WO2023207429A1 - 动力电池的加热方法、装置、电子设备、***及存储介质 - Google Patents

动力电池的加热方法、装置、电子设备、***及存储介质 Download PDF

Info

Publication number
WO2023207429A1
WO2023207429A1 PCT/CN2023/082739 CN2023082739W WO2023207429A1 WO 2023207429 A1 WO2023207429 A1 WO 2023207429A1 CN 2023082739 W CN2023082739 W CN 2023082739W WO 2023207429 A1 WO2023207429 A1 WO 2023207429A1
Authority
WO
WIPO (PCT)
Prior art keywords
power battery
heating
self
heat
preset
Prior art date
Application number
PCT/CN2023/082739
Other languages
English (en)
French (fr)
Inventor
赵元淼
李占良
颜昱
但志敏
陈伟
陈新伟
黄孝键
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2023207429A1 publication Critical patent/WO2023207429A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of battery technology, and specifically to a heating method, device, electronic equipment, system and storage medium for a power battery.
  • power batteries are widely used in new energy vehicles, consumer electronics, energy storage systems and other fields.
  • the use of power batteries in low-temperature environments will be subject to certain restrictions. Specifically, the discharge capacity of power batteries will severely decline in low-temperature environments, and power batteries cannot be charged in low-temperature environments.
  • the present application provides a power battery heating method, device, electronic equipment, system and storage medium, which can solve the problem that the discharge capacity of power batteries in the prior art will seriously decline in low temperature environments, and the power battery will be severely degraded in low temperature environments. Unable to charge under the environment.
  • a simplified summary is provided below. This summary is not intended to be an extensive review, nor is it intended to identify key/important elements or to delineate the scope of these embodiments. Its sole purpose is to present a few concepts in a simplified form as a prelude to the more detailed explanation that follows.
  • this application provides a heating method for a power battery, including:
  • the corresponding heating mode is used to heat the power battery.
  • the current state parameter value of the power battery is obtained.
  • the corresponding heating mode is used to heat the power battery.
  • the discharge capacity increases and charging can be achieved, thereby It solves the technical problems in the prior art that the discharge capacity of the power battery in the low-temperature environment is severely reduced and the battery cannot be charged in the low-temperature environment.
  • using a corresponding heating mode to heat the power battery according to the current state parameter value includes: using a self-heating mode and/or an external heating mode to heat the power battery according to the current state parameter value.
  • the power battery is heated.
  • the heating mode includes self-heating and/or external heating, which makes it easy to select the appropriate heating mode according to the current status parameter value, and can perform external heating on the power battery when self-heating is not suitable. Heating overcomes the shortcoming of a single heating mode of power batteries in the existing technology, and solves the technical problem that only self-heating cannot meet the needs of practical applications.
  • the current state parameter value includes a current temperature value and a current state of charge value
  • the corresponding heating mode is used to heat the power battery, including:
  • the self-heating mode is used to heat the power battery.
  • the self-heating preset conditions are set reasonably to ensure that the self-heating mode is selected when the current state parameter value is most suitable for self-heating.
  • using a self-heating mode to heat the power battery includes:
  • the charging and discharging circuit in which the power battery is located is controlled to alternately form a charging loop and a discharging loop to heat the power battery.
  • a charging loop and a discharging loop are formed alternately, and AC current is used to generate heat to heat the power battery, with high heating efficiency.
  • the method further includes:
  • the temperature of the motor coolant is obtained in real time
  • Using motor coolant to assist in heating the power battery can make full use of the heat of the coolant, avoid energy waste, and improve heating efficiency and heating effect.
  • performing auxiliary heating of motor coolant includes:
  • the motor coolant is controlled to flow through the external pipeline of the power battery, and the motor coolant is used to auxiliary heat the power battery.
  • Using motor coolant to assist in heating the power battery can make full use of the heat of the coolant, avoid energy waste, and improve heating efficiency and heating effect.
  • the method further includes:
  • the charging and discharging circuit where the power battery is located is controlled to be disconnected. Since the self-heating efficiency is low when the preset self-heating stop conditions are met, stopping the self-heating when the preset self-heating stop conditions are met can avoid low-efficiency self-heating and avoid the energy generated in the motor windings during self-heating. loss.
  • the current status parameter value includes the current temperature value of the power battery
  • Determining whether the current state parameter value of the power battery meets the preset self-heating stop condition includes:
  • the current temperature value is greater than the second preset temperature, it is determined that the current state parameter value meets the preset self-heating stop condition. Since the self-heating efficiency is low when the preset self-heating stop conditions are met, stopping the self-heating when the preset self-heating stop conditions are met can avoid low-efficiency self-heating and avoid the energy generated in the motor windings during self-heating. loss.
  • the current state parameter value includes the current temperature rise rate of the power battery
  • Determining whether the current state parameter value of the power battery meets the preset self-heating stop condition includes:
  • the current temperature rise rate is less than the preset rate, it is determined that the current state parameter value meets the preset self-heating stop condition. Determining whether self-heating should be stopped based on the temperature rise rate can ensure that self-heating is stopped when the temperature rise rate is low, thereby avoiding energy loss caused by inefficient self-heating.
  • the method further includes:
  • the motor coolant is being used to heat the power battery when the preset self-heating stop condition is met, it is also controlled to stop using the motor coolant to heat the power battery. Stopping the coolant auxiliary heating can further avoid the energy loss caused by controlling the coolant flow.
  • the current state parameter value includes a current temperature value and a current state of charge value
  • the corresponding heating mode is used to heat the power battery, including:
  • the external heating mode is used to heat the power battery; or,
  • the external heating mode is used to heat the power battery. Determine whether the conditions for self-heating or external heating are met based on the current status parameter value, and select the corresponding heating mode based on the judgment result to ensure that the most appropriate heating mode is selected and that the power battery is externally heated when it is most suitable for external heating.
  • using the external heating mode to heat the power battery includes:
  • the external heat source is controlled to externally heat the power battery with high heating efficiency.
  • this application provides a heating device for a power battery, including:
  • An acquisition module used to acquire the current status parameter value of the power battery
  • a heating module is used to heat the power battery using a corresponding heating mode according to the current state parameter value.
  • the technical solution provided in the second aspect can be used to implement the method provided in the first aspect, and can obtain the current state parameter value of the power battery. According to the current state parameter value, the corresponding heating mode is used to heat the power battery, and the temperature of the power battery rises.
  • the high after-discharge capacity increases and enables charging, thus solving the technical problems in the prior art that the discharge capacity of power batteries in low-temperature environments severely declines and the battery cannot be charged in low-temperature environments.
  • the present application provides an electronic device, including a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the processor executes the program to implement the above. Any heating method.
  • the technical solution provided by the third aspect can realize the heating method of the first aspect, thereby achieving the same beneficial technical effects as the first aspect.
  • the present application provides a heating system for a power battery, including a controller, a charging and discharging circuit connected to the controller, and an external heat source.
  • the controller is used to implement any of the above heating methods.
  • the technical solution provided in the fourth aspect can realize the heating method of the first aspect, thereby achieving the same beneficial technical effects as the first aspect.
  • the charge and discharge circuit includes a switch module, an energy storage module and a charge and discharge switching module;
  • the switch module, the charge and discharge switching module and the power battery are connected in parallel;
  • the first end of the energy storage module is connected to the switch module, and the second end of the energy storage module is connected to the charge and discharge switching module;
  • the switch module and the charge and discharge switching module are used to form a charge and discharge circuit under the control of the controller, and charge and discharge the power battery to achieve self-heating;
  • the external heat source is used to externally heat the power battery under the control of the controller.
  • the switch module and the charge and discharge switching module operate under the control of the controller to form a charge and discharge circuit, and charge and discharge the power battery to achieve self-heating.
  • the external heat source includes a PTC heating device.
  • the PTC heating device is suitable for external heating of power batteries and has high heating efficiency.
  • the present application provides a computer-readable storage medium on which a computer program is stored, and the program is executed by a processor to implement any of the above heating methods.
  • the technical solution provided in the fifth aspect can realize the heating method of the first aspect, thereby achieving the same beneficial technical effects as the first aspect.
  • the present application provides a battery power device, including a power battery and a heating system in the fourth aspect.
  • the power battery is used to provide power
  • the heating system is used to heat the power battery. hot.
  • the technical solution provided by the sixth aspect can realize the heating method of the first aspect, thereby achieving the same beneficial technical effects as the first aspect.
  • Figure 1 shows a flow chart of a heating method for a power battery according to some embodiments of the present application
  • Figure 2 shows a flow chart of a heating method for a power battery according to some embodiments of the present application
  • Figure 3 shows a flow chart of a heating method for a power battery according to a specific example of this application
  • Figure 4 shows a schematic diagram of using coolant to heat a power battery
  • Figure 5 shows a schematic diagram of using a PTC heater to externally heat a power battery
  • Figure 6 shows the time relationship diagram of self-heating, coolant-assisted heating, PTC heater external heating, and before and after the start of driving;
  • Figure 7 shows the time relationship diagram before and after self-heating, coolant-assisted heating, PTC heater external heating, and charging start;
  • Figure 8 shows a structural block diagram of the heating system of the power battery and the power battery connected together in some embodiments of the present application
  • Figure 9 shows a structural block diagram of the heating system of the power battery and the power battery connected together in some embodiments of the present application.
  • Figure 10 shows a structural block diagram of a heating device for a power battery according to some embodiments of the present application
  • Figure 11 shows a structural block diagram of an electronic device according to some embodiments of the present application.
  • Figure 12 shows a schematic diagram of a computer-readable storage medium according to some embodiments of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • New energy vehicles powered by power batteries have good environmental protection effects, low noise, low cost, and high energy efficiency. It has the advantages of effectively promoting energy conservation and emission reduction, has huge market prospects, and is conducive to the sustainable development of the economy. Due to the electrochemical characteristics of power batteries, the performance of power batteries is greatly limited in low temperature environments, seriously affecting customers' winter driving experience. Therefore, in order to use the power battery normally, it is necessary to heat the power battery in a low temperature environment.
  • the electric vehicle can be equipped with a self-heating device for power batteries (such as lithium-ion batteries, etc.) to realize power battery heating.
  • the basic principle of self-heating of power batteries is to take advantage of the increased internal resistance of the power battery at low temperatures to release current from the power battery and then charge it back.
  • the disadvantage of the power battery self-heating mode is that its effect is limited by two factors: the state of charge parameter value and its own temperature: the power battery must have a certain amount of power to self-heat. If the power is too low, it will not be able to self-heat. In addition, the power battery is greatly limited by its own temperature. When the temperature of the power battery increases, the internal resistance of the power battery becomes smaller and the self-heating efficiency decreases. Therefore, if the power battery only matches the self-heating mode, the heating mode is too single and cannot be used. meet the needs of practical applications.
  • Self-heating of power battery is a kind of self-excitation, which uses the motor drive system to release the battery energy first and then charge it back.
  • the power battery is first required to have a certain amount of power (SOC) before it can stimulate a large current on the battery's positive and negative busbars for heating; if the battery power is insufficient, it will not be able to generate enough power.
  • SOC certain amount of power
  • the heating current cannot guarantee the heating effect; in addition, it is necessary to avoid the problem that the power battery self-heating causes the power battery to over-discharge and affects the battery life when the SOC is very low; when the SOC is very high, lithium precipitation and electrolyte will also occur Risk of damage; self-heating of the power battery requires the use of a power battery and motor drive system. At this time, the power battery and motor are in special working modes, so charging or driving cannot be performed during self-heating.
  • the power battery involved in the embodiments of the present application may be a lithium-ion battery, a lithium metal battery, a lead-acid battery, a nickel separator battery, a nickel-metal hydride battery, a lithium-sulfur battery, a lithium-air battery, a sodium-ion battery, etc., which are not limited here.
  • the power battery in the embodiment of the present application can be a single cell, a battery module or a battery pack, which is not limited here.
  • power batteries can be used in power devices such as cars and ships. For example, it can be used in power vehicles to power the motors of power vehicles and serve as the power source of electric vehicles.
  • the power battery can also power other electrical components in electric vehicles, such as in-car air conditioners, car players, etc.
  • the first embodiment of the present application provides a heating method for a power battery.
  • the method includes:
  • the current state parameter value of the power battery may include, for example, at least one of temperature and state of charge SOC.
  • the current temperature and state of charge SOC of the power battery can be read directly from the battery management system BMS.
  • Using the corresponding heating mode to heat the power battery according to the current state parameter value includes: using the self-heating mode and/or the external heating mode to heat the power battery according to the current state parameter value.
  • the preset heating condition satisfied by the current state parameter value is determined, and the power battery is heated using a heating mode corresponding to the satisfied preset heating condition.
  • the heating mode includes self-heating and/or external heating.
  • the preset heating conditions may include, for example, self-heating preset conditions and external heating preset conditions.
  • the current state parameter value includes a current temperature value and a current state of charge value; step S20 includes: if the current temperature value of the power battery is less than the first preset temperature and the state of charge of the power battery is greater than the preset charge threshold, the self-heating mode is used to heat the power battery.
  • the self-heating mode is used to heat the power battery.
  • the self-heating preset conditions are set reasonably to ensure that the most appropriate heating mode is selected when selecting the heating mode based on the current status parameter value.
  • the first preset temperature can be set according to actual needs, for example, it can be set to 0°C, 3°C, or 5°C.
  • the preset charging threshold can be set according to actual needs, for example, it can be set to 20%, 25% or 30%.
  • using the self-heating mode to heat the power battery includes: controlling the charging and discharging circuit in which the power battery is located to alternately form a charging loop and a discharging loop to heat the power battery.
  • a charging loop and a discharging loop are formed alternately, and AC current is used to generate heat to heat the power battery, which is highly efficient.
  • the heating method of the power battery in the embodiment of the present application obtains the current state parameter value of the power battery. According to the current state parameter value, the corresponding heating mode is used to heat the power battery.
