WO2023206816A1 - 一种电热储能***及换热方法 - Google Patents

一种电热储能***及换热方法 Download PDF

Info

Publication number
WO2023206816A1
WO2023206816A1 PCT/CN2022/104744 CN2022104744W WO2023206816A1 WO 2023206816 A1 WO2023206816 A1 WO 2023206816A1 CN 2022104744 W CN2022104744 W CN 2022104744W WO 2023206816 A1 WO2023206816 A1 WO 2023206816A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat exchanger
outlet
charging
regenerator
Prior art date
Application number
PCT/CN2022/104744
Other languages
English (en)
French (fr)
Inventor
杨玉
李红智
姚明宇
张一帆
高炜
李凯伦
张旭伟
Original Assignee
西安热工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安热工研究院有限公司 filed Critical 西安热工研究院有限公司
Publication of WO2023206816A1 publication Critical patent/WO2023206816A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • F28D20/0043Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material specially adapted for long-term heat storage; Underground tanks; Floating reservoirs; Pools; Ponds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the invention relates to the technical field of electrothermal energy storage, specifically an electrothermal energy storage system and a heat exchange method.
  • Electric thermal energy storage technology was first proposed by German scholar Marguerre in 1924. It is an electrical energy storage technology developed based on power cycle and thermal energy storage technology. When storing energy, electric energy is consumed to drive a reverse power cycle, that is, a heat pump cycle, which pumps heat from a low-temperature storage tank to a high-temperature storage tank, and at the same time obtains high-temperature thermal energy and low-temperature cold energy relative to the environment and stores them; when releasing energy, the stored The high-temperature thermal energy and low-temperature cold energy are converted into mechanical energy through the heat engine cycle, and the expander drives the power generation unit to generate electricity.
  • Transcritical carbon dioxide cycle electrothermal energy storage technology has the advantages of large scale, long life, low marginal cost, not restricted by geographical conditions, and good safety and reliability. It is a promising large-scale long-term energy storage technology.
  • the present invention provides an electrothermal energy storage system and a heat exchange method, which can improve the utilization rate of system equipment, improve the efficiency of electrothermal energy storage, and reduce system investment costs.
  • An electric thermal energy storage system including a heat storage circuit and a cold storage circuit, the heat storage circuit and the cold storage circuit being connected through a regenerator;
  • the cold storage circuit includes a first auxiliary heat exchanger, a first charging and discharging device, a cooler and a second auxiliary heat exchanger connected in sequence, and the outlet of the cooler is connected to a cold storage device;
  • the heat storage circuit includes a heater and a second charging and discharging device connected in sequence, and the outlet of the heater is connected to a heat storage device.
  • the outlet of the second charging and discharging device is connected to the hot side inlet of the heater, the hot side outlet of the heater is connected to the hot side inlet of the regenerator, and the hot side of the regenerator
  • the outlet is connected to the first auxiliary heat exchanger, the outlet of the first auxiliary heat exchanger is connected to the inlet of the first charge and discharge device, and the outlet of the first charge and discharge device is connected to the cold side inlet of the cooler,
  • the cold side outlet of the cooler is connected to the inlet of the second auxiliary heat exchanger, the outlet of the second auxiliary heat exchanger is connected to the cold side inlet of the regenerator, and the cold side outlet of the regenerator is connected to the second charging and discharging device. connected to the entrance.
  • the outlet of the first charging and discharging device is connected to the inlet of the first auxiliary heat exchanger, and the outlet of the first auxiliary heat exchanger is connected to the cold side inlet of the regenerator.
  • the cold side outlet of the heater is connected to the cold side inlet of the heater, the cold side outlet of the heater is connected to the inlet of the second charge and discharge device, and the outlet of the second charge and discharge device is connected to the hot side inlet of the regenerator.
  • the hot side outlet of the regenerator is connected to the inlet of the second auxiliary heat exchanger, the outlet of the second auxiliary heat exchanger is connected to the hot side inlet of the cooler, and the hot side outlet of the cooler is connected to the first charger.
  • the inlet of the discharge device is connected.
  • the first auxiliary heat exchanger and the second auxiliary heat exchanger adopt printed circuit board heat exchangers with interrupted fin structures.
  • the first auxiliary heat exchanger and the second auxiliary heat exchanger are each provided with multiple inlets and outlets.
  • the first charging and discharging device includes a voltage reducing device and a pump; wherein the voltage reducing device is used for the charging process and the pump is used for the discharging process.
  • the pressure reducing device uses an expander or a throttling device.
  • the second charging and discharging device includes a compressor and a turbine, wherein the compressor is used for the charging process and the turbine is used for the discharging process.
  • the heat storage device is equipped with a heat storage medium
  • the heat storage medium is thermal oil, solution or water
  • the cold storage device is equipped with a cold storage medium
  • the heat storage medium is ice slurry or salt water.
  • a heat exchange method for an electric thermal energy storage system including the following steps:
  • the compressor compresses the working fluid, and the heated working fluid enters the exothermic side of the heater and the regenerator in turn to release heat.
  • the exothermic working fluid releases heat to the environment through the auxiliary heat exchanger and then enters the first charge and discharge process.
  • the device When the device is working, it enters the cooler, auxiliary heat exchanger and regenerator in order to absorb heat.
  • the heat-absorbed working fluid enters the compressor to realize the heat pump cycle;
  • the first charging and discharging device When discharging, the first charging and discharging device boosts the working fluid and sends it to the auxiliary heat exchanger to absorb ambient heat, and then enters the regenerator and heater in turn to absorb heat and heat up.
  • the heat-absorbing working fluid enters the second charging and discharging device. After the work is completed, it enters the regenerator, auxiliary heat exchanger and cooler in sequence to release heat.
  • the heat-released working fluid enters the first charging and discharging device to increase the pressure to realize a heat engine cycle.
  • the present invention has the following beneficial effects:
  • the invention provides an electrothermal energy storage system.
  • a first auxiliary heat exchanger and a second auxiliary heat exchanger are added at the set positions of the cold storage circuit to assist heat exchange.
  • the setting of the device enables the electrothermal energy storage system to make full use of the energy in the environment, so that the temperature of the working fluid at this location is close to the ambient temperature, thereby significantly improving the cycle efficiency.
  • Traditional electrothermal energy storage systems do not consider improving heat exchange and energy storage efficiency through energy exchange with the environment.
  • the electrothermal energy storage system of the present invention can achieve an energy storage efficiency of more than 70% by combining multi-stage heat storage and heat release technology and heat recovery technology, and adding an auxiliary heat exchanger to fully utilize the energy exchange between the environment and the system. , significantly improving the energy storage efficiency of the electrothermal energy storage system.
  • the heat exchange cycle in the present invention is divided into a heat pump cycle and a heat engine cycle.
  • the heat pump cycle is activated when storing energy
  • the heat engine cycle is activated when releasing energy.
  • the heat pump cycle and the heat engine cycle share the heater, cooler, regenerator, and auxiliary exchanger in the system.
  • Main equipment such as heaters and other pipelines improves system equipment utilization, reduces system complexity and investment costs, further improves the application scope of electrothermal energy storage technology, and maximizes the scale of electrothermal energy storage technology. , long life, low cost, not restricted by geographical conditions and good safety and reliability.
