WO2023206905A1 - 高纯钽粉及其制备方法 - Google Patents

高纯钽粉及其制备方法 Download PDF

Info

Publication number
WO2023206905A1
WO2023206905A1 PCT/CN2022/117279 CN2022117279W WO2023206905A1 WO 2023206905 A1 WO2023206905 A1 WO 2023206905A1 CN 2022117279 W CN2022117279 W CN 2022117279W WO 2023206905 A1 WO2023206905 A1 WO 2023206905A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
tantalum powder
tantalum
purity
heat treatment
Prior art date
Application number
PCT/CN2022/117279
Other languages
English (en)
French (fr)
Inventor
李慧
郑培生
马海燕
王彦杰
陈学清
张学清
林辅坤
雒国清
马应会
李小龙
李志强
王晓东
杨燕
徐俊
桂愉平
Original Assignee
宁夏东方钽业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁夏东方钽业股份有限公司 filed Critical 宁夏东方钽业股份有限公司
Publication of WO2023206905A1 publication Critical patent/WO2023206905A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon

Definitions

  • This application belongs to the field of metal smelting, specifically involving high-purity tantalum powder and its preparation method.
  • Tantalum is an important rare refractory metal material with good heat resistance, corrosion resistance, oxidation resistance, and excellent anti-atom migration ability. It is the preferred sputtering target material for the barrier layer of semiconductor chips with integrated circuit line widths below 45nm.
  • the manufacturing method of high-purity tantalum targets includes: melting high-purity tantalum powder into high-purity tantalum ingots through electron beam, and then obtaining high-purity tantalum targets through thermo-mechanical processing.
  • This application is proposed in view of the above-mentioned issues.
  • This application provides a new type of high-purity tantalum powder and its preparation method.
  • the tantalum powder prepared by the method of this application has significantly reduced metal impurity content, especially reduced high melting point metals (such as W, Mo , Nb) content, magnesium content and oxygen content.
  • the present application provides a method for preparing high-purity tantalum powder.
  • the sum of the W, Mo, and Nb contents of the high-purity tantalum powder is ⁇ 0.6 ppm, the Mg content is ⁇ 1 ppm, and the oxygen content is ⁇ 600 ppm.
  • the preparation method of high-purity tantalum powder includes the following steps:
  • tantalum original powder the sum of the contents of W, Mo, and Nb elements in the tantalum original powder is less than 0.6ppm;
  • the original tantalum powder is first pulverized to obtain first pulverized tantalum powder.
  • the bulk density of the first pulverized tantalum powder is greater than 2.6g/cm 3 (for example, 2.6 to 6g/cm 3 , for example, 2.68g/cm 3 , 2.8g/cm 3 , 2.9g/cm 3 , 3g/cm 3 , 4g/cm 3 , 5g/cm 3 );
  • the first pickled tantalum powder is subjected to vacuum heat treatment. After the vacuum heat treatment, the tantalum powder is passivated to obtain passivated tantalum powder;
  • the vacuum degree of the vacuum heat treatment is an absolute pressure value of 3 ⁇ 10 -3 Pa or lower.
  • the sum of the contents of W, Mo, and Nb elements in the original tantalum powder is less than 0.6 ppm, such as less than 0.4 mm, such as less than 0.3 mm.
  • the bulk density of the first pulverized tantalum powder is greater than 2.6g/ cm3 . Based on this, impurities such as W and Mo included in the tantalum powder particles are released, which facilitates further improvement of purity in the later stage.
  • the first pickling is critical, and its function is to remove contaminants such as Fe, Ni, Cr and other impurities on the surface of the tantalum powder, as well as remove part of the high melting point impurities W, Mo, and Nb, thereby improving the purity of the product. .
  • the function of vacuum heat treatment is to remove gas impurities and some low melting point metal impurities adsorbed during the pickling process, and at the same time, it can promote the agglomeration and sintering of some particles.
  • the second pulverized tantalum powder can pass through a 5-15 mesh sieve. Since the oxygen reduction process is a solid-liquid two-phase redox reaction, magnesium as a reducing agent is easily included and coated by tantalum powder, resulting in the inability to effectively remove magnesium impurities during subsequent pickling and purification, resulting in high metallic magnesium impurities in the tantalum powder. Through painstaking research, the inventor found that adding a reasonable crushing and pulverizing process after the oxygen reduction is released can crush the particles and effectively open the tantalum particles coated with magnesium, providing favorable conditions for subsequent pickling and purification to remove metallic magnesium.
  • the second pickling is critical, and its function is to remove contaminants such as Fe, Ni, Cr and other impurities on the surface of the tantalum powder, as well as remove part of the high melting point impurities W, Mo, and Nb, thereby improving the purity of the product. .
  • the equipment for performing the first crushing operation may be a ball mill such as a planetary ball mill, a vibrating ball mill, or a tumble ball mill.
  • the ball-to-material ratio is, for example, 0.4 to 1:1.
  • the equipment for performing the second crushing operation may be a jaw crusher, a cone crusher, or an impact crusher.
  • the method for preparing high-purity tantalum powder of the present application also includes the step of using a reducing reagent to reduce a tantalum-containing salt to obtain original tantalum powder;
  • the purity of the reducing reagent is ⁇ 99.9%;
  • the sum of the contents of W, Mo and Nb elements in the tantalum-containing salt is less than 1 ppm.
  • Using tantalum-containing salts whose sum of W, Mo, and Nb contents is less than 1.0 ppm as raw materials is beneficial to reducing the W, Mo, and Nb contents in high-purity tantalum powder products.
  • the reducing reagent is sodium
  • the tantalum-containing salt is potassium fluorotantalate.
  • step 2) has one or more of the following characteristics:
  • the acid solution used in the first pickling contains 5 ⁇ 30wt% HNO3 and 0.5 ⁇ 5wt% HF;
  • the vacuum heat treatment is performed using a heat treatment furnace that uses tantalum or tantalum alloy as the heating belt and heat shield. Based on this, it is helpful to avoid impurity contamination of the heat-treated tantalum powder caused by the heat treatment furnace.
  • the vacuum heat treatment includes sequentially:
  • the second temperature heat treatment is to keep the temperature at 1000 ⁇ 1550°C for 0.5 ⁇ 3h.
