WO2023203592A1 - Hydrogen detection method - Google Patents

Hydrogen detection method Download PDF

Info

Publication number
WO2023203592A1
WO2023203592A1 PCT/JP2022/017988 JP2022017988W WO2023203592A1 WO 2023203592 A1 WO2023203592 A1 WO 2023203592A1 JP 2022017988 W JP2022017988 W JP 2022017988W WO 2023203592 A1 WO2023203592 A1 WO 2023203592A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
elastic waves
metal member
detection method
measured
Prior art date
Application number
PCT/JP2022/017988
Other languages
French (fr)
Japanese (ja)
Inventor
拓哉 上庄
龍太 石井
昌幸 津田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/017988 priority Critical patent/WO2023203592A1/en
Publication of WO2023203592A1 publication Critical patent/WO2023203592A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/48Processing the detected response signal, e.g. electronic circuits specially adapted therefor by amplitude comparison

Definitions

  • the present invention relates to a hydrogen detection method for detecting hydrogen that has entered a steel material or the like.
  • Non-Patent Document 1 As a method for detecting hydrogen intrusion into steel materials, there is a method of using a thin plate-shaped steel material and detecting hydrogen that has permeated through the steel material (see Non-Patent Document 1). Furthermore, a method is known in which hydrogen is indirectly detected by investigating the relationship between permeated hydrogen and corrosion rate in advance and measuring the corrosion rate (see Non-Patent Document 2).
  • the above-mentioned technology has the problem that it is limited to the detection of permeated hydrogen in a thin plate-shaped steel material, and cannot be applied to the detection of hydrogen that has penetrated into a structure made of steel material. Furthermore, since the method of detecting permeated hydrogen based on corrosion rate does not directly detect hydrogen intrusion, it is difficult to ensure the reliability of the results. As described above, there has conventionally been a problem in that hydrogen intrusion into metal members such as steel cannot be detected with reliability.
  • the present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to detect hydrogen intrusion into metal members while ensuring reliability.
  • the hydrogen detection method measures elastic waves propagating from the inside of a metal member to the surface, and detects hydrogen intrusion into the metal member based on the measured elastic waves.
  • the elastic waves transmitted from the inside of the metal member to the surface are measured, it is possible to detect the intrusion of hydrogen into the metal member while ensuring reliability.
  • FIG. 1 is a flowchart illustrating a hydrogen detection method according to an embodiment of the present invention.
  • FIG. 2 is a configuration diagram showing the configuration of a measurement system for implementing the hydrogen detection method according to the embodiment of the present invention.
  • FIG. 3 is a characteristic diagram showing the results of measuring elastic waves on reinforcing bars 150 using a measurement system.
  • FIG. 4 is a characteristic diagram showing (a) the result of integrating the period during which hydrogen penetrated into the steel material to be measured based on the generation rate of elastic waves determined by measuring the elastic waves (b).
  • a first step S101 elastic waves transmitted from the inside to the surface of a metal member to be measured are measured.
  • the metal member is, for example, a steel material such as a reinforcing bar.
  • the elastic wave can be measured, for example, by a piezo sensor using a piezoelectric material such as PbZr x Ti 1-x O 3 (0 ⁇ x ⁇ 1).
  • a second step S102 intrusion of hydrogen into the metal member is detected based on the measured elastic waves.
  • intrusion of hydrogen into a metal member can be detected based on the measurement of an elastic wave exceeding a set amplitude.
  • intrusion of hydrogen into a metal member can be detected based on the number of occurrences of elastic waves exceeding a set amplitude per unit time.
  • AE acoustic emission
  • This measurement system includes a sensor 151, an amplifier 152, an analyzer 153, a computer 154, and a charging device 200.
  • the sensor 151 is a piezo sensor using PbZr x Ti 1-x O 3 (0 ⁇ x ⁇ 1).
