WO2023206611A1 - 驱动背板及其制作方法、发光基板及其制作方法 - Google Patents

驱动背板及其制作方法、发光基板及其制作方法 Download PDF

Info

Publication number
WO2023206611A1
WO2023206611A1 PCT/CN2022/092621 CN2022092621W WO2023206611A1 WO 2023206611 A1 WO2023206611 A1 WO 2023206611A1 CN 2022092621 W CN2022092621 W CN 2022092621W WO 2023206611 A1 WO2023206611 A1 WO 2023206611A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflective layer
light
substrate
driving
connection component
Prior art date
Application number
PCT/CN2022/092621
Other languages
English (en)
French (fr)
Inventor
陈湃杰
Original Assignee
广州华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州华星光电半导体显示技术有限公司 filed Critical 广州华星光电半导体显示技术有限公司
Priority to US17/756,660 priority Critical patent/US20240162399A1/en
Publication of WO2023206611A1 publication Critical patent/WO2023206611A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body

Definitions

  • the present application relates to the field of display, and in particular to a driving backplane and a manufacturing method thereof, a light-emitting substrate and a manufacturing method thereof.
  • Mini LED mini light-emitting diode
  • sub-millimeter light-emitting diode is a new display technology that makes the size of LED (light-emitting diode) between 100 ⁇ m and 200 ⁇ m.
  • each LED can be individually addressed and driven to emit light, which has the advantages of high efficiency, high brightness, high reliability, fast response time, and large-screen compatibility.
  • Mini LED display products also have the advantages of thinness, lightness, and Due to its low power consumption and other advantages, it is increasingly favored by consumers.
  • the positive and negative electrodes of the LED are usually welded to the pads of the driving backplane to light up the Mini LED through the driving backplane.
  • White oil used to reflect Mini LED light will be coated on the peripheral area of the pad on the driver backplane.
  • the white oil will easily cover the pad during the flow process, affecting the Mini LED conduction and welding reliability, in order to avoid this problem, the opening area of the white oil is usually increased, that is, when printing the white oil, the printing point of the white oil is kept away from the pad, but this will cause The coverage area of white oil is reduced and the reflectivity is reduced, which in turn leads to low light utilization rate and poor light uniformity of Mini LED.
  • Embodiments of the present application provide a driving backplane and a manufacturing method thereof, a light-emitting substrate and a manufacturing method thereof, which can avoid the phenomenon of the reflective layer covering the connecting components, and the reflective layer has a larger coverage area on the driving backplane and a lower reflectivity.
  • a light-emitting device is arranged on the connection component of the driving backplane to form a light-emitting substrate, the light utilization rate of the light-emitting device can be improved, and the uniformity of light emission of the light-emitting substrate can be improved.
  • a driving backplane including:
  • the driving substrate includes a base and a connection component provided on the base, the connection component is used to connect a light-emitting device;
  • a reflective layer is provided on the side of the base where the connection component is provided, and the reflective layer is provided on the periphery of the connection component;
  • blocking members are disposed on the side of the base where the connecting component is provided, and are arranged around the connecting component, and are embedded in the reflective layer. Inside.
  • the reflective layer is provided with several openings
  • the base is provided with an array of connecting components
  • each of the openings is provided with a group of the connecting components
  • the total area of the several openings is a
  • the area of the reflective layer is b
  • the opening ratio a/(a+b) is 0.2% ⁇ 30%.
  • the cross-section of the blocking member is circular, the diameter of the cross-section of the blocking member is 1 ⁇ m ⁇ 150 ⁇ m, and the height of the blocking member is 30 ⁇ m ⁇ 150 ⁇ m.
  • the height of the barrier is greater than or equal to the thickness of the reflective layer
  • the top surface of the area between adjacent blocking members on the reflective layer presents an arcuate surface that is concave toward one side of the substrate.
  • the connecting component includes several connecting pieces, and the distance between each connecting piece and the adjacent blocking piece is 50 ⁇ m ⁇ 200 ⁇ m;
  • the distance between adjacent blocking members is 30 ⁇ m ⁇ 200 ⁇ m.
  • the material of the blocking member includes a photoresist material.
  • At least one circle of blocking members is provided around the periphery of each set of connecting components, and the blocking members of the same circle are located on the sides of a central symmetrical figure.
  • embodiments of the present application provide a method for manufacturing a driving backplane, including:
  • the driving substrate includes a base and a connection component provided on the base, the connection component is used to connect a light-emitting device;
  • a plurality of blocking members are provided on the base corresponding to the periphery of the connecting component, so that a plurality of the blocking members surround the connecting component;
  • An ink material is provided on the base corresponding to the periphery of the connection component, and the ink material is connected with a plurality of the blocking members. After curing, the ink material forms a reflective layer, so that the several blocking members are evenly spaced. Embedded in the reflective layer.
  • arranging a plurality of blocking members on the base corresponding to the periphery of the connection component includes:
  • the photoresist layer is patterned using exposure and development methods to form several blocking members located on the periphery of the connection component.
  • ink material is disposed on the substrate corresponding to the periphery of the connection component using screen printing or inkjet printing.
  • a light-emitting substrate including:
  • a driving backplane which is the driving backplane as described above, or a driving backplane produced by the driving backplane manufacturing method as described above;
  • a light-emitting device the light-emitting device is electrically connected to the connection component in the driving backplane.
  • embodiments of the present application provide a method for manufacturing a light-emitting substrate, including:
  • a light-emitting device is provided, and the light-emitting device is electrically connected to the connection component in the driving backplane to obtain a light-emitting substrate.
  • the driving backplane provided in the embodiment of the present application embeds several blocking members in the reflective layer, so that the reflective layer can be realized in the following manner: firstly, several blocking members are provided on the substrate, and then several blocking members are provided on the substrate to form a reflection. Under the blocking effect of the blocking member, the flow performance of the ink material decreases. Moreover, due to the surface tension between the outer surface of the blocking member and the ink material, the ink material can be absorbed by the outer surface of the blocking member. Attract, further reduce the flow performance of the ink material. When the flow performance of the ink material decreases, the ink material will not easily flow to the location of the connected components, thus avoiding the problem of the connected components being covered by the ink material, which can improve the welding yield.
  • the ink material can be placed close to the connecting component when applying the ink material, thereby reducing the area of the opening surrounded by the inner edge of the reflective layer and improving the ink material on the driving backplane (i.e. The coverage area of the reflective layer), when a light-emitting device is provided on the connection component of the driving backplane to form a light-emitting substrate, the driving backplane has a higher reflectivity of the light emitted by the light-emitting device, which can not only improve the light utilization rate of the light-emitting device , it can also avoid the formation of dark areas of light between adjacent light-emitting devices and improve the uniformity of light emission from the light-emitting substrate.
  • FIG. 1 is a first schematic top view of a driving backplane provided by an embodiment of the present application.
  • FIG. 2 is an enlarged schematic diagram of area C in the driving backplane of FIG. 1 .
  • FIG. 3 is a schematic cross-sectional view of the driving backplane of FIG. 2 along the A-A direction.
  • FIG. 4 is a second schematic top view of a partial area of the driving backplane provided by the embodiment of the present application.
  • FIG. 5 is a schematic cross-sectional view of the driving backplane of FIG. 4 along the B-B direction.
  • FIG. 6 is a flow chart of a manufacturing method of a driving backplane provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a driving substrate provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram after forming a photoresist layer on a substrate according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the photoresist layer after patterning according to an embodiment of the present application.