  • Figure 1 is a schematic diagram of the electrothermal energy storage system during charging according to the present invention
  • Figure 2 is a schematic diagram of the electrothermal energy storage system during discharge according to the present invention.
  • Figure 3 is a comparison chart of the energy storage efficiency results of the electrothermal energy storage system of the present invention and the existing electrothermal energy storage system.
  • the lowest temperature heat storage tank 1 the first low temperature heat storage tank 2, the second low temperature heat storage tank 3, the first high temperature heat storage tank 4, the second high temperature heat storage tank 5, the highest temperature heat storage tank Tank 6, heater 7, compressor 8, turbine 9, regenerator 10, first auxiliary heat exchanger 11, second auxiliary heat exchanger 12, expander 13, pump 14, cooler 15, first storage Cold tank 16, second cold storage tank 17.
  • an electric thermal energy storage system of the present invention includes a heat storage circuit and a cold storage circuit, and the heat storage circuit and the cold storage circuit are connected through a regenerator 10;
  • the cold storage circuit is provided with a first auxiliary heat exchanger 11, a first charge and discharge device, a cooler 15 and a second auxiliary heat exchanger 12 in sequence, and the outlet of the cooler 15 is connected to a cold storage device;
  • a heater 7 and a second charging and discharging device are arranged in sequence on the heat storage circuit, and the outlet of the heater 7 is connected to a heat storage device.
  • the present invention provides an electrothermal energy storage system.
  • a first auxiliary heat exchanger 11 and a second auxiliary heat exchanger 12 are designed to be added at set positions of the cold storage circuit.
  • the setting of the heat exchanger enables the electrothermal energy storage system to make full use of the energy in the environment, so that the temperature of the working medium at this location is close to the ambient temperature, thereby significantly improving the cycle efficiency.
  • Traditional electrothermal energy storage systems do not consider improving heat exchange and energy storage efficiency and reducing irreversible losses through energy exchange with the environment.
  • the electrothermal energy storage system of the present invention uses multi-stage heat storage and heat release technology and heat recovery technology.
  • auxiliary heat exchangers make full use of the energy exchange between the environment and the system, which can achieve an energy storage efficiency of more than 70%, significantly improving the energy storage efficiency of the electric thermal energy storage system, while making full use of waste heat energy and reducing energy It can ensure large-scale and long-term electric thermal energy storage without waste.
  • the electrothermal energy storage system of the present invention when charging, is a heat pump 14 system that performs a heat pump cycle.
  • the heat pump working fluid is used to heat the heat storage medium in the heater 7, and in the cooler 15 To achieve cooling of the cold storage medium.
  • the specific connection method of the electrothermal energy storage system of the present invention during energy storage and charging is:
  • the outlet of the second charging and discharging device (compressor 8 in this embodiment) is connected to the hot side inlet of the heater 7, and the hot side outlet of the heater 7 is connected to the hot side inlet of the regenerator 10.
  • the hot side outlet of the regenerator 10 is connected to the first auxiliary heat exchanger 11
  • the outlet of the first auxiliary heat exchanger 11 is connected to the inlet of the first charge and discharge device
  • the first charge and discharge device (this In the embodiment, the outlet of the expander 13) is connected to the cold side inlet of the cooler 15, and the cold side outlet of the cooler 15 is connected to the inlet of the second auxiliary heat exchanger 12.
  • the second auxiliary heat exchanger 12 The outlet is connected to the cold side inlet of the regenerator 10, and the cold side outlet of the regenerator 10 is connected to the inlet of the second charging and discharging device.
  • the electrothermal energy storage system of the present invention is a heat engine system that performs a heat engine cycle.
  • the heat storage medium heats the heat engine working fluid through the heater 7, and the cold storage medium is implemented in the cooler 15. Cooling of heat engine medium.
  • the specific connection method of the electrothermal energy storage system of the present invention when releasing energy and discharging is:
  • the outlet of the first charging and discharging device (pump 14 in this embodiment) is connected to the inlet of the first auxiliary heat exchanger 11 , and the outlet of the first auxiliary heat exchanger 11 is connected to the cold outlet of the regenerator 10 .
  • the side inlets are connected, the cold side outlet of the regenerator 10 is connected to the cold side inlet of the heater 7, the cold side outlet of the heater 7 is connected to the inlet of the second charge and discharge device, and the second charge and discharge device (this In the embodiment, the outlet of the turbine 9) is connected to the hot side inlet of the regenerator 10, and the hot side outlet of the regenerator 10 is connected to the inlet of the second auxiliary heat exchanger 12.
  • the second auxiliary heat exchanger 12 The outlet is connected to the hot side inlet of the cooler 15, and the hot side outlet of the cooler 15 is connected to the inlet of the first charging and discharging device.
  • the heat exchange cycle in the present invention is divided into a heat pump cycle and a heat engine cycle.
  • the heat pump cycle is enabled when storing energy
  • the heat engine cycle is enabled when releasing energy.
  • the heat pump cycle and the heat engine cycle share the heater 7, cooler 15, and return in the electric thermal energy storage system.
  • Main equipment such as heater 10, auxiliary heat exchanger and other pipelines improves the utilization rate of system equipment, reduces the complexity and investment cost of the system, further increases the application scope of electrothermal energy storage technology, and maximizes the use of electrothermal energy.
  • Energy storage technology has the advantages of large scale, long life, low cost, no restrictions on geographical conditions, and good safety and reliability.
  • the first auxiliary heat exchanger 11 and the second auxiliary heat exchanger 12 adopt printed circuit board heat exchangers with interrupted fin structures.
  • the specific structure of the printed circuit board heat exchanger with interrupted fin structure is: including multiple heat storage medium channels and multiple cold storage medium channels distributed from top to bottom, each cold storage medium channel and each heat storage medium channel There are several rows of fins inside, in which there is a gap between two adjacent fins in the same row of fins, forming an interrupted fin structure; each fin adopts an airfoil-type fin or an S-shaped fin.
  • fins in adjacent rows of fins in the heat storage medium channel are staggered or relatively distributed.
  • fins in adjacent rows of fins in the cold storage medium channel are staggered or relatively distributed.
  • the first auxiliary heat exchanger 11 and the second auxiliary heat exchanger 12 in the present invention are provided with multiple inlets and outlets.
  • the design of multiple inlets and outlets can further reduce the heat exchange during the heat exchange process. temperature difference while improving cycle efficiency.
  • the circulating heat pump working fluid is carbon dioxide or an organic working fluid
  • the cycle is a reverse transcritical carbon dioxide Rankine cycle or a reverse organic Rankine cycle that brings back heat.
  • the circulating thermomechanical working fluid is carbon dioxide or an organic working fluid
  • the cycle is a forward transcritical carbon dioxide Rankine cycle or a forward organic Rankine cycle that brings back heat.
  • the first charging and discharging device adopts a voltage reducing device and a pump 14; wherein, the voltage reducing device is a special equipment for the charging process, and the pump 14 is a special equipment for the discharging process.
  • the expander 13 is used in this embodiment, and the expander 13 can also be replaced by a throttling device.
  • the principle of the expander 13 is to use the compressed gas to expand and depressurize and output mechanical work to reduce the temperature of the gas. The reduction of the internal energy of the gas and the external output of work greatly reduce the pressure and temperature of the gas.