  • the sensor 151 is attached to the reinforcing bar 150 and measures elastic waves transmitted from the inside of the reinforcing bar 150 to the surface thereof.
  • a measurement signal output from the sensor 151 that measured the elastic wave is amplified by the amplifier 152 and recorded by the analyzer 153.
  • the amplifier 152 is a preamplifier with a gain of 40 dB and a bandpass filter set at 50 to 200 kHz.
  • Analyzer 153 may be a well-known AE analyzer.
  • the signal recorded by the analyzer 153 is processed by the computer 154.
  • the computer 154 counts the number of occurrences of elastic waves exceeding 30 mV from among the recorded signals, and determines the rate of occurrence of elastic waves (the number of occurrences of elastic waves per unit time).
  • the computer 154 displays the obtained results as a predetermined graph on a display unit (not shown), for example.
  • the charging device 200 can include a container 201 made of acrylic resin or the like, a lid 202 similarly made of acrylic resin, and an electrolyte solution 203 contained in the container 201.
  • the electrolyte solution 203 is, for example, a 1 mol/L aqueous sodium hydrogen carbonate solution.
  • the charging device 200 also includes a reference electrode 204 and a counter electrode 205 placed in the electrolyte solution 203.
  • the reference electrode 204 is, for example, an Ag/AgCl (silver silver chloride) electrode
  • the counter electrode 205 is a Pt electrode.
  • the reinforcing bar 150 penetrates through the lid 202 from the bottom of the container 201 and comes into contact with the electrolyte solution 203 .
  • the reinforcing bar 150 has a rod shape with a circular cross section and a diameter of 7 mm and a length of 500 mm. Further, the length of the region where the reinforcing bar 150 is in contact with the electrolyte solution 203 can be, for example, 150 mm. Note that the portion of the bottom of the container 201 that is penetrated by the reinforcing bar 150 is sealed so that the electrolyte solution 203 does not leak.
  • a potentiostat (not shown) is used to set the reinforcing bar 150 at a negative potential (-1V vs. .SSE) is applied.
  • this condition is an electrochemical condition in which the surface of the reinforcing bar 150 that is in contact with the electrolyte solution 203 does not corrode. By cathodic charging in this manner, hydrogen is generated on the surface of the reinforcing bar 150. This allows hydrogen to enter the reinforcing bars 150.
  • condition A using only a sodium hydrogen carbonate aqueous solution and condition B using an aqueous solution containing 10 g/L of ammonium thiocyanate, which promotes hydrogen penetration into the steel material, to the sodium hydrogen carbonate aqueous solution. conducted an experiment.
  • FIG. 3 shows the change in the number of occurrences of elastic waves exceeding 30 mV per hour.
  • 3(a) shows the experimental results under condition A
  • FIG. 3(b) shows the experimental results under condition B.
  • FIG. 3(a) under condition A
  • FIG. 3(b) shows the experimental results under condition B.
  • FIG. 3(a) under condition A
  • FIG. 3(b) shows the experimental results under condition B.
  • FIG. 3(a) under condition A
  • FIG. 3(b) shows the experimental results under condition B.
  • FIG. 3(a) shows the experimental results under condition A
  • FIG. 3(b) shows the experimental results under condition B.
  • the present invention since the elastic waves transmitted from the inside of the metal member to the surface are measured, it becomes possible to detect the intrusion of hydrogen into the metal member while ensuring reliability. . According to the present invention, it is possible to directly detect hydrogen intrusion into steel materials used for steel structures and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

In a first step S101, elastic waves transmitted from the inside to the surface of a metal member that is a measurement object are measured. Next, in a second step S102, penetration of hydrogen into the metal member is detected on the basis of the measured elastic waves. For example, penetration of hydrogen into the metal member can be detected on the basis of the fact that elastic waves exceeding a set amplitude are measured. For example, penetration of hydrogen into the metal member can be detected on the basis of the number of elastic waves exceeding a set amplitude that are generated per unit time.