  • the temperature of the power battery increases, the discharge capacity increases and charging can be realized. , thus solving the technical problems in the prior art that the discharge capacity of the power battery in the low-temperature environment is severely reduced and the battery cannot be charged in the low-temperature environment.
  • the method further includes:
  • the temperature of the motor coolant is obtained in real time
  • the motor coolant will be auxiliary heated. If the temperature difference is greater than the preset temperature difference, the preset motor auxiliary heating conditions are met. Using motor coolant to assist in heating the power battery can make full use of the heat of the coolant, avoid energy waste, and improve heating efficiency and heating effect.
  • the preset temperature difference can be set according to actual needs, for example, it can be set to 5°C, 6°C, or 8°C.
  • performing auxiliary heating of the motor coolant includes: controlling the flow of the motor coolant through the external pipeline of the power battery, and using the motor coolant to auxiliary heat the power battery. Utilize motor coolant The auxiliary heating power battery can make full use of the heat of the coolant, avoid energy waste, and improve the heating efficiency and heating effect.
  • step S20 includes: determining that the current state parameter value satisfies the self-heating preset condition or the external heating preset condition;
  • the charge and discharge circuit is controlled to charge and discharge the power battery to achieve self-heating. Determine whether the preset conditions for self-heating or external heating are met based on the current status parameter value, and select the corresponding heating mode based on the judgment result to ensure that the most appropriate heating mode is selected and self-heating is performed when self-heating is most suitable;
  • it may also include: if the preset conditions for external heating are met, controlling the external heat source to externally heat the power battery. Determine whether the preset conditions for self-heating or external heating are met based on the current status parameter value, and select the corresponding heating mode based on the judgment result to ensure that the most appropriate heating mode is selected and that the power battery is externally heated when it is most suitable. heating.
  • the current state parameter value can be compared with the self-heating preset condition and the external heating preset condition to determine whether the current state parameter value satisfies the self-heating preset condition or the external heating preset condition.
  • the current state parameter value includes a current temperature value and a current state of charge value
  • the self-heating preset condition includes that the current temperature of the power battery is within the first preset interval and the state of charge of the power battery is within the second preset interval.
  • the external heating preset conditions include that the current temperature of the power battery is within the third preset interval or the state of charge of the power battery is within the fourth preset interval.
  • the right end of the first preset interval is the aforementioned first preset temperature, and the left end of the first preset interval may be - ⁇ .
  • the left end of the second preset interval is the aforementioned preset charging threshold, and the right end of the second preset interval is 100%.
  • the left end of the third preset interval is the aforementioned first preset temperature, and the right end of the third preset interval is the aforementioned third preset temperature.
  • the left end of the fourth preset interval is 0, and the right end of the fourth preset interval is the aforementioned preset charging threshold.
  • the intersection of the first preset interval and the third preset interval is an empty set, and the intersection of the second preset interval and the fourth preset interval is an empty set.
  • the opening and closing state of the right side of the first preset interval can be set according to actual application needs.
  • the opening and closing status of the second preset interval can be set according to actual application needs.
  • the opening and closing status of the third preset interval can be set according to actual application needs.
  • the opening and closing status of the fourth preset interval can be set according to actual application needs.
  • the self-heating mode has the highest heating efficiency and the best heating effect.
  • the external heating mode can be used to make up for the decrease in self-heating efficiency. Defects, such as heating by external heat sources such as PTC heaters, have high heating efficiency.
  • an external The heating mode can improve the heating efficiency and enable the power battery to quickly reach a higher temperature. For example, heating through external heat sources such as PTC heaters has high heating efficiency.
  • the first preset interval is (- ⁇ , 0)
  • the second preset interval is [20%, 100%]
  • the third preset interval is [0, 20)
  • the fourth preset interval is [0, 20].
  • the interval is [0, 20%), that is, the preset conditions for self-heating include that the current temperature of the power battery is less than 0°C and the state of charge of the power battery is greater than or equal to 20%
  • the preset conditions for external heating include: the current temperature of the power battery Greater than or equal to 0°C and less than 20°C, or the state of charge of the power battery is greater than or equal to 0 and less than 20%.
  • the first preset interval is (- ⁇ , 5), the second preset interval is [30%, 100%], the third preset interval is [5, 18), and the fourth preset interval is [5, 18).
  • the default interval is [0,30%).
  • the first preset interval is (- ⁇ , 3), the second preset interval is [25%, 100%], the third preset interval is [3, 22), and the fourth preset interval is [3, 22).
  • the default interval is [0,25%). It can also be set to other intervals according to actual application needs.
  • the heating method provided by the embodiment of the present application determines the preset heating conditions satisfied by the current state parameter value of the power battery, and uses the heating mode corresponding to the satisfied preset heating conditions to heat the power battery.
  • the heating mode includes self-heating. and external heating, thereby enabling the selection of an appropriate heating mode, and the ability to externally heat the power battery when self-heating is not suitable, overcoming the shortcomings of a single heating mode for power batteries in the prior art, and solving the problem of only using self-heating. Technical problems that cannot meet the needs of practical applications.
  • the method further includes:
  • the charging and discharging process of the power battery is stopped, thereby stopping self-heating. Since the self-heating efficiency is low when the preset self-heating stop conditions are met, stopping the self-heating when the preset self-heating stop conditions are met can avoid low-efficiency self-heating and avoid the energy generated in the motor windings during self-heating. loss.
  • the current state parameter value includes the current temperature value of the power battery; determining whether the current state parameter value of the power battery meets the preset self-heating stop condition includes: if the current temperature value is greater than the second preset temperature, determining the current The status parameter value meets the preset self-heating stop condition. Since the self-heating efficiency is low when the preset self-heating stop conditions are met, stopping the self-heating when the preset self-heating stop conditions are met can avoid low-efficiency self-heating and avoid the energy generated in the motor windings during self-heating. loss.
  • the second preset temperature can be set according to actual needs, for example, it can be set to 10°C, 11°C, or 12°C.
  • the second preset temperature is greater than the first preset temperature.
  • the current status parameter value includes the current temperature rise rate of the power battery; determining whether the current status parameter value of the power battery meets the preset self-heating stop condition includes: if the current temperature rise rate is less than If the preset rate is set, it is determined that the current status parameter value meets the preset self-heating stop condition. Determining whether self-heating should be stopped based on the temperature rise rate can ensure that self-heating is stopped when the temperature rise rate is low, thereby avoiding energy loss caused by inefficient self-heating.
  • the preset rate can be set according to actual needs, for example, it can be set to 0.2°C/min, 0.3°C/min or 0.4°C/min.
  • the method further includes:
  • control is also performed to stop using the motor coolant to heat the power battery.
  • Stopping the coolant auxiliary heating can further avoid the energy loss caused by controlling the coolant flow.
  • the current state parameter value includes a current temperature value and a current state of charge value
  • Step S20 includes: when using the self-heating mode to heat the power battery, if it is determined that the current temperature value is greater than or equal to the second preset temperature and less than the third preset temperature, or it is determined that the current state of charge value is less than or equal to the preset charge threshold, the external heating mode is used to heat the power battery; or,
  • the external heating mode is used to heat the power battery.
  • the preset external heating condition is met. Determine whether the preset conditions for self-heating or external heating are satisfied based on the current status parameter value, and select the corresponding heating mode based on the judgment result to ensure that the most appropriate heating mode is selected and self-heating is performed when it is most suitable for self-heating.
  • the third preset temperature can be set according to actual needs, for example, it can be set to 18°C, 20°C, or 22°C.
  • the third preset temperature is greater than the second preset temperature.
  • using an external heating mode to heat the power battery includes: controlling an external heat source to heat the power battery.
  • the current status parameter value of the power battery satisfies the preset self-heating stop condition.
  • the current status parameter value of the power battery is obtained in real time, and it is judged whether the current status parameter value meets the preset self-heating stop condition.
  • the preset self-heating stop condition may include, for example, at least one of two conditions: the current temperature of the power battery is within the seventh preset interval and the current temperature rise rate of the power battery is within the eighth preset interval.
  • the current state parameter value of the power battery includes the current temperature of the power battery;
  • the preset self-heating stop condition includes that the current temperature of the power battery is within the seventh preset interval.
  • the left end of the seventh preset interval is the aforementioned second preset temperature.
  • the right end of the seventh preset interval may be + ⁇ .
  • the opening and closing state of the left side of the seventh preset interval can be set according to actual needs, for example, it can be set to (10, + ⁇ ), [11, + ⁇ ), or (12, + ⁇ ), etc.
  • the current state parameter value of the power battery includes the current temperature rise rate of the power battery;
  • the preset self-heating stop condition includes that the current temperature rise rate of the power battery is within the eighth preset interval;
  • the method before determining whether the current state parameter value of the power battery meets the preset self-heating stop condition, the method also includes: when controlling the charge and discharge circuit to charge and discharge the power battery to achieve self-heating, obtain the power battery in real time temperature rise rate.
  • Determining whether self-heating should be stopped based on the temperature rise rate can ensure that self-heating is stopped when the temperature rise rate is low, thereby avoiding energy loss caused by inefficient self-heating. Since the preset self-heating stop condition used in this example involves the temperature rise rate of the power battery, it is necessary to obtain the temperature rise rate of the power battery in real time when controlling the charge and discharge circuit to charge and discharge the power battery to achieve self-heating. , in order to determine whether the current temperature rise rate of the power battery meets the preset self-heating stop condition.
  • the temperature rise rate can be calculated by the battery management system BMS. To obtain the temperature rise rate of the power battery, you can directly read the temperature rise rate from the battery management system BMS.
  • the right end point of the eighth preset interval is the aforementioned preset rate.
  • the opening and closing state of the eighth preset interval can be set according to actual needs, for example, it can be set to [0,0.2), [0,0.3] or [0,0.4), etc.
  • the unit of temperature rise rate is °C/min. Taking the eighth preset interval as [0,0.2) as an example, when the temperature rise rate is less than 0.2°C/min, the preset self-heating stop condition is reached.
  • the control stops charging and discharging the power battery to stop self-heating.
  • Controlling the stop of charging and discharging the power battery can be achieved by controlling the disconnection of the charging and discharging circuit.
  • step S40 If the preset self-heating stop condition is not met, the process goes to step S40 to maintain self-heating, obtain the current state parameter value of the power battery in real time and determine whether it meets the preset self-heating stop condition.
  • the right end of the sixth preset interval is the aforementioned third preset temperature.
  • the left end of the sixth preset interval may be - ⁇ .
  • the opening and closing state of the right side of the sixth preset interval can be specifically set according to actual needs, for example, it can be set to (- ⁇ , 20), (- ⁇ , 21], or (- ⁇ , 22), etc.
  • the external heat source is controlled to externally heat the power battery.
  • the external heat source is controlled to externally heat the power battery. After the self-heating is stopped, external heating is started, and external heating can be performed in a state most suitable for external heating, so as to increase the temperature of the power battery most efficiently.
  • the power battery is heated by an external heat source to further increase the temperature of the power battery.
  • the external heat source may be a PTC heating device, for example.
  • an external heat source such as a PTC heating device
  • the electric vehicle is allowed to travel or the power battery is charged.
  • the temperature of the power battery is obtained in real time.
  • the temperature of the power battery exceeds the sixth preset interval, external heating of the power battery is stopped.
  • the sixth preset interval as (- ⁇ , 20) as an example, if the current temperature of the power battery reaches 20°C or above, the heating of the power battery by the external heat source is stopped.
  • the temperature of the power battery exceeds the sixth preset interval, the temperature of the power battery can already meet the needs of practical applications, so there is no need to continue heating, so heating of the power battery is stopped.
  • the motor When the power battery self-heats, the motor generates heat due to the current flowing through the windings. It can detect the outlet temperature of the motor coolant (the coolant is usually water, but of course it can also be other liquids used to cool the motor). When the outlet temperature exceeds the battery temperature, the output coolant can be directed into the liquid outside the power battery.
  • the power battery is auxiliary heated in the flow channel.
  • the second embodiment of the present application provides a heating method for a power battery.
  • the method in addition to steps S10 to S30 in the previous embodiment, the method also includes:
  • the temperature of the power battery can be read from the battery management system BMS, and the temperature of the motor coolant can be read from the vehicle controller VCU.
  • S50' Determine whether the difference between the current temperature of the motor coolant and the current temperature of the power battery is within the fifth preset interval.
  • the left end of the fifth preset interval is the aforementioned preset temperature difference.
  • the opening and closing status of the fifth preset interval can be preset according to actual application needs.
  • the fifth preset interval may be (5, + ⁇ ), (6, + ⁇ ) or [8, + ⁇ ), etc.
  • the motor coolant is used to heat the power battery.
  • Using motor coolant to assist in heating the power battery can make full use of the heat of the coolant, avoid energy waste, and improve heating efficiency and heating effect.
  • the motor windings When the power battery self-heats, the motor windings will generate heat due to the current passing through them.
  • the coolant in the motor cooling system absorbs the heat emitted by the motor windings and the temperature rises.
  • the outlet water temperature of the motor cooling system can be detected. When the outlet water temperature is consistent with the current temperature of the power battery When the temperature difference exceeds the preset threshold, the coolant can be introduced into the liquid flow channel outside the power battery to heat the power battery, thereby making full use of the heat of the coolant, avoiding energy waste, and improving the heating efficiency and heating effect.
  • the method further includes:
  • stopping the self-heating when the preset self-heating stop conditions are met can avoid low-efficiency self-heating and avoid the energy generated in the motor windings during self-heating. Loss, stopping the coolant auxiliary heating can further avoid the energy loss caused by controlling the coolant flow.
  • the method of this embodiment also includes steps S60 to S80 in the previous embodiment. That is, the method of this embodiment includes: sequentially executing steps S10 to step S30, step S40' to step S80', and determining whether the current temperature of the power battery is within the sixth preset interval. If it is within the sixth preset interval, Then control the external heat source to externally heat the power battery, determine in real time whether the temperature of the power battery exceeds the sixth preset interval, and stop external heating of the power battery if it exceeds the sixth preset interval. .
  • a power battery heating method including the following steps:
  • the preset conditions for self-heating include that the current temperature of the power battery is less than 0°C and the current SOC of the power battery is greater than or equal to 20%;
  • the temperature of the power battery is detected in real time.
  • the power battery heating program is exited;