  • step 7) has one or more of the following characteristics:
  • the pickling liquid used in the second pickling contains 5 to 15wt% HNO 3 and 0.2 to 2wt% HF;
  • the pickling time is 2 to 4 hours.
  • the temperature is raised from the first temperature to the second temperature at a temperature rise rate of 5-20°C/min, and the second temperature heat treatment is performed.
  • step 5 has one or more of the following characteristics:
  • the temperature of the oxygen reduction heat treatment is 850°C to 960°C;
  • the oxygen reduction heat treatment time is 1 to 3 hours.
  • the high-purity tantalum powder has a Fischer particle size of 5.0 to 15.0 ⁇ m.
  • the bulk density of the high-purity tantalum powder is 2.6-6.0 g/cm 3 .
  • this application provides a method for preparing a high-purity tantalum target, including
  • the present application provides a high purity tantalum powder.
  • the high purity tantalum powder has a purity of ⁇ 99.998%.
  • the high purity tantalum powder has an oxygen content of ⁇ 600 ppm.
  • the sum of the W, Mo, and Nb contents of the high-purity tantalum powder is ⁇ 0.6 ppm.
  • the sum of the W, Mo, and Nb contents of the high-purity tantalum powder is ⁇ 0.4 ppm.
  • the sum of the W and Mo contents of the high-purity tantalum powder is ⁇ 0.2 ppm.
  • the sum of the W and Mo contents of the high-purity tantalum powder is ⁇ 0.1 ppm, and the Nb content is ⁇ 0.4 ppm, preferably the Nb content is ⁇ 0.3 ppm.
  • the O content of the high-purity tantalum powder is 390 to 510 ppm.
  • the C content of the high-purity tantalum powder is 7 to 8 ppm.
  • the high purity tantalum powder has a N content of 20 to 49 ppm.
  • the Fe content of the high-purity tantalum powder ranges from 2.49 to 8.04 ppm.
  • the high purity tantalum powder has a Ni content of 1.21 to 2.85 ppm.
  • the high purity tantalum powder has a Cr content of 1.34 to 2.67 ppm.
  • the high purity tantalum powder has a K content of 0.42 to 1.19 ppm.
  • the high purity tantalum powder has a Na content of 2.78 to 6.14 ppm.
  • the high purity tantalum powder has a Si content of 0.91 to 4.16 ppm.
  • the W content of the high-purity tantalum powder ranges from 0.016 to 0.057 ppm.
  • the Mo content of the high-purity tantalum powder is 0.034 to 0.035 ppm.
  • the Nb content of the high-purity tantalum powder ranges from 0.087 to 0.22 ppm.
  • the Mg content of the high-purity tantalum powder is 0.53 to 0.94 ppm.
  • the O content of the high purity tantalum powder is less than 510 ppm.
  • the C content of the high purity tantalum powder is less than 8 ppm.
  • the N content of the high purity tantalum powder is 49 ppm or less.
  • the Fe content of the high purity tantalum powder is 8.04 ppm or less.
  • the high purity tantalum powder has a Ni content of less than 2.85 ppm.
  • the Cr content of the high purity tantalum powder is 2.67 ppm or less.
  • the K content of the high purity tantalum powder is less than 1.19 ppm.
  • the Na content of the high purity tantalum powder is 6.14 ppm or less.
  • the Si content of the high purity tantalum powder is 4.16 ppm or less.
  • the W content of the high purity tantalum powder is 0.057 ppm or less.
  • the Mo content of the high purity tantalum powder is 0.035 ppm or less.
  • the Nb content of the high purity tantalum powder is 0.22 ppm or less.
  • the Mg content of the high purity tantalum powder is 0.94 ppm or less.
  • the high-purity tantalum powder is prepared by any of the methods described above.
  • the Fischer particle size of the high-purity tantalum powder is 5.0 to 15.0 ⁇ m
  • the bulk density of the high-purity tantalum powder is 2.6-6.0 g/cm 3 .
  • high-purity tantalum powder refers to tantalum powder with a sum of W, Mo, and Nb contents ⁇ 0.6 ppm, a Mg content ⁇ 1 ppm, and an oxygen content ⁇ 600 ppm.
  • High-purity tantalum metal can preferably be prepared by reacting a tantalum-containing salt with at least one reducing reagent (such as a compound or element) that can reduce the tantalum-containing salt to tantalum metal and generate a second salt in a reaction vessel.
  • the reaction vessel can be any vessel commonly used for metal reactions, and should be able to withstand high temperatures of about 800 to about 1200°C.
  • the reaction vessel or its lining in contact with a tantalum salt and a reducing agent capable of reducing the salt to tantalum is made of a material whose vapor at the melting point of tantalum The pressure is the same as or higher than tantalum.
  • the stirrer in the reaction vessel can be made of the same material or lined with this material.
  • the lining may be present only on the portions of the reaction vessel and stirrer that come into contact with the salt and tantalum.
  • metallic materials that may form the lining or reaction vessel include, but are not limited to, metal-based materials made from the following metals: nickel, chromium, iron, manganese, titanium, zirconium, hafnium, vanadium, ruthenium, cobalt, rhodium, palladium , platinum, or their combinations, or their alloys, as long as the vapor pressure of the alloy material at the melting point of tantalum metal is the same as or higher than that of tantalum.
  • the metal material is nickel or a nickel-based alloy, chromium or a chromium-based alloy, or iron or an iron-based alloy.
  • a lining is present on the reaction vessel and/or stirrer, its thickness will typically be from about 0.5 cm to about 3 cm. Other thicknesses of linings may also be used. Multilayer liners made of the same or different metallic materials mentioned above are also included within the scope of this application.
  • the tantalum-containing salt may be any salt capable of containing tantalum, such as potassium-chloride tantalum.
  • the reducing reagent capable of reducing the tantalum-containing salt to tantalum and a second salt in the reaction vessel it can be any reducing reagent capable of such reduction, which can exactly reduce the tantalum-containing salt to tantalum metal and can react with tantalum.
  • Other components of metal separation (such as salts) are dissolved in water or other water sources.
  • this reducing agent is sodium.
  • a second salt formed simultaneously during the reduction of tantalum-containing salts is sodium fluoride.
  • the unit ppm refers to "parts per million" expressed as a mass ratio.
  • the Fisher particle size (FSSS/ ⁇ m) is measured according to the method specified in the standard “Method for Determination of Particle Size of Refractory Metal and Compound Powders by Fisher Method” (Standard No. GB/T3249-2009).
