WO2023204268A1 - Track circuit device and train on-track determination method - Google Patents

Track circuit device and train on-track determination method Download PDF

Info

Publication number
WO2023204268A1
WO2023204268A1 PCT/JP2023/015744 JP2023015744W WO2023204268A1 WO 2023204268 A1 WO2023204268 A1 WO 2023204268A1 JP 2023015744 W JP2023015744 W JP 2023015744W WO 2023204268 A1 WO2023204268 A1 WO 2023204268A1
Authority
WO
WIPO (PCT)
Prior art keywords
track circuit
transmission
rail
train
track
Prior art date
Application number
PCT/JP2023/015744
Other languages
French (fr)
Japanese (ja)
Inventor
実 佐野
洋一 村上
亮 金子
Original Assignee
株式会社京三製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社京三製作所 filed Critical 株式会社京三製作所
Publication of WO2023204268A1 publication Critical patent/WO2023204268A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L1/00Devices along the route controlled by interaction with the vehicle or vehicle train, e.g. pedals
    • B61L1/18Railway track circuits

Definitions

  • the present invention relates to track circuit devices and the like.
  • a transmitter for transmitting a train detection signal is connected to one end of the rail of the track circuit, and the presence of a train is determined by a decrease in the reception level at a receiver connected to the other end (for example, (See Patent Document 1).
  • Conventional track circuit devices transmit train detection signals to one end of the track circuit rail and monitor the reception level at the other end, which is a predetermined distance away, so transmission power above a certain level is required. . Therefore, it has been difficult to save energy. Further, the conventional track circuit device requires a transmitter and a receiver in principle.
  • the problem to be solved by the present invention is to provide a technology for a track circuit device whose principle is completely different from that of conventional track circuit devices.
  • the first invention for solving the above problem is: a calculation unit that calculates an impedance equivalent value based on the amplitude and phase difference of the transmission voltage and transmission current of the AC signal transmitted to the rail by the transmission unit; a determination unit that determines whether a train is on the track based on the values of the real component and the imaginary component of the impedance equivalent value; It is a track circuit device equipped with.
  • Other inventions include Measuring the transmission voltage and transmission current of the alternating current signal transmitted to the rail by the transmitter; Calculating an impedance equivalent value based on the amplitude and phase difference of the transmission voltage and transmission current; Determining whether a train is on the track based on the values of the real component and the imaginary component of the impedance equivalent value; A method for determining whether a train is on the track may be configured.
  • the first invention it is possible to provide a track circuit device technology whose principle is completely different from that of conventional track circuit devices.
  • the first invention focuses on the fact that the impedance of the track circuit as seen from the AC signal transmission point changes depending on whether the train is on the line or not, and that the amplitude and phase difference of the transmission voltage and current change due to this change in impedance. This is a technology that has been developed.
  • the impedance equivalent value of the track circuit is determined from the amplitude and phase difference of the transmission voltage and the transmission current, and the real component (resistance component) and imaginary component when the impedance equivalent value is expressed as a complex number. (reactance component) to determine whether a train is on the track.
  • the second invention is the above-mentioned invention,
  • the determining unit determines the position of the train on the line based on the transmission point of the AC signal by the transmitting unit. It is a track circuit device.
  • the second invention it is possible to determine the position of a train on the line with reference to the transmission point of the AC signal. This is because the impedance of the track circuit as seen from the AC signal transmission point changes depending on the short-circuit position of the rail by the train axle.
  • the third invention is the above-mentioned invention,
  • the determination unit determines the position of the train on the line with respect to the transmission point based on plot points of the impedance equivalent value in a coordinate system having the real component and the imaginary component as axes. It is a track circuit device.
  • the third invention it is possible to determine the position of a train on the line based on plot points of impedance equivalent values in a coordinate system (complex plane) having real and imaginary components as axes. This is because the impedance of the track circuit is determined by the position of the short circuit in the rail by the train axle. Therefore, by associating the train's on-line position with the position of the plot point of the impedance equivalent value in the coordinate system in advance, the train's on-line position can be determined.
  • the fourth invention is the above-mentioned invention,
  • the determination unit determines the on-track position of the train based on the position of the plot point along a predetermined reference trajectory in the coordinate system. It is a track circuit device.
  • the impedance of a track circuit is determined by the position of the train on the track circuit, that is, the short-circuit position of the rail by the train's axle. For this reason, as in the fourth invention, by predetermining as a reference trajectory the change in the position of the plot point of the impedance equivalent value in the coordinate system associated with the train's position on the track, Based on the locations of the plot points, the location of the train can be determined.
  • a fifth invention is the above-mentioned invention,
  • the determination unit determines the state of the rail based on the values of the real component and the imaginary component of the impedance equivalent value. It is a track circuit device.
  • the impedance of the track circuit changes. Therefore, as in the fifth invention, for example, by comparing the values of the real component and imaginary component of the current impedance equivalent value with the real component and imaginary component of the impedance equivalent value when the rail is in a normal state. , it is possible to determine the state of the rail, such as whether it is in a normal state or not.
  • the sixth invention is the above-mentioned invention,
  • the determining unit determines an abnormal location of the rail based on a point at which the AC signal is transmitted by the transmitting unit. It is a track circuit device.
  • the sixth invention it is possible to determine the abnormal location of the rail based on the transmission point of the AC signal as the rail condition.
  • the seventh invention is the above-mentioned invention, When the plot point deviates from the reference trajectory, the determination unit determines an abnormal location of the rail related to leakage conductance and/or rail breakage based on the deviated position. It is a track circuit device.
  • the seventh invention as the condition of the rail, it is possible to determine an abnormal location of the rail related to leakage conductance and/or rail breakage. For example, when an abnormality related to leakage conductance occurs on the rail, such as an increase in leakage conductance due to submergence of the rail, the amount of change in the impedance of the track circuit changes depending on the train's position on the track before and after the train passes the abnormal location. Therefore, when the plotted point deviates from the reference trajectory, the position where it returns to the reference trajectory can be determined as an abnormal location of the rail related to leakage conductance.
  • the eighth invention is the above-mentioned invention,
  • the determination unit determines the presence or absence of rail breakage based on the sign of the value of the imaginary component. It is a track circuit device.
  • the eighth invention it is possible to determine the presence or absence of rail breakage based on the sign or negative of the value of the imaginary component of the impedance equivalent value. This is because when rail breakage occurs, the imaginary component of the impedance equivalent value becomes a negative value.
  • the ninth invention is the above-mentioned invention,
  • the determining unit determines the position of the rail breakage with respect to the transmission point of the AC signal by the transmitting unit based on the values of the real component and the imaginary component of the impedance equivalent value. It is a track circuit device.
  • the ninth invention it is possible to determine the position of rail breakage with respect to the transmission point of the AC signal based on the values of the real component and imaginary component of the impedance equivalent value. This is because when a rail break occurs, the imaginary component of the impedance equivalent value becomes a negative value, and both the real and imaginary components change to values that correspond to the distance from the AC signal transmission point to the rail break position. It is.
  • a tenth invention is the above-mentioned invention,
  • the determining unit is configured such that a plot point of the impedance equivalent value in a coordinate system having the real component and the imaginary component as axes is the impedance determined according to a distance from a transmission point of the alternating current signal by the transmitting unit. Determining an abnormality or abnormality sign of the rail based on whether the equivalent value is outside the allowable variation range; It is a track circuit device.
  • a permissible fluctuation range that can be considered as the normal state of the rail is determined based on a predetermined position of the plot point of the impedance equivalent value when the rail is in the normal state. Based on whether or not the plot point of the impedance equivalent value is outside the allowable variation range, it is possible to determine whether there is an abnormality or a sign of abnormality in the rail.
  • track circuit device An example of an equivalent circuit of a track circuit.
  • An example of changes in plot points of impedance equivalent values An example of changes in the plot points of the impedance equivalent value when a rail rupture occurs.
  • Example of track circuit device installation Example of setting the allowable variation range.
  • Other configuration examples of the track circuit device An example of changes in plot points of impedance equivalent values in the case of an insulated track circuit.
  • FIG. 1 is an example of application of the track circuit device 1 in this embodiment.
  • the track circuit device 1 is a device that transmits an AC signal to the rail, and determines whether a train is on the track and also determines the state of the rail based on the transmission voltage and transmission current of the AC signal.
  • the track circuit device 1 includes a transmitter 10, a current sensor 20, and a processing device 30. Note that if the track circuit device 1 is installed centrally in one location, a long cable is required, but in that case, a matching transformer is also provided to match the impedance of the cable and the track to some extent.
  • the transmitter 10 transmits an alternating current signal at a constant level via a transmission cable to a transmission point in a detection section T1 that divides the rails of the track circuit.
  • the transmitter 10 is an example of a transmitter.
  • the transmission point is provided at the end of the detection section T1 on the advancing side.
  • the track circuit may be either an uninsulated track circuit or an insulated track circuit, the present embodiment will be described assuming that it is an uninsulated track circuit. Therefore, the AC signal transmitted from the transmission point to the rail in the detection section T1 also propagates to other sections adjacent to the detection section T1.
  • the current sensor 20 is provided on a transmission cable between the transmitter 10 and the rail, and measures the current (alternating current) of an alternating current signal transmitted to the rail.
  • the processing device 30 includes a transmission voltage waveform acquisition section 31, a transmission current waveform acquisition section 32, a quadrature detection circuit section 33, an impedance equivalent value calculation section 34, a determination section 35, a transmission voltage output section 36, and a transmission voltage waveform acquisition section 32.
  • It has a frequency setting section 37, a set frequency/transmission level determination section 38, and a noise measurement section 39.
  • Each functional unit of the processing device 30 can also be configured using a circuit unit that performs signal processing to implement the function, or an arithmetic processing unit that implements the function in software.
  • the transmission voltage waveform acquisition unit 31 acquires the transmission voltage waveform (transmission voltage waveform) of the AC signal transmitted to the rail in the detection section T1 via the transmission cable.
  • the transmission current waveform acquisition unit 32 acquires the waveform of the transmission current (transmission current waveform) measured by the current sensor 20.
  • the quadrature detection circuit section 33 performs quadrature detection on the transmission voltage waveform and the transmission current waveform, and outputs the amplitude of the transmission voltage and the transmission current, and the phase difference of the transmission current with respect to the transmission voltage.
  • the impedance equivalent value calculation unit 34 calculates the real component and imaginary component of the impedance equivalent value of the track circuit expressed in complex numbers based on the amplitude and phase difference of the transmission voltage and transmission current output from the quadrature detection circuit unit 33. .
  • the impedance equivalent value calculation unit 34 is an example of a calculation unit. Note that details of the impedance equivalent value of this track circuit will be described later.
  • the determination unit 35 determines whether the train is on the track or the state of the rails based on the real component and imaginary component of the impedance equivalent value calculated by the impedance equivalent value calculation unit 34. The details of the determination of train presence and rail status will be described later.
  • the transmission voltage output section 36 outputs the transmission voltage set by the transmission voltage/frequency setting section 37 to the transmitter 10.
  • the transmission voltage/frequency setting unit 37 controls the transmission voltage of the transmission voltage output unit 36 so that the AC signal has the transmission level determined by the set frequency/transmission level determination unit 38. Further, the transmission switch of the transmitter 10 is controlled on/off so that the AC signal has the set frequency set by the set frequency/transmission level determination section 38.
  • the set frequency/transmission level determination section 38 determines the frequency and transmission level of the AC signal to be transmitted to the rail based on the noise (retrace noise) measured by the noise measurement section 39.
  • the noise measurement unit 39 measures noise (retrace noise) occurring in the rails of the track circuit. Note that the measurement of these noises and the setting of the frequency and level of the AC signal will be described in detail later.
  • FIG. 2A, FIG. 2B, and FIG. 2C are diagrams showing equivalent circuits when the detection section T1 is regarded as a track circuit, and show equivalent circuits depending on whether or not a train is on the track and the position on the track.
  • FIG. 2A shows an equivalent circuit when the line is not present.
  • FIG. 2B shows an equivalent circuit immediately after the train enters the detection section T1 (track position L2 in FIG. 1).
  • FIG. 2C shows an equivalent circuit when the train approaches (arrives at) the transmission point (track position L3 in FIG. 1). It is assumed that the condition of the rail is normal (no abnormality has occurred). The combined impedance of this equivalent circuit becomes the impedance of the track circuit as seen from the AC signal transmission point.
  • the track circuit is an uninsulated track circuit
  • the AC signal transmitted from the transmission point to the rail also propagates to the section adjacent to the detection section T1. Therefore, even if the train has not reached the detection section T1, if it approaches to a certain distance, the axle short-circuit impedance Rv will have an effect. Further, even after the train advances through the detection section T1, the axle short-circuit impedance Rv has an influence until it moves away to a certain distance.
  • the range affected by this axle short-circuit impedance Rv (the range that the AC signal reaches) is called the detectable range. In other words, the detectable range is the range extending the detection section T1 in the front-rear direction along the rail.
  • the equivalent circuit of the track circuit changes as the train travels in the detection section T1. In other words, the impedance of the track circuit changes.
  • FIG. 3 is a diagram showing an outline of the transmission voltage waveform and transmission current waveform of the AC signal transmitted to the rail.
  • the horizontal axis is time, and the vertical axis is level, and the transmission voltage waveform and transmission current waveform are shown. Further, assuming that the transmission voltage waveform is constant, the transmission current waveforms are shown when the train is not on the train and when the train approaches the transmission point (on-the-track position L3).
  • the equivalent circuit of the track circuit in the detection section T1 changes as the train travels from entering to exiting the detection section T1. That is, since the impedance of the track circuit as seen from the transmission point of the AC signal changes, the transmission current waveform changes with respect to the transmission voltage waveform. Specifically, as the train enters the detection section T1 and approaches the transmission point, the phase of the transmission current waveform shifts in the opposite phase direction with respect to the transmission voltage waveform, and the level (amplitude) of the transmission current waveform becomes growing. The amplitude (level) and phase of the transmission current waveform change in response to changes in the impedance of the track circuit. From this, the amplitude of the transmission voltage waveform and the transmission current waveform, and the phase difference of the transmission current waveform with respect to the transmission voltage waveform can be regarded as a value equivalent to the impedance of the track circuit (impedance equivalent value).
  • the quadrature detection circuit section 33 performs quadrature detection on the transmission voltage waveform and the transmission current waveform, and outputs the amplitude and phase difference of the transmission voltage waveform and the transmission current waveform. Then, the impedance equivalent value calculation unit 34 calculates a real component and an imaginary component representing the impedance equivalent value of the track circuit in complex numbers based on the amplitude and phase difference.
  • FIG. 4 is a diagram showing changes in the impedance equivalent value of the track circuit when a train runs in the detection section T1.
  • FIG. 4 shows a diagram in which impedance equivalent values are plotted in an orthogonal coordinate system (complex plane) with real and imaginary components as axes. It also shows the change (trajectory) of the plot points of the impedance equivalent value of the track circuit from when the train is not on the track until the train enters the detection section T1 and advances.
  • the impedance equivalent value of the track circuit changes in an analog manner as the train position on the track (that is, the rail axle short-circuit position) changes. Therefore, the change in the position of the plot point of the impedance equivalent value also becomes a continuous locus. Specifically, when the line is not present, both the real component and the imaginary component of the impedance equivalent value of the track circuit are positive values, and the position P1 of the plot point is in the first quadrant. The position P1 of this plot point is a substantially fixed position if the rail condition is normal.
  • the impedance of the track circuit changes as the train's position on the track (that is, the short-circuit position of the rail axle) changes, and the plot point of the impedance equivalent value changes to position P1. It changes gradually from In other words, as the distance from the AC signal transmission point to the axle short-circuit position gradually decreases, the real and imaginary components of the impedance equivalent value gradually decrease in the direction toward (approaching) the origin O of the orthogonal coordinate system. ).
  • the position P2 is the position of the plot point of the impedance equivalent value immediately after the train enters the detection section T1 (track position L2 in FIG. 1).
  • the position of the plot point of the impedance equivalent value when the train approaches the transmission point is position P3 near the origin O.
  • the plot points of the impedance equivalent values change so as to gradually return to the position P1 in the reverse order. Therefore, by detecting that the plot point has started to move toward position P1 after coming closest to the origin O (or a position extremely close to the origin O), the track circuit device 1 can determine whether the train has advanced beyond the transmission point. be able to judge that. In other words, the track circuit device 1 can determine the traveling direction of the train with respect to the transmission point based on whether the plot point is displaced and is moving toward the origin O or away from the origin O.
  • the track circuit in this embodiment is an uninsulated track circuit
  • the AC signal transmitted from the transmission point to the rail also propagates to the adjacent section on the advancing end side (forward in the traveling direction) of the detection section T1.
  • the adjacent section on the advance side may also be included in the detection section T1 to determine whether the line is present or not.
  • the plot point of the impedance equivalent value is displaced to position P3 (origin O)
  • the position of the plot point of the impedance equivalent value in the orthogonal coordinate system is determined according to the impedance of the track circuit, that is, the short-circuit position of the rail (the position where the train is on the track). Therefore, by determining in advance the correspondence between the train position on the track (rail short circuit position) and the position of the plot point of the impedance equivalent value by measurement etc., the transmission point of the AC signal can be determined based on the position of the plot point. It is possible to determine the line position based on .
  • the locus that is the change in the plot points of the impedance equivalent value in this orthogonal coordinate system has a unique shape that is determined according to the detection section. Therefore, in a state where the rail is normal (no abnormality), the locus of the impedance equivalent value as the train travels (passes) can be determined in advance.
  • the locus of the plot points of the impedance equivalent value when the rail condition is normal is called the reference locus.
  • the state of the rail is determined by comparing the plot points of the impedance equivalent value with the reference trajectory. Moreover, the determination of the state of the rail is whether the state of the rail is normal or not (abnormal), and abnormalities related to rail breakage and leakage conductance are determined as the abnormal state of the rail.
  • FIG. 5 is a diagram showing an example of plot points of impedance equivalent values when rail breakage occurs.
  • FIG. 5 shows plot points of impedance equivalent values in a rectangular coordinate system (complex plane) with real and imaginary components as axes, and also shows a reference locus.
  • the position of the plot point when there is no line in the normal state is position P1.
  • the position of the plot point changes significantly from position P1.
  • the real component of the impedance equivalent value remains a positive value, but the imaginary component changes to a negative value. Therefore, the position of the plot point transitions from the first quadrant to the fourth quadrant.
  • FIG. 5 shows positions P4-1 and P4-2 of plot points of impedance equivalent values when the rail breakage positions are different. When the plot point is at position P4-1, it indicates that the rail breakage position is closer to the transmission point than when it is at position P4-2.
  • the position P4 of the plot point of the impedance equivalent value in the orthogonal coordinate system (complex plane) when a rail fracture occurs is determined according to the fracture position. Therefore, by determining in advance the correspondence between the rail fracture position and the plot point position P4 of the impedance equivalent value by measurement or calculation, the rail fracture position can be determined from the plot point position P4. .
  • the plot point of the impedance equivalent value is located at position P4, which is off from the reference trajectory, but as shown in Figure 6, when the train crosses this rail break position, Thereafter, the position of the plot point of the impedance equivalent value changes along the reference trajectory by short-circuiting the rails by the axle of the train at a position closer to the transmission point than the rail breakage position. Therefore, when a plot point deviates from the reference trajectory, if the position of the plot point changes along the reference trajectory after returning to the reference trajectory, the position at which the plot point returned to the reference trajectory can be It can be determined as the rail breakage position.
  • FIG. 7 is a diagram showing an example of plot points of impedance equivalent values when an abnormality related to leakage conductance occurs.
  • the impedance of the track circuit changes when the train runs (passes) through the detection section T1, and the plot point of the impedance equivalent value in the orthogonal coordinate system (complex plane) deviates from the reference trajectory. It turns out.
  • Figure 6 shows that the leakage conductance is increasing over the entire rail area, so the change in the position of the plot point of the impedance equivalent value as the train passes is a short trajectory with respect to the reference trajectory, as shown by the thick line. Become. However, even when an abnormality related to leakage conductance occurs, the position of the plot point changes toward the origin O of the orthogonal coordinate system as the train travels, which is almost the same as in a normal state.
  • the larger the leakage conductance the shorter the locus of the plotted points relative to the reference trajectory, and the difference between the plotted point position P1 when the train is not on the track (there is no track in the detectable range) and the plotted point when the train enters the detection section T1.
  • the position P2 approaches the position P2.
  • the plot point position is near position P2 on the reference trajectory, it is possible to determine whether it is at position P1, which is not on the line but is close to position P2 due to an increase in leakage conductance, or whether there is no abnormality related to leakage conductance. It becomes difficult to distinguish whether the train is entering the detection section T1, that is, to determine whether the train is present or not.
  • the leakage conductance of the track circuit is just a circuit element in the track circuit, and when a train is on the track at the transmission point, the impedance seen from the transmission point as shown in Figures 2A, 2B, and 2C. is composed of only the axle short-circuit impedance Rv, so the impedance at this time is approximately constant.
  • the track circuit device 1 when the position of the plot point is near the position P2 on the reference trajectory based on the determination result of presence or absence of track by another track circuit device whose detection section is a section adjacent to the detection section T1, It is possible to distinguish whether the train is at position P1, which is not on the track but is close to position P2 due to an increase in leakage conductance, or whether the train is entering the detection section T1 without any abnormality related to leakage conductance. In other words, it can be determined whether an abnormality related to leakage conductance is occurring.
  • the track circuit device 1 sets the two detection sections T1a and T1b before and after the transmission point (position L3) as the detection section T1
  • the track circuit device 1B sets the two detection sections T2a before and after the transmission point (position L1).
  • T2b is the detection section T2.
  • the level of the AC signal transmitted by the track circuit device 1 to the transmission point (position L3) is designed such that the transmission point (position L1) of the track circuit device 1B is included in its detectable range.
  • the track circuit device 1B transmits the transmission point (position L1) depending on the magnitude of impedance seen from the transmission point (position L1). ) can determine that a train is on the line. Then, the track circuit device 1 determines the leakage conductance by comparing the magnitude of the impedance seen from the transmission point (position L3) at that time with the magnitude under normal conditions (when no abnormality related to leakage conductance has occurred). It can be determined whether or not such an abnormality is occurring. That is, when the leakage conductance increases, the magnitude of the impedance decreases.
  • the location of the abnormality related to leakage conductance can be determined from the change in the position of the plot point of the impedance equivalent value as the train passes. I can do it.
  • the plot point of the impedance equivalent value will be located at a position that deviates from the reference trajectory, but the location of the abnormality related to leakage conductance will be After the train passes, the position of the plot point of the impedance equivalent value changes along the reference trajectory due to the train axle shorting the rails at a position closer to the transmission point than the abnormal location. .
  • the position at which the plot point returned to the reference trajectory can be It can be determined as an abnormal location related to leakage conductance.
  • the determination unit 35 determines the state of the rail (normal or not) by comparing the position of the plot point of the impedance equivalent value in the orthogonal coordinate system (complex plane) with the reference trajectory.
  • the position of the plot point of the impedance equivalent value does not necessarily match the reference trajectory completely. This is mainly due to the fact that when the rails are installed outdoors, there are slight fluctuations in leakage conductance and capacitance components between the rails due to the effects of temperature, humidity, rain, snowfall, etc. For this reason, as shown in FIG.
  • a permissible variation range is determined for the reference trajectory, which is a range in which variation in the impedance equivalent value at position P1 on the reference trajectory is allowed.
  • FIG. 9 shows the permissible variation range for the position P1, and the range of the broken line surrounding the position P1 is the permissible variation range for the position P1. If the position of the plot point of the impedance equivalent value is out of this tolerance range, it is determined that there is some kind of abnormality or sign of abnormality.
  • This abnormality or sign of abnormality may include the above-mentioned abnormalities related to rail breakage and leakage conductance.
  • the processing device 30 transmits the AC signal intermittently (intermittently). Intermittent transmission of the AC signal is realized by controlling the transmission voltage by the transmission voltage output section 36.
  • the transmission voltage/frequency setting section 37 turns off the transmission switch of the transmitter 10 or cuts off the output, and the noise measurement section 39 measures the rail noise (retrace noise). measure.
  • the set frequency/transmission level determination unit 38 performs frequency analysis processing such as FFT (Fast Fourier Transformation) processing on the noise (retrace noise) measured by the noise measurement unit 39 to determine the noise (retrace noise). Determine level and frequency. Then, the frequency and level that do not interfere with noise (return noise) are determined as the set frequency and transmission level of the AC signal.
  • FFT Fast Fourier Transformation
  • Transmission power can be reduced by transmitting the AC signal intermittently (intermittently), and further energy saving of the track circuit device 1 can be achieved. Furthermore, since an AC signal is transmitted at an optimal transmission level according to the level of rail noise (retrace noise), further energy saving of the track circuit device 1 can be achieved. Furthermore, since an AC signal with an optimal frequency that does not interfere with frequencies other than rail retrace noise is transmitted to the rail, it does not affect other signals flowing on the rail.
  • the impedance equivalent value of the track circuit is determined from the amplitude and phase difference of the transmission voltage and transmission current, and the impedance equivalent value is determined based on the real component (resistance component) and imaginary component (reactance component) when the impedance equivalent value is expressed as a complex number. It is possible to determine whether a train is on the line.
  • the track circuit device 1 transmits an AC signal to one detection section T1, but in a so-called scanning method, the track circuit device 1 transmits an AC signal to multiple detection sections by switching sequentially. It may also be a method.
  • FIG. 10 is a diagram showing an example of a scanning type track circuit device.
  • the scanning type track circuit device 1A further includes a changeover switch group 18 that is a set of changeover switches that transmit AC signals to each of the transmission points of the plurality of detection sections T1, T2, . . . .
  • the processing device 30A transmits a switching signal that selects and turns on a switch corresponding to one detection section (one of the detection sections T1, T2, . . . ) for transmitting an AC signal to the switch group. Output to 18. Then, an AC signal is transmitted to the selected detection section.
  • two sections before and after the transmission point, which are the boundaries of the track circuit are defined as one detection section.
  • the level of the AC signal transmitted to the transmission point is designed so that the transmittable range for one detection section includes the transmission points of the adjacent detection section. Thereby, it is also possible to switch and select the detection section for transmitting the AC signal while tracking the train, except for the approach side detection section of the track circuit device 1A. Further, in this case, the frequency of the AC signal to be transmitted may be switched depending on the detection sections T1, T2, . . . .
  • FIG. 11 is a diagram showing an example of the locus of plot points of the impedance equivalent value of the track circuit in the orthogonal coordinate system (complex plane) when the detection section T1 shown in FIG. 1 is an insulated track circuit, and FIG. This is a diagram corresponding to .
  • an AC signal flows only in the detection section T1 and does not flow in the adjacent section. Therefore, as shown in FIG. 11, the position of the plot point is P1 until the train enters the detection section T1.
  • the detection section T1 may be two consecutive sections before and after the transmission point. In this case, after the train advances (passes) the transmission point, the position of the plot point of the impedance equivalent value changes so that it gradually returns from position P3 (origin O) to position P2 in the reverse order. Immediately after advancing through the detection section T1, the position of the plot point changes to position P1.
  • (D) Trajectories resulting from multiple train passes by acquiring and collecting the trajectories of impedance equivalent values associated with multiple train passes, and comparing the trajectories for each passage, rail abnormalities or signs of abnormality can be detected. You may judge.
  • a rail abnormality or abnormality sign may be determined by comparing the trajectory accompanying one train passage with a reference trajectory. Comparison of the trajectory for each pass or comparison with the reference trajectory can be performed, for example, if the degree of similarity calculated by pattern matching that regards the trajectory as an image, or the error rate calculated by the least squares method, satisfies a predetermined threshold condition. This can be done depending on whether or not.
  • the reference trajectory data stored in the determination unit 35 may be updated based on the change in the position of the plot point when the rail condition is determined to be normal.
  • Track circuit device 10 For Transmitter 20
  • Current sensor 30 For Processing device 31
  • Transmission voltage waveform acquisition section 32 Transmission current waveform acquisition section 33
  • Orthogonal detection circuit section 34 Exemplary Impedance equivalent value calculation section 35
  • Judgment section 36 Transmission voltage output section 37
  • Transmission voltage/frequency setting section 38 For Setting frequency/transmission level determination section 39... Noise measurement section

Abstract

A track circuit device (1) measures a transmission voltage and a transmission current of an alternating-current signal transmitted to a rail, calculates an impedance equivalent value based on the amplitude and phase difference of the measured transmission voltage and transmission current, and determines that a train is on track on the basis of the values of a real component and an imaginary component of the calculated impedance equivalent value.

