WO2023202498A1 - 信道信息获取方法及装置 - Google Patents

信道信息获取方法及装置 Download PDF

Info

Publication number
WO2023202498A1
WO2023202498A1 PCT/CN2023/088546 CN2023088546W WO2023202498A1 WO 2023202498 A1 WO2023202498 A1 WO 2023202498A1 CN 2023088546 W CN2023088546 W CN 2023088546W WO 2023202498 A1 WO2023202498 A1 WO 2023202498A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
csi
channel information
time window
information
Prior art date
Application number
PCT/CN2023/088546
Other languages
English (en)
French (fr)
Inventor
王化磊
Original Assignee
北京紫光展锐通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京紫光展锐通信技术有限公司 filed Critical 北京紫光展锐通信技术有限公司
Publication of WO2023202498A1 publication Critical patent/WO2023202498A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present application relates to the field of communications, and in particular, to a method and device for obtaining channel information.
  • the terminal device can feed back the downlink channel quality to the network device, for example, through channel state information (channel state information, CSI) to feed back the downlink channel instruction.
  • channel state information channel state information, CSI
  • network equipment receives CSI, it can perform beam management, mobility management, rate matching and other processing based on CSI to improve communication quality. How terminal devices obtain CSI is currently a hot research topic.
  • Embodiments of the present application provide a method and device for obtaining channel information, which can predict channel information and help improve network performance.
  • this application provides a method for obtaining channel information, which method is applied to a terminal device.
  • the method may include: receiving indication information from a network device, the indication information being used to indicate predicted channel information; according to the first channel information, Determine the second channel information;
  • the first channel information includes at least one channel information of the first time window
  • the second channel information includes at least one channel information of the second time window
  • the end time of the first time window is earlier than the start time of the second time window.
  • the terminal device when the terminal device receives the instruction information to predict the channel information, it predicts the second channel information based on the first channel information, thereby realizing the prediction of the channel information and helping to improve network performance.
  • the CSI of the second time window can be determined based on the second channel information, so that the CSI of the second time window can be sent to the network device, so that the network device can Perform beam management, mobility management, link adaptation and other processing according to the CSI of the second time window.
  • the first time window includes one or more time units
  • the second time window includes one or more time units
  • the first channel information includes at least one channel information of the first time window, including: the first channel information includes channel information associated with M first CSI reports of the first time window, M is A positive integer so that the terminal device can predict the second channel information based on the associated channel information of the M first CSI reports in the first time window, thus helping to improve network performance.
  • the starting time of the first time window is not earlier than the end time of the first time unit, and/or the end time of the first time window is not later than the end time of the second time unit; the first time unit and the third time are There is a first difference between units, a second difference between the second time unit and the third time unit, the first difference is greater than or equal to the second difference, and the third time unit is used to send the second time window.
  • the first difference value is predefined, or the first difference value is indicated by the network device, or the first difference value is determined based on the capability information of the terminal device.
  • the second difference value is predefined, or the second difference value is indicated by the network device, or the second difference value is determined based on the capability information of the terminal device.
  • the first channel information includes channel information associated with M consecutive first CSI reports of the first time window
  • the M first CSI reports correspond to the non-zero-power channel state information reference signal (NZP CSI-RS) used for channel measurement.
  • the number of ports corresponding to the NZP CSI-RS is the same as the first
  • the number of ports corresponding to the channel information is the same.
  • the above method further includes: determining a reference CSI report from the M first CSI reports, and the difference between the second time unit and the time unit occupied by the reference CSI report is less than or equal to a threshold.
  • the CSI of the second time window is included in the second CSI report, and the CSI processing time corresponding to the second CSI report is the time interval between the first physical uplink channel resource and the second physical uplink channel resource in the time domain.
  • the first physical uplink channel resource is used to carry the reference CSI report
  • the second physical uplink channel resource is used to carry the second CSI report.
  • the CSI of the second time window is included in the second CSI report, and the number of CSI processing units CPU corresponding to the second CSI report is R, where R is a positive integer.
  • R is predefined, or R is indicated by the network device.
  • the first channel information includes at least one channel information of the first time window, including: the first channel information includes channel information associated with N CSI-RS resources of the first time window, N is A positive integer so that the terminal device can predict the second channel information based on the channel information associated with N CSI-RS resources in the first time window.
  • the starting time of the first time window is not earlier than the end time of the first time unit, and/or the end time of the first time window is not later than the end time of the second time unit.
  • the first channel information includes channel information associated with N consecutive CSI-RS resources of the first time window
  • the N CSI resources are NZP CSI-RS resources used for channel measurement.
  • the number of ports corresponding to the NZP CSI-RS resources is the same as the number of ports corresponding to the second channel information.
  • the above method further includes: determining a fourth time unit occupied by the CSI reference resource in the time domain, and the CSI reference resource corresponds to the CSI of the second time window.
  • the start time of the fourth time unit is later than the end time of the first time unit, and/or the end time of the fourth time unit is earlier than the start time of the second time window.
  • the starting time of the fourth time unit is later than the starting time of the second time window, there is a third difference between the first time unit and the fourth time unit, and the second time unit is There is a fourth difference between the fourth time units, and the third difference is greater than or equal to the fourth difference.
  • the third difference value is predefined, or the third difference value is indicated by the network device, or the third difference value It is determined based on the capability information of the terminal device.
  • the fourth difference value is predefined, or the fourth difference value is indicated by the network device, or the fourth difference value is determined based on the capability information of the terminal device.
  • the index number S1 of the fourth time unit can satisfy the following expression:
  • n is determined based on the third time unit, which is used to send the CSI of the second time window;
  • K offset is configured by high-level parameters;
  • ⁇ Koffset is the subcarrier interval corresponding to K offset ;
  • ⁇ DL is the downlink subcarrier spacing;
  • s offset is the time unit offset, s offset is predefined, or s offset is indicated by the network device, or s offset is determined based on the capability information of the terminal device.
  • the index number S1 of the fourth time unit can satisfy the following expression:
  • n is determined based on the third time unit, which is used to send the CSI of the second time window;
  • K offset is configured by high-level parameters;
  • ⁇ Koffset is the subcarrier interval corresponding to K offset ;
  • ⁇ DL is the downlink subcarrier spacing;
  • the difference between n' CSI_ref and n CSI_ref is S is a positive integer greater than or equal to 0;
  • S is predefined, or S is indicated by the network device, or S is determined based on the capability information of the terminal device.
  • the above method further includes: receiving CSI report configuration information from the network device, where the CSI report configuration information has no associated CSI resource configuration information. Even if the CSI report configuration information has no associated CSI resource configuration information, the terminal device can predict the second channel information based on the first channel information, which helps improve network performance.
  • the above method further includes: receiving CSI report configuration information from the network device, where the CSI report configuration information has associated CSI resource configuration information.
  • the above-mentioned CSI resource configuration information is NZP CSI-RS resource configuration information; the above-mentioned method further includes: determining the number of ports corresponding to the second channel information according to the NZP CSI-RS resource configuration information.
  • the CSI of the second time window is included in the second CSI report, and the CSI processing time requirement of the second CSI report is different from the CSI processing time requirement of the first CSI report.
  • the first CSI report carries: layer 1 reference signal received power (L1-RSRP) or layer 1 signal-to-noise and interference ratio (L1- SINR).
  • L1-RSRP layer 1 reference signal received power
  • L1- SINR layer 1 signal-to-noise and interference ratio
  • the number of ports corresponding to the first channel information is the same as the number of ports corresponding to the second channel information.
  • the CSI of the second time window is included in the second CSI report" involved in the first aspect and various implementations of the first aspect can be understood as: the second CSI report includes the CSI of the second time window, That is to say, the second CSI report is a report that includes or carries the CSI of the second time window.
  • this application provides a device for obtaining channel information, which device includes:
  • a communication unit configured to receive indication information from the network device, where the indication information is used to indicate predicted channel information
  • a processing unit configured to determine second channel information according to the first channel information; wherein the first channel information includes at least one channel information of the first time window, the second channel information includes at least one channel information of the second time window, and the The end time of one time window is earlier than the start time of the second time window.
  • the steps in the method designed in the first aspect are applied to terminal equipment.
  • the present application provides a terminal device, including a processor, a memory, and a computer program or instructions stored on the memory, wherein the processor executes the computer program or instructions to implement the above-described first aspect. The steps involved in the method.
  • the present application provides a chip including a processor, wherein the processor executes the steps in the method related to the first aspect.
  • the present application provides a chip module, including a communication interface and a chip.
  • the chip includes a processor, wherein the processor executes the steps in the method related to the first aspect.
  • the present application provides a computer-readable storage medium, which stores a computer program or instructions, and when the computer program or instructions are executed, the steps in the method related to the above-mentioned first aspect are implemented.
  • the present application provides a computer program product, including a computer program or instructions, wherein when the computer program or instructions are executed, the steps in the method related to the first aspect are implemented.
  • Figure 1 is a schematic diagram of the architecture of a communication system applying this application
  • Figure 2 is an example diagram of the relationship between two time windows
  • Figure 3 is a schematic diagram of a possible time unit relationship provided by this application.