  • the bulk density is measured according to the method specified in the standard “Determination of Bulk Density of Metal Powders Part 1 Funnel Method” (Standard No. GB/T1479.1-2011).
  • the detection method of O, N, and H in tantalum powder is "GB/T15076.13-2017 Chemical Analysis Method of Tantalum and Niobium Part 13: Determination of Nitrogen Amount Inert Melt Thermal Conductivity Method", “GB/T15076 .4-2017 Chemical Analysis Methods for Tantalum and Niobium Part 14: Determination of Oxygen Content Inert Fusion Infrared Absorption Method", “GB/T15076.12-2017 Chemical Analysis Methods for Tantalum and Niobium Part 15: Determination of Hydrogen Content Inert Melt Thermal Conductivity Method ", other impurity elements use "YS/T 899-2013 High-purity Tantalum Chemical Analysis Method for Determination of Trace Impurity Elements Glow Discharge Mass Spectrometry".
  • a "+” or “-” sign before the mesh number means “not passing” or “passing” the sieve of the mesh number, respectively.
  • “-100 mesh” means passing the 100 mesh screen
  • “+150 mesh” means not passing the 150 mesh screen. Therefore, "-100 ⁇ +150 mesh” means powder that passed the 100 mesh screen but did not pass the 150 mesh screen.
  • the tantalum powder of this application has higher purity and lower impurity content
  • the method for preparing tantalum powder in this application has the advantages of low cost, simple process, high efficiency, and easy large-scale production.
  • the pickling liquid used in pickling contains 2.0wt% HF and 15wt% HNO 3 , stir and pickle for 3 hours, then let stand and soak for 1 hour, then rinse repeatedly with pure water - suction filtration, dry under vacuum (120°C/14h) to obtain tantalum original powder, the sum of W, Mo, and Nb contents in the original tantalum powder is 0.250ppm.
  • the vacuum heat treatment furnace uses tantalum materials as heating belts and heat shields.
  • the vacuum heat treatment includes: holding at 900°C for 1 hour, and then pressing 15°C/min. Raise the temperature to 1200°C and keep it warm for another 2 hours. Then the powder is passivated and released from the furnace. It passes through a 50-mesh sieve to obtain heat-treated tantalum powder.
  • the pickling liquid used in the pickling contains 0.2wt% HF and 15wt% HNO3 .
  • the pickling liquid is stirred and pickled for 2 hours and then left to soak for 1 hour to obtain the second pickling solution.
  • (1) Use a sufficient amount of sodium (purity ⁇ 99.9%) to reduce potassium fluorotantalate (the sum of W, Mo, and Nb contents is less than 1.0 ppm), and crush the reduction product into reduced blocks of about 1 cm.
  • the pickling liquid used in pickling contains 2.0wt% HF and 15wt% HNO 3 , stir and pickle for 3 hours, then let stand and soak for 1 hour, then rinse repeatedly with pure water-suction filtration, and dry under vacuum (120°C/14h) to obtain original tantalum powder.
  • the content of W, Mo, and Nb in the original tantalum powder is The sum is 0.200ppm.
  • the vacuum heat treatment furnace uses tantalum materials as heating belts and heat shields.
  • the vacuum heat treatment includes: holding at 900°C for 1 hour, and then pressing 15°C/min. Raise the temperature to 1200°C and keep it warm for another 2 hours. Then the powder is passivated and released from the furnace. It passes through a 50-mesh sieve to obtain heat-treated tantalum powder.
  • the pickling liquid used in the pickling contains a pickling liquid containing 0.2wt% HF and 15wt% HNO3 . After stirring and pickling for 2 hours, it is left to soak for 1 hour.
  • (1) Use a sufficient amount of sodium (purity ⁇ 99.9%) to reduce potassium fluorotantalate (the sum of W, Mo, and Nb contents is less than 1.0 ppm), and crush the reduction product into reduced blocks of about 1 cm.
  • the pickling liquid used in pickling contains 2.0wt% HF and 15wt% HNO3. After stirring and pickling for 3 hours, let it stand and soak for 1 hour, then rinse repeatedly with pure water-suction filtration, and dry under vacuum (120°C/14h) to obtain original tantalum powder.
  • the sum of the W, Mo, and Nb contents in the original tantalum powder is is 0.160ppm.
  • the vacuum heat treatment furnace uses tantalum materials as heating belts and heat shields.
  • the vacuum heat treatment includes: holding at 900°C for 1 hour, and then pressing 15°C/min. The temperature is raised to 1250°C, and the temperature is maintained for another 2 hours, and then the powder is passivated and released from the furnace, and then crushed until the product can pass through a 50-mesh sieve to obtain heat-treated tantalum powder.
  • the pickling liquid used in the pickling contains 0.2wt% HF and 15wt% HNO3 .
  • the pickling liquid is stirred and pickled for 2 hours, and then left to soak for 1 hour.
  • step (2) is not included, and other process conditions are the same as Example 1.
  • step (6) is not included, and other process conditions are the same as Example 1.
  • Fisher particle size (FSSS ⁇ m) is measured according to the standard “Method for determination of Fisher particle size of metal and its compound powders" (standard number GB/T3249-2009).
  • the high melting point impurity content of the high-purity tantalum powder obtained by the method of the present application is less than 0.6ppm, the sum of the Mg content is less than 1ppm, and the oxygen content is less than 600ppm, which can meet the requirements of high-purity tantalum. product usage requirements.
  • the first crushing operation of step (2) and the second crushing operation of step (6) in Examples 1 to 3 are very critical.
  • the first pulverizing operation obtains the first pulverized tantalum powder with a bulk density of 2.6 to 6 g/cm 3 , and the impurity elements in the first pulverized tantalum powder are effectively removed through the first pickling.
  • the second crushing operation obtains tantalum powder that can pass through a 10-mesh sieve, and the impurity elements in the second crushed tantalum powder, especially magnesium, are effectively removed by the second pickling.
  • the combination of the above features effectively improves the purity of the high-purity tantalum powder of Examples 1 to 3, thereby obtaining a high-purity tantalum powder with a sum of W, Mo, and Nb contents of ⁇ 0.6 ppm and a Mg content of ⁇ 1 ppm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种高纯钽粉及其制备方法。高纯钽粉的W、Mo、Nb含量之和<0.6ppm,Mg含量<1ppm,氧含量<600ppm。高纯钽粉可用于制备高纯钽靶。