Description

軌道回路装置及び列車在線判定方法Track circuit device and train location determination method
 本発明は、軌道回路装置等に関する。 The present invention relates to track circuit devices and the like.
 従来の軌道回路装置は、軌道回路のレールの一端に列車検知信号を送信する送信器を接続し、他端に接続した受信器での受信レベルの低下によって列車在線を判定している(例えば、特許文献1参照)。 In conventional track circuit devices, a transmitter for transmitting a train detection signal is connected to one end of the rail of the track circuit, and the presence of a train is determined by a decrease in the reception level at a receiver connected to the other end (for example, (See Patent Document 1).
特開2021-113023号公報JP 2021-113023 Publication
 従来の軌道回路装置では、軌道回路のレールの一端に列車検知信号を送信し、所定距離離れている他端で受信レベルを監視していることから、一定レベル以上の送信電力が必要であった。そのため、省エネルギー化が困難であった。また、従来の軌道回路装置は、原理上、送信器と受信器とが必要であった。 Conventional track circuit devices transmit train detection signals to one end of the track circuit rail and monitor the reception level at the other end, which is a predetermined distance away, so transmission power above a certain level is required. . Therefore, it has been difficult to save energy. Further, the conventional track circuit device requires a transmitter and a receiver in principle.
 本発明が解決しようとする課題は、従来の軌道回路装置とは原理が全く異なる軌道回路装置の技術を提供することである。 The problem to be solved by the present invention is to provide a technology for a track circuit device whose principle is completely different from that of conventional track circuit devices.
 上記課題を解決するための第1の発明は、
 送信部によってレールに送信された交流信号の送信電圧及び送信電流の振幅及び位相差に基づくインピーダンス相当値を算出する算出部と、
 前記インピーダンス相当値の実数成分及び虚数成分の値に基づいて、列車在線を判定する判定部と、
 を備える軌道回路装置である。
The first invention for solving the above problem is:
a calculation unit that calculates an impedance equivalent value based on the amplitude and phase difference of the transmission voltage and transmission current of the AC signal transmitted to the rail by the transmission unit;
a determination unit that determines whether a train is on the track based on the values of the real component and the imaginary component of the impedance equivalent value;
It is a track circuit device equipped with.
 他の発明として、
 送信部によってレールに送信された交流信号の送信電圧及び送信電流を測定することと、
 前記送信電圧及び送信電流の振幅及び位相差に基づくインピーダンス相当値を算出することと、
 前記インピーダンス相当値の実数成分及び虚数成分の値に基づいて、列車在線を判定することと、
 を含む列車在線判定方法を構成してもよい。
Other inventions include
Measuring the transmission voltage and transmission current of the alternating current signal transmitted to the rail by the transmitter;
Calculating an impedance equivalent value based on the amplitude and phase difference of the transmission voltage and transmission current;
Determining whether a train is on the track based on the values of the real component and the imaginary component of the impedance equivalent value;
A method for determining whether a train is on the track may be configured.
 第1の発明等によれば、従来の軌道回路装置とは原理が全く異なる軌道回路装置の技術を提供することができる。第1の発明等は、列車在線か非在線かによって交流信号の送信点からみた軌道回路のインピーダンスが変化し、このインピーダンスの変化によって送信電圧及び送信電流の振幅及び位相差が変化することに着目した技術である。第1の発明等によれば、送信電圧及び送信電流の振幅及び位相差から軌道回路のインピーダンス相当値を判定し、そのインピーダンス相当値を複素数で表したときの実数成分(抵抗成分)及び虚数成分(リアクタンス成分)に基づいて、列車在線を判定する。レールに送信された交流信号の送信電圧及び送信電流に基づいて列車在線を判定することができるため、受信器が不要であり、受信点で一定の信号レベルとなる信号を送信する必要もないため、送信電力を低減することができる。その結果、省エネルギー化を図った軌道回路装置を実現することができる。また、受信器が不要となることで、軌道回路装置の構成部品を削減することができるといった更なる効果も得られる。 According to the first invention, etc., it is possible to provide a track circuit device technology whose principle is completely different from that of conventional track circuit devices. The first invention focuses on the fact that the impedance of the track circuit as seen from the AC signal transmission point changes depending on whether the train is on the line or not, and that the amplitude and phase difference of the transmission voltage and current change due to this change in impedance. This is a technology that has been developed. According to the first invention, etc., the impedance equivalent value of the track circuit is determined from the amplitude and phase difference of the transmission voltage and the transmission current, and the real component (resistance component) and imaginary component when the impedance equivalent value is expressed as a complex number. (reactance component) to determine whether a train is on the track. Because it is possible to determine whether a train is on the track based on the transmission voltage and current of the AC signal sent to the rail, there is no need for a receiver, and there is no need to transmit a signal that has a constant signal level at the receiving point. , transmission power can be reduced. As a result, it is possible to realize a track circuit device that saves energy. Further, by eliminating the need for a receiver, a further effect can be obtained in that the number of components of the track circuit device can be reduced.
 第2の発明は、上述した発明において、
 前記判定部は、前記送信部による前記交流信号の送信点を基準とした、列車の在線位置を判定する、
 軌道回路装置である。
The second invention is the above-mentioned invention,
The determining unit determines the position of the train on the line based on the transmission point of the AC signal by the transmitting unit.
It is a track circuit device.
 第2の発明によれば、交流信号の送信点を基準とした列車の在線位置を判定することができる。これは、交流信号の送信点からみた軌道回路のインピーダンスは、列車の車軸によるレールの短絡位置に応じて変化するからである。 According to the second invention, it is possible to determine the position of a train on the line with reference to the transmission point of the AC signal. This is because the impedance of the track circuit as seen from the AC signal transmission point changes depending on the short-circuit position of the rail by the train axle.
 第3の発明は、上述した発明において、
 前記判定部は、前記実数成分及び前記虚数成分を各軸とする座標系における前記インピーダンス相当値のプロット点に基づいて、前記送信点を基準とした列車の在線位置を判定する、
 軌道回路装置である。
The third invention is the above-mentioned invention,
The determination unit determines the position of the train on the line with respect to the transmission point based on plot points of the impedance equivalent value in a coordinate system having the real component and the imaginary component as axes.
It is a track circuit device.
 第3の発明によれば、実数成分及び虚数成分を各軸とする座標系(複素平面)におけるインピーダンス相当値のプロット点に基づいて、列車の在線位置を判定することができる。これは、軌道回路のインピーダンスは、列車の車軸によるレールの短絡位置に応じて決まるからである。このため、予め、列車の在線位置と座標系におけるインピーダンス相当値のプロット点の位置とを対応付けておくことで、列車の在線位置を判定することができる。 According to the third invention, it is possible to determine the position of a train on the line based on plot points of impedance equivalent values in a coordinate system (complex plane) having real and imaginary components as axes. This is because the impedance of the track circuit is determined by the position of the short circuit in the rail by the train axle. Therefore, by associating the train's on-line position with the position of the plot point of the impedance equivalent value in the coordinate system in advance, the train's on-line position can be determined.
 第4の発明は、上述した発明において、
 前記判定部は、前記座標系における所定の基準軌跡に沿った前記プロット点の位置に基づいて、前記列車の在線位置を判定する、
 軌道回路装置である。
The fourth invention is the above-mentioned invention,
The determination unit determines the on-track position of the train based on the position of the plot point along a predetermined reference trajectory in the coordinate system.
It is a track circuit device.
 軌道回路のインピーダンスは、当該軌道回路における列車の在線位置、つまり、列車の車軸によるレールの短絡位置によって決まる。このため、第4の発明のように、予め、列車の在線位置と対応付けた座標系におけるインピーダンス相当値のプロット点の位置の変化を基準軌跡として定めておくことで、この基準軌跡に沿ったプロット点の位置に基づいて、列車の在線位置を判定することができる。 The impedance of a track circuit is determined by the position of the train on the track circuit, that is, the short-circuit position of the rail by the train's axle. For this reason, as in the fourth invention, by predetermining as a reference trajectory the change in the position of the plot point of the impedance equivalent value in the coordinate system associated with the train's position on the track, Based on the locations of the plot points, the location of the train can be determined.
 第5の発明は、上述した発明において、
 前記判定部は、前記インピーダンス相当値の実数成分及び虚数成分の値に基づいて、前記レールの状態を判定する、
 軌道回路装置である。
A fifth invention is the above-mentioned invention,
The determination unit determines the state of the rail based on the values of the real component and the imaginary component of the impedance equivalent value.
It is a track circuit device.
 レールの状態が変化すると、軌道回路のインピーダンスが変化する。このため、第5の発明のように、例えば、現在のインピーダンス相当値の実数成分及び虚数成分の値を、レールが正常状態であるときのインピーダンス相当値の実数成分及び虚数成分と比較することで、正常状態であるか否かといったレールの状態を判定することができる。 When the condition of the rail changes, the impedance of the track circuit changes. Therefore, as in the fifth invention, for example, by comparing the values of the real component and imaginary component of the current impedance equivalent value with the real component and imaginary component of the impedance equivalent value when the rail is in a normal state. , it is possible to determine the state of the rail, such as whether it is in a normal state or not.
 第6の発明は、上述した発明において、
 前記判定部は、前記送信部による前記交流信号の送信点を基準とした、前記レールの異常箇所を判定する、
 軌道回路装置である。
The sixth invention is the above-mentioned invention,
The determining unit determines an abnormal location of the rail based on a point at which the AC signal is transmitted by the transmitting unit.
It is a track circuit device.
 第6の発明によれば、レールの状態として、交流信号の送信点を基準としたレールの異常箇所を判定することができる。 According to the sixth invention, it is possible to determine the abnormal location of the rail based on the transmission point of the AC signal as the rail condition.
 第7の発明は、上述した発明において、
 前記判定部は、前記プロット点が前記基準軌跡から外れた場合に、当該外れた位置に基づいて、漏れコンダクタンス及び/又はレール破断に係る前記レールの異常箇所を判定する、
 軌道回路装置である。
The seventh invention is the above-mentioned invention,
When the plot point deviates from the reference trajectory, the determination unit determines an abnormal location of the rail related to leakage conductance and/or rail breakage based on the deviated position.
It is a track circuit device.
 第7の発明によれば、レールの状態として、漏れコンダクタンス及び/又はレール破断に係るレールの異常箇所を判定することができる。例えば、レールの水没による漏れコンダクタンスの増加といった漏れコンダクタンスに係る異常がレールに発生すると、その異常箇所を列車が通過する前後で、列車の在線位置により軌道回路のインピーダンスの変化量が変わる。このため、プロット点が基準軌跡から外れた場合に、基準軌跡に戻った位置を漏れコンダクタンスに係るレールの異常箇所として判定することができる。より具体的には、漏れコンダクタンスに係る異常箇所の前後を列車が通過する場合に、当該異常箇所より手前では基準軌跡の始点から外れ(送信点側に移動)、異常箇所を通過後は基準軌跡に沿った軌跡となる。レール破断が発生した場合も、その異常箇所を列車が通過する前後で、軌道回路のインピーダンスの変化量が変わる。このため、プロット点が基準軌跡から外れた場合に、基準軌跡に戻った位置をレール破断箇所として判定することができる。より具体的には、レール破断箇所の前後を列車が通過する場合に、当該異常箇所以外は正常であるが、異常箇所以遠は基準軌跡を外れるため、プロット点が基準軌跡に沿った位置と基準軌跡から外れた位置との間で変位することになる。 According to the seventh invention, as the condition of the rail, it is possible to determine an abnormal location of the rail related to leakage conductance and/or rail breakage. For example, when an abnormality related to leakage conductance occurs on the rail, such as an increase in leakage conductance due to submergence of the rail, the amount of change in the impedance of the track circuit changes depending on the train's position on the track before and after the train passes the abnormal location. Therefore, when the plotted point deviates from the reference trajectory, the position where it returns to the reference trajectory can be determined as an abnormal location of the rail related to leakage conductance. More specifically, when a train passes before and after an abnormal point related to leakage conductance, it deviates from the starting point of the reference trajectory before the abnormal point (moves to the transmission point side), and returns to the reference trajectory after passing the abnormal point. The trajectory follows. Even when a rail break occurs, the amount of change in the impedance of the track circuit changes before and after the train passes through the abnormal location. Therefore, when the plot point deviates from the reference trajectory, the position where it returns to the reference trajectory can be determined as the rail breakage point. More specifically, when a train passes before and after a rail breakage point, everything other than the abnormal point is normal, but beyond the abnormal point it deviates from the standard trajectory, so the plot points are different from the position along the standard trajectory and the standard. This results in displacement between the position and the position that deviates from the trajectory.
 第8の発明は、上述した発明において、
 前記判定部は、前記虚数成分の値の正負に基づいてレール破断の有無を判定する、
 軌道回路装置である。
The eighth invention is the above-mentioned invention,
The determination unit determines the presence or absence of rail breakage based on the sign of the value of the imaginary component.
It is a track circuit device.
 第8の発明によれば、インピーダンス相当値の虚数成分の値の正負に基づいて、レール破断の有無を判定することができる。これは、レール破断が生じると、インピーダンス相当値の虚数成分が負値となるからである。 According to the eighth invention, it is possible to determine the presence or absence of rail breakage based on the sign or negative of the value of the imaginary component of the impedance equivalent value. This is because when rail breakage occurs, the imaginary component of the impedance equivalent value becomes a negative value.
 第9の発明は、上述した発明において、
 前記判定部は、前記インピーダンス相当値の実数成分及び虚数成分の値に基づいて、前記送信部による前記交流信号の送信点を基準としたレール破断の位置を判定する、
 軌道回路装置である。
The ninth invention is the above-mentioned invention,
The determining unit determines the position of the rail breakage with respect to the transmission point of the AC signal by the transmitting unit based on the values of the real component and the imaginary component of the impedance equivalent value.
It is a track circuit device.
