WO2023203718A1 - Wireless communication method and wireless communication system - Google Patents

Wireless communication method and wireless communication system Download PDF

Info

Publication number
WO2023203718A1
WO2023203718A1 PCT/JP2022/018407 JP2022018407W WO2023203718A1 WO 2023203718 A1 WO2023203718 A1 WO 2023203718A1 JP 2022018407 W JP2022018407 W JP 2022018407W WO 2023203718 A1 WO2023203718 A1 WO 2023203718A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
wireless base
wireless
connection
normalized
Prior art date
Application number
PCT/JP2022/018407
Other languages
French (fr)
Japanese (ja)
Inventor
健 福島
元晴 佐々木
俊朗 中平
大輔 村山
貴庸 守山
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/018407 priority Critical patent/WO2023203718A1/en
Publication of WO2023203718A1 publication Critical patent/WO2023203718A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information

Definitions

  • the present invention relates to a wireless communication method and a wireless communication system.
  • connection control between a wireless base station and a wireless terminal a wireless communication system is known that uses blockchain technology to perform distributed processing of connection control (for example, see Non-Patent Document 1).
  • wireless terminals In conventional technology, wireless terminals (user terminals) autonomously decide which wireless base station to connect to, so wireless terminals are biased in connecting to a specific wireless base station (for example, a wireless base station with low connection cost). The usage efficiency of radio resources in the entire radio communication system may decrease.
  • the embodiments of the present invention have been made in view of the above-mentioned problems, and improve the utilization efficiency of radio resources in the entire radio communication system.
  • a wireless communication method includes a transmission process in which a wireless base station broadcasts connection conditions of the wireless base station, and a transmission process in which a wireless base station broadcasts connection conditions of the wireless base station based on the connection conditions.
  • a management process that uses a blockchain shared by multiple wireless base stations to manage connections with wireless terminals that request connection to a wireless base station, and a management process that uses a blockchain shared by multiple wireless base stations to normalize connections with other wireless base stations using the ledger information of the blockchain.
  • a calculation process for calculating the degree of congestion and a change process for changing the connection condition of the wireless base station based on the normalized degree of congestion are executed.
  • FIG. 1 is a diagram illustrating an example of a system configuration of a wireless communication system according to an embodiment.
  • FIG. 2 is a diagram for explaining a blockchain network according to the present embodiment.
  • FIG. 2 is a diagram illustrating an example of the functional configuration of a wireless base station according to the present embodiment.
  • FIG. 2 is a diagram illustrating an example of the functional configuration of a wireless terminal according to the present embodiment.
  • 3 is a flowchart illustrating an example of processing by a wireless base station according to the present embodiment.
  • 3 is a flowchart illustrating an example of processing by a wireless terminal according to the present embodiment.
  • FIG. 3 is a diagram illustrating an example of a functional configuration of a calculation unit according to the first embodiment.
  • FIG. 7 is a flowchart illustrating an example of connection condition changing processing according to the first embodiment.
  • 7 is a diagram illustrating a specific example of connection condition changing processing according to the first embodiment.
  • FIG. 7 is a flowchart illustrating an example of connection condition changing processing according to the second embodiment.
  • 7 is a diagram illustrating a specific example of connection condition changing processing according to the second embodiment.
  • FIG. FIG. 2 is a diagram showing an example of the hardware configuration of a wireless base station and a wireless terminal according to the present embodiment.
  • FIG. 2 is a diagram (1) for explaining an example of the effect of the wireless communication method according to the present embodiment.
  • FIG. 3 is a diagram (2) for explaining an example of the effect of the wireless communication method according to the present embodiment.
  • FIG. 2 is a diagram for explaining an overview of processing of a wireless communication system using blockchain.
  • FIG. 2 is a diagram for explaining issues of a wireless communication system using blockchain.
  • Wireless communication systems connect wireless terminals to wireless base stations without centralized management by using blockchain technology to perform connection processing in a distributed manner when connecting wireless base stations and wireless terminals. This is a possible system.
  • FIG. 15 is a diagram for explaining an overview of processing of a wireless communication system using blockchain.
  • transaction data 2 is created between the wireless base station 10 and the wireless terminal 20 in a connection process in which the wireless terminal 20 connects to the wireless base station 10 (step S1).
  • the wireless terminal 20 receives the connection conditions broadcasted by the wireless base station 10, and checks the communication quality, connection cost, etc. of the wireless communication network provided by the wireless base station 10.
  • the wireless base station 10 checks whether the wireless terminal 20 has sufficient ability to pay. Further, when an agreement regarding connection conditions is obtained between the wireless base station 10 and the wireless terminal 20, the wireless base station 10 records the content of the agreement in the transaction data 2.
  • the communication quality of the wireless communication network provided by the wireless base station 10 includes, for example, throughput, total data amount, etc.
  • the wireless terminal 20 may agree to the connection conditions when the communication quality provided by the wireless base station 10 satisfies all the communication quality required by the wireless terminal 20.
  • the wireless terminal 20 may agree to the connection conditions when the communication quality provided by the wireless base station 10 satisfies a part of the communication quality required by the wireless terminal 20.
  • the wireless base station 10 spreads the transaction data 2 created in the connection process to the nodes participating in the blockchain network 30 (step S2).
  • the blockchain network 30 includes a plurality of nodes that collectively record transaction data 2 in blocks and share a blockchain (distributed ledger) in which a plurality of blocks are recorded in chronological order.
  • the plurality of nodes include a plurality of wireless base stations 10 that constitute a wireless communication system. Note that the plurality of nodes may include nodes (computers, wireless terminals, etc.) other than the wireless base station 10.
  • step S3 When the blockchain network 30 is notified of the transaction data 2, some nodes (for example, the wireless base station 10x) participating in the blockchain network 30 generate a block 3 together with other transaction data (step S3). Furthermore, after generating the block 3, the blockchain network 30 adds the generated block 3 to the blockchain 40 possessed by each node included in the blockchain network 30 (step S4).
  • the blockchain 40 of each node reserves the added block, and after a predetermined number of blocks (verification blocks) are further added to the blockchain, the contract is established by accepting the pending block (step S5 ). After the contract is established, the wireless base station 10 starts communication with the wireless terminal 20 (step S6).
  • the wireless communication system can perform connection processing between the wireless base station 10 and the wireless terminal 20 through distributed control, without relying on a control station or the like that centrally controls the wireless communication system.
  • the wireless terminal (user terminal) 20 takes the lead in that the wireless terminal 20 checks the connection conditions transmitted by one or more wireless base stations 10 and determines the wireless base station 10 with which to request connection. This is the control procedure.
  • the wireless terminals 20 connected to a specific wireless base station 10 may be biased, and the efficiency of using the wireless resources of the entire wireless communication system may decrease.
  • FIG. 16 is a diagram for explaining the problems of wireless communication systems using blockchain.
  • the wireless communication system 1 includes a plurality of wireless base stations 10a, 10b, and 10c as an example for explanation. Note that the wireless base stations may (or may not) include the indoor wireless base station 10c.
  • the wireless base station 10a forms a network cell 11a and is capable of communicating with wireless terminals 20a, 20b, 20c, and 20f within the network cell 11a.
  • the wireless base station 10b forms a network cell 11b and is capable of communicating with wireless terminals 20b and 20e within the network cell 11b.
  • the wireless base station 10c forms a network cell 11c and is capable of communicating with wireless terminals 20c and 20d within the network cell 11c.
  • each wireless terminal 20 autonomously determines the wireless base station to which it will connect, for example, as shown in FIG. You may become concentrated. Furthermore, if the wireless terminal 20f connects to a nearby wireless base station 10a when starting a new communication, for example, the wireless resource usage efficiency of the entire wireless communication system 1 will further decrease. There is a risk of it being stored away.
  • FIG. 1 is a diagram showing an example of the system configuration of a wireless communication system according to this embodiment.
  • the wireless communication system 100 includes a plurality of wireless base stations 110a, 110b, 110c, 110d, 110e, . . . that form mutually different network cells.
  • the wireless base station 110a forms a network cell 111a and can communicate with a wireless terminal 120b located within the network cell 111a.
  • the wireless base station 110b forms a network cell 111b, and is capable of communicating with a wireless terminal 120a located within the network cell 111b.
  • the wireless base station 110c forms a network cell 111c and can communicate with wireless terminals 120b, 120c, and 120d within the network cell 111c.
  • the radio base station 110d forms a network cell 111d
  • the radio base station 110e forms a network cell 111e.
  • wireless base station 110 is used to refer to any wireless base station among the wireless base stations 110a, 110b, 110c, 110d, 110e, . Further, when referring to any wireless terminal among the wireless terminals 120a, 120b, 120c, and 120d, “wireless terminal 120" is used.
  • the number of wireless base stations 110 and the number of wireless terminals 120 shown in FIG. 1 are merely examples, and other numbers may be used.
  • the multiple wireless base stations 110 also function as nodes that participate in the blockchain network 200, and the multiple wireless base stations 110 share the same blockchain.
  • the blockchain network 200 is a P2P (Peer-to-Peer) network (distributed network) in which each node can send and receive data equally with other nodes without using a server or the like.
  • a blockchain is a distributed ledger in which multiple nodes participating in a P2P network record transactions, etc. between two parties in a verifiable and permanent manner.
  • the blockchain network 30 may include nodes other than the wireless base station 110 (for example, other computers, wireless terminals, etc.).
  • Each wireless base station 110 manages connections with wireless terminals 120 using blockchain. For example, each wireless base station 110 records and manages transaction data 2 and the like described in FIG. 15 in a blockchain shared by multiple wireless base stations 110. Thereby, the wireless base station 110 can obtain information regarding other wireless base stations 110 by referring to the blockchain.
  • Each wireless base station 110 broadcasts connection conditions for connecting to the wireless base station 110 to the wireless terminals 120 within the network cell 111 of the wireless base station.
  • the connection conditions include, for example, information such as the communication quality to be provided and the connection cost (connection fee) for connecting to the wireless base station 110.
  • a wireless terminal 120 that starts communication receives connection conditions transmitted by nearby wireless base stations 110, and determines a wireless base station 110 with which to request connection based on the connection conditions. For example, the wireless terminal 120 selects a wireless base station 110 that satisfies the communication quality required by the wireless terminal 120 and has the lowest connection cost among the one or more wireless base stations 110 that have received connection conditions. The wireless base station 110 to be requested is determined.
  • traffic may concentrate on a specific wireless base station 110, similar to the wireless communication system 1 described in FIGS. 15 and 16.
  • wireless terminal 120a is connected to wireless base station 110
  • wireless terminals 120c and 120d are connected to wireless base station 110c.
  • the wireless terminal 120b when the wireless terminal 120b starts a new communication, in order to reduce the congestion level of the wireless base station 110c, the wireless terminal 120b connects to the less congested wireless base station 110a. It is difficult to control as such. For example, in the wireless communication method described in FIGS. 15 and 16, it is not possible to preferentially connect the wireless terminal 120b in FIG. 1 to the wireless base station 110a, which is less congested.
  • controlling the optimal connection destination for all wireless terminals 120 through centralized control of the control station that oversees the wireless communication system 1 becomes difficult as the number of wireless base stations 110 and wireless terminals 120 increases. This is not realistic as the amount would be huge.
  • the wireless base station 110 has a function of calculating the normalized congestion degree of other wireless base stations 110 using blockchain ledger information shared by a plurality of wireless base stations 110. ing.
  • the wireless base station 110 obtains the maximum communication quality (for example, maximum throughput) of another wireless base station 110 and the number of wireless terminals accommodated by the other wireless base station 110 from the blockchain. Furthermore, the radio base station 110 normalizes the number of radio terminals accommodated by the other radio base station 110 based on the ratio of the maximum communication quality of its own station and the maximum communication quality of the other radio base station 110. Calculate the degree of congestion.
  • the maximum communication quality for example, maximum throughput
  • the wireless base station 110 obtains the average communication quality of other wireless base stations 110 and the number of wireless terminals accommodated by the other wireless base stations 110 from the blockchain. Furthermore, the radio base station 110 normalizes the average communication quality of other radio base stations 110 based on the ratio of the number of radio terminals accommodated by the radio base station 110 and the number of radio terminals accommodated by the other radio base stations 110. , a normalized degree of congestion may be calculated.
  • the wireless base station 110 has a function of controlling the connection cost of the wireless base station 110 based on the normalized degree of congestion between the wireless base station 110 and other wireless base stations 110. For example, the wireless base station 110 lowers the connection cost of the wireless base station 110 when the normalized degree of congestion of another wireless base station 110 is higher than that of the wireless base station 110. Alternatively, the wireless base station 110 increases the connection cost of the wireless base station 110 when the normalized degree of congestion of another wireless base station 110 is lower than that of the wireless base station 110.
  • the wireless terminal 120b newly starting communication prioritizes the wireless base station 110a, which has a lower connection cost than the wireless base station 110c, as a connection destination. It can be controlled to select the
  • the wireless base station 110 controls the connection cost of its own station, for example, based on the number of wireless terminals accommodated by the wireless base station 110 and other wireless base stations 110 instead of the normalized degree of congestion. Conceivable.
  • this method cannot take into account the difference in performance (communication quality) of each radio base station 110, so for example, the usage efficiency of the radio base station 110 with high communication quality may decrease, or the communication quality of the radio terminal 120 may be affected. There are problems such as differences occurring.
  • the wireless communication system 100 since the connection cost of the own station is controlled based on the normalized degree of congestion, a decrease in the utilization efficiency of the wireless base station 110 with high communication quality is suppressed, and Communication quality of wireless terminal 120 can be smoothed.
  • FIG. 3 is a diagram showing an example of the functional configuration of the wireless base station according to the present embodiment.
  • the wireless base station 110 includes, for example, a computer configuration, and when the computer executes a predetermined program, a wireless communication section 301, a transmission section 302, a management section 303, a calculation section 304, a change section 305, and a storage section 306 are configured. , a wired communication unit 307, etc. Note that at least some of the above functional configurations may be realized by hardware.
  • the wireless communication unit 301 forms a network cell 111 capable of wireless communication with the wireless base station 110, and executes wireless communication processing to perform wireless communication with a wireless terminal 120 connected to the wireless base station 110.
  • the transmitting unit 302 executes a transmission process of broadcasting connection conditions for connecting to the wireless base station 110 to the wireless terminals 120 within the network cell 111 of the wireless base station 110.
  • the connection conditions include, for example, information such as the communication quality provided by the wireless base station 110 and the connection cost (connection fee) for connecting to the wireless base station 110.
  • the management unit 303 executes management processing for managing information on the wireless terminals 120 that connect to the wireless base station 110 based on the connection conditions transmitted by the transmitting unit 302 using a blockchain shared by a plurality of wireless base stations 110. do.
  • the management unit 303 can connect the wireless terminal 120 that requests connection to the wireless base station 110 and the blocks shared with other wireless base stations 110 by executing the series of processes described in steps S1 to S6 in FIG. 15. Connection information with the wireless terminal 120 is recorded in the chain 320.
  • the management unit 303 executes various processes to manage the blockchain as a node of the blockchain shared by the plurality of wireless base stations 110.
  • information on wireless terminals 120 connected to each wireless base station 110 in wireless communication system 100 is recorded in blockchain 320. Therefore, by referring to the blockchain 320, the wireless base station 110 can obtain information on the wireless terminals 120 that connect to other wireless base stations 110, the communication quality of the wireless communication network provided by the other wireless base stations 110, and the connection. Information such as costs can be obtained.
  • the calculation unit 304 uses the ledger information of the blockchain 320 to execute calculation processing to calculate the normalized congestion degree of other wireless base stations 110. Note that the specific processing contents of the calculation process executed by the calculation unit 304 will be described later by illustrating a plurality of embodiments.
  • the changing unit 305 changes the connection condition of the wireless base station 110 based on the normalized degree of congestion calculated by the calculating unit 304. For example, when the own station (wireless base station 110) is congested, the changing unit 305 increases the connection cost of the own station. Furthermore, when the changing unit 305's own station is not congested, the connection cost of the own station is lowered.
  • connection cost is the cost (for example, connection fee) for the wireless terminal 120 to connect to the wireless base station 110, and the wireless terminal 120, for example, Among them, the wireless base station 110 with the lowest connection cost is connected preferentially.
  • the wireless terminal 120 may decide which wireless base station 110 to connect to by taking into account the strength of the received signal from the wireless base station 110, the communication speed, etc. in addition to the connection cost.
  • the transmitting unit 302, the managing unit 303, the calculating unit 304, the changing unit 305, and the like are included in a communication control unit 310 that controls wireless communication by the wireless communication unit 301, for example.
  • the storage unit 306 executes storage processing to store various data, information, programs, etc., including the blockchain 320, in a storage device included in the wireless base station 110, for example.
  • the wired communication unit 307 connects the wireless base station 110 to, for example, a wired communication network, and executes communication related to the blockchain network 200 as shown in FIG. 2, for example.
  • FIG. 4 is a diagram illustrating an example of the functional configuration of a wireless terminal according to this embodiment.
  • the wireless terminal 120 has, for example, a computer configuration, and the computer executes a predetermined program to realize a wireless communication section 401, a reception section 402, a determination section 403, a connection control section 404, a storage section 405, etc. are doing. Note that at least some of the above functional configurations may be realized by hardware.
  • the wireless communication unit 401 connects to the wireless base station 110 by wireless communication and executes wireless communication processing to transmit and receive data.
  • the receiving unit 402 uses the wireless communication unit 401 to execute a reception process of receiving the connection conditions transmitted by the wireless base station 110.
  • the determining unit 403 determines the wireless base station 110 to which the wireless terminal 120 requests connection, based on the connection conditions received by the receiving unit 402. For example, the wireless terminal 120 preferentially connects to the wireless base station 110 with the lowest connection cost among the wireless base stations 110 that satisfy the required communication quality. Note that when the distance between the wireless terminal 120 and the wireless base station 110 is short, the transmission power can be reduced, and when the communication speed between the wireless base station 110 and the wireless terminal 120 is high, the communication time can be shortened. It is. Therefore, it is preferable that the wireless terminal 120 determines the wireless base station 110 to be connected to based on the communication quality of the wireless base station 110 and the connection cost.
  • the connection control unit 404 executes a connection process to connect to the connection destination wireless base station 110 determined by the determination unit 403. For example, in the connection process described in step S1 of FIG. 15, the connection control unit 404 transmits a connection request to the wireless base station 110 to be connected, and makes an agreement regarding the wireless communication service to be provided.
  • the receiving unit 402, the determining unit 403, the connection control unit 404, and the like are included in a communication control unit 410 that controls wireless communication by the wireless communication unit 401, for example.
  • the storage unit 405 executes storage processing for storing various data, information, programs, etc. necessary for wireless communication, for example, in a storage device included in the wireless terminal 120.
  • FIG. 5 is a flowchart illustrating an example of processing by the wireless base station according to the present embodiment. This process shows the overall flow of the process executed by the wireless base station 110 described in FIG. 3.
  • step S501 the calculation unit 304 of the wireless base station 110 identifies one or more other wireless base stations 110 to which the wireless terminal 120 may transition to its own station (wireless base station 110).
  • the calculation unit 304 uses the ledger information of the blockchain 320 to calculate the normalized congestion degree of one or more other wireless base stations 110 identified in step S501.
  • the normalized degree of congestion is, for example, the number of wireless terminals accommodated by the other wireless base station 110, based on the ratio of the maximum communication quality of the wireless base station 110 to the maximum communication quality of other wireless base stations.
  • the number of wireless terminals that is normalized can be applied.
  • the normalized degree of congestion is calculated based on the ratio of the number of wireless terminals accommodated by the wireless base station 110 and the number of wireless terminals accommodated by the other wireless base stations 110. Communication quality obtained by normalizing communication quality (normalized communication quality) can be applied. Note that the method for calculating the normalized number of wireless terminals and the normalized communication quality will be described later.