Description

高纯钽粉及其制备方法
交叉引用
本申请要求申请日为2022年4月29日申请号为202210466030.6的中国专利申请的优先权,该申请的全部内容引用至此。
技术领域
本申请属于金属冶炼领域,具体涉及高纯钽粉及其制备方法。
背景技术
钽是重要的稀有难熔金属材料,具有良好的耐热、耐蚀、耐氧化性,有优越的抗原子迁移能力,是集成电路线宽45nm以下半导体芯片阻挡层优选的溅射靶材料。高纯钽靶的制造方法包括:将高纯钽粉通过电子束熔炼成高纯钽锭,再经过热机械加工获得高纯钽靶。
在高纯钽粉到高纯钽锭的制造过程中,一些难熔金属如:W、Mo、Nb很难除去。因此,需要提供金属杂质含量低的高纯钽粉。
发明内容
降低高熔点金属(如W、Mo、Nb)含量、镁含量和氧含量是困难的。一方面,高熔点金属不容易通过精炼去除。另一方面,要获得低氧含量的钽粉必须使用镁粉进行降氧的操作,但该操作会提升钽粉中的镁含量。
本申请是鉴于上述课题提出的,本申请提供一种新型高纯钽粉及其制备方法,本申请方法制备的钽粉具有显著降低的金属杂质含量,特别是降低高熔点金属(如W、Mo、Nb)含量、镁含量和氧含量。
在一些实施方案中,本申请提供一种高纯钽粉的制备方法,所述高纯钽粉的W、Mo、Nb含量之和<0.6ppm,Mg含量<1ppm,氧含量<600ppm,所述高纯钽粉的制备方法包括以下步骤:
1)提供钽原始粉末,所述钽原始粉末中W、Mo、Nb元素的含量之和小于0.6ppm;
2)对所述钽原始粉末进行第一粉碎,获得第一粉碎钽粉,第一粉碎钽粉的松装密度大于2.6g/cm 3(例如2.6~6g/cm 3,例如2.68g/cm 3、2.8g/cm 3、2.9g/cm 3、3g/cm 3、4g/cm 3、5g/cm 3);
3)将第一粉碎钽粉进行第一酸洗,获得第一酸洗钽粉;
4)将第一酸洗钽粉进行真空热处理,真空热处理后将钽粉钝化,获得钝化钽粉;
5)向钝化钽粉掺入金属还原剂,然后进行降氧热处理,然后粉末钝化出炉,获得降氧粉末。
6)对降氧粉末进行第二粉碎,粉碎至粉末能够通过5~15目(例如10目筛)筛,获得第二粉碎粉末;
7)对第二粉碎粉末进行第二酸洗,得到第二酸洗钽粉;
8)对第二酸洗钽粉进行水洗、烘干。
在一些实施方案中,真空热处理的真空度为3×10 -3Pa或更低的绝对压力值。
在一些实施方案中,所述钽原始粉末中W、Mo、Nb元素的含量之和小于0.6ppm,例如小于0.4mm,例如小于0.3mm。
在上述实施方案中,钽原始粉末中W、Mo、Nb元素的含量之和小于0.6ppm是关键的,这一操作有助于从源头降低W、Mo、Nb含量,进而获得W、Mo、Nb较低的产品。
在上述实施方案中,第一粉碎钽粉的松装密度大于2.6g/cm 3是关键的。基于此,钽粉颗粒中包裹夹杂的W、Mo等杂质释放,便于后期进一步提高纯度。
在上述实施方案中,第一酸洗是关键的,其作用是去除钽粉表面的污染物如Fe、Ni、Cr等杂质,以及去除部分高熔点杂质W、Mo、Nb,从而提高产物的纯度。
在上述实施方案中,真空热处理的作用是去除酸洗过程中所吸附的气体杂质及部分低熔点金属杂质,同时该能促使部分颗粒得到凝聚、烧结。
在上述实施方案中,第二粉碎钽粉能够通过5~15目筛是关键的。由于降氧工艺为固-液两相的氧化还原反应,作为还原剂的镁易被钽粉夹杂包覆,导致后续酸洗提纯时不能有效去除镁杂质,引起钽粉中金属镁杂质高,而经本发明人潜心研究发现在降氧出炉后加入合理的粉碎制粉工艺,能够粉碎颗粒从而有效打开包覆夹杂镁的钽颗粒,为后续酸洗纯化去除金属镁提供有利条件。
在上述实施方案中,第二酸洗是关键的,其作用是去除钽粉表面的污染物如Fe、Ni、Cr等杂质,以及去除部分高熔点杂质W、Mo、Nb,从而提高产物的纯度。
在一些实施方案中,实施第一粉碎操作的设备可以为球磨机如行星球磨机、振动球磨机、滚搅球磨机。当粉碎设备为球磨机时,球料比例如为0.4~1:1。
在一些实施方案中,实施第二粉碎操作的设备可以为颚式粉碎机、圆锥粉碎机、反击式粉碎机。
在一些实施方案中,本申请制备高纯钽粉的方法还包括采用还原试剂还原含钽盐获得钽原始粉末的步骤;
所述还原试剂的纯度≥99.9%;
所述含钽盐中W、Mo、Nb元素的含量之和小于1ppm。使用W、Mo、Nb含量之和<1.0ppm的含钽盐作为原料有利于降低高纯钽粉产品中的W、Mo、Nb含量。
可选地,所述还原试剂为钠;
可选地,所述含钽盐为氟钽酸钾。
在一些实施方案中,步骤2)具有以下一项或多项特征:
-第一酸洗使用的酸溶液中含有5~30wt%的HNO 3和0.5~5wt%的HF;
-酸洗的时间为1-5h。
在一些实施方案中,步骤4)中,使用热处理炉进行所述真空热处理,所述热处理炉使用钽或钽合金作为加热带及隔热屏。基于此,有利于避免热处理炉对受热处理的钽粉造成杂质污染。
在一些实施方案中,所述真空热处理包括依次进行的:
第一温度热处理,在800~1000℃温度条件下保温0.5~3h;和
第二温度热处理,在1000~1550℃保温0.5~3h。
在一些实施方案中,步骤7)具有以下一项或多项特征:
-第二酸洗使用的酸洗液中含有5~15wt%的HNO 3和0.2~2wt%的HF;
-酸洗的时间为2~4h。
在一些实施方案中,第一温度热处理后,以5~20℃/min的升温速率从第一温度升温至第二温度,进行第二温度热处理。
在一些实施方案中,步骤5)具有以下一项或多项特征:
所述降氧热处理的温度为850℃~960℃;
所述降氧热处理的时间为1~3小时。
在一些实施方案中,所述高纯钽粉的费式粒径为5.0~15.0μm。
在一些实施方案中,所述高纯钽粉的松装密度为2.6~6.0g/cm 3
在第二方面,本申请提供一种高纯钽靶材的制备方法,包括
-按照权利要求1~9任一项所述的方法制造高纯钽粉;
-将所述高纯钽粉容量为高纯钽锭;
-将所述高纯钽锭加工为高纯钽靶材。
在一些实施方案中,本申请提供一种高纯钽粉。
在一些实施方案中,高纯钽粉的纯度≥99.998%。
在一些实施方案中,高纯钽粉的氧含量<600ppm。
在一些实施方案中,高纯钽粉的W、Mo、Nb含量之和<0.6ppm。
在一些实施方案中,高纯钽粉的W、Mo、Nb含量之和<0.4ppm。
在一些实施方案中,高纯钽粉的W、Mo含量之和<0.2ppm。
在一些实施方案中,高纯钽粉的W、Mo含量之和<0.1ppm,Nb含量<0.4ppm,优选Nb含量<0.3ppm。
在一些实施方案中,高纯钽粉的O含量为390~510ppm。
在一些实施方案中,高纯钽粉的C含量为7~8ppm。
在一些实施方案中,高纯钽粉的N含量为20~49ppm。
在一些实施方案中,高纯钽粉的Fe含量为2.49~8.04ppm。
在一些实施方案中,高纯钽粉的Ni含量为1.21~2.85ppm。
在一些实施方案中,高纯钽粉的Cr含量为1.34~2.67ppm。
在一些实施方案中,高纯钽粉的K含量为0.42~1.19ppm。
