WO2023206238A1 - Method and apparatus for dynamically configuring slice in communication network - Google Patents

Method and apparatus for dynamically configuring slice in communication network Download PDF

Info

Publication number
WO2023206238A1
WO2023206238A1 PCT/CN2022/089907 CN2022089907W WO2023206238A1 WO 2023206238 A1 WO2023206238 A1 WO 2023206238A1 CN 2022089907 W CN2022089907 W CN 2022089907W WO 2023206238 A1 WO2023206238 A1 WO 2023206238A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
radio resource
terminal device
configuration
radio
Prior art date
Application number
PCT/CN2022/089907
Other languages
French (fr)
Inventor
Tianyi Li
Chao Xu
Jixing TANG
Original Assignee
Telefonaktiebolaget Lm Ericsson (Publ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget Lm Ericsson (Publ) filed Critical Telefonaktiebolaget Lm Ericsson (Publ)
Priority to PCT/CN2022/089907 priority Critical patent/WO2023206238A1/en
Publication of WO2023206238A1 publication Critical patent/WO2023206238A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present disclosure relates generally to the technology of communication, and in particular to a method and an apparatus for dynamically configuring slice in communication network.
  • RFSP index index to Radio Access Technology (RAT) /frequency selection priority
  • RAT Radio Access Technology
  • UE User Equipment
  • the terminal device may obtain information about the slices, such as RFSP.
  • such configuration is usually predetermined, and can’t be adjusted dynamically when the condition changes. Especially, it can’t be adjusted dynamically to compensate a service quality for the terminal device.
  • a first aspect of the present disclosure provides a method performed by a first network entity.
  • the method comprises collecting data from at least one network entity, determining whether a quality deteriorate happens for at least one radio resource serving at least one terminal device based on the collected data, and outputting a changed configuration for the at least one radio resource, if the quality deteriorate is determined to happen.
  • the at least one network entity may comprise at least one of: an operation support system, an access and mobility management function, a policy control function, and/or a base station.
  • the collected data may comprise a current configuration for the at least one radio resource.
  • the current configuration for the at least one radio resource may comprise at least one of: base station or cell level information, used network slice selection assistance information, new radio absolute radio frequency channel numbers, allocated radio bandwidths, an allowed tracking area code and public land mobile network list, and/or a radio access technology/frequency selection priority, or radio resource management policy index.
  • the collected data may further comprise an uplink/downlink physical resource block, UL/DL PRB, usage, hardware usage ratio, and/or a transmission latency, and/or a jitter on packets round trip, about the at least one radio resource.
  • the quality deteriorate may be related to a quality of service, QoS, and/or a quality of experience, QoE, of the at least one radio resource serving the at least terminal device.
  • the quality deteriorate may be determined to happen when the UL/DL PRB usage is more than an internal PRB usage threshold, and/or the hardware usage ratio is more than a hardware usage threshold, and/or when latency is higher than an internal latency threshold, and/or when the jitter happens.
  • the at least one terminal device may comprise at least one individual user equipment, UE, and/or at least one group of UE.
  • a radio resource in the at least one radio resource may comprise a network slice.
  • the changed configuration may comprise a slice template for the network slice, including at least one of: a priority index of the network slice, information of bandwidth for the network slice, and/or an identity of the network slice.
  • the priority index may comprise a Radio Access Technology /Frequency Selection Priority, RFSP, and/or a Subscriber Profile Identity for RAT/Frequency priority, SPID, related to the at least one radio resource.
  • RFSP Radio Access Technology /Frequency Selection Priority
  • SPID Subscriber Profile Identity for RAT/Frequency priority
  • the slice template may be represented by an information element of dynamic radio resource item.
  • the changed configuration may indicate adding and/or removing a radio frequency and/or bandwidth of the network slice.
  • the changed configuration may indicate creating or selecting a new network slice for serving a terminal device.
  • the changed configuration may be outputted to a second network entity.
  • the second network entity may comprise a network function consumer, an application function consumer, and/or an access and mobility management function, AMF.
  • the AMF may transmit at least part of the changed configuration to a base station, via a message of PDU session Resource Modify Request, or UE Context Modification Request.
  • the first network entity may comprise a Network Data Analytics Function, NWDAF.
  • NWDAF may be collocated with an AMF.
  • the base station may update a configuration for a terminal device based on the at least part of the changed configuration, via a message of RRC Reconfiguration, and/or RRC connection release, and/or a configuration update command.
  • the message of RRC Reconfiguration may comprise additional measurement configuration based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
  • the message of RRC connection release may comprise additional redirected carrier information based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
  • the message of configuration update command may comprise allowed NSSAI, and/or configured NSSAI, and/or rejected NSSAI based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
  • a new frequency point may be indicted by a measurement object information element.
  • a second aspect of the present disclosure provides a method performed by a second network entity.
  • the method comprises: providing data to a first network entity.
  • the first network entity determines whether a quality deteriorate happens for the at least one radio resource based at least on the provided data.
  • the method further comprises: receiving a changed configuration for at least one radio resource serving at least one terminal device.
  • the second network entity receives the changed configuration, if the quality deteriorate is determined to happen.
  • the provided data may comprise a current configuration for the at least one radio resource.
  • the current configuration for the at least one radio resource may comprise at least one of: base station or cell level information, used network slice selection assistance information, new radio absolute radio frequency channel numbers, allocated radio bandwidths, an allowed tracking area code and public land mobile network list, and/or a radio access technology/frequency selection priority, or radio resource management policy index.
  • the provided data may further comprise an uplink/downlink physical resource block, UL/DL PRB, usage, hardware usage ratio, and/or a transmission latency, and/or a jitter on packets round trip, about the at least one radio resource.
  • the quality deteriorate may be related to a quality of service, QoS, and/or a quality of experience, QoE, of the at least one radio resource serving the at least terminal device.
  • the quality deteriorate may be determined to happen when the UL/DL PRB usage is more than an internal PRB usage threshold, and/or the hardware usage ratio is more than a hardware usage threshold, and/or when latency is higher than an internal latency threshold, and/or when the jitter happens.
  • the at least one terminal device may comprise at least one individual user equipment, UE, and/or at least one group of UE.
  • a radio resource in the at least one radio resource may comprise a network slice.
  • the changed configuration may comprise a slice template for the network slice, including at least one of: a priority index of the network slice, information of frequency and/or bandwidth for the network slice, and/or an identity of the network slice.
  • the priority index may comprise a Radio Access Technology /Frequency Selection Priority, RFSP, and/or a Subscriber Profile Identity for RAT/Frequency priority, SPID, related to the at least one radio resource.
  • RFSP Radio Access Technology /Frequency Selection Priority
  • SPID Subscriber Profile Identity for RAT/Frequency priority
  • the slice template may be represented by an information element of dynamic radio resource item.
  • the changed configuration may indicate adding and/or removing a radio frequency and/or bandwidth of the network slice.
  • the changed configuration may indicate creating or selecting a new network slice for serving a terminal device.
  • the second network entity may comprise an access and mobility management function, AMF.
  • the first network entity may comprise a Network Data Analytics Function, NWDAF.
  • NWDAF may be collocated with an AMF.
  • the method may further comprise: transmitting at least part of the changed configuration to a base station, via a message of PDU session Resource Modify Request, or UE Context Modification Request.
  • the base station may update a configuration for a terminal device based on the at least part of the changed configuration, via a message of RRC Reconfiguration, and/or RRC connection release.
  • the method may further comprise: transmitting to a terminal device an updated configuration, via a message of configuration update command, and transmitting to a base station at least part of the changed configuration, via a message of AMF configuration update.
  • the message of RRC Reconfiguration may comprise additional measurement configuration based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
  • the message of RRC connection release may comprise additional redirected carrier information based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
  • the message of configuration update command may comprise allowed NSSAI, and/or configured NSSAI, and/or rejected NSSAI based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
  • a new frequency point may be indicted by a measurement object information element.
  • a third aspect of the present disclosure provides a method performed by a base station.
  • the method comprises: receiving at least part of a changed configuration for at least one radio resource from a second network entity.
  • the second network entity provides data to a first network entity.
  • the first network entity determines whether a quality deteriorate happens for the at least one radio resource serving at least one terminal device, based on at least the provided data.
  • the second network entity receives the changed configuration, if the quality deteriorate is determined to happen.
  • the at least part of the changed configuration may be received, via a message of PDU session Resource Modify Request, or UE Context Modification Request.
  • the method may further comprise: receiving at least part of the changed configuration from the second network entity, via a message of PDU session Resource Modify Request, or UE Context Modification Request, and transmitting an updated configuration for a terminal device based on the at least part of the changed configuration, via a message of RRC Reconfiguration, and/or RRC connection release.
  • the method may further comprise: transmitting to a terminal device an updated configuration from the second network entity, via a configuration update command, and receiving the at least part of the changed configuration, via a message of AMF configuration update.
  • the message of RRC Reconfiguration may comprise additional measurement configuration based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
  • the message of RRC connection release may comprise additional redirected carrier information based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
  • the message of configuration update command may comprise allowed NSSAI, and/or configured NSSAI, and/or rejected NSSAI based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
  • a new frequency point may be indicted by a measurement object information element.
  • the provided data may comprise a current configuration for the at least one radio resource.
  • the current configuration for the at least one radio resource may comprise at least one of: base station or cell level information, used network slice selection assistance information, new radio absolute radio frequency channel numbers, allocated radio bandwidths, an allowed tracking area code and public land mobile network list, and/or a radio access technology/frequency selection priority, or radio resource management policy index.
  • the provided data may further comprise an uplink/downlink physical resource block, UL/DL PRB, usage, hardware usage ratio, and/or a transmission latency, and/or a jitter on packets round trip, about the at least one radio resource.
  • the quality deteriorate may be related to a quality of service, QoS, and/or a quality of experience, QoE, of the at least one radio resource serving the at least terminal device.
  • the quality deteriorate may be determined to happen when the UL/DL PRB usage is more than an internal PRB usage threshold, and/or the hardware usage ratio is more than a hardware usage threshold, and/or when latency is higher than an internal latency threshold, and/or when the jitter happens.
  • the at least one terminal device may comprise at least one individual user equipment, UE, and/or at least one group of UE.
  • a radio resource in the at least one radio resource may comprise a network slice.
  • the changed configuration may comprise a slice template for the network slice, including at least one of: a priority index of the network slice, information of bandwidth for the network slice, and/or an identity of the network slice.
  • the priority index may comprise a Radio Access Technology /Frequency Selection Priority, RFSP, and/or a Subscriber Profile Identity for RAT/Frequency priority, SPID, related to the at least one radio resource.
  • RFSP Radio Access Technology /Frequency Selection Priority
  • SPID Subscriber Profile Identity for RAT/Frequency priority
  • the slice template may be represented by an information element of dynamic radio resource item.
  • the changed configuration may indicate adding and/or removing a radio frequency and/or bandwidth of the network slice.
  • the changed configuration may indicate creating or selecting a new network slice for serving a terminal device.
  • the second network entity may comprise an access and mobility management function, AMF.
  • a fourth aspect of the present disclosure provides a method performed by a terminal device.
  • the method may comprise: receiving, from a base station, an updated configuration for the terminal device.
  • the updated configuration may indicate the terminal device to access a new frequency point.
  • the base station receives at least part of a changed configuration for at least one radio resource from a second network entity.
  • the second network entity provides data to a first network entity.
  • the first network entity determines whether a quality deteriorate happens for the at least one radio resource serving at least one terminal device, based on at least the provided data.
  • the second network entity receives the changed configuration, if the quality deteriorate is determined to happen.
  • the at least part of the changed configuration may be received, via a message of PDU session Resource Modify Request, or UE Context Modification Request.
  • the updated configuration is based on at least part of the changed configuration, and is received from a base station via a message of RRC Reconfiguration, and/or RRC connection release.
  • the updated configuration is based on at least part of the changed configuration, and is received from an AMF, via a configuration update command.
  • the message of RRC Reconfiguration may comprise additional measurement configuration based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
  • the message of RRC connection release may comprise additional redirected carrier information based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
  • the message of configuration update command may comprise allowed NSSAI, and/or configured NSSAI, and/or rejected NSSAI based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
  • a new frequency point may be indicted by a measurement object information element.
  • the provided data may comprise a current configuration for the at least one radio resource.
  • the current configuration for the at least one radio resource may comprise at least one of: base station or cell level information, used network slice selection assistance information, new radio absolute radio frequency channel numbers, allocated radio bandwidths, an allowed tracking area code and public land mobile network list, and/or a radio access technology/frequency selection priority, or radio resource management policy index.
  • the provided data may further comprise an uplink/downlink physical resource block, UL/DL PRB, hardware usage ratio, and/or a transmission latency, and/or a jitter on packets round trip, about the at least one radio resource.
  • the quality deteriorate may be related to a quality of service, QoS, and/or a quality of experience, QoE, of the at least one radio resource serving the at least terminal device.
  • the quality deteriorate may be determined to happen when the UL/DL PRB usage is more than an internal PRB usage threshold, and/or the hardware usage ratio is more than a hardware usage threshold, and/or when latency is higher than an internal latency threshold, and/or when the jitter happens.
  • the at least one terminal device may comprise at least one individual user equipment, UE, and/or at least one group of UE.
  • a radio resource in the at least one radio resource may comprise a network slice.
  • the changed configuration may comprise a slice template for the network slice, including at least one of: a priority index of the network slice, information of bandwidth for the network slice, and/or an identity of the network slice.
  • the priority index may comprise a Radio Access Technology /Frequency Selection Priority, RFSP, and/or a Subscriber Profile Identity for RAT/Frequency priority, SPID, related to the at least one radio resource.
  • RFSP Radio Access Technology /Frequency Selection Priority
  • SPID Subscriber Profile Identity for RAT/Frequency priority
  • the slice template may be represented by an information element of dynamic radio resource item.
  • the changed configuration may indicate adding and/or removing a radio frequency and/or bandwidth of the network slice.
  • the changed configuration may indicate creating or selecting a new network slice for serving a terminal device.
  • the second network entity may comprise an access and mobility management function, AMF.
  • the first network entity may comprise a Network Data Analytics Function, NWDAF.
  • NWDAF may be collocated with an AMF.
  • a fifth aspect of the present disclosure provides an apparatus for a first network entity in a communication network.
  • the apparatus for the first network entity comprises: a processor, and a memory.
  • the memory contains instructions executable by the processor.
  • the apparatus for the first network entity is operative for: collecting data from at least one network entity, determining whether a quality deteriorate happens for at least one radio resource serving at least one terminal device based on the collected data, and outputting a changed configuration for the at least one radio resource, if the quality deteriorate is determined to happen.
  • the apparatus may be further operative to perform the method according to any embodiment above mentioned.
  • a sixth aspect of the present disclosure provides an apparatus for a second network entity in a communication network.
  • the apparatus for a second network entity comprises: a processor, and a memory.
  • the memory contains instructions executable by the processor.
  • the apparatus for the second network entity is operative for: providing data to a first network entity.
  • the first network entity determines whether a quality deteriorate happens for the at least one radio resource, based at least on the provided data.
  • the apparatus for the second network entity is further operative for: receiving a changed configuration for at least one radio resource serving at least one terminal device.
  • the second network entity receives the changed configuration, if the quality deteriorate is determined to happen.
  • the apparatus may be further operative to perform the method according to any embodiment above mentioned.
  • a seventh aspect of the present disclosure provides an apparatus for a base station in a communication network.
  • the apparatus for a base station comprises: a processor, and a memory.
  • the memory contains instructions executable by the processor.
  • the apparatus for the base station is operative for: receiving at least part of a changed configuration for at least one radio resource from a second network entity.
  • the second network entity provides data to a first network entity.
  • the first network entity determines whether a quality deteriorate happens for the at least one radio resource serving at least one terminal device, based on at least the provided data.
  • the second network entity receives the changed configuration, if the quality deteriorate is determined to happen.
  • the apparatus may be further operative to perform the method according to any embodiment above mentioned.
  • An eighth aspect of the present disclosure provides an apparatus for a terminal device in a communication network.
  • the apparatus for a terminal device comprises: a processor, and a memory.
  • the memory contains instructions executable by the processor.
  • the apparatus for the terminal device is operative for: receiving, from a base station, an updated configuration for the terminal device.
  • the updated configuration may indicate the terminal device to access a new frequency point.
  • the apparatus may be further operative to perform the method according to any embodiment above mentioned.
  • a ninth aspect of the present disclosure provides a computer-readable storage medium storing instructions, which when executed by at least one processor, cause the at least one processor to perform the method according to any embodiment above mentioned.
  • Embodiments herein afford many advantages. According to embodiments of the present disclosure, an improved manner for dynamically configuring slice in communication network may be provided.
  • a configuration may be changed and outputted for at least one radio resource servicing at least one terminal device, if the quality deteriorate is determined to happen.
  • a dynamical configuration for the at least one radio resource may be achieved.
  • a quality deteriorate may be dynamically compensated. That may be named as a QoS-aware solution.
  • FIG. 1A is a diagram providing the procedure with AMF as NF consumer for NWDAF.
  • FIG. 1B is a diagram showing a call flow depicting the signaling procedure related to network slices.
  • FIG. 1C is another diagram showing a call flow depicting the signaling procedure related to network slices.
  • FIG. 1D is a diagram showing an example of NGAP Signaling for Slice.
  • FIG. 1E is another diagram showing an example of NGAP Signaling for Slice.
  • FIG. 1F is a diagram showing exemplary procedure for providing RFSP, and/or SPID.
  • FIG. 2 is a flow chart illustrating a method performed by a first network entity, in accordance with some embodiments of the present disclosure.
  • FIG. 3A is a flow chart illustrating a method performed by a second network entity, in accordance with some embodiments of the present disclosure.
  • FIG. 3B is a flow chart illustrating additional steps of the method as shown in FIG. 3A.
  • FIG. 4A is a flow chart illustrating a method performed by a base station, in accordance with some embodiments of the present disclosure.
  • FIG. 4B is a flow chart illustrating additional steps of the method as shown in FIG. 4A.
  • FIG. 5 is a flow chart illustrating a method performed by a terminal device, in accordance with some embodiments of the present disclosure.
  • FIG. 6A is a block diagram showing an exemplary apparatus for a first network entity, which is suitable for perform the method according to embodiments of the disclosure.
  • FIG. 6B is a block diagram showing an exemplary apparatus for a second network entity, which is suitable for perform the method according to embodiments of the disclosure.
  • FIG. 6C is a block diagram showing an exemplary apparatus for a base station, which is suitable for perform the method according to embodiments of the disclosure.
  • FIG. 6D is a block diagram showing an exemplary apparatus for a terminal device, which is suitable for perform the method according to embodiments of the disclosure.
  • FIG. 7 is a block diagram showing an apparatus/computer readable storage medium, according to embodiments of the present disclosure.
  • FIG. 8A is a block diagram showing units of an exemplary apparatus for a first network entity, which is suitable for perform the method according to embodiments of the disclosure.
  • FIG. 8B is a block diagram showing units of an exemplary apparatus for a second network entity, which is suitable for perform the method according to embodiments of the disclosure.
  • FIG. 9A is a block diagram showing units of an exemplary apparatus for a base station, which is suitable for perform the method according to embodiments of the disclosure.
  • FIG. 9B is a block diagram showing units of an exemplary apparatus for a terminal device, which is suitable for perform the method according to embodiments of the disclosure.
  • FIG. 10 shows an example of a communication system 1000 in accordance with some embodiments.
  • FIG. 11 shows a UE 1100 in accordance with some embodiments.
  • FIG. 12 shows a network node 1200 in accordance with some embodiments.
  • FIG. 13 is a block diagram of a host 1300, which may be an embodiment of the host 1016 of FIG. 10, in accordance with various aspects described herein.
  • FIG. 14 is a block diagram illustrating a virtualization environment 1400 in which functions implemented by some embodiments may be virtualized.
  • FIG. 15 shows a communication diagram of a host 1502 communicating via a network node 1504 with a UE 1506 over a partially wireless connection in accordance with some embodiments.
  • FIG. 16 is a diagram showing exemplary slice template included in related messages.
  • FIG. 17 is an exemplary diagram showing a Collocated NWDAF Network Architecture.
  • FIG. 18 is a flow chart showing an exemplary procedure among several network entities, according to embodiments of the present disclosure.
  • FIG. 19 is a signaling diagram showing an exemplary procedure among several network entities, according to embodiments of the present disclosure.
  • FIG. 20 is a diagram showing details about step 14 in the FIG. 19.
  • FIG. 21 is a diagram showing a first exemplary use case (UC 1) for dynamic RFSP and radio resource selection, before the selection action is performed.
  • UC 1 a first exemplary use case for dynamic RFSP and radio resource selection, before the selection action is performed.
  • FIG. 22 is a diagram showing a first exemplary use case (UC 1) for dynamic RFSP and radio resource selection, after the selection action is performed.
  • UC 1 a first exemplary use case for dynamic RFSP and radio resource selection
  • FIG. 23 is a diagram showing alternative for step 14 in the FIG. 19.
  • FIG. 24 is a diagram showing a second exemplary use case (UC 1) for dynamic RFSP and radio resource selection, before the selection action is performed.
  • UC 1 a second exemplary use case for dynamic RFSP and radio resource selection
  • FIG. 25 is a diagram showing different control policies.
  • FIG. 26 is a diagram showing a burst UL PRB Usage consumption.
  • FIG. 27 is a diagram showing RAN DL and UL resource balance for compensating a burst UL PRB Usage consumption.
  • FIG. 28 is a diagram showing an improvement for latency related to a burst UL PRB Usage consumption.
  • the term “network” or “communication network” refers to a network following any suitable communication standards (such for an internet network, or any wireless network) .
  • wireless communication standards may comprise new radio (NR) , long term evolution (LTE) , LTE-Advanced, wideband code division multiple access (WCDMA) , high-speed packet access (HSPA) , Code Division Multiple Access (CDMA) , Time Division Multiple Address (TDMA) , Frequency Division Multiple Access (FDMA) , Orthogonal Frequency-Division Multiple Access (OFDMA) , Single carrier frequency division multiple access (SC-FDMA) and other wireless networks.
  • NR new radio
  • LTE long term evolution
  • WCDMA high-speed packet access
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Address
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency-Division Multiple Access
  • SC-FDMA Single carrier frequency division multiple access
  • the communications between two devices in the network may be performed according to any
  • network entity refers to a network device or network node or network function or any other devices (physical or virtual) in a communication network.
  • the network entity in the network may include a base station (BS) , an access point (AP) , a multi-cell/multicast coordination entity (MCE) , a server node/function (such as a service capability server/application server, SCS/AS, group communication service application server, GCS AS, application function, AF) , an exposure node/function (such as a service capability exposure function, SCEF, network exposure function, NEF) , a unified data management, UDM, a home subscriber server, HSS, a session management function, SMF, an access and mobility management function, AMF, a mobility management entity, MME, a controller or any other suitable device in a wireless communication network.
  • BS base station
  • AP access point
  • MCE multi-cell/multicast coordination entity
  • server node/function such as a service capability server/application server, SCS/AS,
  • the BS may be, for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a next generation NodeB (gNodeB or gNB) , a remote radio unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth.
  • NodeB or NB node B
  • eNodeB or eNB evolved NodeB
  • gNodeB or gNB next generation NodeB
  • RRU remote radio unit
  • RH radio header
  • RRH remote radio head
  • relay a low power node such as a femto, a pico, and so forth.
  • the network entity may comprise multi-standard radio (MSR) radio equipment such as MSR BSs, network controllers such as radio network controllers (RNCs) or base station controllers (BSCs) , base transceiver stations (BTSs) , transmission points, transmission nodes, positioning nodes and/or the like.
  • MSR multi-standard radio
  • RNCs radio network controllers
  • BSCs base station controllers
  • BTSs base transceiver stations
  • transmission points transmission nodes
  • positioning nodes positioning nodes and/or the like.
  • the term “network node” , “network function” , “network entity” herein may also refer to any suitable node, function, entity which can be implemented (physically or virtually) in a communication network.
  • the 5G system may comprise a plurality of NFs such as AMF (Access and mobility Function) , SMF (Session Management Function) , AUSF (Authentication Service Function) , UDM (Unified Data Management) , PCF (Policy Control Function) , AF (Application Function) , NEF (Network Exposure Function) , UPF (User plane Function) and NRF (Network Repository Function) , RAN (radio access network) , SCP (service communication proxy) , etc.
  • the network function may comprise different types of NFs (such as PCRF (Policy and Charging Rules Function) , etc. ) for example depending on the specific network.
  • terminal device refers to any end device that can access a communication network and receive services therefrom.
  • the terminal device refers to a mobile terminal, user equipment (UE) , or other suitable devices.
  • the UE may be, for example, a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) .
  • SS Subscriber Station
  • MS Mobile Station
  • AT Access Terminal
  • the terminal device may include, but not limited to, a portable computer, an image capture terminal device such as a digital camera, a gaming terminal device, a music storage and a playback appliance, a mobile phone, a cellular phone, a smart phone, a voice over IP (VoIP) phone, a wireless local loop phone, a tablet, a wearable device, a personal digital assistant (PDA) , a portable computer, a desktop computer, a wearable terminal device, a vehicle-mounted wireless terminal device, a wireless endpoint, a mobile station, a laptop-embedded equipment (LEE) , a laptop-mounted equipment (LME) , a USB dongle, a smart device, a wireless customer-premises equipment (CPE) and the like.
  • a portable computer an image capture terminal device such as a digital camera, a gaming terminal device, a music storage and a playback appliance
  • a mobile phone a cellular phone, a smart phone, a voice over IP (VoIP) phone
  • a terminal device may represent a UE configured for communication in accordance with one or more communication standards promulgated by the 3GPP, such as 3GPP’ LTE standard or NR standard.
  • 3GPP 3GPP’ LTE standard or NR standard.
  • a “user equipment” or “UE” may not necessarily have a “user” in the sense of a human user who owns and/or operates the relevant device.
  • a terminal device may be configured to transmit and/or receive information without direct human interaction.
  • a terminal device may be designed to transmit information to a network on a predetermined schedule, when triggered by an internal or external event, or in response to requests from the communication network.
  • a UE may represent a device that is intended for sale to, or operation by, a human user but that may not initially be associated with a specific human user.
  • a terminal device may represent a machine or other device that performs monitoring and/or measurements, and transmits the results of such monitoring and/or measurements to another terminal device and/or network equipment.
  • the terminal device may in this case be a machine-to-machine (M2M) device, which may in a 3GPP context be referred to as a machine-type communication (MTC) device.
  • M2M machine-to-machine
  • MTC machine-type communication
  • the terminal device may be a UE implementing the 3GPP narrow band internet of things (NB-IoT) standard.
  • NB-IoT narrow band internet of things
  • a terminal device may represent a vehicle or other equipment that is capable of monitoring and/or reporting on its operational status or other functions associated with its operation.
  • references in the specification to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
  • first and second etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the phrase “at least one of A and (or) B” should be understood to mean “only A, only B, or both A and B. ”
  • the phrase “A and/or B” should be understood to mean “only A, only B, or both A and B. ”
  • FIG. 1A is a diagram providing the procedure with AMF (Access and Mobility management Function) as NF (network function) consumer for NWDAF (Network Data Analytics Function) .
  • FIG. 1A is the same as the Figure 6.42.3-2 in 3GPP TR, 23.700-91 V2.0.0) .
  • the 3 rd generation partnership project technical report, 3GPP TR, 23.700-91 V2.0.0 (2020-11) provides some definitions for NWDAF-assisted RAT (Radio Access Technology) /frequency selection.
  • NWDAF-assisted RAT Radio Access Technology
  • This key issue describes analytics information that may be provided by NWDAF to support NFs to assist on RAT and frequency selection. In this key issue, the mechanisms as shown in FIG. 1 need to be studied.
  • step 1 AMF subscribe to NWDAF or request analytics about RFSP (Radio Access Technology/Frequency Selection Priority) configuration. Then, NWDAF get inputs from NFs.
  • RFSP index in use is obtained by the NWDAF from AMF.
  • authorized RFSP index is obtained by the NWDAF from PCF.
  • step 1c subscribed RFSP index is obtained by the NWDAF from UDM.
  • step 1d (optional) , NG-RAN info related to RFSP is obtained by the NWDAF from OAM.
  • step 1e session related info is obtained by the NWDAF from SMF.
  • NWDAF provides outcome.
  • Analytics Outcome is outputted from the NWDAF to the AMF.
  • N2 message to configure RFSP index to NG-RAN is transmitted by the AMF.
  • FIG. 1B is a diagram showing a call flow depicting the signaling procedure related to network slices.
  • gNB CU-CP central unit control plane
  • gNB CU-UP central unit user plane
  • E1AP E1 Application Protocol
  • gNB CU-CP receives E1 Setup Request from gNB CU-UP and transmits E1 Setup Response to the gNB CU-UP.
  • gNB CU-CP central unit control plane communicates with AMF via Next Generation Application Protocol (NGAP) .
  • NGAP Next Generation Application Protocol
  • gNB CU-CP transmit NG Setup Request to AMF, and receives NG Setup Response from the AMF.
  • UE synchronizes with gNB CU-CP in DL/UL.
  • UE sends RRC Setup Request to gNB CU-CP, receives the RRC Setup from gNB CU-CP and sends the RRC Setup Completed to the gNB CU-CP.
  • UE Via NAS, UE transmits Registration Request including requested NSSAI to the AMF, and receives Registration Accept including allowed NSSAI and configured NSSAI, from the AMF.
  • UE Via NAS, UE transmits PDU Session Establishment Request including NSSAI Requested for PDU Session to the SMF, and receives PDU Session Establishment Response including NSSAI allocated to PDU session, from the SMF.
  • FIG. 1C is another diagram showing a call flow depicting the signaling procedure related to network slices.
  • FIG. 1C refer to slice selection RAN Slice &AMF Selection (3GPP TS 23.502) , during NG Setup with AMF-1 &AMF-2, gNB and AMFs exchange their supported NSSAI lists via NG Setup Request and NG Setup Response, via messages NG Setup Request, NG Setup Response, etc.
  • RAN Slice &AMF Selection 3GPP TS 23.502
  • gNB and AMFs exchange their supported NSSAI lists via NG Setup Request and NG Setup Response, via messages NG Setup Request, NG Setup Response, etc.
  • gNB may provide NSSAIs per Tracking Area Code (TAC) .
  • AMF may provide NSSAIs in the PLMN.
  • UE optionally provides the Requested NSSAI along with the PDU session to be established. Provisional RAN slice selection &AMF selection is done based on this. gNB forwards the NAS Registration Request to the selected AMF instance and AMF validates the Requested NSSAI using Subscribed NSSAI.
  • FIG. 1D is a diagram showing an example of NGAP Signaling for Slice.
  • FIG. 1D shows Requested NSSAI with Initial UE message/Registration Request.
  • FIG. 1E is another diagram showing an example of NGAP Signaling for Slice.
  • FIG. 1E shows Allowed NSSAI within Initial Context Setup Request Message.
  • FIG. 1F is a diagram showing exemplary procedure for providing RFSP, and/or SPID.
  • 5GC provides such S-NSSAI to gNB, via NG interface.
  • MME maps RFSP to SPID, and provides SPID to eNB via S1 interface. then eNB maps SPID 1 to Partition X, and maps SPID 2 to Partition Y.
  • eNB provides at least PLMN, SPID, QCI to gNB, via X2 interface, using a X2AP message “SgNB Addition Request” .
  • gBN maps S-NSSAI 1 to Partition X, maps S-NSSAI 2 to Partition Y, maps SPID 1 to Partition X, and maps SPID 2 to Partition Y.
  • the above use case doesn’t describe the QoS related improvement (such as UE Throughput, RFSP selection with radio resources allocation) , especially in some burst traffic scenarios such as big event, etc.
  • current NWDAF UC could not be aware of the actual traffic characteristic (DL (downlink) or UL (uplink) throughput on RAN or session latency from UE to Packet Core) or area level or RAN node level congestion (for example growing DL buffer with bad radio throughput or UL PDU buffered on UE side since resource congestion) .
  • the NWDAF in the above UC has few collaborative data collection and prediction between different NFs including RAN, which is not easy for NWDAF to correlate all the data (the RAT/Frequency Selection Priority (RFSP) , Additional RRM (Radio Resource Management) Policy Index (ARPI) , radio bandwidth, etc. ) , let alone for taking actions.
  • RFSP Radio Frequency Selection Priority
  • ARPI Radio Resource Management Policy Index
  • the big event or enterprise network scenarios cause burst traffic to challenge the network robustness and automation capability. And network automation should further mitigate such risk via NWDAF.
  • the example about big event may be some event for sports competitions or entertainment activities.
  • Some embodiments of the present disclosure may provide solutions to these problems.
  • FIG. 2 is a flow chart illustrating a method performed by a first network entity, in accordance with some embodiments of the present disclosure.
  • a method 200 performed by a first network entity comprises: a step S202, collecting data from at least one network entity, a step S204, determining whether a quality deteriorate happens for at least one radio resource serving at least one terminal device based on the collected data, and a step S206, outputting a changed configuration for the at least one radio resource, if the quality deteriorate is determined to happen.
  • an improved manner for dynamically configuring slice in communication network may be provided.
  • a configuration may be changed and outputted for at least one radio resource servicing at least one terminal device, if the quality deteriorate is determined to happen.
  • a dynamical configuration for the at least one radio resource may be achieved.
  • a quality deteriorate may be dynamically compensated. That may be named as a QoS-aware solution.
  • the at least one network entity may comprise at least one of: an operation support system, an access and mobility management function, a policy control function, and/or a base station.
  • the collected data may comprise a current configuration for the at least one radio resource.
  • the current configuration for the at least one radio resource may comprise at least one of: base station or cell level information, used network slice selection assistance information, new radio absolute radio frequency channel numbers, allocated radio bandwidths, an allowed tracking area code and public land mobile network list, and/or a radio access technology/frequency selection priority, or radio resource management policy index.
  • the collected data may further comprise an uplink/downlink physical resource block, UL/DL PRB, usage, hardware usage ratio, and/or a transmission latency, and/or a jitter on packets round trip, about the at least one radio resource.
  • the quality deteriorate may be related to a quality of service, QoS, and/or a quality of experience, QoE, of the at least one radio resource serving the at least terminal device.
  • the quality deteriorate may be determined to happen when the UL/DL PRB usage is more than an internal PRB usage threshold, and/or the hardware usage ratio is more than a hardware usage threshold, and/or when latency is higher than an internal latency threshold, and/or when the jitter happens.
  • the at least one terminal device may comprise at least one individual user equipment, UE, and/or at least one group of UE.
  • a radio resource in the at least one radio resource may comprise a network slice.
  • the changed configuration may comprise a slice template for the network slice, including at least one of: a priority index of the network slice, information of bandwidth for the network slice, and/or an identity of the network slice.
  • the priority index may comprise a Radio Access Technology /Frequency Selection Priority, RFSP, and/or a Subscriber Profile Identity for RAT/Frequency priority, SPID, related to the at least one radio resource.
  • RFSP Radio Access Technology /Frequency Selection Priority
  • SPID Subscriber Profile Identity for RAT/Frequency priority
  • the slice template may be represented by an information element of dynamic radio resource item.
  • the changed configuration may indicate adding and/or removing a radio frequency and/or bandwidth of the network slice.
  • the changed configuration may indicate creating or selecting a new network slice for serving a terminal device.
  • the changed configuration may be outputted to a second network entity.
  • the second network entity may comprise a network function consumer, an application function consumer, and/or an access and mobility management function, AMF.
  • the AMF may transmit at least part of the changed configuration to a base station, via a message of PDU session Resource Modify Request, or UE Context Modification Request.
  • the first network entity may comprise a Network Data Analytics Function, NWDAF.
  • NWDAF may be collocated with an AMF.
  • the base station may update a configuration for a terminal device based on the at least part of the changed configuration, via a message of RRC Reconfiguration, and/or RRC connection release, and/or a configuration update command.
  • the message of RRC Reconfiguration may comprise additional measurement configuration based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
  • the message of RRC connection release may comprise additional redirected carrier information based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
  • the message of configuration update command may comprise allowed NSSAI, and/or configured NSSAI, and/or rejected NSSAI based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
  • a new frequency point may be indicted by a measurement object information element.
  • the mismatch of RFSP/ARPI from packet core, and E-UTRAN Absolute Radio Frequency Channel Number (EARFN) /NR Absolute Radio Frequency Channel number (NR-ARFCN) from RAN may be mitigated.
  • a QoS-aware RFSP selection solution between different NFs on network slice level may be provided.
  • the collocated NWDAF may analyze slice information (packet latency, jitter on IP packets round trip) and provide a dynamic slice QoE/QoS improvement method (considering RAN throughout congestion, latency) .
  • a collocated NWDAF architecture may be provided, which could be compatible with standalone NWDAF. Meanwhile, it analyzes slice information (such as latency, jitter on IP packets round trip) and provide a dynamic slice QoE/QoS improvement for each user.
  • FIG. 3A is a flow chart illustrating a method performed by a second network entity, in accordance with some embodiments of the present disclosure.
  • a method 300 performed by a second network entity comprises: a step S302, providing data to a first network entity.
  • the first network entity determines whether a quality deteriorate happens for the at least one radio resource based at least on the provided data.
  • the method 300 further comprises: a step S304, receiving a changed configuration for at least one radio resource serving at least one terminal device.
  • the second network entity receives the changed configuration, if the quality deteriorate is determined to happen.
  • the provided data may comprise a current configuration for the at least one radio resource.
  • the current configuration for the at least one radio resource may comprise at least one of: base station or cell level information, used network slice selection assistance information, new radio absolute radio frequency channel numbers, allocated radio bandwidths, an allowed tracking area code and public land mobile network list, and/or a radio access technology/frequency selection priority, or radio resource management policy index.
  • the provided data may further comprise an uplink/downlink physical resource block, UL/DL PRB, usage, hardware usage ratio, and/or a transmission latency, and/or a jitter on packets round trip, about the at least one radio resource.
  • the quality deteriorate may be related to a quality of service, QoS, and/or a quality of experience, QoE, of the at least one radio resource serving the at least terminal device.
  • the quality deteriorate may be determined to happen when the UL/DL PRB usage is more than an internal PRB usage threshold, and/or the hardware usage ratio is more than a hardware usage threshold, and/or when latency is higher than an internal latency threshold, and/or when the jitter happens.
  • the at least one terminal device may comprise at least one individual user equipment, UE, and/or at least one group of UE.
  • a radio resource in the at least one radio resource may comprise a network slice.
  • the changed configuration may comprise a slice template for the network slice, including at least one of: a priority index of the network slice, information of frequency and/or bandwidth for the network slice, and/or an identity of the network slice.