  • Figure 4 is a schematic flow chart of the channel information acquisition method provided by this application.
  • Figure 5 is an example diagram of the relationship between the first time unit, the second time unit and the first time window provided by this application;
  • Figure 6 is an example diagram of the relationship between the third time unit and the second time window provided by this application.
  • Figure 7 is an example diagram of the relationship between the fourth time unit and the second time window provided by this application.
  • Figure 8 is a schematic structural diagram of a channel information acquisition device provided by this application.
  • FIG. 9 is a schematic structural diagram of another channel information acquisition device provided by this application.
  • FIG. 10 is a schematic structural diagram of a chip module provided by an embodiment of the present application.
  • words such as “first” and “second” are used to distinguish the same or similar items with substantially the same functions and effects.
  • words such as “first” and “second” do not limit the number and execution order, and words such as “first” and “second” do not limit the number and execution order.
  • “And/or” describes the relationship between associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, alone There are three situations B.
  • the character “/” generally indicates that the related objects are in an "or” relationship.
  • This application can be applied to the fifth generation (5th generation, 5G) system, which can also be called the new radio (new radio, NR) system; or can be applied to the sixth generation (6th generation, 6G) system, or the seventh generation ( 7th generation (7G) system, or other communication systems in the future; or it can also be used for device to device (D2D) system, machine to machine (M2M) system, vehicle to everything (V2X) )etc.
  • 5G fifth generation
  • NR new radio
  • the communication system 10 shown in FIG. 1 may include, but is not limited to: a network device 110 and a terminal device 120.
  • the number and form of the devices in Figure 1 are for example and do not constitute a limitation on the embodiments of the present application. For example, actual applications may include multiple terminal devices.
  • Terminal equipment also known as user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • terminal devices refers to equipment that provides voice and/or data connectivity to users.
  • handheld devices vehicle-mounted devices, etc. with wireless connection capabilities.
  • some examples of terminal devices are: mobile phones, tablets, laptops, PDAs, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality devices Augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, smart grid Wireless terminals in transportation safety (transportation safety), wireless terminals in smart city (smart city), wireless terminals in smart home (smart home), etc.
  • transportation safety transportation safety
  • smart city smart city
  • smart home smart home
  • Network equipment also called access network equipment, refers to the radio access network (RAN) node (or equipment) that connects terminal equipment to the wireless network, and can also be called a base station.
  • RAN nodes are: evolved Node B (gNB), transmission reception point (TRP), evolved Node B (evolved Node B, eNB), radio network controller, RNC), Node B (Node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB) , baseband unit (base band unit, BBU), or wireless fidelity (wireless fidelity, Wifi) access point (access point, AP), etc.
  • gNB evolved Node B
  • TRP transmission reception point
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station for example, home evolved NodeB, or home Node
  • the network device may include a centralized unit (CU) node, a distributed unit (DU) node, or a RAN device including a CU node and a DU node.
  • CU centralized unit
  • DU distributed unit
  • RAN device including a CU node and a DU node.
  • the terminal device may include a prediction module (such as an artificial intelligence (artificial intelligence, AI) module).
  • the prediction module can be used to predict downlink channel information.
  • the second channel information is predicted or determined based on the first channel information, so that the second channel information does not depend on the downlink reference signal, which can save network resources occupied by the downlink reference signal.
  • the prediction module may have learning capabilities, such as machine learning (ML) and/or deep learning (DL) capabilities, to learn the first channel information to predict or determine the second channel information.
  • ML machine learning
  • DL deep learning
  • the prediction module can be a software unit and/or a hardware unit that uses some algorithms to predict channel information, Some algorithms such as convolutional neural network algorithm, deep neural network algorithm, etc.
  • the prediction module can be a chip, a chip module, etc.
  • the network device may include a prediction module to predict the uplink channel information.
  • a time window can be used to describe a continuous period of time in the time domain.
  • the time window may include a start time and an end time, and the time difference between the end time and the start time is the size of the time window or the length of the time window.
  • the sizes of two adjacent time windows can be the same or different.
  • the end moment can also be described as an end time point or an end timestamp, etc.
  • the start moment can also be described as a start time point or a start timestamp, etc.
  • the two time windows may not overlap, for example, there is a time interval between the two time windows.
  • the size of the time interval may be the difference between the starting time of time window 2 and the starting time of time window 1.
  • the time interval may also be the difference between the end time of time window 2 and the end time of time window 1.
  • the time interval may also be the difference between the end time of time window 1 and the start time of time window 2.
  • the time interval may be the difference between the start time of time window 1 and the end time of time window 2.
  • the size of the time interval between the two time windows in this application can be defined based on actual needs, and is not limited to this.
  • the starting moment of time window 2 is the end time of time window 1.
  • the starting time of time window 2 is earlier than the end time of time window 1, and the starting time of time window 2 is later. at the beginning of time window 1.
  • the relationship between two adjacent time windows shown in Figure 2 is used as an example and does not constitute a limitation of the present application.
  • a time window may include one or more time units.
  • the time unit is a time domain unit used for signal transmission, that is to say, in the time domain, the terminal device and the network device communicate in time unit units or granularity.
  • the time unit may be a radio frame, a subframe, a slot, a mini-slot or a symbol.
  • the symbol may be an orthogonal frequency division multiplexing (OFDM) symbol, and the OFDM symbol may also be referred to as a time domain symbol.
  • OFDM orthogonal frequency division multiplexing
  • the time unit can also be divided into an uplink time unit and a downlink time unit based on the communication direction.
  • the uplink time unit is used for uplink communication
  • the downlink time unit is used for downlink communication.
  • the time slot can be divided into an uplink time slot and a downlink time slot based on the communication direction.
  • the basic time unit can also be divided into an uplink basic time unit and a downlink basic time unit based on the communication direction.
  • the basic time unit is divided into uplink basic time unit, downlink basic time unit and flexible basic time unit based on the communication direction.
  • the uplink basic time unit is used for uplink communication.
  • the downlink basic time unit is used for downlink communications.
  • the flexible basic time unit can be used by terminal equipment or network equipment for uplink communication or downlink communication according to actual needs. For example, take the basic unit of time as a symbol. Symbols can be divided into uplink symbols, downlink symbols and flexible symbols based on the communication direction. Flexible symbols can be used for uplink communication or downlink communication, depending on actual needs.
  • a time unit may include one or more basic time units, and a basic time unit may also be described as a sub-time unit, etc.
  • the time unit is a subframe, and the basic time unit may be a time slot. That is, a subframe can include one or more time slots.
  • the specific number of time slots a subframe includes is related to the subcarrier space (Subcarrier Space, SCS). For example, for an SCS of 15 kHz, the time domain length of a time slot is 1 ms, and a subframe may include 14 time slots.
  • the time unit is a time slot, and the basic time unit may be a symbol, that is, a time slot may include one or more symbols. For example, one slot consists of 14 symbols.
  • Figure 3 shows a schematic diagram of a possible time unit relationship in this application.
  • the time domain length of a radio frame is 10 ms
  • a radio frame can include 10 radio subframes
  • the time domain length of a radio subframe is 1 ms.
  • the two time units may not overlap, for example, there is a time interval between the two time units.
  • There is a time interval between two time units which is similar to the time interval between the two time windows mentioned above. Or, there is no time interval between two time units.
  • the two time units are continuous in the time domain, that is, the end moment of one time unit is the starting moment of the other time unit.
  • channel information may be used to characterize channel characteristics or characteristics.
  • the channel information may be channel matrix information and/or CSI and/or channel feature vectors.
  • the channel information may also be a CSI report.
  • the channel information may also be time domain information, frequency domain information, time-frequency domain information, or channel information in the delay-doppler domain, etc., and there is no specific limitation on this.
  • the channel matrix information and CSI are explained below.
  • channel matrix information may be used to describe channel matrix related information.
  • the channel matrix information may include one or more of the following: channel matrix H, equivalent channel matrix, precoding matrix W (precoding matrix W can be derived from channel matrix H), right singular vector V of channel matrix H, The eigenvector vi of the square matrix H T H, the vector associated with the channel matrix H (for example, the vector of the channel matrix H under a certain deformation, etc.).
  • the transmitter has a antennas and the receiver has b antennas.
  • r is the received signal vector after passing through the MIMO channel
  • s is the transmitted signal vector at the transmitter
  • H is the b ⁇ a order channel matrix for the MIMO channel
  • the transmitter can use the precoding method to optimize the spatial characteristics of the transmitted signal vector s according to the channel matrix H, so that the spatial distribution characteristics of the transmitted signal vector s match the channel matrix H, which can effectively reduce the interference
  • the degree of dependence of the receiver algorithm simplifying the receiver algorithm. Through precoding, system performance can be effectively improved.
  • Precoding can use linear or nonlinear methods. Due to complexity and other reasons, only linear precoding is generally considered in current wireless communication systems.
  • W is the precoding matrix.
  • the receiver cannot The signal performs channel estimation, so transmitter precoding can effectively suppress multi-user interference. It can be seen that it is beneficial to the system that the transmitter knows the channel matrix and uses appropriate precoding to process it.