Description

水素検知方法Hydrogen detection method
 本発明は、鋼材などに侵入した水素を検知する水素検知方法に関する。 The present invention relates to a hydrogen detection method for detecting hydrogen that has entered a steel material or the like.
 高強度鋼材は水素を含むと延性が失われ、強度が著しく低下する。この現象は、水素脆化と呼ばれている。このような鋼材の水素脆化に関し、水素脆化の発生を予知するため、鋼材の使用中に鋼材に侵入した水素を検知することは実用上、重要である。 When high-strength steel contains hydrogen, it loses ductility and its strength drops significantly. This phenomenon is called hydrogen embrittlement. Regarding such hydrogen embrittlement of steel materials, it is practically important to detect hydrogen that has entered the steel material during use in order to predict the occurrence of hydrogen embrittlement.
 鋼材への水素侵入を検知する方法としては、薄い板状の鋼材を用い、鋼材を透過した水素を検知する方法がある(非特許文献1参照)。また、事前に透過水素と腐食速度の関係を調べておき、腐食速度を測定することで間接的に水素を検知する方法が知られている(非特許文献2参照)。 As a method for detecting hydrogen intrusion into steel materials, there is a method of using a thin plate-shaped steel material and detecting hydrogen that has permeated through the steel material (see Non-Patent Document 1). Furthermore, a method is known in which hydrogen is indirectly detected by investigating the relationship between permeated hydrogen and corrosion rate in advance and measuring the corrosion rate (see Non-Patent Document 2).
 しかしながら、上述した技術では、薄い板状の鋼材における透過水素の検知に限られ、鋼材からなる構造物に侵入した水素の検知に適用できないという問題があった。また、腐食速度から透過水素を検知する方法は、水素の侵入を直接検知しているわけではないため、結果の信頼性を担保することが難しかった。このように、従来、鋼材などの金属部材に対する水素の侵入が、信頼性を担保した状態で検知することができないという問題があった。 However, the above-mentioned technology has the problem that it is limited to the detection of permeated hydrogen in a thin plate-shaped steel material, and cannot be applied to the detection of hydrogen that has penetrated into a structure made of steel material. Furthermore, since the method of detecting permeated hydrogen based on corrosion rate does not directly detect hydrogen intrusion, it is difficult to ensure the reliability of the results. As described above, there has conventionally been a problem in that hydrogen intrusion into metal members such as steel cannot be detected with reliability.
 本発明は、以上のような問題点を解消するためになされたものであり、金属部材に対する水素の侵入を、信頼性を担保した状態で検知することを目的とする。 The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to detect hydrogen intrusion into metal members while ensuring reliability.
 本発明に係る水素検知方法は、金属部材の内部より表面に伝わる弾性波を測定し、測定した弾性波を元に、金属部材に対する水素の侵入を検知する。 The hydrogen detection method according to the present invention measures elastic waves propagating from the inside of a metal member to the surface, and detects hydrogen intrusion into the metal member based on the measured elastic waves.
 以上説明したように、本発明によれば、金属部材の内部より表面に伝わる弾性波を測定するので、金属部材に対する水素の侵入を、信頼性を担保した状態で検知することができる。 As explained above, according to the present invention, since the elastic waves transmitted from the inside of the metal member to the surface are measured, it is possible to detect the intrusion of hydrogen into the metal member while ensuring reliability.
図1は、本発明の実施の形態に係る水素検知方法を説明するフローチャートである。FIG. 1 is a flowchart illustrating a hydrogen detection method according to an embodiment of the present invention. 図2は、本発明の実施の形態に係る水素検知方法を実施するための測定システムの構成を示す構成図である。FIG. 2 is a configuration diagram showing the configuration of a measurement system for implementing the hydrogen detection method according to the embodiment of the present invention. 図3は、鉄筋150を対象として測定システムを用いて弾性波を測定した結果を示す特性図である。FIG. 3 is a characteristic diagram showing the results of measuring elastic waves on reinforcing bars 150 using a measurement system. 図4は、弾性波の測定による弾性波の発生率を元に(a)、測定対象の鋼材に水素が侵入した期間を積算した結果(b)を示す特性図である。FIG. 4 is a characteristic diagram showing (a) the result of integrating the period during which hydrogen penetrated into the steel material to be measured based on the generation rate of elastic waves determined by measuring the elastic waves (b).