  • the priority index may comprise a Radio Access Technology /Frequency Selection Priority, RFSP, and/or a Subscriber Profile Identity for RAT/Frequency priority, SPID, related to the at least one radio resource.
  • RFSP Radio Access Technology /Frequency Selection Priority
  • SPID Subscriber Profile Identity for RAT/Frequency priority
  • the slice template may be represented by an information element of dynamic radio resource item.
  • the changed configuration may indicate adding and/or removing a radio frequency and/or bandwidth of the network slice.
  • the changed configuration may indicate creating or selecting a new network slice for serving a terminal device.
  • the second network entity may comprise an access and mobility management function, AMF.
  • the first network entity may comprise a Network Data Analytics Function, NWDAF.
  • NWDAF may be collocated with an AMF.
  • FIG. 3B is a flow chart illustrating additional steps of the method as shown in FIG. 3A.
  • the method 300 may further comprise: a step S306, transmitting at least part of the changed configuration to a base station, via a message of PDU session Resource Modify Request, or UE Context Modification Request.
  • the base station may update a configuration for a terminal device based on the at least part of the changed configuration, via a message of RRC Reconfiguration, and/or RRC connection release.
  • the method 300 may further comprise: a step S308, transmitting to a terminal device an updated configuration, via a message of configuration update command; and a step S310, transmitting to a base station at least part of the changed configuration, via a message of AMF configuration update.
  • the message of RRC Reconfiguration may comprise additional measurement configuration based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
  • the message of RRC connection release may comprise additional redirected carrier information based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
  • the message of configuration update command may comprise allowed NSSAI, and/or configured NSSAI, and/or rejected NSSAI based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
  • a new frequency point may be indicted by a measurement object information element.
  • FIG. 4A is a flow chart illustrating a method performed by a base station, in accordance with some embodiments of the present disclosure.
  • the method performed by a base station comprises: a step S402, receiving at least part of a changed configuration for at least one radio resource from a second network entity.
  • the second network entity provides data to a first network entity.
  • the first network entity determines whether a quality deteriorate happens for the at least one radio resource serving at least one terminal device, based on at least the provided data.
  • the second network entity receives the changed configuration, if the quality deteriorate is determined to happen.
  • the at least part of the changed configuration may be received, via a message of PDU session Resource Modify Request, or UE Context Modification Request.
  • FIG. 4B is a flow chart illustrating additional steps of the method as shown in FIG. 4A.
  • the method 400 may further comprise: a step S404, receiving at least part of the changed configuration from the second network entity, via a message of PDU session Resource Modify Request, or UE Context Modification Request; and a step S406, transmitting an updated configuration for a terminal device based on the at least part of the changed configuration, via a message of RRC Reconfiguration, and/or RRC connection release.
  • the method 400 may further comprise: a step S408, transmitting to a terminal device an updated configuration from the second network entity, via a configuration update command; and a step S410, receiving the at least part of the changed configuration, via a message of AMF configuration update.
  • the message of RRC Reconfiguration may comprise additional measurement configuration based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
  • the message of RRC connection release may comprise additional redirected carrier information based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
  • the message of configuration update command may comprise allowed NSSAI, and/or configured NSSAI, and/or rejected NSSAI based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
  • a new frequency point may be indicted by a measurement object information element.
  • the provided data may comprise a current configuration for the at least one radio resource.
  • the current configuration for the at least one radio resource may comprise at least one of: base station or cell level information, used network slice selection assistance information, new radio absolute radio frequency channel numbers, allocated radio bandwidths, an allowed tracking area code and public land mobile network list, and/or a radio access technology/frequency selection priority, or radio resource management policy index.
  • the provided data may further comprise an uplink/downlink physical resource block, UL/DL PRB, usage, hardware usage ratio, and/or a transmission latency, and/or a jitter on packets round trip, about the at least one radio resource.
  • the quality deteriorate may be related to a quality of service, QoS, and/or a quality of experience, QoE, of the at least one radio resource serving the at least terminal device.
  • the quality deteriorate may be determined to happen when the UL/DL PRB usage is more than an internal PRB usage threshold, and/or the hardware usage ratio is more than a hardware usage threshold, and/or when latency is higher than an internal latency threshold, and/or when the jitter happens.
  • the at least one terminal device may comprise at least one individual user equipment, UE, and/or at least one group of UE.
  • a radio resource in the at least one radio resource may comprise a network slice.
  • the changed configuration may comprise a slice template for the network slice, including at least one of: a priority index of the network slice, information of bandwidth for the network slice, and/or an identity of the network slice.
  • the priority index may comprise a Radio Access Technology /Frequency Selection Priority, RFSP, and/or a Subscriber Profile Identity for RAT/Frequency priority, SPID, related to the at least one radio resource.
  • RFSP Radio Access Technology /Frequency Selection Priority
  • SPID Subscriber Profile Identity for RAT/Frequency priority
  • the slice template may be represented by an information element of dynamic radio resource item.
  • the changed configuration may indicate adding and/or removing a radio frequency and/or bandwidth of the network slice.
  • the changed configuration may indicate creating or selecting a new network slice for serving a terminal device.
  • the second network entity may comprise an access and mobility management function, AMF.
  • FIG. 5 is a flow chart illustrating a method performed by a terminal device, in accordance with some embodiments of the present disclosure.
  • a method 500 performed by a terminal device comprises: a step S502, receiving, from a base station, an updated configuration for the terminal device.
  • the updated configuration may indicate the terminal device to access a new frequency point.
  • the base station receives at least part of a changed configuration for at least one radio resource from a second network entity.
  • the second network entity provides data to a first network entity.
  • the first network entity determines whether a quality deteriorate happens for the at least one radio resource serving at least one terminal device, based on at least the provided data.
  • the second network entity receives the changed configuration, if the quality deteriorate is determined to happen.
  • the at least part of the changed configuration may be received, via a message of PDU session Resource Modify Request, or UE Context Modification Request.
  • the updated configuration is based on at least part of the changed configuration, and is received from a base station via a message of RRC Reconfiguration, and/or RRC connection release.
  • the updated configuration is based on at least part of the changed configuration, and is received from an AMF, via a configuration update command.
  • the message of RRC Reconfiguration may comprise additional measurement configuration based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
  • the message of RRC connection release may comprise additional redirected carrier information based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
  • the message of configuration update command may comprise allowed NSSAI, and/or configured NSSAI, and/or rejected NSSAI based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
  • a new frequency point may be indicted by a measurement object information element.
  • the provided data may comprise a current configuration for the at least one radio resource.
  • the current configuration for the at least one radio resource may comprise at least one of: base station or cell level information, used network slice selection assistance information, new radio absolute radio frequency channel numbers, allocated radio bandwidths, an allowed tracking area code and public land mobile network list, and/or a radio access technology/frequency selection priority, or radio resource management policy index.
  • the provided data may further comprise an uplink/downlink physical resource block, UL/DL PRB, hardware usage ratio, and/or a transmission latency, and/or a jitter on packets round trip, about the at least one radio resource.
  • the quality deteriorate may be related to a quality of service, QoS, and/or a quality of experience, QoE, of the at least one radio resource serving the at least terminal device.
  • the quality deteriorate may be determined to happen when the UL/DL PRB usage is more than an internal PRB usage threshold, and/or the hardware usage ratio is more than a hardware usage threshold, and/or when latency is higher than an internal latency threshold, and/or when the jitter happens.
  • the at least one terminal device may comprise at least one individual user equipment, UE, and/or at least one group of UE.
  • a radio resource in the at least one radio resource may comprise a network slice.
  • the changed configuration may comprise a slice template for the network slice, including at least one of: a priority index of the network slice, information of bandwidth for the network slice, and/or an identity of the network slice.
  • the priority index may comprise a Radio Access Technology /Frequency Selection Priority, RFSP, and/or a Subscriber Profile Identity for RAT/Frequency priority, SPID, related to the at least one radio resource.
  • RFSP Radio Access Technology /Frequency Selection Priority
  • SPID Subscriber Profile Identity for RAT/Frequency priority
  • the slice template may be represented by an information element of dynamic radio resource item.
  • the changed configuration may indicate adding and/or removing a radio frequency and/or bandwidth of the network slice.
  • the changed configuration may indicate creating or selecting a new network slice for serving a terminal device.
  • the second network entity may comprise an access and mobility management function, AMF.
  • the first network entity may comprise a Network Data Analytics Function, NWDAF.
  • NWDAF may be collocated with an AMF.
  • FIG. 6A is a block diagram showing an exemplary apparatus for a first network entity, which is suitable for perform the method according to embodiments of the disclosure.
  • An apparatus 60 for a first network entity in a communication network comprises: a processor 602, and a memory 604.
  • the memory 604 contains instructions executable by the processor 602.
  • the apparatus 60 for the first network entity is operative for: collecting data from at least one network entity, determining whether a quality deteriorate happens for at least one radio resource serving at least one terminal device based on the collected data, and outputting a changed configuration for the at least one radio resource, if the quality deteriorate is determined to happen.
  • the apparatus 60 may be further operative to perform the method according to any embodiment above mentioned, such as shown with FIG. 2.
  • FIG. 6B is a block diagram showing an exemplary apparatus for a second network entity, which is suitable for perform the method according to embodiments of the disclosure.
  • An apparatus 62 for a second network entity in a communication network comprises: a processor 622, and a memory 624.
  • the memory contains instructions executable by the processor 622.
  • the apparatus 60 for the second network entity is operative for: providing data to a first network entity.
  • the first network entity determines whether a quality deteriorate happens for the at least one radio resource, based at least on the provided data.
  • the apparatus 62 for the second network entity is further operative for: receiving a changed configuration for at least one radio resource serving at least one terminal device.
  • the second network entity receives the changed configuration, if the quality deteriorate is determined to happen.
  • the apparatus 62 may be further operative to perform the method according to any embodiment above mentioned, such as shown with FIG. 3.
  • FIG. 6C is a block diagram showing an exemplary apparatus for a base station, which is suitable for perform the method according to embodiments of the disclosure.
  • An apparatus 64 for a base station in a communication network comprises: a processor 642, and a memory 644.
  • the memory 644 contains instructions executable by the processor 642.
  • the apparatus 64 for the base station is operative for: receiving at least part of a changed configuration for at least one radio resource from a second network entity.
  • the second network entity provides data to a first network entity.
  • the first network entity determines whether a quality deteriorate happens for the at least one radio resource serving at least one terminal device, based on at least the provided data.
  • the second network entity receives the changed configuration, if the quality deteriorate is determined to happen.
  • the apparatus 64 may be further operative to perform the method according to any embodiment above mentioned, such as shown with FIG. 4.
  • FIG. 6D is a block diagram showing an exemplary apparatus for a terminal device, which is suitable for perform the method according to embodiments of the disclosure.
  • An apparatus 66 for a terminal device in a communication network comprises: a processor 662, and a memory 664.
  • the memory 664 contains instructions executable by the processor 662.
  • the apparatus 66 for the terminal device is operative for: receiving, from a base station, an updated configuration for the terminal device.
  • the updated configuration may indicate the terminal device to access a new frequency point.
  • the apparatus 66 may be further operative to perform the method according to any embodiment above mentioned, such as shown with FIG. 5.
  • the processors 602, 622, 642, 662 may be any kind of processing component, such as one or more microprocessor or microcontrollers, as well as other digital hardware, which may include digital signal processors (DSPs) , special-purpose digital logic, and the like.
  • the memories 604, 624, 644, 664 may be any kind of storage component, such as read-only memory (ROM) , random-access memory, cache memory, flash memory devices, optical storage devices, etc.
  • FIG. 7 is a block diagram showing an apparatus/computer readable storage medium, according to embodiments of the present disclosure.
  • the computer-readable storage medium 70 stores instructions 701, which when executed by at least one processor, cause the at least one processor to perform the method according to any one of the above embodiments, such as these shown with FIG. 2, 3, 4, 5.
  • the present disclosure may also provide a carrier containing the computer program/instructions as mentioned above.
  • the carrier is one of an electronic signal, optical signal, radio signal, or computer readable storage medium.
  • the computer readable storage medium can be, for example, an optical compact disk or an electronic memory device like a RAM (random access memory) , a ROM (read only memory) , Flash memory, magnetic tape, CD-ROM, DVD, Blue-ray disc and the like.
  • FIG. 8A is a block diagram showing units of an exemplary apparatus for a first network entity, which is suitable for perform the method according to embodiments of the disclosure.
  • an apparatus 80 for a first network entity in a communication network comprises: a collecting unit 802, configured to collect data from at least one network entity, a determining unit 804, configured to determine whether a quality deteriorate happens for at least one radio resource serving at least one terminal device based on the collected data, and a outputting unit 806, configured to output a changed configuration for the at least one radio resource, if the quality deteriorate is determined to happen.
  • the apparatus 80 is further operative to perform the method according to any of the above embodiments, such as these shown with FIG. 2.
  • FIG. 8B is a block diagram showing units of an exemplary apparatus for a second network entity, which is suitable for perform the method according to embodiments of the disclosure.
  • an apparatus 82 for a first network entity in a communication network comprises: a providing unit, configured to provide data to a first network entity.
  • the first network entity determines whether a quality deteriorate happens for the at least one radio resource, based at least on the provided data.
  • the apparatus 82 for the second network entity further comprises: a receiving unit 824, configured to receive a changed configuration for at least one radio resource serving at least one terminal device. The second network entity receives the changed configuration, if the quality deteriorate is determined to happen.
  • the apparatus 82 is further operative to perform the method according to any of the above embodiments, such as these shown with FIG. 3.
  • FIG. 9A is a block diagram showing units of an exemplary apparatus for a base station, which is suitable for perform the method according to embodiments of the disclosure.
  • an apparatus 90 for a base station in a communication network comprises: a receiving unit 902, at least part of a changed configuration for at least one radio resource from a second network entity.
  • the second network entity provides data to a first network entity.
  • the first network entity determines whether a quality deteriorate happens for the at least one radio resource serving at least one terminal device, based on at least the provided data.
  • the second network entity receives the changed configuration, if the quality deteriorate is determined to happen.
  • the apparatus 90 is further operative to perform the method according to any of the above embodiments, such as these shown with FIG. 4.
  • FIG. 9B is a block diagram showing units of an exemplary apparatus for a terminal device, which is suitable for perform the method according to embodiments of the disclosure.
  • an apparatus 92 for a base station in a communication network comprises: a receiving unit 922, configured to receive, from a base station, an updated configuration for the terminal device.
  • the updated configuration may indicate the terminal device to access a new frequency point.
  • the apparatus 92 is further operative to perform the method according to any of the above embodiments, such as these shown with FIG. 5.
  • unit may have conventional meaning in the field of electronics, electrical devices and/or electronic devices and may include, for example, electrical and/or electronic circuitry, devices, modules, processors, memories, logic solid state and/or discrete devices, computer programs or instructions for carrying out respective tasks, procedures, computations, outputs, and/or displaying functions, and so on, as such as those that are described herein.
  • the apparatus may not need a fixed processor or memory, any kind of computing resource and storage resource may be arranged from at least one network node/device/entity/apparatus relating to the communication system.
  • the virtualization technology and network computing technology e.g., cloud computing
  • an apparatus implementing one or more functions of a corresponding apparatus described with an embodiment comprises not only prior art means, but also means for implementing the one or more functions of the corresponding apparatus described with the embodiment and it may comprise separate means for each separate function, or means that may be configured to perform two or more functions.
  • these techniques may be implemented in hardware (one or more apparatuses) , firmware (one or more apparatuses) , software (one or more modules/units) , or combinations thereof.
  • firmware or software implementation may be made through modules (e.g., procedures, functions, and so on) that perform the functions described herein.
  • FIG. 10 shows an example of a communication system 1000 in accordance with some embodiments.
  • the communication system 1000 includes a telecommunication network 1002 that includes an access network 1004, such as a radio access network (RAN) , and a core network 1006, which includes one or more core network nodes 1008.
  • the access network 1004 includes one or more access network nodes, such as network nodes 1010a and 1010b (one or more of which may be generally referred to as network nodes 1010) , or any other similar 3 rd Generation Partnership Project (3GPP) access node or non-3GPP access point.
  • 3GPP 3 rd Generation Partnership Project
  • the network nodes 1010 facilitate direct or indirect connection of user equipment (UE) , such as by connecting UEs 1012a, 1012b, 1012c, and 1012d (one or more of which may be generally referred to as UEs 1012) to the core network 1006 over one or more wireless connections.
  • UE user equipment
  • Example wireless communications over a wireless connection include transmitting and/or receiving wireless signals using electromagnetic waves, radio waves, infrared waves, and/or other types of signals suitable for conveying information without the use of wires, cables, or other material conductors.
  • the communication system 1000 may include any number of wired or wireless networks, network nodes, UEs, and/or any other components or systems that may facilitate or participate in the communication of data and/or signals whether via wired or wireless connections.
  • the communication system 1000 may include and/or interface with any type of communication, telecommunication, data, cellular, radio network, and/or other similar type of system.
  • the UEs 1012 may be any of a wide variety of communication devices, including wireless devices arranged, configured, and/or operable to communicate wirelessly with the network nodes 1010 and other communication devices.
  • the network nodes 1010 are arranged, capable, configured, and/or operable to communicate directly or indirectly with the UEs 1012 and/or with other network nodes or equipment in the telecommunication network 1002 to enable and/or provide network access, such as wireless network access, and/or to perform other functions, such as administration in the telecommunication network 1002.
  • the core network 1006 connects the network nodes 1010 to one or more hosts, such as host 1016. These connections may be direct or indirect via one or more intermediary networks or devices. In other examples, network nodes may be directly coupled to hosts.
  • the core network 1006 includes one more core network nodes (e.g., core network node 1008) that are structured with hardware and software components. Features of these components may be substantially similar to those described with respect to the UEs, network nodes, and/or hosts, such that the descriptions thereof are generally applicable to the corresponding components of the core network node 1008.
  • Example core network nodes include functions of one or more of a Mobile Switching Center (MSC) , Mobility Management Entity (MME) , Home Subscriber Server (HSS) , Access and Mobility Management Function (AMF) , Session Management Function (SMF) , Authentication Server Function (AUSF) , Subscription Identifier De-concealing function (SIDF) , Unified Data Management (UDM) , Security Edge Protection Proxy (SEPP) , Network Exposure Function (NEF) , and/or a User Plane Function (UPF) .
  • MSC Mobile Switching Center
  • MME Mobility Management Entity
  • HSS Home Subscriber Server
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • AUSF Authentication Server Function
  • SIDF Subscription Identifier De-concealing function
  • UDM Unified Data Management
  • SEPP Security Edge Protection Proxy
  • NEF Network Exposure Function
  • UPF User Plane Function
  • the host 1016 may be under the ownership or control of a service provider other than an operator or provider of the access network 1004 and/or the telecommunication network 1002, and may be operated by the service provider or on behalf of the service provider.
  • the host 1016 may host a variety of applications to provide one or more service. Examples of such applications include live and pre-recorded audio/video content, data collection services such as retrieving and compiling data on various ambient conditions detected by a plurality of UEs, analytics functionality, social media, functions for controlling or otherwise interacting with remote devices, functions for an alarm and surveillance center, or any other such function performed by a server.
  • the communication system 1000 of FIG. 10 enables connectivity between the UEs, network nodes, and hosts.
  • the communication system may be configured to operate according to predefined rules or procedures, such as specific standards that include, but are not limited to: Global System for Mobile Communications (GSM) ; Universal Mobile Telecommunications System (UMTS) ; Long Term Evolution (LTE) , and/or other suitable 2G, 3G, 4G, 5G standards, or any applicable future generation standard (e.g., 6G) ; wireless local area network (WLAN) standards, such as the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standards (WiFi) ; and/or any other appropriate wireless communication standard, such as the Worldwide Interoperability for Microwave Access (WiMax) , Bluetooth, Z-Wave, Near Field Communication (NFC) ZigBee, LiFi, and/or any low-power wide-area network (LPWAN) standards such as LoRa and Sigfox.
  • GSM Global System for Mobile Communications
  • UMTS Universal Mobile T
  • the telecommunication network 1002 is a cellular network that implements 3GPP standardized features. Accordingly, the telecommunications network 1002 may support network slicing to provide different logical networks to different devices that are connected to the telecommunication network 1002. For example, the telecommunications network 1002 may provide Ultra Reliable Low Latency Communication (URLLC) services to some UEs, while providing Enhanced Mobile Broadband (eMBB) services to other UEs, and/or Massive Machine Type Communication (mMTC) /Massive IoT services to yet further UEs.
  • URLLC Ultra Reliable Low Latency Communication
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communication
  • the UEs 1012 are configured to transmit and/or receive information without direct human interaction.
  • a UE may be designed to transmit information to the access network 1004 on a predetermined schedule, when triggered by an internal or external event, or in response to requests from the access network 1004.
  • a UE may be configured for operating in single-or multi-RAT or multi-standard mode.
  • a UE may operate with any one or combination of Wi-Fi, NR (New Radio) and LTE, i.e. being configured for multi-radio dual connectivity (MR-DC) , such as E-UTRAN (Evolved-UMTS Terrestrial Radio Access Network) New Radio –Dual Connectivity (EN-DC) .
  • MR-DC multi-radio dual connectivity
  • the hub 1014 communicates with the access network 1004 to facilitate indirect communication between one or more UEs (e.g., UE 1012c and/or 1012d) and network nodes (e.g., network node 1010b) .
  • the hub 1014 may be a controller, router, content source and analytics, or any of the other communication devices described herein regarding UEs.
  • the hub 1014 may be a broadband router enabling access to the core network 1006 for the UEs.
  • the hub 1014 may be a controller that sends commands or instructions to one or more actuators in the UEs.
  • the hub 1014 may be a data collector that acts as temporary storage for UE data and, in some embodiments, may perform analysis or other processing of the data.
  • the hub 1014 may be a content source. For example, for a UE that is a VR headset, display, loudspeaker or other media delivery device, the hub 1014 may retrieve VR assets, video, audio, or other media or data related to sensory information via a network node, which the hub 1014 then provides to the UE either directly, after performing local processing, and/or after adding additional local content.
  • the hub 1014 acts as a proxy server or orchestrator for the UEs, in particular in if one or more of the UEs are low energy IoT devices.
  • the hub 1014 may have a constant/persistent or intermittent connection to the network node 1010b.
  • the hub 1014 may also allow for a different communication scheme and/or schedule between the hub 1014 and UEs (e.g., UE 1012c and/or 1012d) , and between the hub 1014 and the core network 1006.
  • the hub 1014 is connected to the core network 1006 and/or one or more UEs via a wired connection.
  • the hub 1014 may be configured to connect to an M2M service provider over the access network 1004 and/or to another UE over a direct connection.
  • UEs may establish a wireless connection with the network nodes 1010 while still connected via the hub 1014 via a wired or wireless connection.
  • the hub 1014 may be a dedicated hub –that is, a hub whose primary function is to route communications to/from the UEs from/to the network node 1010b.
  • the hub 1014 may be a non-dedicated hub –that is, a device which is capable of operating to route communications between the UEs and network node 1010b, but which is additionally capable of operating as a communication start and/or end point for certain data channels.
  • FIG. 11 shows a UE 1100 in accordance with some embodiments.
  • a UE refers to a device capable, configured, arranged and/or operable to communicate wirelessly with network nodes and/or other UEs.
  • Examples of a UE include, but are not limited to, a smart phone, mobile phone, cell phone, voice over IP (VoIP) phone, wireless local loop phone, desktop computer, personal digital assistant (PDA) , wireless cameras, gaming console or device, music storage device, playback appliance, wearable terminal device, wireless endpoint, mobile station, tablet, laptop, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , smart device, wireless customer-premise equipment (CPE) , vehicle-mounted or vehicle embedded/integrated wireless device, etc.
  • VoIP voice over IP
  • PDA personal digital assistant
  • LME laptop-embedded equipment
  • CPE wireless customer-premise equipment
  • UEs identified by the 3rd Generation Partnership Project (3GPP) , including a narrow band internet of things (NB-IoT) UE, a machine type communication (MTC) UE, and/or an enhanced MTC (eMTC) UE.
  • 3GPP 3rd Generation Partnership Project
  • NB-IoT narrow band internet of things
  • MTC machine type communication
  • eMTC enhanced MTC
  • a UE may support device-to-device (D2D) communication, for example by implementing a 3GPP standard for sidelink communication, Dedicated Short-Range Communication (DSRC) , vehicle-to-vehicle (V2V) , vehicle-to-infrastructure (V2I) , or vehicle-to-everything (V2X) .
  • D2D device-to-device
  • DSRC Dedicated Short-Range Communication
  • V2V vehicle-to-vehicle
  • V2I vehicle-to-infrastructure
  • V2X vehicle-to-everything
  • a UE may not necessarily have a user in the sense of a human user who owns and/or operates the relevant device.
  • a UE may represent a device that is intended for sale to, or operation by, a human user but which may not, or which may not initially, be associated with a specific human user (e.g., a smart sprinkler controller) .
  • a UE may
  • the UE 1100 includes processing circuitry 1102 that is operatively coupled via a bus 1104 to an input/output interface 1106, a power source 1108, a memory 1110, a communication interface 1112, and/or any other component, or any combination thereof.
  • Certain UEs may utilize all or a subset of the components shown in FIG. 11. The level of integration between the components may vary from one UE to another UE. Further, certain UEs may contain multiple instances of a component, such as multiple processors, memories, transceivers, transmitters, receivers, etc.
  • the processing circuitry 1102 is configured to process instructions and data and may be configured to implement any sequential state machine operative to execute instructions stored as machine-readable computer programs in the memory 1110.
  • the processing circuitry 1102 may be implemented as one or more hardware-implemented state machines (e.g., in discrete logic, field-programmable gate arrays (FPGAs) , application specific integrated circuits (ASICs) , etc. ) ; programmable logic together with appropriate firmware; one or more stored computer programs, general-purpose processors, such as a microprocessor or digital signal processor (DSP) , together with appropriate software; or any combination of the above.
  • the processing circuitry 1102 may include multiple central processing units (CPUs) .
  • the input/output interface 1106 may be configured to provide an interface or interfaces to an input device, output device, or one or more input and/or output devices.
  • Examples of an output device include a speaker, a sound card, a video card, a display, a monitor, a printer, an actuator, an emitter, a smartcard, another output device, or any combination thereof.
  • An input device may allow a user to capture information into the UE 1100.
  • Examples of an input device include a touch-sensitive or presence-sensitive display, a camera (e.g., a digital camera, a digital video camera, a web camera, etc.
  • the presence-sensitive display may include a capacitive or resistive touch sensor to sense input from a user.
  • a sensor may be, for instance, an accelerometer, a gyroscope, a tilt sensor, a force sensor, a magnetometer, an optical sensor, a proximity sensor, a biometric sensor, etc., or any combination thereof.
  • An output device may use the same type of interface port as an input device. For example, a Universal Serial Bus (USB) port may be used to provide an input device and an output device.
  • USB Universal Serial Bus
  • the power source 1108 is structured as a battery or battery pack. Other types of power sources, such as an external power source (e.g., an electricity outlet) , photovoltaic device, or power cell, may be used.
  • the power source 1108 may further include power circuitry for delivering power from the power source 1108 itself, and/or an external power source, to the various parts of the UE 1100 via input circuitry or an interface such as an electrical power cable. Delivering power may be, for example, for charging of the power source 1108.
  • Power circuitry may perform any formatting, converting, or other modification to the power from the power source 1108 to make the power suitable for the respective components of the UE 1100 to which power is supplied.
  • the memory 1110 may be or be configured to include memory such as random access memory (RAM) , read-only memory (ROM) , programmable read-only memory (PROM) , erasable programmable read-only memory (EPROM) , electrically erasable programmable read-only memory (EEPROM) , magnetic disks, optical disks, hard disks, removable cartridges, flash drives, and so forth.
  • the memory 1110 includes one or more application programs 1114, such as an operating system, web browser application, a widget, gadget engine, or other application, and corresponding data 1116.
  • the memory 1110 may store, for use by the UE 1100, any of a variety of various operating systems or combinations of operating systems.
  • the memory 1110 may be configured to include a number of physical drive units, such as redundant array of independent disks (RAID) , flash memory, USB flash drive, external hard disk drive, thumb drive, pen drive, key drive, high-density digital versatile disc (HD-DVD) optical disc drive, internal hard disk drive, Blu-Ray optical disc drive, holographic digital data storage (HDDS) optical disc drive, external mini-dual in-line memory module (DIMM) , synchronous dynamic random access memory (SDRAM) , external micro-DIMM SDRAM, smartcard memory such as tamper resistant module in the form of a universal integrated circuit card (UICC) including one or more subscriber identity modules (SIMs) , such as a USIM and/or ISIM, other memory, or any combination thereof.
  • RAID redundant array of independent disks
  • HD-DVD high-density digital versatile disc
  • HDDS holographic digital data storage
  • DIMM external mini-dual in-line memory module
  • SDRAM synchronous dynamic random access memory
  • the UICC may for example be an embedded UICC (eUICC) , integrated UICC (iUICC) or a removable UICC commonly known as ‘SIM card. ’
  • the memory 1110 may allow the UE 1100 to access instructions, application programs and the like, stored on transitory or non-transitory memory media, to off-load data, or to upload data.
  • An article of manufacture, such as one utilizing a communication system may be tangibly embodied as or in the memory 1110, which may be or comprise a device-readable storage medium.
  • the processing circuitry 1102 may be configured to communicate with an access network or other network using the communication interface 1112.
  • the communication interface 1112 may comprise one or more communication subsystems and may include or be communicatively coupled to an antenna 1122.
  • the communication interface 1112 may include one or more transceivers used to communicate, such as by communicating with one or more remote transceivers of another device capable of wireless communication (e.g., another UE or a network node in an access network) .
  • Each transceiver may include a transmitter 1118 and/or a receiver 1120 appropriate to provide network communications (e.g., optical, electrical, frequency allocations, and so forth) .
  • the transmitter 1118 and receiver 1120 may be coupled to one or more antennas (e.g., antenna 1122) and may share circuit components, software or firmware, or alternatively be implemented separately.
  • communication functions of the communication interface 1112 may include cellular communication, Wi-Fi communication, LPWAN communication, data communication, voice communication, multimedia communication, short-range communications such as Bluetooth, near-field communication, location-based communication such as the use of the global positioning system (GPS) to determine a location, another like communication function, or any combination thereof.
  • GPS global positioning system
  • Communications may be implemented in according to one or more communication protocols and/or standards, such as IEEE 802.11, Code Division Multiplexing Access (CDMA) , Wideband Code Division Multiple Access (WCDMA) , GSM, LTE, New Radio (NR) , UMTS, WiMax, Ethernet, transmission control protocol/internet protocol (TCP/IP) , synchronous optical networking (SONET) , Asynchronous Transfer Mode (ATM) , QUIC, Hypertext Transfer Protocol (HTTP) , and so forth.
  • CDMA Code Division Multiplexing Access
  • WCDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System for Mobile communications
  • LTE Long Term Evolution
  • NR New Radio
  • UMTS Universal Mobile communications
  • WiMax Ethernet
  • TCP/IP transmission control protocol/internet protocol
  • SONET synchronous optical networking
  • ATM Asynchronous Transfer Mode
  • QUIC Hypertext Transfer Protocol
  • HTTP Hypertext Transfer Protocol
  • a UE may provide an output of data captured by its sensors, through its communication interface 1112, via a wireless connection to a network node.
  • Data captured by sensors of a UE can be communicated through a wireless connection to a network node via another UE.
  • the output may be periodic (e.g., once every 15 minutes if it reports the sensed temperature) , random (e.g., to even out the load from reporting from several sensors) , in response to a triggering event (e.g., when moisture is detected an alert is sent) , in response to a request (e.g., a user initiated request) , or a continuous stream (e.g., a live video feed of a patient) .
  • a UE comprises an actuator, a motor, or a switch, related to a communication interface configured to receive wireless input from a network node via a wireless connection.
  • the states of the actuator, the motor, or the switch may change.
  • the UE may comprise a motor that adjusts the control surfaces or rotors of a drone in flight according to the received input or to a robotic arm performing a medical procedure according to the received input.
  • a UE when in the form of an Internet of Things (IoT) device, may be a device for use in one or more application domains, these domains comprising, but not limited to, city wearable technology, extended industrial application and healthcare.
  • IoT device are a device which is or which is embedded in: a connected refrigerator or freezer, a TV, a connected lighting device, an electricity meter, a robot vacuum cleaner, a voice controlled smart speaker, a home security camera, a motion detector, a thermostat, a smoke detector, a door/window sensor, a flood/moisture sensor, an electrical door lock, a connected doorbell, an air conditioning system like a heat pump, an autonomous vehicle, a surveillance system, a weather monitoring device, a vehicle parking monitoring device, an electric vehicle charging station, a smart watch, a fitness tracker, a head-mounted display for Augmented Reality (AR) or Virtual Reality (VR) , a wearable for tactile augmentation or sensory enhancement, a water sprinkler, an animal-or
  • AR Augmented
  • a UE may represent a machine or other device that performs monitoring and/or measurements, and transmits the results of such monitoring and/or measurements to another UE and/or a network node.
  • the UE may in this case be an M2M device, which may in a 3GPP context be referred to as an MTC device.
  • the UE may implement the 3GPP NB-IoT standard.
  • a UE may represent a vehicle, such as a car, a bus, a truck, a ship and an airplane, or other equipment that is capable of monitoring and/or reporting on its operational status or other functions associated with its operation.
  • any number of UEs may be used together with respect to a single use case.
  • a first UE might be or be integrated in a drone and provide the drone’s speed information (obtained through a speed sensor) to a second UE that is a remote controller operating the drone.
  • the first UE may adjust the throttle on the drone (e.g. by controlling an actuator) to increase or decrease the drone’s speed.
  • the first and/or the second UE can also include more than one of the functionalities described above.
  • a UE might comprise the sensor and the actuator, and handle communication of data for both the speed sensor and the actuators.
  • FIG. 12 shows a network node 1200 in accordance with some embodiments.
  • network node refers to equipment capable, configured, arranged and/or operable to communicate directly or indirectly with a UE and/or with other network nodes or equipment, in a telecommunication network.
  • network nodes include, but are not limited to, access points (APs) (e.g., radio access points) , base stations (BSs) (e.g., radio base stations, Node Bs, evolved Node Bs (eNBs) and NR NodeBs (gNBs) ) .
  • APs access points
  • BSs base stations
  • Node Bs evolved Node Bs
  • gNBs NR NodeBs
  • Base stations may be categorized based on the amount of coverage they provide (or, stated differently, their transmit power level) and so, depending on the provided amount of coverage, may be referred to as femto base stations, pico base stations, micro base stations, or macro base stations.
  • a base station may be a relay node or a relay donor node controlling a relay.
  • a network node may also include one or more (or all) parts of a distributed radio base station such as centralized digital units and/or remote radio units (RRUs) , sometimes referred to as Remote Radio Heads (RRHs) .
  • RRUs remote radio units
  • RRHs Remote Radio Heads
  • Such remote radio units may or may not be integrated with an antenna as an antenna integrated radio.
  • Parts of a distributed radio base station may also be referred to as nodes in a distributed antenna system (DAS) .
  • DAS distributed antenna system
  • network nodes include multiple transmission point (multi-TRP) 5G access nodes, multi-standard radio (MSR) equipment such as MSR BSs, network controllers such as radio network controllers (RNCs) or base station controllers (BSCs) , base transceiver stations (BTSs) , transmission points, transmission nodes, multi-cell/multicast coordination entities (MCEs) , Operation and Maintenance (O&M) nodes, Operations Support System (OSS) nodes, Self-Organizing Network (SON) nodes, positioning nodes (e.g., Evolved Serving Mobile Location Centers (E-SMLCs) ) , and/or Minimization of Drive Tests (MDTs) .
  • MSR multi-standard radio
  • RNCs radio network controllers
  • BSCs base station controllers
  • BTSs base transceiver stations
  • OFDM Operation and Maintenance
  • OSS Operations Support System
  • SON Self-Organizing Network
  • positioning nodes e.g., Evolved Serving Mobile Location
  • the network node 1200 includes a processing circuitry 1202, a memory 1204, a communication interface 1206, and a power source 1208.
  • the network node 1200 may be composed of multiple physically separate components (e.g., a NodeB component and a RNC component, or a BTS component and a BSC component, etc. ) , which may each have their own respective components.
  • the network node 1200 comprises multiple separate components (e.g., BTS and BSC components)
  • one or more of the separate components may be shared among several network nodes.
  • a single RNC may control multiple NodeBs.
  • each unique NodeB and RNC pair may in some instances be considered a single separate network node.
  • the network node 1200 may be configured to support multiple radio access technologies (RATs) .
  • RATs radio access technologies
  • some components may be duplicated (e.g., separate memory 1204 for different RATs) and some components may be reused (e.g., a same antenna 1210 may be shared by different RATs) .
  • the network node 1200 may also include multiple sets of the various illustrated components for different wireless technologies integrated into network node 1200, for example GSM, WCDMA, LTE, NR, WiFi, Zigbee, Z-wave, LoRaWAN, Radio Frequency Identification (RFID) or Bluetooth wireless technologies. These wireless technologies may be integrated into the same or different chip or set of chips and other components within network node 1200.
  • RFID Radio Frequency Identification
  • the processing circuitry 1202 may comprise a combination of one or more of a microprocessor, controller, microcontroller, central processing unit, digital signal processor, application-specific integrated circuit, field programmable gate array, or any other suitable computing device, resource, or combination of hardware, software and/or encoded logic operable to provide, either alone or in conjunction with other network node 1200 components, such as the memory 1204, to provide network node 1200 functionality.
  • the processing circuitry 1202 includes a system on a chip (SOC) .
  • the processing circuitry 1202 includes one or more of radio frequency (RF) transceiver circuitry 1212 and baseband processing circuitry 1214.
  • the radio frequency (RF) transceiver circuitry 1212 and the baseband processing circuitry 1214 may be on separate chips (or sets of chips) , boards, or units, such as radio units and digital units.
  • part or all of RF transceiver circuitry 1212 and baseband processing circuitry 1214 may be on the same chip or set of chips, boards, or units.
  • the memory 1204 may comprise any form of volatile or non-volatile computer-readable memory including, without limitation, persistent storage, solid-state memory, remotely mounted memory, magnetic media, optical media, random access memory (RAM) , read-only memory (ROM) , mass storage media (for example, a hard disk) , removable storage media (for example, a flash drive, a Compact Disk (CD) or a Digital Video Disk (DVD) ) , and/or any other volatile or non-volatile, non-transitory device-readable and/or computer-executable memory devices that store information, data, and/or instructions that may be used by the processing circuitry 1202.