  • the precoding matrix W and the channel matrix H jointly determine the equivalent channel matrix (such as H ⁇ W), and the equivalent channel matrix determines the channel characteristics/characteristics, etc.
  • the precoding matrix W can be derived from the channel matrix H.
  • the precoding matrix W can be a matrix under a certain transformation of the channel matrix H.
  • U [u 1 , u 2 ,..., u b ] is an orthogonal matrix or unitary matrix of order b ⁇ b;
  • V [v 1 , v 2 ,... ., v a ] is an orthogonal matrix or chief matrix of order a ⁇ a, and the column vectors in V can be called the singular vectors (right-singular vectors) of the channel matrix H;
  • is a diagonal matrix of order a ⁇ a,
  • ⁇ i represents the eigenvalue of the square matrix H T H
  • vi represents the eigenvector of the square matrix H T H.
  • the eigenvector of the square matrix H T H also represents the column vector in the above V. That is to say, all the eigenvectors of the square matrix H T H can form the above V, and the eigenvectors of the square matrix H T H can be the right singular vector of the channel matrix H.
  • CSI can be used to describe information related to channel quality.
  • CSI describes the propagation process of wireless signals between transmitters and receivers, including the effects of distance, scattering, fading, etc. on the signals.
  • CSI can be used by terminal equipment to feedback downlink channel quality to network equipment so that network equipment can perform beam management, mobility management and other processing based on CSI.
  • the CSI sent by the terminal device to the network device may be carried in the CSI report.
  • CSI may also include at least one of the following: CSI Reference Signal Resource Indicator (CRI), Rank Indicator (RI), Channel Quality Indicator (CQI), Precoding Matrix Indicator (PMI), Layer Indicator (LI), L1-RSRP, L1-SINR.
  • CRI CSI Reference Signal Resource Indicator
  • RI Rank Indicator
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • LI Layer Indicator
  • L1-RSRP L1-SINR.
  • the terminal equipment performs channel measurement through downlink reference signals to obtain channel information. Measurement can also be described as evaluating, detecting, or estimating, etc.
  • the downlink reference signal may include but is not limited to CSI-RS, synchronization signal and physical broadcast channel block (Synchronization Signal Block, SSB) or physical broadcast channel demodulation reference signal (PBCH DMRS), etc.
  • the terminal device can perform downlink channel measurement according to the CSI-RS to obtain the channel matrix information, so that the CSI can be obtained according to the channel matrix information.
  • the CSI report (CSI-Report) is used to report CSI.
  • the CSI report may include at least one of L1-RSRP, L1-SINR, CSI-related information, and the like.
  • CSI The report can be configured by the higher layer parameter CSI report configuration information (CSI-ReportConfig).
  • CSI-ReportConfig can be configured by the high-level parameter CSI-MeasConfig.
  • CSI-MeasConfig can indicate or include the following two high-level parameters: CSI report configuration information (CSI-ReportConfig) and CSI resource configuration information (CSI-ResourceConfig).
  • CSI-ReportConfig may indicate or include CSI-ResourceConfigId.
  • CSI-ReportConfig can be associated with CSI-ResourceConfig, or CSI-ResourceConfig can be associated with CSI-ReportConfig. Association can also be described as mapping or correspondence, etc.
  • CSI-ReportConfig indicates or includes CSI-ResourceConfigId, which can be understood to mean that the CSI report configuration information has associated CSI resource configuration information;
  • CSI-ReportConfig does not indicate or does not include CSI-ResourceConfigId, which can be understood to mean that the CSI report configuration information has no Associated CSI resource configuration information.
  • CSI-ResourceConfig can be used to configure CSI-RS resources for CSI measurement.
  • CSI-ResourceConfig can configure a resource set (such as ResourceSet), and the ResourceSet can include one or more CSI-RS resources (such as CSI-RS-Resource).
  • CSI-ResourceConfig may indicate or include: NZP-CSI-RS resource set (NZP-CSI-RS-ResourceSet), or CSI Interference Measurement (CSI-IM) resource set (CSI-IM-ResourceSet), or synchronization Signal block (SSB) resource set (SSB-ResourceSet).
  • NZP-CSI-RS-ResourceSet NZP-CSI-RS-ResourceSet
  • CSI-IM CSI Interference Measurement
  • SSB synchronization Signal block
  • NZP-CSI-RS-ResourceSet can be used for channel measurement and/or interference measurement; CSI-IM-ResourceSet can be used for interference measurement; SSB-ResourceSet can be used for channel measurement.
  • the type of CSI-RS resources can be periodic, semi-persistent or aperiodic.
  • the report configuration type (reportConfigType) in CSI-ReportConfig can be used to indicate the report type of the CSI report.
  • the report type of the CSI report can be a periodic CSI report, aperiodic CSI report or semi-persistent CSI report.
  • CSI reports can be transmitted through the physical uplink control channel (PUCCH) or the physical uplink shared channel (PUSCH).
  • the following takes the time unit as the time slot and the basic time unit as the symbol as an example to explain the reporting timing of the CSI report.
  • the transmission timing is a CSI-RS transmission timing used for channel measurement, and/or a CSI-RS and/or CSI-IM timing used for interference measurement.
  • CSI reference resources are as follows:
  • the CSI reference resource is defined as a set of downlink physical resource blocks, and the obtained CSI is related to the corresponding bandwidth of the set of downlink physical resource blocks.
  • the uplink time slot n' (that is, the index number of the uplink time slot is expressed as n') reports a CSI report.
  • the time domain position of the CSI reference resource corresponding to the CSI report is a single downlink time slot.
  • the single downlink time slot The index number of the gap can be expressed as Among them, ⁇ Koffset is the subcarrier spacing corresponding to K offset ; ⁇ DL is the subcarrier spacing of the downlink.
  • K offset can be configured by high-level parameters, and its unit can be milliseconds (ms).
  • K offset can be determined by CellSpecific_Koffset Configuration, or the value of K offset is equal to CellSpecific_Koffset-UESpecific_Koffset, if the media access control-control element (media access control-control element, MAC-CE) provides UESpecific_Koffset.
  • media access control-control element media access control-control element, MAC-CE
  • Time slot n (that is, the index number of the time slot is expressed as n) is related to the uplink time slot n'.
  • time slot n is the downlink time slot corresponding to the uplink time slot n'.
  • the relationship between the two can be expressed as:
  • ⁇ UL is the subcarrier spacing of the uplink
  • ⁇ offset can be determined according to the high-level parameter ca-SlotOffset.
  • n CSI_ref is greater than or equal to The minimum value of n CSI_ref is greater than or equal to The minimum value of , and it is a valid downlink time slot.
  • ⁇ DL is the subcarrier spacing of the downlink.
  • n CSI_ref makes the time slot occupied by the reference resource the same as the time slot occupied by the CSI request.
  • the effective downlink time slots are the same. Otherwise, n CSI_ref is greater than or equal to The minimum value of , and nn CSI_ref is a valid downlink time slot, Z' represents the CSI processing time requirement of CSI report, Indicates the number of symbols included in a time slot.
  • the terminal equipment When periodic or semi-persistent CSI-RS/CSI-IM/SSB resources are used for channel measurement/interference measurement, the terminal equipment does not expect to measure the channel/interference on the CSI-RS/CSI-IM/SSB resources.
  • the last symbol of the CSI-RS/CSI-IM/SSB resource is received up to Z' before the transmission time of the first symbol of the aperiodic CSI report.
  • the last symbol of the CSI-RS/CSI-IM/SSB resource is the last OFDM symbol of the CSI-RS/CSI-IM/SSB resource, and/or the first symbol of the aperiodic CSI report is transmitted.
  • symbol is the first OFDM symbol transmitting aperiodic CSI report.
  • the above-mentioned effective downlink time slot may include at least one downlink symbol or flexible symbol configured by higher layer parameters, and does not fall within the measurement interval (gap) configured for the terminal device. If there is no valid downlink time slot for the CSI reference resource corresponding to the CSI report, then the terminal device does not send the CSI report on the uplink time slot n'.
  • Timing of reporting CSI reports can be found in the corresponding chapters in 3GPP standard protocol 38.214, and there are no specific restrictions on this.
  • the relevant content/concepts/definitions/explanations, etc. in “1.
  • Timing of reporting CSI reports” may also be modified to adapt to the modifications/changes of standard protocol 38.214.
  • Those skilled in the art can also deduce/obtain the modified content by combining the relevant content/concepts/definitions/explanations, etc. in "1. Timing of reporting CSI reports”. Therefore, the modified content is also within the scope of protection claimed by this application and will not be described again.
  • the CSI report may include at least one of the following information: L1-RSRP, L1-SINR, CSI-related information, etc.
  • CSI-related information may include at least one of the following information: CRI, synchronization signal block resource indicator index (SS/PBCH block resource indicator, SSBRI), RI, PMI, CQI, LI, etc.
  • the CRI may represent the CSI-RS (or SSB) resources recommended (or selected) by the terminal device.
  • a CSI-RS (or SSB) resource can represent a beam or antenna direction.
