其中,所述目标基础矢量为第一信道信息和第二信道信息经过第一预设函数处理得到的信息,用于表征所述第一信道信息和所述第二信道信息之间的差异;所述第一信道为所述第一通信设备和信号调节装置之间的信道,所述第二信道为所述信号调节装置和第二通信设备之间的信道;
    对所述目标基础矢量经过第二预设函数处理,得到目标调控信息。
  25. 根据权利要求24所述的方法,其中,
    所述确定至少一个目标基础矢量,其中,所述目标基础矢量为第一信道信息和第二信道信息经过第一预设函数处理得到的信息,用于表征所述第一信道信息和所述第二信道信息之间的差异,包括:
    对所述第一信道进行左奇异矢量变换得到左奇异矢量信息;
    对所述第二信道进行右奇异矢量变换得到右奇异矢量信息;
    构建用于表征所述左奇异矢量信息和所述右奇异矢量信息之间的差异信息的第一矢量函数;
    将所述第一矢量函数对应的DFT矢量作为所述目标基础矢量。
  26. 根据权利要求25所述的信息处理方法,其中,所述对所述目标基础矢量经过第二预设函数处理,得到目标调控信息,包括:
    获取目标基础矢量对应的权值系数;
    根据所述目标基础矢量、所述权值系数和所述第一矢量函数,计算得到第一矢量;
    对所述第一矢量进行对角化处理得到目标调控信息。
  27. 一种信号调节装置,包括:第一存储器、第一处理器及存储在第一存储器上并可在第一处理器上运行的计算机程序,所述第一处理器执行所述计算机程序时实现如权利要求1至13任意一项所述的调控方法。
  28. 一种通信设备,包括:第二存储器、第二处理器及存储在第二存储器上并可在处理器上运行的计算机程序,所述第二处理器执行所述计算机程序时实现:
    如权利要求14至21任意一项所述的信息处理方法;
    或者,
    如权利要求24至26任意一项所述的信息处理方法。
  29. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行:
    如权利要求1至13任意一项所述的信号调节装置的调控方法;
    或者,
    如权利要求14至26任意一项所述的信息处理方法。
PCT/CN2023/088440 2022-04-27 2023-04-14 调控方法、信息处理方法、信号调节装置、设备及介质 WO2023207634A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210453625.8A CN117014083A (zh) 2022-04-27 2022-04-27 调控方法、信息处理方法、信号调节装置、设备及介质
CN202210453625.8 2022-04-27

Publications (1)

Publication Number Publication Date
WO2023207634A1 true WO2023207634A1 (zh) 2023-11-02

Family

ID=88517492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/088440 WO2023207634A1 (zh) 2022-04-27 2023-04-14 调控方法、信息处理方法、信号调节装置、设备及介质

Country Status (2)

Country Link
CN (1) CN117014083A (zh)
WO (1) WO2023207634A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111866726A (zh) * 2020-06-30 2020-10-30 中兴通讯股份有限公司 接收装置的定位方法及装置、***、存储介质和电子装置
CN111901014A (zh) * 2020-01-07 2020-11-06 中兴通讯股份有限公司 一种电磁单元的调控方法、装置、设备和存储介质
US20200358205A1 (en) * 2017-11-30 2020-11-12 Agency For Science, Technology And Research Antenna and method of forming the same
CN112735111A (zh) * 2020-12-16 2021-04-30 中兴通讯股份有限公司 智能面板调控方法、装置、***、智能面板和存储介质
WO2022057918A1 (zh) * 2020-09-21 2022-03-24 索尼集团公司 电子设备、无线通信方法以及计算机可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200358205A1 (en) * 2017-11-30 2020-11-12 Agency For Science, Technology And Research Antenna and method of forming the same
CN111901014A (zh) * 2020-01-07 2020-11-06 中兴通讯股份有限公司 一种电磁单元的调控方法、装置、设备和存储介质
CN111866726A (zh) * 2020-06-30 2020-10-30 中兴通讯股份有限公司 接收装置的定位方法及装置、***、存储介质和电子装置
WO2022057918A1 (zh) * 2020-09-21 2022-03-24 索尼集团公司 电子设备、无线通信方法以及计算机可读存储介质
CN112735111A (zh) * 2020-12-16 2021-04-30 中兴通讯股份有限公司 智能面板调控方法、装置、***、智能面板和存储介质

Also Published As

Publication number Publication date
CN117014083A (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
US10826580B2 (en) Method and device for constraining codebook subset
EP3342062B1 (en) Method and apparatus for beamforming with coupled antennas
US8259599B2 (en) Systems and methods for distributed beamforming based on carrier-to-caused interference
EP2950458A1 (en) Feedback method for channel state information, transmission method for channel state information reference signal, user equipment and base station
US11843435B2 (en) Precoding matrix indication method and related device
JP6556244B2 (ja) コードブック確定方法及び装置
CN108631837B (zh) 信息的传输方法和设备
CN107925456B (zh) 用于具有互耦的天线阵列的等能量码本的方法和设备
CN109845123B (zh) 确定用于视距mimo通信的参数和条件的方法和装置
CN108141256A (zh) 天线阵列的相位调整方法及装置
US11652519B2 (en) Method and apparatus for equal energy codebooks for coupled antennas with transmission lines
WO2023207634A1 (zh) 调控方法、信息处理方法、信号调节装置、设备及介质
Meng et al. BeamRaster: a practical fast massive MU-MIMO system with pre-computed precoders
CN105262526B (zh) 一种基于最小化干扰投影矩阵核范数的干扰对齐方法
US20180261928A1 (en) Optimized Non-Uniform Linear Antenna Arrays
Pu et al. Optimal 2x2 Antenna Placement for Short-Range Communications
WO2020207170A1 (zh) 一种确定用户终端ue位置的方法以及处理装置
Xiang et al. Computer Vision Aided Beamforming Fused with Limited Feedback
CN109921836A (zh) 信道探测的确定方法、装置及存储介质
WO2023125049A1 (zh) 信道状态信息反馈方法及装置、介质、程序产品
Ying et al. Beamforming solvability in 3D Space using active scattering devices
CN116981037A (zh) 无线携能通信方法与***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795067

Country of ref document: EP

Kind code of ref document: A1