  • volatile or non-volatile computer-readable memory including, without limitation, persistent storage, solid-state memory, remotely mounted memory, magnetic media, optical media, random access memory (RAM) , read-only memory (ROM) , mass storage media (for example, a hard disk) , removable storage media (for example, a flash drive, a Compact Disk (CD) or a Digital Video Dis
  • the memory 1204 may store any suitable instructions, data, or information, including a computer program, software, an application including one or more of logic, rules, code, tables, and/or other instructions capable of being executed by the processing circuitry 1202 and utilized by the network node 1200.
  • the memory 1204 may be used to store any calculations made by the processing circuitry 1202 and/or any data received via the communication interface 1206.
  • the processing circuitry 1202 and memory 1204 is integrated.
  • the communication interface 1206 is used in wired or wireless communication of signaling and/or data between a network node, access network, and/or UE. As illustrated, the communication interface 1206 comprises port (s) /terminal (s) 1216 to send and receive data, for example to and from a network over a wired connection.
  • the communication interface 1206 also includes radio front-end circuitry 1218 that may be coupled to, or in certain embodiments a part of, the antenna 1210. Radio front-end circuitry 1218 comprises filters 1220 and amplifiers 1222.
  • the radio front-end circuitry 1218 may be connected to an antenna 1210 and processing circuitry 1202.
  • the radio front-end circuitry may be configured to condition signals communicated between antenna 1210 and processing circuitry 1202.
  • the radio front-end circuitry 1218 may receive digital data that is to be sent out to other network nodes or UEs via a wireless connection.
  • the radio front-end circuitry 1218 may convert the digital data into a radio signal having the appropriate channel and bandwidth parameters using a combination of filters 1220 and/or amplifiers 1222.
  • the radio signal may then be transmitted via the antenna 1210.
  • the antenna 1210 may collect radio signals which are then converted into digital data by the radio front-end circuitry 1218.
  • the digital data may be passed to the processing circuitry 1202.
  • the communication interface may comprise different components and/or different combinations of components.
  • the network node 1200 does not include separate radio front-end circuitry 1218, instead, the processing circuitry 1202 includes radio front-end circuitry and is connected to the antenna 1210.
  • the processing circuitry 1202 includes radio front-end circuitry and is connected to the antenna 1210.
  • all or some of the RF transceiver circuitry 1212 is part of the communication interface 1206.
  • the communication interface 1206 includes one or more ports or terminals 1216, the radio front-end circuitry 1218, and the RF transceiver circuitry 1212, as part of a radio unit (not shown) , and the communication interface 1206 communicates with the baseband processing circuitry 1214, which is part of a digital unit (not shown) .
  • the antenna 1210 may include one or more antennas, or antenna arrays, configured to send and/or receive wireless signals.
  • the antenna 1210 may be coupled to the radio front-end circuitry 1218 and may be any type of antenna capable of transmitting and receiving data and/or signals wirelessly.
  • the antenna 1210 is separate from the network node 1200 and connectable to the network node 1200 through an interface or port.
  • the antenna 1210, communication interface 1206, and/or the processing circuitry 1202 may be configured to perform any receiving operations and/or certain obtaining operations described herein as being performed by the network node. Any information, data and/or signals may be received from a UE, another network node and/or any other network equipment. Similarly, the antenna 1210, the communication interface 1206, and/or the processing circuitry 1202 may be configured to perform any transmitting operations described herein as being performed by the network node. Any information, data and/or signals may be transmitted to a UE, another network node and/or any other network equipment.
  • the power source 1208 provides power to the various components of network node 1200 in a form suitable for the respective components (e.g., at a voltage and current level needed for each respective component) .
  • the power source 1208 may further comprise, or be coupled to, power management circuitry to supply the components of the network node 1200 with power for performing the functionality described herein.
  • the network node 1200 may be connectable to an external power source (e.g., the power grid, an electricity outlet) via an input circuitry or interface such as an electrical cable, whereby the external power source supplies power to power circuitry of the power source 1208.
  • the power source 1208 may comprise a source of power in the form of a battery or battery pack which is connected to, or integrated in, power circuitry. The battery may provide backup power should the external power source fail.
  • Embodiments of the network node 1200 may include additional components beyond those shown in FIG. 12 for providing certain aspects of the network node’s functionality, including any of the functionality described herein and/or any functionality necessary to support the subject matter described herein.
  • the network node 1200 may include user interface equipment to allow input of information into the network node 1200 and to allow output of information from the network node 1200. This may allow a user to perform diagnostic, maintenance, repair, and other administrative functions for the network node 1200.
  • FIG. 13 is a block diagram of a host 1300, which may be an embodiment of the host 1016 of FIG. 10, in accordance with various aspects described herein.
  • the host 1300 may be or comprise various combinations hardware and/or software, including a standalone server, a blade server, a cloud-implemented server, a distributed server, a virtual machine, container, or processing resources in a server farm.
  • the host 1300 may provide one or more services to one or more UEs.
  • the host 1300 includes processing circuitry 1302 that is operatively coupled via a bus 1304 to an input/output interface 1306, a network interface 1308, a power source 1310, and a memory 1312.
  • processing circuitry 1302 that is operatively coupled via a bus 1304 to an input/output interface 1306, a network interface 1308, a power source 1310, and a memory 1312.
  • Other components may be included in other embodiments. Features of these components may be substantially similar to those described with respect to the devices of previous figures, such as Figures 11 and 12, such that the descriptions thereof are generally applicable to the corresponding components of host 1300.
  • the memory 1312 may include one or more computer programs including one or more host application programs 1314 and data 1316, which may include user data, e.g., data generated by a UE for the host 1300 or data generated by the host 1300 for a UE. Embodiments of the host 1300 may utilize only a subset or all of the components shown.
  • the host application programs 1314 may be implemented in a container-based architecture and may provide support for video codecs (e.g., Versatile Video Coding (VVC) , High Efficiency Video Coding (HEVC) , Advanced Video Coding (AVC) , MPEG, VP9) and audio codecs (e.g., FLAC, Advanced Audio Coding (AAC) , MPEG, G.
  • VVC Versatile Video Coding
  • HEVC High Efficiency Video Coding
  • AVC Advanced Video Coding
  • MPEG MPEG
  • VP9 video codecs
  • audio codecs e.g., FLAC, Advanced Audio Coding (AAC)
  • the host application programs 1314 may also provide for user authentication and licensing checks and may periodically report health, routes, and content availability to a central node, such as a device in or on the edge of a core network. Accordingly, the host 1300 may select and/or indicate a different host for over-the-top services for a UE.
  • the host application programs 1314 may support various protocols, such as the HTTP Live Streaming (HLS) protocol, Real-Time Messaging Protocol (RTMP) , Real-Time Streaming Protocol (RTSP) , Dynamic Adaptive Streaming over HTTP (MPEG-DASH) , etc.
  • HTTP Live Streaming HLS
  • RTMP Real-Time Messaging Protocol
  • RTSP Real-Time Streaming Protocol
  • MPEG-DASH Dynamic Adaptive Streaming over HTTP
  • FIG. 14 is a block diagram illustrating a virtualization environment 1400 in which functions implemented by some embodiments may be virtualized.
  • virtualizing means creating virtual versions of apparatuses or devices which may include virtualizing hardware platforms, storage devices and networking resources.
  • virtualization can be applied to any device described herein, or components thereof, and relates to an implementation in which at least a portion of the functionality is implemented as one or more virtual components.
  • Some or all of the functions described herein may be implemented as virtual components executed by one or more virtual machines (VMs) implemented in one or more virtual environments 1400 hosted by one or more of hardware nodes, such as a hardware computing device that operates as a network node, UE, core network node, or host.
  • VMs virtual machines
  • hardware nodes such as a hardware computing device that operates as a network node, UE, core network node, or host.
  • the virtual node does not require radio connectivity (e.g., a core network node or host)
  • the node may be entirely virtualized.
  • Applications 1402 (which may alternatively be called software instances, virtual appliances, network functions, virtual nodes, virtual network functions, etc. ) are run in the virtualization environment Q400 to implement some of the features, functions, and/or benefits of some of the embodiments disclosed herein.
  • Hardware 1404 includes processing circuitry, memory that stores software and/or instructions executable by hardware processing circuitry, and/or other hardware devices as described herein, such as a network interface, input/output interface, and so forth.
  • Software may be executed by the processing circuitry to instantiate one or more virtualization layers 1406 (also referred to as hypervisors or virtual machine monitors (VMMs) ) , provide VMs 1408a and 1408b (one or more of which may be generally referred to as VMs 1408) , and/or perform any of the functions, features and/or benefits described in relation with some embodiments described herein.
  • the virtualization layer 1406 may present a virtual operating platform that appears like networking hardware to the VMs 1408.
  • the VMs 1408 comprise virtual processing, virtual memory, virtual networking or interface and virtual storage, and may be run by a corresponding virtualization layer 1406.
  • a virtualization layer 1406 Different embodiments of the instance of a virtual appliance 1402 may be implemented on one or more of VMs 1408, and the implementations may be made in different ways.
  • Virtualization of the hardware is in some contexts referred to as network function virtualization (NFV) .
  • NFV may be used to consolidate many network equipment types onto industry standard high volume server hardware, physical switches, and physical storage, which can be located in data centers, and customer premise equipment.
  • a VM 1408 may be a software implementation of a physical machine that runs programs as if they were executing on a physical, non-virtualized machine.
  • Each of the VMs 1408, and that part of hardware 1404 that executes that VM be it hardware dedicated to that VM and/or hardware shared by that VM with others of the VMs, forms separate virtual network elements.
  • a virtual network function is responsible for handling specific network functions that run in one or more VMs 1408 on top of the hardware 1404 and corresponds to the application 1402.
  • Hardware 1404 may be implemented in a standalone network node with generic or specific components. Hardware 1404 may implement some functions via virtualization. Alternatively, hardware 1404 may be part of a larger cluster of hardware (e.g. such as in a data center or CPE) where many hardware nodes work together and are managed via management and orchestration 1410, which, among others, oversees lifecycle management of applications 1402.
  • hardware 1404 is coupled to one or more radio units that each include one or more transmitters and one or more receivers that may be coupled to one or more antennas. Radio units may communicate directly with other hardware nodes via one or more appropriate network interfaces and may be used in combination with the virtual components to provide a virtual node with radio capabilities, such as a radio access node or a base station.
  • some signaling can be provided with the use of a control system 1412 which may alternatively be used for communication between hardware nodes and radio units.
  • FIG. 15 shows a communication diagram of a host 1502 communicating via a network node 1504 with a UE 1506 over a partially wireless connection in accordance with some embodiments.
  • UE such as a UE 1012a of FIG. 10 and/or UE 1100 of FIG. 11
  • network node such as network node 1010a of FIG. 10 and/or network node 1200 of FIG. 12
  • host such as host 1016 of FIG. 10 and/or host 1300 of FIG. 13
  • host 1502 Like host 1300, embodiments of host 1502 include hardware, such as a communication interface, processing circuitry, and memory.
  • the host 1502 also includes software, which is stored in or accessible by the host 1502 and executable by the processing circuitry.
  • the software includes a host application that may be operable to provide a service to a remote user, such as the UE 1506 connecting via an over-the-top (OTT) connection 1550 extending between the UE 1506 and host 1502.
  • OTT over-the-top
  • a host application may provide user data which is transmitted using the OTT connection 1550.
  • the network node 1504 includes hardware enabling it to communicate with the host 1502 and UE 1506.
  • the connection 1560 may be direct or pass through a core network (like core network 1006 of FIG. 10) and/or one or more other intermediate networks, such as one or more public, private, or hosted networks.
  • a core network like core network 1006 of FIG. 10
  • an intermediate network may be a backbone network or the Internet.
  • the UE 1506 includes hardware and software, which is stored in or accessible by UE 1506 and executable by the UE’s processing circuitry.
  • the software includes a client application, such as a web browser or operator-specific “app” that may be operable to provide a service to a human or non-human user via UE 1506 with the support of the host 1502.
  • a client application such as a web browser or operator-specific “app” that may be operable to provide a service to a human or non-human user via UE 1506 with the support of the host 1502.
  • an executing host application may communicate with the executing client application via the OTT connection 1550 terminating at the UE 1506 and host 1502.
  • the UE's client application may receive request data from the host's host application and provide user data in response to the request data.
  • the OTT connection 1550 may transfer both the request data and the user data.
  • the UE's client application may interact with the user to generate the user data that it provides to the host application through the OTT
  • the OTT connection 1550 may extend via a connection 1560 between the host 1502 and the network node 1504 and via a wireless connection 1570 between the network node 1504 and the UE 1506 to provide the connection between the host 1502 and the UE 1506.
  • the connection 1560 and wireless connection 1570, over which the OTT connection 1550 may be provided, have been drawn abstractly to illustrate the communication between the host 1502 and the UE 1506 via the network node 1504, without explicit reference to any intermediary devices and the precise routing of messages via these devices.
  • the host 1502 provides user data, which may be performed by executing a host application.
  • the user data is associated with a particular human user interacting with the UE 1506.
  • the user data is associated with a UE 1506 that shares data with the host 1502 without explicit human interaction.
  • the host 1502 initiates a transmission carrying the user data towards the UE 1506.
  • the host 1502 may initiate the transmission responsive to a request transmitted by the UE 1506. The request may be caused by human interaction with the UE 1506 or by operation of the client application executing on the UE 1506.
  • the transmission may pass via the network node 1504, in accordance with the teachings of the embodiments described throughout this disclosure. Accordingly, in step 1512, the network node 1504 transmits to the UE 1506 the user data that was carried in the transmission that the host 1502 initiated, in accordance with the teachings of the embodiments described throughout this disclosure. In step 1514, the UE 1506 receives the user data carried in the transmission, which may be performed by a client application executed on the UE 1506 associated with the host application executed by the host 1502.
  • the UE 1506 executes a client application which provides user data to the host 1502.
  • the user data may be provided in reaction or response to the data received from the host 1502.
  • the UE 1506 may provide user data, which may be performed by executing the client application.
  • the client application may further consider user input received from the user via an input/output interface of the UE 1506. Regardless of the specific manner in which the user data was provided, the UE 1506 initiates, in step 1518, transmission of the user data towards the host 1502 via the network node 1504.
  • the network node 1504 receives user data from the UE 1506 and initiates transmission of the received user data towards the host 1502.
  • the host 1502 receives the user data carried in the transmission initiated by the UE 1506.
  • One or more of the various embodiments improve the performance of OTT services provided to the UE 1506 using the OTT connection 1550, in which the wireless connection 1570 forms the last segment.
  • a manner for dynamically configuring slice in communication network may be provided. Particularly, a configuration may be changed and outputted for at least one radio resource servicing at least one terminal device, if the quality deteriorate is determined to happen. A dynamical configuration for the at least one radio resource may be achieved. Further, a quality deteriorate may be dynamically compensated. That may be named as a QoS-aware solution.
  • teachings of these embodiments may improve the performance, e.g., data rate, latency, power consumption, of the communication network, and thereby provide benefits such as reduced user waiting time, relaxed restriction on file size, improved content resolution, better responsiveness, extended battery lifetime.
  • factory status information may be collected and analyzed by the host 1502.
  • the host 1502 may process audio and video data which may have been retrieved from a UE for use in creating maps.
  • the host 1502 may collect and analyze real-time data to assist in controlling vehicle congestion (e.g., controlling traffic lights) .
  • the host 1502 may store surveillance video uploaded by a UE.
  • the host 1502 may store or control access to media content such as video, audio, VR or AR which it can broadcast, multicast or unicast to UEs.
  • the host 1502 may be used for energy pricing, remote control of non-time critical electrical load to balance power generation needs, location services, presentation services (such as compiling diagrams etc. from data collected from remote devices) , or any other function of collecting, retrieving, storing, analyzing and/or transmitting data.
  • a measurement procedure may be provided for the purpose of monitoring data rate, latency and other factors on which the one or more embodiments improve.
  • the measurement procedure and/or the network functionality for reconfiguring the OTT connection may be implemented in software and hardware of the host 1502 and/or UE 1506.
  • sensors (not shown) may be deployed in or in association with other devices through which the OTT connection 1550 passes; the sensors may participate in the measurement procedure by supplying values of the monitored quantities exemplified above, or supplying values of other physical quantities from which software may compute or estimate the monitored quantities.
  • the reconfiguring of the OTT connection 1550 may include message format, retransmission settings, preferred routing etc.; the reconfiguring need not directly alter the operation of the network node 1504. Such procedures and functionalities may be known and practiced in the art.
  • measurements may involve proprietary UE signaling that facilitates measurements of throughput, propagation times, latency and the like, by the host 1502.
  • the measurements may be implemented in that software causes messages to be transmitted, in particular empty or ‘dummy’ messages, using the OTT connection 1550 while monitoring propagation times, errors, etc.
  • embodiments may propose a RFSP selection solution being aware of QoS between different NFs on network slice level.
  • the collocated NWDAF may analyzes slice information (packet latency, jitter on IP (Internet Protocol) packets round trip) and provide a dynamic slice QoE (Quality of Experience) /QoS (Quality of Service) improvement method (considering RAN throughout congestion, latency) .
  • slice information packet latency, jitter on IP (Internet Protocol) packets round trip
  • QoE Quality of Experience
  • QoS Quality of Service
  • Embodiments of the present disclosure may further propose a collocated NWDAF architecture, which could be compatible with standalone NWDAF. Meanwhile, it analyzes slice information (such as latency, jitter on IP packets round trip) and provide a dynamic slice QoE/QoS improvement for each user.
  • slice information such as latency, jitter on IP packets round trip
  • Packet Core could estimate the near-real time radio RFSP resource and user QoS (such as PRB (Physical Resource Block) usage, throughput, packets latency) from end to end.
  • AMF with collocated NWDAF
  • AMF could select the improved slice configuration (such as slice template) , including RFSPs (and/or SPID (Subscriber Profile ID for RAT/Frequency Priority) , Radio Bandwidths, NSSAI (Network Slice Selection Assistance Information) ) to RAN, etc., which provide a slice level improvement for a group of users or single user.
  • PLMN IDs Public Land Mobile Network Identity
  • S-NSSAIs Single Network Slice Selection Assistance Information
  • SPIDs Single Network Slice Selection Assistance Information
  • 5QIs 5G QoS Identifier
  • DRBs data radio bearers
  • FIG. 16 is a diagram showing exemplary slice template included in related messages.
  • the first one Slice 1 may be S-NSSAI#1 with a type of mobile broadband (MBB)
  • the second one Slice 2 may be S-NSSAI#2 with a type of fixed wireless access (FWA) .
  • MBB mobile broadband
  • FWA fixed wireless access
  • the base station gNB may include distributed unit (GNBDU) , and/or Central Unit (GNBCU) .
  • GNBCU Central Unit
  • An exemplary slice template shown in FIG. 16 may include at least lists of PLMN ID, and/or S-NSSAI, and/or SPID for NSSAI in Allowed NSSAI Item. Further, it should be understood that FIG. 16 is only an example for PLMN and SPID and NSSAI configuration and relations in cell/node level configuration, not a mandatory structure.
  • gNB Central Unit gNB-CU
  • gNB-CU gNB Central Unit
  • the gNB-CU terminates the F1 interface connected with the gNB-DU.
  • gNB Distributed Unit gNB-DU
  • gNB-DU is a logical node hosting RLC, MAC and PHY layers of the gNB or en-gNB, and its operation is partly controlled by gNB-CU.
  • One gNB-DU supports one or multiple cells. One cell is supported by only one gNB-DU.
  • the gNB-DU terminates the F1 interface connected with the gNB-CU.
  • gNB-CU-Control Plane (gNB-CU-CP) is a logical node hosting the RRC and the control plane part of the PDCP protocol of the gNB-CU for an en-gNB or a gNB.
  • the gNB-CU-CP terminates the E1 interface connected with the gNB-CU-UP and the F1-C interface connected with the gNB-DU.
  • gNB-CU-User Plane is a logical node hosting the user plane part of the PDCP protocol of the gNB-CU for an en-gNB, and the user plane part of the PDCP protocol and the SDAP protocol of the gNB-CU for a gNB.
  • the gNB-CU-UP terminates the E1 interface connected with the gNB-CU-CP and the F1-U interface connected with the gNB-DU.
  • the specific example for the slice template may include following detailed configurations (emphasis is underlined) .
  • the collocated NWDAF can improve the user traffic experience (more UL (uplink) throughput, less application latency) , especially in burst traffic scenarios. It also optimizes the radio resource usage and latency of IP packets round trip.
  • FIG. 17 is an exemplary diagram showing a Collocated NWDAF Network Architecture.
  • the architecture in FIG. 17 is compatible with external NWDAF including standard application interface as defined in TS 23.288.
  • the method according to embodiments of the present disclosure proposes the collocated NWDAF, which is coupled between different NFs including RAN, OSS (Operation Support System) , AMF, NWDAF.
  • OSS Operaation Support System
  • AMF Access Management Function
  • the Collocated NWDAF collect data from OAM function Node (OSS-RC (Operations Support System -Radio and Core) or ENM (Ericsson network management) ) . Further, Collocated NWDAF collect data from AMF, and feedback the data (slice level template with RFSP, Radio Bandwidth) to RAN (Note) . Centralized NWDAF could communicate with Collocated NWDAF with 3GPP standard SBI (service based interface) as defined in TS 23.288.
  • the template is not only per slice level (NSSAI) but also per cell or per PLMN or per UE and per TA level.
  • FIG. 18 is a flow chart showing an exemplary procedure among several network entities, according to embodiments of the present disclosure.
  • step 181 UE, RAN, Packetcore selected Slice during mobility registration or PDU Session Management
  • step 182 UE camps on specific TAI (PLMN, TAC) and is served on several SPID/NR-ARFCNs.
  • PLMN PLMN
  • TAC TAI
  • step 183 NWDAF received RFSP or/and slice Analysis Service Subscriptions.
  • step 184 NWDAF collected data from PCF, UDM, AMF, OSS/ENM (OAM) .
  • step 185 NWDAF calculates whether the corresponding QoS deteriorate? If yes, the procedure goes to step 186. If no, the procedure goes to step 187.
  • step 186 packet core c-plane (Latency) or u-plane (PRB Usage) QoS deteriorates.
  • step 187 iterations on NWDAF analysis are performed.
  • step 188 are there RFSPs changes in Slices? If yes, the procedure goes to step 1812. If no, the procedure goes to step 189.
  • step 189 is there new slice with RFSPs changes on UE? If yes, the procedure goes to step 1810. If no, the procedure goes to step 187.
  • step 1810 NWDAF output to AMF.
  • AMF modifies UE Context of Slice with RAN (including such as a base station) and UE.
  • RAN including such as a base station
  • UE User Equipment
  • step 1812 AMF modifies Session Context of RFSP/SPIDs on RAN.
  • the session context may be also needs to be amended.
  • RAN reconfigures UE with Indication from AMF (BWs, UL/DL, etc. ) .
  • step 1814 RRC Reconfiguration or Redirection is performed.
  • step 1815 during redirection, UE is reconnected and camps on new RFSPs based on measurement.
  • step 1816 during reconfiguration, UEs add NR-ARFCN/EARFCN based on measurement.
  • step 1817 is QoS Improved? If yes, the procedure goes to step 185.
  • FIG. 19 is a signaling diagram showing an exemplary procedure among several network entities, according to embodiments of the present disclosure.
  • a procedure for dynamic RFSP and radio resource selection during PDU session Establishment/Modification is provided.
  • the emphases are underlined.
  • Nnwdaf_AnalyticsSubscription_Subscribe Service Experience/Service Behaviour
  • NWDAF collected data from PCF, UDM, AMF, OSS/ENM (OAM) .
  • step 2 NWDAF sends message Namf_EventExposure_Subscribe, to AMF.
  • NWDAF receives message Namf_EventExposure_Notification ( AMF RFSP configuration from local and PCF ) , from AMF.
  • MM mobility management
  • SM session management
  • Registration Registration or Session Establishment/Modification/Release
  • NWDAF receives message Namf_EventExposure_Notification, from AMF.
  • NWDAF sends Nnwdaf_AnalyticsSubscription_Notify (about UE or Session) to the NF or AF consumer.
  • NWDAF sends, GOM interface or OAM interface based Request/HTTP Get/SFTP (Secure File Transfer Protocol) Request to a ENM/OSS.
  • NWDAF receives GOM interface or OAM interface Response (NG RAN Information related (PM (Performance Management, such as counters, KPIs formula, trace, log) , CM (Configuration Management, such configuration, YAML config) , FM (False Management, such as system or function alarm, event, security alert) based on RAN ) from the ENM/OSS.
  • PM Performance Management, such as counters, KPIs formula, trace, log
  • CM Configuration Management, such configuration, YAML config
  • FM Fe Management, such as system or function alarm, event, security alert
  • NWDAF makes Slice and RFSP Analysis (For Node level) .
  • NWDAF sends Nnwdaf_Prediction_Ouput (RFSPs &radio bandwidths Indication) to AMF.
  • NWDAF sends Nnwdaf_AnalyticsSubscription_Notify (RFSP ML (machine learning) results Notification ) to the NF or AF consumer.
  • RFSP ML machine learning
  • OPT1 corresponds to a RFSP UC, with new messages provided.
  • step 11 PDU Session Modification Request.
  • step 12 PDU Session Resource Modify Request or UE Context Modification Request (RFSPs &radio bandwidths Indication) .
  • step 13 PDU Session Resource Modify Response or UE Context Modification.
  • step 14 RRC configuration or RRC connection release from NWDAF templates per slice per UE.
  • Step1 ⁇ 3 and Step5 ⁇ 6 may refer to FIG. 1A, i.e, Figure 6.42.3-2: NWDAF provides analytics outcome to AMF, in clause 6.42, Solution #42: NWDAF-assisted RFSP Policy Configuration, TR 23.700-91-h00.
  • the embodiments of the present disclosure may preferably introduce AMF, other than PCF, as RFSP service consumer, since NWDAF implementation entity may be based on PCC (Policy and Charging Control) .
  • vAMF Virtual AMF or Virtual Packet Core
  • vAMF may be planning to provide some slice and RFSP OAM counters and KPI analytics to meet requirement from vendors.
  • Such embodiments may be based on the current AMF and NWDAF status of product roadmap.
  • Step 4 may be a PDU session Establishment/Modification /Release procedure as defined in TS23.502 v17.2.1, here is an example of PDU Session Modification procedure.
  • step7 (Collocated) -NWDAF (with AMF) sends Node data service get/request to ENM/OSS to collect PM counters, etc., IE defined in below Table 1-1, 1-2, and Configuration Information from OSS/ENM side via Gom interface (SSH (Secure Shell) /HTTPs/SFTP, etc. )
  • SSH Secure Shell
  • the Gom interface may be a logical interface based on standard IETF (Internet Engineering Task Force) protocols.
  • the Gom Interface makes it possible for operators, Operations Support Systems (OSS) , and Network Management Systems (NMS) to communicate with the PC-MM (Packet Core Mobility Management) .
  • OSS Operations Support Systems
  • NMS Network Management Systems
  • PC-MM Packet Core Mobility Management
  • service nodes for example, DNS (data network Service) servers residing within the own PLMN. It is may be not defined in the 3GPP standards, but defined by manufactures, such as Ericsson.
  • the Gom interface may have the following main features:
  • HTTPS Hypertext Transfer Protocol Secure
  • LI Lawful Interception
  • LEA Law Enforcement Agency
  • NWDAF fetches RAN Node/Cell level Information related to RFSP via Gom interface, including at least one of:
  • GNB GNB or Cell Level MO (Managed Object) or CLI (Command-Line Interface) (Configuration Information) ;
  • NSSAI and TA level counters and KPI are defined from OAM interface, not NWDAF interface, based on practice requirements.
  • C-NWDAF collects the RAN Node information from OSS (Ericsson Network Manager (ENM) ) or RAN (O-RAN SMO (Open-Radio Access Network Service Management and Orchestration) ) .
  • the triggering method may be periodic or event-based.
  • C-NWDAF calculates the RFSP selection criterion, estimate the Radio Resource congestion Condition.
  • C-NWDAF generates the RFSP and EARFCN (PCI) , provides Radio Bandwidth template in band level for cell, per NSSAI, per PLMN per UE and per TA.
  • PCI RFSP and EARFCN
  • ADP Application Development Platform, a middleware in cloud service platform
  • middleware may be selected by PCC
  • step 9 the NWDAF internally analyze the QoS radio resource congestion, for example, it is analyzed that: whether UL/DL PRB Usage consumption is more than an internal PRB usage threshold, and/or whether Latency is higher than an internal threshold. If so, the slice template may be updated.
  • C-NWDAF provides the RFSP/ARPI template to AMF via extension SBI interface (defined below) , the template is mapped to radio resource (Each RFSP index with Radio BW, DL, UL independently, with congestion indication ) which will be comprehend by RAN later.
  • step 11 ⁇ step 14 UE triggers a UE-Initiated PDU Session Modification in procedure until step14.
  • step 11 AMF selected and store the optimized RFSP priority according to Step10. Taking use of UE configuration update phase, AMF update the new RFSP via DL NAS to UE (Typically in OPT1) , etc. (see TS 24.501 v17.2.1 h21, etc. ) .
  • AMF extend PDU Session Resource Modify Request (in Table 2-1, 2-2) or UE Context Modification Request (in Table 2-4) .
  • step 12 RAN update the local UE EARFCN/NR-ARFCN with Dynamic Radio Resource IE, considering the load congestion indication.
  • step 13 PDU Session Resource Modify Response is transmitted from NG-RAN to AMF.
  • FIG. 20 is a diagram showing details about step 14 in the FIG. 19.
  • step 14 UE is reconfigured by RRC with new radio resource after NWDAF (congestion and offload) analysis, via SMF, AMF configuration and RAN RRC configuration, or RRC connection release.
  • NWDAF congestion and offload
  • RAN re-configs UE with RRC Reconfiguration or RRC Connection release depends on condition such as serving cell’s RRC measurement configuration for DRBs and UE signal strength (see TS38.331-g60 (V16.6.0 (2021-09) ) ) .
  • the procedure for RRC configuration update information may be According to TS38.331-g60 (V16.6.0 (2021-09) ) .
  • the RRCReconfiguration message is the command to modify an RRC connection. It may convey information for measurement configuration, mobility control, radio resource configuration (including RBs, MAC main configuration and physical channel configuration) and AS security configuration.
  • This message may use SRB1 or SRB3 as Signalling radio bearer, use AM (Acknowledged Mode) as RLC (Radio Link Control) -SAP (Service Access Point) , use DCCH (Dedicated Control CHannel) as Logical channel, and may be transmitted at a direction from Network to UE.
  • AM Acknowledged Mode
  • RLC Radio Link Control
  • SAP Service Access Point
  • DCCH Dedicated Control CHannel
  • An exemplary RRCReconfiguration message may comprises following content.
  • An exemplary MeasConfig information element may comprise following content.
  • the RRCRelease message is used to command the release of an RRC connection or the suspension of the RRC connection.
  • This message may use SRB1 as Signalling radio bearer, use AM (Acknowledged Mode) as RLC (Radio Link Control) -SAP (Service Access Point) , use DCCH (Dedicated Control CHannel) as Logical channel, and may be transmitted at a direction from Network to UE.
  • SRB1 Signalling radio bearer
  • AM Acknowledged Mode
  • RLC Radio Link Control
  • SAP Service Access Point
  • DCCH Dedicated Control CHannel
  • An exemplary RRCRelease message may comprises following content.
  • An exemplary extension may be a Nnwdaf_Data_Input interface IE (for C-NWDAF input in above step7) .
  • Message IE may be Nnwdaf_Data_Input; the data direction may be from RAN/OSS-RC (Operation Support System-Radio and Core) to collocated NWDAF.
  • Nnwdaf_Prediction_Ouput interface IE for C-NWDAF Output in Step10 .
  • Message IE may be Nnwdaf_Prediction_Ouput (internal messages) ; the data direction may be from C-NWDAF to AMF.
  • Another exemplary extension may be a PDU Session Resource Modify Request .
  • Message IE may be PDU Session Resource Modify Request; the data direction may be from AMF to RAN.
  • Another message UE CONTEXT MODIFICATION REQUEST is sent by the AMF to NG-RAN node, for providing UE Context information changes to the NG-RAN node.
  • FIG. 21 is a diagram showing a first exemplary use case (UC 1) for dynamic RFSP and radio resource selection, before the selection action is performed.
  • UC 1 a first exemplary use case for dynamic RFSP and radio resource selection, before the selection action is performed.
  • UE before the dynamic RFSP and radio resource selection, UE has at least 2 slices with independent RFSPs policy and radio resource (radio bandwidth and EARFCN/NARFCNs) between RAN and UE.
  • Each of PDU Sessions is established in individual slice, therefore 2 default sessions exist.
  • C-NWDAF begins the network data collection and data evaluation with ML after a period of time when UE is served in the network.
  • C-NWDAF discover the slice 1 has an obvious QoE deterioration due to radio resource congestion (UL PRB Usage consumption or latency is more than an internal PRB usage threshold) .
  • FIG. 22 is a diagram showing a first exemplary use case (UC 1) for dynamic RFSP and radio resource selection, after the selection action is performed.
  • UC 1 a first exemplary use case for dynamic RFSP and radio resource selection
  • RFSPs and related BW is removed from slice 2 to slice 1 in E2E (End to End) when C-NWDAF indicates the RFSPs changes to AMF and UE in the following Session or Mobility procedure (such as PDU Session Modification or PDU Session Establishment) . And RFSPs and related BW are added on slice 1.
  • a RRC reconfiguration may be enough for the UE to do such dynamic RFSP and radio resource selection/reselection.
  • the above OPT1 will be applicable.
  • the time period for such selection/reselection will be reduced.
  • These UE could be considered as a super UE since it has two NSSAI capabilities.
  • the following MeasConfig information element may be used to transmit information to UE.
  • measObjectId may be used to indicate the frequency or bandwidth in the slices.
  • measObjectID 3 may corresponds to NR-ARFCN x, BW 20M (moved from slice 2 to slice 1) , which needs to be measured by the UE. Further, this measObjectId indication changes will be notified by RRC configuration and will be further checked with AMF and NWDAF mechanism.
  • the MeasConfig information element may comprises following contents (emphasis are underlined) .
  • the MeasConfig information element may comprises following contents (emphasis are underlined) .
  • FIG. 23 is a diagram showing alternative for step 14 in the FIG. 19.
  • the step 0 in this FIG. 23, is based on (such as, as the same as) step1 ⁇ step10 of UC1 dynamic RFSP and radio resource selection (FIG. 19) .
  • This UC2 introduced another case when Network triggered UE Slice change/creation based on NWDAF.
  • step 0 AMF selected and stored the optimized slice template (RFSP priority, optional) per UE.
  • step 1 optionally, UE is paged if UE is CM-IDLE mode.
  • step 2 the AMF sends a Downlink NAS Transport message to the UE through the RAN, which contains a Configuration Update Command message, to notify the UE of the network slice change.
  • the Configuration Update Command message includes the Configured NSSAI IE, the Acknowledgment (ACK) bit in the Configuration Update Indication IE, and the Network Slicing subscription change indication (NSSCI) bit in the Network Slicing Indication IE.
  • the message optionally includes TAI list and Allowed NSSAI or Configured NSSAI or Rejected NSSAI or combo of them (as shown in table 3-1) .
  • step 3 UE is reconfigured by RRC with new slice with serving PLMN, TAC. The flow ends until slice notification finished.
  • step 4 optionally, AMF triggered AMF CONFIGURATION UPDATE with new slice temple per cell/gNB level if slice change is based on RAN cell/Node level (based on NWDAF in UC1) . Then UE will be triggered re-registration if none of supported NSSAIs are allowed in current PLMN.
  • the CONFIGURATION UPDATE COMMAND message is sent by the AMF to the UE. See table 3-1.
  • the message type may be CONFIGURATION UPDATE COMMAND, and the significance of it may be dual, and the message is transmitted at the direction from network to UE.
  • AMF CONFIGURATION UPDATE is sent by the AMF to transfer updated information for an NG-C interface instance.
  • the transmission direction may be from AMF to NG-RAN node.
  • PLMN Public Land Mobile Networks
  • SNPN Standalone Non-Public Networks (SNPN) , networks that are not relying on network functions of a (public) PLMN
  • FIG. 24 is a diagram showing a second exemplary use case (UC 1) for dynamic RFSP and radio resource selection, before the selection action is performed.
  • UC 1 a second exemplary use case for dynamic RFSP and radio resource selection
  • UC 2 dynamic RFSP and radio resource selection (as option 2) may be illustrated below.
  • This UC 2 shows an example, in which UE has at least 2 slices with independent RFSPs policy and radio resource (radio bandwidth and EARFCN/NARFCNs) between RAN and UE. Each slice is served in different TA or same TA with different PLMNs.
  • C-NWDAF begins the network data collection and data evaluation with ML after a period of time when UE is served in the network.
  • C-NWDAF discover the slice D has an obvious QoE deterioration due to radio resource congestion (UL PRB Usage consumption or latency is more than an internal PRB usage threshold) .
  • the UE and RAN are notified by NWDAF assisted AMF, the UE slice is changed via UE slice change flow such as re-registration, Mobility Registration or HO (see TS 23.502 V17.2.1) .
  • the UE changes to a new slice (from slice D to slice C) .
  • UC 2 the UE is not connected to the slice C yet. Therefore, after the UE is reconfigured, new MM or SM procedure is needed for the slice change. For example, a new procedure of Deregistration or Session Release may still be needed to change to the new slice (i.e., from slice D to slice C) . It should be noted that, not only these two procedures, but also other procedure, such as mobility registration or session modification may be applicable.
  • NWDAF may correlate cell level, QoS/QoE level EBM (Event Based Monitoring) (Type of real-time stream that supplies information as Event Based Monitoring data or events) or any collocated NF data.
  • QoS/QoE level EBM Event Based Monitoring
  • Type of real-time stream that supplies information as Event Based Monitoring data or events or any collocated NF data.
  • FIG. 25 is a diagram showing different control policies.
  • FIG. 25 taking example of DL and UL RAN resource, they may be divided into several zones for different policy.
  • this zone means target NF is working in overload status, all the unnecessary traffic such as event collection and subscription should be limited. And any offload and capacity optimization such as VM (Virtual Machine) /container scale-out should be taken immediately.
  • VM Virtual Machine
  • this zone means target NF is working in offloading status.
  • Cell with RFSP/BW instruction would be taken as accessible cell for dynamic slice changes.
  • the UE in this status has been classified as DL/UL consumption UE.
  • NWDAF collects and correlates the multiple NFs data (EBM/ Counters/SBI http URI content, etc. ) . Then after ML Model training, NWDAF would trigger network service level execution for multiple purpose. As the example, Collocated NWDAF would coordinate RAN and AMF with UE to offload the candidates UE (generally UL consumption model/DL consumption Model UE type) to balance the Radio resources for congestion prevention.
  • UE generally UL consumption model/DL consumption Model UE type
  • NWDAF collocated with RAN is derived from AMF collocated type, and is based on the ARPI&RFSP.
  • the RRC configuration is good enough for UE to add/delete/offload additional UL/DL radio resources.
  • Safety Zone the radio resource is sufficient for UE and RAN to handle big event (DL/UL consumption type traffic) and only data collection and data correlation happen in this zone. Any additional offload action is allowed if the slice has been changed also.
  • Hysteresis Zone it is a buffer zone to avoid Ping-Pong configuration with dynamic slice changes for NWDAF and NFs.
  • FIG. 26 is a diagram showing a burst UL PRB Usage consumption.
  • FIG. 27 is a diagram showing RAN DL and UL resource balance for compensating a burst UL PRB Usage consumption.
  • the new added cell B would be accessible after offloading triggered by cell A if new RFSP is configurable and same BW is configured. With the offloading triggered by UL resource consumption, both UL resource will be balanced before congestion happened. If cell A and cell B are separated with different slice (i.e., some UEs are reconfigured or reconnected from cell A to cell B) , the QoS in across slice would be balanceable. The final PRB usage are balanced between offload in and offload out cell.
  • FIG. 28 is a diagram showing an improvement for latency related to a burst UL PRB Usage consumption.
  • the new added cell B would be accessible after offloading triggered by cell A if new RFSP is configurable and same BW is configured. With the offloading triggered by UL resource consumption, both UL and DL packet latency of cell A are improved due to RAN congestion mitigation.
  • the latency of cell B is not mentioned here since offloading from cell A will not obvious bring the cell B latency when cell B is light load or new cell.
  • the latency of Cell B may be still near 0 ms, thus it is not mentioned in curve.
  • a dynamic configuration for slice may be also triggered by other quality deteriorate.
  • a processor resource or memory resource hardware resource or virtual resource
  • a network entity such as AMF
  • computing devices described herein may include the illustrated combination of hardware components, other embodiments may comprise computing devices with different combinations of components. It is to be understood that these computing devices may comprise any suitable combination of hardware and/or software needed to perform the tasks, features, functions and methods disclosed herein. Determining, calculating, obtaining or similar operations described herein may be performed by processing circuitry, which may process information by, for example, converting the obtained information into other information, comparing the obtained information or converted information to information stored in the network node, and/or performing one or more operations based on the obtained information or converted information, and as a result of said processing making a determination.
  • processing circuitry may process information by, for example, converting the obtained information into other information, comparing the obtained information or converted information to information stored in the network node, and/or performing one or more operations based on the obtained information or converted information, and as a result of said processing making a determination.
  • computing devices may comprise multiple different physical components that make up a single illustrated component, and functionality may be partitioned between separate components.
  • a communication interface may be configured to include any of the components described herein, and/or the functionality of the components may be partitioned between the processing circuitry and the communication interface.
  • non-computationally intensive functions of any of such components may be implemented in software or firmware and computationally intensive functions may be implemented in hardware.
  • processing circuitry executing instructions stored on in memory, which in certain embodiments may be a computer program product in the form of a non-transitory computer-readable storage medium.
  • some or all of the functionality may be provided by the processing circuitry without executing instructions stored on a separate or discrete device-readable storage medium, such as in a hard-wired manner.
  • the processing circuitry can be configured to perform the described functionality. The benefits provided by such functionality are not limited to the processing circuitry alone or to other components of the computing device, but are enjoyed by the computing device as a whole, and/or by end users and a wireless network generally.
  • Evolved Universal Terrestrial Radio Access Network (V17.0.0 (2022-04) ) Evolved Universal Terrestrial Radio Access Network (E-UTRAN) ; S1 Application Protocol (S1AP)