  • the principle of the throttling device is: the heat exchange working fluid stream flowing through the throttling device can form a local contraction at the throttling device. As a result, the flow rate increases, the static pressure decreases, and a static pressure difference is generated before and after the throttling device, thereby achieving the same function as the expander 13.
  • the second charging and discharging device adopts a compressor 8 and a turbine 9, wherein the compressor 8 is a special equipment for the charging process, and the turbine 9 is a special equipment for the discharging process.
  • a first auxiliary heat exchanger 11 and a second auxiliary heat exchanger 12 are added.
  • the specific working principle of realizing that the temperature of the working medium at the position is close to the ambient temperature is as follows:
  • the first auxiliary heat exchanger 11 releases the waste heat of the working fluid to the environment and transfers the working fluid before entering the expander 13 The temperature is further reduced, so that the expanded working fluid has more cooling capacity.
  • the temperature of the heat pump working fluid flowing out from the cooler 15 is significantly lower than the ambient temperature
  • the temperature of the working fluid entering the cold side of the regenerator 10 is increased through the second auxiliary heat exchanger 12, thereby increasing the temperature at the outlet of the regenerator 10. The working fluid temperature is higher and the cycle efficiency is improved.
  • the first auxiliary heat exchanger 11 is used to heat the working fluid temperature to close to the ambient temperature, which can increase the cold side outlet of the regenerator 10
  • the temperature of the working fluid is conducive to improving the efficiency of the thermal engine.
  • the second auxiliary heat exchanger 12 is used to discharge the waste heat of the working fluid to the environment, and the working fluid with reduced waste heat then enters the cooler 15 for further release. waste heat. This reduces the amount of waste heat released by the working medium to the cold storage medium through the cooler 15, making the heat storage and cold storage capacity more consistent, which is beneficial to the improvement of cycle efficiency.
  • the heat storage device is equipped with a heat storage medium, and the heat storage medium is thermal oil, solution or water.
  • the cold storage device is equipped with a cold storage medium, and the heat storage medium is ice slurry or salt water.
  • the heat storage device is a heat storage tank.
  • a set of six heat storage tanks 1 to 6 is provided.
  • the cold storage device is a cold storage tank.
  • a set of two cold storage tanks is provided, a first cold storage tank 16 and a second cold storage tank 17 .
  • the charging process and the discharging process share the heat storage tanks 1 to 6, the heater 7, the regenerator 10, the first auxiliary heat exchanger 11 and the second auxiliary heat exchanger 12, the cooler 15, and the first storage tank.
  • Equipment such as the cold tank 16 and the second cold storage tank 17, the special equipment for the charging process are the compressor 8 and the expander 13, and the special equipment for the discharge process are the pump 14 and the turbine 9.
  • the invention also provides a heat exchange method for an electrothermal energy storage system, which includes the following steps:
  • the compressor 8 compresses the working fluid, and the heated working fluid sequentially enters the heat release side of the heater 7 and the regenerator 10 to release heat.
  • the heat released working fluid releases heat to the environment through the auxiliary heat exchanger 11 before entering.
  • the first charging and discharging device is working. After the work is completed, it enters the cooler 15, the auxiliary heat exchanger 12 and the regenerator 10 to absorb heat.
  • the heat-absorbed working fluid enters the compressor 8 to realize the heat pump cycle;
  • the first charging and discharging device boosts the pressure of the working fluid and sends it to the auxiliary heat exchanger 11 to absorb ambient heat, and then enters the regenerator 10 and the heater 7 successively to absorb heat and heat up.
  • the heat-absorbing working fluid enters the second charging station. Work is done in the discharge device. After the work is completed, it sequentially enters the regenerator 10, auxiliary heat exchanger 12 and cooler 15 to release heat.
  • the heat-released working fluid enters the first charging and discharging device to increase the pressure, thereby realizing a heat engine cycle.
  • the specific working process of the electrothermal energy storage system of the present invention is:
  • the motor M drives the compressor 8 to operate.
  • the compressor 8 compresses the working fluid to increase the temperature of the working fluid, and the high-temperature and high-pressure working fluid enters the heater.
  • the exothermic side of 7 releases heat, and the exothermic working fluid enters the regenerator 10 to further release heat, and then releases heat to the environment through the auxiliary heat exchanger 11, and then enters the expander 13 for work.
  • the temperature of the working fluid at the outlet of the expander and The pressure is reduced, and the next step is to enter the cooler 15 to absorb heat.
  • the working fluid After absorbing heat, the working fluid enters the auxiliary heat exchanger 12 to absorb heat, and then the regenerator 10 absorbs heat, and then enters the compressor 8 to complete the heat pump cycle.
  • the expander 13 in the heat pump system can be replaced by a throttling device.
  • the pump 14 in the heat engine system boosts the working fluid and sends it to the auxiliary heat exchanger 11 to absorb ambient heat, then enters the regenerator 10 to absorb heat and raise the temperature, and then enters the heater 7 to absorb the heat of the high-temperature heat storage medium.
  • the working fluid after absorbing heat enters the turbine 9 for work, and the turbine 9 drives the generator to generate electricity.
  • the temperature and pressure of the working fluid coming out of the turbine 9 decrease, enter the heat engine regenerator 10 to release heat, and then enter the auxiliary heat exchange
  • the cooler 12 releases heat to the environment, and then enters the cooler 15 to release its own waste heat to the low-temperature cold storage medium. Finally, it enters the pump 14 to boost the pressure, completing the heat engine cycle.
  • the high-temperature and high-pressure working fluid enters the heat release side of the heater 7 to release heat and transfer the heat to the lower-temperature heat storage medium.
  • the heat storage device includes the lowest temperature heat storage tank 1, the highest temperature heat storage tank 6, and several pairs of intermediate temperature heat storage tanks. Among them, there are 2 pairs of intermediate heat storage tanks, that is, the first low temperature storage tank. Thermal tank 2 and the second low-temperature heat storage tank 3, as well as the first high-temperature heat storage tank 4 and the second high-temperature heat storage tank 5.
  • the medium in the lowest temperature heat storage tank 1 flows through the heater 7 and absorbs heat before entering the heat storage tank 7.
  • the medium in the first low temperature heat storage tank 2 flows through the heater 7 and absorbs heat before entering the second low temperature.
  • Heat storage tank 3 the medium in the first high-temperature heat storage tank 4 flows through the heater 7 to absorb heat and then enters the second high-temperature heat storage tank 5.
  • the working medium of the heat engine cycle flows through the heater 7 to absorb heat, and the heat storage medium flows through the heater 7 to release heat.
  • the specific working process is: the medium in the highest temperature heat storage tank 6 flows through the heater 7 and releases heat before entering the lowest temperature heat storage tank 1.
  • the medium in the second high temperature heat storage tank 5 flows through the heater 7 and releases heat before entering.
  • the medium in the first high-temperature heat storage tank 4 and the second low-temperature heat storage tank 3 flows through the heater 7 and releases heat before entering the first low-temperature heat storage tank 2.
  • the electrothermal energy storage system of the present invention adds multi-stage heat storage technology and an auxiliary heat exchanger compared to the existing electrothermal energy storage system, thereby increasing the cycle efficiency by 2 to 3 percentage points.
  • the electrothermal energy storage efficiency of the present invention reaches 58%, while the efficiency of the existing electrothermal energy storage system is only 55%; at the 50MW capacity level and Under typical design conditions, the electrothermal energy storage efficiency of the present invention reaches 71%, while the efficiency of the existing electrothermal energy storage system is only 68%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