  • the temperature of the motor coolant and the temperature of the power battery are obtained in real time. degree; when the difference between the temperature of the motor coolant and the temperature of the power battery exceeds 5°C, the control uses the motor coolant to heat the power battery;
  • the controller controls the coolant to circulate between the liquid flow channel of the motor drive system and the liquid flow channel outside the battery, thereby using the heat of the coolant to assist in heating the power battery.
  • the controller controls the PTC heater to input its own water into the liquid flow channel outside the power battery, and then flows back to the PTC from the liquid flow channel outside the power battery. In the heater, circulation flows to externally heat the power battery.
  • the battery self-heating As the battery temperature rises, the internal resistance of the battery will gradually decrease, which will cause the battery's self-heating effect to gradually become worse. However, the electric drive system is still under self-heating stimulation, which will cause the energy consumption to remain large but the battery The heating effect is not good.
  • the battery self-heating is turned off to avoid high energy consumption under self-heating, and the battery is switched to external heating mode to heat the power battery, that is, the PTC heater is turned on. heating.
  • the battery After turning on the PTC heater, the battery has passed the low efficiency range of the PTC heater due to rapid self-heating (the lower the temperature, the worse the PTC heating effect).
  • the PTC heater starts from the current temperature and has higher heating efficiency. The energy consumption is small and energy can be saved. In addition, turning on the PTC heater does not affect vehicle charging or driving, which can save time.
  • the battery self-heating starts at t5
  • the motor coolant auxiliary heating starts at t6
  • the battery self-heating and the motor coolant auxiliary heating stop at t7
  • the PTC heater starts Heating and the power battery starts charging
  • the third embodiment of the present application provides a power battery heating system, including a controller, a charge and discharge circuit connected to the controller, and an external heat source.
  • the controller can be used to implement any of the above.
  • the charge and discharge circuit includes a switch module 2, an energy storage module 3 and a charge and discharge switching module 4; the switch module 2, the charge and discharge switching module 4 and the power battery 1 are connected in parallel; the first end of the energy storage module 3 is connected to the switch module and the energy storage module The second end of 3 is connected to the charging and discharging switching module 4; the switching module 2 and the charging and discharging switching module 4 are used to form a charging and discharging circuit under the control of the controller, and charge and discharge the power battery 1 to achieve self-heating; external heat source It is used to externally heat the power battery 1 under the control of the controller. open
  • the off module and the charging and discharging switching module operate under the control of the controller to form a charging and discharging circuit, and charge and discharge the power battery to achieve self-heating.
  • the energy storage module 3 may include motor windings
  • the switch module 2 may include a motor inverter.
  • the external heat source includes a PTC heating device.
  • the external heat source can also take the form of other forms of external heating devices.
  • the PTC heating device is suitable for external heating of power batteries and has high heating efficiency.
  • the PTC heating device is, for example, a PTC heater.
  • the PTC heater can heat the power battery through water heating. That is, the PTC resistance wire generates heat to heat the coolant, and then introduces the heated coolant into the external liquid flow channel of the power battery. , the power battery absorbs heat in the external liquid flow channel and gradually heats up.
  • the heating method of PTC heater is suitable for many working conditions, even when charging or driving.
  • the charge and discharge switching module includes a first switching circuit and a second switching circuit connected in series; the connection point of the first switching circuit and the second switching circuit is connected to the second end of the energy storage module; the first switching circuit and a second switching circuit for turning on or off when triggered by the charge and discharge enable signal.
  • the first switching circuit includes an upper bridge arm
  • the second switching circuit includes a lower bridge arm; the connection point of the upper bridge arm and the lower bridge arm is connected to the second end of the energy storage module.
  • the energy storage module 3 includes three-phase windings of the motor, and the three-phase windings are winding 311 , winding 312 and winding 313 respectively.
  • the switch module 2 includes a bridge arm 21 , a bridge arm 22 and a bridge arm 23 of a motor inverter.
  • the internal resistance of power battery 1 is R.
  • the charge and discharge switching module 4 includes a first switching circuit and a second switching circuit connected in series.
  • the first switching circuit includes a first upper bridge arm, and the second switching circuit includes a first lower bridge arm; the connection point of the first upper bridge arm and the first lower bridge arm is connected to the neutral point of the three-phase winding.
  • the first upper bridge arm includes a first switch and a first diode connected in parallel
  • the first lower bridge arm includes a second switch and a second diode connected in parallel
  • the cathode of the first diode is connected to the anode of the power supply module.
  • the anode of the first diode is connected to the cathode of the second diode
  • the anode of the second diode is connected to the cathode of the first battery pack.
  • the upper bridge arm 41 is the first upper bridge arm
  • the lower bridge arm 42 is the first lower bridge arm.
  • the upper arm 41 includes a first switch V7 and a first diode D7 connected in parallel
  • the lower arm 42 includes a second switch V8 and a second diode D8 connected in parallel
  • the cathode of the first diode D7 is connected to the cathode of the power battery.
  • the anodes are connected, the anode of the first diode D7 is connected to the cathode of the second diode D8, and the anode of the second diode D8 is connected to the cathode of the power battery.
  • the first upper bridge arm may include only the first switch but not the first diode
  • the first lower bridge arm may only include the second switch but not the second diode.
  • connection point of the upper bridge arm 211 and the lower bridge arm 212 of the bridge arm 21 is connected to one end of the winding 311, and the connection point of the upper bridge arm 221 and the lower bridge arm 222 of the bridge arm 22 is connected to one end of the winding 312.
  • the connection point of the upper arm 231 and the lower arm 232 of the arm 23 is connected to one end of the winding 313, and the connection point of the upper arm 41 and the lower arm 42 of the charge and discharge switching module 4 is connected to the neutral point of the three-phase winding.
  • the upper arm 211 includes a parallel switch V1 and a diode D1
  • the lower arm 212 includes a parallel switch V4 and a diode D4
  • the upper arm 221 includes a parallel switch V2 and a diode D2
  • the lower arm 222 includes a parallel switch V5 and a diode.
  • D5; the upper bridge arm 231 includes a parallel-connected switch V3 and a diode D3
  • the lower bridge arm 232 includes a parallel-connected switch V6 and a diode D6.
  • the negative poles of D1, D2 and D3 are all connected to the positive pole of power battery 1
  • the positive poles of D4, D5 and D6 are all connected to the negative pole of power battery 1.
  • the charging loop and the discharging loop are periodically turned on alternately.
  • this charging and discharging circuit will not cause the three-phase motor to operate, it can solve the problem of heating of the rotor in the motor, thereby extending the self-heating use time of the power battery.
  • the upper bridge arm of the three-phase bridge arm connected to the windings 311 to 313 and the lower bridge arm 42 of the charge and discharge switching module 4 connected to the neutral point of the three-phase winding keep the switch on or off at the same time, connected to the winding
  • the lower bridge arm of the three-phase bridge arms 311 to 313 and the upper bridge arm 41 of the charge and discharge switching module 4 connected to the neutral point of the three-phase winding simultaneously keep the switch on or off, so that the discharge loop and the charging loop can be realized .
  • the power battery heating system provided in this embodiment can be used to implement the heating method in any of the above embodiments, and can achieve the same beneficial effects as the heating method.
  • the fourth embodiment of the present application provides a heating device for a power battery.
  • the heating device includes:
  • the heating module is used to heat the power battery using the corresponding heating mode according to the current status parameter value.
  • the heating module is used to heat the power battery using a heating mode corresponding to a preset heating condition satisfied by the current state parameter value.
  • the heating mode includes self-heating and/or external heating.
  • the power battery heating device of the present application is used to implement the heating method of any of the above embodiments, obtain the current status parameter value of the power battery, and use the corresponding heating mode to heat the power battery according to the current status parameter value.
  • the power battery temperature After rising, the discharge capacity increases and charging can be realized, thereby solving the technical problems in the existing technology that the discharge capacity of power batteries in low temperature environments is severely reduced and the batteries cannot be charged in low temperature environments.
  • the current state parameter value includes a current temperature value and a current state of charge value
  • the heating module is further specifically configured to: if the current temperature value of the power battery is less than the first preset temperature and the state of charge of the power battery is greater than the preset charge threshold, use the self-heating mode to heat the power battery.
  • the heating module performs the self-heating mode to heat the power battery, including: controlling the charging and discharging circuit where the power battery is located to alternately form a charging loop and a discharging loop to heat the power battery.
  • the heating device further includes:
  • the coolant temperature acquisition unit is used to acquire the temperature of the motor coolant in real time during the heating process using self-heating heating mode
  • a judgment unit used to judge whether the difference between the temperature of the motor coolant and the current temperature value of the power battery in the current status parameter value is greater than the preset temperature difference
  • a determination unit is used to perform auxiliary heating of the motor coolant if the temperature difference is greater than the preset temperature difference.
  • the auxiliary heating of the motor coolant performed by the determination unit includes: controlling the flow of the motor coolant through the external pipeline of the power battery, and using the motor coolant to auxiliary heat the power battery.
  • the device further includes:
  • the preset self-heating stop condition determination module is used to determine whether the current state parameter value of the power battery meets the preset self-heating stop condition during the process of heating the power battery in the self-heating mode;
  • the charge and discharge circuit where the power battery is located is controlled to be disconnected.
  • the current status parameter value includes the current temperature value of the power battery
  • the preset self-heating stop condition determination module is further configured to: if the current temperature value is greater than the second preset temperature, determine that the current state parameter value satisfies the preset self-heating stop condition.
  • the current status parameter value includes the current temperature rise rate of the power battery
  • the preset self-heating stop condition determination module is further used to: if the current temperature rise rate is less than the preset rate, determine that the current state parameter value meets the preset self-heating stop condition.
  • the device further includes:
  • the coolant heating stop module is used to control and stop using the motor coolant to heat the power battery if it is determined that the motor coolant is being used to heat the power battery when the preset self-heating stop conditions are met.
  • the current state parameter value includes a current temperature value and a current state of charge value
  • the heating module is further specifically used for:
  • the external heating mode is used to heat the power battery.
  • the heating module uses an external heating mode to heat the power battery, including: controlling an external heat source to heat the power battery.
  • the heating device heats the power battery using a heating mode corresponding to the satisfied preset heating condition by determining the preset heating conditions satisfied by the current state parameter value of the power battery.
  • the heating mode includes automatic Heating and external heating, thereby enabling the selection of an appropriate heating mode, external heating of the power battery when it is not suitable for self-heating, overcoming the shortcomings of a single heating mode of the power battery in the existing technology, and solving the problem of only using self-heating. Technical problems that heating cannot meet the needs of practical applications.
  • the fifth embodiment of the present application provides an electronic device, including a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor executes the computer program to implement the above.
  • the electronic device 10 may include: a processor 100, a memory 101, a bus 102 and a communication interface 103.
  • the processor 100, the communication interface 103 and the memory 101 are connected through the bus 102; the memory 101 stores information available in the processor.
  • a computer program running on the computer 100 When the processor 100 runs the computer program, the method provided by any of the foregoing embodiments of the application is executed.
  • the memory 101 may include high-speed random access memory (RAM: Random Access Memory), or may also include non-volatile memory (non-volatile memory), such as at least one disk memory.
  • RAM Random Access Memory
  • non-volatile memory such as at least one disk memory.
  • the communication connection between the system network element and at least one other network element is realized through at least one communication interface 103 (which can be wired or wireless), and the Internet, wide area network, local network, metropolitan area network, etc. can be used.
  • the bus 102 may be an ISA bus, a PCI bus, an EISA bus, etc.
  • the bus can be divided into address bus, data bus, control bus, etc.
  • the memory 101 is used to store a program, and the processor 100 executes the program after receiving the execution instruction.
  • the method disclosed in any of the embodiments of the present application can be applied to the processor 100 or implemented by the processor 100 .
  • the processor 100 may be an integrated circuit chip with signal processing capabilities. During the implementation process, each step of the above method can be completed by instructions in the form of hardware integrated logic circuits or software in the processor 100 .
  • the above-mentioned processor 100 can be a general-purpose processor, which can include a central processing unit (Central Processing Unit, CPU for short), a network processor (Network Processor, NP for short), etc.; it can also be a digital signal processor (DSP), a dedicated integrated processor Circuits (ASICs), off-the-shelf programmable gate arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASICs dedicated integrated processor Circuits
  • FPGAs off-the-shelf programmable gate arrays
  • Each method, step and logical block diagram disclosed in the embodiment of this application can be implemented or executed.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory 101.
  • the processor 100 reads the information in the memory 101 and completes the steps of the above method in combination with its hardware.
  • the electronic device provided by the embodiments of the present application and the method provided by the embodiments of the present application are based on the same inventive concept, and have the same beneficial effects as the methods adopted, run or implemented.
  • the sixth embodiment of the present application provides a computer-readable storage medium on which a computer program is stored, and the program is executed by a processor to implement the heating method of any of the above embodiments.
  • the computer-readable storage medium shown is an optical disk 20, on which a computer program (ie, a program product) is stored.
  • a computer program ie, a program product
  • the computer program When the computer program is run by a processor, it will execute any of the foregoing embodiments. method.
  • examples of computer-readable storage media may also include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), and other types of random access memory.
  • PRAM phase change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory or other optical and magnetic storage media, which will not be described one by one here.
  • the computer-readable storage medium provided by the above embodiments of the present application is based on the same inventive concept as the method provided by the embodiments of the present application, and has the same beneficial effects as the methods adopted, run or implemented by the application programs stored therein.
  • the seventh embodiment of the present application provides a battery power device, including a power battery and the heating system in any of the above embodiments.
  • the power battery is used to provide power
  • the heating system is used to heat the power battery.
  • the battery-powered device may be, for example, an electric vehicle or other device powered by a battery.
  • module is not intended to be limited to a particular physical form. Depending on the specific application, modules may be implemented as hardware, firmware, software, and/or a combination thereof. Furthermore, different modules can share common components or even be implemented by the same components. There may or may not be clear boundaries between different modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种动力电池(1)的加热方法、装置、电子设备、***及存储介质。加热方法包括:获取动力电池(1)的当前状态参数值;根据当前状态参数值,采用对应的加热模式对动力电池(1)进行加热,动力电池(1)温度升高后放电容量增加、能够实现充电。