  • Figure 10 is a schematic cross-sectional view of a light-emitting substrate provided by an embodiment of the present application.
  • FIG. 11 is a flow chart of a method for manufacturing a light-emitting substrate according to an embodiment of the present application.
  • FIG. 1 is a first top view of a driving backplane provided by an embodiment of the present application.
  • FIG. 2 is an enlarged schematic view of area C in the driving backplane of FIG. 1 .
  • FIG. 3 is an enlarged schematic view of area C in the driving backplane of FIG. 2 Schematic cross-section of the drive backplane along the A-A direction.
  • the embodiment of the present application provides a driving backplane 110 , which includes a driving substrate 50 , a reflective layer 40 and several blocking members 30 . In the embodiment of this application, several refers to one or more, and plural refers to two or more, such as three, four, five, six, seven, eight, etc.
  • the driving substrate 50 includes a base 10 and a connection component 20 provided on the base 10 .
  • the connection component 20 is used to connect the light-emitting device 120 .
  • the reflective layer 40 is disposed on the side of the substrate 10 on which the connecting component 20 is disposed, and the reflective layer 40 is disposed on the periphery of the connecting component 20 .
  • blocking members 30 are disposed on the side of the substrate 10 on which the connecting component 20 is disposed, and are arranged around the connecting component 20 .
  • the blocking members 30 are all embedded in the reflective layer 40 .
  • the driving backplane 110 embeds several blocking members 30 in the reflective layer 40 so that the reflective layer 40 can be implemented in the following manner: first, several blocking members are provided on the substrate 10 30. Afterwards, the ink material used to form the reflective layer 40 is placed on the substrate 10. Under the blocking effect of the blocking member 30, the flow performance of the ink material decreases, and due to the existence of a surface between the outer surface of the blocking member 30 and the ink material, The tension effect can cause the ink material to be attracted by the outer surface of the blocking member 30, further reducing the flow performance of the ink material.
  • the ink material When the flow performance of the ink material decreases, the ink material will not easily flow to the position of the connecting component 20, thereby avoiding The problem that the connecting component 20 is covered by the ink material can improve the welding yield. In addition, when the flow performance of the ink material decreases, the ink material can be placed close to the connecting component 20 when applying the ink material, so that the reflective layer can be reduced.
  • the area of the opening 41 surrounded by the inner edge of the drive backplane 110 increases the coverage area of the ink material (ie, the reflective layer 40 ) on the drive backplane 110 .
  • the driving backplane 110 When the light emitting device 120 is disposed on the connection component 20 of the drive backplane 110 to form the light emitting substrate 100
  • the driving backplane 110 has a high reflectivity for the light emitted from the light-emitting device 120, it can not only improve the light utilization rate of the light-emitting device 120, but also avoid the formation of dark areas between adjacent light-emitting devices 120, thereby improving the light-emitting substrate. 100% light uniformity.
  • the reflective layer 40 is provided with several openings 41.
  • the base 10 is provided with an array of connecting components 20.
  • Each opening 41 is provided with a set of connecting components 20.
  • the total area of the openings 41 is a.
  • the reflective layer 40 The area is b, and the opening ratio a/(a+b) is 0.2% ⁇ 30%, such as 0.2%, 0.4%, 0.6%, 0.8%, 1%, 2%, 3%, 4%, 5%, 6 %, 7%, 8%, 9%, 10%, 13%, 15%, 17%, 20%, 22%, 25%, 28%, 30%, etc. It can be seen that the reflective layer 40 has a small aperture ratio. When the aperture ratio of the reflective layer 40 is small, the coverage area of the reflective layer 40 on the driving backplane 110 is larger, thereby improving the emission of the reflective layer 40 to the light-emitting device 120 Reflectivity of light.
  • the cross-section of the barrier 30 is circular, and the diameter of the cross-section of the barrier 30 is 1 ⁇ m ⁇ 150 ⁇ m, such as 1 ⁇ m, 3 ⁇ m, 5 ⁇ m, 7 ⁇ m, 10 ⁇ m, 12 ⁇ m, 15 ⁇ m, 18 ⁇ m, 20 ⁇ m, 23 ⁇ m, 25 ⁇ m, 27 ⁇ m, 30 ⁇ m, 50 ⁇ m, 70 ⁇ m, 100 ⁇ m, 130 ⁇ m, 150 ⁇ m, etc.
  • the cross section of the blocking member 30 refers to the cross section obtained by cutting the blocking member 30 in a direction parallel to the base 10 . It can be understood that the cross section of the blocking member 30 can also be in other shapes, such as triangle, rectangle (rectangle or square), regular pentagon, regular hexagon, star shape, irregular shape, etc.
  • the blocking member 30 may be in the shape of a truncated cone, that is, the cross-sectional area of the blocking member 30 gradually increases from the side away from the base 10 to the side close to the base 10 .
  • the shape of the blocking member 30 may also be configured such that the cross-sectional area of the blocking member 30 gradually decreases or remains uniform from the side away from the base 10 to the side close to the base 10 .
  • the height of the barrier 30 may be 30 ⁇ m ⁇ 150 ⁇ m, such as 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, 70 ⁇ m, 80 ⁇ m, 90 ⁇ m, 100 ⁇ m, 110 ⁇ m, 120 ⁇ m, 130 ⁇ m, 140 ⁇ m, 150 ⁇ m, etc. It can be understood that the height of the barrier 30 refers to the distance between the surface of the barrier 30 on the side away from the substrate 10 and the surface of the barrier 30 on the side connected to the substrate 10 .
  • the thickness of the reflective layer 40 may be 30 ⁇ m ⁇ 150 ⁇ m, such as 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, 70 ⁇ m, 80 ⁇ m, 90 ⁇ m, 100 ⁇ m, 110 ⁇ m, 120 ⁇ m, 130 ⁇ m, 140 ⁇ m, 150 ⁇ m, etc. It can be understood that the thickness of the reflective layer 40 refers to the distance between the surface of the reflective layer 40 on the side away from the substrate 10 and the surface of the reflective layer 40 on the side connected to the substrate 10 .
  • the height of the blocking member 30 may be greater than or equal to the thickness of the reflective layer 40 .
  • the top surface of the area between adjacent blocking members 30 on the reflective layer 40 appears as a concave arc surface toward the side of the substrate 10, so that the upper surface of the reflective layer 40 presents an uneven topography, thereby achieving a diffuse reflection effect and making different areas on the reflective layer 40
  • the reflected light shows a relatively uniform emission intensity.
  • the light-emitting device 120 is disposed on the connection component 20 of the driving backplane 110 to form the light-emitting substrate 100, the light emission uniformity in different areas on the light-emitting substrate 100 is better.
  • the thickness of the reflective layer 40 is the average of the thicknesses of all regions.
  • the height of the barrier 30 may also be lower than the thickness of the reflective layer 40 .
  • the reflective layer 40 covers the top surface of the barrier 30 (ie, the surface of the barrier 30 on the side away from the substrate 10 ), the top surface of the reflective layer 40 is flat. At this time, the diffuse reflection effect of the top surface of the reflective layer 40 is poor, but the reflectivity is high.
  • each set of connecting components 20 may include several connecting members 21 arranged at intervals, and the distance S between each connecting member 21 and the adjacent blocking member 30 is 50 ⁇ m ⁇ 200 ⁇ m, that is, surrounding the connecting components.
  • the distance S between the blocking member 30 provided closest to the connecting member 21 and the connecting member 21 is set to 50 ⁇ m ⁇ 200 ⁇ m, so that when the ink material is provided to form the reflective layer 40, the ink can be The flow of material provides a buffer distance to prevent the ink material from flowing onto the connector 21 and causing the connector 21 to be covered.
  • the distance S between each connecting member 21 and the adjacent blocking member 30 may be 50 ⁇ m, 70 ⁇ m, 100 ⁇ m, 120 ⁇ m, 150 ⁇ m, 180 ⁇ m, 200 ⁇ m, etc.
  • the connecting member 21 may be a soldering pad, that is, the connecting member 21 is connected to the light-emitting device 120 by welding.
  • the material of the connector 21 may be metal, such as one or more of molybdenum (Mo), titanium (Ti), and copper (Cu).
  • connection component 20 may include two connectors 21 arranged at intervals, one of the connectors 21 is used to connect to the positive electrode of the light-emitting device 120 , and the other connector 21 is used to connect to the negative electrode of the light-emitting device 120 . .
  • the distance L between adjacent blocking members 30 may be 30 ⁇ m ⁇ 200 ⁇ m, such as 30 ⁇ m, 50 ⁇ m, 80 ⁇ m, 100 ⁇ m, 130 ⁇ m, 150 ⁇ m, 170 ⁇ m, 200 ⁇ m, etc.
  • the distance between adjacent blocking members 30 within an appropriate range (30 ⁇ m ⁇ 200 ⁇ m)
  • several blocking members 30 can better block the ink material. function, thereby reducing the flow performance of the ink material.