 第9の発明によれば、インピーダンス相当値の実数成分及び虚数成分の値に基づいて、交流信号の送信点を基準としたレール破断の位置を判定することができる。これは、レール破断が生じると、インピーダンス相当値の虚数成分が負値となるとともに、実数成分と虚数成分がともに交流信号の送信点からレール破断の位置までの距離に応じた値に変化するからである。 According to the ninth invention, it is possible to determine the position of rail breakage with respect to the transmission point of the AC signal based on the values of the real component and imaginary component of the impedance equivalent value. This is because when a rail break occurs, the imaginary component of the impedance equivalent value becomes a negative value, and both the real and imaginary components change to values that correspond to the distance from the AC signal transmission point to the rail break position. It is.
 第10の発明は、上述した発明において、
 前記判定部は、前記実数成分及び前記虚数成分を各軸とする座標系における前記インピーダンス相当値のプロット点が、前記送信部による前記交流信号の送信点からの距離に応じて定められた前記インピーダンス相当値の許容変動範囲外であるか否かに基づいて、前記レールの異常又は異常兆候を判定する、
 軌道回路装置である。
A tenth invention is the above-mentioned invention,
The determining unit is configured such that a plot point of the impedance equivalent value in a coordinate system having the real component and the imaginary component as axes is the impedance determined according to a distance from a transmission point of the alternating current signal by the transmitting unit. Determining an abnormality or abnormality sign of the rail based on whether the equivalent value is outside the allowable variation range;
It is a track circuit device.
 レールに何らかの異常又は異常兆候が生じると、軌道回路のインピーダンスが変化する。また、通常、レールは屋外に設けられるから、気温や湿度、降雨、降雪といった周囲環境によって軌道回路のインピーダンスは変動し得る。このため、第10の発明のように、例えば、予め定めたレールが正常状態であるときのインピーダンス相当値のプロット点の位置を基準として、レールの正常状態とみなせる許容変動範囲を定めておくことで、インピーダンス相当値のプロット点が許容変動範囲外であるか否かに基づいて、レールの異常又は異常兆候を判定することができる。 When any abnormality or sign of abnormality occurs in the rail, the impedance of the track circuit changes. Furthermore, since rails are usually installed outdoors, the impedance of the track circuit can vary depending on the surrounding environment such as temperature, humidity, rainfall, and snowfall. For this reason, as in the tenth invention, for example, a permissible fluctuation range that can be considered as the normal state of the rail is determined based on a predetermined position of the plot point of the impedance equivalent value when the rail is in the normal state. Based on whether or not the plot point of the impedance equivalent value is outside the allowable variation range, it is possible to determine whether there is an abnormality or a sign of abnormality in the rail.
軌道回路装置の適用例。Application example of track circuit device. 軌道回路の等価回路の一例。An example of an equivalent circuit of a track circuit. 軌道回路の等価回路の一例。An example of an equivalent circuit of a track circuit. 軌道回路の等価回路の一例。An example of an equivalent circuit of a track circuit. 交流信号の送信電圧波形及び送信電流波形の一例。An example of a transmission voltage waveform and a transmission current waveform of an AC signal. インピーダンス相当値のプロット点の変化の一例。An example of changes in plot points of impedance equivalent values. レール破断が生じた場合のインピーダンス相当値のプロット点の変化の一例。An example of changes in the plot points of the impedance equivalent value when a rail rupture occurs. レール破断が生じた場合のインピーダンス相当値のプロット点の変化の一例。An example of changes in the plot points of the impedance equivalent value when a rail rupture occurs. 漏れコンダクタンスに係る異常が生じた場合のインピーダンス相当値のプロット点の変化の一例。An example of changes in plot points of impedance equivalent values when an abnormality related to leakage conductance occurs. 軌道回路装置の設置例。Example of track circuit device installation. 許容変動範囲の設定例。Example of setting the allowable variation range. 軌道回路装置の他の構成例。Other configuration examples of the track circuit device. 有絶縁軌道回路の場合のインピーダンス相当値のプロット点の変化の一例。An example of changes in plot points of impedance equivalent values in the case of an insulated track circuit.
 以下、図面を参照して本発明の好適な実施形態について説明する。なお、本発明を適用可能な形態が以下の実施形態に限定されるものではない。また、図面の記載において、同一要素には同一符号を付す。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. Note that the form to which the present invention can be applied is not limited to the following embodiments. In addition, in the description of the drawings, the same elements are given the same reference numerals.
[構成]
 図1は、本実施形態における軌道回路装置1の適用例である。軌道回路装置1は、レールに対して交流信号を送信し、その交流信号の送信電圧及び送信電流に基づいて、列車在線を判定するとともにレールの状態をも判定する装置である。軌道回路装置1は、送信器10と、電流センサ20と、処理装置30とを備える。なお、軌道回路装置1を一箇所に集中設置する場合には長いケーブルが必要になるが、その場合にはケーブルや軌道のインピーダンスをある程度整合させるマッチングトランスも設けられる。
[composition]
FIG. 1 is an example of application of the track circuit device 1 in this embodiment. The track circuit device 1 is a device that transmits an AC signal to the rail, and determines whether a train is on the track and also determines the state of the rail based on the transmission voltage and transmission current of the AC signal. The track circuit device 1 includes a transmitter 10, a current sensor 20, and a processing device 30. Note that if the track circuit device 1 is installed centrally in one location, a long cable is required, but in that case, a matching transformer is also provided to match the impedance of the cable and the track to some extent.
 送信器10は、処理装置30の制御に従って、軌道回路のレールを区切った検知区間T1の送信点へ、送信ケーブルを介して一定レベルの交流信号を送信する。送信器10は送信部の一例である。送信点は、検知区間T1の進出側の端部に設けられている。また、軌道回路は、無絶縁軌道回路でも有絶縁軌道回路でも構わないが、本実施形態では無絶縁軌道回路であるとして説明する。従って、送信点から検知区間T1のレールへ送信された交流信号は、検知区間T1に隣接する他の区間へも伝搬する。電流センサ20は、送信器10とレールとの間の送信ケーブルに設けられており、レールに送信される交流信号の電流(交流電流)を計測する。 Under the control of the processing device 30, the transmitter 10 transmits an alternating current signal at a constant level via a transmission cable to a transmission point in a detection section T1 that divides the rails of the track circuit. The transmitter 10 is an example of a transmitter. The transmission point is provided at the end of the detection section T1 on the advancing side. Furthermore, although the track circuit may be either an uninsulated track circuit or an insulated track circuit, the present embodiment will be described assuming that it is an uninsulated track circuit. Therefore, the AC signal transmitted from the transmission point to the rail in the detection section T1 also propagates to other sections adjacent to the detection section T1. The current sensor 20 is provided on a transmission cable between the transmitter 10 and the rail, and measures the current (alternating current) of an alternating current signal transmitted to the rail.
 処理装置30は、送信電圧波形取得部31と、送信電流波形取得部32と、直交検波回路部33と、インピーダンス相当値算出部34と、判定部35と、送信電圧出力部36と、送信電圧・周波数設定部37と、設定周波数・送信レベル判定部38と、ノイズ計測部39とを有する。処理装置30の各機能部は、当該機能を実現する信号処理を行う回路部や、当該機能をソフトウェア的に実現する演算処理部を用いて構成することもできる。 The processing device 30 includes a transmission voltage waveform acquisition section 31, a transmission current waveform acquisition section 32, a quadrature detection circuit section 33, an impedance equivalent value calculation section 34, a determination section 35, a transmission voltage output section 36, and a transmission voltage waveform acquisition section 32. - It has a frequency setting section 37, a set frequency/transmission level determination section 38, and a noise measurement section 39. Each functional unit of the processing device 30 can also be configured using a circuit unit that performs signal processing to implement the function, or an arithmetic processing unit that implements the function in software.
 送信電圧波形取得部31は、送信ケーブルを介して検知区間T1のレールに送信される交流信号の送信電圧の波形(送信電圧波形)を取得する。送信電流波形取得部32は、電流センサ20により計測される送信電流の波形(送信電流波形)を取得する。直交検波回路部33は、送信電圧波形及び送信電流波形を直交検波し、送信電圧及び送信電流の振幅と、送信電圧に対する送信電流の位相差とを出力する。インピーダンス相当値算出部34は、直交検波回路部33から出力された送信電圧及び送信電流の振幅及び位相差に基づいて、軌道回路のインピーダンス相当値を複素数で示した実数成分及び虚数成分を算出する。インピーダンス相当値算出部34は、算出部の一例である。なお、この軌道回路のインピーダンス相当値については詳細を後述する。 The transmission voltage waveform acquisition unit 31 acquires the transmission voltage waveform (transmission voltage waveform) of the AC signal transmitted to the rail in the detection section T1 via the transmission cable. The transmission current waveform acquisition unit 32 acquires the waveform of the transmission current (transmission current waveform) measured by the current sensor 20. The quadrature detection circuit section 33 performs quadrature detection on the transmission voltage waveform and the transmission current waveform, and outputs the amplitude of the transmission voltage and the transmission current, and the phase difference of the transmission current with respect to the transmission voltage. The impedance equivalent value calculation unit 34 calculates the real component and imaginary component of the impedance equivalent value of the track circuit expressed in complex numbers based on the amplitude and phase difference of the transmission voltage and transmission current output from the quadrature detection circuit unit 33. . The impedance equivalent value calculation unit 34 is an example of a calculation unit. Note that details of the impedance equivalent value of this track circuit will be described later.
 判定部35は、インピーダンス相当値算出部34により算出されたインピーダンス相当値の実数成分及び虚数成分の値に基づいて、列車在線やレールの状態を判定する。なお、この列車在線やレールの状態の判定については詳細を後述する。 The determination unit 35 determines whether the train is on the track or the state of the rails based on the real component and imaginary component of the impedance equivalent value calculated by the impedance equivalent value calculation unit 34. The details of the determination of train presence and rail status will be described later.
 送信電圧出力部36は、送信電圧・周波数設定部37により設定された送信電圧を送信器10に出力する。送信電圧・周波数設定部37は、設定周波数・送信レベル判定部38により判定された送信レベルの交流信号となるように、送信電圧出力部36の送信電圧を制御する。また、設定周波数・送信レベル判定部38により設定された設定周波数の交流信号となるように、送信器10の送信スイッチをオン・オフ制御する。設定周波数・送信レベル判定部38は、ノイズ計測部39により計測されたノイズ(帰線雑音)に基づいて、レールに送信すべき交流信号の周波数及び送信レベルを判定する。ノイズ計測部39は、軌道回路のレールに生じるノイズ(帰線雑音)を計測する。なお、これらのノイズの計測や交流信号の周波数・レベルの設定については詳細を後述する。 The transmission voltage output section 36 outputs the transmission voltage set by the transmission voltage/frequency setting section 37 to the transmitter 10. The transmission voltage/frequency setting unit 37 controls the transmission voltage of the transmission voltage output unit 36 so that the AC signal has the transmission level determined by the set frequency/transmission level determination unit 38. Further, the transmission switch of the transmitter 10 is controlled on/off so that the AC signal has the set frequency set by the set frequency/transmission level determination section 38. The set frequency/transmission level determination section 38 determines the frequency and transmission level of the AC signal to be transmitted to the rail based on the noise (retrace noise) measured by the noise measurement section 39. The noise measurement unit 39 measures noise (retrace noise) occurring in the rails of the track circuit. Note that the measurement of these noises and the setting of the frequency and level of the AC signal will be described in detail later.
[列車在線の判定]
 判定部35による列車在線の判定について説明する。図2A、図2B及び図2Cは、検知区間T1を軌道回路と見立てた場合の等価回路を示す図であり、列車の在線有無及び在線位置に応じた等価回路を示す。図2Aには非在線時の等価回路を示す。図2Bには、検知区間T1への列車の進入直後(図1の在線位置L2)の等価回路を示す。図2Cには、列車の送信点への進入時(到達時)(図1の在線位置L3)の等価回路を示す。なお、レールの状態は正常(異常が生じていない)であるとする。この等価回路の合成インピーダンスが、交流信号の送信点からみた軌道回路のインピーダンスとなる。
[Determination of train presence]
The determination of train presence by the determination unit 35 will be explained. 2A, FIG. 2B, and FIG. 2C are diagrams showing equivalent circuits when the detection section T1 is regarded as a track circuit, and show equivalent circuits depending on whether or not a train is on the track and the position on the track. FIG. 2A shows an equivalent circuit when the line is not present. FIG. 2B shows an equivalent circuit immediately after the train enters the detection section T1 (track position L2 in FIG. 1). FIG. 2C shows an equivalent circuit when the train approaches (arrives at) the transmission point (track position L3 in FIG. 1). It is assumed that the condition of the rail is normal (no abnormality has occurred). The combined impedance of this equivalent circuit becomes the impedance of the track circuit as seen from the AC signal transmission point.
 図2Aに示すように、非在線時の軌道回路の等価回路は、レールのインダクタンス成分La、直列抵抗成分Ra、レール間の静電容量成分C、及び、漏れコンダクタンス成分G=1/Rbにより構成される。また、図2Bに示すように、検知区間T1への列車の進入直後の軌道回路の等価回路は、検知区間T1のレールのインダクタンス成分La、直列抵抗成分Ra、レール間の静電容量成分C、漏れコンダクタンス成分G=1/Rb、及び、車軸短絡によるインピーダンスRvにより構成される。 As shown in FIG. 2A, the equivalent circuit of the track circuit when there is no track is composed of the rail inductance component La, the series resistance component Ra, the capacitance component C between the rails, and the leakage conductance component G=1/Rb. be done. Further, as shown in FIG. 2B, the equivalent circuit of the track circuit immediately after the train enters the detection section T1 is the inductance component La of the rail in the detection section T1, the series resistance component Ra, the capacitance component C between the rails, It is composed of a leakage conductance component G=1/Rb and an impedance Rv due to an axle short circuit.