  • RI may represent the number of layers recommended (or selected) by the terminal device.
  • the number of layers can determine which codebook.
  • each layer corresponds to a codebook
  • a codebook consists of one or more codewords. For example, a codebook with a level of 2 or a codebook with a level of 1.
  • PMI can represent the index of the codeword in the codebook recommended (or selected) by the terminal device, or the quantized precoding information. Among them, one codeword corresponds to one precoding matrix. RI and PMI can collectively represent the number of layers and precoding matrix recommended by the terminal device.
  • CQI can indicate the channel quality of the current channel that the terminal device feeds back to the network device. Among them, the terminal device needs to calculate CQI.
  • the following uses the time unit as the time slot and the basic time unit as the symbol as an example to explain the CPU occupied by the CSI report.
  • the symbol is an OFDM symbol as an example.
  • symbols and OFDM symbols are interchangeable.
  • the terminal device can indicate the number of simultaneous CSI calculations (simultaneous CSI calculations) it supports through the high-level parameter simultaneousCSI-ReportsPerCC, N CPU ; in all component carriers, the terminal device can use the high-level parameter
  • the parameter simultaneousCSI-ReportsAllCC indicates the number of simultaneous CSI calculations supported by itself, N CPU . If the terminal device supports simultaneous CSI calculation, the terminal device is said to have N CPUs for processing CSI reports.
  • the CPU occupied by the CSI report can represent the terminal device's ability to process CSI.
  • N CPU can be understood as the maximum number or total number of CPUs supported by the terminal device.
  • the N CPU can be reported by the terminal device to the network device through high-level parameters (such as simultaneousCSI-ReportsPerCC and/or simultaneousCSI-ReportsAllCC).
  • the terminal device has N CPUs - L unoccupied CPUs.
  • the network device configures three CSI reports for the terminal device, namely CSI report 0, CSI report 1 and CSI report 2.
  • the priority of CSI report 0 is higher than the priority of CSI report 1
  • the priority of CSI report 1 is higher than the priority of CSI report 2.
  • the terminal device has 10 unoccupied CPUs, if the CSI report 0 occupies 5 CPUs (i.e. ), CSI report 1 occupies 3 CPUs (i.e. ), CSI report 2 occupies 5 CPUs (i.e. ), then since 5+3+5>10, the terminal device does not need to update CSI report 2.
  • the number of CPUs occupied by CSI reporting is the total number of CPUs reported by the terminal equipment.
  • ⁇ PDCCH corresponds to the subcarrier spacing of the PDCCH that transmits DCI
  • ⁇ UL corresponds to the bearer
  • ⁇ CSI-RS corresponds to the subcarrier spacing of the aperiodic CSI-RS triggered by DCI.
  • the codebookType in the CSI-ReportConfig corresponding to a CSI report is set to 'typeI-SinglePanel', and the corresponding CSI-RS resource set used for channel measurement is configured with 2 resource groups, including N resource pairs, M
  • O CPU 2N+M. In other words, the number of CPUs occupied by the CSI report is 2N+M.
  • O CPU K s , where K s is the number of NZP-CSI-RS resources (which may also be called channel measurement resources) used for channel measurement in the NZP-CSI-RS-ResourceSet. That is to say, the number of CPUs occupied by the CSI report is the number of channel measurement resources associated with the CSI report.
  • the number of OFDM symbols occupied by the CPU occupied by the CSI report can exist as follows:
  • the OFDM symbols occupied by the CPU occupied by periodic CSI reports or semi-persistent CSI reports are: from used for channel measurement or The interference measurement starts from the first OFDM symbol of the earliest CSI-RS/CSI-IM/SSB resource, and the latest CSI-RS/CSI-IM/SSB timing is no later than the corresponding CSI reference resource. , until the last OFDM symbol of the reported resource, where the reported resource is used to carry the periodic CSI report or semi-persistent CSI report PUSCH/PUCCH.
  • the OFDM symbols occupied by the CPU occupied by the aperiodic CSI report are: starting from the first OFDM symbol after the PDCCH that triggers the aperiodic CSI report to the last OFDM symbol of the reported resource, where the reported resource is used for PUSCH carrying the aperiodic CSI report.
  • the OFDM symbols occupied by the CPU occupied by the PUSCH for the first semi-persistent CSI report triggered by the PDCCH are: starting from the first OFDM symbol after the PDCCH to the last OFDM symbol of the reported resource, where, the The reported resource is the PUSCH used to carry the first semi-persistent CSI report.
  • the number of OFDM symbols occupied by the CPU occupied by the CSI report can exist as follows :
  • the OFDM symbols occupied by the CPU occupied by the semi-persistent CSI report are: from the period of the channel measurement used for L1-RSRP calculation or Starting from the first OFDM symbol of the earliest one in each transmission opportunity of the semi-persistent CSI-RS/SSB resource, up to the CSI-RS/SSB resource in the channel measurement used for L1-RSRP calculation in each transmission opportunity Z' 3 OFDM symbols after the last OFDM symbol of the latest one.
  • the OFDM symbols occupied by the CPU occupied by the aperiodic CSI report are: from the first OFDM symbol after the PDCCH that triggers the CSI report to Z 3 OFDM symbols after the first OFDM symbol after the PDCCH that triggers the CSI report symbol and the last OFDM symbol between Z' 3 OFDM symbols after the last OFDM symbol of the measurement resource; where the measurement resource is the nearest CSI-RS/SSB resource used for channel measurement for L1-RSRP calculation (latest) one.
  • CPU occupied by CSI report can be found in the corresponding chapters in 3GPP standard protocol 38.214, and there are no specific restrictions on this.
  • CPU occupied by CSI report” may also be modified to adapt to the modification/change of the standard protocol 38.214.
  • Those skilled in the art can also deduce/obtain the modified content by combining the relevant content/concepts/definitions/explanations, etc. in "3. CPU occupied by CSI report”. Therefore, the modified content is also within the scope of protection claimed by this application and will not be described again.
  • the following uses the time unit as the time slot and the basic time unit as the symbol as an example to explain the CPU occupied by the CSI report.
  • CSI processing time requirements can also be described as CSI calculation time requirements, CSI calculation time requirements, CSI processing time requirements, etc.
  • the terminal device can provide a valid CSI report.
  • Z ref is defined as the next uplink symbol
  • CP cyclic prefix
  • Z' ref (n) is defined as the next uplink symbol, and the CP of the next uplink symbol is at the last one of the measurement resources.
  • the measurement resource is the aperiodic CSI-RS resource used for channel measurement (when the aperiodic CSI-RS is used for the The latest one among the channel measurements of n triggered CSI reports), the aperiodic CSI-IM used for interference measurement, and the aperiodic NZP CSI-RS used for interference measurement.
  • the terminal device When the CSI request field on the DCI triggers the CSI report on the PUSCH, if the start time of the first uplink symbol used to carry the CSI report (including the time advance effect) is earlier than the symbol Z ref , then if there is no multiplexing on the PUSCH HARQ-ACK or transport block, the terminal device can ignore the DCI. In other words, the terminal device does not need to report the CSI report triggered by the DCI.
  • the terminal device can ignore the DCI; otherwise, the terminal device does not need to update the CSI for the nth triggered CSI report.
  • is the subcarrier spacing and corresponds to min( ⁇ PDCCH , ⁇ CSI-RS , ⁇ UL ).
  • ⁇ PDCCH corresponds to the subcarrier spacing of PDCCH that transmits DCI
  • ⁇ UL corresponds to the subcarrier spacing of PUSCH that carries CSI
  • ⁇ CSI-RS corresponds to the subcarrier spacing of aperiodic CSI-RS triggered by DCI.
  • is the subcarrier spacing and corresponds to min( ⁇ PDCCH , ⁇ CSI-RS , ⁇ UL ).
  • (Z(m),Z'(m)) can be defined as (Z 2 , Z' 2 ) in Table 2.
  • CSI processing time requirements for CSI reports can be found in the corresponding chapters in 3GPP standard protocol 38.214, and there are no specific restrictions on this.
  • CSI processing time requirements for CSI reports may also be modified to adapt to the modifications/changes of the standard protocol 38.214.
  • Those skilled in the art can also deduce/obtain the modified content by combining the relevant content/concepts/definitions/explanations, etc. in "4.
  • CSI processing time requirements of CSI reports Therefore, the modified content is also within the scope of protection claimed by this application and will not be described again.
  • This application can be applied to instant messaging scenarios, for example, channel information can be predicted quickly in instant messaging scenarios.
  • This application can also be applied to high-speed communication scenarios. For example, on a high-speed train, predicted channel information can be obtained.
  • These two application scenarios are used as examples and do not constitute a limitation on this application.
  • This application can also be applied to other scenarios, such as low-speed movement scenarios.
  • the channel information acquisition method provided by this application is described below.
  • Figure 4 is a schematic flow chart of the channel information acquisition method provided by this application. The process specifically includes the following steps:
  • the network device sends instruction information.
  • the terminal device receives the indication information.
  • the indication information is used to indicate predicted channel information.
