WO2023204594A1 - 태그멘테이션을 이용한 벡터 삽입위치 검출 및 클론 정량 방법 - Google Patents

태그멘테이션을 이용한 벡터 삽입위치 검출 및 클론 정량 방법 Download PDF

Info

Publication number
WO2023204594A1
WO2023204594A1 PCT/KR2023/005296 KR2023005296W WO2023204594A1 WO 2023204594 A1 WO2023204594 A1 WO 2023204594A1 KR 2023005296 W KR2023005296 W KR 2023005296W WO 2023204594 A1 WO2023204594 A1 WO 2023204594A1
Authority
WO
WIPO (PCT)
Prior art keywords
genome
vector
detecting
paragraph
chain reaction
Prior art date
Application number
PCT/KR2023/005296
Other languages
English (en)
French (fr)
Inventor
김종일
김재력
강형진
박미영
Original Assignee
서울대학교산학협력단
서울대학교병원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단, 서울대학교병원 filed Critical 서울대학교산학협력단
Priority claimed from KR1020230051116A external-priority patent/KR20230149744A/ko
Publication of WO2023204594A1 publication Critical patent/WO2023204594A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6809Methods for determination or identification of nucleic acids involving differential detection
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B30/00ICT specially adapted for sequence analysis involving nucleotides or amino acids