Abstract

Embodiments of the present disclosure provide a method and an apparatus for dynamically configuring slice in communication network. A method (200) performed by a first network entity comprises: collecting (S202) data from at least one network entity, determining (S204) whether a quality deteriorate happens for at least one radio resource serving at least one terminal device based on the collected data, and outputting (S206) a changed configuration for the at least one radio resource, if the quality deteriorate is determined to happen. According to embodiments of the present disclosure, an improved manner for dynamically configuring slice in communication network may be provided.

Description

METHOD AND APPARATUS FOR DYNAMICALLY CONFIGURING SLICE IN COMMUNICATION NETWORK TECHNICAL FIELD
The present disclosure relates generally to the technology of communication, and in particular to a method and an apparatus for dynamically configuring slice in communication network.
BACKGROUND
This section introduces aspects that may facilitate better understanding of the present disclosure. Accordingly, the statements of this section are to be read in this light and are not to be understood as admissions about what is in the prior art or what is not in the prior art.
In a telecommunication network, many different radio resources (such as slices) may be arranged, and configured differently to provide services with different type, and/or quality, etc. For example, RFSP index (index to Radio Access Technology (RAT) /frequency selection priority) may define the selection priority for a terminal device (such as any user equipment, UE) to access different types of RAT /frequencies. When the terminal device obtains such configuration, it may try to access the RAT /frequency with higher priority, which may usually provide better service.
SUMMARY
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
As mentioned above, the terminal device may obtain information about the slices, such as RFSP. However, such configuration is usually predetermined, and can’t be adjusted dynamically when the condition changes. Especially, it can’t be adjusted dynamically to compensate a service quality for the terminal device.
Certain aspects of the present disclosure and their embodiments may provide solutions to these or other challenges. There are, proposed herein, various embodiments which address one or more of the issues disclosed herein. Specific method and apparatus for dynamically configuring slice in communication network may be provided.
A first aspect of the present disclosure provides a method performed by a first network entity. The method comprises collecting data from at least one network entity, determining whether a quality deteriorate happens for at least one radio resource serving at least one terminal device based on the collected data, and outputting a changed configuration for the at least one radio resource, if the quality deteriorate is determined to happen.
In embodiments of the present disclosure, the at least one network entity may comprise at least one of: an operation support system, an access and mobility management function, a policy control function, and/or a base station.
In embodiments of the present disclosure, the collected data may comprise a current configuration for the at least one radio resource.
In embodiments of the present disclosure, the current configuration for the at least one radio resource may comprise at least one of: base station or cell level information, used network slice selection assistance information, new radio absolute radio frequency channel numbers, allocated radio bandwidths, an allowed tracking area code and public land mobile network list, and/or a radio access technology/frequency selection priority, or radio resource management policy index.
In embodiments of the present disclosure, the collected data may further comprise an uplink/downlink physical resource block, UL/DL PRB, usage, hardware usage ratio, and/or a transmission latency, and/or a jitter on packets round trip, about the at least one radio resource.
In embodiments of the present disclosure, the quality deteriorate may be related to a quality of service, QoS, and/or a quality of experience, QoE, of the at least one radio resource serving the at least terminal device. The quality deteriorate may be determined to happen when the UL/DL PRB usage is more than an internal PRB usage threshold, and/or the hardware usage ratio is more than a hardware usage threshold, and/or when latency is higher than an internal latency threshold, and/or when the jitter happens.
In embodiments of the present disclosure, the at least one terminal device may comprise at least one individual user equipment, UE, and/or at least one group of UE.
In embodiments of the present disclosure, a radio resource in the at least one radio resource may comprise a network slice.
In embodiments of the present disclosure, the changed configuration may comprise a slice template for the network slice, including at least one of: a priority index of the network slice, information of bandwidth for the network slice, and/or an identity of the network slice.
In embodiments of the present disclosure, the priority index may comprise a Radio Access Technology /Frequency Selection Priority, RFSP, and/or a Subscriber Profile Identity for RAT/Frequency priority, SPID, related to the at least one radio resource.
In embodiments of the present disclosure, the slice template may be represented by an information element of dynamic radio resource item.
In embodiments of the present disclosure, the changed configuration may indicate adding and/or removing a radio frequency and/or bandwidth of the network slice.
In embodiments of the present disclosure, the changed configuration may indicate creating or selecting a new network slice for serving a terminal device.
In embodiments of the present disclosure, the changed configuration may be outputted to a second network entity.
In embodiments of the present disclosure, the second network entity may comprise a network function consumer, an application function consumer, and/or an access and mobility management function, AMF.
In embodiments of the present disclosure, the AMF may transmit at least part of the changed configuration to a base station, via a message of PDU session Resource Modify Request, or UE Context  Modification Request. The first network entity may comprise a Network Data Analytics Function, NWDAF. The NWDAF may be collocated with an AMF.
In embodiments of the present disclosure, the base station may update a configuration for a terminal device based on the at least part of the changed configuration, via a message of RRC Reconfiguration, and/or RRC connection release, and/or a configuration update command.
In embodiments of the present disclosure, the message of RRC Reconfiguration may comprise additional measurement configuration based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
In embodiments of the present disclosure, the message of RRC connection release may comprise additional redirected carrier information based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
In embodiments of the present disclosure, the message of configuration update command may comprise allowed NSSAI, and/or configured NSSAI, and/or rejected NSSAI based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
In embodiments of the present disclosure, a new frequency point may be indicted by a measurement object information element.
A second aspect of the present disclosure provides a method performed by a second network entity. The method comprises: providing data to a first network entity. The first network entity determines whether a quality deteriorate happens for the at least one radio resource based at least on the provided data. The method further comprises: receiving a changed configuration for at least one radio resource serving at least one terminal device. The second network entity receives the changed configuration, if the quality deteriorate is determined to happen.
In embodiments of the present disclosure, the provided data may comprise a current configuration for the at least one radio resource.
In embodiments of the present disclosure, the current configuration for the at least one radio resource may comprise at least one of: base station or cell level information, used network slice selection assistance information, new radio absolute radio frequency channel numbers, allocated radio bandwidths, an allowed tracking area code and public land mobile network list, and/or a radio access technology/frequency selection priority, or radio resource management policy index.
In embodiments of the present disclosure, the provided data may further comprise an uplink/downlink physical resource block, UL/DL PRB, usage, hardware usage ratio, and/or a transmission latency, and/or a jitter on packets round trip, about the at least one radio resource.
In embodiments of the present disclosure, the quality deteriorate may be related to a quality of service, QoS, and/or a quality of experience, QoE, of the at least one radio resource serving the at least terminal device. The quality deteriorate may be determined to happen when the UL/DL PRB usage is more than an internal PRB usage threshold, and/or the hardware usage ratio is more than a hardware usage threshold, and/or when latency is higher than an internal latency threshold, and/or when the jitter happens.
In embodiments of the present disclosure, the at least one terminal device may comprise at  least one individual user equipment, UE, and/or at least one group of UE.
In embodiments of the present disclosure, a radio resource in the at least one radio resource may comprise a network slice.
In embodiments of the present disclosure, the changed configuration may comprise a slice template for the network slice, including at least one of: a priority index of the network slice, information of frequency and/or bandwidth for the network slice, and/or an identity of the network slice.
In embodiments of the present disclosure, the priority index may comprise a Radio Access Technology /Frequency Selection Priority, RFSP, and/or a Subscriber Profile Identity for RAT/Frequency priority, SPID, related to the at least one radio resource.
In embodiments of the present disclosure, the slice template may be represented by an information element of dynamic radio resource item.
In embodiments of the present disclosure, the changed configuration may indicate adding and/or removing a radio frequency and/or bandwidth of the network slice.
In embodiments of the present disclosure, the changed configuration may indicate creating or selecting a new network slice for serving a terminal device.
In embodiments of the present disclosure, the second network entity may comprise an access and mobility management function, AMF. The first network entity may comprise a Network Data Analytics Function, NWDAF. The NWDAF may be collocated with an AMF.
In embodiments of the present disclosure, the method may further comprise: transmitting at least part of the changed configuration to a base station, via a message of PDU session Resource Modify Request, or UE Context Modification Request. The base station may update a configuration for a terminal device based on the at least part of the changed configuration, via a message of RRC Reconfiguration, and/or RRC connection release.
In embodiments of the present disclosure, the method may further comprise: transmitting to a terminal device an updated configuration, via a message of configuration update command, and transmitting to a base station at least part of the changed configuration, via a message of AMF configuration update.
In embodiments of the present disclosure, the message of RRC Reconfiguration may comprise additional measurement configuration based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
In embodiments of the present disclosure, the message of RRC connection release may comprise additional redirected carrier information based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
In embodiments of the present disclosure, the message of configuration update command may comprise allowed NSSAI, and/or configured NSSAI, and/or rejected NSSAI based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
In embodiments of the present disclosure, a new frequency point may be indicted by a  measurement object information element.
A third aspect of the present disclosure provides a method performed by a base station. The method comprises: receiving at least part of a changed configuration for at least one radio resource from a second network entity. The second network entity provides data to a first network entity. The first network entity determines whether a quality deteriorate happens for the at least one radio resource serving at least one terminal device, based on at least the provided data. The second network entity receives the changed configuration, if the quality deteriorate is determined to happen.
In embodiments of the present disclosure, the at least part of the changed configuration may be received, via a message of PDU session Resource Modify Request, or UE Context Modification Request.
In embodiments of the present disclosure, the method may further comprise: receiving at least part of the changed configuration from the second network entity, via a message of PDU session Resource Modify Request, or UE Context Modification Request, and transmitting an updated configuration for a terminal device based on the at least part of the changed configuration, via a message of RRC Reconfiguration, and/or RRC connection release.
In embodiments of the present disclosure, the method may further comprise: transmitting to a terminal device an updated configuration from the second network entity, via a configuration update command, and receiving the at least part of the changed configuration, via a message of AMF configuration update.
In embodiments of the present disclosure, the message of RRC Reconfiguration may comprise additional measurement configuration based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
In embodiments of the present disclosure, the message of RRC connection release may comprise additional redirected carrier information based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
In embodiments of the present disclosure, the message of configuration update command may comprise allowed NSSAI, and/or configured NSSAI, and/or rejected NSSAI based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
In embodiments of the present disclosure, a new frequency point may be indicted by a measurement object information element.
In embodiments of the present disclosure, the provided data may comprise a current configuration for the at least one radio resource.
In embodiments of the present disclosure, the current configuration for the at least one radio resource may comprise at least one of: base station or cell level information, used network slice selection assistance information, new radio absolute radio frequency channel numbers, allocated radio bandwidths, an allowed tracking area code and public land mobile network list, and/or a radio access technology/frequency selection priority, or radio resource management policy index.
In embodiments of the present disclosure, the provided data may further comprise an  uplink/downlink physical resource block, UL/DL PRB, usage, hardware usage ratio, and/or a transmission latency, and/or a jitter on packets round trip, about the at least one radio resource.
In embodiments of the present disclosure, the quality deteriorate may be related to a quality of service, QoS, and/or a quality of experience, QoE, of the at least one radio resource serving the at least terminal device. The quality deteriorate may be determined to happen when the UL/DL PRB usage is more than an internal PRB usage threshold, and/or the hardware usage ratio is more than a hardware usage threshold, and/or when latency is higher than an internal latency threshold, and/or when the jitter happens.
In embodiments of the present disclosure, the at least one terminal device may comprise at least one individual user equipment, UE, and/or at least one group of UE.
In embodiments of the present disclosure, a radio resource in the at least one radio resource may comprise a network slice.
In embodiments of the present disclosure, the changed configuration may comprise a slice template for the network slice, including at least one of: a priority index of the network slice, information of bandwidth for the network slice, and/or an identity of the network slice.
In embodiments of the present disclosure, the priority index may comprise a Radio Access Technology /Frequency Selection Priority, RFSP, and/or a Subscriber Profile Identity for RAT/Frequency priority, SPID, related to the at least one radio resource.
In embodiments of the present disclosure, the slice template may be represented by an information element of dynamic radio resource item.
In embodiments of the present disclosure, the changed configuration may indicate adding and/or removing a radio frequency and/or bandwidth of the network slice.
In embodiments of the present disclosure, the changed configuration may indicate creating or selecting a new network slice for serving a terminal device.
In embodiments of the present disclosure, the second network entity may comprise an access and mobility management function, AMF.
A fourth aspect of the present disclosure provides a method performed by a terminal device. The method may comprise: receiving, from a base station, an updated configuration for the terminal device. The updated configuration may indicate the terminal device to access a new frequency point.
In embodiments of the present disclosure, the base station receives at least part of a changed configuration for at least one radio resource from a second network entity. The second network entity provides data to a first network entity. The first network entity determines whether a quality deteriorate happens for the at least one radio resource serving at least one terminal device, based on at least the provided data. The second network entity receives the changed configuration, if the quality deteriorate is determined to happen.
In embodiments of the present disclosure, the at least part of the changed configuration may be received, via a message of PDU session Resource Modify Request, or UE Context Modification Request.
In embodiments of the present disclosure, the updated configuration is based on at least part  of the changed configuration, and is received from a base station via a message of RRC Reconfiguration, and/or RRC connection release.
In embodiments of the present disclosure, the updated configuration is based on at least part of the changed configuration, and is received from an AMF, via a configuration update command.
In embodiments of the present disclosure, the message of RRC Reconfiguration may comprise additional measurement configuration based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
In embodiments of the present disclosure, the message of RRC connection release may comprise additional redirected carrier information based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
In embodiments of the present disclosure, the message of configuration update command may comprise allowed NSSAI, and/or configured NSSAI, and/or rejected NSSAI based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
In embodiments of the present disclosure, a new frequency point may be indicted by a measurement object information element.
In embodiments of the present disclosure, the provided data may comprise a current configuration for the at least one radio resource.
In embodiments of the present disclosure, the current configuration for the at least one radio resource may comprise at least one of: base station or cell level information, used network slice selection assistance information, new radio absolute radio frequency channel numbers, allocated radio bandwidths, an allowed tracking area code and public land mobile network list, and/or a radio access technology/frequency selection priority, or radio resource management policy index.
In embodiments of the present disclosure, the provided data may further comprise an uplink/downlink physical resource block, UL/DL PRB, hardware usage ratio, and/or a transmission latency, and/or a jitter on packets round trip, about the at least one radio resource.
In embodiments of the present disclosure, the quality deteriorate may be related to a quality of service, QoS, and/or a quality of experience, QoE, of the at least one radio resource serving the at least terminal device. The quality deteriorate may be determined to happen when the UL/DL PRB usage is more than an internal PRB usage threshold, and/or the hardware usage ratio is more than a hardware usage threshold, and/or when latency is higher than an internal latency threshold, and/or when the jitter happens.
In embodiments of the present disclosure, the at least one terminal device may comprise at least one individual user equipment, UE, and/or at least one group of UE.
In embodiments of the present disclosure, a radio resource in the at least one radio resource may comprise a network slice.
In embodiments of the present disclosure, the changed configuration may comprise a slice template for the network slice, including at least one of: a priority index of the network slice, information of bandwidth for the network slice, and/or an identity of the network slice.
In embodiments of the present disclosure, the priority index may comprise a Radio Access  Technology /Frequency Selection Priority, RFSP, and/or a Subscriber Profile Identity for RAT/Frequency priority, SPID, related to the at least one radio resource.
In embodiments of the present disclosure, the slice template may be represented by an information element of dynamic radio resource item.
In embodiments of the present disclosure, the changed configuration may indicate adding and/or removing a radio frequency and/or bandwidth of the network slice.
In embodiments of the present disclosure, the changed configuration may indicate creating or selecting a new network slice for serving a terminal device.
In embodiments of the present disclosure, the second network entity may comprise an access and mobility management function, AMF. The first network entity may comprise a Network Data Analytics Function, NWDAF. The NWDAF may be collocated with an AMF.
A fifth aspect of the present disclosure provides an apparatus for a first network entity in a communication network. The apparatus for the first network entity comprises: a processor, and a memory. The memory contains instructions executable by the processor. The apparatus for the first network entity is operative for: collecting data from at least one network entity, determining whether a quality deteriorate happens for at least one radio resource serving at least one terminal device based on the collected data, and outputting a changed configuration for the at least one radio resource, if the quality deteriorate is determined to happen.
In embodiments of the present disclosure, the apparatus may be further operative to perform the method according to any embodiment above mentioned.
A sixth aspect of the present disclosure provides an apparatus for a second network entity in a communication network. The apparatus for a second network entity comprises: a processor, and a memory. The memory contains instructions executable by the processor. The apparatus for the second network entity is operative for: providing data to a first network entity. The first network entity determines whether a quality deteriorate happens for the at least one radio resource, based at least on the provided data. The apparatus for the second network entity is further operative for: receiving a changed configuration for at least one radio resource serving at least one terminal device. The second network entity receives the changed configuration, if the quality deteriorate is determined to happen.
In embodiments of the present disclosure, the apparatus may be further operative to perform the method according to any embodiment above mentioned.
A seventh aspect of the present disclosure provides an apparatus for a base station in a communication network. The apparatus for a base station comprises: a processor, and a memory. The memory contains instructions executable by the processor. The apparatus for the base station is operative for: receiving at least part of a changed configuration for at least one radio resource from a second network entity. The second network entity provides data to a first network entity. The first network entity determines whether a quality deteriorate happens for the at least one radio resource serving at least one terminal device, based on at least the provided data. The second network entity receives the changed configuration, if the quality deteriorate is determined to happen.
In embodiments of the present disclosure, the apparatus may be further operative to perform  the method according to any embodiment above mentioned.
An eighth aspect of the present disclosure provides an apparatus for a terminal device in a communication network. The apparatus for a terminal device comprises: a processor, and a memory. The memory contains instructions executable by the processor. The apparatus for the terminal device is operative for: receiving, from a base station, an updated configuration for the terminal device. The updated configuration may indicate the terminal device to access a new frequency point.
In embodiments of the present disclosure, the apparatus may be further operative to perform the method according to any embodiment above mentioned.
A ninth aspect of the present disclosure provides a computer-readable storage medium storing instructions, which when executed by at least one processor, cause the at least one processor to perform the method according to any embodiment above mentioned.
Embodiments herein afford many advantages. According to embodiments of the present disclosure, an improved manner for dynamically configuring slice in communication network may be provided.
Particularly, a configuration may be changed and outputted for at least one radio resource servicing at least one terminal device, if the quality deteriorate is determined to happen. A dynamical configuration for the at least one radio resource may be achieved. Further, a quality deteriorate may be dynamically compensated. That may be named as a QoS-aware solution.
BRIEF DESCRIPTION OF DRAWINGS
The above and other aspects, features, and benefits of various embodiments of the present disclosure will become more fully apparent, by way of example, from the following detailed description with reference to the accompanying drawings, in which like reference numerals or letters are used to designate like or equivalent elements. The drawings are illustrated for facilitating better understanding of the embodiments of the disclosure and not necessarily drawn to scale, in which:
FIG. 1A is a diagram providing the procedure with AMF as NF consumer for NWDAF.
FIG. 1B is a diagram showing a call flow depicting the signaling procedure related to network slices.
FIG. 1C is another diagram showing a call flow depicting the signaling procedure related to network slices.
FIG. 1D is a diagram showing an example of NGAP Signaling for Slice.
FIG. 1E is another diagram showing an example of NGAP Signaling for Slice.
FIG. 1F is a diagram showing exemplary procedure for providing RFSP, and/or SPID.
FIG. 2 is a flow chart illustrating a method performed by a first network entity, in accordance with some embodiments of the present disclosure.
FIG. 3A is a flow chart illustrating a method performed by a second network entity, in accordance with some embodiments of the present disclosure.
FIG. 3B is a flow chart illustrating additional steps of the method as shown in FIG. 3A.
FIG. 4A is a flow chart illustrating a method performed by a base station, in accordance  with some embodiments of the present disclosure.
FIG. 4B is a flow chart illustrating additional steps of the method as shown in FIG. 4A.
FIG. 5 is a flow chart illustrating a method performed by a terminal device, in accordance with some embodiments of the present disclosure.
FIG. 6A is a block diagram showing an exemplary apparatus for a first network entity, which is suitable for perform the method according to embodiments of the disclosure.
FIG. 6B is a block diagram showing an exemplary apparatus for a second network entity, which is suitable for perform the method according to embodiments of the disclosure.
FIG. 6C is a block diagram showing an exemplary apparatus for a base station, which is suitable for perform the method according to embodiments of the disclosure.
FIG. 6D is a block diagram showing an exemplary apparatus for a terminal device, which is suitable for perform the method according to embodiments of the disclosure.
FIG. 7 is a block diagram showing an apparatus/computer readable storage medium, according to embodiments of the present disclosure.
FIG. 8A is a block diagram showing units of an exemplary apparatus for a first network entity, which is suitable for perform the method according to embodiments of the disclosure.
FIG. 8B is a block diagram showing units of an exemplary apparatus for a second network entity, which is suitable for perform the method according to embodiments of the disclosure.
FIG. 9A is a block diagram showing units of an exemplary apparatus for a base station, which is suitable for perform the method according to embodiments of the disclosure.
FIG. 9B is a block diagram showing units of an exemplary apparatus for a terminal device, which is suitable for perform the method according to embodiments of the disclosure.
FIG. 10 shows an example of a communication system 1000 in accordance with some embodiments.
FIG. 11 shows a UE 1100 in accordance with some embodiments.
FIG. 12 shows a network node 1200 in accordance with some embodiments.
FIG. 13 is a block diagram of a host 1300, which may be an embodiment of the host 1016 of FIG. 10, in accordance with various aspects described herein.
FIG. 14 is a block diagram illustrating a virtualization environment 1400 in which functions implemented by some embodiments may be virtualized.
FIG. 15 shows a communication diagram of a host 1502 communicating via a network node 1504 with a UE 1506 over a partially wireless connection in accordance with some embodiments.
FIG. 16 is a diagram showing exemplary slice template included in related messages.
FIG. 17 is an exemplary diagram showing a Collocated NWDAF Network Architecture.
FIG. 18 is a flow chart showing an exemplary procedure among several network entities, according to embodiments of the present disclosure.
FIG. 19 is a signaling diagram showing an exemplary procedure among several network entities, according to embodiments of the present disclosure.
FIG. 20 is a diagram showing details about step 14 in the FIG. 19.
FIG. 21 is a diagram showing a first exemplary use case (UC 1) for dynamic RFSP and radio resource selection, before the selection action is performed.
FIG. 22 is a diagram showing a first exemplary use case (UC 1) for dynamic RFSP and radio resource selection, after the selection action is performed.
FIG. 23 is a diagram showing alternative for step 14 in the FIG. 19.
FIG. 24 is a diagram showing a second exemplary use case (UC 1) for dynamic RFSP and radio resource selection, before the selection action is performed.
FIG. 25 is a diagram showing different control policies.
FIG. 26 is a diagram showing a burst UL PRB Usage consumption.
FIG. 27 is a diagram showing RAN DL and UL resource balance for compensating a burst UL PRB Usage consumption.
FIG. 28 is a diagram showing an improvement for latency related to a burst UL PRB Usage consumption.
DETAILED DESCRIPTION
The embodiments of the present disclosure are described in detail with reference to the accompanying drawings. It should be understood that these embodiments are discussed only for the purpose of enabling those skilled persons in the art to better understand and thus implement the present disclosure, rather than suggesting any limitations on the scope of the present disclosure. Reference throughout this specification to features, advantages, or similar language does not imply that all of the features and advantages that may be realized with the present disclosure should be or are in any single embodiment of the disclosure. Rather, language referring to the features and advantages is understood to mean that a specific feature, advantage, or characteristic described in connection with an embodiment is included in at least one embodiment of the present disclosure. Furthermore, the described features, advantages, and characteristics of the disclosure may be combined in any suitable manner in one or more embodiments. One skilled in the relevant art will recognize that the disclosure may be practiced without one or more of the specific features or advantages of a particular embodiment. In other instances, additional features and advantages may be recognized in certain embodiments that may not be present in all embodiments of the disclosure.
Generally, all terms used herein are to be interpreted according to their ordinary meaning in the relevant technical field, unless a different meaning is clearly given and/or is implied from the context in which it is used. All references to a/an/the element, apparatus, component, means, step, etc. are to be interpreted openly as referring to at least one instance of the element, apparatus, component, means, step, etc., unless explicitly stated otherwise. The steps of any methods disclosed herein do not have to be performed in the exact order disclosed, unless a step is explicitly described as following or preceding another step and/or where it is implicit that a step must follow or precede another step. Any feature of any of the embodiments disclosed herein may be applied to any other embodiment, wherever appropriate. Likewise, any advantage of any of the embodiments may apply to any other embodiments, and vice versa. Other objectives, features and advantages of the enclosed embodiments will be  apparent from the following description.
As used herein, the term “network” or “communication network” refers to a network following any suitable communication standards (such for an internet network, or any wireless network) . For example, wireless communication standards may comprise new radio (NR) , long term evolution (LTE) , LTE-Advanced, wideband code division multiple access (WCDMA) , high-speed packet access (HSPA) , Code Division Multiple Access (CDMA) , Time Division Multiple Address (TDMA) , Frequency Division Multiple Access (FDMA) , Orthogonal Frequency-Division Multiple Access (OFDMA) , Single carrier frequency division multiple access (SC-FDMA) and other wireless networks. In the following description, the terms “network” and “system” can be used interchangeably. Furthermore, the communications between two devices in the network may be performed according to any suitable communication protocols, including, but not limited to, the wireless communication protocols as defined by a standard organization such as 3rd generation partnership project (3GPP) or the wired communication protocols.
The term “network entity” used herein refers to a network device or network node or network function or any other devices (physical or virtual) in a communication network. For example, the network entity in the network may include a base station (BS) , an access point (AP) , a multi-cell/multicast coordination entity (MCE) , a server node/function (such as a service capability server/application server, SCS/AS, group communication service application server, GCS AS, application function, AF) , an exposure node/function (such as a service capability exposure function, SCEF, network exposure function, NEF) , a unified data management, UDM, a home subscriber server, HSS, a session management function, SMF, an access and mobility management function, AMF, a mobility management entity, MME, a controller or any other suitable device in a wireless communication network. The BS may be, for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a next generation NodeB (gNodeB or gNB) , a remote radio unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth.
Yet further examples of the network entity may comprise multi-standard radio (MSR) radio equipment such as MSR BSs, network controllers such as radio network controllers (RNCs) or base station controllers (BSCs) , base transceiver stations (BTSs) , transmission points, transmission nodes, positioning nodes and/or the like.
Further, the term “network node” , “network function” , “network entity” herein may also refer to any suitable node, function, entity which can be implemented (physically or virtually) in a communication network. For example, the 5G system (5GS) may comprise a plurality of NFs such as AMF (Access and mobility Function) , SMF (Session Management Function) , AUSF (Authentication Service Function) , UDM (Unified Data Management) , PCF (Policy Control Function) , AF (Application Function) , NEF (Network Exposure Function) , UPF (User plane Function) and NRF (Network Repository Function) , RAN (radio access network) , SCP (service communication proxy) , etc. In other embodiments, the network function may comprise different types of NFs (such as PCRF (Policy and Charging Rules Function) , etc. ) for example depending on the specific network.
The term “terminal device” refers to any end device that can access a communication network and receive services therefrom. By way of example and not limitation, the terminal device refers to a mobile terminal, user equipment (UE) , or other suitable devices. The UE may be, for example, a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) . The terminal device may include, but not limited to, a portable computer, an image capture terminal device such as a digital camera, a gaming terminal device, a music storage and a playback appliance, a mobile phone, a cellular phone, a smart phone, a voice over IP (VoIP) phone, a wireless local loop phone, a tablet, a wearable device, a personal digital assistant (PDA) , a portable computer, a desktop computer, a wearable terminal device, a vehicle-mounted wireless terminal device, a wireless endpoint, a mobile station, a laptop-embedded equipment (LEE) , a laptop-mounted equipment (LME) , a USB dongle, a smart device, a wireless customer-premises equipment (CPE) and the like. In the following description, the terms “terminal device” , “terminal” , “user equipment” and “UE” may be used interchangeably. As one example, a terminal device may represent a UE configured for communication in accordance with one or more communication standards promulgated by the 3GPP, such as 3GPP’ LTE standard or NR standard. As used herein, a “user equipment” or “UE” may not necessarily have a “user” in the sense of a human user who owns and/or operates the relevant device. In some embodiments, a terminal device may be configured to transmit and/or receive information without direct human interaction. For instance, a terminal device may be designed to transmit information to a network on a predetermined schedule, when triggered by an internal or external event, or in response to requests from the communication network. Instead, a UE may represent a device that is intended for sale to, or operation by, a human user but that may not initially be associated with a specific human user.
As yet another example, in an Internet of Things (IoT) scenario, a terminal device may represent a machine or other device that performs monitoring and/or measurements, and transmits the results of such monitoring and/or measurements to another terminal device and/or network equipment. The terminal device may in this case be a machine-to-machine (M2M) device, which may in a 3GPP context be referred to as a machine-type communication (MTC) device. As one particular example, the terminal device may be a UE implementing the 3GPP narrow band internet of things (NB-IoT) standard. Particular examples of such machines or devices are sensors, metering devices such as power meters, industrial machinery, or home or personal appliances, for example refrigerators, televisions, personal wearables such as watches etc. In other scenarios, a terminal device may represent a vehicle or other equipment that is capable of monitoring and/or reporting on its operational status or other functions associated with its operation.
