WO2023207306A1 - 热管理***和具有其的车辆 - Google Patents

热管理***和具有其的车辆 Download PDF

Info

Publication number
WO2023207306A1
WO2023207306A1 PCT/CN2023/078625 CN2023078625W WO2023207306A1 WO 2023207306 A1 WO2023207306 A1 WO 2023207306A1 CN 2023078625 W CN2023078625 W CN 2023078625W WO 2023207306 A1 WO2023207306 A1 WO 2023207306A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooler
water jacket
heat exchange
exhaust gas
inlet
Prior art date
Application number
PCT/CN2023/078625
Other languages
English (en)
French (fr)
Inventor
刘军
刘明亮
王洪军
张楠
孟繁超
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2023207306A1 publication Critical patent/WO2023207306A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/04Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant
    • B60H1/06Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant directly from main radiator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control

Definitions

  • the present disclosure relates to the field of vehicle technology, and in particular, to a thermal management system and a vehicle having the same.
  • the thermal management system usually includes an engine cooler, an exhaust gas recirculation system cooler and a thermostat.
  • the temperature of the engine rises slowly when it is warmed up, which cannot meet the requirements of energy saving and reduction.
  • the cooler and the exhaust gas recirculation system cooler are located in two independent pipelines. They need to provide coolant for the engine cooler and the exhaust gas recirculation cooler respectively, which results in a larger flow demand for the water pump.
  • the water pump consumes high power and the engine consumes large amounts of fuel.
  • one object of the present disclosure is to propose a thermal management system that has the advantages of low energy consumption, low engine fuel consumption, and fast warm-up rate.
  • the present disclosure also proposes a vehicle having the above thermal management system.
  • a thermal management system includes: an engine cooler having a liquid inlet and a liquid outlet; an exhaust gas recirculation system cooler, the exhaust gas recirculation system cooler The outlet is connected to the liquid inlet, and the inlet of the exhaust gas recirculation system cooler is connected to the liquid outlet; the temperature regulating and heat dissipation component, the inlet of the temperature regulating and heat dissipation component is connected to the exhaust gas recirculation cooler. The inlet is connected, and the outlet of the temperature adjustment and heat dissipation component is connected with the outlet of the exhaust gas recirculation cooler.
  • the thermal management system according to the embodiment of the present disclosure has the advantages of low energy consumption, low engine fuel consumption, and fast warm-up rate.
  • the temperature regulation and heat dissipation assembly includes a thermostat and a radiator connected in series, the inlet of the thermostat is connected to the inlet of the exhaust gas recirculation system cooler, and the outlet of the radiator is connected to the exhaust gas recirculation system cooler. The outlet of the exhaust gas recirculation system cooler is connected.
  • the thermal management system further includes: a warm air module, an outlet of the warm air module is connected to the liquid inlet, and an inlet of the warm air module is connected to the liquid outlet.
  • the warm air module is connected in parallel with the exhaust gas recirculation system cooler; or the warm air module is connected in series with the exhaust gas recirculation system cooler.
  • the thermal management system further includes: a battery cooling system; a first heat exchange plate, the first The heat exchange plate has: a first heat exchange channel, the first heat exchange channel is connected to the battery cooling system; and a second heat exchange channel, the first end of the second heat exchange channel is connected to the liquid inlet.
  • a three-way valve the three-way valve includes: a first opening connected to the liquid inlet; a second opening connected to the second opening of the second heat exchange channel and a third opening, the third opening is connected to the heater module, and the third opening is selectively connected to one of the first opening and the second opening.
  • the third opening communicates with the heater module through the exhaust gas recirculation system cooler.
  • the thermal management system further includes: an air conditioning system; and a second heat exchange plate, the second heat exchange plate having: a third heat exchange channel, the third heat exchange channel is connected to the The battery cooling system; and a fourth heat exchange channel, the fourth heat exchange channel is connected to the air conditioning system.
  • the air conditioning system includes: a compressor; a first heat exchanger, a first end of the first heat exchanger is connected to the compressor; and a second heat exchanger, the first heat exchanger is connected to the compressor.
  • the first end of the second heat exchanger is connected to the second end of the first heat exchanger through an on-off valve, and the second end of the second heat exchanger is connected to the compressor; wherein, the fourth heat exchanger Both ends of the hot channel are connected to the compressor and the second end of the first heat exchanger respectively.
  • an electronic expansion valve is provided between the fourth heat exchange channel and the first heat exchanger.
  • the engine cooler includes: a cylinder head water jacket used to cool the cylinder head of the engine, and the cylinder head water jacket is provided with the liquid outlet; a cylinder water jacket used for cooling The cylinder of the engine, and the outlet of the cylinder water jacket is connected to the liquid outlet, and the inlet of the cylinder water jacket is connected to the inlet of the cylinder head water jacket; and a connecting water jacket, the connecting water jacket The sleeve is provided with the liquid inlet, and the liquid inlet is respectively connected with the inlet of the cylinder head water jacket and the inlet of the cylinder water jacket.
  • the cylinder water jacket has an opposite air inlet side water jacket and an air outlet side water jacket.
  • the air inlet side water jacket is connected to the connecting water jacket.
  • the air inlet side water jacket and The outlet side water jacket is connected to the liquid outlet respectively;
  • the thermal management system also includes: a supercharger cooler, and the outlet side water jacket is connected to the supercharger cooler.
  • a vehicle according to an embodiment of the second aspect of the present disclosure includes a thermal management system according to the above-mentioned embodiment of the first aspect of the present disclosure.
  • the vehicle according to the embodiment of the second aspect of the present disclosure has the advantages of low energy consumption, low engine fuel consumption and fast warm-up rate by utilizing the above-mentioned thermal management system.
  • Figure 1 is a schematic structural diagram of a thermal management system according to a first embodiment of the present disclosure
  • Figure 2 is a schematic structural diagram of a thermal management system according to a second embodiment of the present disclosure
  • Figure 3 is a schematic structural diagram of a thermal management system according to a third embodiment of the present disclosure.
  • Figure 4 is a schematic structural diagram of a thermal management system according to a fourth embodiment of the present disclosure.
  • Figure 5 is a schematic structural diagram of an engine cooler of a thermal management system according to an embodiment of the present disclosure
  • Figure 6 is another structural schematic diagram of the engine cooler of the thermal management system according to an embodiment of the present disclosure.