Definitions

  • the present invention relates to a method for detecting the insertion position in the genome of an insertable vector and quantifying clones.
  • Gene therapy can be defined as 'a technology that aims to treat diseases by introducing genes from outside to 1) correct defective genes and change them to their original (normal) state, or 2) provide new functions to cells.' In reality, it can be redefined as any technology that introduces genes or cells into which genes are introduced into the human body in order to treat diseases or develop treatment models.
  • plasmids or viral vectors are used.
  • immunotherapy treatments such as CAR (chimeric antigen receptor)-T cell therapy
  • the introduced gene must be expressed permanently even when the T cells divide, so retroviruses such as gammaretrovirus or lentivirus are used to insert the introduced gene into the chromosome.
  • Virus-based vectors are mainly used.
  • lentiviral vectors Unlike gammaretroviral vectors, lentiviral vectors have the advantage of being transfected even into non-dividing cells, and recently replication incompetent vectors have been developed and are widely used in the production of gene therapy products such as CAR-T cells.
  • CAR-T cells gene therapy products
  • there have been no reports of tumor originating from gene-transduced cells using replication-incompetent lentivirus but because of these concerns, it is recommended to confirm the insertion location of the viral vector in the genome before injecting the treatment into the patient.
  • Gene therapy products need to be monitored for tumorigenicity not only before injection but also periodically after injection. According to the [Gene Therapy Clinical Trial Guidelines - Patient Follow-up for Delayed Adverse Reactions] published by the Korea Food and Drug Safety Evaluation Institute in 2016, when insertion or In the case of treatments using viral vectors that have the potential for reactivation after latency, it is proposed to conduct vector tracking after treatment and analysis to evaluate safety outcomes related to vector persistence.
  • LAM linear amplification mediated
  • nrLAM non-restrictive enzyme linear amplification mediated
  • LM ligation
  • the purpose of the present invention is to provide a method for detecting the vector integration site in the genome.
  • Another object of the present invention is to provide a method for quantifying clones into which a vector has been inserted into the genome.
  • the present invention relates to a method for detecting vector integration sites in the genome and quantifying clones.
  • the present invention relates to a method for analyzing the insertion position in the genome of a vector.
  • the features and advantages of the present invention are summarized as follows:
  • Figure 1 is a schematic diagram of the clone quantification method (DIStinct-seq) for detecting the vector insertion position in the genome using tagmentation of the present invention.
  • Figure 2 is a schematic diagram summarizing the bioinformatics pipeline of the vector insertion site detection and clone quantification method (DIStinct-seq) in the genome using tagmentation of the present invention.
  • Figures 3A to 3C verify the quantitative insertion site analysis ability by the analysis method of the present invention according to an embodiment of the present invention.
  • Figure 3A shows the ratio of clones used in the experiment
  • Figure 3B shows the mapping ambiguity of one of the clones.
  • Figure 3c is the result of confirming the size of the expected clone for each of the unprocessed fragment and the fragment from which PCR duplicates were removed, when multiple alignment fragments were integrated and when only the primary alignment read was used.
  • Figure 4 shows the results of analyzing DNA motifs around the insertion site in CAR-T cells produced using a lentiviral vector according to an embodiment of the present invention, using the analysis method of the present invention.
  • Figure 5 shows the results of analyzing the chromosome type and insertion ratio in functional genomic regions by the analysis method of the present invention in CAR-T cells produced using a lentiviral vector according to an embodiment of the present invention.
  • Figures 6a and 6b show the results of analyzing the relationship between clone size and insertion ratio in functional genomic regions by the analysis method of the present invention in CAR-T cells produced using a lentiviral vector according to an embodiment of the present invention.
  • am. (6a: Classification by clone size, 6b: Analysis of the insertion site ratio of functionally important genomic regions according to clone size)
  • Figure 7 shows the results of pathway enrichment analysis of the insertion site gene according to clone size by the analysis method of the present invention in CAR-T cells manufactured using a lentiviral vector according to an embodiment of the present invention.
  • Figures 8a to 8d show the insertion position over time by the analysis method of the present invention in vivo for CAR-T cells produced using a lentiviral vector according to an embodiment of the present invention. This is one result.
  • 8a Overview of in vivo experiments
  • 8b Quantitative changes in cells into which CAR-T vectors were inserted in vivo
  • 8c Shannon entropy index over time
  • 8d Clones with the top 1 percentile clone size over time percentage of the total clone size
  • Figures 9a and 9b quantitatively show the insertion site over time by the analysis method of the present invention in vivo for CAR-T cells produced using a lentiviral vector according to an embodiment of the present invention. This is the result of analysis.
  • 9b Analysis of the insertion site ratio of functionally important genomic regions according to clone size
  • One aspect of the present invention relates to a method for detecting a vector integration site in a genome, comprising the following steps.
  • the vector may be a viral vector
  • the virus may be a lentivirus and/or a retrovirus, but is not limited thereto.
  • the method is capable of quantitative analysis of the insertion position.
  • This step is a process that simultaneously performs fragmentation of nucleic acids and tagging of adapters. Through this process, the nucleic acid extracted from the sample is appropriately cut into a size that can be analyzed, and at the same time, adapters for binding library construction primers are attached.
  • fragmentation refers to cutting nucleic acids into an appropriate size that can be analyzed, and may be cut randomly by physical or enzymatic methods.
  • the physical method usually cleaves nucleic acids using energy generated by generating ultrasonic waves in equipment, and the segmentation length can be adjusted by adjusting the generated energy and exposure time.
  • equipment from Covaris, Diagenode and Qsonica companies are widely used.
  • the enzymatic method is a method of obtaining nucleic acid fragments of the desired size by treating them under appropriate conditions with enzymes such as nuclease, fragmentase, and transposase that randomly cleave nucleic acids.
  • the term "adapter” refers to a chemically synthesized short single-stranded or double-stranded oligonucleotide that can be ligated to the end of a DNA or RNA molecule, and the adapter includes a fragment of a next-generation sequencer. Platform-specific sequences for recognition are included.
  • this step can be performed by Bead-Linked Transposome (BLT).
  • BLT Bead-Linked Transposome
  • the bead-bound transposome is a structure in which a transposome, which is a combination of an enzyme that cleaves nucleic acid, such as Tn5 transposase, and an adapter, is attached to a bead.
  • the present invention can significantly increase the input amount of DNA for insertion site analysis (100 to 500 ng) compared to the conventional method, and more insertion sites can be identified in one reaction. Not only can you find it, but you can also improve the accuracy of quantitative analysis.
  • This step is a process of performing gene amplification on the tagged nucleic acid fragment.
  • the DNA host/vector fusion DNA
  • the DNA into which a trace amount of the vector is inserted into the tagged nucleic acid fragment is specifically amplified.
  • the gene may be a host/vector fusion DNA fragment.
  • this step may be performed by the following steps:
  • PCR First polymerase chain reaction
  • the first polymerase chain reaction may be, for example, carried out under the following conditions, but is not limited thereto:
  • the first polymerase chain reaction may use a forward primer consisting of the base sequence of SEQ ID NO: 1 and a reverse primer consisting of the base sequence of SEQ ID NO: 2, but is not limited thereto.
  • the term "primer” is a nucleic acid sequence having a short free 3' hydroxyl group, which can form a base pair with a complementary template of a plant nucleic acid, and copies the template strand. refers to a short nucleic acid sequence that serves as a starting point for
  • the second polymerase chain reaction may be performed by nested-PCR, for example, may be performed under the following conditions, but is not limited thereto:
  • the second polymerase chain reaction may use a forward primer consisting of the base sequence of SEQ ID NO: 3 and a reverse primer consisting of the base sequence of SEQ ID NO: 4, but is not limited thereto.
  • PCR in order to minimize the production of non-specific amplification products that may occur in the first polymerase chain reaction, PCR was performed using the once amplified DNA as a template in the second polymerase chain reaction (nested-PCR). .
  • the method of the present invention lowers the number of cycles of the first PCR (40 ⁇ 30 times) and increases the elongation time of the first and second PCRs. was performed by increasing (1 ⁇ 2 minutes).
  • each primer of the present invention can be appropriately selected depending on the type of vector used.
  • the forward primer of the first polymerase chain reaction consisting of the base sequence of SEQ ID NO: 1 of the present invention is "20 bp complementary to the 3' long terminal repeat (LTR), which is the end of the inserted lentiviral sequence.”
  • LTR 3' long terminal repeat
  • the base sequence of SEQ ID NO: 1 may be changed to match the sequence of the virus.
  • the forward primer of the second polymerase chain reaction consisting of the base sequence of SEQ ID NO. 3 of the present invention is a sequence complementary to the 3' LTR, which is the end of the inserted lentiviral sequence, and the first polymerase It is a 20bp sequence located downstream of the forward primer sequence of the chain reaction and does not include 13bp of the 5' terminal sequence of the 3' LTR. If the type of inserted virus is different, the base sequence of SEQ ID No. 3 is the sequence of the virus. It may be changed to suit.
  • This step is a process of pooling and sequencing the same amount of DNA from individual samples for the produced library. Through this process, raw sequencing reads required for bioinformatic analysis performed in the subsequent step of determining the insertion location in the genome are obtained.
  • sequencing refers to the process of obtaining DNA base sequence information performed in a next-generation base sequencer.
  • the adapter region attached during the library production step combines with the complementary primer on the analyzer to achieve large-scale replication, and the sequence lead is obtained by observing the order in which bases are synthesized in the aligned DNA.
  • a suitable system eg NovaSeq 6000.
  • This step is a process of determining the insertion location of the vector in the genome through a series of bioinformatics pipelines for the pooled sequences.
  • bioinformatics is an applied science that uses computers to analyze and process large-scale biological data to obtain useful information, and can include all fields of biology research using computers.
  • the bioinformatics pipeline of this step is shown in Figure 2, and specifically, it may be performed by the following steps:
  • Each of the above steps may be performed by Seqkit, Cutadapt, BWA, Picard, Samtools, and/or an in-house Python script tool, but is not limited thereto.
  • Seqkit version 0.14.0 (Shen, W., Le, S., Li, Y., and Hu, F.Q. (2016). SeqKit: A Cross-Platform and Ultrafast Toolkit for Containing vector-genome junctions from raw sequencing reads using FASTA/Q File Manipulation. PLoS One 11, e0163962. https://doi.org/10.1371/journal.pone.0163962. Chimeric reads can be extracted.
  • Cutadapt version 1.18 (Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. journal 17, 10-12. https://doi. org/10.14806/ej.17.1.200.) can be used to remove 3' LTR-specific sequences from each read.
  • BWA version 0.7.17
  • Si Long, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754- 1760. https://doi.org/10.1093/bioinformatics/btp324.
  • Generate a host/vector fusion reference genome by combining the host reference genome and vector sequences using the mem option, and then combine the reads with the host/vector fusion. Can be aligned to reference genome.
  • PCR duplicates can be removed using Picard (version 2.24.0) (Picard toolkit. (2019). Broad Institute, GitHub repository.). However, this step can be optionally omitted when quantifying clone size using the number of unprocessed fragments.
  • Samtools version 1.3.1
  • Samtools version 1.3.1
  • the Sequence Alignment/Map format and SAMtools Bioinformatics 25, 2078-2079. https://doi.
  • a unique integration site can be determined using an in-house Python script. For accurate quantitative analysis of unique insertion sites, multiple hit reads due to mapping ambiguity and fuzz reads of up to 3 bp that may occur during the PCR and sequencing steps can be counted as unique reads. .
  • the DNA of clones derived from a single cell with a known insertion site is mixed at a certain ratio, and the insertion site is determined by the method of the present invention. was confirmed.
  • the HEK293FT cell line (Thermofisher scientific) was transduced with a lentiviral vector expressing EmGFP (Addgene #113884) at an MOI of 0.4 and subjected to flow cytometry (Fluorescence Activated Cell Sorter, FACS) (BD FACSAria III Cell Sorter). ), only the cells into which the vector was inserted were isolated. Colonies of single cell origin were isolated by serially diluting the separated cells in 1/10 increments in a 96-well plate and then distributing and culturing them.
  • FACS Fluorescence Activated Cell Sorter
  • DNA SISC_1 SISC_2 SISC_3 Library library_1 One% 3% 96% library_2 5% 10% 85% library_3 15% 25% 60% library_4 20% 30% 50%
  • Illumine's Illumina DNA prep kit was used to utilize the tagmentation principle in which adapter attachment and fragmentation occur simultaneously.
  • each sample was resuspended by pipetting 10 times.
  • the sample tube was placed in a thermal cycler and incubated at a read temperature of 100°C, a reaction volume of 50 ⁇ l, a reaction time of 15 minutes, a reaction temperature of 55°C, and a stop temperature of 0°C.
  • the Tagmentation Stop Buffer (TSB) was taken out to room temperature and incubated at 37°C until all precipitates were dissolved. 10 ⁇ l of TSB was added to the tagged tube. Each sample was resuspended by gently pipetting 10 times. Incubation was performed in a temperature cycler at a read temperature of 100°C, a reaction volume of 60 ⁇ l, a reaction time of 15 minutes, a reaction temperature of 37°C, and a stop temperature of 10°C.
  • the sample tube was placed on a magnetic stand for up to 3 minutes until the solution became clear. The supernatant was removed and discarded, the sample tube was separated from the magnetic stand, and 100 ⁇ l of Tagment Wash Buffer (TWB), taken out at room temperature, was carefully added onto the beads and resuspended by pipetting slowly. The sample tube was placed on a magnetic stand for up to 3 minutes until the solution became clear.
  • TWB Tagment Wash Buffer
  • a PCR reaction solution was prepared with the composition shown in Table 2 below.
  • PCR primers have information and sequences as shown in Table 3 below.
  • a sample tube was placed in a temperature cycler, and PCR was performed at a read temperature of 100°C, a reaction volume of 50 ⁇ l, and the temperature and time shown in Table 4 below.
  • PCR reaction solution was prepared with the composition shown in Table 5 below.
  • PCR primers have information and sequences as shown in Table 6 below.
  • a sample tube was placed in a temperature cycler, and PCR was performed at a read temperature of 100°C, a reaction volume of 50 ⁇ l, and the temperature and time shown in Table 7 below.
  • Primer 4 (reverse) CAAGCAGAAGACGGCATACGAGATNNNNNNNNNNGTCTCGTGGGCTCGG (SEQ ID NO: 4) 15bp complementary to the adapter sequence + 10bp of index sequence (varies by sample, denoted by N) + 24bp of P7 sequence
  • SPRIselect beads from Beckman Coulter were used to remove impurities such as PCR dimers from the library produced through the above process and purify the library to the optimal size (200-500bp).
  • SPRIselect beads were vortexed, 25 ⁇ l (0.5X) was added to the sample tube, mixed thoroughly by pipetting, and incubated at room temperature for 5 minutes. After inserting the sample tube into the magnetic stand, 70.32 ⁇ l was transferred to a new PCR tube.
  • SPRIselect beads were vortexed, 20 ⁇ l (0.9X) was added to the sample tube, mixed thoroughly by pipetting, and incubated at room temperature for 5 minutes. After inserting the sample tube into the magnetic stand, 81 ⁇ l of supernatant was removed. At this time, the beads are not touched.
  • the sample tube was placed on a magnetic stand and the ethanol was removed. After removing the sample tube from the magnetic stand, 61 ⁇ l of elution buffer was added and mixed thoroughly by pipetting. Incubate at room temperature for 2 minutes, place on a magnetic stand, and when the solution becomes transparent, 60 ⁇ l is transferred to a new tube.
  • chimeric reads containing vector-genome junctions were extracted from raw sequencing reads using seqkit (version 0.14.0).
  • 3' LTR-specific sequences were removed from each read using cutadapt (version 1.18).
  • a host/vector fusion reference genome was generated by combining the human reference genome (hg38) and vector sequences using the BWA (version 0.7.17) mem option, and then the reads were aligned to the host/vector fusion reference genome.
  • PCR duplicates were removed using Picard (version 2.24.0). However, this step was optionally omitted when quantifying clone size using the number of unprocessed fragments.
  • reads were filtered using samtools (version 1.3.1) according to the following criteria: mapping quality of 20 or greater, properly paired reads represented by SAM flag 0 ⁇ 2, paired reads with insert size exceeding 2000 bp, excluding reads aligned to the lentiviral vector genome and not primary alignment by SAM flag 0 ⁇ 100.
  • mapping quality of 20 or greater
  • properly paired reads represented by SAM flag 0 ⁇ 2
  • paired reads with insert size exceeding 2000 bp excluding reads aligned to the lentiviral vector genome and not primary alignment by SAM flag 0 ⁇ 100.
  • fuzzy reads were counted as reads with unique insertion positions.
  • the insertion site analysis method (DIStinct-seq) of the present invention was directly applied to CAR-T cells, a gene therapy product, to analyze the insertion site. We attempted to confirm safety by analyzing the clone size according to the insertion location.
  • CD4+ and CD8+ T cells from healthy donors were incubated with TexMACS containing IL-7 (12.5 ng/mL), IL-15 (12.5 ng/mL), and 3% human AB serum (Life Science Production, Bedford, UK).
  • T cells were activated by culturing in medium and using CD3/CD28 MACS® GMP TransAct reagent (Miltenyi Biotec).
  • activated T cells were transduced with a lentiviral vector encoding the CAR gene.
  • the lentiviral vector used at this time was LTG1563, a CD19 CAR vector, developed and supplied by Lentigen, an affiliate of Miltenyi Biotec (Gaithersburg, MD, United States).
  • TexMACS medium serum-free supplemented with 12.5 ng/mL of IL-7 and IL-1 and cultured until harvest on day 12. This process was performed on the automated production equipment CliniMACS Prodigy (Miltenyi Biotec, Bergisch Gladbach, Germany).
  • the DNA motifs (cart006, cart007, cart008 in Figure 4) surrounding the insertion site of the lentivirus determined by the insertion site analysis method (DIStinct-seq) of the present invention are the same as the previously known insertion of the lentivirus. It matched perfectly with the DNA motif surrounding the position (Kirt et al. in Figure 4) (Nature microbiology, 2016, 2.2: 1-6. PMID: 27841853).
  • the insertion location of the lentivirus determined by the insertion location analysis method (DIStinct-seq) of the present invention was consistent with the previously known insertion location trend of the same lentivirus.
  • LEC less expanded clone
  • IEC intermediately expanded clone
  • HEC highly expanded clone
  • the CAR-T cell line (cart006) prepared above was injected into mice. All experiments were conducted with approval from the Seoul National University Hospital Animal Care Committee (SNUH-IACUC, 20-0177).
  • mice 7-week-old immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice (total of 10 mice) were injected with Luc-NALM-6 cells at an amount of 1.0 x 10 5 per mouse through the tail vein.
  • CD19 CAR-T cells suspended in saline were injected at an amount of 4.0 x 10 6 per mouse, and the same volume of saline was administered to the control group.
  • DNA was extracted from the blood of CAR-T cells before injection, 4 mice at 30 days after injection (Day 30), and the remaining 6 mice at 60 days after injection (Day 60), and DIStinct-seq was performed (see Figure 8a).
  • the insertion ratio at some insertion sites such as the transcription unit varies depending on the extent to which the clone is expanded. It showed a tendency to vary, which means that clonal expansion can also be affected by the insertion location.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Plant Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Medical Informatics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 유전체 내 벡터 삽입위치 검출방법에 관한 것으로, 본 발명의 방법에 따르면 간편하고 신속하게 유전체 내 다수의 DNA 모티프(사이트)에 대한 바이러스 벡터의 양적인 삽입위치 분석을 수행할 수 있는 바, 유전자 치료제의 안전성 및 효과 모니터링 등에 유용하게 이용될 수 있다.