 以下、本発明の実施の形態に係る水素検知方法について図1を参照して説明する。 Hereinafter, a hydrogen detection method according to an embodiment of the present invention will be described with reference to FIG.
 まず、第1ステップS101で、測定対象となる金属部材の内部より表面に伝わる弾性波を測定する。金属部材は、例えば、鉄筋などの鋼材である。弾性波は、例えば、PbZrxTi1-x3(0<x<1)などの圧電材料を用いたピエゾセンサにより測定することができる。 First, in a first step S101, elastic waves transmitted from the inside to the surface of a metal member to be measured are measured. The metal member is, for example, a steel material such as a reinforcing bar. The elastic wave can be measured, for example, by a piezo sensor using a piezoelectric material such as PbZr x Ti 1-x O 3 (0<x<1).
 次に、第2ステップS102で、測定した弾性波を元に、金属部材に対する水素の侵入を検知する。例えば、設定されている振幅を超える弾性波が測定されたことを元に、金属部材に対する水素の侵入を検知することができる。例えば、設定されている振幅を超える弾性波の単位時間あたりの発生数を元に、金属部材に対する水素の侵入を検知することができる。 Next, in a second step S102, intrusion of hydrogen into the metal member is detected based on the measured elastic waves. For example, intrusion of hydrogen into a metal member can be detected based on the measurement of an elastic wave exceeding a set amplitude. For example, intrusion of hydrogen into a metal member can be detected based on the number of occurrences of elastic waves exceeding a set amplitude per unit time.
 発明者らの鋭意の検討の結果、鋼材内への水素の侵入によって、アコースティックエミッション(Acoustic Emission;AE)と同様の弾性波(音波、振動)が発生することが見いだされた。なお、AEは、固体が変形または破壊するときに弾性波が発生する現象である。従来、引張応力が加わっている鋼材に水素が侵入することによる水素脆化により亀裂が発生し、この亀裂発生に伴いAEが発生することが知られている。 As a result of intensive studies by the inventors, it was discovered that the penetration of hydrogen into steel materials generates elastic waves (sound waves, vibrations) similar to acoustic emission (AE). Note that AE is a phenomenon in which elastic waves are generated when a solid is deformed or destroyed. It has been known that cracks occur due to hydrogen embrittlement caused by hydrogen penetrating into steel materials subjected to tensile stress, and that AE occurs along with the cracks.
 これに対し、亀裂が発生していなくても鋼材内に水素が侵入するだけで、弾性波が発生することが明らかとなった。このことから、鋼材からの弾性波の発生(内部より表面に伝わる弾性波)をモニタリングすることによって、亀裂発生前の鋼材内への水素侵入を直接検知することが可能となる。 On the other hand, it has become clear that even if no cracks occur, elastic waves are generated simply by hydrogen penetrating into the steel material. Therefore, by monitoring the generation of elastic waves from the steel material (elastic waves that propagate from the inside to the surface), it is possible to directly detect hydrogen intrusion into the steel material before cracking occurs.
[実施例]
 以下、実施例を用いてより詳細に説明する。以下では、測定対象の金属部材となる高強度鋼による鉄筋に対する水素の侵入による弾性波の発生をモニタリングした。
[Example]
Hereinafter, it will be explained in more detail using Examples. Below, we monitored the generation of elastic waves due to hydrogen penetration into the reinforcing bars made of high-strength steel, which is the metal member to be measured.
 はじめに、測定システムについて、図2を参照して説明する。この測定システムは、センサ151、アンプ152、アナライザ153、コンピュータ154、およびチャージ装置200を備える。センサ151は、PbZrxTi1-x3(0<x<1)を用いたピエゾセンサである。センサ151は、鉄筋150に取り付けられ、鉄筋150の内部より表面に伝わる弾性波を測定する。 First, the measurement system will be explained with reference to FIG. 2. This measurement system includes a sensor 151, an amplifier 152, an analyzer 153, a computer 154, and a charging device 200. The sensor 151 is a piezo sensor using PbZr x Ti 1-x O 3 (0<x<1). The sensor 151 is attached to the reinforcing bar 150 and measures elastic waves transmitted from the inside of the reinforcing bar 150 to the surface thereof.
 弾性波を測定したセンサ151より出力される測定信号は、アンプ152で増幅され、アナライザ153で記録される。アンプ152は、利得が40dB、バンドパスフィルタが50~200kHzに設定されたプリアンプである。アナライザ153は、よく知られたAEアナライザとすることができる。 A measurement signal output from the sensor 151 that measured the elastic wave is amplified by the amplifier 152 and recorded by the analyzer 153. The amplifier 152 is a preamplifier with a gain of 40 dB and a bandpass filter set at 50 to 200 kHz. Analyzer 153 may be a well-known AE analyzer.