Description

动力电池的加热方法、装置、电子设备、***及存储介质 技术领域
本申请涉及电池技术领域,具体涉及一种动力电池的加热方法、装置、电子设备、***及存储介质。
背景技术
由于具有能量密度高、可循环充电、安全环保等优点,动力电池被广泛应用于新能源汽车、消费电子、储能***等领域中。但是低温环境下动力电池的使用会受到一定限制。具体地,动力电池在低温环境下的放电容量会严重衰退,并且动力电池在低温环境下无法充电。
发明内容
鉴于上述问题,本申请提供一种动力电池的加热方法、装置、电子设备、***及存储介质,能够解决现有技术中的动力电池在低温环境下的放电容量会严重衰退,并且动力电池在低温环境下无法充电。为了对披露的实施例的一些方面有一个基本的理解,下面给出了简单的概括。该概括部分不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围。其唯一目的是用简单的形式呈现一些概念,以此作为后面的详细说明的序言。
第一方面,本申请提供了一种动力电池的加热方法,包括:
获取所述动力电池的当前状态参数值;
根据所述当前状态参数值,采用对应的加热模式对所述动力电池进行加热。
第一方面提供的技术方案中,获取动力电池的当前状态参数值,根据当前状态参数值,采用对应的加热模式对动力电池进行加热,动力电池温度升高后放电容量增加、能够实现充电,从而解决了现有技术中的动力电池在低温环境下的放电容量严重衰退以及在低温环境下无法充电的技术问题。
在一些实施例中,所述根据所述当前状态参数值,采用对应的加热模式对所述动力电池进行加热包括:根据所述当前状态参数值,采用自加热模式和/或外部加热模式对所述动力电池进行加热。加热模式包括自加热和/或外部加热,便于根据当前状态参数值选择合适的加热模式,能够在不适合自加热的情况下对动力电池进行外部 加热,克服了现有技术中动力电池的加热模式单一的缺陷,解决了仅仅通过自加热不能满足实际应用需要的技术问题。
在一些实施例中,所述当前状态参数值包括当前温度值和当前荷电状态值;
所述根据所述当前状态参数值,采用对应的加热模式对所述动力电池进行加热,包括:
若所述动力电池的当前温度值小于第一预设温度且所述动力电池的荷电状态大于预设荷电阈值,则采用自加热模式对所述动力电池进行加热。自加热预设条件设置合理,能够确保在当前状态参数值最适合自加热时选择自加热模式。
在一些实施例中,所述采用自加热模式对所述动力电池进行加热,包括:包括:
控制所述动力电池所在的充放电电路中交替地形成充电回路和放电回路,以加热所述动力电池。交替地形成充电回路和放电回路,利用交流电流产生热量以加热动力电池,加热效率较高。
在一些实施例中,所述方法还包括:
在利用所述自加热的加热模式进行加热过程中,实时获取电机冷却液的温度;
判断所述电机冷却液的温度与所述当前状态参数值中所述动力电池的当前温度值的差值是否大于预设温差;
若大于所述预设温差,则进行电机冷却液辅助加热。
利用电机冷却液辅助加热动力电池,能充分利用冷却液的热量,避免能量浪费,且提高了加热效率和加热效果。
在一些实施例中,所述进行电机冷却液辅助加热,包括:
控制所述电机冷却液流经所述动力电池的外部管路,利用所述电机冷却液对所述动力电池进行辅助加热。利用电机冷却液辅助加热动力电池,能充分利用冷却液的热量,避免能量浪费,且提高了加热效率和加热效果。
在一些实施例中,所述方法还包括:
在采用所述自加热模式对所述动力电池进行加热的过程中,确定所述动力电池的当前状态参数值是否满足预设自加热停止条件;
若满足,则控制所述动力电池所在的充放电电路断开。由于在满足预设自加热停止条件时,自加热效率较低,所以在满足预设自加热停止条件时停止自加热,能够避免低效率的自加热,避免自加热时在电机绕组中产生的能量损耗。
在一些实施例中,所述当前状态参数值包括所述动力电池的当前温度值;
所述确定所述动力电池的当前状态参数值是否满足预设自加热停止条件,包括:
若所述当前温度值大于第二预设温度,则确定所述当前状态参数值满足预设自加热停止条件。由于在满足预设自加热停止条件时,自加热效率较低,所以在满足预设自加热停止条件时停止自加热,能够避免低效率的自加热,避免自加热时在电机绕组中产生的能量损耗。
在一些实施例中,所述当前状态参数值包括所述动力电池的当前温升速率;
所述确定所述动力电池的当前状态参数值是否满足预设自加热停止条件,包括:
若所述当前温升速率小于预设速率,则确定所述当前状态参数值满足预设自加热停止条件。通过温升速率判断是否应该停止自加热,能够确保在温升速率较低时停止自加热,从而避免低效自加热所带来的能量损耗。
在一些实施例中,所述方法还包括:
若确定满足所述预设自加热停止条件时正利用电机冷却液对所述动力电池加热,则还控制停止利用所述电机冷却液对所述动力电池进行加热。停止冷却液辅助加热能够进一步避免控制冷却液流动所带来的能量损耗。
在一些实施例中,所述当前状态参数值包括当前温度值和当前荷电状态值;
所述根据所述当前状态参数值,采用对应的加热模式对所述动力电池进行加热,包括:
在采用所述自加热模式对所述动力电池进行加热时,若确定所述当前温度值大于等于第二预设温度且小于第三预设温度,或者确定所述当前荷电状态值小于或等于预设荷电阈值,则采用所述外部加热模式对所述动力电池进行加热;或者,
在所述当前状态参数值不满足自加热的条件,且所述当前温度值小于第三预设温度时,则采用所述外部加热模式对所述动力电池进行加热。根据当前状态参数值判断满足自加热的条件还是外部加热的条件,根据判断结果选择对应的加热模式,能够确保选择最合适的加热模式,能够确保在最适合外部加热时对动力电池进行外部加热。
在一些实施例中,所述采用所述外部加热模式对所述动力电池进行加热,包括:
控制外部热源对所述动力电池进行加热。控制外部热源对动力电池进行外部加热,加热效率高。
第二方面,本申请提供了一种动力电池的加热装置,包括:
获取模块,用于获取所述动力电池的当前状态参数值;
加热模块,用于根据所述当前状态参数值,采用对应的加热模式对所述动力电池进行加热。
第二方面提供的技术方案,能够用于实现第一方面提供的方法,能够获取动力电池的当前状态参数值,根据当前状态参数值,采用对应的加热模式对动力电池进行加热,动力电池温度升高后放电容量增加、能够实现充电,从而解决了现有技术中的动力电池在低温环境下的放电容量严重衰退以及在低温环境下无法充电的技术问题。
第三方面,本申请提供了一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序,以实现上述任一项的加热方法。
第三方面提供的技术方案能够实现第一方面的加热方法,从而能够达到与第一方面相同的有益技术效果。
第四方面,本申请提供了一种动力电池的加热***,包括控制器以及与所述控制器相连接的充放电电路和外部热源,所述控制器用于实现上述任一项的加热方法。第四方面提供的技术方案能够实现第一方面的加热方法,从而能够达到与第一方面相同的有益技术效果。
在一些实施例中,所述充放电电路包括开关模块、储能模块和充放电切换模块;
所述开关模块、所述充放电切换模块和所述动力电池并联连接;
所述储能模块的第一端连接所述开关模块,所述储能模块的第二端连接所述充放电切换模块;
所述开关模块和所述充放电切换模块用于在所述控制器的控制下进行动作形成充放电回路,对所述动力电池进行充放电以实现自加热;
所述外部热源用于在所述控制器的控制下对所述动力电池进行外部加热。
开关模块和充放电切换模块在控制器的控制下进行动作形成充放电回路,对动力电池进行充放电以实现自加热。
在一些实施例中,所述外部热源包括PTC加热装置。PTC加热装置适用于对动力电池的外部加热,加热效率高。
第五方面,本申请提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行,以实现上述任一项的加热方法。第五方面提供的技术方案能够实现第一方面的加热方法,从而能够达到与第一方面相同的有益技术效果。
第六方面,本申请提供了一种电池动力装置,包括动力电池以及第四方面的加热***,所述动力电池用于提供动力,所述加热***用于对所述动力电池进行加 热。第六方面提供的技术方案能够实现第一方面的加热方法,从而能够达到与第一方面相同的有益技术效果。
本申请的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者,部分特征和优点可以从说明书中推知或毫无疑义地确定,或者通过实施本申请实施例了解。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本申请一些实施方式的动力电池的加热方法流程图;
图2示出了本申请一些实施方式的动力电池的加热方法流程图;
图3示出了本申请一个具体示例的动力电池的加热方法流程图;
图4示出了利用冷却液对动力电池进行加热的示意图;
图5示出了利用PTC加热器对动力电池进行外部加热的示意图;
图6示出了自加热、冷却液辅助加热、PTC加热器外部加热以及行车开始前后的时间关系图;
图7示出了自加热、冷却液辅助加热、PTC加热器外部加热以及充电开始前后的时间关系图;
图8示出了本申请一些实施方式的动力电池的加热***与动力电池连接在一起的结构框图;
图9示出了本申请一些实施方式的动力电池的加热***与动力电池连接在一起的结构框图;
图10示出了本申请一些实施方式的动力电池的加热装置结构框图;
图11示出了本申请一些实施方式的电子设备的结构框图;
图12示出了本申请一些实施方式的计算机可读存储介质的示意图。
本申请的目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:存在A,同时存在A和B,存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
以动力电池提供动力的新能源汽车具有环保效果好、噪音小、成本低、能 够有效促进节能减排等优点,具有巨大的市场前景,有利于经济的可持续发展。由于动力电池的电化学特性,在低温环境下,动力电池的性能被大大限制,严重影响客户冬季用车体验。因此,为了能够正常使用动力电池,需要在低温环境下为动力电池进行加热。
发明人发现,动力电池处于低温状态,温度越低,电池内阻越大,加热效果越好,随着温度上升,电池内阻逐渐减小,电池升温效果降低,表现为电池温升速率(每分钟温升值℃/min)越来越小。发明人还发现,为了提升电动车辆在寒冷地区的适配性,可以为电动车辆适配动力电池(例如锂离子电池等)自加热装置以实现动力电池加热。动力电池自加热的基本原理是,利用动力电池在低温下内阻增大的特点,将电流从动力电池中放出来再回充回去,这样电流流经动力电池内阻,动力电池内部产生热量,温度升高,从而达到加热动力电池的目的。但是,动力电池自加热模式的缺陷在于其效果受到荷电状态参数值和自身温度两种因素的限制:动力电池必须具备一定的电量才能进行自加热,若电量太低,则无法进行自加热,另外动力电池受到自身温度的限制较大,当动力电池温度升高后,动力电池内阻变小,自加热效率降低,因此,如果动力电池仅仅匹配有自加热模式,则加热模式太单一,不能满足实际应用的需要。
动力电池自加热是一种自激励,是利用电机驱动***先把电池能量放出来,再回充回去。要通过电机将动力电池中的电放出来,首先要求动力电池具备一定电量(SOC),才能在电池正负极母线上激励出一个大电流来用于加热;如果电池电量不足,则无法产生足够的加热电流,无法保证加热效果;此外还要避免在SOC很低时,由于进行动力电池自加热导致动力电池过放影响电池寿命的问题;在SOC很高时,还会产生析锂、电解液损伤的风险;动力电池自加热需要使用动力电池、电机驱动***,此时动力电池、电机处于特殊工作模式,因此自加热时不能进行充电或行车。
本申请实施例中涉及的动力电池可以为锂离子电池、锂金属电池、铅酸电池、镍隔电池、镍氢电池、锂硫电池、锂空气电池或者钠离子电池等,在此不做限定。从规模而言,本申请实施例中的动力电池可以为电芯单体,也可以是电池模组或电池包,在此不做限定。从应用场景而言,动力电池可应用于汽车、轮船等动力装置内。比如,可以应用于动力汽车内,为动力汽车的电机供电,作为电动汽车的动力源。动力电池还可为电动汽车中的其他用电器件供电,比如为车内空调、车载播放器等供电。
如图1所示,本申请的第一个实施例提供了一种动力电池的加热方法,在一些实施方式中,该方法包括:
S10、获取动力电池的当前状态参数值。
动力电池的当前状态参数值例如可以包括温度和荷电状态SOC中的至少一种。动力电池的当前温度和荷电状态SOC可以直接从电池管理***BMS中读取。
S20、根据当前状态参数值,采用对应的加热模式对动力电池进行加热。
根据当前状态参数值,采用对应的加热模式对动力电池进行加热包括:根据当前状态参数值,采用自加热模式和/或外部加热模式对动力电池进行加热。
具体地,确定该当前状态参数值所满足的预设加热条件,利用与所满足的预设加热条件相对应的加热模式对动力电池进行加热,加热模式包括自加热和/或外部加热。预设加热条件例如可以包括自加热预设条件和外部加热预设条件。
在一些实施方式中,当前状态参数值包括当前温度值和当前荷电状态值;步骤S20包括:若动力电池的当前温度值小于第一预设温度且动力电池的荷电状态大于预设荷电阈值,则采用自加热模式对动力电池进行加热。
具体地,确定当前状态参数值满足预设自加热条件后采用自加热模式对动力电池进行加热。自加热预设条件设置合理,能够确保在根据当前状态参数值选择加热模式时选择最合适的加热模式。
第一预设温度具体可以根据实际需要进行设定,例如可以设定为0℃、3℃或5℃等。
预设荷电阈值具体可以根据实际需要进行设定,例如可以设定为20%、25%或30%等。
在一些实施方式中,采用自加热模式对动力电池进行加热,包括:控制动力电池所在的充放电电路中交替地形成充电回路和放电回路,以加热动力电池。交替地形成充电回路和放电回路,利用交流电流产生热量以加热动力电池,效率较高。
本申请实施例的动力电池的加热方法,获取动力电池的当前状态参数值,根据当前状态参数值,采用对应的加热模式对动力电池进行加热,动力电池温度升高后放电容量增加、能够实现充电,从而解决了现有技术中的动力电池在低温环境下的放电容量严重衰退以及在低温环境下无法充电的技术问题。
在一些实施方式中,该方法还包括:
在利用自加热的加热模式进行加热过程中,实时获取电机冷却液的温度;
判断电机冷却液的温度与当前状态参数值中动力电池的当前温度值的差值是否大于预设温差;
若大于预设温差,则进行电机冷却液辅助加热。大于预设温差即满足预设电机辅热条件。利用电机冷却液辅助加热动力电池,能充分利用冷却液的热量,避免能量浪费,且提高了加热效率和加热效果。