在一些实施方案中,高纯钽粉的Na含量为2.78~6.14ppm。
在一些实施方案中,高纯钽粉的Si含量为0.91~4.16ppm。
在一些实施方案中,高纯钽粉的W含量为0.016~0.057ppm。
在一些实施方案中,高纯钽粉的Mo含量为0.034~0.035ppm。
在一些实施方案中,高纯钽粉的Nb含量为0.087~0.22ppm。
在一些实施方案中,高纯钽粉的Mg含量为0.53~0.94ppm。
在一些实施方案中高纯钽粉的O含量为510ppm以下。
在一些实施方案中高纯钽粉的C含量为8ppm以下。
在一些实施方案中高纯钽粉的N含量为49ppm以下。
在一些实施方案中高纯钽粉的Fe含量为8.04ppm以下。
在一些实施方案中高纯钽粉的Ni含量为2.85ppm以下。
在一些实施方案中高纯钽粉的Cr含量为2.67ppm以下。
在一些实施方案中高纯钽粉的K含量为1.19ppm以下。
在一些实施方案中高纯钽粉的Na含量为6.14ppm以下。
在一些实施方案中高纯钽粉的Si含量为4.16ppm以下。
在一些实施方案中高纯钽粉的W含量为0.057ppm以下。
在一些实施方案中高纯钽粉的Mo含量为0.035ppm以下。
在一些实施方案中高纯钽粉的Nb含量为0.22ppm以下。
在一些实施方案中高纯钽粉的Mg含量为0.94ppm以下。
在一些实施方案中,所述高纯钽粉由上述任一项所述的方法制备获得。
在一些实施方案中,所述高纯钽粉的费式粒径为5.0~15.0μm;
在一些实施方案中,所述高纯钽粉的松装密度为2.6~6.0g/cm 3
在一些实施方案中,高纯钽粉是指W、Mo、Nb含量之和<0.6ppm,Mg含量<1ppm,氧含量<600ppm的钽粉。
高纯的钽金属可以优选通过含钽盐与至少一种可以还原该含钽盐为钽金属并生成第二种盐的还原试剂(如化合物或单质)在反应容器中反应而制备。所述的反应容器可以是通常用于金属反应的任何容器,而且应可以承受大约800至约1200℃的高温。为了本申请的目的,所述与含钽盐和可以将该盐还原为钽的还原试剂接触的反应容器或其内衬,是由这样的材料制成的,该材料在钽的熔点时的蒸气压与钽相同或者比钽更高。反应容器内的搅拌器可由同种材料制成,也可以用该材料作衬。衬里可以仅存在于反应容器和搅拌器上与盐和钽接触的部分。这些可以构成衬里或反应容器的金属材料的实例包括,但不限于由下列金属制成的金属基材料:镍、铬、铁、锰、钛、锆、铪、钒、钌、钴、铑、钯、铂、或者它们的组合、或者它们的合金,只要合金材料在钽金属熔点时的蒸气压与钽的相同或更高。优选该金属材料为镍或镍基合金、铬或铬基合金、或者铁或铁基合金。如果反应容器和/或搅拌器上存在衬里,其厚度通常为约0.5cm至约3cm。也可以使用其它厚度的衬里。由相同或不同的上述金属材料制成的多层衬里也包括在本申请的范围内。
所述的含钽盐可以是能够使钽包含于其中的任何盐,如氟化钽钾(氟钽酸钾, potassium-chloride tantalum)。至于在反应容器中能够将该含钽盐还原为钽和第二种盐的还原试剂,可以是能够进行这种还原的任何还原试剂,其可以恰好使含钽盐还原为钽金属和能与钽金属分离的其它成分(如盐),如用水或其它水源将该盐溶解。优选这种还原试剂为钠。通常,在还原含钽盐时同时形成的第二种盐是氟化钠。本申请中,可应用于本申请还原方法的详细内容见Kirk-Othmer的《化工技术百科全书》,第三版,第22卷,541-564页;美国专利2950185;3829310;4149876和3767456。有关钽加工方法的更详细内容,可见于美国专利5234491;5242481和4684399。所有这些专利和出版物均全文引作本文的参考文献。
术语解释:
在本说明书中,除非另外明确说明,单位ppm指以质量比表示的“百万分之一”。
在一个实施方案中,费氏粒径(FSSS/μm)按标准《难熔金属及化合物粉末粒度的测定方法费氏法》(标准号GB/T3249-2009)规定方法测定。
在一个实施方案中,松装密度(SBD)按标准《金属粉末松装密度的测定第一部分漏斗法》(标准号GB/T1479.1-2011)规定方法测定。
在一个实施方案中,钽粉中O、N、H的检测方法为《GB/T15076.13-2017钽铌化学分析方法第13部分:氮量的测定惰性熔融热导法》、《GB/T15076.4-2017钽铌化学分析方法第14部分:氧量的测定惰性熔融红外吸收法》、《GB/T15076.12-2017钽铌化学分析方法第15部分:氢量的测定惰性熔融热导法》,其他杂质元素使用《YS/T 899-2013高纯钽化学分析方法痕量杂质元素的测定辉光放电质谱法》。
在一个实施方案中,当用目数表示粉末的粒度时,在目数之前的“+”或“-”号分别表示“不通过”或“通过”所述目数的筛网。例如,“-100目”表示通过100目的筛网,而“+150目”表示不通过150目的筛网。因此,“-100~+150目”就表示通过了100目筛网而未通过150目筛网的粉末。
有益效果
本公开一项或多项技术方案具有以下一项或多项有益效果:
本申请一个或多个实施方案具有以下一项或多项有益效果:
(1)本申请的钽粉具有较高的纯度,较低的杂质含量;
(2)本申请制备钽粉的方法具有成本低、工艺简单、效率高、易规模化生产的优点。
具体实施例
下面将结合实施例对本发明的实施例进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限定本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用制剂或仪器未注明生产 厂商者,均为可以通过市购获得的常规产品。
下面将结合实施例对本申请的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本申请,而不应视为限定本申请的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
实施例1
(1)使用足量的钠(纯度≥99.9%)还原氟钽酸钾(W、Mo、Nb含量之和小于1.0ppm),将还原产物粉碎成约1cm的还原料块。先用纯水滤洗还原料块约24小时至滤洗液电导率低于500us/cm,再对还原料块进行酸洗,酸洗使用的酸洗液含有2.0wt%HF和15wt%HNO 3,搅拌酸洗3h后再静置浸泡1h,然后用纯水反复漂洗-抽滤,在真空下烘干(120℃/14h)得到钽原始粉末,钽原始粉末中W、Mo、Nb含量之和为0.250ppm。
(2)第一粉碎:将钽原始粉末与直径约20mm的不锈钢球按质量比2:1混合,加入到球磨机中,球磨40min,获得第一粉碎钽粉,其松装密度为2.68g/cc。
(3)对第一粉碎钽粉进行第一酸洗,使用15wt%的HNO 3和0.5wt%的HF的酸洗液搅拌酸洗2h后再静置浸泡1h,随后用纯水反复漂洗-抽滤,在真空下烘干(120℃/14h),获得第一酸洗钽粉。