  • the material of the blocking member 30 may be a photoresist material, such as a positive photoresist material or a negative photoresist material.
  • the blocking member 30 can be prepared by coating photoresist, exposing, and developing.
  • the color of the reflective layer 40 may be white to achieve a better reflective effect.
  • the material of the reflective layer 40 may be an insulating material (such as a resin material, etc.), thereby protecting the circuits on the driving substrate 50 when the connector 21 and the light-emitting device 120 are welded.
  • the substrate 10 may be a TFT (Thin Film Transistor (thin film transistor) substrate, that is, the substrate 10 contains a TFT device, so that the TFT device can be used to control the light-emitting device 120 to turn on or off.
  • TFT Thin Film Transistor
  • At least one ring of blocking members 30 is provided around the periphery of each set of connecting components 20 , and the same circle of blocking members 30 is located on the edge of a centrally symmetrical figure.
  • the centrally symmetrical figure may be a rectangle, a square, a circle, a triangle, a rhombus, etc.
  • the central symmetry point of the central symmetrical figure may coincide with the midpoint of the line connecting the geometric centers of the two connecting pieces 21 .
  • FIG. 4 is a second schematic top view of a partial area of the driving backplane provided by an embodiment of the present application.
  • FIG. 5 is a schematic cross-sectional view of the driving backplane of FIG. 4 along the B-B direction.
  • each set of connecting components A circle of blocking members 30 is arranged around the periphery of the reflective layer 20 , and the blocking members 30 of the same circle are located on the side of a rectangle. That is to say, the blocking member 30 is provided only in the area close to the connecting component 20 on the reflective layer 40 .
  • several blocking members 30 are arranged in multiple circles around the periphery of the connecting component 20 .
  • the multiple circles may be two or more circles, such as three, four, five, six, etc.
  • several blocking members 30 are arranged in a circle around the periphery of the connecting component 20 .
  • FIG. 6 is a flow chart of a method for manufacturing a driving backplane according to an embodiment of the present application.
  • An embodiment of the present application provides a method for manufacturing a driving backplane, which includes:
  • the driving substrate 50 includes a base 10 and a connection component 20 provided on the base 10.
  • a plurality of blocking members 30 are provided on the base 10 corresponding to the periphery of the connecting component 20 , so that the plurality of blocking members 30 surround the connecting component 20 .
  • the photoresist layer 60 is patterned using exposure and development methods to form several blocking members 30 located on the periphery of the connection component 20 .
  • S300 please combine Figure 9 and Figure 3.
  • An ink material is provided on the substrate 10 corresponding to the periphery of the connection component 20.
  • the ink material is connected with several blocking members 30.
  • a reflective layer 40 is formed to prevent several blocking members 30.
  • the components 30 are all embedded in the reflective layer 40 .
  • the ink material when the ink material is disposed on the substrate 10 corresponding to the periphery of the connecting component 20, the ink material can be applied between adjacent blocking members 30, or can be applied on the periphery of several blocking members 30 (ie, away from the connecting components). The ink material is applied to one side of assembly 20).
  • the ink material may be disposed on the substrate 10 corresponding to the periphery of the connection component 20 by screen printing or inkjet printing.
  • the manufacturing method of the driving backplane provided by the embodiment of the present application firstly sets several blocking members 30 on the substrate 10, and then arranges the ink material used to form the reflective layer 40 on the substrate 10. Under the blocking action of the blocking members 30, , the flow performance of the ink material decreases, and due to the surface tension between the outer surface of the blocking member 30 and the ink material, the ink material can be attracted by the outer surface of the blocking member 30, further reducing the flow performance of the ink material. When the flow performance of the ink material decreases, the ink material will not easily flow to the position of the connecting component 20, thereby avoiding the problem of the connecting component 20 being covered by the ink material, which can improve the welding yield.
  • the ink material when the flow performance of the ink material decreases, when applying the ink material, the ink material can be placed close to the connecting component 20 , thereby reducing the area of the opening 41 surrounded by the inner edge of the reflective layer 40 and increasing the ink material (ie, the reflective layer 40 ) on the driving back plate 110
  • the driving backplane 110 When the light-emitting device 120 is disposed on the connection component 20 of the driving backplane 110 to form the light-emitting substrate 100, the driving backplane 110 has a high reflectivity of the emitted light from the light-emitting device 120, which not only improves the light-emitting device 120
  • the light utilization rate can also avoid the formation of dark areas between adjacent light-emitting devices 120 and improve the light uniformity of the light-emitting substrate 100 .
  • the manufacturing method of the driving backplane in the embodiment of the present application uses the blocking member 30 to reduce the flow performance of the ink material, so that the ink material used to prepare the reflective layer 40 can be printed in one printing process, thereby improving the printing efficiency and reducing the cost of printing. printing costs.
  • the reflective layer 40 is provided with several openings 41, and the substrate 10 is provided with an array of connecting components 20. Each opening 41 is provided with a set of connecting components 20. The total area of the several openings 41 is a, and the reflective layer 40 is The area is b, and the opening ratio a/(a+b) is 0.2% ⁇ 30%.
  • the cross section of the blocking member 30 is circular, the diameter of the cross section of the blocking member 30 is 1 ⁇ m ⁇ 150 ⁇ m, and the height of the blocking member 30 is 30 ⁇ m ⁇ 150 ⁇ m.
  • the thickness of the reflective layer 40 is 30 ⁇ m ⁇ 150 ⁇ m.
  • the top surface of the area on the reflective layer 40 located between adjacent blocking members 30 appears as an arc surface that is concave toward one side of the substrate 10 .
  • each set of connection components 20 includes several connecting members 21 arranged at intervals, and the distance S between each connecting member 21 and an adjacent blocking member 30 is 50 ⁇ m to 200 ⁇ m.
  • the distance L between adjacent blocking members 30 is 30 ⁇ m ⁇ 200 ⁇ m.
  • Figure 10 is a schematic cross-sectional view of a light-emitting substrate provided by an embodiment of the present application.
  • An embodiment of the present application provides a light-emitting substrate 100, including a driving backplane 110 and a light-emitting device 120.
  • the driving backplane 110 can be The driving backplane 110 in any of the above embodiments, or the driving backplane 110 produced by the manufacturing method of the driving backplane in any of the above embodiments; the light emitting device 120 and the connection component 20 in the driving backplane 110 are electrically connected. connect.
  • each set of connection components 20 includes two connectors 21 arranged at intervals, the positive electrode of the light-emitting device 120 is connected to one of the connectors 21 , and the negative electrode of the light-emitting device 120 is connected to the other connector 21 .
  • the light-emitting device 120 is an LED device, such as a Mini LED, Micro LED, etc.
  • the light-emitting substrate 100 can be a display panel, that is, used to display a picture, or the light-emitting substrate 100 can be used as a light source in a liquid crystal display device to provide backlight for the liquid crystal display panel.
  • the light-emitting substrate 100 can be used in display devices such as televisions, tablet computers, notebook computers, mobile phones, computer monitors, and advertising screens.
  • Figure 11 is a flow chart of a method for manufacturing a light-emitting substrate provided by an embodiment of the present application.
  • An embodiment of the present application provides a method of manufacturing a light-emitting substrate, which includes:
  • S10 please combine FIG. 3 to provide the driving backplane 110 in any of the above embodiments, or manufacture the driving backplane 110 according to the manufacturing method of the driving backplane in any of the above embodiments.
  • S20 please refer to FIG. 10 to provide the light-emitting device 120 so that the light-emitting device 120 is electrically connected to the connection component 20 in the driving backplane 110 to obtain the light-emitting substrate 100.
  • welding may be used to electrically connect the light emitting device 120 to the connection component 20 in the driving backplane 110 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Led Device Packages (AREA)