 アナライザ153で記録された信号は、コンピュータ154により処理される。コンピュータ154は、記録された信号の中より30mVを超えた弾性波の発生数をカウントし、弾性波の発生率(単位時間あたりの弾性波の発生数)を求める。コンピュータ154は、例えば、求めた結果を所定のグラフとして、表示部(不図示)に表示する。 The signal recorded by the analyzer 153 is processed by the computer 154. The computer 154 counts the number of occurrences of elastic waves exceeding 30 mV from among the recorded signals, and determines the rate of occurrence of elastic waves (the number of occurrences of elastic waves per unit time). The computer 154 displays the obtained results as a predetermined graph on a display unit (not shown), for example.
 チャージ装置200は、アクリル樹脂などから構成された容器201と、同様にアクリル樹脂から構成された蓋202と、容器201に収容された電解質溶液203とを備えることができる。電解質溶液203は、例えば1mol/Lの炭酸水素ナトリウム水溶液である。また、チャージ装置200は、電解質溶液203中に配置された参照電極204,対極205を備える。参照電極204は、例えば、Ag/AgCl(銀塩化銀)電極であり、対極205は、Pt電極である。また、鉄筋150は、容器201の底部から蓋202を貫通して電解質溶液203に接触する状態とされている。 The charging device 200 can include a container 201 made of acrylic resin or the like, a lid 202 similarly made of acrylic resin, and an electrolyte solution 203 contained in the container 201. The electrolyte solution 203 is, for example, a 1 mol/L aqueous sodium hydrogen carbonate solution. The charging device 200 also includes a reference electrode 204 and a counter electrode 205 placed in the electrolyte solution 203. The reference electrode 204 is, for example, an Ag/AgCl (silver silver chloride) electrode, and the counter electrode 205 is a Pt electrode. Further, the reinforcing bar 150 penetrates through the lid 202 from the bottom of the container 201 and comes into contact with the electrolyte solution 203 .
 鉄筋150は、直径7mm、長さ500mmの断面視円形の棒状としている。また、鉄筋150が電解質溶液203に接触している領域の長さは、例えば、150mmとすることができる。なお、容器201の底部の鉄筋150が貫通する部分は、電解質溶液203が漏れないようにシールされている。 The reinforcing bar 150 has a rod shape with a circular cross section and a diameter of 7 mm and a length of 500 mm. Further, the length of the region where the reinforcing bar 150 is in contact with the electrolyte solution 203 can be, for example, 150 mm. Note that the portion of the bottom of the container 201 that is penetrated by the reinforcing bar 150 is sealed so that the electrolyte solution 203 does not leak.
 この状態で、ポテンショスタット(不図示)を用い、鉄筋150を作用極とし、参照電極204および対極205を用いた3極構成で、鉄筋150に、参照電極204に対して負の電位(-1Vvs.SSE)を印加する。なお、この条件は、電解質溶液203に触れている鉄筋150の表面が、腐食しない電気化学条件である。このようにカソードチャージすることで、鉄筋150の表面に水素を発生させる。これにより、水素が鉄筋150に侵入可能な状態となる。 In this state, a potentiostat (not shown) is used to set the reinforcing bar 150 at a negative potential (-1V vs. .SSE) is applied. Note that this condition is an electrochemical condition in which the surface of the reinforcing bar 150 that is in contact with the electrolyte solution 203 does not corrode. By cathodic charging in this manner, hydrogen is generated on the surface of the reinforcing bar 150. This allows hydrogen to enter the reinforcing bars 150.
 また、電解質溶液203として、炭酸水素ナトリウム水溶液のみの条件Aと、炭酸水素ナトリウム水溶液に鋼材内への水素侵入を促進させるチオシアン酸アンモニウムを10g/L添加した水溶液を用いた条件Bとの各々について、実験を実施した。 Further, as the electrolyte solution 203, condition A using only a sodium hydrogen carbonate aqueous solution and condition B using an aqueous solution containing 10 g/L of ammonium thiocyanate, which promotes hydrogen penetration into the steel material, to the sodium hydrogen carbonate aqueous solution. , conducted an experiment.