  • the indication information is used to indicate predicted channel information, which can also be described as: the indication information is used to indicate the prediction of channel information; or, the indication information is used to indicate that unknown channel information is determined using known channel information; or, The indication information is used to instruct using known channel information to predict/determine unknown channel information; or the indication information is used to instruct using unknown channel information to predict/determine unknown channel information; or the indication information is used to instruct calling/using prediction
  • the module or prediction function obtains the channel information; or, the indication information is used to indicate that the channel information is determined by prediction, etc.
  • the essence of the indication information is to indicate that channel information is obtained without relying on the downlink reference signal.
  • Other contents used to describe the essence of the indication information are not listed here.
  • For the channel information please refer to the relevant description in "2. Channel Information" above, and will not be described again here.
  • the known channel information and the unknown channel information are relative to whether the channel information has been determined.
  • the channel information that has been determined is known channel information
  • the channel information that has not yet been determined is unknown channel information.
  • known channel information can be understood as previous channel information or historical channel information
  • unknown channel information can be understood as current channel information and/or future channel information.
  • known channel information can be understood as previous channel information and/or current channel information
  • unknown channel information can be understood as future channel information.
  • the current channel information can also be described as current channel information, current channel information, or current channel information, etc.
  • the previous channel information, current channel information, and future channel information may be relative to the reception time of measurement resources (such as CSI-RS resources and/or CSI-IM resources, etc.) associated with the indication information.
  • the reception time of the measurement resources associated with the indication information may be earlier than or equal to the reception time of the indication information.
  • the channel information determined before the reception time of the measurement resources associated with the indication information is the previous channel information; according to the indication information
  • the channel information determined by the associated measurement resources is the current channel information; the channel information for a certain period of time after the reception time of the measurement resources associated with the indication information (which may or may not include the reception time of the measurement resources associated with the indication information) is for future channel information.
  • the reception time of the measurement resources associated with the indication information may be later than the reception time of the indication information.
  • the channel information determined before the reception time of the measurement resources associated with the indication information is the previous channel information;
  • the channel information determined by the measurement resources (such as measured or predicted) is the current channel information; a certain period of time after the reception time of the measurement resources associated with the indication information (which may or may not include the measurement resources associated with the indication information)
  • the channel information at the reception time is the future channel information.
  • the measurement resources associated with the indication information may be configured in the configuration information.
  • the configuration information may be CSI-MeasConfig or CSI report configuration information (ie, CSI-ReportConfig).
  • the reception time of the measurement resource can be understood as the reception time of the measurement resource, or the time unit of receiving the measurement resource, or the basic time unit of receiving the measurement resource, etc.
  • the previous channel information, current channel information, and future channel information may be relative to the time at which the measurement resource associated with the indication information is located.
  • the moment when the measurement resource is located can be understood as the time or the time unit or the basic time unit where the measurement resource is located. It can also be understood as the time domain resource occupied by the measurement resource. For example, it can be the time unit occupied by the measurement resource, or The basic time unit for measuring resource occupation, etc.
  • the time unit at which the measurement resource is located takes the time unit occupied by the measurement resource as an example.
  • the time unit occupied by the measurement resource associated with the indication information may be earlier than, equal to, or later than the time unit at which the indication information is received.
  • the channel information determined before the time unit occupied by the measurement resources associated with the indication information is the previous channel information; the channel information determined based on the measurement resources associated with the indication information is the current channel information; the measurement resources associated with the indication information are the current channel information.
  • the channel information for a certain period of time after the occupied time unit is the future channel information. For example, taking the time unit as a time slot, assume that the time unit at which the indication information is received is time slot 3 (that is, the index number of the slot is 3), and the time slot occupied by the measurement resource associated with the indication information is time slot 4. Then the channel information determined in and before time slot 3 is the previous channel information, and the channel information determined based on the measurement resources associated with the indication information is the current channel information. During the period from time slot 5 to time slot 7 The channel information within is the future channel information.
  • the network device may carry the indication information in the configuration information and send it to the terminal device, thereby helping to save signaling overhead.
  • the configuration information may be CSI-MeasConfig or CSI report configuration information (ie, CSI-ReportConfig).
  • the configuration information carrying the indication information and the configuration information carrying the measurement resources may be the same configuration information or different configuration information.
  • the network device may also carry the indication information through other information, where the other information is different from the configuration information and may be newly defined information or existing information, which is not limited.
  • the order in which the network device sends configuration information and instruction information is not limited in this application.
  • the terminal device determines second channel information based on the first channel information.
  • the first channel information can be understood as known channel information
  • the second channel information can be understood as unknown channel information.
  • the first channel information is the previous channel information
  • the second channel information is the current channel information. channel information
  • the terminal device can predict the current channel information based on the previous channel information.
  • the previous channel information is known channel information
  • the current channel information is unknown channel information.
  • the terminal device can predict the future channel information based on the previous channel information.
  • the previous channel information is known channel information
  • the future channel information is unknown channel information.
  • the terminal device can predict future channel information based on the current channel information.
  • the current channel information is known channel information
  • the future channel information is unknown channel information.
  • the terminal device can predict the future channel information based on the previous and current channel information. In this case, the previous channel information and the current channel information are known channel information, and the future channel information is unknown channel information.
  • the first channel information can be understood as unknown channel information
  • the second channel information can be understood as unknown channel information.
  • the terminal device can predict future channel information based on the current channel information.
  • the current channel information is unknown channel information
  • the future channel information is also unknown channel information.
  • the first channel information includes at least one channel information of the first time window
  • the second channel information includes at least one channel information of the second time window
  • the first time window is earlier than the second time window.
  • the first channel information and the second channel information are described separately below.
  • the first channel information includes at least one channel information of the first time window.
  • the at least one channel information of the first time window may be at least one channel matrix information determined (eg, measured or predicted) within the first time window.
  • the at least one channel information of the first time window may be at least one CSI determined (eg, measured or predicted) within the first time window.
  • one CSI may be carried in one CSI report, or multiple CSIs may be carried in the same CSI report.
  • the at least one channel information of the first time window may be at least one CSI report determined (eg, measured or predicted) within the first time window.
  • the at least one channel information of the first time window may be at least one CSI report carried within the first time window, which may be understood as at least one CSI report reported within the first time window.
  • the type of at least one channel information in the first time window may be the same, for example, all of them are CSI or channel matrix information; the type of at least one channel information in the first time window may be different, for example, part of The channel information is CSI, and the other part of the channel information is channel matrix information.
  • the at least one channel information in the first time window may be all channel information in the first time window, or may be part of the channel information in the first time window.
  • the total number of channel information in the first time window is 10, and at least one channel information can be these 10 channel information, or 5 channel information among the 10 channel information, and these 5 channel information can meet certain conditions (for example, Is it the top 5 in order from high to low, or the top 5 in chronological order, etc.).
  • the specific amount of at least one channel information in the first time window can be determined based on one or more of the following:
  • the network device may indicate the number of at least one channel information in the first time window. The amount, and then the terminal device can determine the specific amount; the network device can display or implicitly indicate the amount of at least one channel information in the first time window;
  • the at least one channel information in the first time window may be 4.
  • the number indicated by the network device is 5, but the terminal device can support 4 channel information, then the number of at least one channel information in the first time window is 4.
  • the second channel information may include at least one channel information of the second time window.
  • at least one channel information of the second time window may be at least one channel matrix information to be predicted in the second time window.
  • the terminal device may determine at least one CSI of the second time window based on at least one channel matrix information of the second time window, and one channel matrix information may correspond to one CSI.
  • at least one channel information of the second time window may be at least one CSI to be predicted in the second time window.
  • One CSI can be carried in one CSI report, or multiple CSIs can be carried in the same CSI report.
  • at least one channel information of the second time window may be at least one CSI report that needs to be predicted in the second time window.
  • the type of at least one channel information in the second time window may be the same, for example, all of them are CSI or channel matrix information; the type of at least one channel information in the second time window may be different, for example, part of The channel information is CSI, and the other part of the channel information is channel matrix information.
  • the specific amount of at least one channel information in the second time window can be determined based on one or more of the following:
  • the network device may indicate the quantity of at least one channel information in the second time window, and then the terminal device may determine its specific quantity;
  • At least one channel information in the second time window may be 4.
  • the number indicated by the network device is 5, but the terminal device can predict 4 pieces of channel information, then the number of at least one channel information in the second time window is 4.
  • the second time window may be later than the first time window.
  • the first time window may be earlier than the second time window.
  • the first time window is earlier than the second time window, which may mean that the end time of the first time window is earlier than the start time of the second time window, which can be understood as the end time of the first time window and the start time of the second time window.
  • the relationship between the first time window and the second time window may refer to the relationship between time window 1 and time window 2 shown in (1) of FIG. 2 .
  • the end time of the first time window is earlier than the start time of the second time window.
  • the end time of the first time window is before the start time of the second time window; or in the time domain, the end time of the first time window The end time is before the start time of the second time window; or there is a time interval between the end time of the first time window and the start time of the second time window, and the time interval is not zero, etc.
  • the first time window is earlier than the second time window
  • the end time of the first time window may be the starting time of the second time window.