Abstract

一种驱动背板及其制作方法、发光基板及其制作方法。驱动背板包括驱动基板、反射层以及数个阻挡件,其中,驱动基板包括基底以及设于基底上的连接组件,连接组件用于连接发光器件,该驱动背板可以避免出现反射层覆盖连接组件的现象,并且反射层在驱动背板上的覆盖面积较大,反射率较高。

Description

驱动背板及其制作方法、发光基板及其制作方法 技术领域
本申请涉及显示领域,特别涉及一种驱动背板及其制作方法、发光基板及其制作方法。
背景技术
Mini LED(迷你发光二极管)又称为亚毫米发光二极管,是一种使LED(发光二极管)的尺寸在100μm~200μm的新型显示技术。在Mini LED中,每个LED可以实现单独定址、单独驱动发光,从而具有高效率、高亮度、高可靠度、反应时间快、可大屏化等优点,同时Mini LED显示产品还具有轻薄化、低功耗等优点,因此越来越受到消费者的青睐。
技术问题
Mini LED的正负极通常焊接于驱动背板的焊盘上,以通过驱动背板实现Mini LED的点亮,在驱动背板的制作过程中,为了提高Mini LED的光线利用率和出光均匀度,会在驱动背板上位于焊盘的***区域涂布用于反射Mini LED光线的白油,但是,由于白油具有较好的流动性,导致白油在流动的过程中容易覆盖焊盘,影响Mini LED导通及焊接可靠性,为了规避该问题,通常会增大白油的开口面积,即,在印刷白油时,使白油的印刷位点远离焊盘,但这样会导致驱动背板上白油的覆盖面积降低,反射率降低,进而导致Mini LED的光线利用率较低、出光均匀度较差。
技术解决方案
本申请实施例提供一种驱动背板及其制作方法、发光基板及其制作方法,可以避免出现反射层覆盖连接组件的现象,并且反射层在驱动背板上的覆盖面积较大,反射率较高,当在驱动背板的连接组件上设置发光器件以形成发光基板时,可以提高发光器件的光利用率,同时改善发光基板的出光均匀度。
第一方面,本申请实施例提供一种驱动背板,包括:
驱动基板,所述驱动基板包括基底以及设于基底上的连接组件,所述连接组件用于连接发光器件;
反射层,设置于所述基底的设有所述连接组件的一侧,并且,所述反射层设于所述连接组件的***;
数个阻挡件,设置于所述基底的设有所述连接组件的一侧,并且,数个所述阻挡件围绕所述连接组件布置,数个所述阻挡件均嵌设于所述反射层内。
在一些实施例中,所述反射层上设有数个开口,所述基底上设有数组连接组件,每个所述开口内设有一组所述连接组件,数个所述开口的面积总和为a,所述反射层的面积为b,开口率a/(a+b)为0.2%~30%。
在一些实施例中,所述阻挡件的横截面呈圆形,所述阻挡件的横截面的直径为1μm~150μm,所述阻挡件的高度为30μm~150μm。
在一些实施例中,所述阻挡件的高度大于或等于所述反射层的厚度;
所述反射层上位于相邻的阻挡件之间的区域的顶面呈现为朝向所述基底一侧凹陷的弧面。
在一些实施例中,所述连接组件包括数个连接件,每个连接件与相邻的所述阻挡件之间的距离为50μm~200μm;
相邻的所述阻挡件之间的距离为30μm~200μm。
在一些实施例中,所述阻挡件的材料包括光阻材料。
在一些实施例中,每组所述连接组件的***至少设置有一圈所述阻挡件,同一圈的所述阻挡件位于一个中心对称图形的边上。
第二方面,本申请实施例提供一种驱动背板的制作方法,包括:
提供驱动基板,所述驱动基板包括基底以及设于基底上的连接组件,所述连接组件用于连接发光器件;
在所述基底上对应于所述连接组件的***设置数个阻挡件,以使数个所述阻挡件围绕所述连接组件;
在所述基底上对应于所述连接组件的***设置油墨材料,所述油墨材料与数个所述阻挡件连接在一起,所述油墨材料固化后形成反射层,使数个所述阻挡件均嵌设于所述反射层内。
在一些实施例中,所述在所述基底上对应于所述连接组件的***设置数个阻挡件包括:
在所述基底上设置光阻材料,形成光阻层;
采用曝光、显影的方法对所述光阻层进行图形化处理,形成位于所述连接组件的***的数个阻挡件。
在一些实施例中,采用丝网印刷或喷墨打印的方式在所述基底上对应于所述连接组件的***设置油墨材料。
第三方面,本申请实施例提供一种发光基板,包括:
驱动背板,所述驱动背板为如上所述的驱动背板,或者为如上所述的驱动背板的制作方法制得的驱动背板;
发光器件,所述发光器件与所述驱动背板中的所述连接组件电性连接。
第四方面,本申请实施例提供一种发光基板的制作方法,包括:
提供如上所述的驱动背板,或者按照如上所述的驱动背板的制作方法制得驱动背板;
提供发光器件,使所述发光器件与所述驱动背板中的所述连接组件电性连接,得到发光基板。
有益效果
本申请实施例提供的驱动背板,通过在反射层内嵌设数个阻挡件,使得反射层可以按照如下方式实现:首先在基底上设置数个阻挡件,之后在基底上设置用以形成反射层的油墨材料,在阻挡件的阻挡作用下,油墨材料的流动性能下降,并且,由于阻挡件的外表面与油墨材料之间存在表面张力作用,从而可以使油墨材料被阻挡件的外表面所吸引,进一步降低油墨材料的流动性能,当油墨材料的流动性能下降时,油墨材料不容易流动到连接组件的位置,从而避免了连接组件被油墨材料覆盖的问题,可以提高焊接良率,另外,当油墨材料的流动性能下降时,可以在施加油墨材料时将油墨材料于靠近连接组件的位置设置,从而可以缩小反射层的内侧边缘围出的开口的面积,提高驱动背板上油墨材料(即反射层)的覆盖面积,当在驱动背板的连接组件上设置发光器件以形成发光基板时,该驱动背板对发光器件的出射光线的反射率较高,不仅可以提高发光器件的光利用率,还可以避免相邻的发光器件之间形成光线暗区,改善发光基板的出光均匀度。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对本领域技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
为了更完整地理解本申请及其有益效果,下面将结合附图来进行说明。其中,在下面的描述中相同的附图标号表示相同部分。
图1为本申请实施例提供的驱动背板的第一种俯视示意图。
图2为图1的驱动背板中的区域C的放大示意图。
图3为图2的驱动背板沿A-A方向的剖视示意图。
图4为本申请实施例提供的驱动背板的局部区域的第二种俯视示意图。
图5为图4的驱动背板沿B-B方向的剖视示意图。
图6为本申请实施例提供的驱动背板的制作方法的流程图。
图7为本申请实施例提供的驱动基板的结构示意图。
图8为本申请实施例提供的在基底上形成光阻层后的示意图。
图9对本申请实施例提供的对光阻层进行图形化处理后的示意图。
图10为本申请实施例提供的发光基板的剖视示意图。