References in the specification to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect  such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
It shall be understood that although the terms “first” and “second” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed terms.
As used herein, the phrase “at least one of A and (or) B” should be understood to mean “only A, only B, or both A and B. ” The phrase “A and/or B” should be understood to mean “only A, only B, or both A and B. ”
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a” , “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” , “comprising” , “has” , “having” , “includes” and/or “including” , when used herein, specify the presence of stated features, elements, and/or components etc., but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof.
It is noted that these terms as used in this document are used only for ease of description and differentiation among nodes, devices or networks etc. With the development of the technology, other terms with the similar/same meanings may also be used.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
FIG. 1A is a diagram providing the procedure with AMF (Access and Mobility management Function) as NF (network function) consumer for NWDAF (Network Data Analytics Function) . FIG. 1A is the same as the Figure 6.42.3-2 in 3GPP TR, 23.700-91 V2.0.0) .
The 3 rd generation partnership project technical report, 3GPP TR, 23.700-91 V2.0.0 (2020-11) provides some definitions for NWDAF-assisted RAT (Radio Access Technology) /frequency selection. This key issue describes analytics information that may be provided by NWDAF to support NFs to assist on RAT and frequency selection. In this key issue, the mechanisms as shown in FIG. 1 need to be studied.
As shown in FIG. 1A, in step 0, AMF subscribe to NWDAF or request analytics about RFSP (Radio Access Technology/Frequency Selection Priority) configuration. Then, NWDAF get inputs from NFs. In step 1a, RFSP index in use is obtained by the NWDAF from AMF. In step 1b, authorized RFSP index is obtained by the NWDAF from PCF. In step 1c, subscribed RFSP index is obtained by the NWDAF from UDM. In step 1d (optional) , NG-RAN info related to RFSP is obtained by the NWDAF from OAM. In step 1e, session related info is obtained by the NWDAF from SMF. In step 2, NWDAF provides outcome. In step 3, Analytics Outcome is outputted from the NWDAF to the AMF.  In step 4, N2 message to configure RFSP index to NG-RAN is transmitted by the AMF.
FIG. 1B is a diagram showing a call flow depicting the signaling procedure related to network slices.
As shown in FIG. 1B, gNB CU-CP (central unit control plane) communicates with gNB CU-UP (central unit user plane) via E1 Application Protocol (E1AP) . gNB CU-CP receives E1 Setup Request from gNB CU-UP and transmits E1 Setup Response to the gNB CU-UP.
gNB CU-CP (central unit control plane) communicates with AMF via Next Generation Application Protocol (NGAP) . gNB CU-CP transmit NG Setup Request to AMF, and receives NG Setup Response from the AMF.
UE synchronizes with gNB CU-CP in DL/UL. UE sends RRC Setup Request to gNB CU-CP, receives the RRC Setup from gNB CU-CP and sends the RRC Setup Completed to the gNB CU-CP.
Via NAS, UE transmits Registration Request including requested NSSAI to the AMF, and receives Registration Accept including allowed NSSAI and configured NSSAI, from the AMF.
Via NAS, UE transmits PDU Session Establishment Request including NSSAI Requested for PDU Session to the SMF, and receives PDU Session Establishment Response including NSSAI allocated to PDU session, from the SMF.
FIG. 1C is another diagram showing a call flow depicting the signaling procedure related to network slices.
As shown in FIG. 1C, refer to slice selection RAN Slice &AMF Selection (3GPP TS 23.502) , during NG Setup with AMF-1 &AMF-2, gNB and AMFs exchange their supported NSSAI lists via NG Setup Request and NG Setup Response, via messages NG Setup Request, NG Setup Response, etc.
gNB may provide NSSAIs per Tracking Area Code (TAC) . AMF may provide NSSAIs in the PLMN.
In the RRC Setup Completed message, UE optionally provides the Requested NSSAI along with the PDU session to be established. Provisional RAN slice selection &AMF selection is done based on this. gNB forwards the NAS Registration Request to the selected AMF instance and AMF validates the Requested NSSAI using Subscribed NSSAI.
FIG. 1D is a diagram showing an example of NGAP Signaling for Slice.
Particularly, FIG. 1D shows Requested NSSAI with Initial UE message/Registration Request.
FIG. 1E is another diagram showing an example of NGAP Signaling for Slice.
Particularly, FIG. 1E shows Allowed NSSAI within Initial Context Setup Request Message.
FIG. 1F is a diagram showing exemplary procedure for providing RFSP, and/or SPID.
As shown in FIG. 1F, UDM provides UDM data to 5GC, at least including slice profile A: -> S-NSSAI=1; slice profile B: -> S-NSSAI=2.
Then 5GC provides such S-NSSAI to gNB, via NG interface.
Other side, HSS provides HSS data to 4GC, at least including EPS profile A: ->RFSP=1;  EPS profile B: -> RFSP =2.
MME maps RFSP to SPID, and provides SPID to eNB via S1 interface. then eNB maps SPID 1 to Partition X, and maps SPID 2 to Partition Y.
eNB provides at least PLMN, SPID, QCI to gNB, via X2 interface, using a X2AP message “SgNB Addition Request” .
gBN then maps S-NSSAI 1 to Partition X, maps S-NSSAI 2 to Partition Y, maps SPID 1 to Partition X, and maps SPID 2 to Partition Y.
The above manner causes some problems. For example, as to problem 1, the above use case (UC) doesn’t describe the  QoS related improvement (such as UE Throughput, RFSP selection with  radio resources allocation) , especially in some burst traffic scenarios such as big event, etc. And current NWDAF UC  could not be aware of the actual  traffic characteristic (DL (downlink) or UL (uplink) throughput on RAN or session latency from UE to Packet Core) or area level or  RAN node level  congestion (for example growing DL buffer with bad radio throughput or UL PDU buffered on UE side since resource congestion) .
As to problem 2, the NWDAF in the above UC has few collaborative data collection and prediction between different NFs including RAN,  which is not easy for NWDAF to correlate all the  data (the RAT/Frequency Selection Priority (RFSP) , Additional RRM (Radio Resource Management) Policy Index (ARPI) ,  radio bandwidth, etc. ) , let alone for taking actions.
The big event or enterprise network scenarios cause burst traffic to challenge the network robustness and automation capability. And network automation should further mitigate such risk via NWDAF. The example about big event may be some event for sports competitions or entertainment activities.
Some embodiments of the present disclosure may provide solutions to these problems.
FIG. 2 is a flow chart illustrating a method performed by a first network entity, in accordance with some embodiments of the present disclosure.
As shown in FIG. 2, a method 200 performed by a first network entity comprises: a step S202, collecting data from at least one network entity, a step S204, determining whether a quality deteriorate happens for at least one radio resource serving at least one terminal device based on the collected data, and a step S206, outputting a changed configuration for the at least one radio resource, if the quality deteriorate is determined to happen.
According to embodiments of the present disclosure, an improved manner for dynamically configuring slice in communication network may be provided. Particularly, a configuration may be changed and outputted for at least one radio resource servicing at least one terminal device, if the quality deteriorate is determined to happen. A dynamical configuration for the at least one radio resource may be achieved. Further, a quality deteriorate may be dynamically compensated. That may be named as a QoS-aware solution.
In embodiments of the present disclosure, the at least one network entity may comprise at least one of: an operation support system, an access and mobility management function, a policy control function, and/or a base station.
In embodiments of the present disclosure, the collected data may comprise a current configuration for the at least one radio resource.
In embodiments of the present disclosure, the current configuration for the at least one radio resource may comprise at least one of: base station or cell level information, used network slice selection assistance information, new radio absolute radio frequency channel numbers, allocated radio bandwidths, an allowed tracking area code and public land mobile network list, and/or a radio access technology/frequency selection priority, or radio resource management policy index.
In embodiments of the present disclosure, the collected data may further comprise an uplink/downlink physical resource block, UL/DL PRB, usage, hardware usage ratio, and/or a transmission latency, and/or a jitter on packets round trip, about the at least one radio resource.
In embodiments of the present disclosure, the quality deteriorate may be related to a quality of service, QoS, and/or a quality of experience, QoE, of the at least one radio resource serving the at least terminal device. The quality deteriorate may be determined to happen when the UL/DL PRB usage is more than an internal PRB usage threshold, and/or the hardware usage ratio is more than a hardware usage threshold, and/or when latency is higher than an internal latency threshold, and/or when the jitter happens.
In embodiments of the present disclosure, the at least one terminal device may comprise at least one individual user equipment, UE, and/or at least one group of UE.
In embodiments of the present disclosure, a radio resource in the at least one radio resource may comprise a network slice.
In embodiments of the present disclosure, the changed configuration may comprise a slice template for the network slice, including at least one of: a priority index of the network slice, information of bandwidth for the network slice, and/or an identity of the network slice.
In embodiments of the present disclosure, the priority index may comprise a Radio Access Technology /Frequency Selection Priority, RFSP, and/or a Subscriber Profile Identity for RAT/Frequency priority, SPID, related to the at least one radio resource.
In embodiments of the present disclosure, the slice template may be represented by an information element of dynamic radio resource item.
In embodiments of the present disclosure, the changed configuration may indicate adding and/or removing a radio frequency and/or bandwidth of the network slice.
In embodiments of the present disclosure, the changed configuration may indicate creating or selecting a new network slice for serving a terminal device.
In embodiments of the present disclosure, the changed configuration may be outputted to a second network entity.
In embodiments of the present disclosure, the second network entity may comprise a network function consumer, an application function consumer, and/or an access and mobility management function, AMF.
In embodiments of the present disclosure, the AMF may transmit at least part of the changed configuration to a base station, via a message of PDU session Resource Modify Request, or UE Context  Modification Request. The first network entity may comprise a Network Data Analytics Function, NWDAF. The NWDAF may be collocated with an AMF.
In embodiments of the present disclosure, the base station may update a configuration for a terminal device based on the at least part of the changed configuration, via a message of RRC Reconfiguration, and/or RRC connection release, and/or a configuration update command.
In embodiments of the present disclosure, the message of RRC Reconfiguration may comprise additional measurement configuration based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
In embodiments of the present disclosure, the message of RRC connection release may comprise additional redirected carrier information based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
In embodiments of the present disclosure, the message of configuration update command may comprise allowed NSSAI, and/or configured NSSAI, and/or rejected NSSAI based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
In embodiments of the present disclosure, a new frequency point may be indicted by a measurement object information element.
According to embodiments of the present disclosure, with improved configuration, the mismatch of RFSP/ARPI from packet core, and E-UTRAN Absolute Radio Frequency Channel Number (EARFN) /NR Absolute Radio Frequency Channel number (NR-ARFCN) from RAN may be mitigated. A QoS-aware RFSP selection solution between different NFs on network slice level may be provided. The collocated NWDAF may analyze slice information (packet latency, jitter on IP packets round trip) and provide a dynamic slice QoE/QoS improvement method (considering RAN throughout congestion, latency) . A collocated NWDAF architecture may be provided, which could be compatible with standalone NWDAF. Meanwhile, it analyzes slice information (such as latency, jitter on IP packets round trip) and provide a dynamic slice QoE/QoS improvement for each user.
FIG. 3A is a flow chart illustrating a method performed by a second network entity, in accordance with some embodiments of the present disclosure.
As shown in FIG. 3A, a method 300 performed by a second network entity comprises: a step S302, providing data to a first network entity. The first network entity determines whether a quality deteriorate happens for the at least one radio resource based at least on the provided data. The method 300 further comprises: a step S304, receiving a changed configuration for at least one radio resource serving at least one terminal device. The second network entity receives the changed configuration, if the quality deteriorate is determined to happen.
In embodiments of the present disclosure, the provided data may comprise a current configuration for the at least one radio resource.
In embodiments of the present disclosure, the current configuration for the at least one radio resource may comprise at least one of: base station or cell level information, used network slice selection assistance information, new radio absolute radio frequency channel numbers, allocated radio bandwidths, an allowed tracking area code and public land mobile network list, and/or a radio access  technology/frequency selection priority, or radio resource management policy index.
In embodiments of the present disclosure, the provided data may further comprise an uplink/downlink physical resource block, UL/DL PRB, usage, hardware usage ratio, and/or a transmission latency, and/or a jitter on packets round trip, about the at least one radio resource.
In embodiments of the present disclosure, the quality deteriorate may be related to a quality of service, QoS, and/or a quality of experience, QoE, of the at least one radio resource serving the at least terminal device. The quality deteriorate may be determined to happen when the UL/DL PRB usage is more than an internal PRB usage threshold, and/or the hardware usage ratio is more than a hardware usage threshold, and/or when latency is higher than an internal latency threshold, and/or when the jitter happens.
In embodiments of the present disclosure, the at least one terminal device may comprise at least one individual user equipment, UE, and/or at least one group of UE.
In embodiments of the present disclosure, a radio resource in the at least one radio resource may comprise a network slice.
In embodiments of the present disclosure, the changed configuration may comprise a slice template for the network slice, including at least one of: a priority index of the network slice, information of frequency and/or bandwidth for the network slice, and/or an identity of the network slice.
In embodiments of the present disclosure, the priority index may comprise a Radio Access Technology /Frequency Selection Priority, RFSP, and/or a Subscriber Profile Identity for RAT/Frequency priority, SPID, related to the at least one radio resource.
In embodiments of the present disclosure, the slice template may be represented by an information element of dynamic radio resource item.
In embodiments of the present disclosure, the changed configuration may indicate adding and/or removing a radio frequency and/or bandwidth of the network slice.
In embodiments of the present disclosure, the changed configuration may indicate creating or selecting a new network slice for serving a terminal device.
In embodiments of the present disclosure, the second network entity may comprise an access and mobility management function, AMF. The first network entity may comprise a Network Data Analytics Function, NWDAF. The NWDAF may be collocated with an AMF.
FIG. 3B is a flow chart illustrating additional steps of the method as shown in FIG. 3A.
As show in FIG. 3B, the method 300 may further comprise: a step S306, transmitting at least part of the changed configuration to a base station, via a message of PDU session Resource Modify Request, or UE Context Modification Request. The base station may update a configuration for a terminal device based on the at least part of the changed configuration, via a message of RRC Reconfiguration, and/or RRC connection release.
The method 300 may further comprise: a step S308, transmitting to a terminal device an updated configuration, via a message of configuration update command; and a step S310, transmitting to a base station at least part of the changed configuration, via a message of AMF configuration update.
In embodiments of the present disclosure, the message of RRC Reconfiguration may comprise additional measurement configuration based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
In embodiments of the present disclosure, the message of RRC connection release may comprise additional redirected carrier information based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
In embodiments of the present disclosure, the message of configuration update command may comprise allowed NSSAI, and/or configured NSSAI, and/or rejected NSSAI based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
In embodiments of the present disclosure, a new frequency point may be indicted by a measurement object information element.
FIG. 4A is a flow chart illustrating a method performed by a base station, in accordance with some embodiments of the present disclosure.
As shown in FIG. 4A, the method performed by a base station comprises: a step S402, receiving at least part of a changed configuration for at least one radio resource from a second network entity. The second network entity provides data to a first network entity. The first network entity determines whether a quality deteriorate happens for the at least one radio resource serving at least one terminal device, based on at least the provided data. The second network entity receives the changed configuration, if the quality deteriorate is determined to happen.
In embodiments of the present disclosure, the at least part of the changed configuration may be received, via a message of PDU session Resource Modify Request, or UE Context Modification Request.
FIG. 4B is a flow chart illustrating additional steps of the method as shown in FIG. 4A.
As shown in FIG. 4B, the method 400 may further comprise: a step S404, receiving at least part of the changed configuration from the second network entity, via a message of PDU session Resource Modify Request, or UE Context Modification Request; and a step S406, transmitting an updated configuration for a terminal device based on the at least part of the changed configuration, via a message of RRC Reconfiguration, and/or RRC connection release.
The method 400 may further comprise: a step S408, transmitting to a terminal device an updated configuration from the second network entity, via a configuration update command; and a step S410, receiving the at least part of the changed configuration, via a message of AMF configuration update.
In embodiments of the present disclosure, the message of RRC Reconfiguration may comprise additional measurement configuration based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
In embodiments of the present disclosure, the message of RRC connection release may comprise additional redirected carrier information based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
In embodiments of the present disclosure, the message of configuration update command may comprise allowed NSSAI, and/or configured NSSAI, and/or rejected NSSAI based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
In embodiments of the present disclosure, a new frequency point may be indicted by a measurement object information element.
In embodiments of the present disclosure, the provided data may comprise a current configuration for the at least one radio resource.
In embodiments of the present disclosure, the current configuration for the at least one radio resource may comprise at least one of: base station or cell level information, used network slice selection assistance information, new radio absolute radio frequency channel numbers, allocated radio bandwidths, an allowed tracking area code and public land mobile network list, and/or a radio access technology/frequency selection priority, or radio resource management policy index.
In embodiments of the present disclosure, the provided data may further comprise an uplink/downlink physical resource block, UL/DL PRB, usage, hardware usage ratio, and/or a transmission latency, and/or a jitter on packets round trip, about the at least one radio resource.
In embodiments of the present disclosure, the quality deteriorate may be related to a quality of service, QoS, and/or a quality of experience, QoE, of the at least one radio resource serving the at least terminal device. The quality deteriorate may be determined to happen when the UL/DL PRB usage is more than an internal PRB usage threshold, and/or the hardware usage ratio is more than a hardware usage threshold, and/or when latency is higher than an internal latency threshold, and/or when the jitter happens.
In embodiments of the present disclosure, the at least one terminal device may comprise at least one individual user equipment, UE, and/or at least one group of UE.
In embodiments of the present disclosure, a radio resource in the at least one radio resource may comprise a network slice.
In embodiments of the present disclosure, the changed configuration may comprise a slice template for the network slice, including at least one of: a priority index of the network slice, information of bandwidth for the network slice, and/or an identity of the network slice.
In embodiments of the present disclosure, the priority index may comprise a Radio Access Technology /Frequency Selection Priority, RFSP, and/or a Subscriber Profile Identity for RAT/Frequency priority, SPID, related to the at least one radio resource.
In embodiments of the present disclosure, the slice template may be represented by an information element of dynamic radio resource item.
In embodiments of the present disclosure, the changed configuration may indicate adding and/or removing a radio frequency and/or bandwidth of the network slice.
In embodiments of the present disclosure, the changed configuration may indicate creating or selecting a new network slice for serving a terminal device.
In embodiments of the present disclosure, the second network entity may comprise an access and mobility management function, AMF.
FIG. 5 is a flow chart illustrating a method performed by a terminal device, in accordance with some embodiments of the present disclosure.
As shown in FIG. 5, a method 500 performed by a terminal device comprises: a step S502, receiving, from a base station, an updated configuration for the terminal device. The updated configuration may indicate the terminal device to access a new frequency point.
In embodiments of the present disclosure, the base station receives at least part of a changed configuration for at least one radio resource from a second network entity. The second network entity provides data to a first network entity. The first network entity determines whether a quality deteriorate happens for the at least one radio resource serving at least one terminal device, based on at least the provided data. The second network entity receives the changed configuration, if the quality deteriorate is determined to happen.
In embodiments of the present disclosure, the at least part of the changed configuration may be received, via a message of PDU session Resource Modify Request, or UE Context Modification Request.
In embodiments of the present disclosure, the updated configuration is based on at least part of the changed configuration, and is received from a base station via a message of RRC Reconfiguration, and/or RRC connection release.
In embodiments of the present disclosure, the updated configuration is based on at least part of the changed configuration, and is received from an AMF, via a configuration update command.
In embodiments of the present disclosure, the message of RRC Reconfiguration may comprise additional measurement configuration based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
In embodiments of the present disclosure, the message of RRC connection release may comprise additional redirected carrier information based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
In embodiments of the present disclosure, the message of configuration update command may comprise allowed NSSAI, and/or configured NSSAI, and/or rejected NSSAI based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
In embodiments of the present disclosure, a new frequency point may be indicted by a measurement object information element.
In embodiments of the present disclosure, the provided data may comprise a current configuration for the at least one radio resource.
In embodiments of the present disclosure, the current configuration for the at least one radio resource may comprise at least one of: base station or cell level information, used network slice selection assistance information, new radio absolute radio frequency channel numbers, allocated radio bandwidths, an allowed tracking area code and public land mobile network list, and/or a radio access technology/frequency selection priority, or radio resource management policy index.
In embodiments of the present disclosure, the provided data may further comprise an uplink/downlink physical resource block, UL/DL PRB, hardware usage ratio, and/or a transmission  latency, and/or a jitter on packets round trip, about the at least one radio resource.
In embodiments of the present disclosure, the quality deteriorate may be related to a quality of service, QoS, and/or a quality of experience, QoE, of the at least one radio resource serving the at least terminal device. The quality deteriorate may be determined to happen when the UL/DL PRB usage is more than an internal PRB usage threshold, and/or the hardware usage ratio is more than a hardware usage threshold, and/or when latency is higher than an internal latency threshold, and/or when the jitter happens.
In embodiments of the present disclosure, the at least one terminal device may comprise at least one individual user equipment, UE, and/or at least one group of UE.
In embodiments of the present disclosure, a radio resource in the at least one radio resource may comprise a network slice.
In embodiments of the present disclosure, the changed configuration may comprise a slice template for the network slice, including at least one of: a priority index of the network slice, information of bandwidth for the network slice, and/or an identity of the network slice.
In embodiments of the present disclosure, the priority index may comprise a Radio Access Technology /Frequency Selection Priority, RFSP, and/or a Subscriber Profile Identity for RAT/Frequency priority, SPID, related to the at least one radio resource.
In embodiments of the present disclosure, the slice template may be represented by an information element of dynamic radio resource item.
In embodiments of the present disclosure, the changed configuration may indicate adding and/or removing a radio frequency and/or bandwidth of the network slice.
In embodiments of the present disclosure, the changed configuration may indicate creating or selecting a new network slice for serving a terminal device.
In embodiments of the present disclosure, the second network entity may comprise an access and mobility management function, AMF. The first network entity may comprise a Network Data Analytics Function, NWDAF. The NWDAF may be collocated with an AMF.
FIG. 6A is a block diagram showing an exemplary apparatus for a first network entity, which is suitable for perform the method according to embodiments of the disclosure.
An apparatus 60 for a first network entity in a communication network comprises: a processor 602, and a memory 604. The memory 604 contains instructions executable by the processor 602. The apparatus 60 for the first network entity is operative for: collecting data from at least one network entity, determining whether a quality deteriorate happens for at least one radio resource serving at least one terminal device based on the collected data, and outputting a changed configuration for the at least one radio resource, if the quality deteriorate is determined to happen.
In embodiments of the present disclosure, the apparatus 60 may be further operative to perform the method according to any embodiment above mentioned, such as shown with FIG. 2.
FIG. 6B is a block diagram showing an exemplary apparatus for a second network entity, which is suitable for perform the method according to embodiments of the disclosure.
An apparatus 62 for a second network entity in a communication network comprises: a  processor 622, and a memory 624. The memory contains instructions executable by the processor 622. The apparatus 60 for the second network entity is operative for: providing data to a first network entity. The first network entity determines whether a quality deteriorate happens for the at least one radio resource, based at least on the provided data. The apparatus 62 for the second network entity is further operative for: receiving a changed configuration for at least one radio resource serving at least one terminal device. The second network entity receives the changed configuration, if the quality deteriorate is determined to happen.
In embodiments of the present disclosure, the apparatus 62 may be further operative to perform the method according to any embodiment above mentioned, such as shown with FIG. 3.
FIG. 6C is a block diagram showing an exemplary apparatus for a base station, which is suitable for perform the method according to embodiments of the disclosure.
An apparatus 64 for a base station in a communication network comprises: a processor 642, and a memory 644. The memory 644 contains instructions executable by the processor 642. The apparatus 64 for the base station is operative for: receiving at least part of a changed configuration for at least one radio resource from a second network entity. The second network entity provides data to a first network entity. The first network entity determines whether a quality deteriorate happens for the at least one radio resource serving at least one terminal device, based on at least the provided data. The second network entity receives the changed configuration, if the quality deteriorate is determined to happen.
In embodiments of the present disclosure, the apparatus 64 may be further operative to perform the method according to any embodiment above mentioned, such as shown with FIG. 4.
FIG. 6D is a block diagram showing an exemplary apparatus for a terminal device, which is suitable for perform the method according to embodiments of the disclosure.
An apparatus 66 for a terminal device in a communication network comprises: a processor 662, and a memory 664. The memory 664 contains instructions executable by the processor 662. The apparatus 66 for the terminal device is operative for: receiving, from a base station, an updated configuration for the terminal device. The updated configuration may indicate the terminal device to access a new frequency point.
In embodiments of the present disclosure, the apparatus 66 may be further operative to perform the method according to any embodiment above mentioned, such as shown with FIG. 5.
The  processors  602, 622, 642, 662 may be any kind of processing component, such as one or more microprocessor or microcontrollers, as well as other digital hardware, which may include digital signal processors (DSPs) , special-purpose digital logic, and the like. The  memories  604, 624, 644, 664 may be any kind of storage component, such as read-only memory (ROM) , random-access memory, cache memory, flash memory devices, optical storage devices, etc.
FIG. 7 is a block diagram showing an apparatus/computer readable storage medium, according to embodiments of the present disclosure.
As shown in FIG. 7, the computer-readable storage medium 70, or any other kind of program products, stores instructions 701, which when executed by at least one processor, cause the at least one  processor to perform the method according to any one of the above embodiments, such as these shown with FIG. 2, 3, 4, 5.
In addition, the present disclosure may also provide a carrier containing the computer program/instructions as mentioned above. The carrier is one of an electronic signal, optical signal, radio signal, or computer readable storage medium. The computer readable storage medium can be, for example, an optical compact disk or an electronic memory device like a RAM (random access memory) , a ROM (read only memory) , Flash memory, magnetic tape, CD-ROM, DVD, Blue-ray disc and the like.
FIG. 8A is a block diagram showing units of an exemplary apparatus for a first network entity, which is suitable for perform the method according to embodiments of the disclosure.
As shown in FIG. 8A, an apparatus 80 for a first network entity in a communication network comprises: a collecting unit 802, configured to collect data from at least one network entity, a determining unit 804, configured to determine whether a quality deteriorate happens for at least one radio resource serving at least one terminal device based on the collected data, and a outputting unit 806, configured to output a changed configuration for the at least one radio resource, if the quality deteriorate is determined to happen.
In embodiments of the present disclosure, the apparatus 80 is further operative to perform the method according to any of the above embodiments, such as these shown with FIG. 2.
FIG. 8B is a block diagram showing units of an exemplary apparatus for a second network entity, which is suitable for perform the method according to embodiments of the disclosure.
As shown in FIG. 8B, an apparatus 82 for a first network entity in a communication network comprises: a providing unit, configured to provide data to a first network entity. The first network entity determines whether a quality deteriorate happens for the at least one radio resource, based at least on the provided data. The apparatus 82 for the second network entity further comprises: a receiving unit 824, configured to receive a changed configuration for at least one radio resource serving at least one terminal device. The second network entity receives the changed configuration, if the quality deteriorate is determined to happen.
In embodiments of the present disclosure, the apparatus 82 is further operative to perform the method according to any of the above embodiments, such as these shown with FIG. 3.
FIG. 9A is a block diagram showing units of an exemplary apparatus for a base station, which is suitable for perform the method according to embodiments of the disclosure.
As shown in FIG. 9A, an apparatus 90 for a base station in a communication network comprises: a receiving unit 902, at least part of a changed configuration for at least one radio resource from a second network entity. The second network entity provides data to a first network entity. The first network entity determines whether a quality deteriorate happens for the at least one radio resource serving at least one terminal device, based on at least the provided data. The second network entity receives the changed configuration, if the quality deteriorate is determined to happen.
In embodiments of the present disclosure, the apparatus 90 is further operative to perform the method according to any of the above embodiments, such as these shown with FIG. 4.
FIG. 9B is a block diagram showing units of an exemplary apparatus for a terminal device, which is suitable for perform the method according to embodiments of the disclosure.
As shown in FIG. 9B, an apparatus 92 for a base station in a communication network comprises: a receiving unit 922, configured to receive, from a base station, an updated configuration for the terminal device. The updated configuration may indicate the terminal device to access a new frequency point.
In embodiments of the present disclosure, the apparatus 92 is further operative to perform the method according to any of the above embodiments, such as these shown with FIG. 5.
The term ‘unit’ may have conventional meaning in the field of electronics, electrical devices and/or electronic devices and may include, for example, electrical and/or electronic circuitry, devices, modules, processors, memories, logic solid state and/or discrete devices, computer programs or instructions for carrying out respective tasks, procedures, computations, outputs, and/or displaying functions, and so on, as such as those that are described herein.
With these units, the apparatus may not need a fixed processor or memory, any kind of computing resource and storage resource may be arranged from at least one network node/device/entity/apparatus relating to the communication system. The virtualization technology and network computing technology (e.g., cloud computing) may be further introduced, so as to improve the usage efficiency of the network resources and the flexibility of the network.
The techniques described herein may be implemented by various means so that an apparatus implementing one or more functions of a corresponding apparatus described with an embodiment comprises not only prior art means, but also means for implementing the one or more functions of the corresponding apparatus described with the embodiment and it may comprise separate means for each separate function, or means that may be configured to perform two or more functions. For example, these techniques may be implemented in hardware (one or more apparatuses) , firmware (one or more apparatuses) , software (one or more modules/units) , or combinations thereof. For a firmware or software, implementation may be made through modules (e.g., procedures, functions, and so on) that perform the functions described herein.
FIG. 10 shows an example of a communication system 1000 in accordance with some embodiments.
In the example, the communication system 1000 includes a telecommunication network 1002 that includes an access network 1004, such as a radio access network (RAN) , and a core network 1006, which includes one or more core network nodes 1008. The access network 1004 includes one or more access network nodes, such as network nodes 1010a and 1010b (one or more of which may be generally referred to as network nodes 1010) , or any other similar 3 rd Generation Partnership Project (3GPP) access node or non-3GPP access point. The network nodes 1010 facilitate direct or indirect connection of user equipment (UE) , such as by connecting UEs 1012a, 1012b, 1012c, and 1012d (one or more of which may be generally referred to as UEs 1012) to the core network 1006 over one or more wireless connections.
Example wireless communications over a wireless connection include transmitting and/or receiving wireless signals using electromagnetic waves, radio waves, infrared waves, and/or other types of signals suitable for conveying information without the use of wires, cables, or other material conductors. Moreover, in different embodiments, the communication system 1000 may include any number of wired or wireless networks, network nodes, UEs, and/or any other components or systems that may facilitate or participate in the communication of data and/or signals whether via wired or wireless connections. The communication system 1000 may include and/or interface with any type of communication, telecommunication, data, cellular, radio network, and/or other similar type of system.