 上述した実験の結果を図3に示す。図3は、30mVを超えた弾性波の、1時間あたりの発生数の変化を示している。図3の(a)は、条件Aの実験結果を示し、図3の(b)は、条件Bの実験結果を示す。図3の(a)に示すように、条件Aでは、弾性波はほとんど測定されなかった。これに対し、図3の(b)に示すように、条件Bでは水素チャージ開始直後から、弾性波の発生が確認された。 The results of the experiment described above are shown in FIG. 3. FIG. 3 shows the change in the number of occurrences of elastic waves exceeding 30 mV per hour. 3(a) shows the experimental results under condition A, and FIG. 3(b) shows the experimental results under condition B. As shown in FIG. 3(a), under condition A, almost no elastic waves were measured. On the other hand, as shown in FIG. 3(b), under condition B, generation of elastic waves was confirmed immediately after the start of hydrogen charging.
 水素チャージ開始から24時間経過後に弾性波の測定を終了した後、条件Aおよび条件Bに用いた鉄筋の各々に対し、昇温脱離分析を行い鋼材内に侵入した水素量を測定した。この測定の結果、条件Aでは0.5ppmとほとんど水素が侵入していなかったが、条件Bでは4.5ppmの水素が鋼材内に侵入していることが確認された。また、条件Bで24時間水素チャージを行った後、鉄筋を電解質溶液から取り出して(チャージ装置から取り外して)水素チャージを停止した場合、停止した後の測定では弾性波の発生は見られなかった。これらの結果より、弾性波は鋼材内に水素が侵入する際に発生していることがわかる。従って、例えば、鋼構造物にピエゾセンサなどの弾性波測定器を取り付けて弾性波の発生をモニタリングすることで、鋼材内への水素侵入を直接検知することができる。 After completing the measurement of elastic waves 24 hours after the start of hydrogen charging, temperature-programmed desorption analysis was performed on each of the reinforcing bars used in Condition A and Condition B to measure the amount of hydrogen that had penetrated into the steel material. As a result of this measurement, it was confirmed that under condition A, 0.5 ppm and almost no hydrogen had penetrated, but under condition B, 4.5 ppm of hydrogen had penetrated into the steel material. Furthermore, after hydrogen charging was performed for 24 hours under condition B, when the reinforcing steel was removed from the electrolyte solution (removed from the charging device) and hydrogen charging was stopped, no elastic waves were observed in measurements after the hydrogen charging was stopped. . These results show that elastic waves are generated when hydrogen enters the steel material. Therefore, for example, by attaching an elastic wave measurement device such as a piezo sensor to a steel structure and monitoring the generation of elastic waves, it is possible to directly detect hydrogen intrusion into the steel material.
 上述した弾性波の測定による弾性波の発生率を元に[図4の(a)]、測定対象の鋼材に水素が侵入した期間を積算し[図4の(b)]、水素侵入期間の積算値がある閾値を超えた時点[図4の(b)の×]で鋼材の点検や更改を行うなどの、水素脆化の発生を予知した上で構造物の保守運用を行うことができる。 Based on the generation rate of elastic waves from the elastic wave measurement described above [Fig. 4 (a)], the period during which hydrogen penetrated into the steel material to be measured was integrated [Fig. 4 (b)], and the hydrogen penetration period was calculated. It is possible to perform maintenance operations on structures after predicting the occurrence of hydrogen embrittlement, such as inspecting or renewing steel materials when the integrated value exceeds a certain threshold [X in (b) in Figure 4]. .
 以上に説明したように本発明によれば、金属部材の内部より表面に伝わる弾性波を測定するので、金属部材に対する水素の侵入を、信頼性を担保した状態で検知することができるようになる。本発明によれば、鋼構造物などに使用される鋼材への水素侵入を直接検知することが可能となる。 As explained above, according to the present invention, since the elastic waves transmitted from the inside of the metal member to the surface are measured, it becomes possible to detect the intrusion of hydrogen into the metal member while ensuring reliability. . According to the present invention, it is possible to directly detect hydrogen intrusion into steel materials used for steel structures and the like.
 なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。 It should be noted that the present invention is not limited to the embodiments described above, and many modifications and combinations can be made within the technical idea of the present invention by those having ordinary knowledge in this field. That is clear.
 150…鉄筋、151…センサ、152…アンプ、153…アナライザ、154…コンピュータ、200…チャージ装置、201…容器、202…蓋、203…電解質溶液、204…参照電極、205…対極。 150... Rebar, 151... Sensor, 152... Amplifier, 153... Analyzer, 154... Computer, 200... Charge device, 201... Container, 202... Lid, 203... Electrolyte solution, 204... Reference electrode, 205... Counter electrode.