 本実施形態において、軌道回路は無絶縁軌道回路であるので、送信点からレールに送信された交流信号は検知区間T1の隣接区間へも伝搬する。このため、列車が検知区間T1に到達していない状態であってもある程度の距離まで接近していれば、車軸短絡インピーダンスRvが影響する。また、列車が検知区間T1を進出した後も、ある程度の距離まで遠ざかるまでは、車軸短絡インピーダンスRvが影響する。この車軸短絡インピーダンスRvが影響する範囲(交流信号が到達する範囲)を検知可能範囲と呼ぶ。つまり、検知可能範囲は、検知区間T1をレールに沿った前後方向に延長した範囲となる。また、軌道回路の各回路要素(レールのインダクタンス成分La、直列抵抗成分Ra、レール間の静電容量成分C、及び、漏れコンダクタンス成分G=1/Rb)は、交流信号の送信点から車軸短絡位置(列車の在線位置)までの距離に応じて決まるから、非在線時が最も大きく、交流信号の送信点への列車の接近に伴って徐々に小さくなる。 In this embodiment, since the track circuit is an uninsulated track circuit, the AC signal transmitted from the transmission point to the rail also propagates to the section adjacent to the detection section T1. Therefore, even if the train has not reached the detection section T1, if it approaches to a certain distance, the axle short-circuit impedance Rv will have an effect. Further, even after the train advances through the detection section T1, the axle short-circuit impedance Rv has an influence until it moves away to a certain distance. The range affected by this axle short-circuit impedance Rv (the range that the AC signal reaches) is called the detectable range. In other words, the detectable range is the range extending the detection section T1 in the front-rear direction along the rail. In addition, each circuit element of the track circuit (rail inductance component La, series resistance component Ra, inter-rail capacitance component C, and leakage conductance component G = 1/Rb) is connected to the axle short circuit from the AC signal transmission point. Since it is determined according to the distance to the train's location (the train's location on the line), it is largest when the train is not on the line, and gradually decreases as the train approaches the AC signal transmission point.
 従って、図2Cに示すように、列車の送信点進入時の軌道回路の等価回路は、送信点から車軸短絡位置までの距離が非常に短く、レールのインダクタンス成分La、直列抵抗成分Ra、及び、レール間の静電容量成分Cが非常に小さくなり、漏れコンダクタンス成分G=1/Rbは非常に大きくなることから、車軸短絡インピーダンスRvのみで構成される。このように、検知区間T1の列車の走行に伴って軌道回路の等価回路が変化する。つまり、軌道回路のインピーダンスが変化する。 Therefore, as shown in FIG. 2C, in the equivalent circuit of the track circuit when the train approaches the transmission point, the distance from the transmission point to the axle short-circuit position is very short, and the rail inductance component La, series resistance component Ra, and Since the capacitance component C between the rails becomes very small and the leakage conductance component G=1/Rb becomes very large, it is composed only of the axle short-circuit impedance Rv. In this way, the equivalent circuit of the track circuit changes as the train travels in the detection section T1. In other words, the impedance of the track circuit changes.
 図3は、レールに送信する交流信号の送信電圧波形及び送信電流波形の概要を示す図である。図3では、横軸を時間、縦軸をレベルとして、送信電圧波形及び送信電流波形を示している。また、送信電圧波形は一定であるとして、非在線時、及び、列車の送信点進入時(在線位置L3)における送信電流波形を示している。 FIG. 3 is a diagram showing an outline of the transmission voltage waveform and transmission current waveform of the AC signal transmitted to the rail. In FIG. 3, the horizontal axis is time, and the vertical axis is level, and the transmission voltage waveform and transmission current waveform are shown. Further, assuming that the transmission voltage waveform is constant, the transmission current waveforms are shown when the train is not on the train and when the train approaches the transmission point (on-the-track position L3).
 図2A、図2B及び図2Cに示したように、検知区間T1への進入から進出という列車の走行に伴って、検知区間T1の軌道回路の等価回路は変化する。つまり、交流信号の送信点からみた軌道回路のインピーダンスが変化することから、送信電圧波形に対して送信電流波形が変化する。具体的には、列車が検知区間T1へ進入して送信点に近づくに従って、送信電圧波形に対して、送信電流波形の位相は逆相方向へ移相し、送信電流波形のレベル(振幅)は大きくなる。軌道回路のインピーダンスの変化に応じて送信電流波形の振幅(レベル)及び位相が変化するのである。このことから、送信電圧波形及び送信電流波形の振幅と、送信電圧波形に対する送信電流波形の位相差とを、軌道回路のインピーダンスに相当する値(インピーダンス相当値)とみなすことができる。 As shown in FIGS. 2A, 2B, and 2C, the equivalent circuit of the track circuit in the detection section T1 changes as the train travels from entering to exiting the detection section T1. That is, since the impedance of the track circuit as seen from the transmission point of the AC signal changes, the transmission current waveform changes with respect to the transmission voltage waveform. Specifically, as the train enters the detection section T1 and approaches the transmission point, the phase of the transmission current waveform shifts in the opposite phase direction with respect to the transmission voltage waveform, and the level (amplitude) of the transmission current waveform becomes growing. The amplitude (level) and phase of the transmission current waveform change in response to changes in the impedance of the track circuit. From this, the amplitude of the transmission voltage waveform and the transmission current waveform, and the phase difference of the transmission current waveform with respect to the transmission voltage waveform can be regarded as a value equivalent to the impedance of the track circuit (impedance equivalent value).
 本実施形態では、直交検波回路部33が、送信電圧波形及び送信電流波形を直交検波して送信電圧波形及び送信電流波形の振幅及び位相差を出力する。そして、インピーダンス相当値算出部34が、その振幅及び位相差に基づいて、軌道回路のインピーダンス相当値を複素数で示した実数成分及び虚数成分を算出する。 In this embodiment, the quadrature detection circuit section 33 performs quadrature detection on the transmission voltage waveform and the transmission current waveform, and outputs the amplitude and phase difference of the transmission voltage waveform and the transmission current waveform. Then, the impedance equivalent value calculation unit 34 calculates a real component and an imaginary component representing the impedance equivalent value of the track circuit in complex numbers based on the amplitude and phase difference.
 図4は、検知区間T1を列車が走行する際の軌道回路のインピーダンス相当値の変化を示す図である。図4では、実数成分及び虚数成分を各軸とした直交座標系(複素平面)において、インピーダンス相当値をプロットした図を示している。また、非在線時から列車が検知区間T1へ進入して進出するまでの、軌道回路のインピーダンス相当値のプロット点の変化(軌跡)を示している。 FIG. 4 is a diagram showing changes in the impedance equivalent value of the track circuit when a train runs in the detection section T1. FIG. 4 shows a diagram in which impedance equivalent values are plotted in an orthogonal coordinate system (complex plane) with real and imaginary components as axes. It also shows the change (trajectory) of the plot points of the impedance equivalent value of the track circuit from when the train is not on the track until the train enters the detection section T1 and advances.
 図2A、図2B及び図2Cに示したように、列車の在線位置(つまり、レールの車軸短絡位置)の変化に伴って、軌道回路のインピーダンス相当値はアナログ的に変化する。従って、インピーダンス相当値のプロット点の位置の変化も連続的な軌跡となる。具体的には、非在線時には、軌道回路のインピーダンス相当値の実数成分及び虚数成分の値はともに正値であり、プロット点の位置P1は第1象限となる。このプロット点の位置P1は、レールの状態が正常ならば、ほぼ固定の位置となる。 As shown in FIGS. 2A, 2B, and 2C, the impedance equivalent value of the track circuit changes in an analog manner as the train position on the track (that is, the rail axle short-circuit position) changes. Therefore, the change in the position of the plot point of the impedance equivalent value also becomes a continuous locus. Specifically, when the line is not present, both the real component and the imaginary component of the impedance equivalent value of the track circuit are positive values, and the position P1 of the plot point is in the first quadrant. The position P1 of this plot point is a substantially fixed position if the rail condition is normal.
 そして、列車が検知可能範囲に進入すると、列車の在線位置(つまり、レールの車軸短絡位置)の変化に伴って、軌道回路のインピーダンスが変化することでインピーダンス相当値のプロット点の位置が位置P1から徐々に変化する。つまり、交流信号の送信点から車軸短絡位置までの距離が徐々に短くなるため、インピーダンス相当値の実数成分及び虚数成分の値が徐々に小さくなり、直交座標系の原点Oに向かう方向(近づく方向)に変化する。位置P2は、列車が検知区間T1に進入直後(図1の在線位置L2)のインピーダンス相当値のプロット点の位置である。 When the train enters the detection range, the impedance of the track circuit changes as the train's position on the track (that is, the short-circuit position of the rail axle) changes, and the plot point of the impedance equivalent value changes to position P1. It changes gradually from In other words, as the distance from the AC signal transmission point to the axle short-circuit position gradually decreases, the real and imaginary components of the impedance equivalent value gradually decrease in the direction toward (approaching) the origin O of the orthogonal coordinate system. ). The position P2 is the position of the plot point of the impedance equivalent value immediately after the train enters the detection section T1 (track position L2 in FIG. 1).
 続いて、列車の送信点進入時(図1の在線位置L3)のインピーダンス相当値のプロット点の位置は、原点Oの近傍の位置P3となる。列車が送信点を進出(通過)した後は、インピーダンス相当値のプロット点は、今までの逆順で、位置P1に徐々に戻るように変化する。したがって、プロット点が原点O(或いは原点Oに極めて近い位置)に最近接した後に位置P1に向けて変位し始めたことを検知することで、軌道回路装置1は、列車が送信点を進出したことを判断することができる。つまり、軌道回路装置1は、プロット点が変位しており、原点Oに向かっているか、原点Oから遠ざかっているかで、送信点に対する列車の進行方向を判断することができる。 Subsequently, the position of the plot point of the impedance equivalent value when the train approaches the transmission point (track position L3 in FIG. 1) is position P3 near the origin O. After the train advances (passes) the transmission point, the plot points of the impedance equivalent values change so as to gradually return to the position P1 in the reverse order. Therefore, by detecting that the plot point has started to move toward position P1 after coming closest to the origin O (or a position extremely close to the origin O), the track circuit device 1 can determine whether the train has advanced beyond the transmission point. be able to judge that. In other words, the track circuit device 1 can determine the traveling direction of the train with respect to the transmission point based on whether the plot point is displaced and is moving toward the origin O or away from the origin O.
 このように、実数成分及び虚数成分を各軸とする直交座標系(複素平面)における軌道回路のインピーダンス相当値のプロット点の変化から、検知区間T1の在線有無を判定することができる。また、プロット点が位置P1であるときには在線無し(非在線)であり、プロット点が位置P1から原点Oに向かうような変化を始めたことによって、検知区間T1への列車の接近を判定する。次いで、プロット点が位置P2となったことによって、検知区間T1への列車の進入、つまり在線有りと判定し、続いて、プロット点が位置P2から位置P3(原点O)まで変位した後に、再度、位置P2まで戻ったことによって、検知区間T1からの列車の進出、つまり在線無しと判定する。その後は、プロット点が位置P1まで戻るような変化によって、検知区間T1から進出した列車が遠ざかっていることを判定する。そして、新たに別の列車が接近する場合は、インピーダンス相当値のプロット点の位置が位置P1から変化することによって、同様に、在線有無を判定することができる。 In this way, it is possible to determine whether there is a track in the detection section T1 from changes in the plot points of the impedance equivalent value of the track circuit in the orthogonal coordinate system (complex plane) with the real component and the imaginary component as axes. Furthermore, when the plot point is at position P1, there is no line (non-existence), and when the plot point starts to change from position P1 toward origin O, it is determined that a train is approaching detection section T1. Next, when the plot point becomes position P2, it is determined that the train has entered the detection section T1, that is, there is a train on the train, and then, after the plot point has moved from position P2 to position P3 (origin O), the train is detected again. , by returning to position P2, it is determined that the train has advanced from the detection section T1, that is, there is no train on the line. Thereafter, it is determined that the train that has advanced from the detection section T1 is moving away from a change such that the plot point returns to the position P1. When another train approaches, the position of the plot point of the impedance equivalent value changes from the position P1, so that it can be similarly determined whether the train is on the train or not.
 このように、本実施形態における軌道回路は無絶縁軌道回路であるので、送信点からレールに送信された交流信号は、検知区間T1の進出端側(進行方向前方)の隣接区間へも伝搬する。このため、その進出側の隣接区間をも検知区間T1に含めて在線有無を判定するようにしてもよい。この場合、インピーダンス相当値のプロット点が位置P3(原点O)に変位した後、更に、隣接区間の距離に応じた位置まで変位したことによって、検知区間T1からの列車の進出(在線無し)を判断することができる。 In this way, since the track circuit in this embodiment is an uninsulated track circuit, the AC signal transmitted from the transmission point to the rail also propagates to the adjacent section on the advancing end side (forward in the traveling direction) of the detection section T1. . For this reason, the adjacent section on the advance side may also be included in the detection section T1 to determine whether the line is present or not. In this case, after the plot point of the impedance equivalent value is displaced to position P3 (origin O), it is further displaced to a position corresponding to the distance of the adjacent section, so that it is determined that the train is advancing from the detection section T1 (no track is present). can be judged.
 また、直交座標系(複素平面)におけるインピーダンス相当値のプロット点の位置は、軌道回路のインピーダンス、つまり、レールの短絡位置(列車の在線位置)に応じて決まる。このため、予め、列車の在線位置(レール短絡位置)とインピーダンス相当値のプロット点の位置との対応関係を測定等によって求めておくことで、プロット点の位置に基づいて、交流信号の送信点を基準とした在線位置を判定することができる。 Furthermore, the position of the plot point of the impedance equivalent value in the orthogonal coordinate system (complex plane) is determined according to the impedance of the track circuit, that is, the short-circuit position of the rail (the position where the train is on the track). Therefore, by determining in advance the correspondence between the train position on the track (rail short circuit position) and the position of the plot point of the impedance equivalent value by measurement etc., the transmission point of the AC signal can be determined based on the position of the plot point. It is possible to determine the line position based on .
 また、この直交座標系(複素平面)におけるインピーダンス相当値のプロット点の変化である軌跡は、検知区間に応じて定まる固有の形状を有する。このため、予め、レールが正常(異常無し)である状態において、列車の走行(通過)に伴うインピーダンス相当値の軌跡を求めておくことができる。レールの状態が正常であるときのインピーダンス相当値のプロット点の軌跡を、基準軌跡と呼ぶ。 Furthermore, the locus that is the change in the plot points of the impedance equivalent value in this orthogonal coordinate system (complex plane) has a unique shape that is determined according to the detection section. Therefore, in a state where the rail is normal (no abnormality), the locus of the impedance equivalent value as the train travels (passes) can be determined in advance. The locus of the plot points of the impedance equivalent value when the rail condition is normal is called the reference locus.
[レールの状態の判定]
 続いて、判定部35によるレールの状態の判定について説明する。レールの状態の判定は、インピーダンス相当値のプロット点を基準軌跡と比較することで行う。また、レールの状態の判定は、レールの状態が正常であるか否か(異常であるか)であり、レールの異常状態として、レール破断及び漏れコンダクタンスに係る異常を判定する。
[Judgment of rail condition]
Next, the determination of the state of the rail by the determination unit 35 will be explained. The state of the rail is determined by comparing the plot points of the impedance equivalent value with the reference trajectory. Moreover, the determination of the state of the rail is whether the state of the rail is normal or not (abnormal), and abnormalities related to rail breakage and leakage conductance are determined as the abnormal state of the rail.