  • the changing unit 305 changes the connection condition of its own station (wireless base station 110) based on the normalized degree of congestion calculated by the calculating unit 304. For example, if the own station is more congested than other radio base stations 110, the changing unit 305 increases the connection cost of the own station. Note that when there are multiple other radio base stations 110, the changing unit 305 changes the number of other radio base stations 110 that are more congested than the own station to the number of other radio base stations 110 that are less congested than the own station. If the number of wireless base stations 110 is more than that, it may be determined that the local station is more congested than other wireless base stations 110.
  • the changing unit 305 lowers the connection cost of the own station when the own station is less congested than the other wireless base stations 110. Note that when there are multiple other radio base stations 110, the changing unit 305 changes the number of other radio base stations 110 that are more congested than the own station to the number of other radio base stations 110 that are less congested than the own station. If the number is less, it may be determined that the local station is less congested than other wireless base stations 110.
  • the transmitter 302 uses the wireless communication unit 301 to broadcast the connection conditions.
  • the transmitting unit 302 periodically transmits, by wireless communication, a notification message that includes connection conditions including information such as communication quality of wireless communication provided by the own station (wireless base station 110) and connection cost.
  • step S505 the management unit 303 determines whether the wireless communication unit 301 has received a connection request from the wireless terminal 120, and if it has received a connection request, executes the processes from step S506 onwards.
  • the management unit 303 uses the blockchain 320 to execute, for example, the connection process described in steps S1 to S6 of FIG. 15.
  • step S507 the management unit 303 determines whether a connection contract with the wireless terminal 120 has been established, and if the connection contract has been established, the process moves to step S508. On the other hand, if the connection contract has not been established, the management unit 303 returns the process to step S504.
  • step S508 the wireless base station 110 starts communication with the wireless terminal 120 that sent the connection request, and returns the process to step S504. Furthermore, in step S509, upon completion of communication, the wireless base station 110 returns the process to step S504.
  • calculation unit 304 executes the process of step S510 in parallel with the processes of steps S507 to S511.
  • step S510 the calculation unit 304 determines whether a predetermined time has elapsed since the process 500 of steps S501 to S503 was last executed.
  • the predetermined time is a preset connection cost update interval. If the predetermined time has elapsed, the calculation unit 304 executes the process 500 of steps S501 to S503 again. If the predetermined time has not elapsed, the calculation unit 304 returns the process to step S504 and waits until the predetermined time elapses.
  • the wireless base station 110 can change the connection conditions of the wireless base station 110 based on the normalized congestion degree of other nearby wireless base stations 110. Further, by each of the plurality of radio base stations 110 included in the radio communication system 100 executing the process shown in FIG. 5, it is possible to improve the radio resource usage efficiency of the entire radio communication system 100.
  • FIG. 6 is a flowchart showing the process flow of the wireless terminal according to this embodiment. This process is an example of the process that the wireless terminal 120 described in FIG. 4 executes when starting wireless communication.
  • step S601 the receiving unit 402 receives the connection conditions broadcasted by the wireless base station 110.
  • this connection condition includes information such as the communication quality of wireless communication provided by the wireless base station 110 and the connection cost.
  • the determining unit 403 determines the wireless base station 110 to which the wireless terminal 120 requests connection, based on the connection conditions received by the receiving unit 402. For example, the determining unit 403 may determine the wireless base station 110 with the lowest connection cost among the wireless base stations 110 that satisfy the required communication quality as the wireless base station 110 that requests connection. Furthermore, when there are multiple wireless base stations 110 with the same connection cost, the determining unit 403 may determine the wireless base station 110 with the highest communication quality as the wireless base station 110 requesting connection.
  • step S603 the connection control unit 404 transmits a connection request requesting a wireless communication connection to the wireless base station 110 determined by the determination unit 403.
  • the wireless base station 110 that has received this connection request executes the process of step S506 in FIG. 5.
  • step S604 the connection control unit 404 determines whether a connection contract with the wireless base station 110 has been established, and if the connection contract has been established, the process moves to step S605. On the other hand, if the connection contract has not been established, the wireless terminal 120 ends the process of FIG.
  • step S605 the wireless terminal 120 starts communication with the wireless base station 110 to which it is connected, and in step S606, when the communication is completed, the process in FIG. 6 ends.
  • the wireless terminal 120 can preferentially connect to a wireless base station 110 with a lower connection cost among the nearby wireless base stations 110.
  • the wireless terminal 120 may execute the process in FIG. 6 again and switch the connection destination to a new wireless base station 110. Furthermore, if the connection cost of the wireless base station 110 increases during communication, the wireless terminal 120 may execute the process in FIG. 6 again to switch the connection destination to a new wireless base station 110.
  • connection condition changing process executed by the wireless base station 110 will be described by illustrating a specific example.
  • FIG. 7 is a diagram illustrating an example of the functional configuration of the calculation unit according to the first embodiment.
  • the calculation unit 304 includes, for example, a specification unit 701, an information acquisition unit 702, a normalization unit 703, and the like.
  • the identifying unit 701 executes identifying processing to identify one or more other wireless base stations 110 to which the wireless terminal 120 may transition to the own station (wireless base station 110). For example, the identifying unit 701 acquires transition information of the wireless base station 110 to which the wireless terminal 120 is connected from the blockchain 320, and identifies other wireless base stations 110 to which the wireless terminal 120 has transitioned. do.
  • the identification unit 701 of the wireless base station 110a determines whether there is a history in the blockchain 320 of the wireless terminal 120 connecting to the wireless base station 110a after connecting to the wireless base station 110b. to judge. If there is such a history, the identifying unit 701 of the wireless base station 110a determines the wireless base station 110b as the wireless base station 110 to which the wireless terminal 120 may transfer. By performing similar processing on other radio base stations 110c, 110d, 110e, . , 110c can be specified.
  • the information acquisition unit 702 obtains from the blockchain 320 the maximum communication quality of the other wireless base station 110 identified by the identifying unit 701 and the number of wireless terminals 120 accommodated by the other wireless base station 110 (hereinafter referred to as the number of terminals accommodated). ).
  • the maximum communication quality of the other wireless base station 110 for example, the maximum value of wireless communication throughput provided by the other wireless base station 110 can be applied.
  • the number of terminals accommodated by the other wireless base station 110 is, for example, the number of wireless terminals 120 currently connected to the other wireless base station 110.
  • the normalization unit 703 normalizes the number of terminals accommodated by another wireless base station 110 based on, for example, the ratio of the maximum communication quality of its own station (wireless base station 110) to the maximum communication quality of the other wireless base station 110. Calculate the normalized number of terminals accommodated. For example, the normalization unit 703 calculates the normalized number of terminals accommodated using the following (Formula 1).
  • T my_BS is the maximum communication quality of the own station (wireless base station 110)
  • T shift_BSi is the maximum communication quality of another wireless base station 110
  • U i is the wireless terminal accommodated by the other wireless base station 110. 120 (hereinafter referred to as the number of terminals accommodated).
  • FIG. 8 is a flowchart illustrating an example of connection condition changing processing according to the first embodiment. This process shows a specific example of the process 500 of steps S501 to S503 in FIG. 5, for example.
  • step S801 the identifying unit 701 identifies one or more other wireless base stations 110 to which the wireless terminal 120 may transition to the local station (wireless base station 110).
  • step S802 the information acquisition unit 702 acquires, from the blockchain 320, the maximum communication quality and the number of terminals accommodated by one or more other wireless base stations 110 identified by the identification unit 701.
  • step S803 the normalization unit 703 applies the maximum communication quality and the number of terminals accommodated of the one or more other wireless base stations 110 acquired by the information acquisition unit 702 to (Formula 1), and The normalized number of terminals accommodated by other radio base stations 110 is calculated.
  • the changing unit 305 moves the process to step S805 and increases the connection cost of the local station. On the other hand, if the local station is not congested, the changing unit 305 moves the process to step S806 to reduce the connection cost of the local station.
  • steps S805 and S806 in FIG. 8 is an example.
  • the changing unit 305 may set the connection cost of the own station to a default value in step S806.
  • the changing unit 305 may set the connection cost of the own station to a default value in step S805.
  • FIG. 9 is a diagram illustrating a specific example of connection condition changing processing according to the first embodiment.
  • the "own station” is, for example, the wireless base station 110a in FIG. 1, and the maximum T (maximum throughput) is 100 Mbps and the number of terminals accommodated is 10.
  • BS1 is, for example, the wireless base station 110b of FIG. 1, and the maximum T is 200 Mbps and the number of terminals accommodated is 10.
  • BS2 is, for example, the wireless base station 110c in FIG. 1, has a maximum T of 300 Mbps, and can accommodate 10 terminals.
  • the calculation unit 304 of the local station calculates the maximum T of the local station (an example of maximum communication quality) "100 Mbps", the maximum T of BS1 "200 Mbps", and the number of terminals accommodated by BS1 "10" into (Formula 1). By applying this, the normalized number of terminals accommodated by the BS1 is calculated as "5". Similarly, the calculation unit 304 of the own station calculates the maximum T of the own station (an example of maximum communication quality) "100 Mbps", the maximum T of BS1 "300 Mbps", and the number of terminals accommodated in BS2 "10” using (Formula 1) is applied to calculate the normalized number of terminals accommodated by BS2, which is "3.3".
  • the range of increase/decrease in the connection cost of the own station may be a constant value, or the larger the difference between the normalized number of accommodated terminals between the own station and other wireless base stations (for example, BS1), the greater the range of increase/decrease. It may be set to a large value.
  • the normalized number of accommodated terminals is an example of the normalized degree of congestion calculated by the calculation unit 304.
  • the wireless base station 110 can use the normalized number of terminals accommodated as the normalized degree of congestion.
  • Example 2 (Functional configuration)
  • the functional configuration of the calculation unit 304 according to the second embodiment is similar to the functional configuration of the calculation unit 304 according to the first embodiment shown in FIG. 7, but the processing contents of the information acquisition unit 702 and the normalization unit 703 are different. Since the parts are different, the differences from the first embodiment will be explained here.
  • the information acquisition unit 702 acquires from the blockchain 320 the average communication quality of the other wireless base station 110 identified by the identification unit 701 and the number of wireless terminals 120 accommodated by the other wireless base station 110. .
  • the average communication quality of the other wireless base stations 110 for example, the average value (average T) of wireless communication throughput provided by the other wireless base stations 110 can be applied.
  • the normalization unit 703 normalizes the average communication quality of other wireless base stations 110 based on, for example, the ratio of the number of terminals accommodated in the own station (wireless base station 110) and the number of terminals accommodated in the other wireless base stations 110. Calculate the normalized communication quality. For example, the normalization unit 703 calculates the normalized communication quality using the following (Equation 2).
  • U my_BS is the number of terminals accommodated by the own station (radio base station 110)
  • U shift_BSi is the number of terminals accommodated by other radio base stations 110
  • T i is the average communication quality of the other radio base stations 110.
  • FIG. 10 is a flowchart illustrating an example of connection condition changing processing according to the second embodiment. This process shows a specific example of the process 500 of steps S501 to S503 in FIG. 5, for example. Note that among the processes shown in FIG. 10, the processes in steps S801, S805, and S806 are the same as the processes in the first embodiment described in FIG. 8, so the description thereof will be omitted here.
  • step S1001 the information acquisition unit 702 acquires, from the blockchain 320, the average communication quality and the number of terminals accommodated by one or more other wireless base stations 110 identified by the identification unit 701.
  • step S1002 the normalization unit 703 applies the average communication quality and the number of terminals accommodated of the one or more other wireless base stations 110 acquired by the information acquisition unit 702 to (Equation 2), and The normalized communication quality of other wireless base stations 110 is calculated.
  • the changing unit 305 moves the process to step S805 and increases the connection cost of the local station. On the other hand, if the local station is not congested, the changing unit 305 moves the process to step S806 to reduce the connection cost of the local station.
  • FIG. 11 is a diagram illustrating a specific example of connection condition changing processing according to the second embodiment.
  • the "own station” is, for example, the wireless base station 110a in FIG. 1, and assumes that the average T (average throughput) is 100 Mbps and the number of terminals accommodated is 10.
  • BS1 is, for example, the wireless base station 110b of FIG. 1, and has an average T of 200 Mbps and a terminal capacity of 10.
  • BS2 is, for example, the wireless base station 110c in FIG. 1, has an average T of 300 Mbps, and accommodates 10 terminals.
  • the calculation unit 304 of the own station applies the number of terminals accommodated in the own station "10", the number of terminals accommodated in BS1 "10", and the average T of BS1 "200 Mbps” to (Equation 2), Calculate normalized communication quality (normalized T) "200".
  • the calculation unit 304 of the own station applies the number of terminals accommodated in the own station "10", the number of terminals accommodated in BS2 "10", and the average T of BS2 "300 Mbps" to (Formula 2), The normalized communication quality of "300" is calculated.
  • the range of increase/decrease in the connection cost of the own station may be set to a constant value, or the greater the difference in normalized communication quality between the own station and other wireless base stations (for example, BS1), the larger the range of increase/decrease is set. You may.
  • the normalized communication quality is an example of the normalized degree of congestion calculated by the calculation unit 304.
  • the wireless base station 110 may use normalized communication quality as the normalized degree of congestion.
  • FIG. 12 is a diagram illustrating an example of the hardware configuration of a wireless base station and a wireless terminal according to this embodiment.
  • the wireless base station 110 and the wireless terminal 120 include, for example, the configuration of a computer 1200 as shown in FIG. 12.
  • the computer 1200 includes a processor 1201, a memory 1202, a storage device 1203, a communication device 1204, an input device 1205, an output device 1206, a bus B, and the like.
  • the processor 1201 is, for example, an arithmetic device such as a CPU (Central Processing Unit) that implements various functions by executing a predetermined program.
  • Memory 1202 is a storage medium readable by computer 1200, and includes, for example, RAM (Random Access Memory), ROM (Read Only Memory), and the like.
  • the storage device 1203 is a computer-readable storage medium, and may include, for example, an HDD (Hard Disk Drive), an SSD (Solid State Drive), various optical disks, magneto-optical disks, and the like.
  • the communication device 1204 includes one or more hardware (communication devices) for communicating with other devices via a wireless or wired network.
  • the communication device 1204 of the computer 1200 included in the wireless base station 110 includes a communication device for performing wireless communication and a communication device for performing wired communication.
  • the communication device 1204 of the computer 1200 included in the wireless terminal 120 includes a communication device for performing wireless communication.
  • the input device 1205 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1206 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1205 and the output device 1206 may have an integrated configuration (for example, an input/output device such as a touch panel display).
  • Bus B is commonly connected to each of the above components, and transmits, for example, address signals, data signals, and various control signals.
  • the processor 1201 is not limited to a CPU, and may be, for example, a DSP (Digital Signal Processor), a PLD (Programmable Logic Device), or an FPGA (Field Programmable Gate Array).
  • the wireless base station 110 and the wireless terminal 120 in this embodiment are not limited to being implemented by dedicated devices, but may be implemented by a general-purpose computer. In that case, a program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read into a computer system and executed.
  • the "computer system” herein includes hardware such as an OS and peripheral devices.
  • computer-readable recording medium includes various storage devices such as flexible disks, magneto-optical disks, ROMs, CD-ROMs, and other portable media, and hard disks built into computer systems.
  • a “computer-readable recording medium” refers to a storage medium that dynamically stores a program for a short period of time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include a device that retains a program for a certain period of time, such as a volatile memory inside a computer system that is a server or client in that case.
  • the above-mentioned program may be one for realizing a part of the above-mentioned functions, and further may be one that can realize the above-mentioned functions in combination with a program already recorded in the computer system. It may be realized using hardware such as a PLD (Programmable Logic Device) or an FPGA (Field Programmable Gate Array).
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • a graph 1401 in FIG. 14 shows the simulation results of the throughput cumulative distribution function (CDF) for each wireless terminal 120 in "Example 1", “Comparative Example 1", and “Comparative Example 2". Furthermore, a table 1402 in FIG. 14 shows the median values of throughput of "Example 1", “Comparative Example 1", and "Comparative Example 2".
  • CDF throughput cumulative distribution function
  • Example 1 shows the simulation results when each wireless base station controls the connection cost in a distributed manner using the normalized number of terminals accommodated, as explained in FIGS. 7 to 9. There is.
  • Comparative Example 1 shows the simulation results of a conventional technique in which the connection cost was kept constant without each wireless base station controlling the connection cost.
  • Comparative Example 2 shows the simulation results when each wireless base station controls the connection cost in a distributed manner using the unnormalized number of terminals accommodated.
  • each wireless base station controls the connection cost in a distributed manner using the unnormalized number of terminals accommodated, and as in “Comparative Example 1.” It can be expected that the median throughput will be improved by about 1.6 times compared to the conventional technology. Furthermore, as in “Example 1”, by normalizing the number of terminals accommodated and each wireless base station controlling the connection cost in a distributed manner, the median throughput can be reduced by 1 compared to "Comparative Example 2". .It is expected that the effect will be improved by 4 times.
  • the connection cost of the own station is controlled based on the normalized degree of congestion, so that a decrease in the utilization efficiency of the wireless base station 110 with high communication quality is suppressed, and Communication quality of wireless terminal 120 can be smoothed.
  • the wireless base station a transmission process of broadcasting connection conditions of the wireless base station; a management process that uses a blockchain shared by a plurality of wireless base stations to manage a connection with a wireless terminal that requests connection to the wireless base station based on the connection conditions; a calculation process of calculating the normalized congestion degree of other wireless base stations using the blockchain ledger information; a change process of changing the connection condition of the wireless base station based on the normalized degree of congestion; A wireless communication method that performs (Section 2) The calculation process is Obtaining the maximum communication quality of the other wireless base station and the number of wireless terminals accommodated by the other wireless base station from the blockchain, The normalized number of terminals accommodated by the other radio base station is normalized by the ratio of the maximum communication quality of the radio base station to the maximum communication quality of the other radio base station.
  • the wireless communication method according to item 1. (Section 3) The calculation process is Obtaining from the blockchain the average communication quality of the other wireless base station and the number of wireless terminals accommodated by the other wireless base station, Normalized communication quality obtained by normalizing the average communication quality of the other radio base station by the ratio of the number of radio terminals accommodated by the radio base station and the number of radio terminals accommodated by the other radio base station, The normalized degree of congestion is The wireless communication method according to item 1. (Section 4) The change process is performed according to any one of paragraphs 1 to 3, in which, if the normalized degree of congestion is higher in the other wireless base station than in the wireless base station, the connection cost of the wireless base station is reduced. Wireless communication method described.
  • the change process may include increasing the connection cost of the wireless base station if the normalized congestion level of the other wireless base station is lower than that of the wireless base station.
  • Wireless communication method described. The other radio base station is any one of paragraphs 1 to 3, including one or more radio base stations among the plurality of radio base stations to which a radio terminal may transition to the radio base station.
  • the wireless communication method described in . (Section 7) The wireless communication method according to any one of items 1 to 3, wherein the other wireless base station includes one or more wireless base stations adjacent to or close to the wireless base station.
  • a wireless communication system including a plurality of wireless base stations and a wireless terminal
  • the wireless base station is a transmitting unit that broadcasts connection conditions of the wireless base station; a management unit that manages connection with a wireless terminal that requests connection to the wireless base station based on the connection condition using a blockchain shared by the plurality of wireless base stations; a calculation unit that calculates the normalized congestion degree of other wireless base stations using the blockchain ledger information; a changing unit that changes the connection condition of the wireless base station based on the normalized degree of congestion; has
  • the wireless terminal is a receiving unit that receives the connection conditions; a determining unit that determines the wireless base station to which the wireless terminal requests connection based on the connection condition; has, Wireless communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