Description

태그멘테이션을 이용한 벡터 삽입위치 검출 및 클론 정량 방법
본 발명은 삽입성 벡터의 유전체 내 삽입위치 검출 및 클론 정량 방법에 관한 것이다.
유전자 치료는 '외부에서 유전자를 도입함으로써 1) 결손된 유전자를 교정시켜 원래의 (정상) 상태로 바꾸거나, 2) 세포에 새로운 기능을 제공하여 질병을 치료하고자 하는 기술'로 정의될 수 있다. 실제적으로는 질병의 치료나 치료 모델을 개발하기 위해 유전자 또는 유전자가 도입된 세포를 사람의 체내로 투입하는 제반기술로 다시 정의될 수 있다.
유전자를 세포에 도입하기 위해서는 플라스미드나 바이러스 벡터 등을 이용한다. 특히 CAR(chimeric antigen receptor)-T 세포 치료와 같은 면역항암치료제의 경우, T 세포가 분열하여도 도입 유전자가 영구히 발현되어야 하기 때문에, 도입 유전자의 염색체 삽입을 위해 감마레트로바이러스 또는 렌티바이러스 등의 레트로바이러스 계열 벡터를 주로 이용한다.
감마레트로바이러스 벡터와 달리 렌티바이러스 벡터는 분열하지 않는 세포에도 이입이 된다는 장점이 있으며, 최근에 복제불능(replication incompetent) 벡터가 개발되어 CAR-T 세포 등의 유전자 치료제의 제조에 널리 이용되고 있다. 하지만 염색체의 무작위적인 위치에 삽입되는 바이러스 벡터의 특성상 기능적인 유전자, 특히 종양유발유전자(oncogene) 내 또는 근처에 삽입되어 종양원성(oncogenesis)을 유발할 우려가 있다. 현재까지 복제불능 렌티바이러스를 이용한 유전자 도입세포 기원의 종양발생은 보고된 적은 없으나, 이러한 우려 때문에 환자에게 치료제 주입 전 바이러스 벡터의 유전체 내 삽입 위치를 확인하는 것이 권고된다.
유럽의 EMA 가이드라인(Guideline on Development and Manufacture of Lentiviral vectors, CHMP/BWP/2458/03)에 따르면 렌티바이러스 벡터를 이용하여 치료제를 제조할 경우 프로바이러스성 삽입(proviral insertion)에 의한 종양원성 분석을 하도록 권장하고 있으며, 적절한 세포주를 이용하여 프로바이러스 벡터의 삽입 위치를 확인할 때 핵산 증폭(NAT, nucleaic acid amplication test) 방법 등을 이용하여 수행할 것을 제시하고 있다.
한국의 식품의약품안전평가원에서 2021년 발간한 [유전자 치료제 비임상시험 평가 가이드라인]에 따르면 '바이러스 벡터를 이용한 치료제의 경우 유전독성을 평가하여야 하는데, 유전자 삽입 위치를 확인하고 도입유전자와 근처 염기서열 간섭(cross-talk) 가능성을 평가하여야 한다'고 제시하고 있으며, 특히 CAR-T 세포에 대해서 '종양원성을 평가하기 위해 바이러스의 유전체 삽입위치 분석 및 비정상적 세포증식 확인시험 등을 고려하여야 한다'고 제시하고 있다.
유전자 치료제는 주입 전 뿐만 아니라 주입 후에도 주기적으로 종양원성을 모니터링하는 것이 필요한데, 식품의약품안전평가원에서 2016년 발간한 [유전자 치료제 임상시험 가이드라인-지연성 이상반응에 대한 환자 추적관찰]에 따르면 삽입 혹은 잠복 후 재활성 가능성이 있는 바이러스 벡터를 이용한 치료제의 경우 치료 후에 벡터 추적 그리고 벡터 잔존과 관계된 안전성 결과 평가를 위한 분석을 수행할 것을 제시하고 있다.
이와 같이 염색체에 삽입되는 바이러스 벡터를 이용하여 제조한 유전자 치료제는 삽입위치 분석(integration site analysis)에 의해 유전체 내 삽입 위치를 확인하는 것이 필요하며, 특히 치료 후에는 단순 삽입위치 뿐만 아니라 삽입위치에 따른 클론 크기 등의 양적인 변화까지 측정하는 것이 필요하다. 최근에는 바이러스 벡터 이외에 piggyBac transposon, Sleeping Beauty transposon 등의 염색체에 삽입되는 비바이러스 벡터 시스템도 주목받고 있어 이들 시스템의 삽입위치 분석에 대한 수요도 증가하고 있다. 하지만 전세계적으로 아직까지 이를 위한 표준화된 방법이 존재하지 않는 실정이다.
현재 골드 스탠다드(gold standard)로 인정받고 있는 것은 없으나, 가장 널리 쓰이고 있는 방법은 LAM(linear amplification mediated)-PCR(polymerase chain reaction), nrLAM(non-restrictive enzyme linear amplification mediated)-PCR, LM(ligation mediated)-PCR 등이다. 최근에는 이들 방법과 차세대 염기서열분석법(NGS, next-generation sequencing)을 결합하여 한 번의 실험으로 훨씬 더 예민하게 많은 삽입위치를 분석할 수 있게 되었다.
이들 방법은 제한효소 또는 초음파로 파편화 시키는 과정, 링커를 부착시키는 과정을 포함해 여러 단계가 필요하기 때문에 수행 과정이 복잡하며 NGS를 위한 라이브러리 제작에 최소 2일 이상의 시간이 걸린다는 단점이 있다. 임상 현장에서 다량의 샘플에 적용하기 위해서는 수행이 간편하고 신속하게 결과를 얻을 수 있어야 하는데, 이러한 단점들 때문에 제한적으로 쓰이고 있는 실정이다. 또한 여러 단계를 거치는 동안 시료의 손실이 발생하여 처음에 상대적으로 많은 양(1-3 ug 이상)의 DNA가 필요하며 초음파를 이용할 경우 고가의 장비가 필요하다는 제약이 있다.
최근 CAR-T 세포 등 유전자 치료제의 임상 적용이 비약적으로 증가함에 따라 벡터의 삽입위치를 대량으로 빠르고 간편하게 분석할 수 있는 기술에 대한 수요가 증대되고 있다. 특히 유전자 치료의 경우 제한된 혈액시료에 대해 다양한 검사를 수행해야 하기 때문에 적은 양의 DNA로 삽입위치 분석을 수행할 수 있는 방법이 요구되고 있다.
본 발명자들은 유전체 내 벡터의 양적인 삽입위치 분석방법에 대하여 연구하던 중, 비드-결합 트랜스포좀을 이용하여 태그멘테이션하고 PCR 반응 조건을 최적화하여 종래의 방법에 비해 훨씬 간편하고 빠르게 유전체 내 바이러스 벡터의 양적인 삽입위치 분석을 수행할 수 있음을 확인함으로써, 본 발명을 완성하였다.
따라서, 본 발명의 목적은 유전체 내 벡터 삽입위치(integration site) 검출방법을 제공하는 것이다.
본 발명의 다른 목적은 유전체 내 벡터가 삽입된 클론의 정량방법을 제공하는 것이다.
본 발명자들은 유전체 내 벡터의 양적인 삽입위치 검출방법에 대하여 연구하던 중, 비드-결합 트랜스포좀을 이용하여 태그멘테이션하고 PCR 반응 조건을 최적화하여 종래의 방법에 비해 훨씬 간편하고 빠르게 유전체 내 벡터의 양적인 삽입위치 분석을 수행할 수 있음을 확인하였다.
따라서, 본 발명은 유전체 내 벡터 삽입위치(integration site) 검출 및 클론 정량방법에 관한 것이다.
본 발명은 벡터의 유전체 내 삽입위치 분석방법에 관한 것이다. 본 발명의 특징 및 이점을 요약하면 다음과 같다:
(a) 본 발명의 방법에 따르면, 간편하고 신속하게 유전체 내 벡터의 양적인 삽입위치 분석을 수행할 수 있다.
(b) 본 발명의 방법에 따르면, 다수의 DNA 모티프(사이트)에 대한 벡터의 양적인 삽입위치 분석을 수행할 수 있다.
(c) CAR-T 등 유전자 치료제의 안전성 및 효과 모니터링 등에 유용하게 이용될 수 있다.
도 1은 본 발명의 태그멘테이션을 이용한 유전체 내 벡터 삽입위치 검출 클론 정량방법(DIStinct-seq)의 모식도이다.
도 2는 본 발명의 태그멘테이션을 이용한 유전체 내 벡터 삽입위치 검출 및 클론 정량방법(DIStinct-seq)의 생물정보학적 파이프라인을 정리한 모식도이다.
도 3a 내지 3c는 본 발명의 일 실시예에 따라 본 발명의 분석방법에 의한 양적인 삽입위치 분석능을 검증한 것으로, 도 3a는 실험에 사용한 클론의 비율, 도 3b는 클론 중 하나의 맵핑 모호성으로 인한 다중정렬 위치에 따른 단편 수 비율, 도 3c는 가공되지 않은 단편 및 PCR 중복을 제거한 단편 각각에 대해서 다중 정렬 단편을 통합했을 때 및 원발 정렬 리드만 사용하였을 때에 예상 클론의 크기를 확인한 결과이다.
도 4는 본 발명의 일 실시예에 따라 렌티바이러스 벡터를 이용하여 제조한 CAR-T 세포에서, 본 발명의 분석방법에 의한 삽입위치 주변 DNA 모티프를 분석한 결과이다.
도 5는 본 발명의 일 실시예에 따라 렌티바이러스 벡터를 이용하여 제조한 CAR-T 세포에서, 본 발명의 분석방법에 의한 염색체 종류 및 기능적 유전체 부위에 삽입된 비율을 분석한 결과이다.
도 6a 및 6b는 본 발명의 일 실시예에 따라 렌티바이러스 벡터를 이용하여 제조한 CAR-T 세포에서, 본 발명의 분석방법에 의한 클론 크기와 기능적 유전체 부위에서의 삽입 비율의 관계를 분석한 결과이다. (6a: 클론 크기 별 분류, 6b: 클론 크기에 따른 기능적으로 중요한 유전체 부위의 삽입위치 비율 분석)
도 7은 본 발명의 일 실시예에 따라 렌티바이러스 벡터를 이용하여 제조한 CAR-T 세포에서, 본 발명의 분석방법에 의한 클론 크기의 따른 삽입위치 유전자의 pathway enrichment 분석 결과이다.
도 8a 내지 8d는 본 발명의 일 실시예에 따라 렌티바이러스 벡터를 이용하여 제조한 CAR-T 세포에 대한 생체 내(in vivo)에서의 본 발명의 분석방법에 의한 삽입위치를 시간 경과에 따라 분석한 결과이다. (8a: 생체 내 실험의 개요, 8b: 생체내에서 CAR-T 벡터가 삽입된 세포의 양적 변화, 8c: 시간 경과에 따른 Shannon entropy index, 8d: 시간 경과에 따른 클론 크기가 상위 1 percentile인 클론이 전체 클론 크기에서 차지하는 비율)
도 9a 및 9b는 본 발명의 일 실시예에 따라 렌티바이러스 벡터를 이용하여 제조한 CAR-T 세포에 대한 생체 내(in vivo)에서의 본 발명의 분석방법에 의한 삽입위치를 시간 경과에 따라 양적 분석한 결과이다. (9a: 클론 크기 별 분류, 9b: 클론 크기에 따른 기능적으로 중요한 유전체 부위의 삽입위치 비율 분석)
이하, 본 발명을 더욱 자세히 설명하고자 한다.
본 발명의 일 양태는 다음의 단계를 포함하는, 유전체 내 벡터 삽입위치(integration site) 검출방법에 관한 것이다.
비드-결합 트랜스포좀(bead-linked transposome)을 이용한 태그멘테이션 단계;
유전자 증폭(gene amplification)을 통한 라이브러리 제작 단계;
라이브러리 풀링(pooling) 및 시퀀싱(sequencing) 단계; 및
생물정보학적 분석(bioinformatics analysis)을 통한 유전체 내 삽입위치 결정 단계.
본 발명에서, 상기 벡터는 바이러스 벡터일 수 있고, 상기 바이러스는 렌티바이러스 및/또는 레트로바이러스일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 일 구현예에 따르면, 상기 방법은 삽입위치의 양적인(quantity) 분석이 가능하다.
이하, 본 발명의 유전체 내 벡터 삽입위치 검출방법에 대하여 상세히 설명한다.