  • the relationship between the first time window and the second time window may refer to the relationship between time window 1 and time window 2 shown in (2) of FIG. 2 .
  • the first time window is earlier than the second time window.
  • the starting time of the first time window may be earlier than the starting time of the second time window.
  • the first time window and the second time window may be There is some overlap.
  • the relationship between the first time window and the second time window may refer to the relationship between time window 1 and time window 2 shown in (3) of FIG. 2 .
  • the terminal device determines the second channel information based on the at least one channel information of the first time window. At least one channel information of the time window.
  • the first channel information includes three channel information of the first time window
  • the second channel information includes two channel information of the second time window. Then the terminal device determines the second time based on the three channel information of the first time window. 2 channel information of the window.
  • the terminal device determines at least one channel matrix information of the second time window based on at least one channel matrix information of the first time window, or the terminal device determines the second time based on at least one channel matrix information of the first time window.
  • the terminal device determines at least one CSI of the second time window based on at least one CSI of the first time window. For example, when obtaining at least one CSI of the second time window, the terminal device sends a CSI report including at least one CSI of the second time window to the network device.
  • There may be multiple CSI reports for the at least one CSI for example, one CSI corresponds to one CSI report.
  • the terminal device may report multiple CSI reports in chronological order, or the terminal device may select a CSI report from multiple CSI reports to report, depending on the specific situation.
  • the CSI report of the at least one CSI may also be one, for example, multiple CSIs are carried in one CSI report.
  • the terminal device when the terminal device receives the indication information to predict the channel information, it predicts the second channel information based on the first channel information, thereby realizing prediction of the channel information, which can effectively reduce network overhead. Helps improve network performance and reduce terminal power consumption.
  • the network device may send the above indication information through the following method (1) or method (2).
  • the network device can determine that the terminal device adopts the first acquisition method to obtain channel information. Then, instruction information is sent to the terminal device, and the instruction information is used to instruct the terminal device to adopt the first acquisition method.
  • the first acquisition method is that the terminal device uses a prediction module to predict unknown channel information based on known channel information.
  • the indication information may be a bit. The value of this bit is "1", indicating that the terminal device is instructed to adopt the first acquisition method, that is, indicating the predicted channel information; the value of this bit is "0", indicating that Instruct the terminal device to use the second acquisition method.
  • the second acquisition method can be that the terminal device determines the channel information based on the downlink reference signal sent by the network device, that is, the current method used by the terminal device to obtain channel information. After receiving the downlink reference signal and the high-level parameter CSI-MeasConfig, it determines the channel information according to the downlink reference signal. The signal performs downlink channel measurements on the channel to obtain channel information. For example, the network device may determine the channel information acquisition method used by the terminal device based on information such as network load rate and/or downlink resource occupancy rate.
  • the network device determines whether to send the indication information based on the capability information of the terminal device. For example, the capability information of the terminal device indicates that the terminal device supports predicted channel information, or the capability information of the terminal device indicates that the terminal device includes a prediction module (the prediction module can predict unknown channel information based on known channel information), or the capability of the terminal device When the information indicates that the terminal device has the ability to predict channel information, the network device may send the instruction information to the terminal device. For another example, the capability information of the terminal device indicates that the terminal device does not support predicted channel information, or the capability information of the terminal device indicates that the terminal device does not include a prediction module, or the capability information of the terminal device indicates that the terminal device does not have the ability to predict channel information, etc. , the network device may not send instruction information to the terminal device.
  • the capability information of the terminal device indicates that the terminal device supports predicted channel information, or the capability information of the terminal device indicates that the terminal device includes a prediction module (the prediction module can predict unknown channel information based on known channel information), or the capability of the
  • the network device may not send the above indication information, and the terminal device determines the second channel information based on its own capability information and the first channel information. For example, if the terminal device supports predicting channel information or includes a prediction module or has the ability to predict unknown channel information based on known channel information, then the terminal device can determine the second channel information based on the first channel information. Network devices do not send instruction information, which helps save signaling overhead and improve network performance.
  • the number of ports corresponding to the first channel information and the number of ports corresponding to the second channel information are the same. For example, take the first channel information including at least one channel information of the first time window, and the second channel information including at least one channel information of the second time window.
  • the number of ports corresponding to at least one piece of channel information in the first time window is the same as the number of ports corresponding to at least one piece of channel information in the second time window. It can be understood that the number of ports corresponding to any piece of channel information in the first time window is the same as the number of ports corresponding to any piece of channel information in the second time window.
  • the number of ports corresponding to the channel information refers to: the number of ports of the CSI-RS resource used to determine the channel information, or the number of CSI-RS resources used to determine the channel information.
  • Number of RS ports For example, the number of CSI-RS ports used to determine the channel information is P, that is, P port CSI-RS, then the number of ports corresponding to the first channel information is P, and the number of ports corresponding to the second channel information is also For P.
  • the value of P may be, for example, 1, 2, 4, 8, 16, 24 or 32.
  • the terminal device may also determine the CSI of the second time window based on the second channel information.
  • the second channel information includes at least one channel matrix information of the second time window, and the terminal device can also determine the CSI of the second time window based on the at least one channel matrix information of the second time window.
  • the CSI of the second time window may be one or more CSIs within the second time window, and there is no limitation on this.
  • the network device sends configuration information, and accordingly, the terminal device receives the configuration information.
  • the configuration information can be CSI-MeasConfig or CSI-ReportConfig.
  • the configuration information may carry the above indication information, or may not carry the above indication information. For the case where the above indication information is carried through other information, this application does not limit the order in which the configuration information and the indication information are sent.
  • the configuration information is CSI-ReportConfig.
  • CSI-ReportConfig may have associated CSI-RS resource configuration information (CSI-ResourceConfig) or may not have associated CSI-ResourceConfig.
  • the resources configured by CSI-ResourceConfig can be used for channel measurement and/or interference measurement.
  • the first channel information may include channel information associated with M first CSI reports of the first time window, or may include channel information associated with N CSI-RS resources of the first time window.
  • M and N are positive integers greater than or equal to 1.
  • the first channel information includes channel information associated with M first CSI reports in the first time window.
  • This application may refer to the CSI report within the first time window as the first CSI report.
  • the CSI report in the first time window may be obtained based on the channel information in the first time window.
  • the CSI report within the first time window may also be obtained based on channel information before the first time window.
  • the CSI report within the first time window may also be obtained based on the channel information within the first time window and based on the channel information before the first time window.
  • One channel information can correspond to one CSI report.
  • M may be the same as the number of at least one channel information in the first time window, or M may be smaller than the number of at least one channel information in the first time window.
  • the specific value of M may be predefined by the protocol, or indicated by the network device, or determined based on the capability information of the terminal device, or determined based on the network device indication and capability information, etc.
  • the first channel information includes channel information associated with the M first CSI reports in the first time window. It can be understood that the first channel information is the channel information included in the M first CSI reports in the first time window.
  • the channel information is, for example, It can be one or more of RI, CQI or PMI; it can also be understood that the first channel information is the channel information corresponding to the CSI-RS associated with the M first CSI reports in the first time window, that is, used to obtain Or determine the channel information corresponding to the CSI-RSs of the M first CSI reports.
  • the channel information may be channel matrix information.
  • the M first CSI reports are M consecutive first CSI reports, which can be understood as M first CSI reports reported continuously.
  • the time units occupied by the M first CSI reports are not necessarily consecutive.
  • the M first CSI reports correspond to the NZP CSI-RS used for channel measurement.
  • the first CSI report can be obtained by performing measurements based on the NZP CSI-RS.
  • the number of NZP CSI-RS ports can also be a specific combination of time-frequency resources. Please refer to the number of CSI-RS ports mentioned above.
  • the number of ports of NZP CSI-RS is the number of ports corresponding to the first channel information, that is, the number of ports corresponding to the second channel information.
  • the number of NZP CSI-RS ports is P, which can also be described as P ports NZP CSI-RS.
  • the above-mentioned first time window may include one or more time units, and the terminal device needs to determine the start time and/or end time of the first time window in order to obtain the M first CSI report associations of the first time window. channel information.
  • This application may use the first time unit to define the range of the starting time of the first time window, and use the second time unit to define the range of the ending time of the first time window.
  • the earliest first CSI report among the M first CSI reports occupies a time unit not earlier than the first time unit, and the latest first CSI report among the M first CSI reports occupies a time unit not later than the second
  • the time unit and thus the first time window may be no earlier than the first time unit, and/or the first time window may be no later than the second time unit.
  • first time window includes one time unit, then the first time unit and the second time unit are the same time unit; if the first time window includes multiple time units, then the second time unit and the first time unit are different times. unit, and/or there is a time gap between the two.
  • the first time window is not earlier than the first time unit, which may be that the starting time of the first time window is not earlier than the end time of the first time unit. It can be understood that the starting time of the first time window is the first time window. The end time of the time unit, or the start time of the first time window is later than the end time of the first time unit. The first time window is no later than the second time unit, and may be that the end time of the first time window is no later than the end time of the second time unit. It can be understood that the end time of the first time window is the end of the second time unit. time, or the end time of the first time window is later than the end time of the second time unit.