To improve the efficiency of radio resource utilization for a wireless communication system as a whole, the present invention provides a wireless communication method in which a wireless base station executes a transmission process for broadcasting a connection condition of the wireless base station, a management process for managing connections with wireless terminals that request connection to the wireless base station on the basis of the connection condition, the management using a blockchain shared by a plurality of wireless base stations, a calculation process for using ledger information from the blockchain to calculate a normalized congestion level of other wireless base stations, and a changing process for changing the connection condition of the wireless base station on the basis of the normalized congestion level.

Description

無線通信方法、及び無線通信システムWireless communication method and wireless communication system
 本発明は、無線通信方法、及び無線通信システムに関する。 The present invention relates to a wireless communication method and a wireless communication system.
 無線基地局と無線端末と間の接続制御において、ブロックチェーン技術を用いて接続制御を分散処理する無線通信システムが知られている(例えば、非特許文献1参照)。 In connection control between a wireless base station and a wireless terminal, a wireless communication system is known that uses blockchain technology to perform distributed processing of connection control (for example, see Non-Patent Document 1).
 従来の技術では、無線端末(ユーザ端末)が自律的に接続先の無線基地局を決定するため、特定の無線基地局(例えば、接続コストが低い無線基地局)に接続する無線端末が偏り、無線通信システム全体の無線リソースの利用効率が低下してしまう場合がある。 In conventional technology, wireless terminals (user terminals) autonomously decide which wireless base station to connect to, so wireless terminals are biased in connecting to a specific wireless base station (for example, a wireless base station with low connection cost). The usage efficiency of radio resources in the entire radio communication system may decrease.
 本発明の実施形態は、上記の問題点に鑑みてなされたものであって、無線通信システム全体の無線リソースの利用効率を改善する。 The embodiments of the present invention have been made in view of the above-mentioned problems, and improve the utilization efficiency of radio resources in the entire radio communication system.
 上記の課題を解決するため、本発明の実施形態に係る無線通信方法は、無線基地局が、前記無線基地局の接続条件をブロードキャスト送信する送信処理と、前記接続条件に基づいて前記無線基地局に接続を要求する無線端末との接続を、複数の無線基地局が共有するブロックチェーンを用いて管理する管理処理と、前記ブロックチェーンの台帳情報を用いて、他の無線基地局の正規化した混雑度合いを算出する算出処理と、前記正規化した混雑度合いに基づいて、前記無線基地局の前記接続条件を変更する変更処理と、を実行する。 In order to solve the above problems, a wireless communication method according to an embodiment of the present invention includes a transmission process in which a wireless base station broadcasts connection conditions of the wireless base station, and a transmission process in which a wireless base station broadcasts connection conditions of the wireless base station based on the connection conditions. A management process that uses a blockchain shared by multiple wireless base stations to manage connections with wireless terminals that request connection to a wireless base station, and a management process that uses a blockchain shared by multiple wireless base stations to normalize connections with other wireless base stations using the ledger information of the blockchain. A calculation process for calculating the degree of congestion and a change process for changing the connection condition of the wireless base station based on the normalized degree of congestion are executed.
 本発明の実施形態によれば、無線通信システム全体の無線リソースの利用効率を改善することができる。 According to the embodiments of the present invention, it is possible to improve the utilization efficiency of radio resources of the entire radio communication system.
本実施形態に係る無線通信システムのシステム構成の例を示す図である。1 is a diagram illustrating an example of a system configuration of a wireless communication system according to an embodiment. 本実施形態に係るブロックチェーンネットワークについて説明するため図である。FIG. 2 is a diagram for explaining a blockchain network according to the present embodiment. 本実施形態に係る無線基地局の機能構成の例を示す図である。FIG. 2 is a diagram illustrating an example of the functional configuration of a wireless base station according to the present embodiment. 本実施形態に係る無線端末の機能構成の例を示す図である。FIG. 2 is a diagram illustrating an example of the functional configuration of a wireless terminal according to the present embodiment. 本実施形態に係る無線基地局の処理の例を示すフローチャートである。3 is a flowchart illustrating an example of processing by a wireless base station according to the present embodiment. 本実施形態に係る無線端末の処理の例を示すフローチャートである。3 is a flowchart illustrating an example of processing by a wireless terminal according to the present embodiment. 実施例1に係る算出部の機能構成の例を示す図である。FIG. 3 is a diagram illustrating an example of a functional configuration of a calculation unit according to the first embodiment. 実施例1に係る接続条件の変更処理の例を示すフローチャートである。7 is a flowchart illustrating an example of connection condition changing processing according to the first embodiment. 実施例1に係る接続条件の変更処理の具体的な一例を示す図である。7 is a diagram illustrating a specific example of connection condition changing processing according to the first embodiment. FIG. 実施例2に係る接続条件の変更処理の例を示すフローチャートである。7 is a flowchart illustrating an example of connection condition changing processing according to the second embodiment. 実施例2に係る接続条件の変更処理の具体的な一例を示す図である。7 is a diagram illustrating a specific example of connection condition changing processing according to the second embodiment. FIG. 本実施形態に係る無線基地局、及び無線端末のハードウェア構成の例を示す図である。FIG. 2 is a diagram showing an example of the hardware configuration of a wireless base station and a wireless terminal according to the present embodiment. 本実施形態に係る無線通信方法の効果の例について説明するための図(1)である。FIG. 2 is a diagram (1) for explaining an example of the effect of the wireless communication method according to the present embodiment. 本実施形態に係る無線通信方法の効果の例について説明するための図(2)である。FIG. 3 is a diagram (2) for explaining an example of the effect of the wireless communication method according to the present embodiment. ブロックチェーンを利用した無線通信システムの処理の概要について説明するための図である。FIG. 2 is a diagram for explaining an overview of processing of a wireless communication system using blockchain. ブロックチェーンを利用した無線通信システムの課題について説明するための図である。FIG. 2 is a diagram for explaining issues of a wireless communication system using blockchain.
 以下、図面を参照して本発明の実施の形態(本実施形態)を説明する。以下で説明する実施形態は一例に過ぎず、本発明が適用される実施形態は、以下の実施形態に限られない。 Hereinafter, an embodiment of the present invention (this embodiment) will be described with reference to the drawings. The embodiments described below are merely examples, and the embodiments to which the present invention is applied are not limited to the following embodiments.
 <概要>
 初めに、本実施形態の前提となるブロックチェーンを利用した無線通信システムの概要について説明する。無線通信システムは、無線基地局と無線端末との接続処理の際に、ブロックチェーン技術を用いて分散的に接続処理を行うことにより、集中管理によらずに、無線基地局に無線端末を接続可能なシステムである。
<Summary>
First, an overview of a wireless communication system using blockchain, which is the premise of this embodiment, will be explained. Wireless communication systems connect wireless terminals to wireless base stations without centralized management by using blockchain technology to perform connection processing in a distributed manner when connecting wireless base stations and wireless terminals. This is a possible system.
 (処理の概要)
 図15は、ブロックチェーンを利用した無線通信システムの処理の概要について説明するための図である。無線通信システムでは、無線基地局10に無線端末20が接続する接続処理において、無線基地局10と無線端末20との間でトランザクションデータ2を作成する(ステップS1)。例えば、無線端末20は、無線基地局10がブロードキャスト送信する接続条件を受信して、無線基地局10が提供する無線通信ネットワークの通信品質、及び接続コスト等を確認する。一方、無線基地局10は、無線端末20に十分な支払能力があるか等を確認する。また、無線基地局10と無線端末20との間で接続条件に関する合意が得られた場合、無線基地局10は、合意内容をトランザクションデータ2に記録する。
(Processing overview)
FIG. 15 is a diagram for explaining an overview of processing of a wireless communication system using blockchain. In the wireless communication system, transaction data 2 is created between the wireless base station 10 and the wireless terminal 20 in a connection process in which the wireless terminal 20 connects to the wireless base station 10 (step S1). For example, the wireless terminal 20 receives the connection conditions broadcasted by the wireless base station 10, and checks the communication quality, connection cost, etc. of the wireless communication network provided by the wireless base station 10. On the other hand, the wireless base station 10 checks whether the wireless terminal 20 has sufficient ability to pay. Further, when an agreement regarding connection conditions is obtained between the wireless base station 10 and the wireless terminal 20, the wireless base station 10 records the content of the agreement in the transaction data 2.
 なお、無線基地局10が提供する無線通信ネットワークの通信品質には、例えば、スループット、又は総データ量等が含まれる。無線端末20は、無線基地局10が提供する通信品質が、無線端末20が要求する通信品質を全て満たしている場合に接続条件に合意するものであってもよい。或いは、無線端末20は、無線基地局10が提供する通信品質が、無線端末20が要求する通信品質の一部を満たしている場合に接続条件に合意するものであってもよい。 Note that the communication quality of the wireless communication network provided by the wireless base station 10 includes, for example, throughput, total data amount, etc. The wireless terminal 20 may agree to the connection conditions when the communication quality provided by the wireless base station 10 satisfies all the communication quality required by the wireless terminal 20. Alternatively, the wireless terminal 20 may agree to the connection conditions when the communication quality provided by the wireless base station 10 satisfies a part of the communication quality required by the wireless terminal 20.
 無線基地局10は、接続処理で作成したトランザクションデータ2を、ブロックチェーンネットワーク30に参加するノードへ拡散する(ステップS2)。ブロックチェーンネットワーク30には、トランザクションデータ2をブロック単位でまとめて記録し、複数のブロックを時系列に記録したブロックチェーン(分散型台帳)を共有する複数のノードが含まれる。この複数のノードには、無線通信システムを構成する複数の無線基地局10が含まれる。なお、複数のノードには、無線基地局10以外のノード(コンピュータ、又は無線端末等)が含まれていてもよい。 The wireless base station 10 spreads the transaction data 2 created in the connection process to the nodes participating in the blockchain network 30 (step S2). The blockchain network 30 includes a plurality of nodes that collectively record transaction data 2 in blocks and share a blockchain (distributed ledger) in which a plurality of blocks are recorded in chronological order. The plurality of nodes include a plurality of wireless base stations 10 that constitute a wireless communication system. Note that the plurality of nodes may include nodes (computers, wireless terminals, etc.) other than the wireless base station 10.
 ブロックチェーンネットワーク30は、トランザクションデータ2が通知されると、ブロックチェーンネットワーク30に参加する一部のノード(例えば、無線基地局10x)が、他のトランザクションデータと併せてブロック3を生成する(ステップS3)。また、ブロックチェーンネットワーク30は、ブロック3を生成した後に、生成したブロック3を、ブロックチェーンネットワーク30に含まれる各ノードが有するブロックチェーン40に追加する(ステップS4)。 When the blockchain network 30 is notified of the transaction data 2, some nodes (for example, the wireless base station 10x) participating in the blockchain network 30 generate a block 3 together with other transaction data (step S3). Furthermore, after generating the block 3, the blockchain network 30 adds the generated block 3 to the blockchain 40 possessed by each node included in the blockchain network 30 (step S4).
 各ノードのブロックチェーン40は、追加されたブロックを保留し、所定の数のブロック(検証ブロック)がブロックチェーンにさらに追加された後に、保留中のブロックを受け入れることにより契約成立となる(ステップS5)。無線基地局10は、契約成立後に、無線端末20との通信を開始する(ステップS6)。 The blockchain 40 of each node reserves the added block, and after a predetermined number of blocks (verification blocks) are further added to the blockchain, the contract is established by accepting the pending block (step S5 ). After the contract is established, the wireless base station 10 starts communication with the wireless terminal 20 (step S6).
 上記の処理により、無線通信システムは、無線通信システムを集中制御する制御局等によらずに、分散制御により、無線基地局10と無線端末20との間の接続処理を実行することができる。 Through the above processing, the wireless communication system can perform connection processing between the wireless base station 10 and the wireless terminal 20 through distributed control, without relying on a control station or the like that centrally controls the wireless communication system.
 (課題について)
 上記の無線通信システムでは、無線端末20が、1つ以上の無線基地局10が送信する接続条件を確認し、接続を要求する無線基地局10を決定するという、無線端末(ユーザ端末)20主導の制御手順となっている。
(About the assignment)
In the above wireless communication system, the wireless terminal (user terminal) 20 takes the lead in that the wireless terminal 20 checks the connection conditions transmitted by one or more wireless base stations 10 and determines the wireless base station 10 with which to request connection. This is the control procedure.
 しかし、無線端末20主導の制御手順では、特定の無線基地局10に接続する無線端末20が偏り、無線通信システム全体の無線リソースの利用効率が低下してしまう場合がある。 However, in the control procedure led by the wireless terminal 20, the wireless terminals 20 connected to a specific wireless base station 10 may be biased, and the efficiency of using the wireless resources of the entire wireless communication system may decrease.
 図16は、ブロックチェーンを利用した無線通信システムの課題について説明するための図である。図16の例では、無線通信システム1は、説明用の一例として、複数の無線基地局10a、10b、10cを含む。なお、無線基地局には、屋内用の無線基地局10cが含まれていてもよい(含まれていなくてもよい)。 FIG. 16 is a diagram for explaining the problems of wireless communication systems using blockchain. In the example of FIG. 16, the wireless communication system 1 includes a plurality of wireless base stations 10a, 10b, and 10c as an example for explanation. Note that the wireless base stations may (or may not) include the indoor wireless base station 10c.
 図16において、無線基地局10aは、ネットワークセル11aを形成しており、ネットワークセル11a内にある無線端末20a、20b、20c、20fと通信可能であるものとする。無線基地局10bは、ネットワークセル11bを形成しており、ネットワークセル11b内にある無線端末20b、20eと通信可能であるものとする。無線基地局10cは、ネットワークセル11cを形成しており、ネットワークセル11c内にある無線端末20c、20dと通信可能であるものとする。 In FIG. 16, it is assumed that the wireless base station 10a forms a network cell 11a and is capable of communicating with wireless terminals 20a, 20b, 20c, and 20f within the network cell 11a. It is assumed that the wireless base station 10b forms a network cell 11b and is capable of communicating with wireless terminals 20b and 20e within the network cell 11b. It is assumed that the wireless base station 10c forms a network cell 11c and is capable of communicating with wireless terminals 20c and 20d within the network cell 11c.
 この状態で、各無線端末20が、自律的に接続先の無線基地局を決定すると、例えば、図16に示すように、特定の無線基地局10aに、接続する無線端末20a、20b、20cが集中してしまう場合がある。さらに、無線端末20fが、新たに通信を開始するときに、例えば、より近くにある無線基地局10aに接続してしまうと、無線通信システム1全体の無線リソースの利用効率が、さらに低下してしまう恐れがある。 In this state, when each wireless terminal 20 autonomously determines the wireless base station to which it will connect, for example, as shown in FIG. You may become concentrated. Furthermore, if the wireless terminal 20f connects to a nearby wireless base station 10a when starting a new communication, for example, the wireless resource usage efficiency of the entire wireless communication system 1 will further decrease. There is a risk of it being stored away.
 そこで、本実施形態では、無線通信システム全体の無線リソースの利用効率を改善する無線通信方法、及び無線通信システムについて説明する。 Therefore, in this embodiment, a wireless communication method and a wireless communication system that improve the utilization efficiency of wireless resources of the entire wireless communication system will be described.
 <システム構成>
 図1は、本実施形態に係る無線通信システムのシステム構成の例を示す図である。図1に示すように、無線通信システム100は、互いに異なるネットワークセルを形成する複数の無線基地局110a、110b、110c、110d、110e、・・・を含む。例えば、無線基地局110aは、ネットワークセル111aを形成しており、ネットワークセル111a内にある無線端末120bと通信可能である。また、無線基地局110bは、ネットワークセル111bを形成しており、ネットワークセル111b内にある無線端末120aと通信可能である。同様に、無線基地局110cはネットワークセル111cを形成しており、ネットワークセル111c内にある無線端末120b、120c、120dと通信可能である。さらに、無線基地局110dは、ネットワークセル111dを形成しており、無線基地局110eは、ネットワークセル111eを形成している。
<System configuration>
FIG. 1 is a diagram showing an example of the system configuration of a wireless communication system according to this embodiment. As shown in FIG. 1, the wireless communication system 100 includes a plurality of wireless base stations 110a, 110b, 110c, 110d, 110e, . . . that form mutually different network cells. For example, the wireless base station 110a forms a network cell 111a and can communicate with a wireless terminal 120b located within the network cell 111a. Furthermore, the wireless base station 110b forms a network cell 111b, and is capable of communicating with a wireless terminal 120a located within the network cell 111b. Similarly, the wireless base station 110c forms a network cell 111c and can communicate with wireless terminals 120b, 120c, and 120d within the network cell 111c. Furthermore, the radio base station 110d forms a network cell 111d, and the radio base station 110e forms a network cell 111e.
 なお、以下の説明において、無線基地局110a、110b、110c、110d、110e、・・・のうち、任意の無線基地局を示す場合、「無線基地局110」を用いる。また、無線端末120a、120b、120c、120dのうち、任意の無線端末を示す場合、「無線端末120」を用いる。図1に示した無線基地局110の数、及び無線端末120の数は一例であり、他の数であってよい。 In the following description, "wireless base station 110" is used to refer to any wireless base station among the wireless base stations 110a, 110b, 110c, 110d, 110e, . Further, when referring to any wireless terminal among the wireless terminals 120a, 120b, 120c, and 120d, "wireless terminal 120" is used. The number of wireless base stations 110 and the number of wireless terminals 120 shown in FIG. 1 are merely examples, and other numbers may be used.
 複数の無線基地局110は、例えば、図2に示すように、ブロックチェーンネットワーク200に参加するノードとしても機能し、複数の無線基地局110が同じブロックチェーンを共有している。ここで、ブロックチェーンネットワーク200は、各ノードが、サーバ等を介さずに、他のノードと対等にデータを送受信可能なP2P(Peer-to-Peer)ネットワーク(分散型のネットワーク)である。ブロックチェーンは、P2Pネットワークに参加する複数のノードが、2つの当事者間の取引等を検証可能かつ恒久的な方法で記録する分散型台帳である。なお、ブロックチェーンネットワーク30には、無線基地局110以外のノード(例えば、他のコンピュータ、無線端末等)が含まれていてもよい。 For example, as shown in FIG. 2, the multiple wireless base stations 110 also function as nodes that participate in the blockchain network 200, and the multiple wireless base stations 110 share the same blockchain. Here, the blockchain network 200 is a P2P (Peer-to-Peer) network (distributed network) in which each node can send and receive data equally with other nodes without using a server or the like. A blockchain is a distributed ledger in which multiple nodes participating in a P2P network record transactions, etc. between two parties in a verifiable and permanent manner. Note that the blockchain network 30 may include nodes other than the wireless base station 110 (for example, other computers, wireless terminals, etc.).
 各無線基地局110は、無線端末120との接続を、ブロックチェーンを利用して管理する。例えば、各無線基地局110は、図15で説明したトランザクションデータ2等を、複数の無線基地局110が共有するブロックチェーンに記録して管理する。これにより、無線基地局110は、ブロックチェーンを参照して、他の無線基地局110に関する情報を取得することができる。 Each wireless base station 110 manages connections with wireless terminals 120 using blockchain. For example, each wireless base station 110 records and manages transaction data 2 and the like described in FIG. 15 in a blockchain shared by multiple wireless base stations 110. Thereby, the wireless base station 110 can obtain information regarding other wireless base stations 110 by referring to the blockchain.
 (処理の概要)
 ここで、図1に戻り、本実施形態に係る無線通信システム100の処理の概要について説明する。
(Processing overview)
Now, returning to FIG. 1, an overview of the processing of the wireless communication system 100 according to this embodiment will be explained.
 各無線基地局110は、自局に接続するための接続条件を、自局のネットワークセル111内にある無線端末120にブロードキャスト送信する。この接続条件には、例えば、提供する通信品質、及び無線基地局110に接続するための接続コスト(接続料金)等の情報が含まれる。 Each wireless base station 110 broadcasts connection conditions for connecting to the wireless base station 110 to the wireless terminals 120 within the network cell 111 of the wireless base station. The connection conditions include, for example, information such as the communication quality to be provided and the connection cost (connection fee) for connecting to the wireless base station 110.
 通信を開始する無線端末120は、周辺の無線基地局110が送信する接続条件を受信し、接続条件に基づいて、接続を要求する無線基地局110を決定する。例えば、無線端末120は、接続条件を受信した1つ以上の無線基地局110のうち、無線端末120が要求する通信品質を満たしており、かつ接続コストが最も低い無線基地局110を、接続を要求する無線基地局110に決定する。 A wireless terminal 120 that starts communication receives connection conditions transmitted by nearby wireless base stations 110, and determines a wireless base station 110 with which to request connection based on the connection conditions. For example, the wireless terminal 120 selects a wireless base station 110 that satisfies the communication quality required by the wireless terminal 120 and has the lowest connection cost among the one or more wireless base stations 110 that have received connection conditions. The wireless base station 110 to be requested is determined.
 しかし、この方法だけでは、図15、16で説明した無線通信システム1と同様に、特定の無線基地局110にトラフィックが集中してしまう場合がある。例えば、図1において、無線端末120aは、無線基地局110に接続しており、無線端末120c、120dは、無線基地局110cに接続しているものとする。 However, if only this method is used, traffic may concentrate on a specific wireless base station 110, similar to the wireless communication system 1 described in FIGS. 15 and 16. For example, in FIG. 1, assume that wireless terminal 120a is connected to wireless base station 110, and wireless terminals 120c and 120d are connected to wireless base station 110c.