(4)将第一酸洗钽粉置于真空热处理炉中,真空热处理炉使用钽材作为加热带和隔热屏,真空热处理包括:在900℃温度条件下保温1h,后按15℃/min升温至1200℃,再保温2h,然后粉末钝化出炉,过50目筛,获得热处理钽粉。
(5)向热处理钽粉中掺镁粉,掺入量1.0wt%,装入加热炉后先抽真空再充氩气,升温至930℃保温3小时进行降氧还原反应,然后抽真空排镁2小时,然后粉末钝化出炉,获得降氧粉末。
(6)使用粉碎机对降氧粉末进行第二粉碎,粉碎至产物能够过10目筛,获得第二粉碎粉末;
(7)对第二粉碎粉末进行第二酸洗,酸洗使用的酸洗液含有0.2wt%的HF和15wt%HNO 3的酸洗液搅拌酸洗2h后再静置浸泡1h,得到第二酸洗钽粉。
(8)对第二酸洗钽粉用纯水反复漂洗-抽滤,在真空下烘干(120℃/14h),过50目筛,即得到样品1。样品的化学杂质和物理性能如表1所示。
实施例2
(1)使用足量的钠(纯度≥99.9%)还原氟钽酸钾(W、Mo、Nb含量之和小于1.0ppm),将还原产物粉碎成约1cm的还原料块。先用纯水滤洗还原料块约24小时至滤洗液电导率低于500us/cm,再对还原料块进行酸洗,酸洗使用的酸洗液含有2.0wt%HF和15wt%HNO 3,搅拌酸洗3h后再静置浸泡1h,然后用纯水反复漂洗-抽滤,在真空下烘干(120℃/14h),得到钽原始粉末,钽原始粉末中W、Mo、Nb含量之和为0.200ppm。
(2)将钽原始粉末与直径约15mm的不锈钢球按质量比2:1混合,加入到球磨机中,球磨40min,获得第一粉碎钽粉,其松装密度为3.0g/cm 3
(3)对第一粉碎钽粉进行第一酸洗,使用含15wt%的HNO 3和0.5wt%的HF的酸洗液搅拌酸洗2h后再静置浸泡1h,随后用纯水反复漂洗-抽滤,在真空下烘干(120℃/14h),获得第一酸洗钽粉。
(4)将第一酸洗钽粉置于真空热处理炉中,真空热处理炉使用钽材作为加热带和隔热屏,真空热处理包括:在900℃温度条件下保温1h,后按15℃/min升温至1200℃,再保温2h,然后粉末钝化出炉,过50目筛,获得热处理钽粉。
(5)向热处理钽粉中掺镁粉,掺入量0.8wt%,装入加热炉后先抽真空再充氩气,升温至930℃保温3小时进行降氧还原反应,然后抽真空排镁2小时,然后粉末钝化出炉,获得降氧粉末。
(6)使用粉碎机对降氧粉末进行第二粉碎,粉碎至产物能够过10目筛,获得第二粉碎粉末。
(7)对第二粉碎粉末进行第二酸洗,酸洗使用的酸洗液含有0.2wt%的HF和15wt%HNO 3的酸洗液,搅拌酸洗2h后再静置浸泡1h。
(8)对第二酸洗钽粉用纯水反复漂洗-抽滤,在真空下烘干(120℃/14h),过50目筛,即得到样品2。样品的化学杂质和物理性能如表1所示。
实施例3
(1)使用足量的钠(纯度≥99.9%)还原氟钽酸钾(W、Mo、Nb含量之和小于1.0ppm),将还原产物粉碎成约1cm的还原料块。先用纯水滤洗还原料块约24小时至滤洗液电导率低于500us/cm,再对还原料块进行酸洗,酸洗使用的酸洗液含有2.0wt%HF和15wt%HNO3,搅拌酸洗3h后再静置浸泡1h,然后用纯水反复漂洗-抽滤,在真空下烘干(120℃/14h),得到钽原始粉末,钽原始粉末中W、Mo、Nb含量之和为0.160ppm。
(2)将钽原始粉末与直径约15mm的不锈钢球按质量比2:1混合,加入到球磨机中,球磨40min,获得第一粉碎钽粉,其松装密度为2.9g/cm 3
(3)对第一粉碎钽粉进行第一酸洗,使用15wt%的HNO 3和0.5wt%的HF的酸洗液搅拌酸洗2h后再静置浸泡1h,随后用纯水反复漂洗-抽滤,在真空下烘干(120℃/14h),获得第一酸洗钽粉。
(4)将第一酸洗钽粉置于真空热处理炉中,真空热处理炉使用钽材作为加热带和隔热屏,真空热处理包括:在900℃温度条件下保温1h,后按15℃/min升温至1250℃,再保温2h,然后粉末钝化出炉,粉碎至产物能够过50目筛,获得热处理钽粉。
(5)向热处理钽粉中掺镁粉,掺入量0.7wt%,装入加热炉后先抽真空再充氩气,升温至900℃保温3小时进行降氧还原反应,然后抽真空排镁2小时,然后粉末钝化出炉,获得降氧粉末。
(6)使用粉碎机对降氧粉末进行第二粉碎,粉碎至产物能够过10目筛,获得第二粉碎粉末;
(7)对第二粉碎粉末进行第二酸洗,酸洗使用的酸洗液含有0.2wt%的HF和15wt%HNO 3的酸洗液搅拌酸洗2h后再静置浸泡1h,
(8)对第二酸洗钽粉用纯水反复漂洗-抽滤,在真空下烘干(120℃/14h),过50目筛,即得到样品3。样品的化学杂质和物理性能如表1所示。
对比例1
对比例4与实施例1的差异仅在于不包括步骤(2),其他工艺条件同实施例1。
对比例2
对比例4与实施例1的差异仅在于不包括步骤(6),其他工艺条件同实施例1。
分析检测
(1)费氏粒径(FSSSμm)按标准《金属及其化合物粉末费氏粒度的测定方法》(标准号GB/T3249-2009)规定方法测定。
(2)松装密度(SBD g/cc)按标准《金属粉末松装密度的测定第一部分漏斗法》(标准号GB/T1479.1-2011)规定方法测定。
(3)钽粉中O、N、H的检测方法依照中国国家标准测定,《GB/T15076.13-2017钽铌化学分析方法第13部分:氮量的测定惰性熔融热导法》、《GB/T15076.4-2017钽铌化学分析方法第14部分:氧量的测定惰性熔融红外吸收法》、《GB/T15076.12-2017钽铌化学分析方法第15部分:氢量的测定惰性熔融热导法》,其他杂质元素使用《YS/T 899-2013高纯钽化学分析方法痕量杂质元素的测定辉光放电质谱法》。
样品的化学杂质和物理性能如表1所示。
Figure PCTCN2022117279-appb-000001
由上述数据可以看出,采用本申请的方法得到的高纯钽粉末其高熔点杂质含量W、Mo、Nb含量之和<0.6ppm,Mg含量<1ppm,氧含量<600ppm,能满足高纯钽制品的使用要求。
由实施例1~3与对比例1的对比可知,实施例1~3中的步骤(2)第一粉碎操作和步骤(6)的第二粉碎操作都是非常关键的。第一粉碎操作获得了松装密度为2.6~6g/cm 3的第一粉碎钽粉,通过第一酸洗有效去除了第一粉碎钽粉中的杂质元素。第二粉碎操作获得了能够通过10目筛的钽粉,通过第二酸洗有效去除的第二粉碎钽粉中的杂质元素,尤其是镁元素。上述特征组合在一起,有效提高了实施例1~3的高纯钽粉的纯度,从而获得的W、Mo、Nb含量之和<0.6ppm,Mg含量<1ppm的高纯钽粉。
对比例1没有进行第一破碎操作,获得的钽粉中W、Mo、Nb含量之和达到0.7ppm,。
对比例2没有进行第二粉碎操作,获得的钽粉中Mg含量为4.9ppm。
尽管本发明的具体实施方式已经得到详细的描述,但本领域技术人员将理解:根据已经公开的所有教导,可以对细节进行各种修改变动,并且这些改变均在本发明的保护范围之内。本发明的全部范围由所附权利要求及其任何等同物给出。