태그멘테이션 단계
본 단계는 핵산의 파편화(fragmentation) 및 어댑터(adapter)의 태깅(tagging)을 동시에 수행하는 과정이다. 본 과정에 의해 샘플에서 추출된 핵산이 분석 가능한 크기로 적절하게 절단되며, 동시에 라이브러리 제작 프라이머 결합을 위한 어댑터가 부착된다.
본 명세서에서 용어 "파편화(fragmentation)"는 핵산이 분석 가능한 적절한 크기로 절단되는 것을 의미하며, 물리적 또는 효소적인 방법으로 무작위로 절단될 수 있다.
상기 물리적 방법은 보통 장비에서 초음파를 발생시켜 생성되는 에너지를 이용하여 핵산을 절단하며, 발생되는 에너지와 노출되는 시간을 조정하여 분절화 길이를 조절할 수 있다. 현재 Covaris, Diagenode 및 Qsonica 사의 장비들이 널리 이용되고 있다. 효소적 방법은 핵산을 무작위적으로 절단하는 nuclease, fragmentase, transposase 등의 효소를 적절한 조건에 처리를 하여 원하는 크기의 핵산 분절(fragment)을 얻는 방법이다.
본 명세서에서 용어 "어댑터(adapter)"는 DNA 또는 RNA 분자의 말단에 결찰될 수 있는 화학적으로 합성된 짧은 단일 가닥 또는 이중 가닥 올리고뉴클레오티드(oligonucleotide)로, 어댑터에는 차세대 염기서열분석기의 파편(fragment) 인식을 위한 플랫폼 특이적인 서열이 포함되어 있다.
본 태그멘테이션 단계에서는 어댑터의 일부 서열이 태깅되며, 하기 중합효소연쇄반응에 의해 나머지 어댑터 서열이 부착된다.
본 발명의 일 구현예에 따르면, 본 단계는 비드-결합 트랜스포좀(Bead-Linked Transposome, BLT)에 의해 수행될 수 있다.
상기 비드-결합 트랜스포좀은 핵산을 절단하는 효소 예를 들어, Tn5 transposase 및 어댑터(adapter)의 결합체인 트랜스포좀이 비드에 부착되어 있는 구조이다.
핵산을 절단하는 효소가 용액에 녹아 있는 상태(in-solution)로 존재하는 경우 DNA가 적절한 크기로 파편화되도록 DNA 양과 시약의 양의 비율을 조절해야 하는 불편함으로 인해 시간이 오래 걸릴 뿐만 아니라, 샘플 당 최대 DNA 투입양이 제한(~50 ng)되어 양적인 삽입위치 분석에 필요한 충분한 시료를 확보하는 데 어려움이 있다.
반면, 본 발명은 비드-결합 트랜스포좀을 이용함으로써, 상기 비드에 직접 부착된 트랜스포좀에 의해 비드 상에서 정량의 DNA에 대해 DNA 파편화 및 어댑터의 태깅, 즉 태그멘테이션 반응이 일어나 일관된 단편 크기와 수율을 가진 라이브러리를 제작할 수 있을 뿐만 아니라 투입 DNA의 정량을 위한 시간을 절약할 수 있다.
또한, 본 발명은 비드-결합 트랜스포좀을 이용함으로써, 삽입위치 분석을 수행하고자 하는 DNA의 투입 양을 종래의 방법에 비하여 대폭 늘릴 수 있으며(100~500 ng), 한 번의 반응으로 더 많은 삽입 위치를 찾아낼 수 있을 뿐만 아니라 양적 분석의 정확도를 향상시킬 수 있다.
라이브러리 제작 단계
본 단계는 태그멘테이션 된 핵산 단편(fragment)에 대하여 유전자 증폭(gene amplification)을 수행하는 과정이다. 본 과정에 의해 태그멘테이션 된 핵산 단편(fragment)에 미량으로 존재하는 벡터가 삽입된 DNA(숙주/벡터 융합 DNA)가 특이적으로 증폭된다.
본 발명에서 유전자는 숙주(host)/벡터 융합 DNA 단편일 수 있다.
본 단계는 구체적으로, 다음의 단계에 의해 수행되는 것일 수 있다:
제1 중합효소연쇄반응(Polymerase Chain Reaction; PCR) 단계; 및
제2 중합효소연쇄반응 단계.
상기 제1 중합효소연쇄반응은 예를 들어, 하기의 조건대로 수행되는 것일 수 있으나, 이에 제한되는 것은 아니다:
[98℃, 5 분] 1 cycle; [98℃, 10 초], [60℃, 15 초], [68℃, 2 분] 30 cycle; [68℃, 5 분] 1 cycle; [4℃, hold] 1 cycle.
상기 제1 중합효소연쇄반응은 서열번호 1의 염기서열로 이루어진 정방향 프라이머 및 서열번호 2의 염기서열로 이루어진 역방향 프라이머를 이용하는 것일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서 용어 "프라이머"는 짧은 자유 3 말단 수산화기(free 3' hydroxyl group)를 가지는 핵산 서열로 식물체 핵산의 상보적인 주형(template)과 염기쌍(base pair)을 형성할 수 있고, 주형 가닥 복사를 위한 시작 지점으로 기능을 하는 짧은 핵산 서열을 의미한다.
또한, 상기 제2 중합효소연쇄반응은 nested-PCR로 수행되는 것일 수 있고, 예를 들어, 하기의 조건대로 수행되는 것일 수 있으나, 이에 제한되는 것은 아니다:
[98℃, 5 분] 1 cycle; [98℃, 10 초], [60℃, 15 초], [68℃, 2 분] 15 cycle; [68℃, 5 분] 1 cycle; [4℃, hold] cycle.
상기 제2 중합효소연쇄반응은 서열번호 3의 염기서열로 이루어진 정방향 프라이머 및 서열번호 4의 염기서열로 이루어진 역방향 프라이머를 이용하는 것일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 방법은 제1 중합효소연쇄반응에서 발생할 수 있는 비특이적인 증폭산물의 생성을 최소화하기 위하여, 제2 중합효소연쇄반응에서는 한 번 증폭된 DNA를 주형으로 PCR을 수행하였다(nested-PCR). 또한, 본 발명의 방법은 중합효소연쇄반응 과정에서 생성될 수 있는 재조합 DNA 부산물의 생성을 최소화하기 위하여, 제1 PCR의 사이클 수를 낮추고(40 → 30 회) 제1 및 제2 PCR의 신장시간을 늘려(1 → 2 분) 수행하였다.
본 발명의 각 프라이머의 서열은 사용되는 벡터의 종류에 따라서 적절히 선택될 수 있다.
구체적으로, 예를 들어 본 발명의 서열번호 1의 염기서열로 이루어진 제1 중합효소연쇄반응의 정방향 프라이머는 "삽입된 렌티바이러스 서열의 말단인 3' LTR(long terminal repeat)에 상보적인 20bp"로, 삽입된 바이러스의 종류가 달라지는 경우 상기 서열번호 1의 염기서열은 해당 바이러스의 서열에 맞게 변경될 수 있다.
또한, 예를 들어 본 발명의 서열번호 3의 염기서열로 이루어진 제2 중합효소연쇄반응의 정방향 프라이머는 "삽입된 렌티바이러스 서열의 말단인 3' LTR에 상보적인 서열이되, 상기 제1 중합효소연쇄반응의 정방향 프라이머 서열보다 다운스트림에 위치하며 3' LTR의 5' 말단 서열 13bp를 포함하지 않는 20bp 서열"로, 삽입된 바이러스의 종류가 달라지는 경우 상기 서열번호 3의 염기서열은 해당 바이러스의 서열에 맞게 변경될 수 있다.
라이브러리 풀링(pooling) 및 시퀀싱(sequencing) 단계
본 단계는 제작된 라이브러리에 대하여, 개별 시료로부터 동량의 DNA를 하나로 취합(pooling) 후 시퀀싱하는 과정이다. 본 과정에 의해 이후 유전체 내 삽입위치 결정 단계에서 수행되는 생물정보학적 분석에 필요한 가공되지 않은 서열 리드(raw sequencing read)가 획득된다.
본 발명에서 시퀀싱은 차세대 염기서열 분석기에서 이루어지는 DNA의 염기서열 정보를 획득하는 과정을 의미한다. 라이브러리 제작 단계에서 부착시킨 어댑터 부위가 분석기 상의 상보적인 프라이머와 결합하여 대규모 복제가 이루어지며, 정렬된 DNA에 염기가 합성되는 순서를 관측하여 서열리드를 획득한다. 이들은 적절한 시스템(예컨대, NovaSeq 6000)에 의하여 수행 가능하다.
유전체 내 삽입위치 결정 단계
본 단계는 풀링된 서열에 대하여, 일련의 생물정보학적(bioinformatics) 파이프라인을 통해 유전체 내 벡터의 삽입위치를 결정하는 과정이다.
본 명세서에서 용어 "생물정보학(bioinformatics)"은 컴퓨터를 이용하여 대규모 생물학 데이터를 분석하고 가공하여 유용한 정보를 얻어내는 응용과학으로, 컴퓨터를 이용하여 생물학을 연구하는 모든 분야를 포함할 수 있다.
본 단계의 생물정보학적 파이프라인은 도 2에 나타내었으며, 구체적으로, 다음의 단계에 의해 수행되는 것일 수 있다:
키메라 리드(Chimeric read) 추출 단계;
3' LTR-특이적 서열 제거 단계;
숙주(host)/벡터 융합 게놈(genome) 생성 단계;
숙주/벡터 융합 게놈에 대한 리드 정렬 단계;
PCR 중복(duplicate) 제거 단계;
리드 필터링 단계; 및
삽입위치 결정 단계.
상기 각 단계는 Seqkit, Cutadapt, BWA, Picard, Samtools 및/또는 In-house Python script 툴(tool)에 의해 수행되는 것일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 일 구현예에 따르면, Seqkit(version 0.14.0)(Shen, W., Le, S., Li, Y., and Hu, F.Q. (2016). SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File Manipulation. PLoS One 11, e0163962. https://doi.org/10.1371/journal.pone.0163962.)를 사용하여 가공되지 않은 서열 리드(raw sequencing read)로부터 벡터-게놈 접합을 포함하는 키메라 리드(Chimeric read)를 추출할 수 있다.
본 발명의 다른 일 구현예에 따르면, Cutadapt(version 1.18)(Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. journal 17, 10-12. https://doi.org/10.14806/ej.17.1.200.)를 사용하여 각 리드에서 3' LTR-특이적 서열을 제거할 수 있다.
본 발명의 또 다른 일 구현예에 따르면, BWA(version 0.7.17)(Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760. https://doi.org/10.1093/bioinformatics/btp324.) mem 옵션을 사용하여 숙주(host) 레퍼런스 게놈과 벡터 서열을 결합하여 숙주/벡터 융합 레퍼런스 게놈을 생성하고, 리드를 숙주/벡터 융합 레퍼런스 게놈에 정렬할 수 있다.
본 발명의 또 다른 일 구현예에 따르면, Picard(version 2.24.0)(Picard toolkit. (2019). Broad Institute, GitHub repository.)를 사용하여 PCR 중복(duplicate)을 제거할 수 있다. 다만, 이 단계는 가공되지 않은 단편 수를 사용하여 클론 크기를 정량하는 경우 선택적으로 생략 가능하다.