 この状態で、無線端末120bが新たに通信を開始する場合、従来の技術では、無線基地局110cの混雑度を下げるために、無線端末120bが、より混雑度が低い無線基地局110aに接続するように制御することは困難である。例えば、図15、16で説明した無線通信方法では、図1の無線端末120bを、より混雑度が低い無線基地局110aに優先的に接続させることはできない。 In this state, when the wireless terminal 120b starts a new communication, in order to reduce the congestion level of the wireless base station 110c, the wireless terminal 120b connects to the less congested wireless base station 110a. It is difficult to control as such. For example, in the wireless communication method described in FIGS. 15 and 16, it is not possible to preferentially connect the wireless terminal 120b in FIG. 1 to the wireless base station 110a, which is less congested.
 また、無線通信システム1を統括する制御局の集中制御により、全ての無線端末120に対して、最適な接続先を制御することは、無線基地局110、及び無線端末120の数が増えると処理量が膨大となるため現実的ではない。 In addition, controlling the optimal connection destination for all wireless terminals 120 through centralized control of the control station that oversees the wireless communication system 1 becomes difficult as the number of wireless base stations 110 and wireless terminals 120 increases. This is not realistic as the amount would be huge.
 そこで、本実施形態に係る無線基地局110は、複数の無線基地局110が共有するブロックチェーンの台帳情報を用いて、他の無線基地局110の正規化した混雑度合いを算出する機能を有している。 Therefore, the wireless base station 110 according to the present embodiment has a function of calculating the normalized congestion degree of other wireless base stations 110 using blockchain ledger information shared by a plurality of wireless base stations 110. ing.
 一例として、無線基地局110は、ブロックチェーンから他の無線基地局110の最大通信品質(例えば、最大スループット)と、他の無線基地局110が収容する無線端末の数を取得する。また、無線基地局110は、自局の最大通信品質と、他の無線基地局110の最大通信品質との比により、他の無線基地局110が収容する無線端末の数を正規化して、正規化した混雑度合いを算出する。 As an example, the wireless base station 110 obtains the maximum communication quality (for example, maximum throughput) of another wireless base station 110 and the number of wireless terminals accommodated by the other wireless base station 110 from the blockchain. Furthermore, the radio base station 110 normalizes the number of radio terminals accommodated by the other radio base station 110 based on the ratio of the maximum communication quality of its own station and the maximum communication quality of the other radio base station 110. Calculate the degree of congestion.
 別の一例として、無線基地局110は、ブロックチェーンから他の無線基地局110の平均通信品質と、他の無線基地局110が収容する無線端末の数を取得する。また、無線基地局110は、自局が収容する無線端末の数と他の無線基地局110が収容する無線端末の数との比により、他の無線基地局110の平均通信品質を正規化して、正規化した混雑度合いを算出してもよい。 As another example, the wireless base station 110 obtains the average communication quality of other wireless base stations 110 and the number of wireless terminals accommodated by the other wireless base stations 110 from the blockchain. Furthermore, the radio base station 110 normalizes the average communication quality of other radio base stations 110 based on the ratio of the number of radio terminals accommodated by the radio base station 110 and the number of radio terminals accommodated by the other radio base stations 110. , a normalized degree of congestion may be calculated.
 また、無線基地局110は、自局と他の無線基地局110の正規化した混雑度合いに基づいて、自局の接続コストを制御する機能を有している。例えば、無線基地局110は、自局より他の無線基地局110の正規化した混雑度合いが高い場合、自局の接続コストを下げる。或いは、無線基地局110は、自局より他の無線基地局110の正規化した混雑度合いが低い場合、自局の接続コストを上げる。 Furthermore, the wireless base station 110 has a function of controlling the connection cost of the wireless base station 110 based on the normalized degree of congestion between the wireless base station 110 and other wireless base stations 110. For example, the wireless base station 110 lowers the connection cost of the wireless base station 110 when the normalized degree of congestion of another wireless base station 110 is higher than that of the wireless base station 110. Alternatively, the wireless base station 110 increases the connection cost of the wireless base station 110 when the normalized degree of congestion of another wireless base station 110 is lower than that of the wireless base station 110.
 これにより、本実施形態に係る無線通信システム100は、例えば、図1において、新たに通信を開始する無線端末120bが、無線基地局110cより接続コストが低い無線基地局110aを、接続先として優先的に選択するように制御することができる。 As a result, in the wireless communication system 100 according to the present embodiment, for example, in FIG. 1, the wireless terminal 120b newly starting communication prioritizes the wireless base station 110a, which has a lower connection cost than the wireless base station 110c, as a connection destination. It can be controlled to select the
 なお、無線基地局110が、正規化した混雑度合いに代えて、例えば、自局、及び他の無線基地局110が収容する無線端末の数に基づいて、自局の接続コストを制御する方法も考えられる。しかし、この方法では、無線基地局110ごとの性能(通信品質)の差を考慮できないため、例えば、通信品質が高い無線基地局110の利用効率の低下する、或いは、無線端末120の通信品質に差が発生する等の問題がある。 Note that there is also a method in which the wireless base station 110 controls the connection cost of its own station, for example, based on the number of wireless terminals accommodated by the wireless base station 110 and other wireless base stations 110 instead of the normalized degree of congestion. Conceivable. However, this method cannot take into account the difference in performance (communication quality) of each radio base station 110, so for example, the usage efficiency of the radio base station 110 with high communication quality may decrease, or the communication quality of the radio terminal 120 may be affected. There are problems such as differences occurring.
 一方、本実施形態に係る無線通信システム100では、正規化した混雑度合いに基づいて、自局の接続コストを制御するので、通信品質が高い無線基地局110の利用効率の低下を抑制するとともに、無線端末120の通信品質を平滑化することができる。 On the other hand, in the wireless communication system 100 according to the present embodiment, since the connection cost of the own station is controlled based on the normalized degree of congestion, a decrease in the utilization efficiency of the wireless base station 110 with high communication quality is suppressed, and Communication quality of wireless terminal 120 can be smoothed.
 <機能構成>
 続いて、本実施形態に係る無線基地局110、及び無線端末120の機能構成について説明する。
<Functional configuration>
Next, the functional configurations of the wireless base station 110 and the wireless terminal 120 according to this embodiment will be described.
 (無線基地局の機能構成)
 図3は、本実施形態に係る無線基地局の機能構成の例を示す図である。無線基地局110は、例えば、コンピュータの構成を備え、当該コンピュータが所定のプログラムを実行することにより、無線通信部301、送信部302、管理部303、算出部304、変更部305、記憶部306、及び有線通信部307等を実現している。なお、上記の各機能構成のうち、少なくとも一部は、ハードウェアによって実現されるものであってもよい。
(Functional configuration of wireless base station)
FIG. 3 is a diagram showing an example of the functional configuration of the wireless base station according to the present embodiment. The wireless base station 110 includes, for example, a computer configuration, and when the computer executes a predetermined program, a wireless communication section 301, a transmission section 302, a management section 303, a calculation section 304, a change section 305, and a storage section 306 are configured. , a wired communication unit 307, etc. Note that at least some of the above functional configurations may be realized by hardware.
 無線通信部301は、無線基地局110との無線通信が可能なネットワークセル111を形成し、無線基地局110に接続する無線端末120と無線通信を行う無線通信処理を実行する。 The wireless communication unit 301 forms a network cell 111 capable of wireless communication with the wireless base station 110, and executes wireless communication processing to perform wireless communication with a wireless terminal 120 connected to the wireless base station 110.
 送信部302は、無線基地局110に接続するための接続条件を、無線基地局110のネットワークセル111内にある無線端末120にブロードキャスト送信する送信処理を実行する。この接続条件には、例えば、無線基地局110が提供する通信品質、及び無線基地局110に接続するための接続コスト(接続料金)等の情報が含まれる。 The transmitting unit 302 executes a transmission process of broadcasting connection conditions for connecting to the wireless base station 110 to the wireless terminals 120 within the network cell 111 of the wireless base station 110. The connection conditions include, for example, information such as the communication quality provided by the wireless base station 110 and the connection cost (connection fee) for connecting to the wireless base station 110.
 管理部303は、送信部302が送信する接続条件に基づいて無線基地局110に接続する無線端末120の情報を、複数の無線基地局110が共有するブロックチェーンを用いて管理する管理処理を実行する。例えば、管理部303は、無線基地局110に接続を要求する無線端末120と、図15のステップS1~S6で説明した一連の処理を実行することにより、他の無線基地局110と共有するブロックチェーン320に、無線端末120との接続情報を記録する。 The management unit 303 executes management processing for managing information on the wireless terminals 120 that connect to the wireless base station 110 based on the connection conditions transmitted by the transmitting unit 302 using a blockchain shared by a plurality of wireless base stations 110. do. For example, the management unit 303 can connect the wireless terminal 120 that requests connection to the wireless base station 110 and the blocks shared with other wireless base stations 110 by executing the series of processes described in steps S1 to S6 in FIG. 15. Connection information with the wireless terminal 120 is recorded in the chain 320.
 また、管理部303は、複数の無線基地局110が共有するブロックチェーンのノードとして、ブロックチェーンを管理する様々な処理を実行する。他の無線基地局110においても、同様の処理を実行することにより、ブロックチェーン320には、無線通信システム100内の各無線基地局110に接続する無線端末120の情報が記録される。従って、無線基地局110は、ブロックチェーン320を参照することにより、他の無線基地局110に接続する無線端末120の情報、他の無線基地局110が提供する無線通信ネットワークの通信品質、及び接続コスト等の情報を取得することができる。 Furthermore, the management unit 303 executes various processes to manage the blockchain as a node of the blockchain shared by the plurality of wireless base stations 110. By executing similar processing in other wireless base stations 110, information on wireless terminals 120 connected to each wireless base station 110 in wireless communication system 100 is recorded in blockchain 320. Therefore, by referring to the blockchain 320, the wireless base station 110 can obtain information on the wireless terminals 120 that connect to other wireless base stations 110, the communication quality of the wireless communication network provided by the other wireless base stations 110, and the connection. Information such as costs can be obtained.
 算出部304は、ブロックチェーン320の台帳情報を用いて、他の無線基地局110の正規化した混雑度合いを算出する算出処理を実行する。なお、算出部304が実行する算出処理の具体的な処理内容については、複数の実施例を例示して後述する。 The calculation unit 304 uses the ledger information of the blockchain 320 to execute calculation processing to calculate the normalized congestion degree of other wireless base stations 110. Note that the specific processing contents of the calculation process executed by the calculation unit 304 will be described later by illustrating a plurality of embodiments.
 変更部305は、算出部304が算出した正規化した混雑度合いに基づいて、無線基地局110の接続条件を変更する。例えば、変更部305は、自局(無線基地局110)が混雑している場合、自局の接続コストを上げる。また、変更部305自局が混雑していない場合、自局の接続コストを下げる。 The changing unit 305 changes the connection condition of the wireless base station 110 based on the normalized degree of congestion calculated by the calculating unit 304. For example, when the own station (wireless base station 110) is congested, the changing unit 305 increases the connection cost of the own station. Furthermore, when the changing unit 305's own station is not congested, the connection cost of the own station is lowered.
 ここで、接続コストは、無線端末120が、無線基地局110に接続するためのコスト(例えば、接続料金)であり、無線端末120は、例えば、必要な通信品質を満たしている無線基地局110のうち、接続コストが最も低い無線基地局110に優先的に接続する。 Here, the connection cost is the cost (for example, connection fee) for the wireless terminal 120 to connect to the wireless base station 110, and the wireless terminal 120, for example, Among them, the wireless base station 110 with the lowest connection cost is connected preferentially.
 なお、無線基地局110と無線端末120との間の距離が短い場合、送信電力を低減可能であり、無線基地局110と120との間の通信速度が速い場合、通信時間を短縮可能である。従って、無線端末120は、接続コストに加えて、無線基地局110からの受信信号強度、又は通信速度等を加味して、接続する無線基地局110を決定してもよい。 Note that when the distance between the wireless base station 110 and the wireless terminal 120 is short, the transmission power can be reduced, and when the communication speed between the wireless base stations 110 and 120 is high, the communication time can be shortened. . Therefore, the wireless terminal 120 may decide which wireless base station 110 to connect to by taking into account the strength of the received signal from the wireless base station 110, the communication speed, etc. in addition to the connection cost.
 なお、送信部302、管理部303、算出部304、及び変更部305等は、例えば、無線通信部301による無線通信を制御する通信制御部310に含まれる。 Note that the transmitting unit 302, the managing unit 303, the calculating unit 304, the changing unit 305, and the like are included in a communication control unit 310 that controls wireless communication by the wireless communication unit 301, for example.
 記憶部306は、例えば、無線基地局110が備えるストレージデバイス等に、ブロックチェーン320を含む、様々なデータ、情報、及びプログラム等を記憶する記憶処理を実行する。 The storage unit 306 executes storage processing to store various data, information, programs, etc., including the blockchain 320, in a storage device included in the wireless base station 110, for example.
 有線通信部307は、無線基地局110を、例えば、有線の通信ネットワークに接続し、例えば、図2に示すような、ブロックチェーンネットワーク200に関する通信を実行する。 The wired communication unit 307 connects the wireless base station 110 to, for example, a wired communication network, and executes communication related to the blockchain network 200 as shown in FIG. 2, for example.
 (無線端末の機能構成)
 図4は、本実施形態に係る無線端末の機能構成の例を示す図である。無線端末120は、例えば、コンピュータの構成を備え、当該コンピュータが所定のプログラムを実行することにより、無線通信部401、受信部402、決定部403、接続制御部404、及び記憶部405等を実現している。なお、上記の各機能構成のうち、少なくとも一部は、ハードウェアによって実現されるものであってもよい。
(Functional configuration of wireless terminal)
FIG. 4 is a diagram illustrating an example of the functional configuration of a wireless terminal according to this embodiment. The wireless terminal 120 has, for example, a computer configuration, and the computer executes a predetermined program to realize a wireless communication section 401, a reception section 402, a determination section 403, a connection control section 404, a storage section 405, etc. are doing. Note that at least some of the above functional configurations may be realized by hardware.
 無線通信部401は、無線通信で無線基地局110に接続し、データを送受信する無線通信処理を実行する。受信部402は、無線通信部401を用いて、無線基地局110が送信する接続条件を受信する受信処理を実行する。 The wireless communication unit 401 connects to the wireless base station 110 by wireless communication and executes wireless communication processing to transmit and receive data. The receiving unit 402 uses the wireless communication unit 401 to execute a reception process of receiving the connection conditions transmitted by the wireless base station 110.
 決定部403は、受信部402が受信した接続条件に基づいて、無線端末120が接続を要求する無線基地局110を決定する。例えば、無線端末120は、例えば、必要な通信品質を満たしている無線基地局110のうち、接続コストが最も低い無線基地局110に優先的に接続する。なお、無線端末120は、無線基地局110と間の距離が短い場合、送信電力を低減可能であり、無線基地局110と無線端末120との間の通信速度が速い場合、通信時間を短縮可能である。従って、無線端末120は、無線基地局110の通信品質と、接続コストとにより、接続先の無線基地局110を決定することが望ましい。 The determining unit 403 determines the wireless base station 110 to which the wireless terminal 120 requests connection, based on the connection conditions received by the receiving unit 402. For example, the wireless terminal 120 preferentially connects to the wireless base station 110 with the lowest connection cost among the wireless base stations 110 that satisfy the required communication quality. Note that when the distance between the wireless terminal 120 and the wireless base station 110 is short, the transmission power can be reduced, and when the communication speed between the wireless base station 110 and the wireless terminal 120 is high, the communication time can be shortened. It is. Therefore, it is preferable that the wireless terminal 120 determines the wireless base station 110 to be connected to based on the communication quality of the wireless base station 110 and the connection cost.
 接続制御部404は、決定部403が決定した接続先の無線基地局110に接続する接続処理を実行する。例えば、接続制御部404は、図15のステップS1で説明した接続処理において、接続先の無線基地局110に接続要求を送信し、提供される無線通信サービスに関する合意等を行う。 The connection control unit 404 executes a connection process to connect to the connection destination wireless base station 110 determined by the determination unit 403. For example, in the connection process described in step S1 of FIG. 15, the connection control unit 404 transmits a connection request to the wireless base station 110 to be connected, and makes an agreement regarding the wireless communication service to be provided.
 なお、受信部402、決定部403、及び接続制御部404等は、例えば、無線通信部401による無線通信を制御する通信制御部410に含まれる。 Note that the receiving unit 402, the determining unit 403, the connection control unit 404, and the like are included in a communication control unit 410 that controls wireless communication by the wireless communication unit 401, for example.
 記憶部405は、例えば、無線端末120が備えるストレージデバイス等に、無線通信に必要な様々なデータ、情報、及びプログラム等を記憶する記憶処理を実行する。 The storage unit 405 executes storage processing for storing various data, information, programs, etc. necessary for wireless communication, for example, in a storage device included in the wireless terminal 120.
 <処理の流れ>
 続いて、本実施形態に係る無線通信方法の処理の流れについて、複数の実施例を例示して説明する。
<Processing flow>
Next, the flow of processing of the wireless communication method according to the present embodiment will be described by illustrating a plurality of examples.
 (無線基地局の処理)
 図5は、本実施形態に係る無線基地局の処理の例を示すフローチャートである。この処理は、図3で説明した無線基地局110が実行する処理の全体の流れを示している。
(Wireless base station processing)
FIG. 5 is a flowchart illustrating an example of processing by the wireless base station according to the present embodiment. This process shows the overall flow of the process executed by the wireless base station 110 described in FIG. 3.
 ステップS501において、無線基地局110の算出部304は、自局(無線基地局110)に無線端末120が遷移する可能性がある、1つ以上の他の無線基地局110を特定する。 In step S501, the calculation unit 304 of the wireless base station 110 identifies one or more other wireless base stations 110 to which the wireless terminal 120 may transition to its own station (wireless base station 110).
 ステップS502において、算出部304は、ブロックチェーン320の台帳情報を用いて、ステップS501で特定した1つ以上の他の無線基地局110の正規化した混雑度合いを算出する。ここで、正規化した混雑度合いは、一例として、無線基地局110の最大通信品質と、他の無線基地局の最大通信品質との比により、他の無線基地局110が収容する無線端末の数を正規化した無線端末の数(正規化無線端末数)を適用することができる。別の一例として、正規化した混雑度合いは、無線基地局110が収容する無線端末の数と、他の無線基地局110が収容する無線端末数との比により、他の無線基地局110の平均通信品質を正規化した通信品質(正規化通信品質)を適用することができる。なお、正規化無線端末数、及び正規化通信品質の算出方法については後述する。 In step S502, the calculation unit 304 uses the ledger information of the blockchain 320 to calculate the normalized congestion degree of one or more other wireless base stations 110 identified in step S501. Here, the normalized degree of congestion is, for example, the number of wireless terminals accommodated by the other wireless base station 110, based on the ratio of the maximum communication quality of the wireless base station 110 to the maximum communication quality of other wireless base stations. The number of wireless terminals that is normalized (normalized number of wireless terminals) can be applied. As another example, the normalized degree of congestion is calculated based on the ratio of the number of wireless terminals accommodated by the wireless base station 110 and the number of wireless terminals accommodated by the other wireless base stations 110. Communication quality obtained by normalizing communication quality (normalized communication quality) can be applied. Note that the method for calculating the normalized number of wireless terminals and the normalized communication quality will be described later.
 ステップS503において、変更部305は、算出部304が算出した正規化した混雑度合いに基づいて、自局(無線基地局110)の接続条件を変更する。例えば、変更部305は、自局が、他の無線基地局110より混雑している場合、自局の接続コストを上げる。なお、他の無線基地局110が複数ある場合、変更部305は、自局より混雑している他の無線基地局110の数が、自局より混雑していない他の無線基地局110の数より多い場合、自局が、他の無線基地局110より混雑していると判断してもよい。 In step S503, the changing unit 305 changes the connection condition of its own station (wireless base station 110) based on the normalized degree of congestion calculated by the calculating unit 304. For example, if the own station is more congested than other radio base stations 110, the changing unit 305 increases the connection cost of the own station. Note that when there are multiple other radio base stations 110, the changing unit 305 changes the number of other radio base stations 110 that are more congested than the own station to the number of other radio base stations 110 that are less congested than the own station. If the number of wireless base stations 110 is more than that, it may be determined that the local station is more congested than other wireless base stations 110.
 また、変更部305は、自局が、他の無線基地局110より混雑していない場合、自局の接続コストを下げる。なお、他の無線基地局110が複数ある場合、変更部305は、自局より混雑している他の無線基地局110の数が、自局より混雑していない他の無線基地局110の数より少ない場合、自局が、他の無線基地局110より混雑していないと判断してもよい。 Furthermore, the changing unit 305 lowers the connection cost of the own station when the own station is less congested than the other wireless base stations 110. Note that when there are multiple other radio base stations 110, the changing unit 305 changes the number of other radio base stations 110 that are more congested than the own station to the number of other radio base stations 110 that are less congested than the own station. If the number is less, it may be determined that the local station is less congested than other wireless base stations 110.