预设温差具体可以根据实际需要进行设定,例如可以设定为5℃、6℃或8℃等。
在一些实施方式中,进行电机冷却液辅助加热,包括:控制电机冷却液流经动力电池的外部管路,利用电机冷却液对动力电池进行辅助加热。利用电机冷却液 辅助加热动力电池,能充分利用冷却液的热量,避免能量浪费,且提高了加热效率和加热效果。
在一些实施方式中,步骤S20包括:判断当前状态参数值满足自加热预设条件或外部加热预设条件;
若满足自加热预设条件,则控制充放电电路对动力电池进行充放电以实现自加热。根据当前状态参数值判断满足自加热预设条件还是外部加热预设条件,根据判断结果选择对应的加热模式,能够确保选择最合适的加热模式,能够确保在最适合自加热时进行自加热;
进一步地,还可以包括:若满足外部加热预设条件,则控制外部热源对动力电池进行外部加热。根据当前状态参数值判断满足自加热预设条件还是外部加热预设条件,根据判断结果选择对应的加热模式,能够确保选择最合适的加热模式,能够确保在最适合外部加热时对动力电池进行外部加热。
例如,可以将当前状态参数值与自加热预设条件和外部加热预设条件进行比对,判断当前状态参数值是满足自加热预设条件还是满足外部加热预设条件。
在一些实施方式中,该当前状态参数值包括当前温度值和当前荷电状态值;自加热预设条件包括动力电池的当前温度位于第一预设区间内且动力电池的荷电状态位于第二预设区间内;外部加热预设条件包括动力电池的当前温度位于第三预设区间内或者动力电池的荷电状态位于第四预设区间内。
第一预设区间的右端为前述的第一预设温度,第一预设区间的左端可以为-∞。第二预设区间的左端为前述的预设荷电阈值,第二预设区间的右端为100%。第三预设区间的左端为前述的第一预设温度,第三预设区间的右端为前述的第三预设温度。第四预设区间的左端为0,第四预设区间的右端为前述的预设荷电阈值。第一预设区间与第三预设区间的交集为空集,第二预设区间与第四预设区间的交集为空集。自加热预设条件和外部加热预设条件的合理设置,能够确保在根据当前状态参数值选择加热模式时能够选择最合适的加热模式。
第一预设区间的右侧开闭状态可以根据实际应用需要进行设定。第二预设区间开闭状态可以根据实际应用需要进行设定。第三预设区间的开闭状态可以根据实际应用需要进行设定。第四预设区间的开闭状态可以根据实际应用需要进行设定。
动力电池的荷电状态位于第二预设区间内时,可以确保动力电池有足够的电量进行放电和充电,动力电池的当前温度位于第一预设区间内时,由于第一预设区间的温度较低,动力电池的内阻较大,自加热效率较高,能够使动力电池快速升温,此时选择自加热模式的加热效率最高、加热效果最佳。当动力电池的当前温度位于第三预设区间内时,由于第三预设区间的温度较高,动力电池内阻降低,自加热效率降低,此时采用外部加热模式可以弥补自加热效率下降的缺陷,例如通过PTC加热器等外部热源进行加热,加热效率高。
当动力电池的荷电状态位于第四预设区间内时,第四预设区间的电量较小,其电量所能够提供的放电和充电电流较小,导致自加热效率较低,此时采用外部加热模式可以提高加热效率,使动力电池快速达到较高温度,例如通过PTC加热器等外部热源进行加热,加热效率高。
例如,可以设定为,第一预设区间为(-∞,0),第二预设区间为[20%,100%],第三预设区间为[0,20),第四预设区间为[0,20%),即,自加热预设条件包括动力电池的当前温度小于0℃且动力电池的荷电状态大于或等于20%,外部加热预设条件包括:动力电池的当前温度大于等于0℃且小于20℃,或者动力电池的荷电状态大于等于0且小于20%。
又例如,还可以设定为,第一预设区间为(-∞,5),第二预设区间为[30%,100%],第三预设区间为[5,18),第四预设区间为[0,30%)。又例如,还可以设定为,第一预设区间为(-∞,3),第二预设区间为[25%,100%],第三预设区间为[3,22),第四预设区间为[0,25%)。还可以根据实际应用需要设定为其他区间。
本申请实施例提供的加热方法,确定动力电池的当前状态参数值所满足的预设加热条件,利用与所满足的预设加热条件相对应的加热模式对动力电池进行加热,加热模式包括自加热和外部加热,从而能够实现选择合适的加热模式,能够在不适合自加热的情况下对动力电池进行外部加热,克服了现有技术中动力电池的加热模式单一的缺陷,解决了仅仅通过自加热不能满足实际应用需要的技术问题。
如图2所示,在一些实施方式中,该方法还包括:
S30、在采用自加热模式对动力电池进行加热的过程中,确定动力电池的当前状态参数值是否满足预设自加热停止条件;
S40、若满足,则控制动力电池所在的充放电电路断开。
充放电电路断开后即停止动力电池的充放电过程,从而停止自加热。由于在满足预设自加热停止条件时,自加热效率较低,所以在满足预设自加热停止条件时停止自加热,能够避免低效率的自加热,避免自加热时在电机绕组中产生的能量损耗。
在一个示例中,当前状态参数值包括动力电池的当前温度值;确定动力电池的当前状态参数值是否满足预设自加热停止条件,包括:若当前温度值大于第二预设温度,则确定当前状态参数值满足预设自加热停止条件。由于在满足预设自加热停止条件时,自加热效率较低,所以在满足预设自加热停止条件时停止自加热,能够避免低效率的自加热,避免自加热时在电机绕组中产生的能量损耗。
第二预设温度具体可以根据实际需要进行设定,例如可以设定为10℃、11℃或12℃等。第二预设温度大于第一预设温度。
在另一个示例中,当前状态参数值包括动力电池的当前温升速率;确定动力电池的当前状态参数值是否满足预设自加热停止条件,包括:若当前温升速率小于 预设速率,则确定当前状态参数值满足预设自加热停止条件。通过温升速率判断是否应该停止自加热,能够确保在温升速率较低时停止自加热,从而避免低效自加热所带来的能量损耗。
预设速率可以根据实际需要进行设定,例如可以设定为0.2℃/min、0.3℃/min或0.4℃/min等。
在一些实施方式中,该方法还包括:
S50、若确定满足预设自加热停止条件时正利用电机冷却液对动力电池加热,则还控制停止利用电机冷却液对动力电池进行加热。
停止冷却液辅助加热能够进一步避免控制冷却液流动所带来的能量损耗。
在一些实施方式中,当前状态参数值包括当前温度值和当前荷电状态值;
步骤S20包括:在采用自加热模式对动力电池进行加热时,若确定当前温度值大于等于第二预设温度且小于第三预设温度,或者确定当前荷电状态值小于或等于预设荷电阈值,则采用外部加热模式对动力电池进行加热;或者,
在当前状态参数值不满足自加热的条件,且当前温度值小于第三预设温度时,则采用外部加热模式对动力电池进行加热。在当前状态参数值不满足自加热的条件,且当前温度值小于第三预设温度时,即确定满足预设外部加热条件。根据当前状态参数值判断满足自加热预设条件还是外部加热预设条件,根据判断结果选择对应的加热模式,能够确保选择最合适的加热模式,能够确保在最适合自加热时进行自加热。
第三预设温度具体可以根据实际需要进行设定,例如可以设定为18℃、20℃或22℃等。第三预设温度大于第二预设温度。
在一些实施方式中,采用外部加热模式对动力电池进行加热,包括:控制外部热源对动力电池进行加热。
根据当前状态参数值判断满足自加热预设条件还是外部加热预设条件,根据判断结果选择对应的加热模式,能够确保选择最合适的加热模式,能够确保在最适合外部加热时对动力电池进行外部加热。
在一个示例中,在自加热时,确定动力电池的当前状态参数值是否满足预设自加热停止条件。在自加热时,实时获取动力电池的当前状态参数值,判断当前状态参数值是否满足预设自加热停止条件。预设自加热停止条件例如可以包括:动力电池的当前温度位于第七预设区间内以及动力电池的当前温升速率位于第八预设区间内这两个条件中的至少一个。
在一个示例中,动力电池的当前状态参数值包括动力电池的当前温度;预设自加热停止条件包括动力电池的当前温度位于第七预设区间内。预设自加热停止条件的合理设置能够确保在最合适的情况下停止自加热,从而避免低效自加热所带来的能量损耗。
第七预设区间的左端为前述的第二预设温度。第七预设区间的右端可以为+∞。第七预设区间的左侧开闭状态具体可以根据实际需要进行设定,例如可以设定为(10,+∞),[11,+∞),或(12,+∞)等。
以第七预设区间为(10,+∞)为例,当动力电池的当前温度大于10℃时,即确定满足预设自加热停止条件。
在另一个示例中,动力电池的当前状态参数值包括动力电池的当前温升速率;预设自加热停止条件包括动力电池的当前温升速率位于第八预设区间内;
在本示例中,在确定动力电池的当前状态参数值是否满足预设自加热停止条件之前,该方法还包括:在控制充放电电路对动力电池进行充放电以实现自加热时,实时获取动力电池的温升速率。
通过温升速率判断是否应该停止自加热,能够确保在温升速率较低时停止自加热,从而避免低效自加热所带来的能量损耗。由于在本示例中所采用的预设自加热停止条件涉及到动力电池的温升速率,因此需要在控制充放电电路对动力电池进行充放电以实现自加热时,实时获取动力电池的温升速率,以便于确定动力电池的当前温升速率是否满足预设自加热停止条件。
温升速率可以是由电池管理***BMS计算得到的。获取动力电池的温升速率,可以直接从电池管理***BMS读取温升速率。
第八预设区间的右端点为前述的预设速率。第八预设区间的开闭状态具体可以根据实际需要进行设定,例如可以设定为[0,0.2)、[0,0.3]或[0,0.4)等。温升速率的单位为℃/min。以第八预设区间为[0,0.2)为例,当温升速率小于0.2℃/min时,则达到预设自加热停止条件。
若满足预设自加热停止条件,则控制停止对动力电池进行充放电以停止自加热。
控制停止对动力电池进行充放电可以通过控制断开充放电回路来实现。
由于在满足预设自加热停止条件时,自加热效率较低,但是在电机绕组中产生的能量损耗仍然存在,所以在满足预设自加热停止条件时停止自加热,能够避免低效率的自加热,避免自加热时在电机绕组中产生的能量损耗。
若不满足预设自加热停止条件,则转向步骤S40,即保持自加热,实时获取动力电池的当前状态参数值并判断其是否满足预设自加热停止条件。
进一步地,确定动力电池的当前温度是否位于第六预设区间内。
第六预设区间的右端为前述的第三预设温度。第六预设区间的左端可以为-∞。第六预设区间的右侧开闭状态具体可以根据实际需要进行设定,例如可以设定为(-∞,20),(-∞,21],或(-∞,22)等。
若位于第六预设区间内,则控制外部热源对动力电池进行外部加热。
以第六预设区间为(-∞,20)为例,若动力电池的当前温度小于20℃,则控制外部热源对动力电池进行外部加热。在自加热停止后,开始外部加热,能够在最适合外部加热的状态下进行外部加热,以便最高效地提高动力电池温度。
在自加热停止后,通过外部热源对动力电池进行加热,以便进一步提高动力电池的温度。外部热源例如可以为PTC加热装置。
在利用外部热源例如PTC加热装置对动力电池进行加热时,允许电动车辆行驶或对动力电池进行充电。
进一步地,实时确定动力电池的温度是否超出第六预设区间,若超出则停止对动力电池进行外部加热。
在对动力电池进行外部加热的过程中,实时获取动力电池的温度,当动力电池的温度超出第六预设区间时,停止对动力电池进行外部加热。
以第六预设区间为(-∞,20)为例,若动力电池的当前温度达到20℃或以上,则控制停止外部热源对动力电池的加热。当动力电池的温度超出第六预设区间时,动力电池的温度已经能够满足实际应用的需要,因此无需再继续进行加热,所以停止对动力电池的加热。
在动力电池自加热时,电机因绕组中通过电流而发热。可以检测电机冷却液(冷却液通常是水,当然也可以是其他用于冷却电机的液体)的出液温度,当出液温度超出电池温度时,可以将输出的冷却液导入动力电池外部的液体流道中对动力电池进行辅助加热。
本申请的第二个实施例提供了一种动力电池的加热方法,在一些实施方式中,该方法除了包括上一实施例中的步骤S10至步骤S30之外,还包括:
S40’、在控制充放电电路对动力电池进行充放电以实现自加热时,实时获取动力电池的温度和电机冷却液的温度。
具体地,可以从电池管理***BMS读取动力电池的温度,可以从整车控制器VCU读取电机冷却液的温度。
S50’、判断电机冷却液的当前温度与动力电池的当前温度的差值是否位于第五预设区间内。
第五预设区间的左端为前述的预设温差。第五预设区间的开闭状态可以根据实际应用需要进行预先设定。例如,第五预设区间可以为(5,+∞),(6,+∞)或[8,+∞)等。
S60’、若位于第五预设区间内,则控制利用电机冷却液对动力电池进行加热。
以第五预设区间为(5,+∞)为例,当电机冷却液的当前温度与动力电池的当前温度的差值大于5℃时,控制利用电机冷却液对动力电池进行加热。
利用电机冷却液辅助加热动力电池,能充分利用冷却液的热量,避免能量浪费,且提高了加热效率和加热效果。
在动力电池进行自加热时,电机绕组中通过电流会发热,电机冷却***中的冷却液吸收电机绕组散发的热量温度升高,可以检测电机冷却***的出水温度,当出水温度与动力电池的当前温度之差超过预设阈值时,可以将冷却液导入动力电池外部的液体流道中给动力电池加热,从而充分利用冷却液的热量,避免能量浪费,且提高了加热效率和加热效果。
在一些实施方式中,该方法还包括:
S70’、确定动力电池的当前状态参数值是否满足预设自加热停止条件;
S80’、若满足,则控制停止对动力电池进行充放电以停止自加热,并控制停止利用电机冷却液对动力电池进行加热。
由于在满足预设自加热停止条件时,自加热效率较低,所以在满足预设自加热停止条件时停止自加热,能够避免低效率的自加热,避免自加热时在电机绕组中产生的能量损耗,停止冷却液辅助加热能够进一步避免控制冷却液流动所带来的能量损耗。
在步骤S80’之后,本实施例的方法还包括上一实施例中的步骤S60至步骤S80。即本实施例的方法包括:依次执行的步骤S10至步骤S30、步骤S40’至步骤S80’以及,确定动力电池的当前温度是否位于第六预设区间内,若位于第六预设区间内,则控制外部热源对动力电池进行外部加热,实时确定动力电池的温度是否超出第六预设区间,若超出则停止对动力电池进行外部加热。。
参考图3所示,在一个具体示例中,提供了一种动力电池的加热方法,包括以下步骤:
获取动力电池的当前温度和当前荷电状态SOC;
判断是否满足自加热预设条件;自加热预设条件包括动力电池当前温度小于0℃并且动力电池当前SOC大于等于20%;
若满足,则开启动力电池自加热;
若不满足,则判断动力电池的当前温度是否小于20℃;
若当前温度小于20℃,则开启PTC加热器加热;