본 발명의 또 다른 일 구현예에 따르면, 분석 품질을 보장하기 위하여 Samtools(version 1.3.1)(Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., and Proc, G.P.D. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078-2079. https://doi.org/10.1093/bioinformatics/btp352.)를 사용하여 다음 기준에 따라 리드를 필터링할 수 있다: mapping quality of 20 or greater, properly paired reads represented by SAM flag 0Х2, paired reads with insert size exceeding 2000 bp, excluding reads aligned to the lentiviral vector genome and not primary alignment by SAM flag 0×100.
본 발명의 또 다른 일 구현예에 따르면, In-house Python script를 사용하여 고유한 삽입위치(Integration site)를 결정할 수 있다. 고유한 삽입위치의 정확한 정량적 분석을 위해 맵핑 모호성으로 인한 다중 정렬 리드(multi hit reads) 및 PCR 및 시퀀싱 단계에서 발생할 수 있는 최대 3 bp의 불일치 리드(fuzz reads)를 고유한 리드로 계수할 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실시예. 본 발명의 유전체 내 벡터 삽입위치(integration site) 검출 및 클론 정량방법 수립(DIStinct-seq; Detection of the Integration Sites in a time-efficient manner, quantifying clonal size using tagmentation sequencing)(도 2 참조)
1. 태그멘테이션(Tagmentation)
비드-결합 트랜스포좀(Bead-Linked Transposome, BLT)을 이용하여 DNA의 파편화(fragmentation) 및 어댑터(adapter)의 태깅(tagging)을 수행하는 단계
2. 라이브러리 제작(Library preparation)
1st round PCR 및 2nd round PCR을 통한 라이브러리를 제작하는 단계
3. 라이브러리 풀링(pooling) 및 시퀀싱(sequencing)
라이브러리를 정량한 후, 각 샘플이 동일한 양의 분자를 갖도록 하는 부피만큼 하나의 튜브에 풀링 후 시퀀싱하여 서열 정보를 획득하는 단계
4. 생물정보학적 분석(Bioinformatics analysis)
일련의 단계를 통해 바이러스 벡터의 유전체 내 삽입위치를 결정하는 단계
실험예 1. 본 발명의 분석방법에 의한 양적인 삽입위치 분석능 검증
본 발명으로 바이러스 벡터가 삽입된 클론의 크기를 양적으로 측정할 수 있음을 검증하기 위해서, 이미 알고 있는 삽입위치를 가진 단일 세포 유래의 클론의 DNA를 일정한 비율로 섞고, 본 발명의 방법으로 삽입위치를 확인하였다.
구체적으로, HEK293FT 세포주(Thermofisher scientific)에 0.4의 MOI에서 EmGFP(Addgene #113884)를 발현하는 렌티바이러스 벡터를 형질도입(transduction)하고 유세포분석(Fluorescence Activated Cell Sorter, FACS)(BD FACSAria쪠 III Cell Sorter)을 통해 벡터가 삽입된 세포들만 분리하였다. 분리된 세포들을 96-웰 플레이트에 1/10씩 단계적으로 희석 후 분주하여 배양함으로써 단일세포 기원의 콜로니를 분리하였다. 이들 단일세포 기원 콜로니(single integration site clones, SISCs) 중 3개(SISC_1, SISC_2, SISC_3)를 Whole-genome sequencing(WGS)(30X)하여 삽입위치를 알아낸 후(도 4), 각 DNA를 일정한 비율로 조합(Library_1 내지 Library_4)하였다(표 1).
DNA
SISC_1 SISC_2 SISC_3
Library library_1 1% 3% 96%
library_2 5% 10% 85%
library_3 15% 25% 60%
library_4 20% 30% 50%
상기 library_1 내지 library_4의 각 DNA에 대해 DIStinct-seq을 2회 반복 수행하여 총 8개의 라이브러리를 제작하였다. 구체적인 수행방법은 다음과 같다:
가. Tagmentation
Illumine 사의 Illumina DNA prep kit를 사용하여 어댑터 부착(tagging)과 파편화(fragmentation)가 동시에 일어나는 태그멘테이션 원리를 이용하였다.
구체적으로, DNA 희석액 5 μl(500 ng)를 PCR 튜브에 넣은 후 nuclease-free water 25 μl를 첨가하여 30 μl 부피의 DNA 샘플 튜브를 제조하였다. 별도로 상온에 꺼내 둔 Bead-Linked Transposome(BLT) 및 Tagmentation Buffer 1(TB1)를 각 11 μl씩 섞어 태그멘테이션 마스터 믹스(tagmentation master mix)를 만든 후 볼텍싱하여 완전히 재부유시켰다.
태그멘테이션 마스터 믹스 20 μl를 상기에서 제조한 DNA 샘플 튜브로 옮긴 후, 각 샘플을 10번씩 파이펫팅하여 재부유시켰다. 샘플 튜브를 온도순환기(thermal cycler)에 넣어 리드 온도 100℃, 반응 부피 50 μl, 반응 시간 15분, 반응 온도 55℃, 정지 온도 0℃로 하여 인큐베이션시켰다.
나. Post-tagmentation cleanup
Tagmentation Stop Buffer(TSB)를 상온에 꺼낸 후, 침전물이 모두 녹을 때까지 37℃에서 인큐베이션하였다. TSB 10 μl를 태그멘테이션 한 튜브에 넣었다. 각 샘플을 천천히 10번씩 파이펫팅하여 재부유시켰다. 온도순환기에서 리드 온도 100 ℃, 반응 부피 60 μl, 반응 시간 15분, 반응 온도 37℃, 정지 온도 10℃로 하여 인큐베이션하였다.
샘플 튜브를 용액이 투명해질 때까지 마그네틱 스탠드에 최대 3분간 두었다. 상청액을 제거하여 버리고, 샘플 튜브를 마그네틱 스탠드로부터 분리한 후 상온에 꺼내 둔 Tagment Wash Buffer(TWB) 100 μl를 조심스럽게 비드 위로 첨가 후 천천히 파이펫팅하여 재부유시켰다. 샘플 튜브를 용액이 투명해질 때까지 마그네틱 스탠드에 최대 3분간 두었다.
상청액을 제거하여 버리고, 상기 과정(TWB 첨가 - 상청액 제거)을 2회 더 반복하였다.
다. 1st round PCR
하기 표 2와 같은 조성으로 PCR 반응 용액을 제조하였다. PCR 프라이머는 하기 표 3과 같은 정보와 서열을 가진다. 온도순환기에 샘플 튜브를 넣고 리드 온도 100 ℃, 반응 부피 50 μl, 하기 표 4와 같은 온도와 시간으로 PCR을 진행하였다.
Material Volume
5X PrimesSTAR GXL Buffer (Takara 사) 10 μl
dNTP Mixture (Takara 사) 4 μl
Primer 1 1 μl (10 pmol), 0.2 μM
Primer 2 1 μl (10 pmol), 0.2 μM
Template Bead
PrimeSTAR GXL DNA Polymerase (Takara 사) 1 μl
Sterile distilled water 33 μl
Total 50 μl
No. 서열(5'-3') 서열 정보
Primer 1
(forward)
AGTAGTGTGTGCCCGTCTGT
(서열번호 1)
삽입된 렌티바이러스 서열의 말단인 3' LTR(long terminal repeat)에 상보적인 20bp
Primer 2
(reverse)
GTCTCGTGGGCTCGGAGATG
(서열번호 2)
어댑터 서열에 상보적인 20bp
Number of cycle Temperature Duration
1 98 ℃ 5 min
30 98 ℃ 10 sec
60 ℃ 15 sec
68 ℃ 2 min
1 68 ℃ 5 min
1 4 ℃ hold
라. 2nd round PCR
1st round PCR의 생성물로부터 특이도를 높이기 위하여 semi-nested PCR을 진행하였다.
구체적으로, 하기 표 5와 같은 조성으로 PCR 반응 용액을 제조하였다. PCR 프라이머는 하기 표 6과 같은 정보와 서열을 가진다. 온도순환기에 샘플 튜브를 넣고 리드 온도 100℃, 반응 부피 50 μl, 하기 표 7과 같은 온도와 시간으로 PCR을 진행하였다.
Material Volume
5X PrimesSTAR GXL Buffer (Takara 사) 10 μl
dNTP Mixture (Takara 사) 4 μl
Primer 3 1 ul (10 pmol), 0.2uM
Primer 4(A/B/C) 1 ul (10 pmol), 0.2uM
Template 33 μl
PrimeSTAR GXL DNA Polymerase (Takara 사) 1 μl
Total 50 μl
No. 서열(5'-3') 서열 정보
Primer 3
(forward)
AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNNTCGTCGGCAGCGTCAGATGTGTATAAGAGACAG GACCCTTTTAGTCAGTGTGG
(서열번호 3)
P5 서열 29bp + 인덱스 서열 10bp (샘플별로 상이함, N으로 표시) + 어댑터 서열에 상보적인 33bp + 삽입된 렌티바이러스 서열의 말단인 3' LTR에 상보적인 서열이되 Primer 1 서열보다 다운스트림에 위치하며 3' LTR의 5' 서열 13bp를 포함하지 않는 20bp 서열
Primer 4
(reverse)
CAAGCAGAAGACGGCATACGAGATNNNNNNNNNNGTCTCGTGGGCTCGG
(서열번호 4)
어댑터 서열에 상보적인 15bp + 인덱스 서열 10bp (샘플별로 상이함, N으로 표시) + P7 서열 24bp
Number of cycle Temperature Duration
1 98 ℃ 5 min
15 98 ℃ 10 sec
60 ℃ 15 sec
68 ℃ 2 min
1 68 ℃ 5 min
1 4 ℃ hold
마. Bead purification & size selection
상기 과정에 의해 생산된 라이브러리에서 PCR 다이머 등의 불순물을 제거하고 라이브러리의 크기를 최적 크기(200-500bp)로 정제하기 위해서 Beckman Coulter 사의 SPRIselect bead를 사용하였다.
SPRIselect bead를 볼텍싱하고, 25 μl(0.5X)를 샘플 튜브에 넣어준 후 파이펫팅으로 충분히 섞어준 다음 5분간 상온에서 인큐베이션하였다. 마그네틱 스탠드에 샘플 튜브를 꽂은 후, 70.32 μl를 새로운 PCR 튜브로 옮겨주었다.
SPRIselect bead를 볼텍싱하고, 20 μl(0.9X)를 샘플 튜브에 넣어준 후 파이펫팅으로 충분히 섞어준 다음 5분간 상온에서 인큐베이션하였다. 마그네틱 스탠드에 샘플 튜브를 꽂은 후, 81 μl의 상청액을 제거하였다. 이 때, bead는 건드리지 않는다.