  • Figure 5 shows an example diagram of the relationship between the first time unit, the second time unit and the first time window in this application.
  • the starting time of the first time window is later than the end time of the first time unit, and the end time of the second time unit is earlier than the end time of the first time window.
  • the terminal device can determine at least one channel matrix information of the second time window based on the channel information associated with the M first CSI reports of the first time window, and then determine at least one channel matrix information of the second time window based on , predict the CSI of the second time window.
  • the terminal device may predict the CSI of the second time window based on the channel information associated with the M first CSI reports of the first time window.
  • the CSI of the second time window predicted by the terminal device can be sent to the network device so that the network device can perform beam management, mobility management, rate matching and other processing. Take the terminal device sending the CSI of the second time window in the third time unit as an example.
  • the terminal device sends the second CSI report in the third time unit, where the second CSI report includes the CSI of the second time window. That is to say, the third time unit is used to send the CSI of the second time window or the second CSI report, or the third time unit is used to send the CSI of the second time window or the second CSI report.
  • the second CSI report corresponds to the CSI-ReportConfig, that is, the second CSI report is the CSI report configured by the CSI-ReportConfig that needs to be reported.
  • the CSI of the second time window may be one or more, related to at least one channel information of the second time window.
  • the second CSI report includes the CSI of the second time window, and can also be described as the CSI of the second time window is included in the second CSI report, or the second CSI report includes/contains the CSI of the second time window, etc. .
  • the index number of the third time unit in which the terminal device sends the second CSI report may be indicated by the network device. For example, the network device instructs the terminal device to send the second CSI report on time slot n' (ie, the slot index number is n').
  • the terminal device may determine the range of the start time and/or the end time of the first time window based on the index number of the third time unit.
  • Example 1 There is a first difference between the third time unit and the first time unit, and the first difference is an absolute difference.
  • the first difference value is predefined by the protocol, or the first difference value is indicated by the network device, or the first difference value is determined based on the capability information of the terminal device. Or the first difference is greater than the first threshold, where the first threshold is indicated by the network device, or predefined by the protocol, or determined based on the capability information of the terminal device.
  • the terminal device can determine the index number of the first time unit based on the index number of the third time unit and the first difference value, and further determine the range of the starting time of the first time window. For example, the time unit takes a time slot as an example.
  • the network device may display the index number of the first time unit.
  • the terminal device can determine the size of the first time window, and then obtain M first CSI reports of the first time window. associated channel information, so as to obtain the second CSI report, and send the second CSI report on the third time unit.
  • Example 2 There is a second difference between the third time unit and the second time unit, and the second difference is an absolute difference.
  • the second difference value is predefined by the protocol, or the second difference value is indicated by the network device, or the second difference value is determined based on the capability information of the terminal device. Or the second difference is greater than the second threshold, where the second threshold is indicated by the network device, or predefined by the protocol, or determined based on the capability information of the terminal device.
  • the terminal device can determine the index number of the second time unit based on the index number of the third time unit and the second difference value, and further determine the range of the end time of the first time window.
  • the time unit takes a time slot as an example
  • the second difference value can be expressed as k, k is less than or equal to q, k is a positive integer
  • the third time unit can be expressed as a time slot n'
  • the network device may display the index number of the second time unit.
  • the terminal device can determine the size of the first time window, and then obtain M first CSI reports of the first time window. associated channel information, so as to obtain the second CSI report, and send the second CSI report on the third time unit.
  • the terminal device can determine the index of the first time unit based on the first difference value. number, the index number of the second time unit can be determined according to the second difference value.
  • Example 3 There is a first difference between the third time unit and the first time unit, and there is a second difference between the third time unit and the second time unit.
  • the first difference and the second difference are absolute differences.
  • the first difference value is predefined by the protocol, or the first difference value is indicated by the network device, or the first difference value is determined based on the capability information of the terminal device. Or the first difference is greater than the first threshold, where the first threshold is indicated by the network device, or predefined by the protocol, or determined based on the capability information of the terminal device.
  • the second difference value is predefined by the protocol, or the second difference value Indicated by the network device, or the second difference value is determined based on the capability information of the terminal device.
  • the second difference is greater than the second threshold, where the second threshold is indicated by the network device, or predefined by the protocol, or determined based on the capability information of the terminal device.
  • the network device may display the index number of the first time unit and the index number of the second time unit.
  • the terminal device can determine the range of the first time window, Then, channel information associated with the M first CSI reports in the first time window is obtained, so as to obtain the second CSI report, and send the second CSI report on the third time unit.
  • the third time unit may be within the second time window, which can be understood as the terminal device may report the predicted second CSI report to the network device within the second time window.
  • the third time unit The start time is not earlier than the start time of the second time window, and/or the end time of the third time unit is not later than the end time of the second time window, for example, refer to (1) in Figure 6 .
  • the third time unit may be earlier than the second time window, that is, the terminal device reports the second CSI report to the network device before the starting time of the second time window is reached.
  • the third time unit The end time of the time unit is earlier than the start time of the second time window, and/or the start time of the third time unit may be later than the end time of the second time unit.
  • the start time of the third time unit is later than the end time of the second time window, which can be understood as the terminal device reporting the second CSI report to the network device after the end time of the second time window, for example See (3) in Figure 6.
  • the terminal device determines the CSI processing time corresponding to the second CSI report and the processing time requirement of the second CSI report.
  • the CSI processing time corresponding to the second CSI report can also be described as the CPU time occupied by the second CSI report, or the CPU time corresponding to the second CSI report, etc.
  • the terminal device may determine the CSI processing time corresponding to the second CSI report based on the reference CSI report.
  • the terminal device determines the reference CSI report from the M first CSI reports, and the difference between the second time unit and the time unit occupied by the reference CSI report is less than or equal to the threshold. It can be understood that the essence of the reference CSI report is the first CSI report, and the time unit (such as time slot) occupied by the first CSI report is closest to the second time unit, and/or the starting time of the time unit occupied by the reference CSI report is earlier. at the starting moment of the second time unit.
  • the CSI processing time corresponding to the second CSI report is the time interval in the time domain from the first physical uplink channel resource to the second physical uplink channel resource.
  • the first physical uplink channel resource is used to carry the reference CSI report, that is, the first physical uplink channel resource is the physical uplink channel resource occupied by transmitting the reference CSI report;
  • the second physical uplink channel resource is used to carry the second CSI report, that is, the second physical
  • the uplink channel resource is a physical uplink channel resource for transmitting the second CSI report.
  • the physical uplink channel may be PUCCH or PUSCH. Physical uplink channel resources refer to the resources occupied by PUCCH or PUSCH.
  • the time interval in the time domain from the first physical uplink channel to the second physical uplink channel is introduced.
  • the CSI processing time corresponding to the second CSI report is from the last symbol of the first physical uplink channel to the first symbol of the second physical uplink channel.
  • first time unit and second time unit take time slots as an example, and the physical uplink channel occupies at least one time slot in the time domain, then the CSI processing time corresponding to the second CSI report is occupied by the first physical uplink channel.
  • the number of CPUs corresponding to the second CSI report is R, R is a positive integer, R is predefined by the protocol, or R is indicated by the network device, or R is determined based on the terminal capability.
  • the CSI processing time corresponding to the second CSI report is the time occupied by the CPU corresponding to the second CSI report, such as the number of symbols occupied by the CPU or the number of OFDM symbols occupied by the CPU; the number of CPUs corresponding to the second CSI report is The number indicates how many CPUs the second CSI report occupies.
  • the processing time requirement of the second CSI report is different from the CSI processing time requirement of the first CSI report, and the first CSI report carries L1-RSRP or L1-SINR. It can be understood that the CSI processing time requirement of the first CSI report is related to the L1-RSRP or L1-SINR, that is, the above "4. CSI processing time requirement of the CSI report”.
  • the first CSI report carries CSI correlation. It can be understood that the CSI processing time requirement of the first CSI report is related to CSI correlation, that is, the above "4. CSI processing time requirement of the CSI report”.
  • the CSI processing time requirement of the first CSI report carries compressed channel information, and the compressed channel information refers to channel information obtained after compressing the channel information.
  • the first channel information includes channel information associated with N CSI-RS resources in the first time window.
  • N may be the same as the number of at least one channel information in the first time window, or N may be smaller than the number of at least one channel information in the first time window.
  • the specific value of N may be predefined by the protocol, or indicated by the network device, or determined based on the capability information of the terminal device, or determined based on the network device indication and capability information, etc.
  • the channel information associated with N CSI-RS resources can be understood as channel information obtained based on N CSI-RS resources.
  • channel information can be obtained based on a CSI-RS resource.
  • the N CSI-RS resources are N continuous CSI-RS resources, that is, the N CSI-RS resources are received continuously.
  • the time units occupied by the N CSI-RS resources are not necessarily continuous.
  • the N CSI-RS resources are NZP CSI-RS resources used for channel measurement.
  • the number of ports of the NZP CSI-RS resources can be understood as the number of ports occupied by the NZP CSI-RS resources.