The UEs 1012 may be any of a wide variety of communication devices, including wireless devices arranged, configured, and/or operable to communicate wirelessly with the network nodes 1010 and other communication devices. Similarly, the network nodes 1010 are arranged, capable, configured, and/or operable to communicate directly or indirectly with the UEs 1012 and/or with other network nodes or equipment in the telecommunication network 1002 to enable and/or provide network access, such as wireless network access, and/or to perform other functions, such as administration in the telecommunication network 1002.
In the depicted example, the core network 1006 connects the network nodes 1010 to one or more hosts, such as host 1016. These connections may be direct or indirect via one or more intermediary networks or devices. In other examples, network nodes may be directly coupled to hosts. The core network 1006 includes one more core network nodes (e.g., core network node 1008) that are structured with hardware and software components. Features of these components may be substantially similar to those described with respect to the UEs, network nodes, and/or hosts, such that the descriptions thereof are generally applicable to the corresponding components of the core network node 1008. Example core network nodes include functions of one or more of a Mobile Switching Center (MSC) , Mobility Management Entity (MME) , Home Subscriber Server (HSS) , Access and Mobility Management Function (AMF) , Session Management Function (SMF) , Authentication Server Function (AUSF) , Subscription Identifier De-concealing function (SIDF) , Unified Data Management (UDM) , Security Edge Protection Proxy (SEPP) , Network Exposure Function (NEF) , and/or a User Plane Function (UPF) .
The host 1016 may be under the ownership or control of a service provider other than an operator or provider of the access network 1004 and/or the telecommunication network 1002, and may be operated by the service provider or on behalf of the service provider. The host 1016 may host a variety of applications to provide one or more service. Examples of such applications include live and pre-recorded audio/video content, data collection services such as retrieving and compiling data on various ambient conditions detected by a plurality of UEs, analytics functionality, social media, functions for controlling or otherwise interacting with remote devices, functions for an alarm and surveillance center, or any other such function performed by a server.
As a whole, the communication system 1000 of FIG. 10 enables connectivity between the UEs, network nodes, and hosts. In that sense, the communication system may be configured to operate according to predefined rules or procedures, such as specific standards that include, but are not limited  to: Global System for Mobile Communications (GSM) ; Universal Mobile Telecommunications System (UMTS) ; Long Term Evolution (LTE) , and/or other suitable 2G, 3G, 4G, 5G standards, or any applicable future generation standard (e.g., 6G) ; wireless local area network (WLAN) standards, such as the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standards (WiFi) ; and/or any other appropriate wireless communication standard, such as the Worldwide Interoperability for Microwave Access (WiMax) , Bluetooth, Z-Wave, Near Field Communication (NFC) ZigBee, LiFi, and/or any low-power wide-area network (LPWAN) standards such as LoRa and Sigfox.
In some examples, the telecommunication network 1002 is a cellular network that implements 3GPP standardized features. Accordingly, the telecommunications network 1002 may support network slicing to provide different logical networks to different devices that are connected to the telecommunication network 1002. For example, the telecommunications network 1002 may provide Ultra Reliable Low Latency Communication (URLLC) services to some UEs, while providing Enhanced Mobile Broadband (eMBB) services to other UEs, and/or Massive Machine Type Communication (mMTC) /Massive IoT services to yet further UEs.
In some examples, the UEs 1012 are configured to transmit and/or receive information without direct human interaction. For instance, a UE may be designed to transmit information to the access network 1004 on a predetermined schedule, when triggered by an internal or external event, or in response to requests from the access network 1004. Additionally, a UE may be configured for operating in single-or multi-RAT or multi-standard mode. For example, a UE may operate with any one or combination of Wi-Fi, NR (New Radio) and LTE, i.e. being configured for multi-radio dual connectivity (MR-DC) , such as E-UTRAN (Evolved-UMTS Terrestrial Radio Access Network) New Radio –Dual Connectivity (EN-DC) .
In the example, the hub 1014 communicates with the access network 1004 to facilitate indirect communication between one or more UEs (e.g., UE 1012c and/or 1012d) and network nodes (e.g., network node 1010b) . In some examples, the hub 1014 may be a controller, router, content source and analytics, or any of the other communication devices described herein regarding UEs. For example, the hub 1014 may be a broadband router enabling access to the core network 1006 for the UEs. As another example, the hub 1014 may be a controller that sends commands or instructions to one or more actuators in the UEs. Commands or instructions may be received from the UEs, network nodes 1010, or by executable code, script, process, or other instructions in the hub 1014. As another example, the hub 1014 may be a data collector that acts as temporary storage for UE data and, in some embodiments, may perform analysis or other processing of the data. As another example, the hub 1014 may be a content source. For example, for a UE that is a VR headset, display, loudspeaker or other media delivery device, the hub 1014 may retrieve VR assets, video, audio, or other media or data related to sensory information via a network node, which the hub 1014 then provides to the UE either directly, after performing local processing, and/or after adding additional local content. In still another example, the hub 1014 acts as a proxy server or orchestrator for the UEs, in particular in if one or more of the UEs are low energy IoT devices.
The hub 1014 may have a constant/persistent or intermittent connection to the network node 1010b. The hub 1014 may also allow for a different communication scheme and/or schedule between the hub 1014 and UEs (e.g., UE 1012c and/or 1012d) , and between the hub 1014 and the core network 1006. In other examples, the hub 1014 is connected to the core network 1006 and/or one or more UEs via a wired connection. Moreover, the hub 1014 may be configured to connect to an M2M service provider over the access network 1004 and/or to another UE over a direct connection. In some scenarios, UEs may establish a wireless connection with the network nodes 1010 while still connected via the hub 1014 via a wired or wireless connection. In some embodiments, the hub 1014 may be a dedicated hub –that is, a hub whose primary function is to route communications to/from the UEs from/to the network node 1010b. In other embodiments, the hub 1014 may be a non-dedicated hub –that is, a device which is capable of operating to route communications between the UEs and network node 1010b, but which is additionally capable of operating as a communication start and/or end point for certain data channels.
FIG. 11 shows a UE 1100 in accordance with some embodiments. As used herein, a UE refers to a device capable, configured, arranged and/or operable to communicate wirelessly with network nodes and/or other UEs. Examples of a UE include, but are not limited to, a smart phone, mobile phone, cell phone, voice over IP (VoIP) phone, wireless local loop phone, desktop computer, personal digital assistant (PDA) , wireless cameras, gaming console or device, music storage device, playback appliance, wearable terminal device, wireless endpoint, mobile station, tablet, laptop, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , smart device, wireless customer-premise equipment (CPE) , vehicle-mounted or vehicle embedded/integrated wireless device, etc. Other examples include any UE identified by the 3rd Generation Partnership Project (3GPP) , including a narrow band internet of things (NB-IoT) UE, a machine type communication (MTC) UE, and/or an enhanced MTC (eMTC) UE.
A UE may support device-to-device (D2D) communication, for example by implementing a 3GPP standard for sidelink communication, Dedicated Short-Range Communication (DSRC) , vehicle-to-vehicle (V2V) , vehicle-to-infrastructure (V2I) , or vehicle-to-everything (V2X) . In other examples, a UE may not necessarily have a user in the sense of a human user who owns and/or operates the relevant device. Instead, a UE may represent a device that is intended for sale to, or operation by, a human user but which may not, or which may not initially, be associated with a specific human user (e.g., a smart sprinkler controller) . Alternatively, a UE may represent a device that is not intended for sale to, or operation by, an end user but which may be associated with or operated for the benefit of a user (e.g., a smart power meter) .
The UE 1100 includes processing circuitry 1102 that is operatively coupled via a bus 1104 to an input/output interface 1106, a power source 1108, a memory 1110, a communication interface 1112, and/or any other component, or any combination thereof. Certain UEs may utilize all or a subset of the components shown in FIG. 11. The level of integration between the components may vary from one UE to another UE. Further, certain UEs may contain multiple instances of a component, such as multiple processors, memories, transceivers, transmitters, receivers, etc.
The processing circuitry 1102 is configured to process instructions and data and may be configured to implement any sequential state machine operative to execute instructions stored as machine-readable computer programs in the memory 1110. The processing circuitry 1102 may be implemented as one or more hardware-implemented state machines (e.g., in discrete logic, field-programmable gate arrays (FPGAs) , application specific integrated circuits (ASICs) , etc. ) ; programmable logic together with appropriate firmware; one or more stored computer programs, general-purpose processors, such as a microprocessor or digital signal processor (DSP) , together with appropriate software; or any combination of the above. For example, the processing circuitry 1102 may include multiple central processing units (CPUs) .
In the example, the input/output interface 1106 may be configured to provide an interface or interfaces to an input device, output device, or one or more input and/or output devices. Examples of an output device include a speaker, a sound card, a video card, a display, a monitor, a printer, an actuator, an emitter, a smartcard, another output device, or any combination thereof. An input device may allow a user to capture information into the UE 1100. Examples of an input device include a touch-sensitive or presence-sensitive display, a camera (e.g., a digital camera, a digital video camera, a web camera, etc. ) , a microphone, a sensor, a mouse, a trackball, a directional pad, a trackpad, a scroll wheel, a smartcard, and the like. The presence-sensitive display may include a capacitive or resistive touch sensor to sense input from a user. A sensor may be, for instance, an accelerometer, a gyroscope, a tilt sensor, a force sensor, a magnetometer, an optical sensor, a proximity sensor, a biometric sensor, etc., or any combination thereof. An output device may use the same type of interface port as an input device. For example, a Universal Serial Bus (USB) port may be used to provide an input device and an output device.
In some embodiments, the power source 1108 is structured as a battery or battery pack. Other types of power sources, such as an external power source (e.g., an electricity outlet) , photovoltaic device, or power cell, may be used. The power source 1108 may further include power circuitry for delivering power from the power source 1108 itself, and/or an external power source, to the various parts of the UE 1100 via input circuitry or an interface such as an electrical power cable. Delivering power may be, for example, for charging of the power source 1108. Power circuitry may perform any formatting, converting, or other modification to the power from the power source 1108 to make the power suitable for the respective components of the UE 1100 to which power is supplied.
The memory 1110 may be or be configured to include memory such as random access memory (RAM) , read-only memory (ROM) , programmable read-only memory (PROM) , erasable programmable read-only memory (EPROM) , electrically erasable programmable read-only memory (EEPROM) , magnetic disks, optical disks, hard disks, removable cartridges, flash drives, and so forth. In one example, the memory 1110 includes one or more application programs 1114, such as an operating system, web browser application, a widget, gadget engine, or other application, and corresponding data 1116. The memory 1110 may store, for use by the UE 1100, any of a variety of various operating systems or combinations of operating systems.
The memory 1110 may be configured to include a number of physical drive units, such as redundant array of independent disks (RAID) , flash memory, USB flash drive, external hard disk drive, thumb drive, pen drive, key drive, high-density digital versatile disc (HD-DVD) optical disc drive, internal hard disk drive, Blu-Ray optical disc drive, holographic digital data storage (HDDS) optical disc drive, external mini-dual in-line memory module (DIMM) , synchronous dynamic random access memory (SDRAM) , external micro-DIMM SDRAM, smartcard memory such as tamper resistant module in the form of a universal integrated circuit card (UICC) including one or more subscriber identity modules (SIMs) , such as a USIM and/or ISIM, other memory, or any combination thereof. The UICC may for example be an embedded UICC (eUICC) , integrated UICC (iUICC) or a removable UICC commonly known as ‘SIM card. ’ The memory 1110 may allow the UE 1100 to access instructions, application programs and the like, stored on transitory or non-transitory memory media, to off-load data, or to upload data. An article of manufacture, such as one utilizing a communication system may be tangibly embodied as or in the memory 1110, which may be or comprise a device-readable storage medium.
The processing circuitry 1102 may be configured to communicate with an access network or other network using the communication interface 1112. The communication interface 1112 may comprise one or more communication subsystems and may include or be communicatively coupled to an antenna 1122. The communication interface 1112 may include one or more transceivers used to communicate, such as by communicating with one or more remote transceivers of another device capable of wireless communication (e.g., another UE or a network node in an access network) . Each transceiver may include a transmitter 1118 and/or a receiver 1120 appropriate to provide network communications (e.g., optical, electrical, frequency allocations, and so forth) . Moreover, the transmitter 1118 and receiver 1120 may be coupled to one or more antennas (e.g., antenna 1122) and may share circuit components, software or firmware, or alternatively be implemented separately.
In the illustrated embodiment, communication functions of the communication interface 1112 may include cellular communication, Wi-Fi communication, LPWAN communication, data communication, voice communication, multimedia communication, short-range communications such as Bluetooth, near-field communication, location-based communication such as the use of the global positioning system (GPS) to determine a location, another like communication function, or any combination thereof. Communications may be implemented in according to one or more communication protocols and/or standards, such as IEEE 802.11, Code Division Multiplexing Access (CDMA) , Wideband Code Division Multiple Access (WCDMA) , GSM, LTE, New Radio (NR) , UMTS, WiMax, Ethernet, transmission control protocol/internet protocol (TCP/IP) , synchronous optical networking (SONET) , Asynchronous Transfer Mode (ATM) , QUIC, Hypertext Transfer Protocol (HTTP) , and so forth.
Regardless of the type of sensor, a UE may provide an output of data captured by its sensors, through its communication interface 1112, via a wireless connection to a network node. Data captured by sensors of a UE can be communicated through a wireless connection to a network node via another UE. The output may be periodic (e.g., once every 15 minutes if it reports the sensed temperature) ,  random (e.g., to even out the load from reporting from several sensors) , in response to a triggering event (e.g., when moisture is detected an alert is sent) , in response to a request (e.g., a user initiated request) , or a continuous stream (e.g., a live video feed of a patient) .
As another example, a UE comprises an actuator, a motor, or a switch, related to a communication interface configured to receive wireless input from a network node via a wireless connection. In response to the received wireless input the states of the actuator, the motor, or the switch may change. For example, the UE may comprise a motor that adjusts the control surfaces or rotors of a drone in flight according to the received input or to a robotic arm performing a medical procedure according to the received input.
A UE, when in the form of an Internet of Things (IoT) device, may be a device for use in one or more application domains, these domains comprising, but not limited to, city wearable technology, extended industrial application and healthcare. Non-limiting examples of such an IoT device are a device which is or which is embedded in: a connected refrigerator or freezer, a TV, a connected lighting device, an electricity meter, a robot vacuum cleaner, a voice controlled smart speaker, a home security camera, a motion detector, a thermostat, a smoke detector, a door/window sensor, a flood/moisture sensor, an electrical door lock, a connected doorbell, an air conditioning system like a heat pump, an autonomous vehicle, a surveillance system, a weather monitoring device, a vehicle parking monitoring device, an electric vehicle charging station, a smart watch, a fitness tracker, a head-mounted display for Augmented Reality (AR) or Virtual Reality (VR) , a wearable for tactile augmentation or sensory enhancement, a water sprinkler, an animal-or item-tracking device, a sensor for monitoring a plant or animal, an industrial robot, an Unmanned Aerial Vehicle (UAV) , and any kind of medical device, like a heart rate monitor or a remote controlled surgical robot. A UE in the form of an IoT device comprises circuitry and/or software in dependence of the intended application of the IoT device in addition to other components as described in relation to the UE 1100 shown in FIG. 11.
As yet another specific example, in an IoT scenario, a UE may represent a machine or other device that performs monitoring and/or measurements, and transmits the results of such monitoring and/or measurements to another UE and/or a network node. The UE may in this case be an M2M device, which may in a 3GPP context be referred to as an MTC device. As one particular example, the UE may implement the 3GPP NB-IoT standard. In other scenarios, a UE may represent a vehicle, such as a car, a bus, a truck, a ship and an airplane, or other equipment that is capable of monitoring and/or reporting on its operational status or other functions associated with its operation.
In practice, any number of UEs may be used together with respect to a single use case. For example, a first UE might be or be integrated in a drone and provide the drone’s speed information (obtained through a speed sensor) to a second UE that is a remote controller operating the drone. When the user makes changes from the remote controller, the first UE may adjust the throttle on the drone (e.g. by controlling an actuator) to increase or decrease the drone’s speed. The first and/or the second UE can also include more than one of the functionalities described above. For example, a UE might  comprise the sensor and the actuator, and handle communication of data for both the speed sensor and the actuators.
FIG. 12 shows a network node 1200 in accordance with some embodiments. As used herein, network node refers to equipment capable, configured, arranged and/or operable to communicate directly or indirectly with a UE and/or with other network nodes or equipment, in a telecommunication network. Examples of network nodes include, but are not limited to, access points (APs) (e.g., radio access points) , base stations (BSs) (e.g., radio base stations, Node Bs, evolved Node Bs (eNBs) and NR NodeBs (gNBs) ) .
Base stations may be categorized based on the amount of coverage they provide (or, stated differently, their transmit power level) and so, depending on the provided amount of coverage, may be referred to as femto base stations, pico base stations, micro base stations, or macro base stations. A base station may be a relay node or a relay donor node controlling a relay. A network node may also include one or more (or all) parts of a distributed radio base station such as centralized digital units and/or remote radio units (RRUs) , sometimes referred to as Remote Radio Heads (RRHs) . Such remote radio units may or may not be integrated with an antenna as an antenna integrated radio. Parts of a distributed radio base station may also be referred to as nodes in a distributed antenna system (DAS) .
Other examples of network nodes include multiple transmission point (multi-TRP) 5G access nodes, multi-standard radio (MSR) equipment such as MSR BSs, network controllers such as radio network controllers (RNCs) or base station controllers (BSCs) , base transceiver stations (BTSs) , transmission points, transmission nodes, multi-cell/multicast coordination entities (MCEs) , Operation and Maintenance (O&M) nodes, Operations Support System (OSS) nodes, Self-Organizing Network (SON) nodes, positioning nodes (e.g., Evolved Serving Mobile Location Centers (E-SMLCs) ) , and/or Minimization of Drive Tests (MDTs) .
The network node 1200 includes a processing circuitry 1202, a memory 1204, a communication interface 1206, and a power source 1208. The network node 1200 may be composed of multiple physically separate components (e.g., a NodeB component and a RNC component, or a BTS component and a BSC component, etc. ) , which may each have their own respective components. In certain scenarios in which the network node 1200 comprises multiple separate components (e.g., BTS and BSC components) , one or more of the separate components may be shared among several network nodes. For example, a single RNC may control multiple NodeBs. In such a scenario, each unique NodeB and RNC pair, may in some instances be considered a single separate network node. In some embodiments, the network node 1200 may be configured to support multiple radio access technologies (RATs) . In such embodiments, some components may be duplicated (e.g., separate memory 1204 for different RATs) and some components may be reused (e.g., a same antenna 1210 may be shared by different RATs) . The network node 1200 may also include multiple sets of the various illustrated components for different wireless technologies integrated into network node 1200, for example GSM, WCDMA, LTE, NR, WiFi, Zigbee, Z-wave, LoRaWAN, Radio Frequency Identification (RFID) or Bluetooth wireless technologies. These wireless technologies may be  integrated into the same or different chip or set of chips and other components within network node 1200.
The processing circuitry 1202 may comprise a combination of one or more of a microprocessor, controller, microcontroller, central processing unit, digital signal processor, application-specific integrated circuit, field programmable gate array, or any other suitable computing device, resource, or combination of hardware, software and/or encoded logic operable to provide, either alone or in conjunction with other network node 1200 components, such as the memory 1204, to provide network node 1200 functionality.
In some embodiments, the processing circuitry 1202 includes a system on a chip (SOC) . In some embodiments, the processing circuitry 1202 includes one or more of radio frequency (RF) transceiver circuitry 1212 and baseband processing circuitry 1214. In some embodiments, the radio frequency (RF) transceiver circuitry 1212 and the baseband processing circuitry 1214 may be on separate chips (or sets of chips) , boards, or units, such as radio units and digital units. In alternative embodiments, part or all of RF transceiver circuitry 1212 and baseband processing circuitry 1214 may be on the same chip or set of chips, boards, or units.
The memory 1204 may comprise any form of volatile or non-volatile computer-readable memory including, without limitation, persistent storage, solid-state memory, remotely mounted memory, magnetic media, optical media, random access memory (RAM) , read-only memory (ROM) , mass storage media (for example, a hard disk) , removable storage media (for example, a flash drive, a Compact Disk (CD) or a Digital Video Disk (DVD) ) , and/or any other volatile or non-volatile, non-transitory device-readable and/or computer-executable memory devices that store information, data, and/or instructions that may be used by the processing circuitry 1202. The memory 1204 may store any suitable instructions, data, or information, including a computer program, software, an application including one or more of logic, rules, code, tables, and/or other instructions capable of being executed by the processing circuitry 1202 and utilized by the network node 1200. The memory 1204 may be used to store any calculations made by the processing circuitry 1202 and/or any data received via the communication interface 1206. In some embodiments, the processing circuitry 1202 and memory 1204 is integrated.
The communication interface 1206 is used in wired or wireless communication of signaling and/or data between a network node, access network, and/or UE. As illustrated, the communication interface 1206 comprises port (s) /terminal (s) 1216 to send and receive data, for example to and from a network over a wired connection. The communication interface 1206 also includes radio front-end circuitry 1218 that may be coupled to, or in certain embodiments a part of, the antenna 1210. Radio front-end circuitry 1218 comprises filters 1220 and amplifiers 1222. The radio front-end circuitry 1218 may be connected to an antenna 1210 and processing circuitry 1202. The radio front-end circuitry may be configured to condition signals communicated between antenna 1210 and processing circuitry 1202. The radio front-end circuitry 1218 may receive digital data that is to be sent out to other network nodes or UEs via a wireless connection. The radio front-end circuitry 1218 may convert the digital data into a radio signal having the appropriate channel and bandwidth parameters using a combination of filters  1220 and/or amplifiers 1222. The radio signal may then be transmitted via the antenna 1210. Similarly, when receiving data, the antenna 1210 may collect radio signals which are then converted into digital data by the radio front-end circuitry 1218. The digital data may be passed to the processing circuitry 1202. In other embodiments, the communication interface may comprise different components and/or different combinations of components.
In certain alternative embodiments, the network node 1200 does not include separate radio front-end circuitry 1218, instead, the processing circuitry 1202 includes radio front-end circuitry and is connected to the antenna 1210. Similarly, in some embodiments, all or some of the RF transceiver circuitry 1212 is part of the communication interface 1206. In still other embodiments, the communication interface 1206 includes one or more ports or terminals 1216, the radio front-end circuitry 1218, and the RF transceiver circuitry 1212, as part of a radio unit (not shown) , and the communication interface 1206 communicates with the baseband processing circuitry 1214, which is part of a digital unit (not shown) .
The antenna 1210 may include one or more antennas, or antenna arrays, configured to send and/or receive wireless signals. The antenna 1210 may be coupled to the radio front-end circuitry 1218 and may be any type of antenna capable of transmitting and receiving data and/or signals wirelessly. In certain embodiments, the antenna 1210 is separate from the network node 1200 and connectable to the network node 1200 through an interface or port.
The antenna 1210, communication interface 1206, and/or the processing circuitry 1202 may be configured to perform any receiving operations and/or certain obtaining operations described herein as being performed by the network node. Any information, data and/or signals may be received from a UE, another network node and/or any other network equipment. Similarly, the antenna 1210, the communication interface 1206, and/or the processing circuitry 1202 may be configured to perform any transmitting operations described herein as being performed by the network node. Any information, data and/or signals may be transmitted to a UE, another network node and/or any other network equipment.
The power source 1208 provides power to the various components of network node 1200 in a form suitable for the respective components (e.g., at a voltage and current level needed for each respective component) . The power source 1208 may further comprise, or be coupled to, power management circuitry to supply the components of the network node 1200 with power for performing the functionality described herein. For example, the network node 1200 may be connectable to an external power source (e.g., the power grid, an electricity outlet) via an input circuitry or interface such as an electrical cable, whereby the external power source supplies power to power circuitry of the power source 1208. As a further example, the power source 1208 may comprise a source of power in the form of a battery or battery pack which is connected to, or integrated in, power circuitry. The battery may provide backup power should the external power source fail.
Embodiments of the network node 1200 may include additional components beyond those shown in FIG. 12 for providing certain aspects of the network node’s functionality, including any of the functionality described herein and/or any functionality necessary to support the subject matter  described herein. For example, the network node 1200 may include user interface equipment to allow input of information into the network node 1200 and to allow output of information from the network node 1200. This may allow a user to perform diagnostic, maintenance, repair, and other administrative functions for the network node 1200.
FIG. 13 is a block diagram of a host 1300, which may be an embodiment of the host 1016 of FIG. 10, in accordance with various aspects described herein. As used herein, the host 1300 may be or comprise various combinations hardware and/or software, including a standalone server, a blade server, a cloud-implemented server, a distributed server, a virtual machine, container, or processing resources in a server farm. The host 1300 may provide one or more services to one or more UEs.
The host 1300 includes processing circuitry 1302 that is operatively coupled via a bus 1304 to an input/output interface 1306, a network interface 1308, a power source 1310, and a memory 1312. Other components may be included in other embodiments. Features of these components may be substantially similar to those described with respect to the devices of previous figures, such as Figures 11 and 12, such that the descriptions thereof are generally applicable to the corresponding components of host 1300.
The memory 1312 may include one or more computer programs including one or more host application programs 1314 and data 1316, which may include user data, e.g., data generated by a UE for the host 1300 or data generated by the host 1300 for a UE. Embodiments of the host 1300 may utilize only a subset or all of the components shown. The host application programs 1314 may be implemented in a container-based architecture and may provide support for video codecs (e.g., Versatile Video Coding (VVC) , High Efficiency Video Coding (HEVC) , Advanced Video Coding (AVC) , MPEG, VP9) and audio codecs (e.g., FLAC, Advanced Audio Coding (AAC) , MPEG, G. 711) , including transcoding for multiple different classes, types, or implementations of UEs (e.g., handsets, desktop computers, wearable display systems, heads-up display systems) . The host application programs 1314 may also provide for user authentication and licensing checks and may periodically report health, routes, and content availability to a central node, such as a device in or on the edge of a core network. Accordingly, the host 1300 may select and/or indicate a different host for over-the-top services for a UE. The host application programs 1314 may support various protocols, such as the HTTP Live Streaming (HLS) protocol, Real-Time Messaging Protocol (RTMP) , Real-Time Streaming Protocol (RTSP) , Dynamic Adaptive Streaming over HTTP (MPEG-DASH) , etc.
FIG. 14 is a block diagram illustrating a virtualization environment 1400 in which functions implemented by some embodiments may be virtualized. In the present context, virtualizing means creating virtual versions of apparatuses or devices which may include virtualizing hardware platforms, storage devices and networking resources. As used herein, virtualization can be applied to any device described herein, or components thereof, and relates to an implementation in which at least a portion of the functionality is implemented as one or more virtual components. Some or all of the functions described herein may be implemented as virtual components executed by one or more virtual machines (VMs) implemented in one or more virtual environments 1400 hosted by one or more of hardware nodes, such as a hardware computing device that operates as a network node, UE, core network node,  or host. Further, in embodiments in which the virtual node does not require radio connectivity (e.g., a core network node or host) , then the node may be entirely virtualized.
Applications 1402 (which may alternatively be called software instances, virtual appliances, network functions, virtual nodes, virtual network functions, etc. ) are run in the virtualization environment Q400 to implement some of the features, functions, and/or benefits of some of the embodiments disclosed herein.
Hardware 1404 includes processing circuitry, memory that stores software and/or instructions executable by hardware processing circuitry, and/or other hardware devices as described herein, such as a network interface, input/output interface, and so forth. Software may be executed by the processing circuitry to instantiate one or more virtualization layers 1406 (also referred to as hypervisors or virtual machine monitors (VMMs) ) , provide VMs 1408a and 1408b (one or more of which may be generally referred to as VMs 1408) , and/or perform any of the functions, features and/or benefits described in relation with some embodiments described herein. The virtualization layer 1406 may present a virtual operating platform that appears like networking hardware to the VMs 1408.
The VMs 1408 comprise virtual processing, virtual memory, virtual networking or interface and virtual storage, and may be run by a corresponding virtualization layer 1406. Different embodiments of the instance of a virtual appliance 1402 may be implemented on one or more of VMs 1408, and the implementations may be made in different ways. Virtualization of the hardware is in some contexts referred to as network function virtualization (NFV) . NFV may be used to consolidate many network equipment types onto industry standard high volume server hardware, physical switches, and physical storage, which can be located in data centers, and customer premise equipment.
In the context of NFV, a VM 1408 may be a software implementation of a physical machine that runs programs as if they were executing on a physical, non-virtualized machine. Each of the VMs 1408, and that part of hardware 1404 that executes that VM, be it hardware dedicated to that VM and/or hardware shared by that VM with others of the VMs, forms separate virtual network elements. Still in the context of NFV, a virtual network function is responsible for handling specific network functions that run in one or more VMs 1408 on top of the hardware 1404 and corresponds to the application 1402.
Hardware 1404 may be implemented in a standalone network node with generic or specific components. Hardware 1404 may implement some functions via virtualization. Alternatively, hardware 1404 may be part of a larger cluster of hardware (e.g. such as in a data center or CPE) where many hardware nodes work together and are managed via management and orchestration 1410, which, among others, oversees lifecycle management of applications 1402. In some embodiments, hardware 1404 is coupled to one or more radio units that each include one or more transmitters and one or more receivers that may be coupled to one or more antennas. Radio units may communicate directly with other hardware nodes via one or more appropriate network interfaces and may be used in combination with the virtual components to provide a virtual node with radio capabilities, such as a radio access node or a base station. In some embodiments, some signaling can be provided with the use of a control  system 1412 which may alternatively be used for communication between hardware nodes and radio units.
FIG. 15 shows a communication diagram of a host 1502 communicating via a network node 1504 with a UE 1506 over a partially wireless connection in accordance with some embodiments. Example implementations, in accordance with various embodiments, of the UE (such as a UE 1012a of FIG. 10 and/or UE 1100 of FIG. 11) , network node (such as network node 1010a of FIG. 10 and/or network node 1200 of FIG. 12) , and host (such as host 1016 of FIG. 10 and/or host 1300 of FIG. 13) discussed in the preceding paragraphs will now be described with reference to FIG. 15.
Like host 1300, embodiments of host 1502 include hardware, such as a communication interface, processing circuitry, and memory. The host 1502 also includes software, which is stored in or accessible by the host 1502 and executable by the processing circuitry. The software includes a host application that may be operable to provide a service to a remote user, such as the UE 1506 connecting via an over-the-top (OTT) connection 1550 extending between the UE 1506 and host 1502. In providing the service to the remote user, a host application may provide user data which is transmitted using the OTT connection 1550.
The network node 1504 includes hardware enabling it to communicate with the host 1502 and UE 1506. The connection 1560 may be direct or pass through a core network (like core network 1006 of FIG. 10) and/or one or more other intermediate networks, such as one or more public, private, or hosted networks. For example, an intermediate network may be a backbone network or the Internet.
The UE 1506 includes hardware and software, which is stored in or accessible by UE 1506 and executable by the UE’s processing circuitry. The software includes a client application, such as a web browser or operator-specific “app” that may be operable to provide a service to a human or non-human user via UE 1506 with the support of the host 1502. In the host 1502, an executing host application may communicate with the executing client application via the OTT connection 1550 terminating at the UE 1506 and host 1502. In providing the service to the user, the UE's client application may receive request data from the host's host application and provide user data in response to the request data. The OTT connection 1550 may transfer both the request data and the user data. The UE's client application may interact with the user to generate the user data that it provides to the host application through the OTT connection 1550.