  • Figure 7 is a schematic diagram of a vehicle according to an embodiment of the present disclosure.
  • Thermal management system Engine cooler 100, liquid inlet 110, liquid outlet 120, cylinder water jacket 130, intake side water jacket 131, outlet side water jacket 132, cylinder water jacket outlet 133, cylinder water jacket inlet 134, Cylinder head water jacket 140, cylinder head water jacket inlet 141, connecting water jacket 150, supercharger cooler 160, Exhaust gas recirculation system cooler 200, exhaust gas recirculation system cooler outlet 201, exhaust gas recirculation system cooler inlet 202, Temperature regulating and heat dissipation component 300, temperature regulating and heat dissipation component inlet 301, temperature regulating and heat dissipation component outlet 302, radiator 310, radiator outlet 311, radiator inlet 312, thermostat 320, thermostat inlet 321, Thermostat outlet 322, The heating module 400, the outlet 401 of the heating module, the inlet 402 of the heating module, Battery cooling system 500, battery pack 510, The first heat exchange plate 600, the first heat exchange channel 610, the second heat exchange channel 620, the first
  • first and second are only used for descriptive purposes and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. Further, in the description of the present disclosure, unless otherwise stated, the meaning of “plurality” is two or more.
  • thermal management system 1 according to the embodiment of the present disclosure is described below with reference to the accompanying drawings.
  • a thermal management system 1 includes an engine cooler 100 , an exhaust gas recirculation system cooler 200 and a temperature-adjusting heat dissipation assembly 300 .
  • the engine cooler 100 has a liquid inlet 110 and a liquid outlet 120.
  • the outlet 201 of the exhaust gas recirculation system cooler 200 is connected to the liquid inlet 110, and the inlet 202 of the exhaust gas recirculation system cooler 200 is connected to the liquid outlet 120. That is, the exhaust gas recirculation system cooler 200 and the engine cooler 100 are connected in series.
  • the inlet 301 of the temperature control and heat dissipation component 300 is connected to the inlet 202 of the exhaust gas recirculation system cooler 200, and the outlet 302 of the temperature control and heat dissipation component 300 is connected to the outlet 201 of the exhaust gas recirculation system cooler 200, that is, the temperature control and heat dissipation component 300 is connected to the exhaust gas Recirculation system cooler 200 is connected in series.
  • part of the coolant flowing out of the liquid outlet 120 of the engine cooler 100 can flow to the temperature adjustment and heat dissipation assembly 300, and then flow back to the engine cooler 100 through the liquid inlet 110, while the other part of the coolant can flow to the exhaust gas recirculation system for cooling. 200, and then flows back to the engine cooler 100 after heat exchange.
  • the engine cooler 100 can perform heat exchange with the engine to achieve rapid cooling of the engine, that is, when the engine temperature is too high, it can quickly cool the engine to ensure normal operation of the engine.
  • the thermal management system 1 of the embodiment of the present disclosure by connecting the outlet 201 of the exhaust gas recirculation system cooler 200 with the liquid inlet 110, and the inlet of the exhaust gas recirculation system cooler 200 with the liquid outlet 120, the exhaust gas recirculation
  • the system cooler 200 is connected in series with the engine cooler 100, so that the engine cooler 100 and the exhaust gas recirculation cooler 200 are connected in the same pipeline, and the coolant in the engine cooler 100 can directly flow into the exhaust gas recirculation cooler 200. That is to say, there is no need to add an additional electronic water pump to provide the driving force of the coolant to the exhaust gas recirculation system cooler 200 .
  • the cooling needs of the engine cooler 100 and the cooling needs of the exhaust gas recirculation system cooler 200 can be met, and the overall flow rate of the coolant can be reduced, thereby reducing the flow rate of the electronic water pump, thereby reducing the power of the electronic water pump. consumption and reduce engine fuel consumption.
  • the temperature control and heat dissipation assembly 300 is connected in series with the exhaust gas recirculation system cooler 200. Therefore, the coolant flowing out from the engine cooler 100 can flow through the exhaust gas recirculation system and the temperature control and heat dissipation assembly 300, that is, Say, the coolant flowing out of the engine cooler 100 has two flow paths. In this way, during the warm-up process, the temperature regulation and heat dissipation assembly 300 can be closed. At this time, the coolant flowing out through the engine cooler 100 does not pass through the temperature regulation and heat dissipation assembly 300. At the same time, the speed of the electronic water pump can be reduced to allow it to enter the engine cooler 100.
  • the coolant flowing through the exhaust gas recirculation system cooler 200 can absorb the heat of the exhaust gas recirculation system and use it to warm up the engine, so that the engine warms up quickly and the engine warm-up efficiency is greatly improved. , further reducing engine fuel consumption and reducing harmful gas emissions.
  • the thermal management system 1 has the advantages of low energy consumption, low engine fuel consumption, and fast warm-up rate. point.
  • the temperature regulation and heat dissipation assembly 300 includes a thermostat 320 and a radiator 310 connected in series, that is, the outlet 322 of the thermostat is connected to the inlet 312 of the radiator 310 , the inlet of the thermostat 320 is connected with the inlet 202 of the exhaust gas recirculation cooler 200 , and the outlet of the radiator 310 is connected with the outlet 201 of the exhaust gas recirculation cooler 200 . That is to say, the thermostat 320 and the radiator 310 are on the same pipeline, and the exhaust gas recirculation system cooler 200 is on another pipeline. A part of the coolant flowing out through the liquid outlet 120 of the engine cooler 100 can flow to the thermostat.
  • Thermostat 320 and radiator 310 and then flows back to the engine cooler 100 through the liquid inlet 110, while the other part of the coolant can flow to the exhaust gas recirculation system cooler 200, and then flows back to the engine cooler 100 after heat exchange.
  • the coolant flowing out of the engine cooler 100 has two flow paths.
  • the thermostat 300 can be closed.
  • the coolant flowing out through the engine cooler 100 does not pass through the radiator 310.
  • the speed of the electronic water pump can be reduced to prevent the coolant entering the engine cooler 100.
  • the coolant flowing through the exhaust gas recirculation system cooler 200 can absorb the heat of the exhaust gas recirculation system for warming up the engine, thereby allowing the engine to warm up quickly.
  • the thermal management system 1 also includes a heater module 400.
  • the outlet 401 of the heater module 400 is connected to the liquid inlet 110, and the heater module 400 has a
  • the inlet 402 is connected with the liquid outlet 120 , that is, the heater module 400 and the engine cooler 100 are connected in series. Therefore, the heater module 400 and the engine cooler 100 can form a cycle.
  • the coolant in the engine cooler 100 flows through the heater module 400 to heat the cabin, so that the heat of the engine can be used to heat the cabin. Heating improves the utilization of engine heat and reduces energy consumption.