 ステップS504において、送信部302は、無線通信部301を用いて、接続条件をブロードキャスト送信する。例えば、送信部302は、自局(無線基地局110)が提供する無線通信の通信品質、及び接続コスト等の情報を含む接続条件を含む報知メッセージを、無線通信で定期的に送信する。 In step S504, the transmitter 302 uses the wireless communication unit 301 to broadcast the connection conditions. For example, the transmitting unit 302 periodically transmits, by wireless communication, a notification message that includes connection conditions including information such as communication quality of wireless communication provided by the own station (wireless base station 110) and connection cost.
 ステップS505において、管理部303は、無線通信部301が、無線端末120から接続要求を受信したか否かを判断し、接続要求を受信した場合、ステップS506以降の処理を実行する。 In step S505, the management unit 303 determines whether the wireless communication unit 301 has received a connection request from the wireless terminal 120, and if it has received a connection request, executes the processes from step S506 onwards.
 ステップS506に移行すると、管理部303は、ブロックチェーン320を用いて、例えば、図15のステップS1~S6で説明した接続処理を実行する。 When proceeding to step S506, the management unit 303 uses the blockchain 320 to execute, for example, the connection process described in steps S1 to S6 of FIG. 15.
 ステップS507において、管理部303は、無線端末120との接続契約が成立したか否かを判断し、接続契約が成立した場合、処理をステップS508に移行させる。一方、接続契約が成立していない場合、管理部303は、処理をステップS504に戻す。 In step S507, the management unit 303 determines whether a connection contract with the wireless terminal 120 has been established, and if the connection contract has been established, the process moves to step S508. On the other hand, if the connection contract has not been established, the management unit 303 returns the process to step S504.
 ステップS508に移行すると、無線基地局110は、接続要求を送信した無線端末120と通信を開始し、処理をステップS504に戻す。また、ステップS509において、無線基地局110は、通信が完了すると、処理をステップS504に戻す。 When proceeding to step S508, the wireless base station 110 starts communication with the wireless terminal 120 that sent the connection request, and returns the process to step S504. Furthermore, in step S509, upon completion of communication, the wireless base station 110 returns the process to step S504.
 なお、算出部304は、例えば、ステップS507~S511の処理と並行して、ステップS510の処理を実行する。 Note that, for example, the calculation unit 304 executes the process of step S510 in parallel with the processes of steps S507 to S511.
 ステップS510において、算出部304は、前回、ステップS501~S503の処理500を実行してから、所定の時間を経過したか否かを判断する。ここで、所定の時間は、予め設定された接続コストの更新間隔である。所定の時間を経過した場合、算出部304は、ステップS501~S503の処理500を再び実行する。所定の時間を経過していない場合、算出部304は、処理をステップS504に戻すことにより、所定の時間を経過するまで待機する。 In step S510, the calculation unit 304 determines whether a predetermined time has elapsed since the process 500 of steps S501 to S503 was last executed. Here, the predetermined time is a preset connection cost update interval. If the predetermined time has elapsed, the calculation unit 304 executes the process 500 of steps S501 to S503 again. If the predetermined time has not elapsed, the calculation unit 304 returns the process to step S504 and waits until the predetermined time elapses.
 上記の処理により、無線基地局110は、周辺の他の無線基地局110の正規化した混雑度合いに基づいて、無線基地局110の接続条件を変更することができる。また、図5の処理を、無線通信システム100に含まれる複数の無線基地局110の各々が実行することにより、無線通信システム100全体の無線リソースの利用効率を改善することができる。 Through the above process, the wireless base station 110 can change the connection conditions of the wireless base station 110 based on the normalized congestion degree of other nearby wireless base stations 110. Further, by each of the plurality of radio base stations 110 included in the radio communication system 100 executing the process shown in FIG. 5, it is possible to improve the radio resource usage efficiency of the entire radio communication system 100.
 (無線端末の処理)
 図6は、本実施形態に係る無線端末の処理の流れを示すフローチャートである。この処理は、図4で説明した無線端末120が、無線通信を開始するときに実行する処理の例を示している。
(Wireless terminal processing)
FIG. 6 is a flowchart showing the process flow of the wireless terminal according to this embodiment. This process is an example of the process that the wireless terminal 120 described in FIG. 4 executes when starting wireless communication.
 ステップS601において、受信部402は、無線基地局110がブロードキャスト送信する接続条件を受信する。この接続条件には、前述したように、無線基地局110が提供する無線通信の通信品質、及び接続コスト等の情報が含まれる。 In step S601, the receiving unit 402 receives the connection conditions broadcasted by the wireless base station 110. As described above, this connection condition includes information such as the communication quality of wireless communication provided by the wireless base station 110 and the connection cost.
 ステップS602において、決定部403は、受信部402が受信した接続条件に基づいて、無線端末120が接続を要求する無線基地局110を決定する。例えば、決定部403は、必要な通信品質を満たす無線基地局110のうち、最も接続コストが低い無線基地局110を、接続を要求する無線基地局110に決定してもよい。また、接続コストが等しい複数の無線基地局110がある場合、決定部403は、最も通信品質が高い無線基地局110を、接続を要求する無線基地局110に決定してもよい。 In step S602, the determining unit 403 determines the wireless base station 110 to which the wireless terminal 120 requests connection, based on the connection conditions received by the receiving unit 402. For example, the determining unit 403 may determine the wireless base station 110 with the lowest connection cost among the wireless base stations 110 that satisfy the required communication quality as the wireless base station 110 that requests connection. Furthermore, when there are multiple wireless base stations 110 with the same connection cost, the determining unit 403 may determine the wireless base station 110 with the highest communication quality as the wireless base station 110 requesting connection.
 ステップS603において、接続制御部404は、決定部403が決定した無線基地局110に、無線通信の接続を要求する接続要求を送信する。この接続要求を受信した無線基地局110は、図5のステップS506の処理を実行する。 In step S603, the connection control unit 404 transmits a connection request requesting a wireless communication connection to the wireless base station 110 determined by the determination unit 403. The wireless base station 110 that has received this connection request executes the process of step S506 in FIG. 5.
 ステップS604において、接続制御部404は、無線基地局110との接続契約が成立したか否かを判断し、接続契約が成立した場合、処理をステップS605に移行させる。一方、接続契約が成立していない場合、無線端末120は、図6の処理を終了する。 In step S604, the connection control unit 404 determines whether a connection contract with the wireless base station 110 has been established, and if the connection contract has been established, the process moves to step S605. On the other hand, if the connection contract has not been established, the wireless terminal 120 ends the process of FIG.
 ステップS605に移行すると、無線端末120は、接続先の無線基地局110と通信を開始し、ステップS606において、通信が完了すると、図6の処理を終了する。 In step S605, the wireless terminal 120 starts communication with the wireless base station 110 to which it is connected, and in step S606, when the communication is completed, the process in FIG. 6 ends.
 上記の処理により、無線端末120は、周辺にある無線基地局110のうち、接続コストがより低い無線基地局110に優先的に接続することができる。 Through the above processing, the wireless terminal 120 can preferentially connect to a wireless base station 110 with a lower connection cost among the nearby wireless base stations 110.
 なお、無線端末120は、通信中に通信品質が劣化した場合、図6の処理を再び実行して、新たな無線基地局110に接続先を切り替えてもよい。また、無線端末120は、通信中に無線基地局110の接続コストが上がった場合、図6の処理を再び実行して、新たな無線基地局110に接続先を切り替えてもよい。 Note that if the communication quality deteriorates during communication, the wireless terminal 120 may execute the process in FIG. 6 again and switch the connection destination to a new wireless base station 110. Furthermore, if the connection cost of the wireless base station 110 increases during communication, the wireless terminal 120 may execute the process in FIG. 6 again to switch the connection destination to a new wireless base station 110.
 <接続条件の変更処理>
 続いて、無線基地局110が実行する接続条件の変更処理について、具体的な実施例を例示して説明する。
<Connection condition change process>
Next, a connection condition changing process executed by the wireless base station 110 will be described by illustrating a specific example.
 [実施例1]
 (算出部の機能構成)
 図7は、実施例1に係る算出部の機能構成の例を示す図である。算出部304は、例えば、特定部701、情報取得部702、及び正規化部703等を含む。
[Example 1]
(Functional configuration of calculation section)
FIG. 7 is a diagram illustrating an example of the functional configuration of the calculation unit according to the first embodiment. The calculation unit 304 includes, for example, a specification unit 701, an information acquisition unit 702, a normalization unit 703, and the like.
 特定部701は、自局(無線基地局110)に無線端末120が遷移する可能性がある1つ以上の他の無線基地局110を特定する特定処理を実行する。例えば、特定部701は、ブロックチェーン320から、無線端末120の接続先の無線基地局110の遷移情報を取得し、無線端末120が自局に遷移したことがある他の無線基地局110を特定する。 The identifying unit 701 executes identifying processing to identify one or more other wireless base stations 110 to which the wireless terminal 120 may transition to the own station (wireless base station 110). For example, the identifying unit 701 acquires transition information of the wireless base station 110 to which the wireless terminal 120 is connected from the blockchain 320, and identifies other wireless base stations 110 to which the wireless terminal 120 has transitioned. do.
 具体的な例として、図1において、無線基地局110aの特定部701は、ブロックチェーン320に、無線端末120が無線基地局110bに接続した後に無線基地局110aに接続した履歴があるか否かを判断する。当該履歴がある場合、無線基地局110aの特定部701は、無線基地局110bを、自局に無線端末120が遷移する可能性がある無線基地局110と判断する。同様の処理を他の無線基地局110c、110d、110e、・・・にも実行することにより、無線基地局110aの特定部701は、無線基地局110aに隣接又は近接する他の無線基地局110b、110cを特定することができる。 As a specific example, in FIG. 1, the identification unit 701 of the wireless base station 110a determines whether there is a history in the blockchain 320 of the wireless terminal 120 connecting to the wireless base station 110a after connecting to the wireless base station 110b. to judge. If there is such a history, the identifying unit 701 of the wireless base station 110a determines the wireless base station 110b as the wireless base station 110 to which the wireless terminal 120 may transfer. By performing similar processing on other radio base stations 110c, 110d, 110e, . , 110c can be specified.
 情報取得部702は、ブロックチェーン320から、特定部701が特定した他の無線基地局110の最大通信品質と、当該他の無線基地局110が収容する無線端末120の数(以下、端末収容数と呼ぶ)とを取得する。他の無線基地局110の最大通信品質は、例えば、他の無線基地局110が提供する無線通信のスループットの最大値等を適用することができる。また、他の無線基地局110の端末収容数は、例えば、現在、他の無線基地局110に接続している無線端末120の数である。 The information acquisition unit 702 obtains from the blockchain 320 the maximum communication quality of the other wireless base station 110 identified by the identifying unit 701 and the number of wireless terminals 120 accommodated by the other wireless base station 110 (hereinafter referred to as the number of terminals accommodated). ). As the maximum communication quality of the other wireless base station 110, for example, the maximum value of wireless communication throughput provided by the other wireless base station 110 can be applied. Further, the number of terminals accommodated by the other wireless base station 110 is, for example, the number of wireless terminals 120 currently connected to the other wireless base station 110.
 正規化部703は、例えば、自局(無線基地局110)の最大通信品質と、他の無線基地局110の最大通信品質との比により、他の無線基地局110の端末収容数を正規化した正規化端末収容数を算出する。例えば、正規化部703は、次の(式1)により、正規化端末収容数を算出する。 The normalization unit 703 normalizes the number of terminals accommodated by another wireless base station 110 based on, for example, the ratio of the maximum communication quality of its own station (wireless base station 110) to the maximum communication quality of the other wireless base station 110. Calculate the normalized number of terminals accommodated. For example, the normalization unit 703 calculates the normalized number of terminals accommodated using the following (Formula 1).
Figure JPOXMLDOC01-appb-M000001
 (式1)において、Tmy_BSは自局(無線基地局110)の最大通信品質、Tshift_BSiは他の無線基地局110の最大通信品質、Uは他の無線基地局110が収容する無線端末120の数(以下、端末収容数と呼ぶ)である。
Figure JPOXMLDOC01-appb-M000001
In (Formula 1), T my_BS is the maximum communication quality of the own station (wireless base station 110), T shift_BSi is the maximum communication quality of another wireless base station 110, and U i is the wireless terminal accommodated by the other wireless base station 110. 120 (hereinafter referred to as the number of terminals accommodated).
 (接続条件の変更処理)
 図8は、実施例1に係る接続条件の変更処理の例を示すフローチャートである。この処理は、例えば、図5のステップS501~S503の処理500の具体的な一例を示している。
(Connection condition change process)
FIG. 8 is a flowchart illustrating an example of connection condition changing processing according to the first embodiment. This process shows a specific example of the process 500 of steps S501 to S503 in FIG. 5, for example.
 ステップS801において、特定部701は、自局(無線基地局110)に無線端末120が遷移する可能性がある、1つ以上の他の無線基地局110を特定する。 In step S801, the identifying unit 701 identifies one or more other wireless base stations 110 to which the wireless terminal 120 may transition to the local station (wireless base station 110).
 ステップS802において、情報取得部702は、ブロックチェーン320から、特定部701が特定した1つ以上の他の無線基地局110の最大通信品質、及び端末収容数を取得する。 In step S802, the information acquisition unit 702 acquires, from the blockchain 320, the maximum communication quality and the number of terminals accommodated by one or more other wireless base stations 110 identified by the identification unit 701.
 ステップS803において、正規化部703は、情報取得部702が取得した1つ以上の他の無線基地局110の最大通信品質、及び端末収容数を、(式1)に適用して、1つ以上の他の無線基地局110の正規化端末収容数を算出する。 In step S803, the normalization unit 703 applies the maximum communication quality and the number of terminals accommodated of the one or more other wireless base stations 110 acquired by the information acquisition unit 702 to (Formula 1), and The normalized number of terminals accommodated by other radio base stations 110 is calculated.
 ステップS804において、変更部305は、自局が混雑しているか否かを判断する。例えば、変更部305は、自局の端末収容数(=正規化端末収容数)が、他の無線基地局110の正規化端末収容数より多い場合、自局が混雑していると判断する。また、他の無線基地局110が複数ある場合、変更部305は、自局の端末収容数より正規化端末収容数が多い他の無線基地局110の数が、自局の端末収容数より正規化端末収容数が少ない他の無線基地局110がより多いときに、自局が混雑していると判断する。 In step S804, the changing unit 305 determines whether or not the local station is congested. For example, the changing unit 305 determines that the own station is congested when the number of terminals accommodated in the own station (=normalized number of accommodated terminals) is greater than the normalized number of accommodated terminals in another wireless base station 110. Further, when there are multiple other wireless base stations 110, the changing unit 305 determines that the number of other wireless base stations 110 whose normalized number of terminals accommodated is larger than the number of terminals accommodated by the own station is normalized than the number of terminals accommodated by the own station. It is determined that the local station is congested when there are more other wireless base stations 110 that can accommodate fewer terminals.
 自局が混雑している場合、変更部305は、処理をステップS805に移行させて、自局の接続コストを上げる。一方、自局が混雑していない場合、変更部305は、処理をステップS806に移行させて、自局の接続コストを下げる。 If the local station is congested, the changing unit 305 moves the process to step S805 and increases the connection cost of the local station. On the other hand, if the local station is not congested, the changing unit 305 moves the process to step S806 to reduce the connection cost of the local station.
 なお、図8のステップS805、S806の処理は一例である。例えば、変更部305は、ステップS805において、自局の接続コストを上げる場合、ステップS806において、自局の接続コストを既定値に設定してもよい。また、変更部305は、ステップS806において、自局の接続コストを下げる場合、ステップS805において、自局の接続コストを既定値に設定してもよい。 Note that the processing in steps S805 and S806 in FIG. 8 is an example. For example, when increasing the connection cost of the own station in step S805, the changing unit 305 may set the connection cost of the own station to a default value in step S806. Furthermore, when reducing the connection cost of the own station in step S806, the changing unit 305 may set the connection cost of the own station to a default value in step S805.
 図9は、実施例1に係る接続条件の変更処理の具体的な一例を示す図である。図9において、「自局」は、例えば、図1の無線基地局110aであり、最大T(最大スループット)が100Mbps、端末収容数が10であるものとする。また、図9において、「BS1」は、例えば、図1の無線基地局110bであり、最大Tが200Mbps、端末収容数が10であるものとする。同様に、「BS2」は、例えば、図1の無線基地局110cであり、最大Tが300Mbps、端末収容数が10であるものとする。 FIG. 9 is a diagram illustrating a specific example of connection condition changing processing according to the first embodiment. In FIG. 9, the "own station" is, for example, the wireless base station 110a in FIG. 1, and the maximum T (maximum throughput) is 100 Mbps and the number of terminals accommodated is 10. Further, in FIG. 9, "BS1" is, for example, the wireless base station 110b of FIG. 1, and the maximum T is 200 Mbps and the number of terminals accommodated is 10. Similarly, it is assumed that "BS2" is, for example, the wireless base station 110c in FIG. 1, has a maximum T of 300 Mbps, and can accommodate 10 terminals.
 この場合、自局の算出部304は、自局の最大T(最大通信品質の一例)「100Mbps」、BS1の最大T「200Mbps」、及びBS1の端末収容数「10」を(式1)に適用して、BS1の正規化端末収容数「5」を算出する。同様にして、自局の算出部304は、自局の最大T(最大通信品質の一例)「100Mbps」、BS1の最大T「300Mbps」、及びBS2の端末収容数「10」を(式1)に適用して、BS2の正規化端末収容数「3.3」を算出する。 In this case, the calculation unit 304 of the local station calculates the maximum T of the local station (an example of maximum communication quality) "100 Mbps", the maximum T of BS1 "200 Mbps", and the number of terminals accommodated by BS1 "10" into (Formula 1). By applying this, the normalized number of terminals accommodated by the BS1 is calculated as "5". Similarly, the calculation unit 304 of the own station calculates the maximum T of the own station (an example of maximum communication quality) "100 Mbps", the maximum T of BS1 "300 Mbps", and the number of terminals accommodated in BS2 "10" using (Formula 1) is applied to calculate the normalized number of terminals accommodated by BS2, which is "3.3".
 自局の変更部305は、自局の収容端末数(=正規化収容端末数)「10」と、BS1の正規化収容端末数「5」と、BS2の正規化収容端末数「3.3」とを比較して、自局が相対的に混雑していると判断し、自局の接続コストを上げる。なお、自局の接続コストの増減幅は、一定値を用いてもよいし、自局と他の無線基地局(例えば、BS1)との正規化収容端末数との差が大きいほど増減幅を大きく設定してもよい。 The change unit 305 of the own station changes the number of accommodated terminals of the own station (=normalized number of accommodated terminals) "10", the normalized number of accommodated terminals of BS1 "5", and the normalized number of accommodated terminals of BS2 "3.3". ”, determines that the local station is relatively congested, and increases the connection cost for the local station. Note that the range of increase/decrease in the connection cost of the own station may be a constant value, or the larger the difference between the normalized number of accommodated terminals between the own station and other wireless base stations (for example, BS1), the greater the range of increase/decrease. It may be set to a large value.
 なお、正規化端末収容数は算出部304が算出する正規化した混雑度合いの一例である。このように、無線基地局110は、正規化した混雑度合いとして、正規化端末収容数を利用することができる。 Note that the normalized number of accommodated terminals is an example of the normalized degree of congestion calculated by the calculation unit 304. In this way, the wireless base station 110 can use the normalized number of terminals accommodated as the normalized degree of congestion.
 [実施例2]
 (機能構成)
 実施例2に係る算出部304の機能構成は、図7に示した実施例1に係る算出部304の機能構成と同様であるが、情報取得部702、及び正規化部703の処理内容が一部異なるので、ここでは、実施例1との相違点について説明する。
[Example 2]
(Functional configuration)
The functional configuration of the calculation unit 304 according to the second embodiment is similar to the functional configuration of the calculation unit 304 according to the first embodiment shown in FIG. 7, but the processing contents of the information acquisition unit 702 and the normalization unit 703 are different. Since the parts are different, the differences from the first embodiment will be explained here.
 情報取得部702は、ブロックチェーン320から、特定部701が特定した他の無線基地局110の平均通信品質と、当該他の無線基地局110が収容する無線端末120の端末収容数とを取得する。他の無線基地局110の平均通信品質は、例えば、他の無線基地局110が提供する無線通信のスループットの平均値(平均T)等を適用することができる。 The information acquisition unit 702 acquires from the blockchain 320 the average communication quality of the other wireless base station 110 identified by the identification unit 701 and the number of wireless terminals 120 accommodated by the other wireless base station 110. . As the average communication quality of the other wireless base stations 110, for example, the average value (average T) of wireless communication throughput provided by the other wireless base stations 110 can be applied.
 正規化部703は、例えば、自局(無線基地局110)の端末収容数と、他の無線基地局110の端末収容数との比により、他の無線基地局110の平均通信品質を正規化した正規化通信品質を算出する。例えば、正規化部703は、次の(式2)により、正規化通信品質を算出する。 The normalization unit 703 normalizes the average communication quality of other wireless base stations 110 based on, for example, the ratio of the number of terminals accommodated in the own station (wireless base station 110) and the number of terminals accommodated in the other wireless base stations 110. Calculate the normalized communication quality. For example, the normalization unit 703 calculates the normalized communication quality using the following (Equation 2).
Figure JPOXMLDOC01-appb-M000002
 ここで、Umy_BSは自局(無線基地局110)の端末収容数、Ushift_BSiは他の無線基地局110の端末収容数、Tは他の無線基地局110の平均通信品質である。
Figure JPOXMLDOC01-appb-M000002
Here, U my_BS is the number of terminals accommodated by the own station (radio base station 110), U shift_BSi is the number of terminals accommodated by other radio base stations 110, and T i is the average communication quality of the other radio base stations 110.