在PTC加热器加热的过程中实时检测动力电池的温度,当动力电池的当前温度达到20℃时,退出动力电池加热程序;
在动力电池自加热的过程中,实时获取电机冷却液的温度和动力电池的温 度;当电机冷却液的温度与动力电池的温度的差值超过5℃时,控制采用电机冷却液对动力电池进行加热;
实时检测是否满足动力电池的温度大于10℃或者温升速率小于0.2℃/min;
若满足,则停止动力电池自加热以及冷却液对动力电池的加热;
判断动力电池的当前温度是否小于20℃;
若小于20℃,则转向上述开启PTC加热器加热;
若不小于20℃,则退出动力电池加热程序。
如图4所示,在动力电池自加热过程中,控制器控制冷却液在电机驱动***的液体流道与电池外部的液体流道之间循环流动,从而利用冷却液的热量辅助加热动力电池。
如图5所示,利用PTC加热器对动力电池进行外部加热时,控制器控制PTC加热器将自身的水输入动力电池外部的液体流道,再从动力电池外部的液体流道中流回到PTC加热器中,循环流动,从而对动力电池进行外部加热。
根据动力电池的特性,随着电池温度上升,电池内阻会逐渐减小,这会导致电池自加热效果逐渐变差,但电驱动***仍处于自加热激励,会导致能耗仍然很大但电池加热效果却不佳。当判断到电池自加热升温到一定温度或电池温升速率下降到一定值时,关闭电池自加热,避免自加热下的高能耗,转为外部加热模式对动力电池进行加热,即开启PTC加热器加热。开启PTC加热器加热后,电池由于自加热快速升温已经度过了PTC加热器加热的低效率区间(温度越低,PTC加热效果越差),PTC加热器加热从当前温度开始加热效率较高,能耗较小,可以节约能量。此外,开启PTC加热器加热不影响车辆充电或行车,可以节约时间。
如图6所示,在一个具体示例中,在开始行车之前,t1时刻电池自加热开始,t2时刻电机冷却液辅助加热开始,t3时刻电池自加热和电机冷却液辅助加热停止且PTC加热器开始加热并且开始行车,t4时刻PTC加热器停止加热。
如图7所示,在一个具体示例中,在开始行车之前,t5时刻电池自加热开始,t6时刻电机冷却液辅助加热开始,t7时刻电池自加热和电机冷却液辅助加热停止且PTC加热器开始加热并且动力电池开始充电,t8时刻PTC加热器停止加热。
如图8所示,本申请的第三个实施例提供了一种动力电池的加热***,包括控制器以及与控制器相连接的充放电电路和外部热源,控制器可以用于实现如上述任一实施方式的动力电池的加热方法。充放电电路包括开关模块2、储能模块3和充放电切换模块4;开关模块2、充放电切换模块4和动力电池1并联连接;储能模块3的第一端连接开关模块,储能模块3的第二端连接充放电切换模块4;开关模块2和充放电切换模块4用于在控制器的控制下进行动作形成充放电回路,对动力电池1进行充放电以实现自加热;外部热源用于在控制器的控制下对动力电池1进行外部加热。开 关模块和充放电切换模块在控制器的控制下进行动作形成充放电回路,对动力电池进行充放电以实现自加热。
具体地,储能模块3可以包括电机绕组,开关模块2可以包括电机逆变器。
在一些实施方式中,外部热源包括PTC加热装置。外部热源还可以采用其他形式的外部加热装置。PTC加热装置适用于对动力电池的外部加热,加热效率高。PTC加热装置例如为PTC加热器,PTC加热器能够通过水热的方式给动力电池加热,即通过PTC电阻丝发热后将冷却液加热,然后将加热后的冷却液导入到动力电池外部液体流道中,动力电池吸收外部液体流道中的热量逐渐升温。PTC加热器加热的方式适用工况多,即使在充电或行车时也能适用。
在一些实施方式中,充放电切换模块包括串联的第一切换电路和第二切换电路;第一切换电路和第二切换电路的连接点与储能模块的第二端相连接;第一切换电路和第二切换电路,用于在充放电使能信号的触发下导通或截止。
在一些实施方式中,第一切换电路包括上桥臂,第二切换电路包括下桥臂;上桥臂和下桥臂的连接点与储能模块的第二端相连接。
如图9所示,在一个示例中,储能模块3包括电机的三相绕组,三相绕组分别为绕组311、绕组312以及绕组313。开关模块2包括电机逆变器的桥臂21、桥臂22以及桥臂23。动力电池1的内阻为R。充放电切换模块4包括串联的第一切换电路和第二切换电路。第一切换电路包括第一上桥臂,第二切换电路包括第一下桥臂;第一上桥臂和第一下桥臂的连接点与该三相绕组的中性点相连接。第一上桥臂包括并联的第一开关和第一二极管,第一下桥臂包括并联的第二开关和第二二极管;第一二极管的负极与供电模块的正极相连接,第一二极管的正极与第二二极管的负极相连接,第二二极管的正极与第一电池组的负极相连接。上桥臂41即第一上桥臂,下桥臂42即第一下桥臂。上桥臂41包括并联的第一开关V7和第一二极管D7,下桥臂42包括并联的第二开关V8和第二二极管D8;第一二极管D7的负极与动力电池的正极相连接,第一二极管D7的正极与第二二极管D8的负极相连接,第二二极管D8的正极与动力电池的负极相连接。在一些变形的实施方式中,第一上桥臂可以只包括第一开关而不包括第一二极管,第一下桥臂可以只包括第二开关而不包括第二二极管。具体地,桥臂21的上桥臂211与下桥臂212的连接点与绕组311的一端相连,桥臂22的上桥臂221与下桥臂222的连接点与绕组312的一端相连,桥臂23的上桥臂231与下桥臂232的连接点与绕组313的一端相连,充放电切换模块4的上桥臂41和下桥臂42的连接点与三相绕组中性点相连。
上桥臂211包括并联的开关V1和二极管D1,下桥臂212包括并联的开关V4和二极管D4;上桥臂221包括并联的开关V2和二极管D2,下桥臂222包括并联的开关V5和二极管D5;上桥臂231包括并联的开关V3和二极管D3,下桥臂232包括并联的开关V6和二极管D6。D1、D2和D3的负极均与动力电池1的正极相连接,D4、D5和D6的正极均与动力电池1的负极相连接。
动力电池1、上桥臂211~231、绕组311~313以及下桥臂42共同形成放电回路;动力电池1、下桥臂212~232、绕组311~313以及上桥臂41共同形成充电回路。其中,在控制器的控制下,充电回路和放电回路周期性地交替导通。通过控制流入三相电机的绕组311~313的电流大小和相位相同,使得在利用该三相电机的回路为动力电池加热时,能够有效抑制电机的震动噪声。并且由于本充放电电路不会使得该三相电机发生运转,所以可以解决电机中转子发热的问题,从而延长了动力电池自加热使用时间。只要确保相连于绕组311~313的三相桥臂的上桥臂与相连于三相绕组中性点的充放电切换模块4的下桥臂42同时保持开关的导通或关断,相连于绕组311~313的三相桥臂的下桥臂与相连于三相绕组中性点的充放电切换模块4的上桥臂41同时保持开关的导通或关断,即可实现放电回路和充电回路。
本实施例提供的动力电池的加热***,能够用于实现上述任一实施方式的加热方法,能够达到与该加热方法相同的有益效果。
如图10所示,本申请的第四个实施例提供了一种动力电池的加热装置,在一些实施方式中,该加热装置包括:
获取模块,用于获取动力电池的当前状态参数值;
加热模块,用于根据当前状态参数值,采用对应的加热模式对动力电池进行加热。
具体地,加热模块用于利用与当前状态参数值所满足的预设加热条件相对应的加热模式对动力电池进行加热,加热模式包括自加热和/或外部加热。
本申请的动力电池的加热装置,用于实现上述任一实施方式的加热方法,获取动力电池的当前状态参数值,根据当前状态参数值,采用对应的加热模式对动力电池进行加热,动力电池温度升高后放电容量增加、能够实现充电,从而解决了现有技术中的动力电池在低温环境下的放电容量严重衰退以及在低温环境下无法充电的技术问题。
在一些实施方式中,当前状态参数值包括当前温度值和当前荷电状态值;
加热模块,具体进一步用于:若动力电池的当前温度值小于第一预设温度且动力电池的荷电状态大于预设荷电阈值,则采用自加热模式对动力电池进行加热。
加热模块所执行的采用自加热模式对动力电池进行加热,包括:控制动力电池所在的充放电电路中交替地形成充电回路和放电回路,以加热动力电池。
在一些实施方式中,该加热装置还包括:
冷却液温度获取单元,用于在利用自加热的加热模式进行加热过程中,实时获取电机冷却液的温度;
判断单元,用于判断电机冷却液的温度与当前状态参数值中动力电池的当前温度值的差值是否大于预设温差;
确定单元,用于若大于预设温差,则进行电机冷却液辅助加热。
确定单元所执行的进行电机冷却液辅助加热,包括:控制电机冷却液流经动力电池的外部管路,利用电机冷却液对动力电池进行辅助加热。
在一些实施方式中,该装置还包括:
预设自加热停止条件确定模块,用于在采用自加热模式对动力电池进行加热的过程中,确定动力电池的当前状态参数值是否满足预设自加热停止条件;
若满足,则控制动力电池所在的充放电电路断开。
在一个示例中,当前状态参数值包括动力电池的当前温度值;
预设自加热停止条件确定模块,具体进一步用于:若当前温度值大于第二预设温度,则确定当前状态参数值满足预设自加热停止条件。
在另一个示例中,当前状态参数值包括动力电池的当前温升速率;
预设自加热停止条件确定模块,具体进一步用于:若当前温升速率小于预设速率,则确定当前状态参数值满足预设自加热停止条件。
在一些实施方式中,该装置还包括:
冷却液加热停止模块,用于若确定满足预设自加热停止条件时正利用电机冷却液对动力电池加热,则还控制停止利用电机冷却液对动力电池进行加热。
在一些实施方式中,当前状态参数值包括当前温度值和当前荷电状态值;
加热模块进一步具体用于:
在采用自加热模式对动力电池进行加热时,若确定当前温度值大于等于第二预设温度且小于第三预设温度,或者确定当前荷电状态值小于或等于预设荷电阈值,则采用外部加热模式对动力电池进行加热;或者,
在当前状态参数值不满足自加热的条件,且当前温度值小于第三预设温度时,则采用外部加热模式对动力电池进行加热。
加热模块执行的采用外部加热模式对动力电池进行加热,包括:控制外部热源对动力电池进行加热。
本实施例所提供的加热装置,通过确定动力电池的当前状态参数值所满足的预设加热条件,利用与所满足的预设加热条件相对应的加热模式对动力电池进行加热,加热模式包括自加热和外部加热,从而能够实现选择合适的加热模式,能够在不适合自加热的情况下对动力电池进行外部加热,克服了现有技术中动力电池的加热模式单一的缺陷,解决了仅仅通过自加热不能满足实际应用需要的技术问题。
本申请的第五个实施例提供了一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行该计算机程序,以实现上 述任一实施方式的加热方法。
如图11所示,电子设备10可以包括:处理器100,存储器101,总线102和通信接口103,处理器100、通信接口103和存储器101通过总线102连接;存储器101中存储有可在处理器100上运行的计算机程序,处理器100运行该计算机程序时执行本申请前述任一实施方式所提供的方法。
其中,存储器101可能包含高速随机存取存储器(RAM:Random Access Memory),也可能还可以包括非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。通过至少一个通信接口103(可以是有线或者无线)实现该***网元与至少一个其他网元之间的通信连接,可以使用互联网、广域网、本地网、城域网等。
总线102可以是ISA总线、PCI总线或EISA总线等。总线可以分为地址总线、数据总线、控制总线等。其中,存储器101用于存储程序,处理器100在接收到执行指令后,执行该程序,前述本申请实施例任一实施方式揭示的方法可以应用于处理器100中,或者由处理器100实现。
处理器100可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器100中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器100可以是通用处理器,可以包括中央处理器(Central Processing Unit,简称CPU)、网络处理器(Network Processor,简称NP)等;还可以是数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器101,处理器100读取存储器101中的信息,结合其硬件完成上述方法的步骤。
本申请实施例提供的电子设备与本申请实施例提供的方法出于相同的发明构思,具有与其采用、运行或实现的方法相同的有益效果。
本申请的第六个实施例提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行,以实现上述任一实施方式的加热方法。
参考图12所示,其示出的计算机可读存储介质为光盘20,其上存储有计算机程序(即程序产品),该计算机程序在被处理器运行时,会执行前述任意实施方式所提供的方法。
需要说明的是,计算机可读存储介质的例子还可以包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器 (EEPROM)、快闪记忆体或其他光学、磁性存储介质,在此不再一一赘述。
本申请的上述实施例提供的计算机可读存储介质与本申请实施例提供的方法出于相同的发明构思,具有与其存储的应用程序所采用、运行或实现的方法相同的有益效果。
本申请的第七个实施例提供了一种电池动力装置,包括动力电池以及上述任一实施方式中的加热***,动力电池用于提供动力,加热***用于对动力电池进行加热。
该电池动力装置例如可以为电动车辆等以电池提供动力的装置。
需要说明的是:
术语“模块”并非意图受限于特定物理形式。取决于具体应用,模块可以实现为硬件、固件、软件和/或其组合。此外,不同的模块可以共享公共组件或甚至由相同组件实现。不同模块之间可以存在或不存在清楚的界限。
在此提供的算法和显示不与任何特定计算机、虚拟装置或者其它设备固有相关。各种通用装置也可以与基于在此的示例一起使用。根据上面的描述,构造这类装置所要求的结构是显而易见的。此外,本申请也不针对任何特定编程语言。应当明白,可以利用各种编程语言实现在此描述的本申请的内容,并且上面对特定语言所做的描述是为了披露本申请的最佳实施方式。
应该理解的是,虽然附图的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,附图的流程图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
以上所述实施例仅表达了本申请的实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (19)