  • the heater module 400 is connected in parallel with the exhaust gas recirculation system cooler 200 ; or, the heater module 400 is connected in series with the exhaust gas recirculation system cooler 200 . In this way, the connection between the heater module 400 and the exhaust gas recirculation system cooler 200 is simpler.
  • part of the coolant flowing out through the engine cooler 100 can flow to the exhaust gas recirculation system cooler 200, while another part of the coolant can flow to the heater module 400, so that the coolant flowing through the heater module 400 and the exhaust gas
  • the coolant of the recirculation system cooler 200 and the coolant and heat dissipation device shared by the engine cooler 100 do not need to add an additional electronic water pump to provide the driving force of the coolant to the exhaust gas recirculation system cooler 200, while ensuring the cooling of the exhaust gas recirculation system.
  • the flow rate and the number of parts of the electronic water pump are reduced on the premise of the cooling demand of the device 200, which can also reduce the power consumption of the electronic water pump to a certain extent, thereby reducing engine fuel consumption, simplifying the vehicle structure, and reducing costs.
  • the thermal management system 1 further includes a battery cooling system 500 , a first heat exchange plate 600 and a three-way valve 700 .
  • the first heat exchange plate 600 has a first heat exchange channel 610 and a second heat exchange channel 620.
  • the first heat exchange channel 610 is connected to the battery cooling system 500.
  • the first end 621 of the second heat exchange channel 620 is connected to the liquid inlet 110.
  • the three-way valve 700 includes a first opening 710, a second opening 720, and a third opening 730.
  • the first opening 710 is connected to the liquid inlet 110
  • the second opening 720 is connected to the second end 622 of the second heat exchange channel 620.
  • the three openings 730 are connected with the heating module 400 .
  • the third opening 730 is selectively connected to one of the first opening 710 and the second opening 720 .
  • the coolant in the engine cooler 100 can flow through the second heat exchange channel 620 and the battery cooling system 500
  • the coolant in the engine cooler 100 can flow through the first heat exchange channel 610, so that the coolant in the engine cooler 100 and the cooling in the battery cooling system 500 can perform heat exchange in the first heat exchange plate 600, thereby utilizing the engine cooler 100.
  • 100 heats the battery cooling system 500 to further increase the heating rate of the battery cooling system 500 and provide guarantee for the efficiency of the battery. In this way, no additional energy is required to heat the battery pack 510, which not only improves the efficiency of the battery pack 510, but also requires no additional power consumption and improves energy utilization.
  • the engine cooler 100 and the first heat exchange plate 600 are disconnected. That is to say, the first heat exchange plate 600 does not participate in the circulation of the coolant in the engine cooler 100. loop, the engine cooler 100 and the battery cooling system 500 do not exchange heat, and the first heat exchange plate 600 is equivalent to a pipeline; when the second opening 720 and the third opening 730 are connected, the engine cooler 100 and the battery cooling system 500 By performing heat exchange with the first heat exchange plate 600 , the engine cooler 100 may heat the battery cooling system 500 .
  • the third opening 730 communicates with the heater module 400 through the exhaust gas recirculation system cooler 200 .
  • the coolant will exchange heat with the exhaust gas recirculation system cooler 200 before flowing through the second heat exchange channel 620 to absorb the heat of the exhaust gas recirculation system, so that the coolant flows through the second heat exchanger.
  • the temperature of the hot channel 620 is higher, which can quickly increase the temperature of the coolant entering the second heat exchange channel 620 of the first heat exchange plate 600.
  • it can quickly provide heat to the battery cooling system 500.
  • the battery pack 510 can quickly reach the appropriate temperature to ensure the efficiency of the battery.
  • the thermal management system 1 further includes an air conditioning system 800 and a second heat exchange plate 900 .
  • the second heat exchange plate 900 has a third heat exchange channel 910 and a fourth heat exchange channel 920 .
  • the third heat exchange channel 910 is connected to the battery cooling system 500
  • the fourth heat exchange channel 920 is connected to the air conditioning system 800 .
  • the coolant in the battery cooling system 500 can flow through the third heat exchange channel 910
  • the refrigerant in the air conditioning system 800 can flow through the fourth heat exchange channel 920
  • the coolant in the third heat exchange channel 910 can be mixed with
  • the refrigerant in the fourth heat exchange channel 920 performs heat exchange.
  • the refrigerant in the air conditioning system 800 can be used to heat the cooling fluid in the battery cooling system 500 , thereby increasing the temperature of the cooling fluid in the battery cooling system 500 , and through the cooling fluid in the battery cooling system 500 .
  • the coolant heats the battery pack 510 to ensure that the battery pack 510 is in a comfortable operating temperature range; when the ambient temperature is high, the refrigerant in the air conditioning system 800 can be used to cool down the coolant in the battery cooling system 500, thereby reducing the battery temperature.
  • the temperature of the coolant in the cooling system 500 is lowered by the coolant in the battery cooling system 500 to cool the battery pack 510 to keep the battery pack 510 in a normal working condition.
  • the engine cooler 100 and the air conditioning system 800 can exchange heat with the battery cooling system 500 at the same time, which further increases the temperature rise rate of the battery cooling system 500.
  • the efficiency can realize rapid heating of the battery pack 510, so that no additional energy is required to heat the battery pack 510, which not only improves the efficiency of the battery pack 510, but also does not require additional power consumption.
  • the engine cooler 100 can only be used to exchange heat with the battery cooling system 500, and the air-conditioning system 800 does not exchange heat with the battery cooling system 500, or only the air-conditioning system can be used. 800 exchanges heat with the battery cooling system 500 , and the engine cooler 100 does not exchange heat with the battery cooling system 500 .
  • the air conditioning system 800 includes a compressor 810 , a first heat exchanger 820 and a second heat exchanger 830 .
  • the first end 821 of the first heat exchanger 820 is connected to the compressor 810, and the first end 831 of the second heat exchanger 830 is connected to the second end 822 of the first heat exchanger 820 through the on-off valve 840.
  • the second end 832 of the heater 830 is connected to the compressor 810 .
  • both ends of the fourth heat exchange channel 920 are connected to the compressor 810 and the second end 822 of the first heat exchanger 820 respectively.
  • An expansion valve is provided between the first heat exchanger 820 and the second heat exchanger 830 .
  • the expansion valve may be a thermal expansion valve, and the expansion valve may be located between the on-off valve 840 and the second heat exchanger 830 .
  • the first heat exchanger 820 can be used as a condenser of the air conditioning system 800 for heating
  • the second heat exchanger 830 can be used as an evaporator of the air conditioning system 800 for cooling
  • the BMS BATTERY MANAGEMENT SYSTEM, battery management system