Claims (3)

  1.  金属部材の内部より表面に伝わる弾性波を測定し、測定した前記弾性波を元に、前記金属部材に対する水素の侵入を検知する水素検知方法。 A hydrogen detection method that measures elastic waves propagating from the inside of a metal member to the surface, and detects hydrogen intrusion into the metal member based on the measured elastic waves.
  2.  請求項1記載の水素検知方法において、
     設定されている振幅を超える前記弾性波を元に、前記金属部材に対する水素の侵入を検知することを特徴とする水素検知方法。
    The hydrogen detection method according to claim 1,
    A hydrogen detection method, characterized in that hydrogen intrusion into the metal member is detected based on the elastic wave exceeding a set amplitude.
  3.  請求項2記載の水素検知方法において、
     設定されている振幅を超える前記弾性波の単位時間あたりの発生数を元に、前記金属部材に対する水素の侵入を検知することを特徴とする水素検知方法。
    The hydrogen detection method according to claim 2,
    A hydrogen detection method, characterized in that hydrogen intrusion into the metal member is detected based on the number of occurrences of the elastic waves per unit time exceeding a set amplitude.
PCT/JP2022/017988 2022-04-18 2022-04-18 Hydrogen detection method WO2023203592A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/017988 WO2023203592A1 (en) 2022-04-18 2022-04-18 Hydrogen detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/017988 WO2023203592A1 (en) 2022-04-18 2022-04-18 Hydrogen detection method

Publications (1)

Publication Number Publication Date
WO2023203592A1 true WO2023203592A1 (en) 2023-10-26