  1. 一种动力电池的加热方法,其特征在于,包括:
    获取所述动力电池的当前状态参数值;
    根据所述当前状态参数值,采用对应的加热模式对所述动力电池进行加热。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述当前状态参数值,采用对应的加热模式对所述动力电池进行加热包括:根据所述当前状态参数值,采用自加热模式和/或外部加热模式对所述动力电池进行加热。
  3. 根据权利要求2所述的方法,其特征在于,所述当前状态参数值包括当前温度值和当前荷电状态值;
    所述根据所述当前状态参数值,采用对应的加热模式对所述动力电池进行加热,包括:
    若所述动力电池的当前温度值小于第一预设温度且所述动力电池的荷电状态大于预设荷电阈值,则采用自加热模式对所述动力电池进行加热。
  4. 根据权利要求2或3所述的方法,其特征在于,所述采用自加热模式对所述动力电池进行加热,包括:
    控制所述动力电池所在的充放电电路中交替地形成充电回路和放电回路,以加热所述动力电池。
  5. 根据权利要求2或3所述的方法,其特征在于,所述方法还包括:
    在利用所述自加热的加热模式进行加热过程中,实时获取电机冷却液的温度;
    判断所述电机冷却液的温度与所述当前状态参数值中所述动力电池的当前温度值的差值是否大于预设温差;
    若大于所述预设温差,则进行电机冷却液辅助加热。
  6. 根据权利要求5所述的方法,其特征在于,所述进行电机冷却液辅助加热,包括:
    控制所述电机冷却液流经所述动力电池的外部管路,利用所述电机冷却液对所述动力电池进行辅助加热。
  7. 根据权利要求2或3所述的方法,其特征在于,所述方法还包括:
    在采用所述自加热模式对所述动力电池进行加热的过程中,确定所述动力电池的 当前状态参数值是否满足预设自加热停止条件;
    若满足,则控制所述动力电池所在的充放电电路断开。
  8. 根据权利要求7所述的方法,其特征在于,所述当前状态参数值包括所述动力电池的当前温度值;
    所述确定所述动力电池的当前状态参数值是否满足预设自加热停止条件,包括:
    若所述当前温度值大于第二预设温度,则确定所述当前状态参数值满足预设自加热停止条件。
  9. 根据权利要求7所述的方法,其特征在于,所述当前状态参数值包括所述动力电池的当前温升速率;
    所述确定所述动力电池的当前状态参数值是否满足预设自加热停止条件,包括:
    若所述当前温升速率小于预设速率,则确定所述当前状态参数值满足预设自加热停止条件。
  10. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    若确定满足所述预设自加热停止条件时正利用电机冷却液对所述动力电池加热,则还控制停止利用所述电机冷却液对所述动力电池进行加热。
  11. 根据权利要求1-3任一项所述的方法,其特征在于,所述当前状态参数值包括当前温度值和当前荷电状态值;
    所述根据所述当前状态参数值,采用对应的加热模式对所述动力电池进行加热,包括:
    在采用所述自加热模式对所述动力电池进行加热时,若确定所述当前温度值大于等于第二预设温度且小于第三预设温度,或者确定所述当前荷电状态值小于或等于预设荷电阈值,则采用所述外部加热模式对所述动力电池进行加热;或者,
    在所述当前状态参数值不满足自加热的条件,且所述当前温度值小于第三预设温度时,则采用所述外部加热模式对所述动力电池进行加热。
  12. 根据权利要求11所述的方法,其特征在于,所述采用所述外部加热模式对所述动力电池进行加热,包括:
    控制外部热源对所述动力电池进行加热。
  13. 一种动力电池的加热装置,其特征在于,包括:
    获取模块,用于获取所述动力电池的当前状态参数值;
    加热模块,用于根据所述当前状态参数值,采用对应的加热模式对所述动力电池进行加热。
  14. 一种电子设备,其特征在于,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序,以实现如权利要求1-12中任一所述的方法。
  15. 一种动力电池的加热***,其特征在于,包括控制器以及与所述控制器相连接的充放电电路和外部热源,所述控制器用于实现权利要求1-12中任一所述的方法。
  16. 根据权利要求15所述的加热***,其特征在于,所述充放电电路包括开关模块、储能模块和充放电切换模块;
    所述开关模块、所述充放电切换模块和所述动力电池并联连接;
    所述储能模块的第一端连接所述开关模块,所述储能模块的第二端连接所述充放电切换模块;
    所述开关模块和所述充放电切换模块用于在所述控制器的控制下进行动作形成充放电回路,对所述动力电池进行充放电以加热所述动力电池;
    所述外部热源用于在所述控制器的控制下对所述动力电池进行加热。
  17. 根据权利要求15或16所述的***,其特征在于,所述外部热源包括PTC加热装置。
  18. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行,以实现如权利要求1-12中任一所述的方法。
  19. 一种电池动力装置,其特征在于,包括动力电池以及如权利要求15-17中任一项所述的加热***,所述动力电池用于提供动力,所述加热***用于对所述动力电池进行加热。
PCT/CN2023/082739 2022-04-24 2023-03-21 动力电池的加热方法、装置、电子设备、***及存储介质 WO2023207429A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210434648.4 2022-04-24
CN202210434648.4A CN115366743B (zh) 2022-04-24 2022-04-24 动力电池的加热方法、装置、电子设备、***及存储介质