샘플 튜브를 마그네틱 스탠드 계속 둔 채 80% 에탄올을 125 μl 넣고 30초간 기다렸다 에탄올을 제거하였다. 상기 과정(에탄올 첨가 - 제거)을 1회 반복한 후, 가볍게 스핀 다운(spin down) 시켰다.
샘플 튜브를 마그네틱 스탠드에 꽂고 에탄올을 제거하였다. 마그네틱 스탠드에서 샘플 튜브를 제거한 후 용출 버퍼(elution buffer)를 61 μl 넣고 파이펫팅으로 충분히 섞어주었다. 2분간 상온에서 인큐베이션하고, 마그네틱 스탠드에 둔 후 용액이 투명해지면 60 μl를 새 튜브로 옮겨주었다.
바. Pooling and Sequencing
각 라이브러리를 Broad Range Qubit을 사용하여 정량한 후 결과 값을 이용하여 샘플이 각각 동일한 양의 분자를 갖도록 하는 부피를 계산하고, 해당 부피만큼 취하여 하나의 튜브에 풀링(pooling)하였다. Illumina 사의 NovaSeq6000 장비를 이용하여 서열정보를 얻었다(Theragen Bio).
사. Bioinformatics analysis
생물정보학적 분석을 통해 최종적으로 삽입위치 분석을 수행하였다.
구체적으로, 가공되지 않은 서열 리드(raw sequencing read)로부터 seqkit(version 0.14.0)를 사용하여 벡터-게놈 접합을 포함하는 키메라 리드(Chimeric read)를 추출하였다. 그 다음, cutadapt(version 1.18)를 사용하여 각 리드에서 3' LTR-특이적 서열을 제거하였다. BWA(version 0.7.17) mem 옵션을 사용하여 인간 레퍼런스 게놈(hg38)과 벡터 서열을 결합하여 숙주/벡터 융합 레퍼런스 게놈을 생성한 다음, 리드를 숙주/벡터 융합 레퍼런스 게놈에 정렬하였다. PCR 중복(duplicate)은 Picard(version 2.24.0)를 사용하여 제거되었다. 다만, 이 단계는 가공되지 않은 단편 수를 사용하여 클론 크기를 정량하는 경우 선택적으로 생략하였다. 그 다음, 분석 품질을 보장하기 위하여 samtools(version 1.3.1)을 사용하여 다음 기준에 따라 리드를 필터링하였다: mapping quality of 20 or greater, properly paired reads represented by SAM flag 0Х2, paired reads with insert size exceeding 2000 bp, excluding reads aligned to the lentiviral vector genome and not primary alignment by SAM flag 0×100. 최종적으로 고유한 삽입위치에 대한 정확한 정량적 분석을 위해, In-house Python script를 사용하여 맵핑 모호성으로 인한 다중 정렬 리드(multi hit reads), 및 PCR 및 시퀀싱 단계에서 발생할 수 있는 최대 3 bp의 불일치 리드(fuzz reads)를 고유한 삽입위치의 리드로 계수하였다.
삽입위치를 알고 있는 클론을 일정한 비율(도 3a)로 섞어 상기 방법으로 제작한 라이브러리에 대해 생물학적 분석 파이프라인을 적용한 결과, SISC_2에서는 맵핑 모호성으로 인한 다중 정렬 리드에 의해 다중위치가 탐지되었다(도 3b). 또한, In-house python script를 통해 다중위치를 통합한 경우와 가장 많은 리드 수를 보이는 원발 정렬 리드(primary alignment reads) 각각에 대해, 가공되지 않은 단편 수(Raw fragment count, RFC) 및 PCR 중복 단편 수를 제거한 경우(deduplicated fragment count, DFC), 도 3c에서 확인할 수 있듯이 다중위치를 통합하여 가공되지 않은 단편 수를 사용하였을 때 원발 정렬 리드만 사용하거나 PCR 중복을 제거할 경우에 비하여 PCR 단편 개수(fragment count)가 예상된 클론의 크기(Expected abundance)와 비례하게 나타나는 것을 알 수 있었다.
이를 통해, 본 발명의 삽입위치 분석방법을 사용하는 경우 성공적으로 클론의 크기를 양적으로 측정할 수 있음을 검증하였다.
실험예 2. 렌티바이러스 벡터를 이용하여 제조한 CAR-T 세포에서 양적인 삽입위치의 분석 확인
본 발명의 삽입위치 분석방법(DIStinct-seq)을 유전자 치료제인 CAR-T 세포에 직접 적용하여 삽입위치를 분석하였다. 삽입위치에 따른 클론 크기를 분석하여 안전성을 확인하고자 하였다.
건강한 사람 3명으로부터 백혈구를 채집하여 T 세포를 분리하고(서울대학교의 IRB 승인), CAR 벡터를 가진 렌티바이러스를 형질도입(transduction)하여 총 3개의 CAR-T 세포주(cart006, cart007, cart008)를 제조하였다.
구체적으로, 건강한 공여자의 CD4+ 및 CD8+ T 세포를 IL-7(12.5 ng/mL), IL-15(12.5 ng/mL) 및 3% 인간 AB 혈청(Life Science Production, Bedford, UK)이 들어있는 TexMACS 배지에서 배양하며 CD3/CD28 MACS® GMP TransAct 시약(Miltenyi Biotec)으로 T 세포를 활성화하였다. 배양 1일차에 활성화된 T 세포를 CAR 유전자를 인코딩하는 렌티바이러스 벡터로 형질도입하였다. 이때 사용한 렌티바이러스 벡터는 CD19 CAR 벡터인 LTG1563로, Miltenyi Biotec(Gaithersburg, MD, United States)의 관계사인 Lentigen에서 개발되고 공급되었다. 배양 3일차에 배지를 교환하고 6일차에 배양물을 12.5 ng/mL의 IL-7 및 IL-1가 보충된 TexMACS 배지(무혈청)로 옮기고 12일차에 수확할 때까지 배양하였다. 이러한 과정은 자동화 생산 장비인 CliniMACS Prodigy(Miltenyi Biotec, Bergisch Gladbach, Germany)에서 수행되었다.
제조한 CAR-T 세포주에 대하여, 상기 실험예 1의 방법으로 DIStinct-seq을 수행하였다.
가. 삽입위치 주변 DNA 모티프(motif) 분석
Bedtools을 사용하여 생성한 FASTA 파일을 사용하여 Weblogo에서 삽입위치 주변의 DNA 모티프를 분석하였다.
도 4에서 확인할 수 있듯이, 본 발명의 삽입위치 분석방법(DIStinct-seq)에 의해 결정된 렌티바이러스의 삽입위치 주변의 DNA 모티프(도 4의 cart006, cart007, cart008)가 동일한 렌티바이러스의 종래 공지된 삽입위치 주변의 DNA 모티프(도 4의 kirt et al.)(Nature microbiology, 2016, 2.2: 1-6. PMID: 27841853)와 완벽하게 일치하였다.
나. 염색체 종류 및 기능적 유전체 부위에 삽입된 비율 분석
염색체(1-22, X, Y) 및 기능적으로 중요한 유전체 부위(transcription unit, exon, transcription start site +/- 5kb, transcription start site of oncogene +/- 50kb, CpG island +/- 5kb, Genomic safe harbor)에 대하여, 렌티바이러스 벡터가 삽입되는 비율을 분석하였다.
도 5에서 확인할 수 있듯이, 본 발명의 삽입위치 분석방법(DIStinct-seq)에 의해 결정된 렌티바이러스의 삽입위치가 동일한 렌티바이러스의 종래 공지된 삽입위치 경향과 일치하였다.
다. 클론 크기와 기능적 유전체 부위에서의 삽입 비율의 관계
먼저, 본 발명의 삽입위치 분석방법(DIStinct-seq) 결과를 바탕으로, 동일한 삽입위치를 가진 DNA 단편의 개수(클론 크기 추정 가능)에 따라 LEC(less expanded clone), IEC(Intermediately expanded clone), HEC(Highly expanded clone)로 분류하였다(도 6a 참조).
클론 크기에 따른 기능적으로 중요한 유전체 부위의 삽입위치 비율을 분석한 결과, 도 6b에서 확인할 수 있듯이, 클론 크기에 따라 삽입 비율이 달라 지는 것을 알 수 있었다.
한편, 삽입위치 주변 유전자들에 대해 클론 크기의 따른 pathway enrichment 분석을 수행한 결과, 도 7에서 확인할 수 있듯이, 클론의 크기에 상관없이 종래 공지된 cellular metabolic pathway 또는 T 세포와 관련된 pathway에 농축되는 것을 알 수 있었다.
라. 생체 내( in vivo )에서의 삽입위치 분석
상기에서 제조된 CAR-T 세포주(cart006)를 생쥐에 주입하였다. 모든 실험은 서울대학교병원 동물관리위원회(SNUH-IACUC, 20-0177)의 승인을 받고 진행되었다.
구체적으로, 7주령 면역결핍 NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ(NSG) 생쥐(총 10마리)에 Luc-NALM-6 세포를 생쥐 당 1.0 x 105 개의 양으로 꼬리 정맥을 통해 주사하였다. 종양 세포 접종 3일 후, 식염수에 현탁된 CD19 CAR-T 세포를 생쥐 당 4.0 x 106 개의 양으로 주입하였고 대조군에는 동일한 부피의 식염수를 투여하였다. 주입 전의 CAR-T 세포, 주입 후 30일째 생쥐 4마리(Day 30), 주입 후 60일째 생쥐 나머지 6마리(Day 60)의 혈액에서 DNA를 추출하여 DIStinct-seq을 수행하였다(도 8a 참조).
먼저, 삽입위치 및 DNA 단편 수에 따라 클론의 종류와 그 크기를 분석하여 샘플 간에 클론의 다양성을 나타내는 지표인 Shannon entropy index의 차이를 비교한 결과, 도 8b에서 확인할 수 있듯이, 클론 다양성이 주입 전 CAR-T 세포보다 Day 30 샘플에서 감소하였고 Day 60일에서 더욱 감소함을 확인하였다.
이러한 경향성은 각 샘플에서 클론 크기가 상위 1 백분위(percentile)인 클론이 전체 클론 크기에서 차지하는 비율(도 8c 참조)에서도 나타났다. 특히 주목할 점은, Day 60으로 갈수록 클론의 종류는 감소하였지만 특정 클론이 monoclonal 혹은 oligoclonal하게 증식하지 않고, dominant한 클론 없이 polyclonal한 증식을 보였다는 점이다.
또한, 기능적 유전체 부위에서 삽입 비율을 확인한 결과, 도 8d에서 확인할 수 있듯이, 주입 전과 주입 후 시간에 따라 각 유전체 부위에서의 삽입비율이 달랐는데, 특히 Genomic safe harbor(GSH)에서 통계적으로 유의미한 차이를 보였다. 이는 삽입위치에 의해 클론의 지속성(clonal persistence)이 영향을 받을 수 있다는 것을 의미한다.
나아가, 동일한 삽입위치를 가진 DNA 단편의 개수(클론 크기 추정 가능)에 따라 LEC, IEC, HEC로 분류하였을 때(도 9a 참조) 클론이 확장된 정도에 따라 transcription unit 등 일부 삽입부위에서 삽입비율이 달라지는 경향을 보였는데, 이는 클론의 확장성(clonal expansion) 또한 삽입위치에 영향을 받을 수 있음을 의미한다.