  • the temperature and pressure sensor of the system 800 sets the temperature targets and limits of each part according to the experimental and simulation parameters to control the compressor 810, the electronic expansion valve 850 and the electronic water pump described below to achieve the best performance under various working conditions. Temperature and energy consumption targets.
  • the air conditioning system 800 When the air conditioning system 800 is cooling, part of the cooling liquid flowing out from the first heat exchanger 820 flows through the fourth heat exchange channel 920 and exchanges heat with the cooling liquid in the third heat exchange channel 910, thereby The battery cooling system 500 cools down, and the other part flows through the on-off valve 840 and the second heat exchanger 830, so that the compressor 810, the first heat exchanger 820, the on-off valve 840 and the second heat exchanger 830 form a refrigerant circuit.
  • the first heat exchanger 820 is a condenser
  • the second heat exchanger 830 is an evaporator, used for cooling the vehicle cabin.
  • an electronic expansion valve 850 is provided between the fourth heat exchange channel 920 and the first heat exchanger 820 .
  • the electronic expansion valve 850 can control the connection between the fourth heat exchange channel 920 and the air conditioning system 800, so that when the temperature of the battery pack 510 is normal and the battery pack 510 neither needs heating nor cooling, the air conditioning system The 800's coolant and battery cooling system 500 do not exchange heat.
  • the electronic expansion valve 850 When the air conditioning system 800 assists in cooling the battery cooling system 500, the electronic expansion valve 850 is turned on, and the low-temperature and low-pressure gas becomes high-temperature and high-pressure gas after passing through the compressor 810.
  • the high-temperature and high-pressure gas passes through the first heat exchanger 820 and becomes It is a high-pressure low-temperature liquid.
  • a part of the high-pressure low-temperature liquid enters the second heat exchanger 830, so that the compressor 810, the first heat exchanger 820 and the second heat exchanger 830 form a refrigerant circuit for cooling the vehicle cabin.
  • the other part of the high-pressure low-temperature liquid enters the second heat exchanger 830.
  • the low-temperature liquid enters the fourth heat exchange channel 920 through the electronic expansion valve 850 to exchange heat with the battery cooling system 500, and then turns into low-pressure low-temperature gas and enters the compressor 810 to complete the cycle.
  • the first heat exchanger 820 is a condenser
  • the second heat exchanger 830 is an evaporator.
  • the engine cooler 100 includes a cylinder head water jacket 140, The cylinder water jacket 130 and the connecting water jacket 150.
  • the cylinder head water jacket 140 is used to cool the cylinder head of the engine, and the cylinder head water jacket 140 is provided with a liquid outlet 120.
  • the cylinder water jacket 130 is used to cool the engine cylinder.
  • the outlet 133 of the cylinder water jacket 13 is connected with the liquid outlet.
  • the inlet 120 is connected, and the inlet 134 of the cylinder water jacket 130 is connected with the inlet 141 of the cylinder head water jacket 140.
  • the cooling effect of each part of the engine is better, and the cooling is more comprehensive.
  • the connecting water jacket 150 is provided with a liquid inlet 110, which is connected to the inlet 141 of the cylinder head water jacket 140 and the inlet 133 of the cylinder water jacket 130 respectively. That is to say, the cylinder head water jacket 140 and the cylinder water jacket 130 are connected in parallel and in series with the connecting water jacket 150 .
  • the cylinder water jacket 130 and the cylinder head water jacket 140 are connected in parallel, and the cylinder water jacket 130 and the cylinder head water jacket 140 are connected in series with the connecting water jacket 150, which refers to the cylinder water jacket 130 and the cylinder head water jacket 140. After being connected in parallel, the two are connected as a whole to the connecting water jacket 150.
  • the coolant flowing out through the connecting water jacket 150 can flow to the cylinder water jacket 130 and the cylinder head water jacket 140 respectively, and then flow out of the cylinder water jacket 130 and the cylinder head water jacket 140.
  • the coolant can be gathered together, and then divided into three paths, flowing all the way to the expansion kettle, taking away the gas generated in the engine cooler 100 system, and then replenishing water through the expansion kettle to the motor water pump in the engine cooler 100 to maintain the engine cooler 100
  • the flow pressure of the coolant prevents boiling or electronic water pump cavitation; it passes through the heater module 400 and then enters the exhaust gas recirculation system cooler 200. If the battery cooling system 500 requires heating, the third opening 730 of the three-way valve 700 is connected to the third opening 730 of the three-way valve 700.
  • the two openings 720 are connected, and the coolant of the heater module 400 flows into the first heat exchange plate 600 and exchanges heat with the battery cooling system 500, and then flows back to the engine cooler 100.
  • the three-way valve 700 The third opening 730 is connected with the first opening 710, and the coolant of the heater module 400 flows directly back to the engine cooler 100; all the way into the thermostat 300, when the thermostat 300 is opened, the coolant enters the radiator 310 to dissipate heat and then flows back.
  • the engine cooler 100 completes the cycle, and the radiator 310 does not participate in the cycle if the thermostat 300 is not opened.
  • the flow from the connecting water jacket 150 to the cylinder water jacket 130 can be reasonably distributed.
  • the flow rate and the flow rate of the cylinder head water jacket 140 can reduce the engine warm-up time when starting in a low-temperature environment, thereby reducing fuel consumption and harmful gas emissions.
  • the flow rate of the coolant entering the cylinder water jacket 130 will increase, and the flow rate of the coolant entering the cylinder head water jacket 140 will decrease, so that , the cooling rate of the engine cooler 100 to the cylinder block and cylinder head of the engine can be adjusted.
  • the thermal management system 1 further includes a supercharger cooler 160 .
  • the cylinder water jacket 130 has an opposite air inlet side water jacket 131 and an air outlet side water jacket 132.
  • the air inlet side water jacket 131 is connected to the connecting water jacket 150, and the air outlet side water jacket 132 is connected to the supercharger cooler 160.
  • the side water jacket 131 and the air outlet side water jacket 132 are respectively connected with the liquid outlet 120 . In this way, the coolant flowing out of the outlet side water jacket 132 can flow into the supercharger cooler 160, and the supercharger cooler 160 can cool the supercharger to prevent the supercharger from being too hot, so that the supercharger can operate normally. Work.
  • the vehicle 2 includes the thermal management system 1 according to the above-mentioned first embodiment of the present disclosure.
  • the vehicle 2 according to the embodiment of the present disclosure has the advantages of low energy consumption, low engine fuel consumption and fast warm-up rate by adopting the above-mentioned thermal management system 1 .
  • thermal management system 1 According to the embodiment of the present disclosure and the vehicle 2 having the same are common in the art. They are all known to skilled persons and will not be described in detail here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Transportation (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