本发明提供一种电热储能***及换热方法,能够提高***设备利用率,提升电热储能效率,降低***投资成本。包括储热回路和储冷回路,所述储热回路和储冷回路通过回热器连接;其中,所述储冷回路包括依次连接的第一辅助换热器、第一充放电装置、冷却器和第二辅助换热器,所述冷却器的出口连接有储冷装置;所述储热回路上包括依次连接的加热器和第二充放电装置,所述加热器的出口连接有储热装置。

Description

一种电热储能***及换热方法 技术领域
本发明涉及电热储能技术领域,具体为一种电热储能***及换热方法。
背景技术
构建以新能源为主体的新型电力***亟需发展规模大时间长的储能技术。现有的大规模长时间储能技术主要有抽水蓄能和压缩空气储能,这两者对储能地点的地质条件要求极为苛刻,因此其发展受到了一定的限制。
电热储能技术最早于1924年由德国学者Marguerre提出,是一种基于动力循环和热能储存技术发展出来的电能储存技术。在储能时,消耗电能驱动逆向动力循环,即热泵循环,将热量从低温储罐泵到高温储罐中,同时获得相对于环境的高温热能和低温冷能储存起来;释能时,将储存的高温热能和低温冷能通过热机循环转化成机械能,膨胀机驱动发电单元发电。跨临界二氧化碳循环电热储能技术,具有规模大、寿命长、边际成本低、不受地理条件限制和安全可靠性好等优势,是极具前景的大规模长时间储能技术。
但是由于不可逆损失的存在,热泵循环储存的热量和冷量,与热机循环所消耗的热量和冷量之间往往是不匹配的,两者偏差越大,则不可逆损失越大,,导致循环效率偏低。另外,由于做功介质在换热时往往要经历一个大比热区,比热变化是非线性的,而储热介质比热的变化大多是线性的,在这种情况下如果换热过程中流量保持不变,那么换热效率就会很低,最终导致换热过程中的不可逆损失较大。
发明内容
为了解决现有技术中存在的问题,本发明提供一种电热储能***及换热方法,能够提高***设备利用率,提升电热储能效率,降低***投资成本。
为实现上述目的,本发明提供如下技术方案:
一种电热储能***,包括储热回路和储冷回路,所述储热回路和储冷回路通过回热器连接;
其中,所述储冷回路包括依次连接的第一辅助换热器、第一充放电装置、冷却器和第二辅助换热器,所述冷却器的出口连接有储冷装置;
所述储热回路上包括依次连接的加热器和第二充放电装置,所述加热器的出口连接有储热装置。
优选地,充电时,所述第二充放电装置的出口与所述加热器的热侧入口相连,加热器的热侧出口与所述回热器的热侧入口相连,回热器的热侧出口与所述第一辅助换热器相连,第一辅助换热器的出口与所述第一充放电装置的入口相连,第一充放电装置的出口与所述冷却器的冷侧入口相连,冷却器的冷侧出口与所述第二辅助换热器的入口相连,第二辅助换热器的出口与回热器的冷侧入口相连,回热器的冷侧出口与第二充放电装置的入口相连。
优选地,放电时,所述第一充放电装置的出口与所述第一辅助换热器的入口相连,第一辅助换热器的出口与所述回热器的冷侧入口相连,回热器的冷侧出口与所述加热器的冷侧入口相连,加热器的冷侧出口与所述第二充放电装置的入口相连,第二充放电装置的出口与回热器的热侧入口相连,回热器的热侧出口与所述第二辅助换热器的入口相连,第二辅助换热器的出口与所述冷却器的热侧入口相连,冷却器的热侧出口与第一充放电装置的入口相连。
优选地,所述第一辅助换热器和第二辅助换热器采用间断翅片结构的印刷电路板式换热器。
优选地,所述第一辅助换热器和第二辅助换热器上均设置有多个进口和出口。
优选地,所述第一充放电装置包括降压装置和泵;其中,所述降压装置用于充电过程,所述泵用于放电过程。
优选地,所述降压装置采用膨胀机或者节流装置。
优选地,所述第二充放电装置包括压缩机和透平,其中,所述压缩机用于充电过程,所述透平用于放电过程。
优选地,所述储热装置中装有储热介质,所述储热介质为导热油、溶液或 者水,所述储冷装置中装有储冷介质,所述储热介质为冰浆或者盐水。
一种电热储能***的换热方法,包括如下步骤:
充电时,压缩机压缩工质,升温后的工质依次进入加热器的放热侧和回热器释放热量,放热后的工质经辅助换热器向环境释放热量后进入第一充放电装置做工,做工完成依次进入冷却器、辅助换热器和回热器吸收热量,吸热后的工质进入压缩机,实现热泵循环;
放电时,第一充放电装置将工质升压后送入辅助换热器吸收环境热量后依次进入回热器和加热器中吸热升温,吸热后的工质进入第二充放电装置中做工,做工完成依次进入回热器、辅助换热器和冷却器中释放热量,放热后的工质进入第一充放电装置中升压,实现热机循环。
与现有技术相比,本发明具有以下有益效果:
本发明提供的一种电热储能***,通过在现有电热储能***的基础上,在储冷回路的设定位置处增加第一辅助换热器和第二辅助换热器,辅助换热器的设置能够使电热储能***充分利用环境中的能量,实现在该位置处的做功工质的温度与环境温度相接近,从而使得循环效率显著提高。传统的电热储能***没有考虑到通过与环境之间的能量交换提升换热储能效率。本发明所述的电热储能***通过多级储热放热技术和回热技术的结合,以及增加辅助换热器充分利用环境与***之间的能量交换,能够实现超过70%的储能效率,显著提升了电热储能***的储能效率。
本发明中的换热循环分为热泵循环和热机循环,储能时启用热泵循环,释能时启用热机循环,热泵循环和热机循环共用***中的加热器、冷却器、回热器、辅助换热器和其余管路等主要设备,提高了***设备利用率,降低了***的复杂程度和投资成本,进一步提高了电热储能技术的应用范围,较大程度的发挥电热储能技术的规模大、寿命长、成本低、不受地理条件限制和安全可靠性好的优势。