Claims (12)

  1. 다음의 단계를 포함하는, 유전체 내 벡터 삽입위치(integration site) 검출방법:
    비드-결합 트랜스포좀(bead-linked transposome)을 이용한 태그멘테이션 단계;
    유전자 증폭(gene amplification)을 통한 라이브러리 제작 단계;
    라이브러리 풀링(pooling) 및 시퀀싱(sequencing) 단계; 및
    생물정보학적 분석(bioinformatics analysis)을 통한 유전체 내 삽입위치 결정 단계.
  2. 제1항에 있어서,
    상기 태그멘테이션 단계는 DNA 파편화(fragmentation) 및 어댑터(adapter) 태깅(tagging)이 동시에 수행되는 것인, 유전체 내 벡터 삽입위치 검출방법.
  3. 제1항에 있어서,
    상기 라이브러리 제작 단계는 다음의 단계에 의해 수행되는 것인, 유전체 내 벡터 삽입위치 검출방법:
    제1 중합효소연쇄반응(Polymerase Chain Reaction; PCR) 단계; 및
    제2 중합효소연쇄반응 단계.
  4. 제3항에 있어서,
    상기 제1 중합효소연쇄반응은 30 사이클로 수행되는 것인, 유전체 내 벡터 삽입위치 검출방법.
  5. 제3항에 있어서,
    상기 제2 중합효소연쇄반응은 nested-PCR로 수행되는 것인, 유전체 내 벡터 삽입위치 검출방법.
  6. 제3항에 있어서,
    상기 제1 중합효소연쇄반응 및 제2 중합효소연쇄반응의 신장(elongation)은 2분 동안 수행되는 것인, 유전체 내 벡터 삽입위치 검출방법.
  7. 제1항에 있어서,
    상기 유전체 내 삽입위치 결정 단계는 다음의 단계에 의해 수행되는 것인, 유전체 내 벡터 삽입위치 검출방법:
    키메라 리드(Chimeric read) 추출 단계;
    3' LTR-특이적 서열 제거 단계;
    숙주(host)/벡터 융합 게놈(genome) 생성 단계;
    숙주/벡터 융합 게놈에 대한 리드 정렬 단계;
    PCR 중복(duplicate) 제거 단계;
    리드 필터링 단계; 및
    삽입위치 결정 단계.
  8. 제7항에 있어서,
    상기 유전체 내 삽입위치 결정 단계는 Seqkit, Cutadapt, BWA, Picard, Samtools 및 In-house Python script로 이루어진 군으로부터 선택되는 1종 이상의 툴(tool)을 활용한 결과 값을 이용하는 것인, 유전체 내 벡터 삽입위치 검출방법.
  9. 제1항에 있어서,
    상기 벡터는 바이러스 벡터인 것인, 유전체 내 벡터 삽입위치 검출방법.
  10. 제9항에 있어서,
    상기 바이러스는 렌티바이러스 및 레트로바이러스로 이루어진 군으로부터 선택되는 것인, 유전체 내 벡터 삽입위치 검출방법.
  11. 제1항에 있어서,
    상기 방법은 삽입위치의 양적인(quantity) 분석이 가능한 것인, 유전체 내 벡터 삽입위치 검출방법.
  12. 다음의 단계를 포함하는, 유전체 내 벡터가 삽입된 클론의 정량방법:
    비드-결합 트랜스포좀을 이용한 태그멘테이션 단계;
    유전자 증폭을 통한 라이브러리 제작 단계;
    라이브러리 풀링 및 시퀀싱 단계; 및
    생물정보학적 분석을 통한 유전체 내 삽입위치 결정 단계.
PCT/KR2023/005296 2022-04-19 2023-04-19 태그멘테이션을 이용한 벡터 삽입위치 검출 및 클론 정량 방법 WO2023204594A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0047914 2022-04-19
KR20220047914 2022-04-19
KR10-2023-0051116 2023-04-19
KR1020230051116A KR20230149744A (ko) 2022-04-19 2023-04-19 태그멘테이션을 이용한 벡터 삽입위치 검출 및 클론 정량 방법