Publications (1)

Publication Number Publication Date
WO2023207429A1 true WO2023207429A1 (zh) 2023-11-02

Family

ID=84060508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082739 WO2023207429A1 (zh) 2022-04-24 2023-03-21 动力电池的加热方法、装置、电子设备、***及存储介质

Country Status (2)

Country Link
CN (1) CN115366743B (zh)
WO (1) WO2023207429A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117728075A (zh) * 2023-12-19 2024-03-19 佛山科学技术学院 一种低温环境下的锂离子电池自加热方法及其加热装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115366743B (zh) * 2022-04-24 2024-02-02 宁德时代新能源科技股份有限公司 动力电池的加热方法、装置、电子设备、***及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479982A (zh) * 2010-11-26 2012-05-30 上海鼎研智能科技有限公司 二次电池组低温充电方法
CN106785233A (zh) * 2016-12-27 2017-05-31 宁德时代新能源科技股份有限公司 电池结构的加热控制方法、加热控制装置以及电池***
CN109921147A (zh) * 2019-03-27 2019-06-21 哈尔滨理工大学 一种基于太阳能电池的锂离子动力电池加热管理装置及方法
CN113002366A (zh) * 2021-04-30 2021-06-22 重庆长安新能源汽车科技有限公司 一种电动汽车及其动力电池加热***和加热方法
CN113043915A (zh) * 2021-05-11 2021-06-29 南京市欣旺达新能源有限公司 电池的加热方法、加热***及含有该加热***的电动汽车
CN113206325A (zh) * 2021-04-30 2021-08-03 重庆长安新能源汽车科技有限公司 一种动力电池内外部联合加热方法
CN113745702A (zh) * 2020-05-29 2021-12-03 比亚迪股份有限公司 电动汽车及其动力电池的加热方法、装置和存储介质
CN115366743A (zh) * 2022-04-24 2022-11-22 宁德时代新能源科技股份有限公司 动力电池的加热方法、装置、电子设备、***及存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012096590A (ja) * 2010-10-29 2012-05-24 Toyota Motor Corp 車両の充電蓄熱装置
CN104064836B (zh) * 2014-06-17 2016-07-06 北京交通大学 一种锂离子电池的低温自加热方法
US9509152B2 (en) * 2014-08-07 2016-11-29 Motorola Solutions, Inc. Method and apparatus for self-heating of a battery from below an operating temperature
CN106025445B (zh) * 2016-07-25 2019-03-19 北京理工大学 一种基于lc谐振和ptc电阻带的蓄电装置加热方法
CN108539329A (zh) * 2018-03-14 2018-09-14 北汽福田汽车股份有限公司 电池热管理方法、装置、***及电动汽车

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479982A (zh) * 2010-11-26 2012-05-30 上海鼎研智能科技有限公司 二次电池组低温充电方法
CN106785233A (zh) * 2016-12-27 2017-05-31 宁德时代新能源科技股份有限公司 电池结构的加热控制方法、加热控制装置以及电池***
CN109921147A (zh) * 2019-03-27 2019-06-21 哈尔滨理工大学 一种基于太阳能电池的锂离子动力电池加热管理装置及方法
CN113745702A (zh) * 2020-05-29 2021-12-03 比亚迪股份有限公司 电动汽车及其动力电池的加热方法、装置和存储介质
CN113002366A (zh) * 2021-04-30 2021-06-22 重庆长安新能源汽车科技有限公司 一种电动汽车及其动力电池加热***和加热方法
CN113206325A (zh) * 2021-04-30 2021-08-03 重庆长安新能源汽车科技有限公司 一种动力电池内外部联合加热方法
CN113043915A (zh) * 2021-05-11 2021-06-29 南京市欣旺达新能源有限公司 电池的加热方法、加热***及含有该加热***的电动汽车
CN115366743A (zh) * 2022-04-24 2022-11-22 宁德时代新能源科技股份有限公司 动力电池的加热方法、装置、电子设备、***及存储介质

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117728075A (zh) * 2023-12-19 2024-03-19 佛山科学技术学院 一种低温环境下的锂离子电池自加热方法及其加热装置

Also Published As

Publication number Publication date
CN115366743A (zh) 2022-11-22
CN115366743B (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
WO2023207429A1 (zh) 动力电池的加热方法、装置、电子设备、***及存储介质
WO2023226562A1 (zh) 充放电电路的控制方法、装置、设备、***及存储介质
EA035682B1 (ru) Гибридный блок питания
KR20190073151A (ko) 배터리 충전 방법 및 시스템
CN113659244A (zh) 汽车电池包预热方法及装置
WO2023202304A1 (zh) 充放电电路的控制方法、装置、设备、***及存储介质
WO2023207428A1 (zh) 一种电池充电控制方法、装置、设备及存储介质
WO2023236623A1 (zh) 电池组电压均衡方法、装置、电子设备及存储介质
CN112216908A (zh) 一种锂离子电池包自加热方法及***
US20230099305A1 (en) Systems and methods for on-board ev charger and regenerative braking
WO2023004711A1 (zh) 充放电装置、电池充电的方法和充放电***
WO2023004709A1 (zh) 电池充电的方法和充放电装置
JP2003217679A (ja) 二次電池の放電方法、蓄電池及び空気調和機
CN115378104A (zh) 充放电电路的控制方法、装置、***、设备及存储介质
JP2015035343A (ja) 燃料電池システム
TWI660538B (zh) 電池分段式充電方法及系統
WO2023226432A1 (zh) 一种温度控制装置、温度控制方法和车辆
WO2023010894A1 (zh) 充放电电路、充放电***及充放电控制方法
WO2023201659A1 (zh) 电池加热***、及其控制方法、装置和电子设备
WO2023029048A1 (zh) 电池加热装置及其控制方法、控制电路和动力装置
JP2001286075A (ja) 二次電池充電制御方法およびその装置
CN116581410B (zh) 充放电控制方法、装置、电子设备、存储介质及充放电***
US20220185128A1 (en) Charging control device
CN115347652B (zh) 一种锂电池低温充电优化方法、***及存储介质
WO2023029047A1 (zh) 电池加热装置及其控制方法、控制电路和动力装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23794864

Country of ref document: EP

Kind code of ref document: A1