Family

ID=88419376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017988 WO2023203592A1 (en) 2022-04-18 2022-04-18 Hydrogen detection method

Country Status (1)

Country Link
WO (1) WO2023203592A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54153993U (en) * 1978-04-18 1979-10-26
JPS62179662A (en) * 1986-02-04 1987-08-06 Chiyoda Chem Eng & Constr Co Ltd Method and apparatus for detecting hydrogen erosion by acoustic emission
CN106596729A (en) * 2016-12-22 2017-04-26 北京航空航天大学 Method for monitoring fatigue crack propagation and evaluating hydrogen brittleness of 2.25Cr-1Mo steel based on sound emission
JP2017167100A (en) * 2016-03-18 2017-09-21 株式会社東芝 Monitoring system for structure, and method for monitoring structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54153993U (en) * 1978-04-18 1979-10-26
JPS62179662A (en) * 1986-02-04 1987-08-06 Chiyoda Chem Eng & Constr Co Ltd Method and apparatus for detecting hydrogen erosion by acoustic emission
JP2017167100A (en) * 2016-03-18 2017-09-21 株式会社東芝 Monitoring system for structure, and method for monitoring structure
CN106596729A (en) * 2016-12-22 2017-04-26 北京航空航天大学 Method for monitoring fatigue crack propagation and evaluating hydrogen brittleness of 2.25Cr-1Mo steel based on sound emission

Similar Documents

Publication Publication Date Title
US3946600A (en) Acoustic emission method for detection and monitoring of corrosion
Carpinteri et al. Critical defect size distributions in concrete structures detected by the acoustic emission technique
Rettig et al. Acoustic emission method for monitoring corrosion reactions
JP5700673B2 (en) Method for measuring amount of hydrogen penetrating into metal and method for monitoring amount of hydrogen penetrating into metal part of moving body
KR20100041696A (en) High-pressure tank damage detecting method and device therefor
Seah et al. The correlation of acoustic emission with rate of corrosion
Kim et al. Effect of prestress force on longitudinal vibration of bonded tendons embedded in a nuclear containment
WO2023203592A1 (en) Hydrogen detection method
JP5888692B2 (en) Method for measuring amount of hydrogen penetrating into metal and method for monitoring amount of hydrogen penetrating into metal part of moving body
Carpinteri et al. A fractal approach for damage detection in concrete and masonry structures by the acoustic emission technique
Loi et al. Scaling subtraction method for damage detection in composite beams
Vandecruys et al. Preliminary results on acoustic emission and vibration-based monitoring of locally corroded reinforced concrete beams
JP2010038696A (en) Non-destructive evaluation method of degree of metal fatigue damage and ultrasonic metal fatigue damage degree measuring instrument
Abdelrahman Assessment of damage in concrete structures using acoustic emission
Wu et al. Evaluation of corrosion critical variables of 304 stainless steel by delay time of acoustic emission
Visalakshi et al. Detection and quantification of corrosion using electro-mechanical impedance (EMI) technique
CN104133000B (en) A kind of material corrosion detection means and method
JP5986126B2 (en) Hydrogen embrittlement evaluation method
JP5979731B2 (en) Method for monitoring the amount of hydrogen entering the metal part of a moving object
RU2141648C1 (en) Process evaluating safety margin of loaded material
Ramis et al. Detection of cracks caused by corrosion in simple structural elements using nonlinear ultrasonic techniques
JP2011002276A (en) Method and device for detecting breakage of glass
ElBatanouny Implementation of acoustic emission as a non-destructive evaluation method for concrete structures
Vélez et al. Early corrosion monitoring of prestressed concrete piles using acoustic emission
Xth An initial investigation on the potential applicability of ultrasonic testing to assess effects of corrosion on linear and nonlinear elastic behaviour of pre-stressing steel strands

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938395

Country of ref document: EP

Kind code of ref document: A1