附图说明
图1为本发明充电时的电热储能***示意图;
图2为本发明放电时的电热储能***示意图;
图3为本发明所述电热储能***与现有的电热储能***储能效率的结果对比图。
图中,最低温储热罐1,第一次低温储热罐2,第二次低温储热罐3,第一次高温储热罐4,第二次高温储热罐5,最高温储热罐6,加热器7,压缩机8,透平9,回热器10,第一辅助换热器11,第二辅助换热器12,膨胀机13,泵14,冷却器15,第一储冷罐16,第二储冷罐17。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面结合附图对本发明做进一步详细描述:
如图1和2所示,本发明一种电热储能***,包括储热回路和储冷回路,所述储热回路和储冷回路通过回热器10连接;
其中,所述储冷回路上依次设置有第一辅助换热器11、第一充放电装置、 冷却器15和第二辅助换热器12,所述冷却器15的出口连接有储冷装置;
所述储热回路上依次设置有加热器7和第二充放电装置,所述加热器7的出口连接有储热装置。
本发明提供一种电热储能***,通过在现有电热储能***的基础上,设计在储冷回路的设定位置处增加第一辅助换热器11和第二辅助换热器12,辅助换热器的设置能够使电热储能***充分利用环境中的能量,实现在该位置处的做功工质的温度与环境温度相接近,从而使得循环效率显著提高。传统的电热储能***没有考虑到通过与环境之间的能量交换提升换热储能效率,降低不可逆损失,而本发明所述的电热储能***通过多级储热放热技术和回热技术的结合,以及增加辅助换热器充分利用环境与***之间的能量交换,能够实现超过70%的储能效率,显著提升了电热储能***的储能效率,同时充分利用废热能量,减少能量浪费,可保障大规模长时间的电热储能。
进一步地,如图1所示,充电时,本发明所述的电热储能***为进行热泵循环的热泵14***,热泵工质在加热器7中实现对储热介质的加热,在冷却器15中实现对储冷介质的冷却。本发明所述的电热储能***在储能充电时的具体连接方式为:
所述第二充放电装置(本实施例中为压缩机8)的出口,与所述加热器7的热侧入口相连,加热器7的热侧出口与所述回热器10的热侧入口相连,回热器10的热侧出口与所述第一辅助换热器11相连,第一辅助换热器11的出口与所述第一充放电装置的入口相连,第一充放电装置(本实施例中为膨胀机13)的出口与所述冷却器15的冷侧入口相连,冷却器15的冷侧出口与所述第二辅助换热器12的入口相连,第二辅助换热器12的出口与回热器10的冷侧入口相连,回热器10的冷侧出口与第二充放电装置的入口相连。
进一步地,如图2所示,放电时,本发明所述的电热储能***为进行热机循环的热机***,储热介质通过加热器7加热热机工质,储冷介质在冷却器15中实现对热机介质的冷却。本发明所述的电热储能***在释能放电时的具体连 接方式为:
所述第一充放电装置(本实施例中为泵14)的出口与所述第一辅助换热器11的入口相连,第一辅助换热器11的出口与所述回热器10的冷侧入口相连,回热器10的冷侧出口与所述加热器7的冷侧入口相连,加热器7的冷侧出口与所述第二充放电装置的入口相连,第二充放电装置(本实施例中为透平9)的出口与回热器10的热侧入口相连,回热器10的热侧出口与所述第二辅助换热器12的入口相连,第二辅助换热器12的出口与所述冷却器15的热侧入口相连,冷却器15的热侧出口与第一充放电装置的入口相连。
本发明中的换热循环分为热泵循环和热机循环,储能时启用热泵循环,释能时启用热机循环,热泵循环和热机循环共用电热储能***中的加热器7、冷却器15、回热器10、辅助换热器和其余管路等主要设备,提高了***设备利用率,降低了***的复杂程度和投资成本,进一步提高了电热储能技术的应用范围,较大程度的发挥电热储能技术的规模大、寿命长、成本低、不受地理条件限制和安全可靠性好的优势。
优选地,所述第一辅助换热器11和第二辅助换热器12采用间断翅片结构的印刷电路板式换热器。间断翅片结构的印刷电路板式换热器其具体结构为:包括自上到下依次分布的多个储热介质通道及多个储冷介质通道,各储冷介质通道内及各储热介质通道内均设置有若干行翅片,其中,同一行翅片中相邻两个翅片之间有间隙,呈间断翅片结构;各翅片采用机翼型翅片或S型翅片。
进一步地,储热介质通道内相邻行翅片中的各翅片错列分布或者相对分布。
进一步地,储冷介质通道内相邻行翅片中的各翅片错列分布或者相对分布。
优选地,本发明中所述第一辅助换热器11和第二辅助换热器12上均设置有多个进口和出口,多个进出口的设计方式能够进一步减少换热过程中的换热温差,同时提高循环效率。
优选地,所述热泵循环中,其循环的热泵工质为二氧化碳或有机工质,循环为带回热的逆向跨临界二氧化碳朗肯循环或逆向有机朗肯循环。
优选地,所述热机循环中,其循环的热机工质为二氧化碳或有机工质,循环为带回热的正向跨临界二氧化碳朗肯循环或正向有机朗肯循环。
本实施例中,所述第一充放电装置采用降压装置和泵14;其中,所述降压装置为充电过程的专用设备,所述泵14为放电过程的专用设备。