(A)レール破断
 図5は、レール破断が生じた場合のインピーダンス相当値のプロット点の一例を示す図である。図5では、実数成分及び虚数成分を各軸とする直交座標系(複素平面)におけるインピーダンス相当値のプロット点を示しており、基準軌跡を併せて示している。図5に示すように、正常状態における非在線時のプロット点の位置は位置P1である。レール破断が生じると、プロット点の位置が位置P1から大きく変化する。具体的には、インピーダンス相当値の実数成分は正値のままであるが、虚数成分が負値に変化する。このため、プロット点の位置が、第1象限から第4象限へ遷移する。また、レール破断位置が交流信号の送信点に近いほど、インピーダンス相当値の実数成分及び虚数成分がともに大きくなるため、原点Oから離れた位置P4に遷移する。図5では、レール破断位置が異なる場合それぞれのインピーダンス相当値のプロット点の位置P4-1,P4-2を示している。プロット点が位置P4-1である場合は、位置P4-2である場合よりも、レール破断位置が送信点に近いことを示している。
(A) Rail breakage FIG. 5 is a diagram showing an example of plot points of impedance equivalent values when rail breakage occurs. FIG. 5 shows plot points of impedance equivalent values in a rectangular coordinate system (complex plane) with real and imaginary components as axes, and also shows a reference locus. As shown in FIG. 5, the position of the plot point when there is no line in the normal state is position P1. When a rail break occurs, the position of the plot point changes significantly from position P1. Specifically, the real component of the impedance equivalent value remains a positive value, but the imaginary component changes to a negative value. Therefore, the position of the plot point transitions from the first quadrant to the fourth quadrant. Further, the closer the rail breakage position is to the transmission point of the AC signal, the larger both the real component and the imaginary component of the impedance equivalent value become. FIG. 5 shows positions P4-1 and P4-2 of plot points of impedance equivalent values when the rail breakage positions are different. When the plot point is at position P4-1, it indicates that the rail breakage position is closer to the transmission point than when it is at position P4-2.
 また、レール破断が生じた場合の直交座標系(複素平面)におけるインピーダンス相当値のプロット点の位置P4は、その破断位置に応じて決まる。このため、予め、レール破断位置とインピーダンス相当値のプロット点の位置P4との対応関係を測定や演算等によって求めておくことで、プロット点の位置P4からレールの破断位置を判定することができる。 Furthermore, the position P4 of the plot point of the impedance equivalent value in the orthogonal coordinate system (complex plane) when a rail fracture occurs is determined according to the fracture position. Therefore, by determining in advance the correspondence between the rail fracture position and the plot point position P4 of the impedance equivalent value by measurement or calculation, the rail fracture position can be determined from the plot point position P4. .
 このように、レール破断が生じた場合には、基準軌跡に対して外れた位置P4にインピーダンス相当値のプロット点が位置するが、図6に示すように、このレール破断位置を列車が越えた後は、当該レール破断位置より送信点に近い位置で列車の車軸によってレール間が短絡されることによって、インピーダンス相当値のプロット点の位置は基準軌跡に沿って変化することとなる。このため、プロット点が基準軌跡から外れている場合において、プロット点の位置が基準軌跡に戻った後に基準軌跡に沿って変化したような場合には、そのプロット点が基準軌跡に戻った位置をレール破断位置として判定することができる。 In this way, when a rail break occurs, the plot point of the impedance equivalent value is located at position P4, which is off from the reference trajectory, but as shown in Figure 6, when the train crosses this rail break position, Thereafter, the position of the plot point of the impedance equivalent value changes along the reference trajectory by short-circuiting the rails by the axle of the train at a position closer to the transmission point than the rail breakage position. Therefore, when a plot point deviates from the reference trajectory, if the position of the plot point changes along the reference trajectory after returning to the reference trajectory, the position at which the plot point returned to the reference trajectory can be It can be determined as the rail breakage position.
(B)漏れコンダクタンスに係る異常
 図7は、漏れコンダクタンスに係る異常が生じた場合のインピーダンス相当値のプロット点の一例を示す図である。分かり易く示すために、レール全域で、漏れコンダクタンスに係る異常が生じた場合のインピーダンス相当値のプロット点の変化(軌跡)を太線で示している。漏れコンダクタンスに係る異常とは、図2A、図2及び図2Cに示した軌道回路の等価回路における漏れコンダクタンス成分G=1/Rbの変化である。主に、雨や雪等の水分によるレール・大地間の絶縁不良によって生じる漏れコンダクタンスの増加である。
(B) Abnormality related to leakage conductance FIG. 7 is a diagram showing an example of plot points of impedance equivalent values when an abnormality related to leakage conductance occurs. For ease of understanding, the change (trajectory) of the plot points of the impedance equivalent value when an abnormality related to leakage conductance occurs over the entire rail area is shown by a thick line. The abnormality related to leakage conductance is a change in the leakage conductance component G=1/Rb in the equivalent circuit of the track circuit shown in FIGS. 2A, 2, and 2C. This is mainly due to an increase in leakage conductance caused by poor insulation between the rail and the ground due to moisture such as rain or snow.
 漏れコンダクタンスに係る異常が生じると、検知区間T1を列車が走行(通過)する際の軌道回路のインピーダンスに変化が生じ、直交座標系(複素平面)におけるインピーダンス相当値のプロット点が基準軌跡から外れることになる。例えば、漏れコンダクタンス成分G=1/Rbが増加すると、軌道回路のインピーダンスが減少することからインピーダンス相当値は減少し、直交座標系(複素平面)におけるプロット点は、基準軌跡に対して短くなる。図6では、レール全域で漏れコンダクタンスが増加していることを表しているため、列車通過に伴うインピーダンス相当値のプロット点の位置の変化は太線で示すような、基準軌跡に対して短い軌跡となる。但し、漏れコンダクタンスに係る異常が生じた場合であっても、列車の走行に伴ってプロット点の位置が直交座標系の原点Oに向かうように変化する点は、正常状態とほぼ同様である。 When an abnormality related to leakage conductance occurs, the impedance of the track circuit changes when the train runs (passes) through the detection section T1, and the plot point of the impedance equivalent value in the orthogonal coordinate system (complex plane) deviates from the reference trajectory. It turns out. For example, when the leakage conductance component G=1/Rb increases, the impedance of the track circuit decreases, so the impedance equivalent value decreases, and the plot points in the orthogonal coordinate system (complex plane) become shorter with respect to the reference trajectory. Figure 6 shows that the leakage conductance is increasing over the entire rail area, so the change in the position of the plot point of the impedance equivalent value as the train passes is a short trajectory with respect to the reference trajectory, as shown by the thick line. Become. However, even when an abnormality related to leakage conductance occurs, the position of the plot point changes toward the origin O of the orthogonal coordinate system as the train travels, which is almost the same as in a normal state.
 つまり、漏れコンダクタンスが大きいほど、基準軌跡に対して短いプロット点の軌跡となり、非在線時(検知可能範囲に在線無し)のプロット点の位置P1と検知区間T1への列車進入時のプロット点の位置P2とが接近することになる。このため、プロット点の位置が基準軌跡での位置P2付近にある場合に、非在線であるが漏れコンダクタンスの増加のために位置P2に接近した位置P1であるのか、漏れコンダクタンスに係る異常はなく列車の検知区間T1への進入時であるのかの区別、つまり在線有無の判定が難しくなる。特に、位置P1に相当する非在線から位置P2に相当する検知区間T1への進入時へのプロット点の変化が判別し難い。 In other words, the larger the leakage conductance, the shorter the locus of the plotted points relative to the reference trajectory, and the difference between the plotted point position P1 when the train is not on the track (there is no track in the detectable range) and the plotted point when the train enters the detection section T1. This means that the position P2 approaches the position P2. For this reason, when the plot point position is near position P2 on the reference trajectory, it is possible to determine whether it is at position P1, which is not on the line but is close to position P2 due to an increase in leakage conductance, or whether there is no abnormality related to leakage conductance. It becomes difficult to distinguish whether the train is entering the detection section T1, that is, to determine whether the train is present or not. In particular, it is difficult to determine the change in the plot points from the time when the line does not exist, which corresponds to the position P1, to the time when the vehicle enters the detection section T1, which corresponds to the position P2.
 ここで、軌道回路の漏れコンダクタンスはあくまで軌道回路内の回路要素であり、送信点に列車が在線している場合は、図2A、図2B及び図2Cに示したように、送信点からみたインピーダンスは車軸短絡インピーダンスRvのみで構成されるため、このときのインピーダンスはほぼ一定である。このため、軌道回路装置1は、検知区間T1の隣接区間を検知区間とする他の軌道回路装置による在線有無の判定結果によって、プロット点の位置が基準軌跡での位置P2付近にある場合に、非在線であるが漏れコンダクタンスの増加のために位置P2に接近した位置P1であるのか、漏れコンダクタンスに係る異常はなく列車の検知区間T1への進入時であるのかを区別することができる。つまり、漏れコンダクタンスに係る異常が発生しているのか否かを判定することができる。 Here, the leakage conductance of the track circuit is just a circuit element in the track circuit, and when a train is on the track at the transmission point, the impedance seen from the transmission point as shown in Figures 2A, 2B, and 2C. is composed of only the axle short-circuit impedance Rv, so the impedance at this time is approximately constant. For this reason, the track circuit device 1, when the position of the plot point is near the position P2 on the reference trajectory based on the determination result of presence or absence of track by another track circuit device whose detection section is a section adjacent to the detection section T1, It is possible to distinguish whether the train is at position P1, which is not on the track but is close to position P2 due to an increase in leakage conductance, or whether the train is entering the detection section T1 without any abnormality related to leakage conductance. In other words, it can be determined whether an abnormality related to leakage conductance is occurring.
 すなわち、検知区間T1の進入端側(進行方向後方)の隣接区間を検知区間T2とする他の軌道回路装置1Bが、図8に示すように設けられているとする。上述のように、本実施形態における軌道回路は無絶縁軌道回路であるので、送信点からレールに送信された交流信号は、検知区間の進出端側(進行方向前方)の隣接区間へも伝搬する。このため、図8では、軌道回路装置の検知区間を、送信点の前後の連続する2つの区間としている。つまり、軌道回路装置1は、送信点(位置L3)の前後の2つの検知区間T1a,T1bを検知区間T1とし、軌道回路装置1Bは、送信点(位置L1)の前後の2つの検知区間T2a,T2bを検知区間T2としている。また、軌道回路装置1が送信点(位置L3)へ送信する交流信号のレベルは、その検知可能範囲に軌道回路装置1Bの送信点(位置L1)が含まれるように設計されているとする。 In other words, it is assumed that another track circuit device 1B is provided as shown in FIG. 8, with the detection section T2 being an adjacent section on the approach end side (rearward in the traveling direction) of the detection section T1. As mentioned above, since the track circuit in this embodiment is an uninsulated track circuit, the AC signal transmitted from the transmission point to the rail also propagates to the adjacent section on the advancing end side (forward in the traveling direction) of the detection section. . For this reason, in FIG. 8, the detection section of the track circuit device is made into two consecutive sections before and after the transmission point. That is, the track circuit device 1 sets the two detection sections T1a and T1b before and after the transmission point (position L3) as the detection section T1, and the track circuit device 1B sets the two detection sections T2a before and after the transmission point (position L1). , T2b is the detection section T2. It is also assumed that the level of the AC signal transmitted by the track circuit device 1 to the transmission point (position L3) is designed such that the transmission point (position L1) of the track circuit device 1B is included in its detectable range.
 このような場合、軌道回路装置1Bの送信点(位置L1)に列車が在線している時には、軌道回路装置1Bは、送信点(位置L1)からみたインピーダンスの大きさによって、送信点(位置L1)に列車が在線していることを判定できる。そして、軌道回路装置1は、その時の送信点(位置L3)からみたインピーダンスの大きさを、正常時(漏れコンダクタンスに係る異常が発生していないとき)の大きさと比較することで、漏れコンダクタンスに係る異常が発生しているのか否かを判断できる。すなわち、漏れコンダクタンスが増加している場合には、インピーダンスの大きさが小さくなる。 In such a case, when a train is on the track at the transmission point (position L1) of the track circuit device 1B, the track circuit device 1B transmits the transmission point (position L1) depending on the magnitude of impedance seen from the transmission point (position L1). ) can determine that a train is on the line. Then, the track circuit device 1 determines the leakage conductance by comparing the magnitude of the impedance seen from the transmission point (position L3) at that time with the magnitude under normal conditions (when no abnormality related to leakage conductance has occurred). It can be determined whether or not such an abnormality is occurring. That is, when the leakage conductance increases, the magnitude of the impedance decreases.
 また、漏れコンダクタンスに係る異常がレール全域ではなくレールの一部で発生した場合には、列車の通過に伴うインピーダンス相当値のプロット点の位置の変化から、漏れコンダクタンスに係る異常箇所を判定することができる。つまり、レール破断が生じた場合と同様に、漏れコンダクタンスに係る異常が生じた場合には、基準軌跡に対して外れた位置にインピーダンス相当値のプロット点が位置するが、漏れコンダクタンスに係る異常箇所を列車が通過した後は、当該異常箇所より送信点に近い位置で列車の車軸によってレール間が短絡されることによって、インピーダンス相当値のプロット点の位置は基準軌跡に沿って変化することとなる。このため、プロット点が基準軌跡から外れている場合において、プロット点の位置が基準軌跡に戻った後に基準軌跡に沿って変化したような場合には、そのプロット点が基準軌跡に戻った位置を漏れコンダクタンスに係る異常箇所として判定することができる。 In addition, if an abnormality related to leakage conductance occurs in a part of the rail rather than the entire rail, the location of the abnormality related to leakage conductance can be determined from the change in the position of the plot point of the impedance equivalent value as the train passes. I can do it. In other words, when an abnormality related to leakage conductance occurs, as in the case where a rail rupture occurs, the plot point of the impedance equivalent value will be located at a position that deviates from the reference trajectory, but the location of the abnormality related to leakage conductance will be After the train passes, the position of the plot point of the impedance equivalent value changes along the reference trajectory due to the train axle shorting the rails at a position closer to the transmission point than the abnormal location. . Therefore, when a plot point deviates from the reference trajectory, if the position of the plot point changes along the reference trajectory after returning to the reference trajectory, the position at which the plot point returned to the reference trajectory can be It can be determined as an abnormal location related to leakage conductance.
(C)許容変動範囲