Claims (13)

  1. 一种高纯钽粉的制备方法,所述高纯钽粉的W、Mo、Nb含量之和<0.6ppm,Mg含量<1ppm,氧含量<600ppm,所述高纯钽粉的制备方法包括以下步骤:
    1)提供钽原始粉末,所述钽原始粉末中W、Mo、Nb元素的含量之和小于0.6ppm;
    2)对所述钽原始粉末进行第一粉碎,获得第一粉碎钽粉,第一粉碎钽粉的松装密度大于2.6g/cm 3
    3)将第一粉碎钽粉进行第一酸洗,获得第一酸洗钽粉;
    4)将第一酸洗钽粉进行真空热处理,真空热处理后将钽粉钝化,获得钝化钽粉;
    5)向钝化钽粉掺入金属还原剂,然后进行降氧热处理,然后粉末钝化出炉,获得降氧粉末。
    6)对降氧粉末进行第二粉碎,粉碎至粉末能够通过5~15目筛,获得第二粉碎粉末;
    7)对第二粉碎粉末进行第二酸洗,得到第二酸洗钽粉;
    8)对第二酸洗钽粉进行水洗、烘干。
  2. 根据权利要求1所述的钽粉的制备方法,还包括采用还原试剂还原含钽盐获得钽原始粉末的步骤,其中,
    (1)所述还原试剂的纯度为大于等于99.9%;且
    (2)所述含钽盐中W、Mo、Nb元素的含量之和小于1ppm;
    可选地,所述还原试剂为钠;
    可选地,所述含钽盐为氟钽酸钾。
  3. 根据权利要求1所述的方法,步骤3)具有以下一项或多项特征:
    -第一酸洗使用的酸溶液中含有5~30wt%的HNO 3和0.5~5wt%的HF;
    -酸洗的时间为1-5h。
  4. 根据权利要求1所述的方法,步骤4)中,使用热处理炉进行所述真空热处理,所述热处理炉使用钽或钽合金作为加热带及隔热屏。
  5. 根据权利要求1所述的方法,所述真空热处理包括依次进行的:
    第一温度热处理,在800~1000℃温度条件下保温0.5~3h;和
    第二温度热处理,在1000~1550℃保温0.5~3h;
  6. 根据权利要求1所述的方法,步骤7)具有以下一项或多项特征:
    -第二酸洗使用的酸洗液中含有5~15wt%的HNO 3和0.2~2wt%的HF;
    -酸洗的时间为2~4h。
  7. 根据权利要求1所述的方法,第一温度热处理后,以5~20℃/min的升温速率从第一温度升温至第二温度,进行第二温度热处理。
  8. 根据权利要求1所述的方法,步骤5)具有以下一项或多项特征:
    所述降氧热处理的温度为850℃~960℃;
    所述降氧热处理的时间为1~3小时。
  9. 根据权利要求1所述的方法,其特征在于以下一项或多项:
    -所述高纯钽粉的费式粒径为5.0~15.0μm;
    -所述高纯钽粉的松装密度为2.6~6.0g/cm 3
  10. 一种高纯钽靶材的制备方法,包括
    -按照权利要求1~9任一项所述的方法制造高纯钽粉;
    -将所述高纯钽粉容量为高纯钽锭;
    -将所述高纯钽锭加工为高纯钽靶材。
  11. 一种高纯钽粉,由权利要求1~9任一项所述的方法制备获得。
  12. 一种高纯钽粉,其纯度≥99.998%,其中该钽粉的氧含量<600ppm,W、Mo、Nb含量之和<0.6ppm,W、Mo含量之和<0.2ppm;
    可选地,所述高纯钽粉由权利要求1~9任一项所述的方法制备获得。
  13. 根据权利要求12所述的高纯钽粉,其特征在于以下一项或多项:
    -所述高纯钽粉的费式粒径为5.0~15.0μm;
    -所述高纯钽粉的松装密度为2.6~6.0g/cm 3
PCT/CN2022/117279 2022-04-29 2022-09-06 高纯钽粉及其制备方法 WO2023206905A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210466030.6A CN114749655B (zh) 2022-04-29 2022-04-29 高纯钽粉及其制备方法
CN202210466030.6 2022-04-29