一种热管理***(1),包括发动机冷却器(100)、废气再循环***冷却器(200)、调温器(300)和散热器(400),发动机冷却器(100)具有进液口(110)和出液口(120);废气再循环***冷却器(200)的一端与进液口(110)连通且另一端与出液口(120)连通,废气再循环***冷却器(200)与发动机冷却器(100)串联;调温器(300)和散热器(400)串联且与废气再循环***冷却器(200)并联,调温器(300)与进液口(110)连通且散热器(400)与出液口(120)连通,从而使热管理***(1)能耗低、发动机油耗低和暖机速率快。还涉及一种车辆(2)。

Description

热管理***和具有其的车辆
相关申请的交叉引用
本申请要求申请人比亚迪股份有限公司于2022年4月28日提交的名称为“热管理***和具有其的车辆”的中国专利申请号“202210456199.3”的优先权。
技术领域
本公开涉及车辆技术领域,具体而言,涉及一种热管理***和具有其的车辆。
背景技术
相关技术中,热管理***通常包括发动机冷却器、废气再循环***冷却器和调温器,但由于热管理***的结构设置不合理,导致发动机在暖机时温度上升较慢,无法满足节能减排的需求,并且冷却器和废气再循环***冷却器分别设于两条独立的管路中,需要分别为发动机冷却器和废气再循环冷却器提供冷却液,进而导致水泵的流量需求较大,水泵功耗高,发动机油耗较大。
公开内容
本公开旨在至少解决现有技术中存在的技术问题之一。为此,本公开的一个目的在于提出一种热管理***,该热管理***具有能耗低、发动机油耗低和暖机速率快等优点。
本公开还提出了一种具有上述热管理***的车辆。
根据本公开的第一方面实施例的热管理***,包括:发动机冷却器,所述发动机冷却器具有进液口和出液口;废气再循环***冷却器,所述废气再循环***冷却器的出口与所述进液口连通,且所述废气再循环***冷却器的进口与所述出液口连通;调温散热组件,所述调温散热组件的进口与所述废气再循环冷却器的进口连通,所述调温散热组件的出口与所述废气再循环冷却器的出口连通。根据本公开实施例的热管理***具有能耗低、发动机油耗低和暖机速率快等优点。
根据本公开的一些示例,调温散热组件包括串联的调温器和散热器,所述调温器的进口与所述废气再循环***冷却器的进口连通,所述散热器的出口与所述废气再循环***冷却器的出口连通。
根据本公开的一些示例,所述热管理***还包括:暖风模块,所述暖风模块的出口与所述进液口连通,且所述暖风模块的入口与所述出液口连通。
根据本公开的一些示例,所述暖风模块与所述废气再循环***冷却器并联;或,所述暖风模块与所述废气再循环***冷却器串联。
根据本公开的一些示例,所述热管理***还包括:电池冷却***;第一换热板,所述第一 换热板具有:第一换热通道,所述第一换热通道接入所述电池冷却***;及第二换热通道,所述第二换热通道的第一端与所述进液口连通;三通阀,所述三通阀包括:第一开口,所述第一开口与所述进液口连通;第二开口,所述第二开口与所述第二换热通道的第二端连通;及第三开口,所述第三开口与所述暖风模块连通,所述第三开口可选择地与所述第一开口和所述第二开口中的其中一个连通。
根据本公开的一些示例,所述第三开口通过所述废气再循环***冷却器与所述暖风模块连通。
根据本公开的一些示例,所述热管理***还包括:空调***;及第二换热板,所述第二换热板具有:第三换热通道,所述第三换热通道接入所述电池冷却***;及第四换热通道,所述第四换热通道接入所述空调***。
根据本公开的一些示例,所述空调***包括:压缩机;第一换热器,所述第一换热器的第一端与所述压缩机连接;及第二换热器,所述第二换热器的第一端通过通断阀与所述第一换热器的第二端连接,所述第二换热器的第二端所述压缩机连接;其中,所述第四换热通道的两端分别与所述压缩机和所述第一换热器的第二端连接。
根据本公开的一些示例,所述第四换热通道和所述第一换热器之间设有电子膨胀阀。
根据本公开的一些示例,所述发动机冷却器包括:缸盖水套,用于冷却发动机的缸盖,且所述缸盖水套设有所述出液口;缸体水套,用于冷却发动机的缸体,且所述缸体水套的出口与所述出液口连通,所述缸体水套的进口与所述缸盖水套的进口连通;及连接水套,所述连接水套设有所述进液口,所述进液口分别与所述缸盖水套的进口和所述缸体水套的进口连通。
根据本公开的一些示例,所述缸体水套具有相对的进气侧水套和出气侧水套,所述进气侧水套与所述连接水套连接,所述进气侧水套和所述出气侧水套分别与所述出液口连通;所述热管理***还包括:增压器冷却器,所述出气侧水套与所述增压器冷却器连通。
根据本公开的第二方面实施例的车辆,包括根据本公开上述第一方面实施例的热管理***。
根据本公开的第二方面实施例的车辆,通过利用上述热管理***,具有能耗低、发动机油耗低和暖机速率快等优点。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本公开第一个实施例的热管理***的结构示意图;
图2是根据本公开第二个实施例的热管理***的结构示意图;
图3是根据本公开第三个实施例的热管理***的结构示意图;
图4是根据本公开第四个实施例的热管理***的结构示意图;
图5是根据本公开实施例的热管理***的发动机冷却器的结构示意图;
图6是根据本公开实施例的热管理***的发动机冷却器的另一结构示意图
图7是根据本公开实施例的车辆的示意图。
附图标记:
热管理***1、
发动机冷却器100、进液口110、出液口120、缸体水套130、进气侧水套131、出气侧水
套132、缸体水套的出口133、缸体水套的进口134、缸盖水套140、缸盖水套的进口141、连接水套150、增压器冷却器160、
废气再循环***冷却器200、废气再循环***冷却器的出口201、废气再循环***冷却器
的进口202、
调温散热组件300、调温散热组件的进口301、调温散热组件的出口302、散热器310、散
热器的出口311、散热器的进口312、调温器320、调温器的进口321、调温器的出口322、
暖风模块400、暖风模块的出口401、暖风模块的入口402、
电池冷却***500、电池包510、
第一换热板600、第一换热通道610、第二换热通道620、第二换热通道的第一端621、第
二换热通道的第二端622、
三通阀700、第一开口710、第二开口720、第三开口730、
空调***800、压缩机810、第一换热器820、第一换热器的第一端821、第一换热器的第
二端822、第二换热器830、第二换热器的第一端831、第二换热器的第二端832、通断阀840、电子膨胀阀850、膨胀阀860、
第二换热板900、第三换热通道910、第四换热通道920、
车辆2。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
在本公开的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解 为对本公开的限制。
需要说明的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。进一步地,在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上。
下面参考附图描述根据本公开实施例的热管理***1。
如图1-图4所示,根据本公开实施例的热管理***1包括发动机冷却器100、废气再循环***冷却器200和调温散热组件300。