 判定部35は、直交座標系(複素平面)におけるインピーダンス相当値のプロット点の位置を基準軌跡と比較することで、レールの状態(正常か否か)を判定する。しかし、実際には、レールの状態が正常であっても、インピーダンス相当値のプロット点の位置が基準軌跡に完全に一致するとは限らない。これは、主に、レールが屋外に設置されることで気温や湿度、降雨、降雪等の影響によるレール間の僅かな漏れコンダクタンスや静電容量成分の変動が生じていることに起因する。このため、図9に示すように、基準軌跡に対して、基準軌跡上の位置P1におけるインピーダンス相当値の変動を許容する範囲である許容変動範囲を定める。図9では、位置P1についての許容変動範囲を示しており、位置P1を囲むようにした破線の範囲が、位置P1についての許容変動範囲である。インピーダンス相当値のプロット点の位置がこの許容範囲を外れたことで、何らかの異常又は異常兆候と判定する。この異常又は異常兆候には、上述したレール破断や漏れコンダクタンスに係る異常が含まれ得る。
(C) Permissible variation range The determination unit 35 determines the state of the rail (normal or not) by comparing the position of the plot point of the impedance equivalent value in the orthogonal coordinate system (complex plane) with the reference trajectory. However, in reality, even if the rail condition is normal, the position of the plot point of the impedance equivalent value does not necessarily match the reference trajectory completely. This is mainly due to the fact that when the rails are installed outdoors, there are slight fluctuations in leakage conductance and capacitance components between the rails due to the effects of temperature, humidity, rain, snowfall, etc. For this reason, as shown in FIG. 9, a permissible variation range is determined for the reference trajectory, which is a range in which variation in the impedance equivalent value at position P1 on the reference trajectory is allowed. FIG. 9 shows the permissible variation range for the position P1, and the range of the broken line surrounding the position P1 is the permissible variation range for the position P1. If the position of the plot point of the impedance equivalent value is out of this tolerance range, it is determined that there is some kind of abnormality or sign of abnormality. This abnormality or sign of abnormality may include the above-mentioned abnormalities related to rail breakage and leakage conductance.
[交流信号の送信]
 次に、交流信号の送信について説明する。本実施形態において、処理装置30は、交流信号を断続的(間欠的)に送信する。交流信号の断続的な送信は、送信電圧出力部36による送信電圧の制御で実現される。
[Transmission of AC signal]
Next, transmission of an AC signal will be explained. In this embodiment, the processing device 30 transmits the AC signal intermittently (intermittently). Intermittent transmission of the AC signal is realized by controlling the transmission voltage by the transmission voltage output section 36.
 また、交流信号を送信しない休止期間においては、送信電圧・周波数設定部37が送信器10の送信スイッチをオフ、又は、出力を断として、ノイズ計測部39がレールのノイズ(帰線雑音)を計測する。次いで、設定周波数・送信レベル判定部38が、ノイズ計測部39により計測されたノイズ(帰線雑音)に対するFFT(Fast Fourier Transformation)処理等の周波数解析処理を行って、ノイズ(帰線雑音)のレベル及び周波数を判定する。そして、ノイズ(帰線雑音)と干渉しない周波数及びレベルを、交流信号の設定周波数及び送信レベルとして判定する。 In addition, during the pause period when no AC signal is transmitted, the transmission voltage/frequency setting section 37 turns off the transmission switch of the transmitter 10 or cuts off the output, and the noise measurement section 39 measures the rail noise (retrace noise). measure. Next, the set frequency/transmission level determination unit 38 performs frequency analysis processing such as FFT (Fast Fourier Transformation) processing on the noise (retrace noise) measured by the noise measurement unit 39 to determine the noise (retrace noise). Determine level and frequency. Then, the frequency and level that do not interfere with noise (return noise) are determined as the set frequency and transmission level of the AC signal.
 交流信号を断続的(間欠的)に送信することで送信電力を削減することができ、軌道回路装置1の一層の省エネルギー化を図ることができる。更に、レールのノイズ(帰線雑音)のレベルに応じた最適な送信レベルの交流信号を送信するので、軌道回路装置1の更なる省エネルギー化を図ることができる。また、レールの帰線雑音以外の周波数と干渉しない最適な周波数の交流信号をレールに送信することにもなるので、レールに流れる他の信号に影響を与えることがない。 Transmission power can be reduced by transmitting the AC signal intermittently (intermittently), and further energy saving of the track circuit device 1 can be achieved. Furthermore, since an AC signal is transmitted at an optimal transmission level according to the level of rail noise (retrace noise), further energy saving of the track circuit device 1 can be achieved. Furthermore, since an AC signal with an optimal frequency that does not interfere with frequencies other than rail retrace noise is transmitted to the rail, it does not affect other signals flowing on the rail.
[作用効果]
 本実施形態によれば、従来の軌道回路装置とは原理が全く異なる軌道回路装置1を実現することができる。つまり、列車在線か非在線かによって交流信号の送信点からみた軌道回路のインピーダンスが変化し、このインピーダンスの変化によって送信電圧及び送信電流の振幅及び位相差が変化する。このため、送信電圧及び送信電流の振幅及び位相差から軌道回路のインピーダンス相当値を判定し、そのインピーダンス相当値を複素数で示したときの実数成分(抵抗成分)及び虚数成分(リアクタンス成分)に基づいて、列車在線を判定することができる。レールに送信された交流信号の送信電圧及び送信電流に基づいて列車在線を判定することができるため、受信器が不要であり、受信点で一定の信号レベルとなる信号を送信する必要もないため、送信電力を低減することができる。その結果、省エネルギー化を図った軌道回路装置1を実現することができる。また、受信器が不要となることで、従来の軌道回路装置に比較して構成部品を削減することができるといった更なる効果も得られる。
[Effect]
According to this embodiment, it is possible to realize a track circuit device 1 whose principle is completely different from that of conventional track circuit devices. In other words, the impedance of the track circuit as seen from the AC signal transmission point changes depending on whether the train is on the line or not, and the amplitude and phase difference of the transmission voltage and transmission current change due to this change in impedance. Therefore, the impedance equivalent value of the track circuit is determined from the amplitude and phase difference of the transmission voltage and transmission current, and the impedance equivalent value is determined based on the real component (resistance component) and imaginary component (reactance component) when the impedance equivalent value is expressed as a complex number. It is possible to determine whether a train is on the line. Because it is possible to determine whether a train is on the track based on the transmission voltage and current of the AC signal sent to the rail, there is no need for a receiver, and there is no need to transmit a signal that has a constant signal level at the receiving point. , transmission power can be reduced. As a result, it is possible to realize the track circuit device 1 that saves energy. Furthermore, since a receiver is not required, an additional effect can be obtained in that the number of components can be reduced compared to conventional track circuit devices.
[変形例]
 なお、本発明の適用可能な実施形態は上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲で適宜変更可能なのは勿論である。
[Modified example]
Note that the applicable embodiments of the present invention are not limited to the above-described embodiments, and of course can be modified as appropriate without departing from the spirit of the present invention.
(A)スキャニング方式
 上述の実施形態では、軌道回路装置1は1つの検知区間T1に交流信号を送信するとしたが、複数の検知区間に対して、順次、切り替えて交流信号を送信する、いわゆるスキャニング方式としてもよい。
(A) Scanning method In the above-described embodiment, the track circuit device 1 transmits an AC signal to one detection section T1, but in a so-called scanning method, the track circuit device 1 transmits an AC signal to multiple detection sections by switching sequentially. It may also be a method.
 図10は、スキャニング方式の軌道回路装置の一例を示す図である。図10に示すように、スキャニング方式の軌道回路装置1Aは、複数の検知区間T1,T2,・・・の送信点それぞれに交流信号を送信する切替スイッチの集合である切替スイッチ群18を更に備える。処理装置30Aは、交流信号を送信する1つの検知区間(検知区間T1,T2,・・・のうちの1つ)に対応する切替スイッチを選択してオンに制御する切替信号を、切替スイッチ群18に対して出力する。そして、選択した検知区間に対して交流信号を送信する。図10では、軌道回路の境界である送信点の前後の2つの区間を1つの検知区間としている。そして、1つの検知区間についての送信可能範囲が隣接する検知区間の送信点を含むように、送信点に送信される交流信号のレベルが設計されているとしている。これにより、軌道回路装置1Aの進入側検知区間を除いて、列車を追跡しながら、交流信号を送信する検知区間を切り替えて選択することもできる。またこの場合、検知区間T1,T2,・・・に応じて、送信する交流信号の周波数を切り替えるようにしてもよい。 FIG. 10 is a diagram showing an example of a scanning type track circuit device. As shown in FIG. 10, the scanning type track circuit device 1A further includes a changeover switch group 18 that is a set of changeover switches that transmit AC signals to each of the transmission points of the plurality of detection sections T1, T2, . . . . The processing device 30A transmits a switching signal that selects and turns on a switch corresponding to one detection section (one of the detection sections T1, T2, . . . ) for transmitting an AC signal to the switch group. Output to 18. Then, an AC signal is transmitted to the selected detection section. In FIG. 10, two sections before and after the transmission point, which are the boundaries of the track circuit, are defined as one detection section. The level of the AC signal transmitted to the transmission point is designed so that the transmittable range for one detection section includes the transmission points of the adjacent detection section. Thereby, it is also possible to switch and select the detection section for transmitting the AC signal while tracking the train, except for the approach side detection section of the track circuit device 1A. Further, in this case, the frequency of the AC signal to be transmitted may be switched depending on the detection sections T1, T2, . . . .
(B)有絶縁軌道回路
 上述の実施形態では、軌道回路を無絶縁軌道回路として説明したが、有絶縁軌道回路としてもよい。図11は、図1に示した検知区間T1を有絶縁軌道回路とした場合の直交座標系(複素平面)における軌道回路のインピーダンス相当値のプロット点の軌跡の一例を示す図であり、図4に相当する図である。有絶縁軌道回路である場合には、検知区間T1のみに交流信号が流れ、隣接区間には流れない。従って、図11に示すように、列車が検知区間T1に進入するまでは、プロット点の位置は位置P1である。そして、列車が検知区間T1へ進入した直後(在線位置L2)に、プロット点の位置が位置P2に遷移する。その後は、無絶縁軌道回路の場合と同様に、列車の走行に伴って、プロット点の位置が位置P2から位置P3(原点O)に向かってアナログ的に変化する。列車が送信点に進入(到達)すると位置P3(原点O)となり、送信点を進出(通過)して検知区間T1を進出すると、直後に、プロット点の位置が位置P1に遷移する。
(B) Insulated track circuit In the above-described embodiment, the track circuit is described as an uninsulated track circuit, but it may be an insulated track circuit. FIG. 11 is a diagram showing an example of the locus of plot points of the impedance equivalent value of the track circuit in the orthogonal coordinate system (complex plane) when the detection section T1 shown in FIG. 1 is an insulated track circuit, and FIG. This is a diagram corresponding to . In the case of an insulated track circuit, an AC signal flows only in the detection section T1 and does not flow in the adjacent section. Therefore, as shown in FIG. 11, the position of the plot point is P1 until the train enters the detection section T1. Immediately after the train enters the detection section T1 (track position L2), the position of the plot point transitions to position P2. Thereafter, as in the case of the non-insulated track circuit, the position of the plot point changes analogously from position P2 toward position P3 (origin O) as the train travels. When the train enters (arrives) at the transmission point, it becomes position P3 (origin O), and when it advances (passes) through the transmission point and advances through detection section T1, the position of the plot point immediately transitions to position P1.
 なお、検知区間T1を、送信点の前後の2つの連続する区間としてもよい。この場合、インピーダンス相当値のプロット点の位置は、列車が送信点を進出(通過)した後は、今までの逆順で、位置P3(原点O)から位置P2に徐々に戻るように変化する。そして、検知区間T1を進出すると、直後に、プロット点の位置が位置P1に遷移する。 Note that the detection section T1 may be two consecutive sections before and after the transmission point. In this case, after the train advances (passes) the transmission point, the position of the plot point of the impedance equivalent value changes so that it gradually returns from position P3 (origin O) to position P2 in the reverse order. Immediately after advancing through the detection section T1, the position of the plot point changes to position P1.
(C)有絶縁軌道回路境界の絶縁不良
 軌道回路が有絶縁軌道回路である場合には、レールの状態として、更に、軌道回路境界の絶縁不良を判定することができる。軌道回路境界の絶縁不良は、絶縁物上への異物堆積や絶縁物の劣化などにより生じる。
(C) Poor insulation at the boundary of an insulated track circuit When the track circuit is an insulated track circuit, poor insulation at the boundary of the track circuit can be further determined as the condition of the rail. Insulation failure at the track circuit boundary occurs due to foreign matter depositing on the insulator or deterioration of the insulator.
(D)複数回の列車通過による軌跡
 また、複数回の列車の通過に伴うインピーダンス相当値の軌跡を取得・収集し、これらの通過毎の軌跡を比較することで、レールの異常又は異常兆候を判定してもよい。或いは、1回の列車の通過に伴う軌跡を基準軌跡と比較することで、レールの異常又は異常兆候を判定してもよい。この通過毎の軌跡の比較や基準軌跡との比較は、例えば、軌跡を画像とみたてたパターンマッチングにより算出した類似度や、最小二乗法等により算出した誤差率が、所定の閾値条件を満たすか否かによって行うことができる。更に、レールの状態を正常と判定した場合のプロット点の位置変化に基づいて、判定部35が記憶している基準軌跡のデータを更新することとしてもよい。
(D) Trajectories resulting from multiple train passes In addition, by acquiring and collecting the trajectories of impedance equivalent values associated with multiple train passes, and comparing the trajectories for each passage, rail abnormalities or signs of abnormality can be detected. You may judge. Alternatively, a rail abnormality or abnormality sign may be determined by comparing the trajectory accompanying one train passage with a reference trajectory. Comparison of the trajectory for each pass or comparison with the reference trajectory can be performed, for example, if the degree of similarity calculated by pattern matching that regards the trajectory as an image, or the error rate calculated by the least squares method, satisfies a predetermined threshold condition. This can be done depending on whether or not. Furthermore, the reference trajectory data stored in the determination unit 35 may be updated based on the change in the position of the plot point when the rail condition is determined to be normal.
1…軌道回路装置
 10…送信器
 20…電流センサ
 30…処理装置
  31…送信電圧波形取得部
  32…送信電流波形取得部
  33…直交検波回路部
  34…インピーダンス相当値算出部
  35…判定部
  36…送信電圧出力部
  37…送信電圧・周波数設定部
  38…設定周波数・送信レベル判定部
  39…ノイズ計測部
1... Track circuit device 10... Transmitter 20... Current sensor 30... Processing device 31... Transmission voltage waveform acquisition section 32... Transmission current waveform acquisition section 33... Orthogonal detection circuit section 34... Impedance equivalent value calculation section 35... Judgment section 36... Transmission voltage output section 37... Transmission voltage/frequency setting section 38... Setting frequency/transmission level determination section 39... Noise measurement section