 (接続条件の変更処理)
 図10は、実施例2に係る接続条件の変更処理の例を示すフローチャートである。この処理は、例えば、図5のステップS501~S503の処理500の具体的な一例を示している。なお、図10に示す処理のうち、ステップS801、S805、S806の処理は、図8で説明した実施例1の処理と同様なので、ここでは説明を省略する。
(Connection condition change process)
FIG. 10 is a flowchart illustrating an example of connection condition changing processing according to the second embodiment. This process shows a specific example of the process 500 of steps S501 to S503 in FIG. 5, for example. Note that among the processes shown in FIG. 10, the processes in steps S801, S805, and S806 are the same as the processes in the first embodiment described in FIG. 8, so the description thereof will be omitted here.
 ステップS1001において、情報取得部702は、ブロックチェーン320から、特定部701が特定した1つ以上の他の無線基地局110の平均通信品質、及び端末収容数を取得する。 In step S1001, the information acquisition unit 702 acquires, from the blockchain 320, the average communication quality and the number of terminals accommodated by one or more other wireless base stations 110 identified by the identification unit 701.
 ステップS1002において、正規化部703は、情報取得部702が取得した1つ以上の他の無線基地局110の平均通信品質、及び端末収容数を、(式2)に適用して、1つ以上の他の無線基地局110の正規化通信品質を算出する。 In step S1002, the normalization unit 703 applies the average communication quality and the number of terminals accommodated of the one or more other wireless base stations 110 acquired by the information acquisition unit 702 to (Equation 2), and The normalized communication quality of other wireless base stations 110 is calculated.
 ステップS1003において、変更部305は、自局が混雑しているか否かを判断する。例えば、変更部305は、自局の平均通信品質(=正規化通信品質)が、他の無線基地局110の正規化通信品質より悪い場合、自局が混雑していると判断する。また、他の無線基地局110が複数ある場合、変更部305は、自局の平均通信品質より正規化通信品質が良い他の無線基地局110の数が、自局の平均通信品質より正規化通信品質が悪い他の無線基地局110がより多いときに、自局が混雑していると判断する。 In step S1003, the change unit 305 determines whether or not the local station is congested. For example, if the average communication quality (=normalized communication quality) of the own station is worse than the normalized communication quality of other wireless base stations 110, the changing unit 305 determines that the own station is congested. In addition, when there are multiple other radio base stations 110, the changing unit 305 determines that the number of other radio base stations 110 whose normalized communication quality is better than the average communication quality of the own station is normalized than the average communication quality of the own station. When there are more other radio base stations 110 with poor communication quality, it is determined that the own station is congested.
 自局が混雑している場合、変更部305は、処理をステップS805に移行させて、自局の接続コストを上げる。一方、自局が混雑していない場合、変更部305は、処理をステップS806に移行させて、自局の接続コストを下げる。 If the local station is congested, the changing unit 305 moves the process to step S805 and increases the connection cost of the local station. On the other hand, if the local station is not congested, the changing unit 305 moves the process to step S806 to reduce the connection cost of the local station.
 図11は、実施例2に係る接続条件の変更処理の具体的な一例を示す図である。図11において、「自局」は、例えば、図1の無線基地局110aであり、平均T(平均スループット)が100Mbps、端末収容数が10であるものとする。また、図11において、「BS1」は、例えば、図1の無線基地局110bであり、平均Tが200Mbps、端末収容数が10であるものとする。同様に、「BS2」は、例えば、図1の無線基地局110cであり、平均Tが300Mbps、端末収容数が10であるものとする。 FIG. 11 is a diagram illustrating a specific example of connection condition changing processing according to the second embodiment. In FIG. 11, the "own station" is, for example, the wireless base station 110a in FIG. 1, and assumes that the average T (average throughput) is 100 Mbps and the number of terminals accommodated is 10. Furthermore, in FIG. 11, "BS1" is, for example, the wireless base station 110b of FIG. 1, and has an average T of 200 Mbps and a terminal capacity of 10. Similarly, it is assumed that "BS2" is, for example, the wireless base station 110c in FIG. 1, has an average T of 300 Mbps, and accommodates 10 terminals.
 この場合、自局の算出部304は、自局の端末収容数「10」、BS1の端末収容数「10」、及びBS1の平均T「200Mbps」を(式2)に適用して、BS1の正規化通信品質(正規化T)「200」を算出する。同様にして、自局の算出部304は、自局の端末収容数「10」、BS2の端末収容数「10」、及びBS2の平均T「300Mbps」を(式2)に適用して、BS2の正規化通信品質「300」を算出する。 In this case, the calculation unit 304 of the own station applies the number of terminals accommodated in the own station "10", the number of terminals accommodated in BS1 "10", and the average T of BS1 "200 Mbps" to (Equation 2), Calculate normalized communication quality (normalized T) "200". Similarly, the calculation unit 304 of the own station applies the number of terminals accommodated in the own station "10", the number of terminals accommodated in BS2 "10", and the average T of BS2 "300 Mbps" to (Formula 2), The normalized communication quality of "300" is calculated.
 自局の変更部305は、自局の平均通信品質(=正規化通信品質)「100」と、BS1の正規化通信品質「200」と、BS2の正規化通信品質「300」とを比較して、自局が相対的に混雑していると判断し、自局の接続コストを上げる。なお、自局の接続コストの増減幅は、一定値を用いてもよいし、自局と他の無線基地局(例えば、BS1)との正規化通信品質の差が大きいほど増減幅を大きく設定してもよい。 The change unit 305 of the own station compares the average communication quality (=normalized communication quality) of the own station "100", the normalized communication quality of BS1 "200", and the normalized communication quality of BS2 "300". Therefore, it determines that its own station is relatively congested, and increases its own connection cost. Note that the range of increase/decrease in the connection cost of the own station may be set to a constant value, or the greater the difference in normalized communication quality between the own station and other wireless base stations (for example, BS1), the larger the range of increase/decrease is set. You may.
 なお、正規化通信品質は算出部304が算出する正規化した混雑度合いの一例である。このように、無線基地局110は、正規化した混雑度合いとして、正規化通信品質を利用してもよい。 Note that the normalized communication quality is an example of the normalized degree of congestion calculated by the calculation unit 304. In this way, the wireless base station 110 may use normalized communication quality as the normalized degree of congestion.
 <ハードウェア構成例>
 図12は、本実施形態に係る無線基地局、及び無線端末のハードウェア構成の例を示す図である。無線基地局110、及び無線端末120は、例えば、図12に示すようなコンピュータ1200の構成を備えている。図12の例では、コンピュータ1200は、プロセッサ1201、メモリ1202、ストレージデバイス1203、通信装置1204、入力装置1205、出力装置1206、及びバスB等を有する。
<Hardware configuration example>
FIG. 12 is a diagram illustrating an example of the hardware configuration of a wireless base station and a wireless terminal according to this embodiment. The wireless base station 110 and the wireless terminal 120 include, for example, the configuration of a computer 1200 as shown in FIG. 12. In the example of FIG. 12, the computer 1200 includes a processor 1201, a memory 1202, a storage device 1203, a communication device 1204, an input device 1205, an output device 1206, a bus B, and the like.
 プロセッサ1201は、例えば、所定のプログラムを実行することにより、様々な機能を実現するCPU(Central Processing Unit)等の演算装置である。メモリ1202は、コンピュータ1200が読み取り可能な記憶媒体であり、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)等を含む。ストレージデバイス1203は、コンピュータ読み取り可能な記憶媒体であり、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)、各種の光ディスク、及び光磁気ディスク等を含み得る。 The processor 1201 is, for example, an arithmetic device such as a CPU (Central Processing Unit) that implements various functions by executing a predetermined program. Memory 1202 is a storage medium readable by computer 1200, and includes, for example, RAM (Random Access Memory), ROM (Read Only Memory), and the like. The storage device 1203 is a computer-readable storage medium, and may include, for example, an HDD (Hard Disk Drive), an SSD (Solid State Drive), various optical disks, magneto-optical disks, and the like.
 通信装置1204は、無線、又は有線のネットワークを介して他の装置と通信を行うための1つ以上のハードウェア(通信デバイス)を含む。例えば、無線基地局110が備えるコンピュータ1200の通信装置1204は、無線通信を行うための通信デバイスと、有線通信を行うための通信デバイスとを含む。また、無線端末120が備えるコンピュータ1200の通信装置1204は、無線通信を行うための通信デバイスを含む。 The communication device 1204 includes one or more hardware (communication devices) for communicating with other devices via a wireless or wired network. For example, the communication device 1204 of the computer 1200 included in the wireless base station 110 includes a communication device for performing wireless communication and a communication device for performing wired communication. Furthermore, the communication device 1204 of the computer 1200 included in the wireless terminal 120 includes a communication device for performing wireless communication.
 入力装置1205は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1206は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカ、LEDランプ等)である。なお、入力装置1205と出力装置1206とは、一体となった構成(例えば、タッチパネルディスプレイ等の入出力装置)であってもよい。 The input device 1205 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 1206 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1205 and the output device 1206 may have an integrated configuration (for example, an input/output device such as a touch panel display).
 バスBは、上記の各構成要素に共通に接続され、例えば、アドレス信号、データ信号、及び各種の制御信号等を伝送する。なお、プロセッサ1201は、CPUに限られず、例えば、DSP(Digital Signal Processor)、PLD(Programmable Logic Device)、又はFPGA(Field Programmable Gate Array)等であってもよい。 Bus B is commonly connected to each of the above components, and transmits, for example, address signals, data signals, and various control signals. Note that the processor 1201 is not limited to a CPU, and may be, for example, a DSP (Digital Signal Processor), a PLD (Programmable Logic Device), or an FPGA (Field Programmable Gate Array).
 (補足)
 本実施形態における無線基地局110、及び無線端末120は専用装置による実現に限らず、汎用コンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
(supplement)
The wireless base station 110 and the wireless terminal 120 in this embodiment are not limited to being implemented by dedicated devices, but may be implemented by a general-purpose computer. In that case, a program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read into a computer system and executed. Note that the "computer system" herein includes hardware such as an OS and peripheral devices.
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の様々な記憶装置を含む。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。 Furthermore, the term "computer-readable recording medium" includes various storage devices such as flexible disks, magneto-optical disks, ROMs, CD-ROMs, and other portable media, and hard disks built into computer systems. Furthermore, a "computer-readable recording medium" refers to a storage medium that dynamically stores a program for a short period of time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include a device that retains a program for a certain period of time, such as a volatile memory inside a computer system that is a server or client in that case.
 また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良く、PLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されるものであってもよい。 Further, the above-mentioned program may be one for realizing a part of the above-mentioned functions, and further may be one that can realize the above-mentioned functions in combination with a program already recorded in the computer system. It may be realized using hardware such as a PLD (Programmable Logic Device) or an FPGA (Field Programmable Gate Array).
 <実施形態の効果>
 計算機シミュレータを用いて本実施形態に係る無線通信方法の効果を確認した。計算条件として、図13の表1301に示すような無線LAN(Local Area Network)基地局とローカル5G(5th Generation)基地局とを、図13示すようなエリア1302に配置し、エリア1302の中央への混雑状況を模擬した。
<Effects of embodiment>
The effects of the wireless communication method according to this embodiment were confirmed using a computer simulator. As calculation conditions, a wireless LAN (Local Area Network) base station and a local 5G (5th Generation) base station as shown in Table 1301 in FIG. 13 are placed in an area 1302 as shown in FIG. The congestion situation was simulated.
 図14のグラフ1401に、「実施例1」、「比較例1」、及び「比較例2」の無線端末120ごとのスループットの累積分布関数(CDF:Cumulative Distribution Function)のシミュレーション結果を示す。また、図14の表1402に、「実施例1」、「比較例1」、及び「比較例2」のスループットの中央値を示す。 A graph 1401 in FIG. 14 shows the simulation results of the throughput cumulative distribution function (CDF) for each wireless terminal 120 in "Example 1", "Comparative Example 1", and "Comparative Example 2". Furthermore, a table 1402 in FIG. 14 shows the median values of throughput of "Example 1", "Comparative Example 1", and "Comparative Example 2".
 ここで、「実施例1」は、図7~9で説明したように、正規化端末収容数を利用して、各無線基地局が分散的に接続コストを制御した場合のシミュレーション結果を示している。「比較例1」は、各無線基地局が接続コストの制御を行わずに、接続コストを一定とした従来技術のシミュレーション結果を示している。「比較例2」は、正規化していない端末収容数を利用して、各無線基地局が分散的に接続コストを制御した場合のシミュレーション結果を示している。 Here, "Example 1" shows the simulation results when each wireless base station controls the connection cost in a distributed manner using the normalized number of terminals accommodated, as explained in FIGS. 7 to 9. There is. "Comparative Example 1" shows the simulation results of a conventional technique in which the connection cost was kept constant without each wireless base station controlling the connection cost. “Comparative Example 2” shows the simulation results when each wireless base station controls the connection cost in a distributed manner using the unnormalized number of terminals accommodated.
 表1402によれば、「比較例2」のように、正規化していない端末収容数を利用して、各無線基地局が分散的に接続コストを制御することにより、「比較例1」のような従来技術に対して、スループットの中央値を約1.6倍向上させる効果が期待できる。さらに、「実施例1」のように、端末収容数を正規化して、各無線基地局が分散的に接続コストを制御することにより、「比較例2」に対して、スループットの中央値を1.4倍向上させる効果が期待できる。 According to Table 1402, as in "Comparative Example 2," each wireless base station controls the connection cost in a distributed manner using the unnormalized number of terminals accommodated, and as in "Comparative Example 1." It can be expected that the median throughput will be improved by about 1.6 times compared to the conventional technology. Furthermore, as in "Example 1", by normalizing the number of terminals accommodated and each wireless base station controlling the connection cost in a distributed manner, the median throughput can be reduced by 1 compared to "Comparative Example 2". .It is expected that the effect will be improved by 4 times.
 以上、本実施形態によれば、無線通信システム全体の無線リソースの利用効率を改善することができる。また、本実施形態に係る無線通信システム100では、正規化した混雑度合いに基づいて、自局の接続コストを制御するので、通信品質が高い無線基地局110の利用効率の低下を抑制するとともに、無線端末120の通信品質を平滑化することができる。 As described above, according to this embodiment, it is possible to improve the utilization efficiency of radio resources of the entire radio communication system. Furthermore, in the wireless communication system 100 according to the present embodiment, the connection cost of the own station is controlled based on the normalized degree of congestion, so that a decrease in the utilization efficiency of the wireless base station 110 with high communication quality is suppressed, and Communication quality of wireless terminal 120 can be smoothed.
 <実施形態のまとめ>
 本明細書には、少なくとも下記各項の無線通信方法、及び無線通信システムが開示されている。
(第1項)
 無線基地局が、
 前記無線基地局の接続条件をブロードキャスト送信する送信処理と、
 前記接続条件に基づいて前記無線基地局に接続を要求する無線端末との接続を、複数の無線基地局が共有するブロックチェーンを用いて管理する管理処理と、
 前記ブロックチェーンの台帳情報を用いて、他の無線基地局の正規化した混雑度合いを算出する算出処理と、
 前記正規化した混雑度合いに基づいて、前記無線基地局の前記接続条件を変更する変更処理と、
 を実行する、無線通信方法。
(第2項)
 前記算出処理は、
 前記ブロックチェーンから、前記他の無線基地局の最大通信品質と、前記他の無線基地局が収容する無線端末の数とを取得し、
 前記無線基地局の最大通信品質と、前記他の無線基地局の最大通信品質との比により、前記他の無線基地局が収容する無線端末の数を正規化した正規化端末収容数を、前記正規化した混雑度合いとする、
 第1項に記載の無線通信方法。
(第3項)
 前記算出処理は、
 前記ブロックチェーンから、前記他の無線基地局の平均通信品質と、前記他の無線基地局が収容する無線端末の数とを取得し、
 前記無線基地局が収容する無線端末数と、前記他の無線基地局が収容する無線端末の数との比により、前記他の無線基地局の平均通信品質を正規化した正規化通信品質を、前記正規化した混雑度合いとする、
 第1項に記載の無線通信方法。
(第4項)
 前記変更処理は、前記無線基地局より前記他の無線基地局の方が前記正規化した混雑度が高い場合、前記無線基地局の接続コストを下げる、第1項~第3項のいずれかに記載の無線通信方法。
(第5項)
 前記変更処理は、前記無線基地局より前記他の無線基地局の方が前記正規化した混雑度が低い場合、前記無線基地局の接続コストを上げる、第1項~第3項のいずれかに記載の無線通信方法。
(第6項)
 前記他の無線基地局は、前記複数の無線基地局のうち、前記無線基地局に無線端末が遷移する可能性がある1つ以上の無線基地局を含む、第1項~第3項のいずれかに記載の無線通信方法。
(第7項)
 前記他の無線基地局は、前記無線基地局に隣接又は近接する1つ以上の無線基地局を含む、第1項~第3項のいずれかに記載の無線通信方法。
(第8項)
 複数の無線基地局と、無線端末とを含む無線通信システムであって、
 前記無線基地局は、
 前記無線基地局の接続条件をブロードキャスト送信する送信部と、
 前記接続条件に基づいて前記無線基地局に接続を要求する無線端末との接続を、前記複数の無線基地局が共有するブロックチェーンを用いて管理する管理部と、
 前記ブロックチェーンの台帳情報を用いて、他の無線基地局の正規化した混雑度合いを算出する算出部と、
 前記正規化した混雑度合いに基づいて、前記無線基地局の前記接続条件を変更する変更部と、
 を有し、
 前記無線端末は、
 前記接続条件を受信する受信部と、
 前記接続条件に基づいて、前記無線端末が接続を要求する前記無線基地局を決定する決定部と、
 を有する、
 無線通信システム。
<Summary of embodiments>
This specification discloses at least the following wireless communication methods and wireless communication systems.
(Section 1)
The wireless base station
a transmission process of broadcasting connection conditions of the wireless base station;
a management process that uses a blockchain shared by a plurality of wireless base stations to manage a connection with a wireless terminal that requests connection to the wireless base station based on the connection conditions;
a calculation process of calculating the normalized congestion degree of other wireless base stations using the blockchain ledger information;
a change process of changing the connection condition of the wireless base station based on the normalized degree of congestion;
A wireless communication method that performs
(Section 2)
The calculation process is
Obtaining the maximum communication quality of the other wireless base station and the number of wireless terminals accommodated by the other wireless base station from the blockchain,
The normalized number of terminals accommodated by the other radio base station is normalized by the ratio of the maximum communication quality of the radio base station to the maximum communication quality of the other radio base station. Normalized congestion degree,
The wireless communication method according to item 1.
(Section 3)
The calculation process is
Obtaining from the blockchain the average communication quality of the other wireless base station and the number of wireless terminals accommodated by the other wireless base station,
Normalized communication quality obtained by normalizing the average communication quality of the other radio base station by the ratio of the number of radio terminals accommodated by the radio base station and the number of radio terminals accommodated by the other radio base station, The normalized degree of congestion is
The wireless communication method according to item 1.
(Section 4)
The change process is performed according to any one of paragraphs 1 to 3, in which, if the normalized degree of congestion is higher in the other wireless base station than in the wireless base station, the connection cost of the wireless base station is reduced. Wireless communication method described.
(Section 5)
The change process may include increasing the connection cost of the wireless base station if the normalized congestion level of the other wireless base station is lower than that of the wireless base station. Wireless communication method described.
(Section 6)
The other radio base station is any one of paragraphs 1 to 3, including one or more radio base stations among the plurality of radio base stations to which a radio terminal may transition to the radio base station. The wireless communication method described in .
(Section 7)
The wireless communication method according to any one of items 1 to 3, wherein the other wireless base station includes one or more wireless base stations adjacent to or close to the wireless base station.
(Section 8)
A wireless communication system including a plurality of wireless base stations and a wireless terminal,
The wireless base station is
a transmitting unit that broadcasts connection conditions of the wireless base station;
a management unit that manages connection with a wireless terminal that requests connection to the wireless base station based on the connection condition using a blockchain shared by the plurality of wireless base stations;
a calculation unit that calculates the normalized congestion degree of other wireless base stations using the blockchain ledger information;
a changing unit that changes the connection condition of the wireless base station based on the normalized degree of congestion;
has
The wireless terminal is
a receiving unit that receives the connection conditions;
a determining unit that determines the wireless base station to which the wireless terminal requests connection based on the connection condition;
has,
Wireless communication system.
 以上、本実施形態について説明したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the present embodiment has been described above, the present invention is not limited to such specific embodiment, and various modifications and changes can be made within the scope of the gist of the present invention as described in the claims. It is.
 100 無線通信システム
 110、110a~110e 無線基地局
 120、120a~120d 無線端末
 302 送信部
 303 管理部
 304 算出部
 305 変更部
 306 記憶部
 320 ブロックチェーン
 402 受信部
 403 決定部
100 wireless communication system 110, 110a to 110e wireless base station 120, 120a to 120d wireless terminal 302 transmitting unit 303 management unit 304 calculating unit 305 changing unit 306 storage unit 320 blockchain 402 receiving unit 403 determining unit