发动机冷却器100具有进液口110和出液口120,废气再循环***冷却器200的出口201与进液口110连通,且废气再循环***冷却器200的进口202与出液口120连通,即废气再循环***冷却器200与发动机冷却器100串联。调温散热组件300的进口301与废气再循环***冷却器200的进口202连通,调温散热组件300的出口302与废气再循环***冷却器200的出口201连通,即调温散热组件300与废气再循环***冷却器200串联。
其中,由发动机冷却器100的出液口120流出的一部分冷却液可以流向调温散热组件300,再通过进液口110流回发动机冷却器100,而另一部分冷却液可以流向废气再循环***冷却器200,换热后再流回发动机冷却器100。其中,发动机冷却器100可以与发动机进行热交换,从而实现发动机的快速降温,即在发动机温度过高时能够快速为发动机降温,保证发动机的正常运行。
根据本公开实施例的热管理***1,通过将废气再循环***冷却器200的出口201与进液口110连通,且废气再循环***冷却器200的进口与出液口120连通,废气再循环***冷却器200与发动机冷却器100串联,这样,发动机冷却器100和废气再循环冷却器200连接在同一条管路内,发动机冷却器100内的冷却液可以直接流入废气再循环冷却器200,也就是说,无需额外增设电子水泵提供冷却液的驱动力给废气再循环***冷却器200。由此,既可以满足发动机冷却器100的冷却需求和废气再循环***冷却器200的冷却需求,又可以减小冷却液的整体流量,从而减小电子水泵的流量,进而可以降低电子水泵的功耗,以及降低发动机的油耗。
另外,调温散热组件300与废气再循环***冷却器200串联,由此,由发动机冷却器100流出的冷却液既可以流经废气再循环***,也可以流经调温散热组件300,也就是说,发动机冷却器100流出的冷却液有两条流动路径。这样,在暖机过程中,调温散热组件300可以关闭,此时经由发动机冷却器100流出的冷却液不经过调温散热组件300,同时可以通过降低电子水泵的转速,使进入发动机冷却器100的冷却液较少,并且流经废气再循环***冷却器200的冷却液可以吸收废气再循环***的热量用于发动机的暖机,从而使发动机快速暖机,极大地提高了发动机的暖机效率,进一步降低发动机的油耗,且可以减少有害气体的排放。
由此,根据本公开实施例的热管理***1,具有能耗低、发动机油耗低和暖机速率快等优 点。
在本公开的一些实施例中,如图1-图4所示,调温散热组件300包括串联的调温器320和散热器310,即调温器的出口322与散热器310的进口312连通,调温器320的进口与废气再循环冷却器200的进口202连通,散热器310的出口与废气再循环冷却器200的出口201连通。也就是说,调温器320和散热器310在同一条管路上,而废气再循环***冷却器200在另一条管路上,经由发动机冷却器100的出液口120流出的一部分冷却液可以流向调温器320和散热器310,再通过进液口110流回发动机冷却器100,而另一部分冷却液可以流向废气再循环***冷却器200,换热后再流回发动机冷却器100。也就是说,发动机冷却器100流出的冷却液有两条流动路径。这样,在暖机过程中,调温器300可以关闭,此时经由发动机冷却器100流出的冷却液不经过散热器310,同时可以通过降低电子水泵的转速,使进入发动机冷却器100的冷却液较少,并且流经废气再循环***冷却器200的冷却液可以吸收废气再循环***的热量用于发动机的暖机,从而使发动机快速暖机。
在本公开的一些具体实施例中,如图1-图4所示,热管理***1还包括暖风模块400,暖风模块400的出口401与进液口110连通,且暖风模块400的入口402与出液口120连通,即暖风模块400与发动机冷却器100串联。由此,暖风模块400和发动机冷却器100可以组成一个循环,发动机冷却器100内的冷却液流经暖风模块400可以对车舱内进行加热,从而可以利用发动机的热量对车舱内进行加热,提高了发动机热量的利用率,能够减小能耗。
在本公开的一些具体实施例中,如图1-图4所示,暖风模块400与废气再循环***冷却器200并联;或者,暖风模块400与废气再循环***冷却器200串联。这样,暖风模块400和废气再循环***冷却器200的连接更加简单。也就是说,经由发动机冷却器100流出的一部分冷却液可以流向废气再循环***冷却器200,而另一部分冷却液可以流向暖风模块400,这样流经暖风模块400的冷却液、流经废气再循环***冷却器200的冷却液和经过发动机冷却器100共用的冷却液以及散热装置,无需额外增设电子水泵提供冷却液的驱动力给废气再循环***冷却器200,在保证废气再循环***冷却器200的冷却需求的前提下减小了电子水泵的流量以及零件数量,这样也可以在一定程度上减少电子水泵的功耗,从而降低发动机油耗,也简化了车辆结构,降低成本。
在本公开的一些具体实施例中,如图1-图4所示,热管理***1还包括电池冷却***500、第一换热板600和三通阀700。
第一换热板600具有第一换热通道610和第二换热通道620,第一换热通道610接入电池冷却***500,第二换热通道620的第一端621与进液口110连通。三通阀700包括第一开口710、第二开口720和第三开口730,第一开口710与进液口110连通,第二开口720与第二换热通道620的第二端622连通,第三开口730与暖风模块400连通。第三开口730可选择地与第一开口710和第二开口720中的其中一个连通。
也就是说,发动机冷却器100内的冷却液可以流经第二换热通道620,电池冷却***500 内的冷却液可以流经第一换热通道610,这样,发动机冷却器100内的冷却液和电池冷却***500中的冷却可以在第一换热板600内进行热交换,从而利用发动机冷却器100为电池冷却***500进行加热,进一步提高电池冷却***500的升温速率,为电池的效率提供保障。这样给电池包510进行加热时,不需要额外的能量,既提升了电池包510的效率,又不需额外的功耗,提高了能量的利用率。
其中,第二开口720与第一开口710连通时,发动机冷却器100和第一换热板600断开连通,也就是说,第一换热板600不参与发动机冷却器100内的冷却液的回路,发动机冷却器100和电池冷却***500不进行换热,第一换热板600相当于管路;而当第二开口720和第三开口730连通时,发动机冷却器100和电池冷却***500通过第一换热板600进行热交换,发动机冷却器100可以为电池冷却***500加热。
在本公开的一些具体实施例中,如图1-图4所示,第三开口730通过废气再循环***冷却器200与暖风模块400连通。
这样,当电池包510需要加热时,冷却液流经第二换热通道620之前会与废气再循环***冷却器200换热,以吸收废气再循环***的热量,从而冷却液流经第二换热通道620的温度更高,可以快速提升进入第一换热板600的第二换热通道620的冷却液的温度,尤其是,在低温环境启动时,可以快速为电池冷却***500提供热量,使电池包510快速达到合适温度,为电池的效率提供保障,并且,将废气再循环***冷却器200与暖风模块400串联后,不需要为废气再循环***冷却器200额外增加电子水泵,也不需要电子水泵额外增加流量,也就是说废气再循环***冷却器200和发动机冷却器100可以共用同一个水泵,在一定程度上能够减少电子水泵的功耗,从而降低发动机油耗。
在本公开的一些具体实施例中,如图1-图4所示,热管理***1还包括空调***800和第二换热板900。
第二换热板900具有第三换热通道910和第四换热通道920,第三换热通道910接入电池冷却***500,第四换热通道920接入空调***800。