Claims (11)

  1.  送信部によってレールに送信された交流信号の送信電圧及び送信電流の振幅及び位相差に基づくインピーダンス相当値を算出する算出部と、
     前記インピーダンス相当値の実数成分及び虚数成分の値に基づいて、列車在線を判定する判定部と、
     を備える軌道回路装置。
    a calculation unit that calculates an impedance equivalent value based on the amplitude and phase difference of the transmission voltage and transmission current of the AC signal transmitted to the rail by the transmission unit;
    a determination unit that determines whether a train is on the track based on the values of the real component and the imaginary component of the impedance equivalent value;
    A track circuit device comprising:
  2.  前記判定部は、前記送信部による前記交流信号の送信点を基準とした、列車の在線位置を判定する、
     請求項1に記載の軌道回路装置。
    The determining unit determines the position of the train on the line based on the transmission point of the AC signal by the transmitting unit.
    The track circuit device according to claim 1.
  3.  前記判定部は、前記実数成分及び前記虚数成分を各軸とする座標系における前記インピーダンス相当値のプロット点に基づいて、前記送信点を基準とした列車の在線位置を判定する、
     請求項2に記載の軌道回路装置。
    The determination unit determines the position of the train on the line with respect to the transmission point based on plot points of the impedance equivalent value in a coordinate system having the real component and the imaginary component as axes.
    The track circuit device according to claim 2.
  4.  前記判定部は、前記座標系における所定の基準軌跡に沿った前記プロット点の位置に基づいて、前記列車の在線位置を判定する、
     請求項3に記載の軌道回路装置。
    The determination unit determines the on-track position of the train based on the position of the plot point along a predetermined reference trajectory in the coordinate system.
    The track circuit device according to claim 3.
  5.  前記判定部は、前記インピーダンス相当値の実数成分及び虚数成分の値に基づいて、前記レールの状態を判定する、
     請求項1~4の何れか一項に記載の軌道回路装置。
    The determination unit determines the state of the rail based on the values of the real component and the imaginary component of the impedance equivalent value.
    The track circuit device according to any one of claims 1 to 4.
  6.  前記判定部は、前記送信部による前記交流信号の送信点を基準とした、前記レールの異常箇所を判定する、
     請求項5に記載の軌道回路装置。
    The determining unit determines an abnormal location of the rail based on a point at which the AC signal is transmitted by the transmitting unit.
    The track circuit device according to claim 5.
  7.  前記判定部は、前記プロット点が前記基準軌跡から外れた場合に、当該外れた位置に基づいて、漏れコンダクタンス及び/又はレール破断に係る前記レールの異常箇所を判定する、
     請求項4に記載の軌道回路装置。
    When the plot point deviates from the reference trajectory, the determination unit determines an abnormal location of the rail related to leakage conductance and/or rail breakage based on the deviated position.
    The track circuit device according to claim 4.
  8.  前記判定部は、前記虚数成分の値の正負に基づいてレール破断の有無を判定する、
     請求項1~7の何れか一項に記載の軌道回路装置。
    The determination unit determines the presence or absence of rail breakage based on the sign of the value of the imaginary component.
    The track circuit device according to any one of claims 1 to 7.
  9.  前記判定部は、前記インピーダンス相当値の実数成分及び虚数成分の値に基づいて、前記送信部による前記交流信号の送信点を基準としたレール破断の位置を判定する、
     請求項8に記載の軌道回路装置。
    The determining unit determines the position of the rail breakage with respect to the transmission point of the AC signal by the transmitting unit based on the values of the real component and the imaginary component of the impedance equivalent value.
    The track circuit device according to claim 8.
  10.  前記判定部は、前記実数成分及び前記虚数成分を各軸とする座標系における前記インピーダンス相当値のプロット点が、前記送信部による前記交流信号の送信点からの距離に応じて定められた前記インピーダンス相当値の許容変動範囲外であるか否かに基づいて、前記レールの異常又は異常兆候を判定する、
     請求項1~9の何れか一項に記載の軌道回路装置。
    The determining unit is configured such that a plot point of the impedance equivalent value in a coordinate system having the real component and the imaginary component as axes is the impedance determined according to a distance from a transmission point of the alternating current signal by the transmitting unit. Determining an abnormality or abnormality sign of the rail based on whether the equivalent value is outside the allowable variation range;
    The track circuit device according to any one of claims 1 to 9.
  11.  送信部によってレールに送信された交流信号の送信電圧及び送信電流を測定することと、
     前記送信電圧及び送信電流の振幅及び位相差に基づくインピーダンス相当値を算出することと、
     前記インピーダンス相当値の実数成分及び虚数成分の値に基づいて、列車在線を判定することと、
     を含む列車在線判定方法。
    Measuring the transmission voltage and transmission current of the alternating current signal transmitted to the rail by the transmitter;
    Calculating an impedance equivalent value based on the amplitude and phase difference of the transmission voltage and transmission current;
    Determining whether a train is on the track based on the values of the real component and the imaginary component of the impedance equivalent value;
    A method for determining whether a train is on the track.
PCT/JP2023/015744 2022-04-22 2023-04-20 Track circuit device and train on-track determination method WO2023204268A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-070913 2022-04-22
JP2022070913A JP2023160503A (en) 2022-04-22 2022-04-22 Track circuit device and train on-rail determination method