图11为本申请实施例提供的发光基板的制作方法的流程图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1至图3,图1为本申请实施例提供的驱动背板的第一种俯视示意图,图2为图1的驱动背板中的区域C的放大示意图,图3为图2的驱动背板沿A-A方向的剖视示意图。本申请实施例提供一种驱动背板110,包括驱动基板50、反射层40以及数个阻挡件30。本申请实施例中,数个指的是一个或多个,多个为两个或两个以上,例如三个、四个、五个、六个、七个、八个等。
其中,驱动基板50包括基底10以及设于基底10上的连接组件20,连接组件20用于连接发光器件120。
反射层40设置于基底10的设有连接组件20的一侧,并且,反射层40设于连接组件20的***。
数个阻挡件30设置于基底10的设有连接组件20的一侧,并且,数个阻挡件30围绕连接组件20布置,数个阻挡件30均嵌设于反射层40内。
需要说明的是,本申请实施例提供的驱动背板110,通过在反射层40内嵌设数个阻挡件30,使得反射层40可以按照如下方式实现:首先在基底10上设置数个阻挡件30,之后在基底10上设置用以形成反射层40的油墨材料,在阻挡件30的阻挡作用下,油墨材料的流动性能下降,并且,由于阻挡件30的外表面与油墨材料之间存在表面张力作用,从而可以使油墨材料被阻挡件30的外表面所吸引,进一步降低油墨材料的流动性能,当油墨材料的流动性能下降时,油墨材料不容易流动到连接组件20的位置,从而避免了连接组件20被油墨材料覆盖的问题,可以提高焊接良率,另外,当油墨材料的流动性能下降时,可以在施加油墨材料时将油墨材料于靠近连接组件20的位置设置,从而可以缩小反射层40的内侧边缘围出的开口41的面积,提高驱动背板110上油墨材料(即反射层40)的覆盖面积,当在驱动背板110的连接组件20上设置发光器件120以形成发光基板100时,该驱动背板110对发光器件120的出射光线的反射率较高,不仅可以提高发光器件120的光利用率,还可以避免相邻的发光器件120之间形成光线暗区,改善发光基板100的出光均匀度。
请结合图1,反射层40上设有数个开口41,基底10上设有数组连接组件20,每个开口41内设有一组连接组件20,数个开口41的面积总和为a,反射层40的面积为b,开口率a/(a+b)为0.2%~30%,例如0.2%、0.4%、0.6%、0.8%、1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、13%、15%、17%、20%、22%、25%、28%、30%等。可以看出,反射层40具有较小的开口率,当反射层40的开口率较小时,驱动背板110上反射层40的覆盖面积较大,从而可以提高反射层40对发光器件120的出射光线的反射率。
示例性地,阻挡件30的横截面呈圆形,阻挡件30的横截面的直径为1μm~150μm,例如1μm、3μm、5μm、7μm、10μm、12μm、15μm、18μm、20μm、23μm、25μm、27μm、30μm、50μm、70μm、100μm、130μm、150μm等。需要说明的是,本申请实施例中,阻挡件30的横截面指的是,在平行于基底10的方向上对阻挡件30进行剖切所得到的截面。可以理解的,阻挡件30的横截面也可以为其它形状,例如三角形、矩形(长方形或正方形)、正五边形、正六边形、星形、不规则形状等。
请结合图1,阻挡件30可以呈圆台状,即,从远离基底10的一侧至靠近基底10的一侧,阻挡件30的横截面的面积逐渐增大。当然,阻挡件30的形状也可以设置为:从远离基底10的一侧至靠近基底10的一侧,阻挡件30的横截面的面积逐渐减小或保持均匀一致。
示例性地,阻挡件30的高度可以为30μm~150μm,例如30μm、40μm、50μm、70μm、80μm、90μm、100μm、110μm、120μm、130μm、140μm、150μm等。可以理解的是,阻挡件30的高度指的是阻挡件30上远离基底10一侧的表面和阻挡件30上与基底10连接的一侧的表面之间的距离。
示例性地,反射层40的厚度可以为30μm~150μm,例如30μm、40μm、50μm、70μm、80μm、90μm、100μm、110μm、120μm、130μm、140μm、150μm等。可以理解的是,反射层40的厚度指的是反射层40上远离基底10一侧的表面和反射层40上与基底10连接的一侧的表面之间的距离。
请结合图1,阻挡件30的高度可以大于或等于反射层40的厚度。
需要说明的,当阻挡件30的高度大于或等于反射层40的厚度时,由于表面张力的作用,反射层40上位于相邻的阻挡件30之间的区域的顶面(即反射层40上远离基底10一侧的表面)呈现为朝向基底10一侧凹陷的弧面,使得反射层40的上表面呈现出凹凸不平的形貌,从而可以实现漫反射的效果,使得反射层40上不同区域的反射光呈现出较为均匀的出射强度,当在驱动背板110的连接组件20上设置发光器件120以形成发光基板100时,发光基板100上不同区域的出光均匀度较好。需要说明的是,当反射层40的顶面为凹凸不平的形貌时,反射层40的厚度为所有区域的厚度的平均值。
当然,在另外一些实施例中,阻挡件30的高度也可以低于反射层40的厚度,此时,反射层40覆盖阻挡件30的顶面(即阻挡件30上远离基底10一侧的表面),反射层40的顶面呈平面状,此时反射层40顶面的漫反射效果较差,但是反射率较高。
示例性地,每组连接组件20可以包括间隔设置的数个连接件21,每个连接件21与相邻的阻挡件30之间的距离S为50μm~200μm,也即是说,环绕连接组件20设置的数个阻挡件30中,最靠近连接件21设置的阻挡件30与连接件21之间的距离S设置为50μm~200μm,从而在设置油墨材料以形成反射层40时,可以为油墨材料的流动提供一段缓冲距离,避免油墨材料流动至连接件21上导致连接件21被覆盖。示例性地,每个连接件21与相邻的阻挡件30之间的距离S可以为50μm、70μm、100μm、120μm、150μm、180μm、200μm等。
示例性地,连接件21可以为焊盘,即连接件21通过焊接的方式与发光器件120连接。示例性地,连接件21的材料可以为金属,例如钼(Mo)、钛(Ti)、铜(Cu)中的一种或多种。
请结合图1,连接组件20可以包括间隔设置的两个连接件21,其中一个连接件21用于和发光器件120的正极进行连接,另一个连接件21用于和发光器件120的负极进行连接。