进一步地,本实施例中采用膨胀机13,膨胀机13也可以采用节流装置替代,所述膨胀机13的原理为:利用压缩气体膨胀降压时向外输出机械功使气体温度降低,由于气体内能的降低并对外输出功使气体的压力和温度大幅度降低,所述节流装置的原理为:流经节流装置的换热工质流束在节流装置处可以形成局部收缩,从而使流速增加,静压力降低,在节流装置前后产生静压力差,实现与膨胀机13相同的功能。
本实施例中,所述第二充放电装置采用压缩机8和透平9,其中,所述压缩机8为充电过程的专用设备,所述透平9为放电过程的专用设备。
本发明中加入第一辅助换热器11和第二辅助换热器12,其具体实现位置处做功工质的温度与环境温度相接近的工作原理为:
在热泵循环中,当回热器10的热侧出口的工质温度显著高于环境温度时,第一辅助换热器11将工质的废热释放给环境,将进入膨胀机13前的工质温度进一步降低,从而使膨胀后的工质具有更多的冷量。从冷却器15流出的热泵工质,当其温度显著低于环境温度时,则通过第二辅助换热器12提高进入回热器10冷侧的工质温度,从而使回热器10出口的工质温度更高,提高循环效率。
在热机循环中,当从泵14流出工质的温度显著低于环境温度时,则利用第一辅助换热器11将工质温度加热到接近环境温度,这样可以提高回热器10冷侧出口工质温度,有利于提高热机效率。当从回热器10流出的低压侧工质温度显著高于环境温度时,则利用第二辅助换热器12将工质废热排向环境,废热减小的工质再进入冷却器15继续释放废热。这样减小了工质通过冷却器15向储冷介质释放废热的热量,使得储热量与储冷量更加匹配,有利于循环效率的提高。
优选地,所述储热装置中装有储热介质,所述储热介质为导热油、溶液或者水等。
优选地,所述储冷装置中装有储冷介质,所述储热介质为冰浆或者盐水等。
所述储热装置为储热罐,本实施例中,设置一组共6个储热罐1~6。
所述储冷装置为储冷罐,本实施例中,设置一组共2个储冷罐,第一储冷罐16和第二储冷罐17。
本实施例中,充电过程与放电过程共用储热罐1~6、加热器7、回热器10、第一辅助换热器11和第二辅助换热器12、冷却器15、第一储冷罐16和第二储冷罐17等设备,充电过程的专用设备为压缩机8和膨胀机13,放电过程的专用设备为泵14和透平9。
本发明还提供一种电热储能***的换热方法,包括如下步骤:
充电时,压缩机8压缩工质,升温后的工质依次进入加热器7的放热侧和回热器10释放热量,放热后的工质经辅助换热器11向环境释放热量后进入第一充放电装置做工,做工完成依次进入冷却器15、辅助换热器12和回热器10吸收热量,吸热后的工质进入压缩机8,实现热泵循环;
放电时,第一充放电装置将工质升压后送入辅助换热器11吸收环境热量后依次进入回热器10和加热器7中吸热升温,吸热后的工质进入第二充放电装置中做工,做工完成依次进入回热器10、辅助换热器12和冷却器15中释放热量,放热后的工质进入第一充放电装置中升压,实现热机循环。
本发明所述电热储能***的具体工作过程为:
储能时,利用可再生能源电力或电网负荷低谷时的电力驱动电机M,电机M带动压缩机8运转,压缩机8压缩工质,使工质温度升高,高温高压的工质进入加热器7的放热侧释放热量,放热后的工质进入回热器10进一步放热,然后经辅助换热器11向环境释放热量,之后进入膨胀机13做工,膨胀机出口的工质温度和压力都降低,下一步进入冷却器15吸收热量,吸热后工质进入辅助换热器12吸热,然后回热器10吸热,再进入压缩机8,完成热泵循环。热 泵***中的膨胀机13可用节流装置替代。
发电时,热机***中的泵14将工质升压后送入辅助换热器11吸收环境热量后再进入回热器10中吸热升温,然后进入加热器7中吸收高温储热介质的热量,吸热后的工质进入透平9中做工,透平9带动发电机发电,从透平9出来的工质温度和压力降低,进入热机回热器10中释放热量,之后进入辅助换热器12向环境放热,下一步再进入冷却器15将自身的废热释放给低温储冷介质,最后进入泵14中升压,完成热机循环。
储能时,高温高压的工质进入加热器7的放热侧释放热量,将热量传递给温度较低的储热介质。
本实施例中,储热装置包含最低温储热罐1、最高温储热罐6,还包含若干对中间温度的储热罐,其中,中间储热罐有2对,即第一次低温储热罐2和第二次低温储热罐3,以及第一次高温储热罐4和第二次高温储热罐5。
工作时,最低温储热罐1中的介质流经加热器7吸热后进入储热罐7,第一次低温储热罐2中的介质流经加热器7吸热后进入第二次低温储热罐3,第一次高温储热罐4中的介质流经加热器7吸热后进入第二次高温储热罐5。释能时,热机循环的工质流经加热器7吸收热量,而储热介质流经加热器7释放热量。具体工作过程为:最高温储热罐6中的介质流经加热器7放热后进入最低温储热罐1,第二次高温储热罐5中的介质流经加热器7放热后进入第一次高温储热罐4,第二次低温储热罐3中的介质流经加热器7放热后进入第一次低温储热罐2。
本发明的电热储能***,比现有的电热储能***增加了多级储热技术和辅助换热器,使得循环效率提高了2到3个百分点。经计算,如图3所示,在1MW容量级别和典型的设计条件下,本发明的电热储能效率达到58%,而现有的电热储能***的效率只有55%;在50MW容量级别和典型的设计条件下,本发明的电热储能效率达到71%,而现有的电热储能***的效率只有68%。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限 制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求保护范围之内。