Publications (1)

Publication Number Publication Date
WO2023204268A1 true WO2023204268A1 (en) 2023-10-26

Family

ID=88419964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015744 WO2023204268A1 (en) 2022-04-22 2023-04-20 Track circuit device and train on-track determination method

Country Status (3)

Country Link
JP (1) JP2023160503A (en)
TW (1) TW202346133A (en)
WO (1) WO2023204268A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011207453A (en) * 2010-03-30 2011-10-20 Daido Signal Co Ltd Abnormal rail identifying device
JP2021100831A (en) * 2019-12-24 2021-07-08 日本信号株式会社 Obstacle monitoring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011207453A (en) * 2010-03-30 2011-10-20 Daido Signal Co Ltd Abnormal rail identifying device
JP2021100831A (en) * 2019-12-24 2021-07-08 日本信号株式会社 Obstacle monitoring device

Also Published As

Publication number Publication date
TW202346133A (en) 2023-12-01
JP2023160503A (en) 2023-11-02

Similar Documents

Publication Publication Date Title
US20150183448A1 (en) Route examination system and method
US9845023B2 (en) Route feature identification system and method
EP1960245A1 (en) System and method for detecting rail break/vehicle
WO2023204268A1 (en) Track circuit device and train on-track determination method
JP4695789B2 (en) Fault location device for feeder circuits
CN113138320B (en) Double-end traveling wave distance measurement method suitable for looped network
US8800362B2 (en) Precipitation detector for railroad applications
CN103832293A (en) Traction return current balancing device and method for railway electrified section
US6759855B2 (en) Device for monitoring and forecasting the probability of inductive proximity sensor failure
KR20210042955A (en) Device for monitoring the condition of the power transmission medium
JP2001301621A (en) Vehicle position detecting method
US11820409B2 (en) Method for producing movement information
KR101070815B1 (en) method for discriminating fault line and phase in ungrounded distribution system
US20230029300A1 (en) Maintenance apparatus, maintenance system, and maintenance method
KR100945851B1 (en) The railway turnout detection system and the method of detecting railway turnout
US11938978B2 (en) Determination of train direction for bi-directional grade crossings
JP2613195B2 (en) Train detection device
CN109572490B (en) Method and device for obtaining accurate time of train in-out joint type electric phase splitting
CN116804694A (en) Distribution line fault positioning system and method
RU2659668C1 (en) Method of the railway line states control in approach to crossing
KR102158677B1 (en) System and method for measuring impedance to a catenary in real time
JP5078917B2 (en) Track circuit transmitter
JP2001116714A (en) Apparatus and method for judging damage of coated embedded metal conductor
JP2023181823A (en) Rail breakage detection device
JP2022026217A (en) Determination result output device and abnormality detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791916

Country of ref document: EP

Kind code of ref document: A1