示例性地,相邻的阻挡件30之间的距离L可以为30μm~200μm,例如30μm、50μm、80μm、100μm、130μm、150μm、170μm、200μm等。通过将相邻的阻挡件30之间的距离控制在合适范围内(30μm~200μm),从而在设置油墨材料以形成反射层40时,数个阻挡件30可以对油墨材料起到较好的阻挡作用,从而降低油墨材料的流动性能。
示例性地,阻挡件30的材料可以为光阻材料,例如正性光阻材料或负性光阻材料。当阻挡件30的材料为光阻材料时,可以采用涂布光阻以及曝光、显影的方式来制备阻挡件30。
示例性地,反射层40的颜色可以为白色,以起到较好的反射效果。反射层40的材料可以为绝缘材料(例如树脂材料等),从而在对连接件21与发光器件120进行焊接时可以对驱动基板50上的线路起到保护作用。
示例性地,基底10可以为TFT(Thin Film Transistor,薄膜晶体管)基板,即基底10中包含TFT器件,从而可以利用TFT器件来控制发光器件120点亮或关闭。
请参阅图1至图5,每组连接组件20的***至少设置有一圈阻挡件30,同一圈的阻挡件30位于一个中心对称图形的边上。示例性地,中心对称图形可以为长方形、正方形、圆形、三角形、菱形等。当每组连接组件20包括两个连接件21时,中心对称图形的中心对称点可以与两个连接件21的几何中心的连线的中点重合。
请参阅图4和图5,图4为本申请实施例提供的驱动背板的局部区域的第二种俯视示意图,图5为图4的驱动背板沿B-B方向的剖视示意图。通过将图1至图3所示的实施例与图4至图5所示的实施例进行对比,可以看出,图1至图3所示的实施例中,每组连接组件20的***设置有多圈阻挡件30,同一圈的阻挡件30位于一个矩形的边上,使得反射层40的所有区域均设置有阻挡件30,图4至图5所示的实施例中,每组连接组件20的***设置有一圈阻挡件30,同一圈的阻挡件30位于一个矩形的边上,也即是说,反射层40上仅靠近连接组件20的区域设置有阻挡件30。如图1至图3所示,数个阻挡件30在连接组件20的***排列为多圈,多圈可以为两圈或两圈以上,例如三圈、四圈、五圈、六圈等。如图4至图5所示,数个阻挡件30在连接组件20的***排列为一圈。
请参阅图6,图6为本申请实施例提供的驱动背板的制作方法的流程图。本申请实施例提供一种驱动背板的制作方法,包括:
S100,请参阅图7,提供驱动基板50,驱动基板50包括基底10以及设于基底10上的连接组件20。
S200,请参阅图8和图9,在基底10上对应于连接组件20的***设置数个阻挡件30,以使数个阻挡件30围绕连接组件20。
请结合图8和图9,“在基底10上对应于连接组件20的***设置数个阻挡件30”具体可以包括:
请结合图8,在基底10上设置光阻材料,形成光阻层60;
请结合图9,采用曝光、显影的方法对光阻层60进行图形化处理,形成位于连接组件20的***的数个阻挡件30。
S300,请结合图9和图3,在基底10上对应于连接组件20的***设置油墨材料,油墨材料与数个阻挡件30连接在一起,油墨材料固化后形成反射层40,使数个阻挡件30均嵌设于反射层40内。
可以理解的是,当在基底10上对应于连接组件20的***设置油墨材料时,可以在相邻的阻挡件30之间施加油墨材料,也可以在数个阻挡件30的***(即远离连接组件20的一侧)施加油墨材料。
示例性地,可以采用丝网印刷或喷墨打印的方式在基底10上对应于连接组件20的***设置油墨材料。
本申请实施例提供的驱动背板的制作方法,通过首先在基底10上设置数个阻挡件30,之后在基底10上设置用以形成反射层40的油墨材料,在阻挡件30的阻挡作用下,油墨材料的流动性能下降,并且,由于阻挡件30的外表面与油墨材料之间存在表面张力作用,从而可以使油墨材料被阻挡件30的外表面所吸引,进一步降低油墨材料的流动性能,当油墨材料的流动性能下降时,油墨材料不容易流动到连接组件20的位置,从而避免了连接组件20被油墨材料覆盖的问题,可以提高焊接良率,另外,当油墨材料的流动性能下降时,可以在施加油墨材料时将油墨材料于靠近连接组件20的位置设置,从而可以缩小反射层40的内侧边缘围出的开口41的面积,提高驱动背板110上油墨材料(即反射层40)的覆盖面积,当在驱动背板110的连接组件20上设置发光器件120以形成发光基板100时,该驱动背板110对发光器件120的出射光线的反射率较高,不仅可以提高发光器件120的光利用率,还可以避免相邻的发光器件120之间形成光线暗区,改善发光基板100的出光均匀度。
相关技术中,为了降低油墨材料的流动性能,通常采用每次印刷少量油墨材料,通过多次印刷的方式来达到制备反射层40所需的油墨材料的总量,但是该方法由于印刷次数较多,印刷时间较长,从而降低了印刷速度,提高了印刷成本。本申请实施例的驱动背板的制作方法通过采用阻挡件30来降低油墨材料的流动性能,使得用以制备反射层40的油墨材料可以在一次印刷工序内完成印刷,从而提高了印刷效率,降低了印刷成本。
示例性地,反射层40上设有数个开口41,基底10上设有数组连接组件20,每个开口41内设有一组连接组件20,数个开口41的面积总和为a,反射层40的面积为b,开口率a/(a+b)为0.2%~30%。
示例性地,阻挡件30的横截面呈圆形,阻挡件30的横截面的直径为1μm~150μm,阻挡件30的高度为30μm~150μm。
示例性地,反射层40的厚度为30μm~150μm。
示例性地,反射层40上位于相邻的阻挡件30之间的区域的顶面呈现为朝向基底10一侧凹陷的弧面。
示例性地,每组连接组件20包括间隔设置的数个连接件21,每个连接件21与相邻的阻挡件30之间的距离S为50μm~200μm。
示例性地,相邻的阻挡件30之间的距离L为30μm~200μm。
请参阅图10,图10为本申请实施例提供的发光基板的剖视示意图,本申请实施例提供一种发光基板100,包括驱动背板110与发光器件120,其中,驱动背板110可以为上述任一实施例中的驱动背板110,或者为上述任一实施例中的驱动背板的制作方法制得的驱动背板110;发光器件120与驱动背板110中的连接组件20电性连接。
请结合图10,当每组连接组件20包括间隔设置的两个连接件21时,发光器件120的正极与其中一个连接件21连接,发光器件120的负极与另一个连接件21连接。
示例性地,发光器件120为LED器件,例如Mini LED、Micro LED等。
需要说明的是,发光基板100可以为显示面板,即用于显示画面,或者,发光基板100可以作为液晶显示装置中的光源,为液晶显示面板提供背光。
示例性地,发光基板100可以应用于电视机、平板电脑、笔记本电脑、手机、电脑显示器、广告屏等显示装置中。
请参阅图11,同时结合图3和图10,图11为本申请实施例提供的发光基板的制作方法的流程图,本申请实施例提供一种发光基板的制作方法,包括:
S10,请结合图3,提供上述任一实施例中的驱动背板110,或者按照上述任一实施例中的驱动背板的制作方法制得驱动背板110。
S20,请结合图10,提供发光器件120,使发光器件120与驱动背板110中的连接组件20电性连接,得到发光基板100。
示例性地,可以采用焊接的方法使发光器件120与驱动背板110中的连接组件20电性连接。
以上对本申请实施例提供的驱动背板及其制作方法、发光基板及其制作方法进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请。同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种驱动背板,其中,包括:
    驱动基板,所述驱动基板包括基底以及设于基底上的连接组件,所述连接组件用于连接发光器件;
    反射层,设置于所述基底的设有所述连接组件的一侧,并且,所述反射层设于所述连接组件的***;
    数个阻挡件,设置于所述基底的设有所述连接组件的一侧,并且,数个所述阻挡件围绕所述连接组件布置,数个所述阻挡件均嵌设于所述反射层内。
  2. 根据权利要求1所述的驱动背板,其中,所述反射层上设有数个开口,所述基底上设有数组连接组件,每个所述开口内设有一组所述连接组件,数个所述开口的面积总和为a,所述反射层的面积为b,开口率a/(a+b)为0.2%~30%。
  3. 根据权利要求1所述的驱动背板,其中,所述阻挡件的横截面呈圆形,所述阻挡件的横截面的直径为1μm~150μm,所述阻挡件的高度为30μm~150μm。
  4. 根据权利要求1所述的驱动背板,其中,所述阻挡件的高度大于或等于所述反射层的厚度;
    所述反射层上位于相邻的阻挡件之间的区域的顶面呈现为朝向所述基底一侧凹陷的弧面。
  5. 根据权利要求1所述的驱动背板,其中,所述连接组件包括数个连接件,每个连接件与相邻的所述阻挡件之间的距离为50μm~200μm;
    相邻的所述阻挡件之间的距离为30μm~200μm。
  6. 根据权利要求1所述的驱动背板,其中,所述阻挡件的材料包括光阻材料。
  7. 根据权利要求1所述的驱动背板,其中,每组所述连接组件的***至少设置有一圈所述阻挡件,同一圈的所述阻挡件位于一个中心对称图形的边上。
  8. 一种驱动背板的制作方法,其中,包括:
    提供驱动基板,所述驱动基板包括基底以及设于基底上的连接组件,所述连接组件用于连接发光器件;
    在所述基底上对应于所述连接组件的***设置数个阻挡件,以使数个所述阻挡件围绕所述连接组件;
    在所述基底上对应于所述连接组件的***设置油墨材料,所述油墨材料与数个所述阻挡件连接在一起,所述油墨材料固化后形成反射层,使数个所述阻挡件均嵌设于所述反射层内。
  9. 根据权利要求8所述的驱动背板的制作方法,其中,所述在所述基底上对应于所述连接组件的***设置数个阻挡件包括:
    在所述基底上设置光阻材料,形成光阻层;
    采用曝光、显影的方法对所述光阻层进行图形化处理,形成位于所述连接组件的***的数个阻挡件。
  10. 根据权利要求8所述的驱动背板的制作方法,其中,采用丝网印刷或喷墨打印的方式在所述基底上对应于所述连接组件的***设置油墨材料。
  11. 根据权利要求8所述的驱动背板的制作方法,其中,所述反射层上设有数个开口,所述基底上设有数组连接组件,每个所述开口内设有一组所述连接组件,数个所述开口的面积总和为a,所述反射层的面积为b,开口率a/(a+b)为0.2%~30%。
  12. 根据权利要求8所述的驱动背板的制作方法,其中,所述阻挡件的横截面呈圆形,所述阻挡件的横截面的直径为1μm~150μm,所述阻挡件的高度为30μm~150μm。
  13. 根据权利要求8所述的驱动背板的制作方法,其中,所述阻挡件的高度大于或等于所述反射层的厚度;
    所述反射层上位于相邻的阻挡件之间的区域的顶面呈现为朝向所述基底一侧凹陷的弧面。
  14. 根据权利要求8所述的驱动背板的制作方法,其中,所述连接组件包括数个连接件,每个连接件与相邻的所述阻挡件之间的距离为50μm~200μm;
    相邻的所述阻挡件之间的距离为30μm~200μm。
  15. 一种发光基板,其中,包括:
    驱动背板,所述驱动背板为如权利要求1所述的驱动背板;
    发光器件,所述发光器件与所述驱动背板中的所述连接组件电性连接。
  16. 根据权利要求15所述的发光基板,其中,所述反射层上设有数个开口,所述基底上设有数组连接组件,每个所述开口内设有一组所述连接组件,数个所述开口的面积总和为a,所述反射层的面积为b,开口率a/(a+b)为0.2%~30%。
  17. 根据权利要求15所述的发光基板,其中,所述阻挡件的横截面呈圆形,所述阻挡件的横截面的直径为1μm~150μm,所述阻挡件的高度为30μm~150μm。
  18. 根据权利要求15所述的发光基板,其中,所述阻挡件的高度大于或等于所述反射层的厚度;
    所述反射层上位于相邻的阻挡件之间的区域的顶面呈现为朝向所述基底一侧凹陷的弧面。
  19. 根据权利要求15所述的发光基板,其中,所述连接组件包括数个连接件,每个连接件与相邻的所述阻挡件之间的距离为50μm~200μm;
    相邻的所述阻挡件之间的距离为30μm~200μm。
  20. 一种发光基板的制作方法,其中,包括:
    提供如权利要求1所述的驱动背板;
    提供发光器件,使所述发光器件与所述驱动背板中的所述连接组件电性连接,得到发光基板。
PCT/CN2022/092621 2022-04-27 2022-05-13 驱动背板及其制作方法、发光基板及其制作方法 WO2023206611A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/756,660 US20240162399A1 (en) 2022-04-27 2022-05-13 Drive backplane and method for preparing same, light-emitting substrate and method for preparing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210454359.0A CN114759135A (zh) 2022-04-27 2022-04-27 驱动背板及其制作方法、发光基板及其制作方法
CN202210454359.0 2022-04-27