也就是说,电池冷却***500内的冷却液可以流经第三换热通道910,空调***800内的冷媒可以流经第四换热通道920,第三换热通道910内的冷却液可以和第四换热通道920内的冷媒进行热交换。这样,当环境温度较低时,可以利用空调***800内的冷媒为电池冷却***500内的冷却液进行加热,从而提高电池冷却***500内的冷却液的温度,并通过电池冷却***500内的冷却液为电池包510进行加热,保证电池包510处于舒适的工作温度区间;当环境温度较高时,可以利用空调***800内的冷媒为电池冷却***500内的冷却液进行降温,从而降低电池冷却***500内的冷却液的温度,并通过电池冷却***500内的冷却液为电池包510进行降温,保持电池包510能够处于正常工作状态。
并且,通过设置第一换热板600和第二换热板900,发动机冷却器100和空调***800可以同时与电池冷却***500进行热交换,这样进一步提高了电池冷却***500的升温速率速 率,实现电池包510的快速升温,从而给电池包510进行加热时,不需要额外的能量,既提升了电池包510的效率,又不需额外的功耗。当然,可以理解的是,在电池包510需要加热时,可以只利用发动机冷却器100与电池冷却***500换热,且空调***800不与电池冷却***500换热,或者,可以只利用空调***800与电池冷却***500换热,且发动机冷却器100不与电池冷却***500换热。
在本公开的一些具体实施例中,如图1-图4所示,空调***800包括压缩机810、第一换热器820和第二换热器830。
第一换热器820的第一端821与压缩机810连接,第二换热器830的第一端831通过通断阀840与第一换热器820的第二端822连接,第二换热器830的第二端832与压缩机810连接。其中,第四换热通道920的两端分别与压缩机810和第一换热器820的第二端822连接。其中,第一换热器820和第二换热器830之间设有膨胀阀,膨胀阀可以为热力膨胀阀,膨胀阀可以位于通断阀840和第二换热器830之间。
举例而言,第一换热器820可以作为空调***800的冷凝器进行制热,第二换热器830可以作为空调***800的蒸发器进行制冷。并且,BMS(BATTERY MANAGEMENT SYSTEM,电池管理***)根据电池包510内温度传感器信号,然后向MCU(Micro Control Unit,微控制单元)发出冷却、加热、均衡请求信号,MCU根据BMS的请求信号及空调***800的温度压力传感器,根据实验及仿真参数设定各个部分的温度目标及限值对压缩机810、下文所述的电子膨胀阀850和电子水泵进行控制,以实现各个工况下的最佳温度及能耗目标。
其中,在空调***800制冷时,从第一换热器820流出的冷却液中的一部分流经第四换热通道920,并与第三换热通道910内的冷却液进行换热,从而对电池冷却***500进行降温,另一部分流经通断阀840和第二换热器830,从而压缩机810、第一换热器820、通断阀840和第二换热器830组成冷媒回路,第一换热器820为冷凝器,第二换热器830为蒸发器,用于对车舱内制冷。
在本公开的一些具体实施例中,如图1-图4所示,第四换热通道920和第一换热器820之间设有电子膨胀阀850。这样,电子膨胀阀850可以控制第四换热通道920与空调***800之间的通断,从而在电池包510的温度正常时,既电池包510既不需要加热也不需要制冷时,空调***800的冷却液和电池冷却***500不进行换热。
其中,在空调***800对电池冷却***500进行辅助冷却时,电子膨胀阀850接通,低温低压的气体经压缩机810后变为高温高压气体,高温高压气体经过第一换热器820后变为高压低温液体,一部分高压低温液体进入第二换热器830,从而压缩机810、第一换热器820和第二换热器830组成冷媒回路,用于对车舱内制冷,另一部分高压低温液体则通过电子膨胀阀850进入第四换热通道920与电池冷却***500进行热交换,然后变成低压低温气体进入压缩机810,完成循环。此时第一换热器820为冷凝器,第二换热器830为蒸发器。
在本公开的一些具体实施例中,如图1-图6所示,发动机冷却器100包括缸盖水套140、 缸体水套130和连接水套150。
缸盖水套140用于冷却发动机的缸盖,且缸盖水套140设有出液口120,缸体水套130用于冷却发动机的缸体,缸体水套13的出口133与出液口120连通,缸体水套130的进口134与缸盖水套140的进口141连通,发动机的各个部位的被冷却效果都较好,冷却更加全面。连接水套150设有进液口110,进液口110分别与缸盖水套140的进口141和缸体水套130的进口133连通。也就是说,缸盖水套140和缸体水套130并联且与连接水套150串联。
需要说明的是,缸体水套130和缸盖水套140并联,且缸体水套130和缸盖水套140与连接水套150串联,是指缸体水套130和缸盖水套140并联后两者整体和连接水套150连通,经过连接水套150流出的冷却液可以分别流向缸体水套130和缸盖水套140,然后缸体水套130和缸盖水套140流出的冷却液可以汇集到一起,再分成三路,一路流向膨胀水壶,带走发动机冷却器100***中产生的气体,然后通过膨胀水壶给发动机冷却器100内的电机水泵补水,维持发动机冷却器100的冷却液的流动压力,防止沸腾或者电子水泵气蚀;一路经暖风模块400后进入废气再循环***冷却器200,若电池冷却***500有加热需求,三通阀700的第三开口730与第二开口720连通,暖风模块400的冷却液流入第一换热板600并与电池冷却***500换热,再流回发动机冷却器100,若电池冷却***500无加热需求,则三通阀700的第三开口730与第一开口710连通,暖风模块400的冷却液直接流回发动机冷却器100;一路进入调温器300,调温器300打开则冷却液进入散热器310散热后流回发动机冷却器100完成循环,若调温器300未打开则散热器310不参与循环。
此外,通过调整连接水套150与缸体水套130的连通口的大小,以及连接水套150与缸盖水套140的连通口的大小,可以合理分配连接水套150流向缸体水套130的流量和缸盖水套140的流量,能够实现在低温环境启动时减少发动机的暖机时间,从而降低油耗及有害气体的排放。例如,连接水套150与缸体水套130的连通口增大,则冷却液进入缸体水套130的流量就会增大,冷却液进入缸盖水套140的流量就会减小,这样,可以调节发动机冷却器100对发动机的缸体和缸盖的冷却速率。
在本公开的一些具体实施例中,如图1-图6所示,热管理***1还包括增压器冷却器160。
缸体水套130具有相对的进气侧水套131和出气侧水套132,进气侧水套131与连接水套150连接,出气侧水套132与增压器冷却器160连通,进气侧水套131和出气侧水套132分别与出液口120连通。这样,出水侧水套132流出的冷却液可以流入增压器冷却器160,增压器冷却器160可以为增压器进行冷却,避免增压器的温度过高,以使增压器能够正常工作。
如图7所示,根据本公开第二方面实施例的车辆2,车辆2包括根据本公开上述第一方面实施例的热管理***1。
根据本公开实施例的车辆2,通过采用上述热管理***1,具有能耗低、发动机油耗低和暖机速率快等优点。
根据本公开实施例的热管理***1和具有其的车辆2的其他构成以及操作对于本领域普通 技术人员而言都是已知的,这里不再详细描述。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本公开的实施例,本领域的普通技术人员可以理解:在不脱离本公开的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由权利要求及其等同物限定。