Claims (10)

  1. 一种电热储能***,其特征在于,包括储热回路和储冷回路,所述储热回路和储冷回路通过回热器(10)连接;
    其中,所述储冷回路包括依次连接的第一辅助换热器(11)、第一充放电装置、冷却器(15)和第二辅助换热器(12),所述冷却器(15)的出口连接有储冷装置;
    所述储热回路上包括依次连接的加热器(7)和第二充放电装置,所述加热器(7)的出口连接有储热装置。
  2. 根据权利要求1所述的一种电热储能***,其特征在于,充电时,所述第二充放电装置的出口与所述加热器(7)的热侧入口相连,加热器(7)的热侧出口与所述回热器(10)的热侧入口相连,回热器(10)的热侧出口与所述第一辅助换热器(11)相连,第一辅助换热器(11)的出口与所述第一充放电装置的入口相连,第一充放电装置的出口与所述冷却器(15)的冷侧入口相连,冷却器(15)的冷侧出口与所述第二辅助换热器(12)的入口相连,第二辅助换热器(12)的出口与回热器(10)的冷侧入口相连,回热器(10)的冷侧出口与第二充放电装置的入口相连。
  3. 根据权利要求1所述的一种电热储能***,其特征在于,放电时,所述第一充放电装置的出口与所述第一辅助换热器(11)的入口相连,第一辅助换热器(11)的出口与所述回热器(10)的冷侧入口相连,回热器(10)的冷侧出口与所述加热器(7)的冷侧入口相连,加热器(7)的冷侧出口与所述第二充放电装置的入口相连,第二充放电装置的出口与回热器(10)的热侧入口相连,回热器(10)的热侧出口与所述第二辅助换热器(12)的入口相连,第二辅助换热器(12)的出口与所述冷却器(15)的热侧入口相连,冷却器(15)的热侧出口与第一充放电装置的入口相连。
  4. 根据权利要求1所述的一种电热储能***,其特征在于,所述第一辅助换热器(11)和第二辅助换热器(12)采用间断翅片结构的印刷电路板式换热器。
  5. 根据权利要求1所述的一种电热储能***,其特征在于,所述第一辅助换热器(11)和第二辅助换热器(12)上均设置有多个进口和出口。
  6. 根据权利要求1所述的一种电热储能***,其特征在于,所述第一充放电装置包括降压装置和泵(14);其中,所述降压装置用于充电过程,所述泵(14)用于放电过程。
  7. 根据权利要求6所述的一种电热储能***,其特征在于,所述降压装置采用膨胀机(13)或者节流装置。
  8. 根据权利要求1所述的一种电热储能***,其特征在于,所述第二充放电装置包括压缩机(8)和透平(9),其中,所述压缩机(8)用于充电过程,所述透平(9)用于放电过程。
  9. 根据权利要求1所述的一种电热储能***,其特征在于,所述储热装置中装有储热介质,所述储热介质为导热油、溶液或者水,所述储冷装置中装有储冷介质,所述储热介质为冰浆或者盐水。
  10. 一种电热储能***的换热方法,其特征在于,基于权利要求1-9任一项所述的电热储能***,包括如下步骤:
    充电时,压缩机(8)压缩工质,升温后的工质依次进入加热器(7)的放热侧和回热器(10)释放热量,放热后的工质经辅助换热器(11)向环境释放热量后进入第一充放电装置做工,做工完成依次进入冷却器(15)、辅助换热器(12)和回热器(10)吸收热量,吸热后的工质进入压缩机(8),实现热泵循环;
    放电时,第一充放电装置将工质升压后送入辅助换热器(11)吸收环境热量后依次进入回热器(10)和加热器(7)中吸热升温,吸热后的工质进入第二充放电装置中做工,做工完成依次进入回热器(10)、辅助换热器(12)和冷却器(15)中释放热量,放热后的工质进入第一充放电装置中升压,实现热机循环。
PCT/CN2022/104744 2022-04-24 2022-07-08 一种电热储能***及换热方法 WO2023206816A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210434394.6 2022-04-24
CN202210434394.6A CN114857973B (zh) 2022-04-24 2022-04-24 一种电热储能***及换热方法