Publications (1)

Publication Number Publication Date
WO2023204594A1 true WO2023204594A1 (ko) 2023-10-26

Family

ID=88420113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/005296 WO2023204594A1 (ko) 2022-04-19 2023-04-19 태그멘테이션을 이용한 벡터 삽입위치 검출 및 클론 정량 방법

Country Status (1)

Country Link
WO (1) WO2023204594A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190120056A (ko) * 2017-02-21 2019-10-23 일루미나, 인코포레이티드 링커를 갖는 고정된 트랜스포좀을 사용한 태그먼트화
US20200157530A1 (en) * 2013-03-13 2020-05-21 Illumina, Inc. Methods and compositions for nucleic acid sequencing
US20200325474A1 (en) * 2019-03-07 2020-10-15 Univ Columbia Rna-guided dna integration using tn7-like transposons
US20210246490A1 (en) * 2015-12-04 2021-08-12 10X Genomics, Inc. Methods and compositions for nucleic acid analysis
US20210380972A1 (en) * 2020-06-09 2021-12-09 Illumina, Inc. Methods for increasing yield of sequencing libraries

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200157530A1 (en) * 2013-03-13 2020-05-21 Illumina, Inc. Methods and compositions for nucleic acid sequencing
US20210246490A1 (en) * 2015-12-04 2021-08-12 10X Genomics, Inc. Methods and compositions for nucleic acid analysis
KR20190120056A (ko) * 2017-02-21 2019-10-23 일루미나, 인코포레이티드 링커를 갖는 고정된 트랜스포좀을 사용한 태그먼트화
US20200325474A1 (en) * 2019-03-07 2020-10-15 Univ Columbia Rna-guided dna integration using tn7-like transposons
US20210380972A1 (en) * 2020-06-09 2021-12-09 Illumina, Inc. Methods for increasing yield of sequencing libraries

Similar Documents

Publication Publication Date Title
Abe et al. The first murine zygotic transcription is promiscuous and uncoupled from splicing and 3′ processing
WO2015183025A1 (ko) 표적 특이적 뉴클레아제를 이용한 표적 dna의 민감한 검출 방법
Li et al. Systematic identification and comparison of expressed profiles of lncRNAs and circRNAs with associated co-expression and ceRNA networks in mouse germline stem cells
Li et al. Linking circular intronic RNA degradation and function in transcription by RNase H1
Zhang et al. DCAF 13 promotes pluripotency by negatively regulating SUV 39H1 stability during early embryonic development
CN109312331A (zh) 全转录组扩增的方法
WO2019160077A1 (ja) 低抗原性細胞の製造方法
EA027558B1 (ru) Способ обнаружения мультиплексных нуклеиновых кислот
ES2657846T3 (es) Detección de células inmunes, en particular linfocitos T mediante análisis de metilación de ADN de los genes CCR6
EP4200443B1 (en) A method for the isolation of double-strand breaks
WO2020096248A1 (ko) 폐암 조직 내 세포 유래 돌연변이를 검출하기 위한 프로브 제조 및 검출 방법
EP3132057B1 (en) Methods and kits for analyzing dna binding moieties attached to dna
Ren et al. Characterization and perturbation of CTCF-mediated chromatin interactions for enhancing myogenic transdifferentiation
CN114107567A (zh) 一种病毒核酸突变检测方法及应用
WO2023204594A1 (ko) 태그멘테이션을 이용한 벡터 삽입위치 검출 및 클론 정량 방법
CN113215234A (zh) 一种鉴定RNA结合蛋白靶位点的方法LACE-seq及试剂盒和应用
Neumayer et al. A scalable, GMP-compatible, autologous organotypic cell therapy for Dystrophic Epidermolysis Bullosa
Kumar et al. Germ cell-specific sustained activation of Wnt signalling perturbs spermatogenesis in aged mice, possibly through non-coding RNAs
Meng et al. Distinguishing between monozygotic twins' blood samples through immune repertoire sequencing
KR20230149744A (ko) 태그멘테이션을 이용한 벡터 삽입위치 검출 및 클론 정량 방법
Lafferty et al. MicroRNA-eQTLs in the developing human neocortex link miR-4707-3p expression to brain size
Bohm et al. Low-Level Mouse DNA in Conditioned Medium Generates False Positive Cross-Species Contamination Results in Human Organoid Cultures
WO2022240143A1 (ko) 발암성 돌연변이 유전자 검출용 가이드 rna 내지 이의 용도
Du et al. Lentiviral Transduction-based CRISPR/Cas9 Editing of Schistosoma mansoni Acetylcholinesterase
WO2024085608A1 (ko) 혈액 내 rna의 엑손-접합 정보를 이용한 암 진단 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23792168

Country of ref document: EP

Kind code of ref document: A1