Publications (1)

Publication Number Publication Date
WO2023206905A1 true WO2023206905A1 (zh) 2023-11-02

Family

ID=82332995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117279 WO2023206905A1 (zh) 2022-04-29 2022-09-06 高纯钽粉及其制备方法

Country Status (2)

Country Link
CN (1) CN114749655B (zh)
WO (1) WO2023206905A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114749655B (zh) * 2022-04-29 2023-10-24 宁夏东方钽业股份有限公司 高纯钽粉及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020132388A1 (en) * 1998-05-27 2002-09-19 Harry Rosenberg Tantalum sputtering target and method of manufacture
CN104148654A (zh) * 2014-07-08 2014-11-19 宁夏东方钽业股份有限公司 一种靶材级高纯钽粉的制备方法
CN110315088A (zh) * 2019-08-16 2019-10-11 广东广晟稀有金属光电新材料有限公司 一种珊瑚状高纯钽粉的制备方法
CN111893325A (zh) * 2019-12-30 2020-11-06 宁夏东方钽业股份有限公司 一种高纯钽锭及其制备方法
CN114749655A (zh) * 2022-04-29 2022-07-15 宁夏东方钽业股份有限公司 高纯钽粉及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10737320B2 (en) * 2014-02-27 2020-08-11 Ningxia Orient Tantalum Industry Co., Ltd. High-purity tantalum powder and preparation method thereof
EP3184205B1 (en) * 2014-08-20 2020-05-27 Ningxia Orient Tantalum Industry Co., Ltd. Preparation method for composite tantalum powder
KR101738067B1 (ko) * 2016-02-11 2017-05-19 재단법인 포항산업과학연구원 탄탈륨 분말 제조 방법
KR101800396B1 (ko) * 2017-05-31 2017-12-20 한국메탈실리콘 주식회사 탄탈륨 분말의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020132388A1 (en) * 1998-05-27 2002-09-19 Harry Rosenberg Tantalum sputtering target and method of manufacture
CN104148654A (zh) * 2014-07-08 2014-11-19 宁夏东方钽业股份有限公司 一种靶材级高纯钽粉的制备方法
CN110315088A (zh) * 2019-08-16 2019-10-11 广东广晟稀有金属光电新材料有限公司 一种珊瑚状高纯钽粉的制备方法
CN111893325A (zh) * 2019-12-30 2020-11-06 宁夏东方钽业股份有限公司 一种高纯钽锭及其制备方法
CN114749655A (zh) * 2022-04-29 2022-07-15 宁夏东方钽业股份有限公司 高纯钽粉及其制备方法

Also Published As

Publication number Publication date
CN114749655A (zh) 2022-07-15
CN114749655B (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
TW587101B (en) High purity niobium and products containing the same, and methods of making the same
CN103600086B (zh) 粉末冶金用钽和/或铌粉及其制备方法
EP1090153B1 (en) Method of producing high purity tantalum for sputtering targets
JP3655317B2 (ja) バルブ金属材中の酸素含有率を下げる方法
US7981191B2 (en) Method for the production of tantalum powder using reclaimed scrap as source material
JP2001020065A (ja) スパッタリング用ターゲット及びその製造方法ならびに高融点金属粉末材料
JP2880930B2 (ja) Y2 o3 で分散強化された高純度白金材料、その準完成部品及び箔の製造方法
JP6199897B2 (ja) ニッケル−チタン−希土類金属(Ni−Ti−RE)焼結合金を製造するための粉末混合物
WO2007007517A1 (ja) 高強度および優れた曲げ加工性を備えた銅合金および銅合金板の製造方法
TWI596215B (zh) A fine tantalum powder and its preparation method
EP2999661A1 (en) Process for manufacturing metal containing powder
EP4364871A1 (en) Tantalum-tungsten alloy powder and preparation method therefor
CN104841929A (zh) 一种微细铌粉及其制造方法
JP2005336617A5 (zh)
WO2023206905A1 (zh) 高纯钽粉及其制备方法
TW201533248A (zh) 一種高純鉭粉及其製備方法
Zhang et al. Preparation of high-purity Ti–Si alloys by vacuum directional solidification
JP2007039793A (ja) 高強度および優れた曲げ加工性を備えた銅合金および銅合金板の製造方法
CN107208259A (zh) 铬‑钛合金溅射靶材及其制造方法
JP6123949B2 (ja) Ruを含有する耐食チタン合金の製造方法
JP6786280B2 (ja) ルテニウム含有物に対する処理方法およびルテニウムの回収方法
US2407752A (en) Process of separating hard constituents from sintered hard metals
Gupta et al. Bomb reduction of tantalum pentoxide by calcium metal
CN116043050B (zh) 低铁含量医用镁合金材料的制备工艺
JPH0820809A (ja) クロム基合金粉末の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939731

Country of ref document: EP

Kind code of ref document: A1