The OTT connection 1550 may extend via a connection 1560 between the host 1502 and the network node 1504 and via a wireless connection 1570 between the network node 1504 and the UE 1506 to provide the connection between the host 1502 and the UE 1506. The connection 1560 and wireless connection 1570, over which the OTT connection 1550 may be provided, have been drawn abstractly to illustrate the communication between the host 1502 and the UE 1506 via the network node 1504, without explicit reference to any intermediary devices and the precise routing of messages via these devices.
As an example of transmitting data via the OTT connection 1550, in step 1508, the host 1502 provides user data, which may be performed by executing a host application. In some embodiments, the user data is associated with a particular human user interacting with the UE 1506.  In other embodiments, the user data is associated with a UE 1506 that shares data with the host 1502 without explicit human interaction. In step 1510, the host 1502 initiates a transmission carrying the user data towards the UE 1506. The host 1502 may initiate the transmission responsive to a request transmitted by the UE 1506. The request may be caused by human interaction with the UE 1506 or by operation of the client application executing on the UE 1506. The transmission may pass via the network node 1504, in accordance with the teachings of the embodiments described throughout this disclosure. Accordingly, in step 1512, the network node 1504 transmits to the UE 1506 the user data that was carried in the transmission that the host 1502 initiated, in accordance with the teachings of the embodiments described throughout this disclosure. In step 1514, the UE 1506 receives the user data carried in the transmission, which may be performed by a client application executed on the UE 1506 associated with the host application executed by the host 1502.
In some examples, the UE 1506 executes a client application which provides user data to the host 1502. The user data may be provided in reaction or response to the data received from the host 1502. Accordingly, in step 1516, the UE 1506 may provide user data, which may be performed by executing the client application. In providing the user data, the client application may further consider user input received from the user via an input/output interface of the UE 1506. Regardless of the specific manner in which the user data was provided, the UE 1506 initiates, in step 1518, transmission of the user data towards the host 1502 via the network node 1504. In step 1520, in accordance with the teachings of the embodiments described throughout this disclosure, the network node 1504 receives user data from the UE 1506 and initiates transmission of the received user data towards the host 1502. In step 1522, the host 1502 receives the user data carried in the transmission initiated by the UE 1506.
One or more of the various embodiments improve the performance of OTT services provided to the UE 1506 using the OTT connection 1550, in which the wireless connection 1570 forms the last segment. According to embodiments of the present disclosure, a manner for dynamically configuring slice in communication network may be provided. Particularly, a configuration may be changed and outputted for at least one radio resource servicing at least one terminal device, if the quality deteriorate is determined to happen. A dynamical configuration for the at least one radio resource may be achieved. Further, a quality deteriorate may be dynamically compensated. That may be named as a QoS-aware solution. More precisely, the teachings of these embodiments may improve the performance, e.g., data rate, latency, power consumption, of the communication network, and thereby provide benefits such as reduced user waiting time, relaxed restriction on file size, improved content resolution, better responsiveness, extended battery lifetime.
In an example scenario, factory status information may be collected and analyzed by the host 1502. As another example, the host 1502 may process audio and video data which may have been retrieved from a UE for use in creating maps. As another example, the host 1502 may collect and analyze real-time data to assist in controlling vehicle congestion (e.g., controlling traffic lights) . As another example, the host 1502 may store surveillance video uploaded by a UE. As another example, the host 1502 may store or control access to media content such as video, audio, VR or AR which it can broadcast, multicast or unicast to UEs. As other examples, the host 1502 may be used for energy  pricing, remote control of non-time critical electrical load to balance power generation needs, location services, presentation services (such as compiling diagrams etc. from data collected from remote devices) , or any other function of collecting, retrieving, storing, analyzing and/or transmitting data.
In some examples, a measurement procedure may be provided for the purpose of monitoring data rate, latency and other factors on which the one or more embodiments improve. There may further be an optional network functionality for reconfiguring the OTT connection 1550 between the host 1502 and UE 1506, in response to variations in the measurement results. The measurement procedure and/or the network functionality for reconfiguring the OTT connection may be implemented in software and hardware of the host 1502 and/or UE 1506. In some embodiments, sensors (not shown) may be deployed in or in association with other devices through which the OTT connection 1550 passes; the sensors may participate in the measurement procedure by supplying values of the monitored quantities exemplified above, or supplying values of other physical quantities from which software may compute or estimate the monitored quantities. The reconfiguring of the OTT connection 1550 may include message format, retransmission settings, preferred routing etc.; the reconfiguring need not directly alter the operation of the network node 1504. Such procedures and functionalities may be known and practiced in the art. In certain embodiments, measurements may involve proprietary UE signaling that facilitates measurements of throughput, propagation times, latency and the like, by the host 1502. The measurements may be implemented in that software causes messages to be transmitted, in particular empty or ‘dummy’ messages, using the OTT connection 1550 while monitoring propagation times, errors, etc.
Under the above network circumstances, further detailed embodiments for dynamically configuring slice in communication network, particularly about the method of dynamic slice QoS Improvement based on NWDAF may be illustrated below.
In the present disclosure, to mitigate the mismatch of RFSP/ARPI from packet core and E-UTRAN Absolute Radio Frequency Channel Number (EARFN) /NR (new radio) Absolute Radio Frequency Channel number (NR-ARFCN) from RAN, embodiments may propose a RFSP selection solution being aware of QoS between different NFs on network slice level.
The collocated NWDAF may analyzes slice information (packet latency, jitter on IP (Internet Protocol) packets round trip) and provide a dynamic slice QoE (Quality of Experience) /QoS (Quality of Service) improvement method (considering RAN throughout congestion, latency) .
Embodiments of the present disclosure may further propose a collocated NWDAF architecture, which could be compatible with standalone NWDAF. Meanwhile, it analyzes slice information (such as latency, jitter on IP packets round trip) and provide a dynamic slice QoE/QoS improvement for each user.
According to embodiments of the present disclosure, there may be at least following benefits.
By applied a method of dynamic slice QoS/QoE improvement, Packet Core could estimate the near-real time radio RFSP resource and user QoS (such as PRB (Physical Resource Block) usage, throughput, packets latency) from end to end. Via the NWDAF capability of AI (artificial  intelligence) , AMF (with collocated NWDAF) could select the improved slice configuration (such as slice template) , including RFSPs (and/or SPID (Subscriber Profile ID for RAT/Frequency Priority) , Radio Bandwidths, NSSAI (Network Slice Selection Assistance Information) ) to RAN, etc., which provide a slice level improvement for a group of users or single user.
For example, PLMN IDs (Public Land Mobile Network Identity) , S-NSSAIs (Single Network Slice Selection Assistance Information) , SPIDs, or 5QIs (5G QoS Identifier) are associated with resource partitions only from a provisioning perspective. From an operational perspective, it is always the corresponding data radio bearers (DRBs) that are mapped to partitions and utilize their resource shares based on the provisioned PLMN ID, S-NSSAI, SPID, and 5QI information.
FIG. 16 is a diagram showing exemplary slice template included in related messages.
As shown in FIG. 16, there may be two exemplary slices, the first one Slice 1 may be S-NSSAI#1 with a type of mobile broadband (MBB) , the second one Slice 2 may be S-NSSAI#2 with a type of fixed wireless access (FWA) .
The base station gNB may include distributed unit (GNBDU) , and/or Central Unit (GNBCU) . An exemplary slice template shown in FIG. 16 may include at least lists of PLMN ID, and/or S-NSSAI, and/or SPID for NSSAI in Allowed NSSAI Item. Further, it should be understood that FIG. 16 is only an example for PLMN and SPID and NSSAI configuration and relations in cell/node level configuration, not a mandatory structure.
See 3GPP TS 38.401 V17.0.0 (2022-04) , gNB Central Unit (gNB-CU) is a logical node hosting RRC, SDAP and PDCP protocols of the gNB or RRC and PDCP protocols of the en-gNB that controls the operation of one or more gNB-DUs. The gNB-CU terminates the F1 interface connected with the gNB-DU. gNB Distributed Unit (gNB-DU) is a logical node hosting RLC, MAC and PHY layers of the gNB or en-gNB, and its operation is partly controlled by gNB-CU. One gNB-DU supports one or multiple cells. One cell is supported by only one gNB-DU. The gNB-DU terminates the F1 interface connected with the gNB-CU. gNB-CU-Control Plane (gNB-CU-CP) is a logical node hosting the RRC and the control plane part of the PDCP protocol of the gNB-CU for an en-gNB or a gNB. The gNB-CU-CP terminates the E1 interface connected with the gNB-CU-UP and the F1-C interface connected with the gNB-DU. gNB-CU-User Plane (gNB-CU-UP) is a logical node hosting the user plane part of the PDCP protocol of the gNB-CU for an en-gNB, and the user plane part of the PDCP protocol and the SDAP protocol of the gNB-CU for a gNB. The gNB-CU-UP terminates the E1 interface connected with the gNB-CU-CP and the F1-U interface connected with the gNB-DU.
The specific example for the slice template may include following detailed configurations (emphasis is underlined) .
Figure PCTCN2022089907-appb-000001
Figure PCTCN2022089907-appb-000002
By applying slice configuration/template dynamically, the collocated NWDAF can improve the user traffic experience (more UL (uplink) throughput, less application latency) , especially in burst traffic scenarios. It also optimizes the radio resource usage and latency of IP packets round trip.
FIG. 17 is an exemplary diagram showing a Collocated NWDAF Network Architecture.
The architecture in FIG. 17 is compatible with external NWDAF including standard application interface as defined in TS 23.288. The method according to embodiments of the present disclosure proposes the collocated NWDAF, which is coupled between different NFs including RAN, OSS (Operation Support System) , AMF, NWDAF.
In this architecture, the  Collocated NWDAF collect data from OAM function Node (OSS-RC (Operations Support System -Radio and Core) or ENM (Ericsson network management) ) . Further,  Collocated NWDAF collect data from AMF, and feedback the  data (slice level template with RFSP,  Radio Bandwidth) to RAN (Note) . Centralized NWDAF could communicate with  Collocated NWDAF with 3GPP standard SBI (service based interface) as defined in TS 23.288.
Note: The template is not only per slice level (NSSAI) but also per cell or per PLMN or per UE and per TA level.
FIG. 18 is a flow chart showing an exemplary procedure among several network entities, according to embodiments of the present disclosure.
As shown in FIG. 18, in step 181, UE, RAN, Packetcore selected Slice during mobility registration or PDU Session Management
In step 182, UE camps on specific TAI (PLMN, TAC) and is served on several SPID/NR-ARFCNs.
In step 183 NWDAF received RFSP or/and slice Analysis Service Subscriptions.
In step 184, NWDAF collected data from PCF, UDM, AMF, OSS/ENM (OAM) .
In step 185, NWDAF calculates whether the corresponding QoS deteriorate? If yes, the  procedure goes to step 186. If no, the procedure goes to step 187.
In step 186, packet core c-plane (Latency) or u-plane (PRB Usage) QoS deteriorates.
In step 187, iterations on NWDAF analysis are performed.
In step 188, are there RFSPs changes in Slices? If yes, the procedure goes to step 1812. If no, the procedure goes to step 189.
In step 189, is there new slice with RFSPs changes on UE? If yes, the procedure goes to step 1810. If no, the procedure goes to step 187.
In step 1810, NWDAF output to AMF.
In step 1811, AMF modifies UE Context of Slice with RAN (including such as a base station) and UE. In this step, only the UE context needs to be modified. The sessions context needs not to be amended yet.
In step 1812, AMF modifies Session Context of RFSP/SPIDs on RAN. In this step, the session context may be also needs to be amended.
In step 1813, RAN reconfigures UE with Indication from AMF (BWs, UL/DL, etc. ) .
In step 1814, RRC Reconfiguration or Redirection is performed.
In step 1815, during redirection, UE is reconnected and camps on new RFSPs based on measurement.
In step 1816, during reconfiguration, UEs add NR-ARFCN/EARFCN based on measurement.
In step 1817, is QoS Improved? If yes, the procedure goes to step 185.
FIG. 19 is a signaling diagram showing an exemplary procedure among several network entities, according to embodiments of the present disclosure.
As shown in FIG. 19, a procedure for dynamic RFSP and radio resource selection during PDU session Establishment/Modification is provided. The emphases are underlined.
In step 1, NWDAF received RFSP or/and slice Analysis Service Subscriptions, via a message Nnwdaf_AnalyticsSubscription_Subscribe (Analytics ID =Service Experience/Service Behaviour) , from a NF or AF consumer.
Then, NWDAF collected data from PCF, UDM, AMF, OSS/ENM (OAM) .
In step 2, NWDAF sends message Namf_EventExposure_Subscribe, to AMF.
In step 3, NWDAF receives message Namf_EventExposure_Notification ( AMF RFSP  configuration from local and PCF) , from AMF.
In step 4, MM (mobility management) or SM (session management) behaviors, such as Registration or Session Establishment/Modification/Release, may be performed.
In step 5, NWDAF receives message Namf_EventExposure_Notification, from AMF.
In step 6, NWDAF sends Nnwdaf_AnalyticsSubscription_Notify (about UE or Session) to the NF or AF consumer.
In step 7, NWDAF sends, GOM interface or OAM interface based Request/HTTP Get/SFTP (Secure File Transfer Protocol) Request to a ENM/OSS.
In step 8, NWDAF receives GOM interface or OAM interface Response ( NG RAN  Information related (PM (Performance Management, such as counters, KPIs formula, trace, log) , CM  (Configuration Management, such configuration, YAML config) , FM (False Management, such as  system or function alarm, event, security alert) based on RAN) from the ENM/OSS.
In step 9, NWDAF makes  Slice and RFSP Analysis (For Node level) .
In step 10,  NWDAF sends Nnwdaf_Prediction_Ouput (RFSPs &radio bandwidths  Indication) to AMF.
In step 11a, NWDAF sends Nnwdaf_AnalyticsSubscription_Notify ( RFSP ML (machine  learning) results Notification) to the NF or AF consumer.
As an option 1 (OPT1) , following Step 11~Step 14 are further performed. OPT1 corresponds to a RFSP UC, with new messages provided.
In step 11, PDU Session Modification Request.
In step 12, PDU Session Resource Modify Request or UE Context Modification Request (RFSPs &radio bandwidths Indication) .
In step 13, PDU Session Resource Modify Response or UE Context Modification.
In step 14, RRC configuration or RRC connection release from NWDAF templates per slice per UE.
Further exemplary details about these steps may be further illustrated below.
Step1~3 and Step5~6 may refer to FIG. 1A, i.e, Figure 6.42.3-2: NWDAF provides analytics outcome to AMF, in clause 6.42, Solution #42: NWDAF-assisted RFSP Policy Configuration, TR 23.700-91-h00.
The embodiments of the present disclosure may preferably introduce AMF, other than PCF, as RFSP service consumer, since NWDAF implementation entity may be based on PCC (Policy and Charging Control) . vAMF (Virtual AMF or Virtual Packet Core) may be planning to provide some slice and RFSP OAM counters and KPI analytics to meet requirement from vendors.
Further, such embodiments may be based on the current AMF and NWDAF status of product roadmap.
Step 4 may be a PDU session Establishment/Modification /Release procedure as defined in TS23.502 v17.2.1, here is an example of PDU Session Modification procedure.
In step7,  (Collocated) -NWDAF (with AMF) sends Node data service get/request to  ENM/OSS to collect PM counters, etc.,  IE defined in below Table 1-1, 1-2, and Configuration Information  from OSS/ENM side via Gom interface (SSH (Secure Shell) /HTTPs/SFTP, etc. )
The Gom interface may be a logical interface based on standard IETF (Internet Engineering Task Force) protocols. The Gom Interface makes it possible for operators, Operations Support Systems (OSS) , and Network Management Systems (NMS) to communicate with the PC-MM (Packet Core Mobility Management) . In addition, it can be used to connect the PC-MM with service nodes, for example, DNS (data network Service) servers residing within the own PLMN. It is may be not defined in the 3GPP standards, but defined by manufactures, such as Ericsson.
The Gom interface may have the following main features:
● IP connectivity over Ethernet;
● Transport of PC-MM O&M traffic of the following types:
○ Hypertext Transfer Protocol Secure (HTTPS) 
○ Secure FTP (SFTP)
○ Secure Shell (SSH) ;
● Lawful Interception (LI) control and electronic surveillance on behalf of a Law Enforcement Agency (LEA) ;
● Transport of DNS traffic;
● Streaming of Event-Based Monitoring events;
● Streaming of Cell Trace Mapping log events.
In step 8, NWDAF fetches RAN Node/Cell level Information related to RFSP via Gom interface, including at least one of:
○  GNB or Cell Level MO (Managed Object) or CLI (Command-Line Interface) (Configuration Information) ;
○  NSSAIs, NR-ARFCNs, allocated BWs used;
○  TAC (tracking area code) and PLMN list allowed;
○  RFSPs/ARPI.
It is preferable that NSSAI and TA level counters and KPI are defined from OAM interface, not NWDAF interface, based on practice requirements.  C-NWDAF collects the RAN Node  information from OSS (Ericsson Network Manager (ENM) ) or RAN (O-RAN SMO (Open-Radio  Access Network Service Management and Orchestration) ) . The triggering method may be periodic or  event-based.
In step9, C-NWDAF calculates the RFSP selection criterion, estimate the Radio Resource  congestion Condition. C-NWDAF generates the RFSP and EARFCN (PCI) , provides Radio Bandwidth  template in band level for cell, per NSSAI, per PLMN per UE and per TA.
Any applicable algorithm, such as any machine learning method may be used. Related ADP (Application Development Platform, a middleware in cloud service platform) middleware may be selected by PCC
In step 9, the NWDAF internally analyze the QoS radio resource congestion, for example, it is analyzed that: whether UL/DL PRB Usage consumption is more than an internal PRB usage threshold, and/or whether Latency is higher than an internal threshold.  If so, the slice template may  be updated.
In step 10, C-NWDAF provides the RFSP/ARPI template to AMF via extension SBI  interface (defined below) , the template is mapped to radio resource (Each RFSP index with Radio BW,  DL, UL independently, with congestion indication) which will be comprehend by RAN later.
In step 11~step 14, UE triggers a UE-Initiated PDU Session Modification in procedure until step14.
In step 11,  AMF selected and store the optimized RFSP priority according to Step10. Taking use of UE configuration update phase, AMF update the new RFSP via DL NAS to UE (Typically in OPT1) , etc. (see TS 24.501 v17.2.1 h21, etc. ) . In step 11,  AMF extend PDU Session Resource Modify  Request (in Table 2-1, 2-2) or  UE Context Modification Request (in Table 2-4) .
In step 12,  RAN update the local UE EARFCN/NR-ARFCN with Dynamic Radio Resource  IE, considering the load congestion indication.
In step 13, PDU Session Resource Modify Response is transmitted from NG-RAN to AMF.
FIG. 20 is a diagram showing details about step 14 in the FIG. 19.
In step 14:  UE is reconfigured by RRC with new radio resource after NWDAF (congestion  and offload) analysis, via SMF, AMF configuration and RAN RRC configuration, or RRC connection  release.
In RRC Reconfiguration method,  there is additional MeasConfig for measurement objects and measurement id corresponding (RFSP/NR-ARFCN and bandwidth) changes to this procedure.
In RRC connection release method,  there is additional redirectedCarrierInfo or  cellReselectionPriorities changes in this procedure.
RAN re-configs UE with RRC Reconfiguration or RRC Connection release depends on condition such as serving cell’s RRC measurement configuration for DRBs and UE signal strength (see TS38.331-g60 (V16.6.0 (2021-09) ) ) .
The procedure for RRC configuration update information may be According to TS38.331-g60 (V16.6.0 (2021-09) ) .
The RRCReconfiguration message is the command to modify an RRC connection. It may convey information for measurement configuration, mobility control, radio resource configuration (including RBs, MAC main configuration and physical channel configuration) and AS security configuration.
This message may use SRB1 or SRB3 as Signalling radio bearer, use AM (Acknowledged Mode) as RLC (Radio Link Control) -SAP (Service Access Point) , use DCCH (Dedicated Control CHannel) as Logical channel, and may be transmitted at a direction from Network to UE.
An exemplary RRCReconfiguration message may comprises following content.
Figure PCTCN2022089907-appb-000003
An exemplary MeasConfig information element may comprise following content.
Figure PCTCN2022089907-appb-000004
The RRCRelease message is used to command the release of an RRC connection or the suspension of the RRC connection.
This message may use SRB1 as Signalling radio bearer, use AM (Acknowledged Mode) as RLC (Radio Link Control) -SAP (Service Access Point) , use DCCH (Dedicated Control CHannel) as Logical channel, and may be transmitted at a direction from Network to UE.
An exemplary RRCRelease message may comprises following content.
Figure PCTCN2022089907-appb-000005
Figure PCTCN2022089907-appb-000006
Messages extension to the procedures may be provided by the embodiments of the present disclosure, as follows.
An exemplary extension may be a  Nnwdaf_Data_Input interface IE (for C-NWDAF input in above step7) . Message IE may be Nnwdaf_Data_Input; the data direction may be from RAN/OSS-RC (Operation Support System-Radio and Core) to collocated NWDAF.
Table 1-1: Input for collocated NWDAF (extensions are underlined)
Figure PCTCN2022089907-appb-000007
Figure PCTCN2022089907-appb-000008
Another exemplary extension may be a  Nnwdaf_Prediction_Ouput interface IE (for C-NWDAF Output in Step10) . Message IE may be Nnwdaf_Prediction_Ouput (internal messages) ; the data direction may be from C-NWDAF to AMF.
Table1-2: Prediction Output from collocated NWDAF (extensions are underlined)
Figure PCTCN2022089907-appb-000009
Another exemplary extension may be a  PDU Session Resource Modify Request. Message IE may be PDU Session Resource Modify Request; the data direction may be from AMF to RAN.
Table 2-1: PDU Session Resource Modify Request extension (extensions are underlined)
Figure PCTCN2022089907-appb-000010
Other exemplary extensions may be further provided below.
Table2-2: Dynamic Radio Resource IE (extensions are underlined)
Figure PCTCN2022089907-appb-000011
Table 2-3: Aggregated Radio BW (extensions are underlined)
Figure PCTCN2022089907-appb-000012
Figure PCTCN2022089907-appb-000013
Another message UE CONTEXT MODIFICATION REQUEST is sent by the AMF to NG-RAN node, for providing UE Context information changes to the NG-RAN node.
Table 2-4: UE Context Modification Request extension (extensions are underlined)
Figure PCTCN2022089907-appb-000014
FIG. 21 is a diagram showing a first exemplary use case (UC 1) for dynamic RFSP and radio resource selection, before the selection action is performed.
As shown in FIG. 21, in this example, before the dynamic RFSP and radio resource selection, UE has at least 2 slices with independent RFSPs policy and radio resource (radio bandwidth and EARFCN/NARFCNs) between RAN and UE. Each of PDU Sessions is established in individual slice, therefore 2 default sessions exist. C-NWDAF begins the network data collection and data evaluation with ML after a period of time when UE is served in the network. C-NWDAF discover the slice 1 has an obvious QoE deterioration due to radio resource congestion (UL PRB Usage consumption or latency is more than an internal PRB usage threshold) .
FIG. 22 is a diagram showing a first exemplary use case (UC 1) for dynamic RFSP and radio resource selection, after the selection action is performed.
As shown in FIG. 22, in this UC, after the dynamic RFSP and radio resource selection, RFSPs and related BW is removed from slice 2 to slice 1 in E2E (End to End) when C-NWDAF  indicates the RFSPs changes to AMF and UE in the following Session or Mobility procedure (such as PDU Session Modification or PDU Session Establishment) . And RFSPs and related BW are added on slice 1.
In this UC 1, since the UE is already connected to the two slices (slice 1, slice 2) .
Therefore, a RRC reconfiguration may be enough for the UE to do such dynamic RFSP and radio resource selection/reselection. The above OPT1 will be applicable. The time period for such selection/reselection will be reduced. These UE could be considered as a super UE since it has two NSSAI capabilities. For single NSSAI capability UE such as those only connected in NSSAI1, it will also take advantages when the new RFSP and Radio BW is added (triggered by the previous super UE) .
The following MeasConfig information element may be used to transmit information to UE.
Figure PCTCN2022089907-appb-000015
The following specific “measObjectId” may be used to indicate the frequency or bandwidth in the slices. For example, measObjectID 3 may corresponds to NR-ARFCN x, BW 20M (moved from slice 2 to slice 1) , which needs to be measured by the UE. Further, this measObjectId indication changes will be notified by RRC configuration and will be further checked with AMF and NWDAF mechanism.
Particularly, before the dynamic RFSP and radio resource selection, the MeasConfig information element may comprises following contents (emphasis are underlined) .
Figure PCTCN2022089907-appb-000016
Figure PCTCN2022089907-appb-000017
Particularly, after the dynamic RFSP and radio resource selection, the MeasConfig information element may comprises following contents (emphasis are underlined) .
Figure PCTCN2022089907-appb-000018
Figure PCTCN2022089907-appb-000019
FIG. 23 is a diagram showing alternative for step 14 in the FIG. 19.
As shown in FIG. 23, further option 2 (OPT2) about dynamic slice change may be illustrated below.
The step 0 in this FIG. 23, is based on (such as, as the same as) step1~step10 of UC1 dynamic RFSP and radio resource selection (FIG. 19) . This UC2 introduced another case when Network triggered UE Slice change/creation based on NWDAF.
As shown in FIG. 23, in step 0:  AMF selected and stored the optimized slice template  (RFSP priority, optional) per UE.
In step 1, optionally, UE is paged if UE is CM-IDLE mode.
In step 2, the AMF sends a Downlink NAS Transport message to the UE through the RAN, which contains a Configuration Update Command message, to notify the UE of the network slice change.
The Configuration Update Command message includes the Configured NSSAI IE, the Acknowledgment (ACK) bit in the Configuration Update Indication IE, and the Network Slicing subscription change indication (NSSCI) bit in the Network Slicing Indication IE. The message optionally includes TAI list and  Allowed NSSAI or Configured NSSAI or Rejected NSSAI or combo  of them (as shown in table 3-1) .
In step 3, UE is reconfigured by RRC with new slice with serving PLMN, TAC. The flow ends until slice notification finished.
In step 4, step5, optionally, AMF triggered AMF CONFIGURATION UPDATE  with  new slice temple per cell/gNB level if slice change is based on RAN cell/Node level (based on  NWDAF in UC1) . Then UE will be triggered re-registration if none of supported NSSAIs are allowed in current PLMN.
Following messages extensions may be provided in this use case.
The CONFIGURATION UPDATE COMMAND message is sent by the AMF to the UE. See table 3-1. The message type may be CONFIGURATION UPDATE COMMAND, and the significance of it may be dual, and the message is transmitted at the direction from network to UE.
Table 3-1: CONFIGURATION UPDATE COMMAND message (extensions are underlined)
Figure PCTCN2022089907-appb-000020
Another message AMF CONFIGURATION UPDATE is sent by the AMF to transfer updated information for an NG-C interface instance. The transmission direction may be from AMF to NG-RAN node.
Table 3-2: AMF CONFIGURATION UPDATE AND message (extensions are underlined)
Figure PCTCN2022089907-appb-000021
Figure PCTCN2022089907-appb-000022
PLMN: Public Land Mobile Networks;
SNPN: Standalone Non-Public Networks (SNPN) , networks that are not relying on network functions of a (public) PLMN
FIG. 24 is a diagram showing a second exemplary use case (UC 1) for dynamic RFSP and radio resource selection, before the selection action is performed.
As shown in FIG. 24, further use case (UC 2) of dynamic RFSP and radio resource selection (as option 2) may be illustrated below.
This UC 2 shows an example, in which UE has at least 2 slices with independent RFSPs policy and radio resource (radio bandwidth and EARFCN/NARFCNs) between RAN and UE. Each slice is served in different TA or same TA with different PLMNs. C-NWDAF begins the network data collection and data evaluation with ML after a period of time when UE is served in the network. C-NWDAF discover the slice D has an obvious QoE deterioration due to radio  resource congestion (UL PRB Usage consumption or latency is more than an internal PRB usage threshold) .
UE and RAN are notified by NWDAF assisted AMF, the UE slice is changed via UE slice change flow such as re-registration, Mobility Registration or HO (see TS 23.502 V17.2.1) . The UE changes to a new slice (from slice D to slice C) .
In UC 2, the UE is not connected to the slice C yet. Therefore, after the UE is reconfigured, new MM or SM procedure is needed for the slice change. For example, a new procedure of Deregistration or Session Release may still be needed to change to the new slice (i.e., from slice D to slice C) . It should be noted that, not only these two procedures, but also other procedure, such as mobility registration or session modification may be applicable.
The following simulations and/or experiment results will provide advantages of the embodiments of the present disclosure.
As NWDAF data analysis model, besides the overload control zone, NWDAF may correlate cell level, QoS/QoE level EBM (Event Based Monitoring) (Type of real-time stream that supplies information as Event Based Monitoring data or events) or any collocated NF data.
FIG. 25 is a diagram showing different control policies.
As shown in FIG. 25, taking example of DL and UL RAN resource, they may be divided into several zones for different policy.
As to Overload Control Zone, this zone means target NF is working in overload status, all the unnecessary traffic such as event collection and subscription should be limited. And any offload and capacity optimization such as VM (Virtual Machine) /container scale-out should be taken immediately.
As to Execution Zone, this zone means target NF is working in offloading status. Cell with RFSP/BW instruction would be taken as accessible cell for dynamic slice changes. For single UE multiple slice case, the UE in this status has been classified as DL/UL consumption UE. When unbalanced data analysis results from NWDAF on QoE/QoS/slice are obtained, the method for dynamically configuring/changing the slices would be executed.
As to Prediction Zone, NWDAF collects and correlates the multiple NFs data (EBM/ Counters/SBI http URI content, etc. ) . Then after ML Model training, NWDAF would trigger network service level execution for multiple purpose. As the example, Collocated NWDAF would coordinate RAN and AMF with UE to offload the candidates UE (generally UL consumption model/DL consumption Model UE type) to balance the Radio resources for congestion prevention.
One additional NWDAF collocated with RAN is derived from AMF collocated type, and is based on the ARPI&RFSP. When the RAN doesn’t have additional RFSP&ARPI instruction from AMF or PCF/UDM, the RRC configuration is good enough for UE to add/delete/offload additional UL/DL radio resources.
As to Safety Zone, the radio resource is sufficient for UE and RAN to handle big event (DL/UL consumption type traffic) and only data collection and data correlation happen in this zone. Any additional offload action is allowed if the slice has been changed also.
As to Hysteresis Zone, it is a buffer zone to avoid Ping-Pong configuration with dynamic slice changes for NWDAF and NFs.
FIG. 26 is a diagram showing a burst UL PRB Usage consumption.
As shown in FIG. 26, it is about UL PRB per cell per X-ARFCN. The Cell A DL PRB Usage is consumed smoothly while UL PRB Usage of Cell A is congested in burst. The users in CellA will had bad traffic experience as mention in Problems and Background section.
FIG. 27 is a diagram showing RAN DL and UL resource balance for compensating a burst UL PRB Usage consumption.
According to simulation, the new added cell B would be accessible after offloading triggered by cell A if new RFSP is configurable and same BW is configured. With the offloading triggered by UL resource consumption, both UL resource will be balanced before congestion happened. If cell A and cell B are separated with different slice (i.e., some UEs are reconfigured or reconnected from cell A to cell B) , the QoS in across slice would be balanceable. The final PRB usage are balanced between offload in and offload out cell.
FIG. 28 is a diagram showing an improvement for latency related to a burst UL PRB Usage consumption.
The new added cell B would be accessible after offloading triggered by cell A if new RFSP is configurable and same BW is configured. With the offloading triggered by UL resource consumption, both UL and DL packet latency of cell A are improved due to RAN congestion mitigation. The latency of cell B is not mentioned here since offloading from cell A will not obvious bring the cell B latency when cell B is light load or new cell. The latency of Cell B may be still near 0 ms, thus it is not mentioned in curve.
It should be understood that, a dynamic configuration for slice (such reconfiguration and/or reselection) may be also triggered by other quality deteriorate. For example, when a processor resource or memory resource (hardware resource or virtual resource) in a network entity (such as AMF) is overloaded, the reconfiguration and/or reselection may be also triggered.
Although the computing devices described herein (e.g., UEs, network nodes, hosts) may include the illustrated combination of hardware components, other embodiments may comprise computing devices with different combinations of components. It is to be understood that these computing devices may comprise any suitable combination of hardware and/or software needed to perform the tasks, features, functions and methods disclosed herein. Determining, calculating, obtaining or similar operations described herein may be performed by processing circuitry, which may process information by, for example, converting the obtained information into other information, comparing the obtained information or converted information to information stored in the network node, and/or performing one or more operations based on the obtained information or converted information, and as a result of said processing making a determination. Moreover, while components are depicted as single boxes located within a larger box, or nested within multiple boxes, in practice, computing devices may comprise multiple different physical components that make up a single illustrated component, and functionality may be partitioned between separate components. For  example, a communication interface may be configured to include any of the components described herein, and/or the functionality of the components may be partitioned between the processing circuitry and the communication interface. In another example, non-computationally intensive functions of any of such components may be implemented in software or firmware and computationally intensive functions may be implemented in hardware.
In certain embodiments, some or all of the functionality described herein may be provided by processing circuitry executing instructions stored on in memory, which in certain embodiments may be a computer program product in the form of a non-transitory computer-readable storage medium. In alternative embodiments, some or all of the functionality may be provided by the processing circuitry without executing instructions stored on a separate or discrete device-readable storage medium, such as in a hard-wired manner. In any of those particular embodiments, whether executing instructions stored on a non-transitory computer-readable storage medium or not, the processing circuitry can be configured to perform the described functionality. The benefits provided by such functionality are not limited to the processing circuitry alone or to other components of the computing device, but are enjoyed by the computing device as a whole, and/or by end users and a wireless network generally.
REFERENCE
TR 23.700-91 (V2.0.0 (2020-11) ) Study on enablers for network automation for the 5G System (5GS) 5G System
TS 23.288-h00 (version V17.0.0 (2021-03) ) 5G System; network data analytics services
TS 23.502-h21 (V17.2.1 (2021-09) ) Procedures for the 5G System (5GS) 
TS 38.331-g60 (V16.6.0 (2021-09) ) NR Radio Resource Control (RRC) protocol specification
TS 23.501-h20 (V17.2.0 (2021-09) ) System architecture for the 5G System (5GS) 
TS 38.300-g80 (V16.8.0 (2021-12) ) NR and NG-RAN Overall Description
TS 36.300-g70 (V16.7.0 (2021-12) ) Evolved Universal Terrestrial Radio Access (E-
UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN) ; Overall description
TS 29.571-h50 (V17.5.0 (2022-03) ) 5G System; Common Data Types for Service Based Interfaces
TS 36.413-h00 (V17.0.0 (2022-04) ) Evolved Universal Terrestrial Radio Access Network (E-UTRAN) ; S1 Application Protocol (S1AP)
TS 24.501-h21 (V17.2.1) Non-Access-Stratum (NAS) protocol for 5G System (5GS)
ABBREVIATION EXPLANATION
NWDAF   Network Data Analytics Function
RFSP    (Index to) RAT/Frequency Selection Priority
PCF          Policy Control Function
SMF          Session Management Function
UDM          Unified Data Management
OAM          Operation, Administration and Maintenance
PCEF    Policy and Charging Enforcement Function
PCRF    Policy and Charging Rules Function
H-PCRF  Home Policy and Charging Rules Function
PDR     Packet Detection Rule
UPF     User Plane Function
URR     Usage Report Rule
PGW-C   Packet data network gateway-control plane
PGW-U   Packet data network gateway-user plane
PCC     Policy control and charging
3GPP TS Third generation partnership project technical specification
QoS     Quality of service
PRA     Presence Reporting Area
PDU     Protocol data unit
CCR     Credit-Control-Request
CCA     Credit-Control-Answer