Publications (1)

Publication Number Publication Date
WO2023206816A1 true WO2023206816A1 (zh) 2023-11-02

Family

ID=82634160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104744 WO2023206816A1 (zh) 2022-04-24 2022-07-08 一种电热储能***及换热方法

Country Status (2)

Country Link
CN (1) CN114857973B (zh)
WO (1) WO2023206816A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2312129A1 (en) * 2009-10-13 2011-04-20 ABB Research Ltd. Thermoelectric energy storage system having an internal heat exchanger and method for storing thermoelectric energy
EP2587005A1 (en) * 2011-10-31 2013-05-01 ABB Research Ltd. Thermoelectric energy storage system with regenerative heat exchange and method for storing thermoelectric energy
WO2014027093A1 (en) * 2012-08-17 2014-02-20 Abb Research Ltd Electro-thermal energy storage system and method for storing electro-thermal energy
CN210370822U (zh) * 2019-06-04 2020-04-21 中国科学院工程热物理研究所 一种基于阵列化储冷储热的热泵储能发电***
CN111075668A (zh) * 2019-12-06 2020-04-28 中国科学院电工研究所 一种利用固体颗粒储热的储电***

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2778406A1 (en) * 2013-03-14 2014-09-17 ABB Technology AG Thermal energy storage and generation system and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2312129A1 (en) * 2009-10-13 2011-04-20 ABB Research Ltd. Thermoelectric energy storage system having an internal heat exchanger and method for storing thermoelectric energy
EP2587005A1 (en) * 2011-10-31 2013-05-01 ABB Research Ltd. Thermoelectric energy storage system with regenerative heat exchange and method for storing thermoelectric energy
WO2014027093A1 (en) * 2012-08-17 2014-02-20 Abb Research Ltd Electro-thermal energy storage system and method for storing electro-thermal energy
CN210370822U (zh) * 2019-06-04 2020-04-21 中国科学院工程热物理研究所 一种基于阵列化储冷储热的热泵储能发电***
CN111075668A (zh) * 2019-12-06 2020-04-28 中国科学院电工研究所 一种利用固体颗粒储热的储电***

Also Published As

Publication number Publication date
CN114857973B (zh) 2023-06-27
CN114857973A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
CN204610203U (zh) 一种绝热压缩空气蓄能与太阳能集成的***
CN109826685B (zh) 一种超临界二氧化碳循环燃煤发电***及方法
CN108005744B (zh) 超临界co2循环的机炉冷能回收与发电一体化供热方法
CN108731303B (zh) 热泵式交替储能供电方法及装置
CN112901297A (zh) 一种钠冷快堆超临界二氧化碳两级分流高效发电***及方法
CN216381532U (zh) 一种压缩空气储能***
CN102094772B (zh) 一种太阳能驱动的联供装置
CN108640082A (zh) 一种利用金属氢化物梯级回收余热的装置和方法
CN110552750B (zh) 一种非共沸有机朗肯-双喷射冷热电联供***
CN106499599A (zh) 一种光热复合式非补燃压缩空气发电***
CN113540504B (zh) 热泵式-氢能复合储能发电方法及装置
CN108507361A (zh) 一种利用工业窑炉尾气余热发电的***
CN110159380B (zh) 单罐闭式循环储能发电***
CN117424256A (zh) 基于卡诺电池的微电网调峰-热电联供***及控制方法
CN109944757B (zh) 一种应用在太空环境中的太阳能热发电***及工作方法
CN109448879B (zh) 用于钠冷快堆的可切换式超临界二氧化碳循环热电联供***
WO2023206816A1 (zh) 一种电热储能***及换热方法
CN115930475A (zh) 一种热电联供的热泵储能***
CN114484933A (zh) 二氧化碳跨临界储电耦合太阳能储热及二氧化碳储存的循环***装置及***方法
CN110425099B (zh) 一种具有储热功能的干热岩光热耦合发电***及其控制方法
CN109356724B (zh) 烟气余热供热与进气冷却、燃气加热耦合方法
CN220893075U (zh) 耦合工业余热的储能***
CN219081667U (zh) 卡诺电池储能与co2超-跨临界动力循环联合发电***
CN113824139B (zh) 一种火电厂的卡诺电池储能改造方法及装置
CN218717008U (zh) 一种太阳能低温双罐发电***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939644

Country of ref document: EP

Kind code of ref document: A1