Claims (8)

  1.  無線基地局が、
     前記無線基地局の接続条件をブロードキャスト送信する送信処理と、
     前記接続条件に基づいて前記無線基地局に接続を要求する無線端末との接続を、複数の無線基地局が共有するブロックチェーンを用いて管理する管理処理と、
     前記ブロックチェーンの台帳情報を用いて、他の無線基地局の正規化した混雑度合いを算出する算出処理と、
     前記正規化した混雑度合いに基づいて、前記無線基地局の前記接続条件を変更する変更処理と、
     を実行する、無線通信方法。
    The wireless base station
    a transmission process of broadcasting connection conditions of the wireless base station;
    a management process that uses a blockchain shared by a plurality of wireless base stations to manage a connection with a wireless terminal that requests connection to the wireless base station based on the connection conditions;
    a calculation process of calculating the normalized congestion degree of other wireless base stations using the blockchain ledger information;
    a change process of changing the connection condition of the wireless base station based on the normalized degree of congestion;
    A wireless communication method that performs
  2.  前記算出処理は、
     前記ブロックチェーンから、前記他の無線基地局の最大通信品質と、前記他の無線基地局が収容する無線端末の数とを取得し、
     前記無線基地局の最大通信品質と、前記他の無線基地局の最大通信品質との比により、前記他の無線基地局が収容する無線端末の数を正規化した正規化端末収容数を、前記正規化した混雑度合いとする、
     請求項1に記載の無線通信方法。
    The calculation process is
    Obtaining the maximum communication quality of the other wireless base station and the number of wireless terminals accommodated by the other wireless base station from the blockchain,
    The normalized number of terminals accommodated by the other radio base station is normalized by the ratio of the maximum communication quality of the radio base station to the maximum communication quality of the other radio base station. Normalized congestion degree,
    The wireless communication method according to claim 1.
  3.  前記算出処理は、
     前記ブロックチェーンから、前記他の無線基地局の平均通信品質と、前記他の無線基地局が収容する無線端末の数とを取得し、
     前記無線基地局が収容する無線端末数と、前記他の無線基地局が収容する無線端末の数との比により、前記他の無線基地局の平均通信品質を正規化した正規化通信品質を、前記正規化した混雑度合いとする、
     請求項1に記載の無線通信方法。
    The calculation process is
    Obtaining the average communication quality of the other wireless base station and the number of wireless terminals accommodated by the other wireless base station from the blockchain,
    Normalized communication quality obtained by normalizing the average communication quality of the other radio base station by the ratio of the number of radio terminals accommodated by the radio base station and the number of radio terminals accommodated by the other radio base station, The normalized degree of congestion is
    The wireless communication method according to claim 1.
  4.  前記変更処理は、前記無線基地局より前記他の無線基地局の方が前記正規化した混雑度が高い場合、前記無線基地局の接続コストを下げる、請求項1乃至3のいずれか一項に記載の無線通信方法。 4. The method according to claim 1, wherein the change process reduces the connection cost of the wireless base station when the normalized degree of congestion is higher in the other wireless base station than in the wireless base station. Wireless communication method described.
  5.  前記変更処理は、前記無線基地局より前記他の無線基地局の方が前記正規化した混雑度が低い場合、前記無線基地局の接続コストを上げる、請求項1乃至3のいずれか一項に記載の無線通信方法。 4. The method according to claim 1, wherein the change processing increases the connection cost of the wireless base station when the normalized congestion level of the other wireless base station is lower than that of the wireless base station. Wireless communication method described.
  6.  前記他の無線基地局は、前記複数の無線基地局のうち、前記無線基地局に無線端末が遷移する可能性がある1つ以上の無線基地局を含む、請求項1乃至3のいずれか一項に記載の無線通信方法。 4. The other wireless base station according to claim 1, wherein the other wireless base station includes one or more wireless base stations among the plurality of wireless base stations to which a wireless terminal may transition to the wireless base station. The wireless communication method described in section.
  7.  前記他の無線基地局は、前記無線基地局に隣接又は近接する1つ以上の無線基地局を含む、請求項1乃至3のいずれか一項に記載の無線通信方法。 The wireless communication method according to any one of claims 1 to 3, wherein the other wireless base station includes one or more wireless base stations adjacent to or close to the wireless base station.
  8.  複数の無線基地局と、無線端末とを含む無線通信システムであって、
     前記無線基地局は、
     前記無線基地局の接続条件をブロードキャスト送信する送信部と、
     前記接続条件に基づいて前記無線基地局に接続を要求する無線端末との接続を、前記複数の無線基地局が共有するブロックチェーンを用いて管理する管理部と、
     前記ブロックチェーンの台帳情報を用いて、他の無線基地局の正規化した混雑度合いを算出する算出部と、
     前記正規化した混雑度合いに基づいて、前記無線基地局の前記接続条件を変更する変更部と、
     を有し、
     前記無線端末は、
     前記接続条件を受信する受信部と、
     前記接続条件に基づいて、前記無線端末が接続を要求する前記無線基地局を決定する決定部と、
     を有する、
     無線通信システム。
    A wireless communication system including a plurality of wireless base stations and a wireless terminal,
    The wireless base station is
    a transmitting unit that broadcasts connection conditions of the wireless base station;
    a management unit that manages connection with a wireless terminal that requests connection to the wireless base station based on the connection condition using a blockchain shared by the plurality of wireless base stations;
    a calculation unit that calculates the normalized congestion degree of other wireless base stations using the blockchain ledger information;
    a changing unit that changes the connection condition of the wireless base station based on the normalized degree of congestion;
    has
    The wireless terminal is
    a receiving unit that receives the connection conditions;
    a determining unit that determines the wireless base station to which the wireless terminal requests connection based on the connection condition;
    has,
    Wireless communication system.
PCT/JP2022/018407 2022-04-21 2022-04-21 Wireless communication method and wireless communication system WO2023203718A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018407 WO2023203718A1 (en) 2022-04-21 2022-04-21 Wireless communication method and wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018407 WO2023203718A1 (en) 2022-04-21 2022-04-21 Wireless communication method and wireless communication system