Claims (90)

  1. A method (200) performed by a first network entity, comprising:
    collecting (S202) data from at least one network entity;
    determining (S204) whether a quality deteriorate happens for at least one radio resource serving at least one terminal device, based on the collected data;
    outputting (S206) a changed configuration for the at least one radio resource, if the quality deteriorate is determined to happen.
  2. The method (200) according to claim 1,
    wherein the at least one network entity comprises at least one of: an operation support system, an access and mobility management function, a policy control function, and/or a base station.
  3. The method (200) according to claim 1 or 2,
    wherein the collected data comprises a current configuration for the at least one radio resource.
  4. The method (200) according to claim 3,
    wherein the current configuration for the at least one radio resource comprises at least one of:
    base station or cell level information;
    used network slice selection assistance information, new radio absolute radio frequency channel numbers, allocated radio bandwidths;
    an allowed tracking area code and public land mobile network list; and/or
    a radio access technology/frequency selection priority, or radio resource management policy index.
  5. The method (200) according to any of claims 3 to 4,
    wherein the collected data further comprises an uplink/downlink physical resource block, UL/DL PRB, usage, hardware usage ratio, and/or a transmission latency, and/or a jitter on packets round trip, about the at least one radio resource.
  6. The method (200) according to claim 5,
    wherein the quality deteriorate is related to a quality of service, QoS, and/or a quality of experience, QoE, of the at least one radio resource serving the at least terminal device; and
    wherein the quality deteriorate is determined to happen when the UL/DL PRB usage is more than an internal PRB usage threshold, and/or the hardware usage ratio is more than a hardware usage threshold, and/or when latency is higher than an internal latency threshold, and/or when the jitter happens.
  7. The method (200) according to any of claims 1 to 6,
    wherein the at least one terminal device comprises at least one individual user equipment, UE, and/or at least one group of UE.
  8. The method (200) according to any of claims 1 to 7,
    wherein a radio resource in the at least one radio resource comprises a network slice.
  9. The method (200) according to claim 8,
    wherein the changed configuration comprises a slice template for the network slice, including at least one of:
    a priority index of the network slice;
    information of bandwidth for the network slice
    and/or an identity of the network slice.
  10. The method (200) according to claim 9,
    wherein the priority index comprises a Radio Access Technology /Frequency Selection Priority, RFSP, and/or a Subscriber Profile Identity for RAT/Frequency priority, SPID, related to the at least one radio resource.
  11. The method (200) according to claim 9 or 10,
    wherein the slice template is represented by an information element of dynamic radio resource item.
  12. The method (200) according to any of claims 8 to 11,
    wherein the changed configuration indicates adding and/or removing a radio frequency and/or bandwidth of the network slice.
  13. The method (200) according to any of claims 8 to 12,
    wherein the changed configuration indicates creating or selecting a new network slice for serving a terminal device.
  14. The method (200) according to any of claims 1 to 13,
    wherein the changed configuration is outputted to a second network entity.
  15. The method (200) according to claim 14,
    wherein the second network entity comprises a network function consumer, an application function consumer, and/or an access and mobility management function, AMF.
  16. The method (200) according to claim 15,
    wherein the AMF transmits at least part of the changed configuration to a base station, via a  message of PDU session Resource Modify Request, or UE Context Modification Request;
    wherein the first network entity comprises a Network Data Analytics Function, NWDAF; and/or
    wherein the NWDAF is collocated with an AMF.
  17. The method (200) according to claim 16,
    wherein the base station updates a configuration for a terminal device based on the at least part of the changed configuration, via a message of RRC Reconfiguration, and/or RRC connection release, and/or a configuration update command.
  18. The method (200) according to claim 17,
    wherein the message of RRC Reconfiguration comprises additional measurement configuration based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
  19. The method (200) according to claim 17,
    wherein the message of RRC connection release comprises additional redirected carrier information based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
  20. The method (200) according to claim 17,
    wherein the message of configuration update command comprises allowed NSSAI, and/or configured NSSAI, and/or rejected NSSAI based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
  21. The method (200) according to any of claims 18 to 20,
    wherein a new frequency point is indicted by a measurement object information element.
  22. A method (300) performed by a second network entity, comprising:
    providing (S302) data to a first network entity, wherein the first network entity determines whether a quality deteriorate happens for the at least one radio resource, based at least on the provided data; and
    receiving (S304) a changed configuration for at least one radio resource serving at least one terminal device, wherein the second network entity receives the changed configuration, if the quality deteriorate is determined to happen.
  23. The method (300) according to claim 22,
    wherein the provided data comprises a current configuration for the at least one radio resource.
  24. The method (300) according to claim 23,
    wherein the current configuration for the at least one radio resource comprises at least one of:
    base station or cell level information;
    used network slice selection assistance information, new radio absolute radio frequency channel numbers, allocated radio bandwidths;
    an allowed tracking area code and public land mobile network list; and/or
    a radio access technology/frequency selection priority, or radio resource management policy index.
  25. The method (300) according to any of claims 23 to 24,
    wherein the provided data further comprises an uplink/downlink physical resource block, UL/DL PRB, usage, hardware usage ratio, and/or a transmission latency, and/or a jitter on packets round trip, about the at least one radio resource.
  26. The method (300) according to claim 25,
    wherein the quality deteriorate is related to a quality of service, QoS, and/or a quality of experience, QoE, of the at least one radio resource serving the at least terminal device; and
    wherein the quality deteriorate is determined to happen when the UL/DL PRB usage is more than an internal PRB usage threshold, and/or the hardware usage ratio is more than a hardware usage threshold, and/or when latency is higher than an internal latency threshold, and/or when the jitter happens.
  27. The method (300) according to any of claims 22 to 26,
    wherein the at least one terminal device comprises at least one individual user equipment, UE, and/or at least one group of UE.
  28. The method (300) according to any of claims 22 to 27,
    wherein a radio resource in the at least one radio resource comprises a network slice.
  29. The method (300) according to claim 28,
    wherein the changed configuration comprises a slice template for the network slice, including at least one of:
    a priority index of the network slice;
    information of frequency and/or bandwidth for the network slice
    and/or an identity of the network slice.
  30. The method (300) according to claim 29,
    wherein the priority index comprises a Radio Access Technology /Frequency Selection Priority, RFSP, and/or a Subscriber Profile Identity for RAT/Frequency priority, SPID, related to the at least one radio resource.
  31. The method (300) according to claim 29 or 30,
    wherein the slice template is represented by an information element of dynamic radio resource item.
  32. The method (300) according to any of claims 28 to 31,
    wherein the changed configuration indicates adding and/or removing a radio frequency and/or bandwidth of the network slice.
  33. The method (300) according to any of claims 28 to 32,
    wherein the changed configuration indicates creating or selecting a new network slice for serving a terminal device.
  34. The method (300) according to any of claims 22 to 33,
    wherein the second network entity comprises an access and mobility management function, AMF;
    wherein the first network entity comprises a Network Data Analytics Function, NWDAF; and/or
    wherein the NWDAF is collocated with an AMF.
  35. The method (300) according to any of claims 22 to 34, further comprising:
    transmitting (S306) at least part of the changed configuration to a base station, via a message of PDU session Resource Modify Request, or UE Context Modification Request;
    wherein the base station updates a configuration for a terminal device based on the at least part of the changed configuration, via a message of RRC Reconfiguration, and/or RRC connection release.
  36. The method (300) according to any of claims 22 to 34, further comprising:
    transmitting (S308) to a terminal device an updated configuration, via a message of configuration update command; and transmitting (S310) to a base station at least part of the changed configuration, via a message of AMF configuration update.
  37. The method (300) according to claim 35,
    wherein the message of RRC Reconfiguration comprises additional measurement configuration based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
  38. The method (300) according to claim 35,
    wherein the message of RRC connection release comprises additional redirected carrier information based on the at least part of the changed configuration, indicating the terminal device to  access a new frequency point.
  39. The method (300) according to claim 36,
    wherein the message of configuration update command comprises allowed NSSAI, and/or configured NSSAI, and/or rejected NSSAI based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
  40. The method (300) according to any of claims 37 to 39,
    wherein a new frequency point is indicted by a measurement object information element.
  41. A method (400) performed by a base station, comprising:
    receiving (S402) at least part of a changed configuration for at least one radio resource from a second network entity;
    wherein the second network entity provides data to a first network entity;
    wherein the first network entity determines whether a quality deteriorate happens for the at least one radio resource serving at least one terminal device, based on at least the provided data; and
    wherein the second network entity receives the changed configuration, if the quality deteriorate is determined to happen.
  42. The method (400) according to claim 41,
    wherein the at least part of the changed configuration is received, via a message of PDU session Resource Modify Request, or UE Context Modification Request.
  43. The method (400) according to claim 41 or 42, further comprising:
    receiving (S404) at least part of the changed configuration from the second network entity, via a message of PDU session Resource Modify Request, or UE Context Modification Request; and
    transmitting (S406) an updated configuration for a terminal device based on the at least part of the changed configuration, via a message of RRC Reconfiguration, and/or RRC connection release.
  44. The method (400) according to claim 41 or 42, further comprising:
    transmitting (S408) to a terminal device an updated configuration from the second network entity, via a configuration update command;
    receiving (S410) the at least part of the changed configuration, via a message of AMF configuration update.
  45. The method (400) according to claim 43,
    wherein the message of RRC Reconfiguration comprises additional measurement configuration based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
  46. The method (400) according to claim 43,
    wherein the message of RRC connection release comprises additional redirected carrier information based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
  47. The method (400) according to claim 44,
    wherein the message of configuration update command comprises allowed NSSAI, and/or configured NSSAI, and/or rejected NSSAI based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
  48. The method (400) according to any of claims 45 to 47,
    wherein a new frequency point is indicted by a measurement object information element.
  49. The method (400) according to any of claim 41 to 48,
    wherein the provided data comprises a current configuration for the at least one radio resource.
  50. The method (400) according to claim 49,
    wherein the current configuration for the at least one radio resource comprises at least one of:
    base station or cell level information;
    used network slice selection assistance information, new radio absolute radio frequency channel numbers, allocated radio bandwidths;
    an allowed tracking area code and public land mobile network list; and/or
    a radio access technology/frequency selection priority, or radio resource management policy index.
  51. The method (400) according to any of claims 49 to 50,
    wherein the provided data further comprises an uplink/downlink physical resource block, UL/DL PRB, usage, hardware usage ratio, and/or a transmission latency, and/or a jitter on packets round trip, about the at least one radio resource.
  52. The method (400) according to claim 51,
    wherein the quality deteriorate is related to a quality of service, QoS, and/or a quality of experience, QoE, of the at least one radio resource serving the at least terminal device; and
    wherein the quality deteriorate is determined to happen when the UL/DL PRB usage is more than an internal PRB usage threshold, and/or the hardware usage ratio is more than a hardware usage threshold, and/or when latency is higher than an internal latency threshold, and/or when the jitter happens.
  53. The method (400) according to any of claims 41 to 52,
    wherein the at least one terminal device comprises at least one individual user equipment, UE, and/or at least one group of UE.
  54. The method (400) according to any of claims 41 to 53,
    wherein a radio resource in the at least one radio resource comprises a network slice.
  55. The method (400) according to claim 54,
    wherein the changed configuration comprises a slice template for the network slice, including at least one of:
    a priority index of the network slice;
    information of bandwidth for the network slice
    and/or an identity of the network slice.
  56. The method (400) according to claim 55,
    wherein the priority index comprises a Radio Access Technology /Frequency Selection Priority, RFSP, and/or a Subscriber Profile Identity for RAT/Frequency priority, SPID, related to the at least one radio resource.
  57. The method (400) according to claim 55 or 56,
    wherein the slice template is represented by an information element of dynamic radio resource item.
  58. The method (400) according to any of claims 55 to 57,
    wherein the changed configuration indicates adding and/or removing a radio frequency and/or bandwidth of the network slice.
  59. The method (400) according to any of claims 55 to 58,
    wherein the changed configuration indicates creating or selecting a new network slice for serving a terminal device.
  60. The method (400) according to any of claims 51 to 59,
    wherein the second network entity comprises an access and mobility management function, AMF.
  61. A method (500) performed by a terminal device, comprising:
    receiving (S502) , from a base station, an updated configuration for the terminal device;
    wherein the updated configuration indicates the terminal device to access a new frequency point.
  62. The method (500) according to claim 61,
    wherein the base station receives at least part of a changed configuration for at least one radio resource from a second network entity;
    wherein the second network entity provides data to a first network entity;
    wherein the first network entity determines whether a quality deteriorate happens for the at least one radio resource serving at least one terminal device, based on at least the provided data; and
    wherein the second network entity receives the changed configuration, if the quality deteriorate is determined to happen.
  63. The method (500) according to claim 62,
    wherein the at least part of the changed configuration is received, via a message of PDU session Resource Modify Request, or UE Context Modification Request.
  64. The method (500) according to claim 63,
    wherein the updated configuration is based on at least part of the changed configuration, and is received from a base station via a message of RRC Reconfiguration, and/or RRC connection release.
  65. The method (500) according to any of claims 61 to 62,
    wherein the updated configuration is based on at least part of the changed configuration, and is received from an AMF, via a configuration update command.
  66. The method (500) according to claim 64,
    wherein the message of RRC Reconfiguration comprises additional measurement configuration based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
  67. The method (500) according to claim 64,
    wherein the message of RRC connection release comprises additional redirected carrier information based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
  68. The method (500) according to claim 65,
    wherein the message of configuration update command comprises allowed NSSAI, and/or configured NSSAI, and/or rejected NSSAI based on the at least part of the changed configuration, indicating the terminal device to access a new frequency point.
  69. The method (500) according to any of claims 66 to 68,
    wherein a new frequency point is indicted by a measurement object information element.
  70. The method (500) according to any of claim 61 to 69,
    wherein the provided data comprises a current configuration for the at least one radio resource.
  71. The method (500) according to claim 70,
    wherein the current configuration for the at least one radio resource comprises at least one of:
    base station or cell level information;
    used network slice selection assistance information, new radio absolute radio frequency channel numbers, allocated radio bandwidths;
    an allowed tracking area code and public land mobile network list; and/or
    a radio access technology/frequency selection priority, or radio resource management policy index.
  72. The method (500) according to any of claims 70 to 71,
    wherein the provided data further comprises an uplink/downlink physical resource block, UL/DL PRB, hardware usage ratio, and/or a transmission latency, and/or a jitter on packets round trip, about the at least one radio resource.
  73. The method (500) according to claim 72,
    wherein the quality deteriorate is related to a quality of service, QoS, and/or a quality of experience, QoE, of the at least one radio resource serving the at least terminal device; and
    wherein the quality deteriorate is determined to happen when the UL/DL PRB usage is more than an internal PRB usage threshold, and/or the hardware usage ratio is more than a hardware usage threshold, and/or when latency is higher than an internal latency threshold, and/or when the jitter happens.
  74. The method (500) according to any of claims 61 to 73,
    wherein the at least one terminal device comprises at least one individual user equipment, UE, and/or at least one group of UE.
  75. The method (500) according to any of claims 61 to 74,
    wherein a radio resource in the at least one radio resource comprises a network slice.
  76. The method (500) according to claim 75,
    wherein the changed configuration comprises a slice template for the network slice, including at least one of:
    a priority index of the network slice;
    information of bandwidth for the network slice
    and/or an identity of the network slice.
  77. The method (500) according to claim 76,
    wherein the priority index comprises a Radio Access Technology /Frequency Selection Priority, RFSP, and/or a Subscriber Profile Identity for RAT/Frequency priority, SPID, related to the at least one radio resource.
  78. The method (500) according to claim 76 or 77,
    wherein the slice template is represented by an information element of dynamic radio resource item.
  79. The method (500) according to any of claims 76 to 78,
    wherein the changed configuration indicates adding and/or removing a radio frequency and/or bandwidth of the network slice.
  80. The method (500) according to any of claims 76 to 79,
    wherein the changed configuration indicates creating or selecting a new network slice for serving a terminal device.
  81. The method (500) according to any of claims 62 to 80,
    wherein the second network entity comprises an access and mobility management function, AMF;
    wherein the first network entity comprises a Network Data Analytics Function, NWDAF; and/or
    wherein the NWDAF is collocated with an AMF.
  82. An apparatus (60) for a first network entity in a communication network, comprising:
    a processor (602) ; and
    a memory (604) , the memory containing instructions executable by the processor, whereby the apparatus for the first network entity is operative for:
    collecting data from at least one network entity;
    determining whether a quality deteriorate happens for at least one radio resource serving at least one terminal device, based on the collected data;
    outputting a changed configuration for the at least one radio resource, if the quality deteriorate is determined to happen.
  83. The apparatus (60) according to claim 82, wherein the apparatus is further operative to perform the method according to any of claims 2 to 21.
  84. An apparatus (62) for a second network entity in a communication network, comprising:
    a processor (622) ; and
    a memory (624) , the memory containing instructions executable by the processor, whereby the apparatus for the second network entity is operative for:
    providing data to a first network entity, wherein the first network entity determines whether a  quality deteriorate happens for the at least one radio resource, based at least on the provided data; and
    receiving a changed configuration for at least one radio resource serving at least one terminal device, wherein the second network entity receives the changed configuration, if the quality deteriorate is determined to happen.
  85. The apparatus (62) according to claim 84, wherein the apparatus is further operative to perform the method according to any of claims 23 to 40.
  86. An apparatus (64) for a base station in a communication network, comprising:
    a processor (642) ; and
    a memory (644) , the memory containing instructions executable by the processor, whereby the apparatus for the base station is operative for:
    receiving at least part of a changed configuration for at least one radio resource from a second network entity;
    wherein the second network entity provides data to a first network entity;
    wherein the first network entity determines whether a quality deteriorate happens for the at least one radio resource serving at least one terminal device, based on at least the provided data; and
    wherein the second network entity receives the changed configuration, if the quality deteriorate is determined to happen.
  87. The apparatus (64) according to claim 86, wherein the apparatus is further operative to perform the method according to any of claims 42 to 60.
  88. An apparatus (66) for a terminal device in a communication network, comprising:
    a processor (662) ; and
    a memory (664) , the memory containing instructions executable by the processor, whereby the apparatus for the terminal device is operative for:
    receiving, from a base station, an updated configuration for the terminal device;
    wherein the updated configuration indicates the terminal device to access a new frequency point.
  89. The apparatus (66) according to claim 88, wherein the apparatus is further operative to perform the method according to any of claims 62 to 81.
  90. A computer-readable storage medium (70) storing instructions (701) , which when executed by at least one processor, cause the at least one processor to perform the method according to any one of claims 1 to 81.
PCT/CN2022/089907 2022-04-28 2022-04-28 Method and apparatus for dynamically configuring slice in communication network WO2023206238A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/089907 WO2023206238A1 (en) 2022-04-28 2022-04-28 Method and apparatus for dynamically configuring slice in communication network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/089907 WO2023206238A1 (en) 2022-04-28 2022-04-28 Method and apparatus for dynamically configuring slice in communication network

Publications (1)

Publication Number Publication Date
WO2023206238A1 true WO2023206238A1 (en) 2023-11-02

Family

ID=88516813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089907 WO2023206238A1 (en) 2022-04-28 2022-04-28 Method and apparatus for dynamically configuring slice in communication network

Country Status (1)

Country Link
WO (1) WO2023206238A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190364495A1 (en) * 2017-02-03 2019-11-28 Telefonaktiebolaget Lm Ericsson (Publ) Access to a Communication System Employing Network Slicing Based on Pre-Configured Access Category
WO2020180217A1 (en) * 2019-03-01 2020-09-10 Telefonaktiebolaget Lm Ericsson (Publ) Method and system for local area data network (ladn) selection based on dynamic network conditions
US20210105656A1 (en) * 2019-10-04 2021-04-08 Samsung Electronics Co., Ltd. Method and apparatus for determining analytics for service experience for a network slice instance
WO2021138526A1 (en) * 2020-01-02 2021-07-08 Convida Wireless, Llc Frequency range driven network slicing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190364495A1 (en) * 2017-02-03 2019-11-28 Telefonaktiebolaget Lm Ericsson (Publ) Access to a Communication System Employing Network Slicing Based on Pre-Configured Access Category
WO2020180217A1 (en) * 2019-03-01 2020-09-10 Telefonaktiebolaget Lm Ericsson (Publ) Method and system for local area data network (ladn) selection based on dynamic network conditions
US20210105656A1 (en) * 2019-10-04 2021-04-08 Samsung Electronics Co., Ltd. Method and apparatus for determining analytics for service experience for a network slice instance
WO2021138526A1 (en) * 2020-01-02 2021-07-08 Convida Wireless, Llc Frequency range driven network slicing

Similar Documents

Publication Publication Date Title
WO2022248118A1 (en) Authorization of consumer network functions
WO2023143806A1 (en) Routing indicator update via ue parameters update (upu) procedure
WO2023058009A1 (en) Disaster roaming indication for session and policy
WO2023206238A1 (en) Method and apparatus for dynamically configuring slice in communication network
WO2024032571A1 (en) Method and apparatus for user plane function selection
WO2024027839A1 (en) Method and apparatus for configuring location reporting type
WO2024027838A1 (en) Method and apparatus for stopping location reporting
WO2024040388A1 (en) Method and apparatus for transmitting data
WO2023185737A1 (en) Method and apparatus for performing secondary authentication/authorization for terminal device in communication network
WO2023179483A1 (en) Method and apparatus for muting notification of application status
WO2023143314A1 (en) METHOD AND APPARATUS FOR CONFIGURING QoS IN COMMUNICATION NETWORK
WO2023142676A1 (en) Service-specific authorization removal in 5g core network (5gc)
WO2023122972A1 (en) Method and apparatus for keep session alive in communication network
WO2023141826A1 (en) Methods and apparatuses for scheduling terminal device
WO2023230993A1 (en) Method and apparatus for standby member and active member in cluster
WO2023161733A1 (en) Congestion aware traffic optimization in communication networks
WO2023132774A1 (en) Handling of triggers for ran-visible qoe reporting
WO2022233890A1 (en) Deterministic network entity for communications networks
WO2023117829A1 (en) Method and apparatus for updating binding information in communication network
WO2023284935A1 (en) Secondary node requested measurement gaps at secondary node addition
WO2023186724A1 (en) Radio access network (ran) analytics exposure mechanism
WO2022238161A1 (en) Data collection coordination function (dccf) data access authorization without messaging framework
WO2023187685A1 (en) Data collection from user equipment on user equipment route selection policy usage
WO2023217557A1 (en) Artificial intelligence/machine learning (ai/ml) translator for 5g core network (5gc)
WO2023222524A1 (en) Methods for edge computing client to obtain and use identifiers of user equipment that hosts client

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939090

Country of ref document: EP

Kind code of ref document: A1