Claims (12)

  1. 一种热管理***(1),其特征在于,包括:
    发动机冷却器(100),所述发动机冷却器(100)具有进液口(110)和出液口(120);
    废气再循环***冷却器(200),所述废气再循环***冷却器(200)的出口(201)与所述进液口(110)连通,且所述废气再循环***冷却器(200)的进口(202)与所述出液口(120)连通;以及
    调温散热组件(300),所述调温散热组件(300)的进口(301)与所述废气再循环冷却器(200)的进口(202)连通,所述调温散热组件(300)的出口(302)与所述废气再循环冷却器(200)的出口(201)连通。
  2. 根据权利要求1所述的热管理***(1),其特征在于,所述调温散热组件(300)包括串联的调温器(320)和散热器(310),所述调温器(320)的进口(321)与所述废气再循环冷却器(200)的进口202连通,所述散热器(310)的出口(311)与所述废气再循环冷却器(200)的出口201连通。
  3. 根据权利要求2所述的热管理***(1),其特征在于,还包括:
    暖风模块(400),所述暖风模块(400)的出口(401)与所述进液口(110)连通,且所述暖风模块(400)的入口(402)与所述出液口(120)连通。
  4. 根据权利要求3所述的热管理***,其特征在于,所述暖风模块(400)与所述废气再循环***冷却器(200)并联;或
    所述暖风模块(400)与所述废气再循环***冷却器(200)串联。
  5. 根据权利要求3或4所述的热管理***(1),其特征在于,还包括:
    电池冷却***(500);
    第一换热板(600),所述第一换热板(600)具有:
    第一换热通道(610),所述第一换热通道(610)接入所述电池冷却***(500);及
    第二换热通道(620),所述第二换热通道(620)的第一端(621)与所述进液口(110)连通;
    三通阀(700),所述三通阀(700)包括:
    第一开口(710),所述第一开口(710)与所述进液口(110)连通;
    第二开口(720),所述第二开口(720)与所述第二换热通道(620)的第二端(622)连通;及
    第三开口(730),所述第三开口(720)与所述暖风模块(400)连通,所述第三开口(730)可选择地与所述第一开口(710)和所述第二开口(720)中的其中一个连通。
  6. 根据权利要求5所述的热管理***(1),其特征在于,所述第三开口(730)通过所述废气再循环***冷却器(200)与所述暖风模块(400)连通。
  7. 根据权利要求1-6任一项所述的热管理***(1),其特征在于,还包括:
    空调***(800);及
    第二换热板(900),所述第二换热板(900)具有:
    第三换热通道(910),所述第三换热通道(910)接入所述电池冷却***(500);及
    第四换热通道(920),所述第四换热通道(920)接入所述空调***(800)。
  8. 根据权利要求7所述的热管理***(1),其特征在于,所述空调***(800)包括:
    压缩机(810);
    第一换热器(820),所述第一换热器(820)的第一端(821)与所述压缩机(810)连接;及
    第二换热器(830),所述第二换热器(830)的第一端(831)通过通断阀(840)与所述第一换热器(820)的第二端(822)连接,所述第二换热器(830)的第二端(832)与所述压缩机(810)连接;
    其中,所述第四换热通道(920)的两端分别与所述压缩机(810)和所述第一换热器(820)的第二端(822)连接。
  9. 根据权利要求8所述的热管理***(1),其特征在于,所述第四换热通道(920)和所述第一换热器(820)之间设有电子膨胀阀(850)。
  10. 根据权利要求1-9任一项所述的热管理***(1),其特征在于,所述发动机冷却器(100)包括:
    缸盖水套(140),用于冷却发动机的缸盖,且所述缸盖水套(140)设有所述出液口(120);
    缸体水套(130),用于冷却发动机的缸体,且所述缸体水套(130)的出口(133)与所述出液口(120)连通,所述缸体水套(130)的进口(134)与所述缸盖水套(140)的进口(141)连通;及
    连接水套(150),所述连接水套(150)设有所述进液口(110),所述进液口(110)分别与所述缸盖水套(140的)的进口(141)和所述缸体水套(130)的进口(134)连通。
  11. 根据权利要求10所述的热管理***(1),其特征在于,所述缸体水套(130)具有相对的进气侧水套(131)和出气侧水套(132),所述进气侧水套(131)与所述连接水套(150)连接,所述进气侧水套(131)和所述出气侧水套(132)分别与所述出液口(120)连通;
    所述热管理***(1)还包括:
    增压器冷却器(160),所述出气侧水套(132)与所述增压器冷却器(160)连通。
  12. 一种车辆(2),其特征在于,包括根据权利要求1-11中任一项所述的热管理***(1)。
PCT/CN2023/078625 2022-04-28 2023-02-28 热管理***和具有其的车辆 WO2023207306A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210456199.3A CN117002250A (zh) 2022-04-28 2022-04-28 热管理***和具有其的车辆
CN202210456199.3 2022-04-28

Publications (1)

Publication Number Publication Date
WO2023207306A1 true WO2023207306A1 (zh) 2023-11-02

Family

ID=88517252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078625 WO2023207306A1 (zh) 2022-04-28 2023-02-28 热管理***和具有其的车辆

Country Status (2)

Country Link
CN (1) CN117002250A (zh)
WO (1) WO2023207306A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005056717A1 (de) * 2005-07-23 2007-05-31 Att Automotivethermotech Gmbh Verfahren und Vorrichtung zur Kraftstoffeinsparung bei Kraftfahrzeugen mit und ohne Betrieb der Kabinenbeheizung
JP2016088176A (ja) * 2014-10-31 2016-05-23 株式会社デンソー 車両用空調装置
CN106948915A (zh) * 2017-03-29 2017-07-14 安徽江淮汽车集团股份有限公司 一种发动机冷却***
CN108643998A (zh) * 2018-04-19 2018-10-12 浙江吉利控股集团有限公司 一种发动机热管理***
CN110978945A (zh) * 2019-11-22 2020-04-10 上海锐镁新能源科技有限公司 一种增程式电车热管***及其方法
CN111231655A (zh) * 2018-11-29 2020-06-05 比亚迪股份有限公司 车辆热管理***及其控制方法、车辆
CN113119688A (zh) * 2021-05-17 2021-07-16 中国第一汽车股份有限公司 一种插电式混合动力汽车的整车热管理***及其控制方法
CN113859051A (zh) * 2020-06-30 2021-12-31 比亚迪股份有限公司 车辆及其热管理***的控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005056717A1 (de) * 2005-07-23 2007-05-31 Att Automotivethermotech Gmbh Verfahren und Vorrichtung zur Kraftstoffeinsparung bei Kraftfahrzeugen mit und ohne Betrieb der Kabinenbeheizung
JP2016088176A (ja) * 2014-10-31 2016-05-23 株式会社デンソー 車両用空調装置
CN106948915A (zh) * 2017-03-29 2017-07-14 安徽江淮汽车集团股份有限公司 一种发动机冷却***
CN108643998A (zh) * 2018-04-19 2018-10-12 浙江吉利控股集团有限公司 一种发动机热管理***
CN111231655A (zh) * 2018-11-29 2020-06-05 比亚迪股份有限公司 车辆热管理***及其控制方法、车辆
CN110978945A (zh) * 2019-11-22 2020-04-10 上海锐镁新能源科技有限公司 一种增程式电车热管***及其方法
CN113859051A (zh) * 2020-06-30 2021-12-31 比亚迪股份有限公司 车辆及其热管理***的控制方法
CN113119688A (zh) * 2021-05-17 2021-07-16 中国第一汽车股份有限公司 一种插电式混合动力汽车的整车热管理***及其控制方法

Also Published As

Publication number Publication date
CN117002250A (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
WO2020186589A1 (zh) 一种混合动力重型载货汽车的热管理***及控制方法
CN107839433A (zh) 插电式混合动力汽车的整车热管理***
CN109795312B (zh) 一种插电式混合动力汽车的整车热管理***
CN113335021B (zh) 一种增程式混合动力汽车余热回收式整车热管理***
CN207077971U (zh) 一种用于混动汽车的整车热管理装置
CN201155358Y (zh) 发动机冷却装置
CN108466531A (zh) 一种混合动力车乘员舱温度调节***及混合动力车
CN108466532A (zh) 一种混合动力车辆温度控制***
CN113859051B (zh) 车辆及其热管理***的控制方法
CN108550952A (zh) 一种混合动力车电池组温度调节***及混合动力车
CN114161997A (zh) 双电堆大功率氢燃料电池汽车热管理***
CN113997753A (zh) 一种新能源汽车热管理***
CN207433190U (zh) 插电式混合动力汽车的整车热管理***
CN207579511U (zh) 插电式混合动力汽车的整车热管理***
CN213199402U (zh) 增程式电动车复合热管理***
CN212508518U (zh) 一种发动机冷却***
WO2023207306A1 (zh) 热管理***和具有其的车辆
CN218400117U (zh) 车辆热管理***及车辆
WO2024066110A1 (zh) 混合动力车辆的热管理***控制方法及混合动力车辆
CN111446521A (zh) 一种提高纯电动汽车寒区适应性的加热***
WO2023197556A1 (zh) 一种车辆热管理***及作业机械
CN208602278U (zh) 一种混合动力车辆温度控制***
CN208272072U (zh) 一种混合动力车电池组温度调节***及混合动力车
CN217124478U (zh) 热管理***和具有其的车辆
CN208306323U (zh) 一种混合动力车乘员舱温度调节***及混合动力车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23794742

Country of ref document: EP

Kind code of ref document: A1