Publications (1)

Publication Number Publication Date
WO2023203718A1 true WO2023203718A1 (en) 2023-10-26

Family

ID=88419493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018407 WO2023203718A1 (en) 2022-04-21 2022-04-21 Wireless communication method and wireless communication system

Country Status (1)

Country Link
WO (1) WO2023203718A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190394648A1 (en) * 2018-06-26 2019-12-26 At&T Intellectual Property I, L.P. Blockchain based wireless access point password management
US20200242603A1 (en) * 2017-12-12 2020-07-30 Apostolis Salkintzis Providing network access using blockchain payments
US20210037013A1 (en) * 2017-11-03 2021-02-04 Lenovo (Singapore) Pte Ltd User authentication using connection information provided by a blockchain network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210037013A1 (en) * 2017-11-03 2021-02-04 Lenovo (Singapore) Pte Ltd User authentication using connection information provided by a blockchain network
US20200242603A1 (en) * 2017-12-12 2020-07-30 Apostolis Salkintzis Providing network access using blockchain payments
US20190394648A1 (en) * 2018-06-26 2019-12-26 At&T Intellectual Property I, L.P. Blockchain based wireless access point password management

Similar Documents

Publication Publication Date Title
Ndikumana et al. Collaborative cache allocation and computation offloading in mobile edge computing
Abedin et al. A Fog based system model for cooperative IoT node pairing using matching theory
US11886426B2 (en) Probabilistic relay for efficient propagation in a blockchain network
EP2135430B1 (en) Hierarchically clustered p2p streaming system
US7490140B2 (en) Peer data transfer orchestration
US9420513B1 (en) Clustering approach to estimating a network metric for nodes
US20080301214A1 (en) Isp-aware peer-to-peer content exchange
JP2009089369A (en) Optimal operation of hierarchical peer-to-peer networks
CN109348264B (en) Video resource sharing method and device, storage medium and electronic equipment
Pei et al. Blockchain-enabled dynamic spectrum access: cooperative spectrum sensing, access and mining
Zhang et al. Enhanced adaptive cloudlet placement approach for mobile application on spark
Charles et al. A reliable link quality-based RPL routing for Internet of Things
Abkenar et al. Energy optimization in association-free fog-IoT networks
CN102821115A (en) Method and device for P2P ( peer-to-peer) resource transmission
Cleland et al. FedComm: Understanding communication protocols for edge-based federated learning
WO2023203718A1 (en) Wireless communication method and wireless communication system
Ke et al. A priority-based multicast flow scheduling method for a collaborative edge storage datacenter network
WO2023084788A1 (en) Wireless communication method, wireless base station, and wireless communication system
Vance et al. Edgecache: a game-theoretic edge-based content caching system for crowd video sharing
Peer et al. Cache selection in dynamic D2D multicast networks using inhomogeneous markov model
CN117176722A (en) Dynamic reconstruction method, device and server
Mu et al. An adaptive routing optimization and energy-balancing algorithm in ZigBee hierarchical networks
Raj et al. Secure cloud communication for effective cost management system through msbe
Maity et al. Partial offloading for fog computing using P2P based file-sharing protocol
SG176804A1 (en) Method for automatically spreading resources and equipment thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938518

Country of ref document: EP

Kind code of ref document: A1