Publications (1)

Publication Number Publication Date
WO2023206611A1 true WO2023206611A1 (zh) 2023-11-02

Family

ID=82332228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092621 WO2023206611A1 (zh) 2022-04-27 2022-05-13 驱动背板及其制作方法、发光基板及其制作方法

Country Status (3)

Country Link
US (1) US20240162399A1 (zh)
CN (1) CN114759135A (zh)
WO (1) WO2023206611A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116466513A (zh) * 2023-03-28 2023-07-21 惠科股份有限公司 灯板、显示装置及灯板制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108535916A (zh) * 2018-04-20 2018-09-14 武汉华星光电技术有限公司 直下式背光模组及其制作方法
US20190327825A1 (en) * 2018-04-24 2019-10-24 Wuhan China Star Optoelectronics Technology Co., Ltd. Driving substrate, manufacturing process, and micro-led array light-emitting backlight module
CN112198713A (zh) * 2020-10-21 2021-01-08 业成科技(成都)有限公司 光源组件、其制备方法、背光模组及显示装置
CN112396979A (zh) * 2020-11-13 2021-02-23 Tcl华星光电技术有限公司 背板及led面板
CN113745394A (zh) * 2021-09-08 2021-12-03 Tcl华星光电技术有限公司 发光基板及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108535916A (zh) * 2018-04-20 2018-09-14 武汉华星光电技术有限公司 直下式背光模组及其制作方法
US20190327825A1 (en) * 2018-04-24 2019-10-24 Wuhan China Star Optoelectronics Technology Co., Ltd. Driving substrate, manufacturing process, and micro-led array light-emitting backlight module
CN112198713A (zh) * 2020-10-21 2021-01-08 业成科技(成都)有限公司 光源组件、其制备方法、背光模组及显示装置
CN112396979A (zh) * 2020-11-13 2021-02-23 Tcl华星光电技术有限公司 背板及led面板
CN113745394A (zh) * 2021-09-08 2021-12-03 Tcl华星光电技术有限公司 发光基板及其制备方法

Also Published As

Publication number Publication date
US20240162399A1 (en) 2024-05-16
CN114759135A (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
TWI754431B (zh) 光源組件、其製備方法、背光模組及顯示裝置
TWI704546B (zh) 顯示裝置及其製造方法
CN109888085B (zh) 显示面板及其制备方法
KR20170079529A (ko) 유기 발광 표시 장치 및 이의 제조 방법
WO2021184522A1 (zh) 背光模组及其制备方法和显示装置
TWI725691B (zh) 微型發光元件顯示裝置
WO2021218478A1 (zh) 一种显示装置
US20240036395A1 (en) Display backplane and display device
WO2020042280A1 (zh) 一种背光模组及其制备方法
WO2023206611A1 (zh) 驱动背板及其制作方法、发光基板及其制作方法
WO2021087726A1 (zh) 一种阵列基板及其制作方法、显示装置
US10663794B2 (en) Display devices
WO2022170658A1 (zh) 背光模组及其制作方法、液晶显示装置
CN113138494A (zh) 背光模组及显示装置
WO2020177500A1 (zh) 显示基板及其制作方法、显示面板
JP3199406U (ja) タッチ表示装置
WO2019012793A1 (ja) 発光装置、表示装置および照明装置
US11815765B2 (en) Display panel and display device
WO2024031888A1 (zh) 显示面板及显示装置
WO2023000419A1 (zh) 一种背光模组以及显示装置
CN215067626U (zh) 一种灯板以及拼接显示屏
US11927790B2 (en) Backlight module and display device
WO2024000638A1 (zh) 发光基板及显示装置
WO2023109233A1 (zh) 发光二极管驱动背板及显示装置
US20230275192A1 (en) Micro light-emitting diode display and manufacturing method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17756660

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939453

Country of ref document: EP

Kind code of ref document: A1