  • the number of ports of the NZP CSI-RS resource is the number of ports corresponding to the first channel information, that is, the number of ports corresponding to the second channel information.
  • the number of ports of the NZP CSI-RS resource is P, which can also be described as P-port NZP CSI-RS resources.
  • the above-mentioned first time window may include one or more time units, and the terminal device needs to determine the start time and/or end time of the first time window in order to obtain the N CSI-RS resource associations of the first time window. channel information.
  • This application may use the first time unit to define the range of the starting time of the first time window, and use the second time unit to define the range of the ending time of the first time window.
  • the earliest CSI-RS resource among the N CSI-RS resources occupies a time unit not earlier than the first time unit, and the latest CSI-RS resource among the N CSI-RS resources occupies a time unit not later than the second time unit.
  • the first time window is not earlier than the first time unit, and/or is not later than the second time unit.
  • the terminal device can determine at least one channel matrix information of the second time window based on the channel information associated with the N CSI-RS resources of the first time window, and then determine at least one channel matrix information of the second time window based on , predict the CSI of the second time window.
  • the terminal device may predict the CSI of the second time window based on the channel information associated with the N CSI-RS resources of the first time window.
  • the CSI of the second time window predicted by the terminal device can be sent to the network device so that the network device can perform beam management, mobility management, rate matching and other processing. This application takes the terminal device sending CSI of the second time window on the third time unit as an example.
  • the index number of the third time unit in which the terminal device sends the second CSI report may be indicated by the network device.
  • the network device instructs the terminal device to send the second CSI report on time slot n' (that is, the slot index number is n').
  • the second CSI report includes CSI of the second time window.
  • the terminal device Before the terminal device sends the second CSI report to the network device, it needs to determine whether it can report it. When the terminal device receives an incorrect Reporting is possible only when at least one measurement resource (such as CSI-RS resource and/or CSI-IM resource, etc.) is later than the CSI reference resource. Furthermore, the terminal device needs to determine the time unit occupied by the CSI reference resource in the time domain. In this application, the time unit occupied by the CSI reference resource in the time domain is taken as the fourth time unit as an example. It can be understood that the CSI reference resource corresponds to the CSI of the second time window, that is, corresponds to the second CSI report. The CSI reporting timing of the second time window can be understood as the time unit for sending the second CSI report.
  • the terminal device may determine the index number of the fourth time unit according to the index number of the third time unit.
  • the time unit is a time slot
  • the third time unit can be expressed as time slot n'
  • the time slot index number of the fourth time unit can be expressed as n is the downlink time slot corresponding to uplink time slot n'.
  • n is the downlink time slot corresponding to uplink time slot n'.
  • the terminal device may determine the range of the start time and/or the end time of the first time window based on the index number of the fourth time unit.
  • Example 1 There is a third difference between the fourth time unit and the first time unit, and the third difference is an absolute difference.
  • the third difference value is predefined by the protocol, or the third difference value is indicated by the network device, or the third difference value is determined based on the capability information of the terminal device. Or the third difference value is greater than the third threshold, where the third threshold is indicated by the network device, or predefined by the protocol, or determined based on the capability information of the terminal device.
  • the terminal device can determine the index number of the first time unit based on the index number of the fourth time unit and the third difference value, and further determine the range of the starting time of the first time window.
  • the time unit is a time slot.
  • the third difference value can be expressed as q1, q1 is a positive integer
  • the time slot index number of the fourth time unit can be expressed as
  • the time slot index number of the first time unit can be expressed as
  • Example 2 There is a fourth difference between the fourth time unit and the second time unit, and the fourth difference is an absolute difference.
  • the fourth difference value is predefined by the protocol, or the fourth difference value is indicated by the network device, or the fourth difference value is determined based on the capability information of the terminal device. Or the fourth difference value is greater than the fourth threshold, where the fourth threshold is indicated by the network device, or predefined by the protocol, or determined based on the capability information of the terminal device.
  • the terminal device can determine the index number of the second time unit based on the index number of the fourth time unit and the fourth difference value, and further determine the range of the end time of the first time window.
  • the time unit takes a time slot as an example.
  • the fourth difference value can be expressed as k1, k1 is less than or equal to q1, k1 is a positive integer, and the time slot index number of the fourth time unit can be expressed as The time slot index number of the second time unit can be expressed as
  • Example 3 There is a third difference between the fourth time unit and the first time unit, and there is a fourth difference between the fourth time unit and the second time unit.
  • the third difference and the fourth difference are absolute differences. .
  • the third difference value is predefined by the protocol, or the third difference value is indicated by the network device, or the third difference value is determined based on the capability information of the terminal device. Or the third difference value is greater than the third threshold, where the third threshold is indicated by the network device, or predefined by the protocol, or determined based on the capability information of the terminal device.
  • the fourth difference value is predefined by the protocol, or the fourth difference value Indicated by the network device, or the fourth difference value is determined based on the capability information of the terminal device.
  • the fourth difference value is greater than the fourth threshold, where the fourth threshold is indicated by the network device, or predefined by the protocol, or determined based on the capability information of the terminal device.
  • the terminal device can determine the range of the first time window based on the index number of the fourth time unit, the third difference value, and the fourth difference value.
  • the start time of the fourth time unit is later than the end time of the first time unit, and/or the end time of the fourth time unit is earlier than the start time of the second time window.
  • the start time of the fourth time unit is later than the end time of the first time unit, and the end time of the fourth time unit is earlier than the end time of the first time window, that is, earlier than the end time of the second time unit.
  • the starting time of the fourth time unit is later than the end time of the first time window, that is, later than the end time of the first time unit, and the end time of the fourth time unit is earlier than the end time of the first time window.
  • the end moment of the time window Take the end moment of the time window as an example.
  • the starting time of the fourth time unit is later than the starting time of the second time window, for example, refer to (3) and (4) in Figure 7 .
  • the start time of the fourth time unit is later than the end time of the second time window, that is, the fourth time unit is later than the second time window.
  • the starting time of the fourth time unit later than the starting time of the second time window and the end time of the fourth time unit being earlier than the end time of the second time window it can be understood as The fourth time unit is located within the second time window.
  • the CPU occupied by the second CSI report and the processing time requirement of the second CSI report can be referred to the above "3.
  • CSI processing time requirement of the CSI report can be referred to the above method one.
  • the terminal device can predict the second channel information based on the first channel information, which can effectively reduce network overhead and help improve network performance.
  • Scenario 2 CSI-ReportConfig has an associated CSI-ResourceConfig.
  • the first channel information may include channel information associated with M first CSI reports of the first time window, or may include channel information associated with N CSI-RSs of the first time window. Resource-associated channel information.
  • the fourth time unit may be the same as the fourth time unit involved in the second method in the above case one.
  • the time units vary.
  • the index number S1 of the fourth time unit satisfies the following expression:
  • S1 represents the index number of the fourth time unit, which is used as an example.
  • other letters and/or numbers may be used to represent the index number of the time unit occupied by the CSI reference resource in the time domain.
  • n is determined based on the third time unit, taking the third time unit as time slot n' as an example (that is, taking the time slot index number of the third time unit as n' as an example).
  • n CSI_ref can refer to the description of n CSI_ref in "1.
  • K offset is configured by high-level parameters
  • ⁇ Koffset is the subcarrier spacing corresponding to K offset
  • ⁇ DL is the downlink The subcarrier spacing of the path
  • s offset is the time unit offset, such as the time slot offset.
  • the s offset is predefined by the protocol, or the s offset is indicated by the network device, or the s offset is determined based on the capability information of the terminal device.
  • the above-mentioned time unit offset may be a positive value or a negative value. For example, a positive value may indicate an offset in the forward direction of time, and a negative value may indicate an offset in the opposite direction of forward time.
  • this implementation method redefines the downlink time slot of the CSI reference resource. Compared with the downlink time slot of the CSI reference resource in "1. Reporting timing of CSI report", there are Time unit offset.
  • the index number S1 of the fourth time unit satisfies the following expression:
  • S1 represents the index number of the fourth time unit, which is used as an example. In fact, other letters and/or numbers may be used to represent the index number of the time unit occupied by the CSI reference resource in the time domain.
  • n is determined based on the third time unit.
  • K offset is configured by high-level parameters; ⁇ Koffset is the subcarrier spacing corresponding to K offset ; ⁇ DL is the subcarrier spacing of the downlink; the difference between n' CSI_ref and n CSI_ref is S is a positive integer greater than or equal to 0; S is predefined by the protocol, or S is indicated by the network device, or S is determined based on the capability information of the terminal device.
  • the difference between n' CSI_ref and n CSI_ref can be can also be
  • n CSI_ref is redefined, that is, n' CSI_ref , and n' CSI_ref is offset from n CSI_ref in "1. Reporting timing of CSI report”.
  • the CPU occupied by the second CSI report and the processing time requirement of the second CSI report may refer to the above "3. CPU occupied by the CSI report” and "4. CSI processing time requirement of the CSI report”.
  • the CPU occupied by the second CSI report and the processing time requirement of the second CSI report may refer to method one in the above case one.
  • the terminal device can determine the number of ports for the first channel information based on the CSI-ResourceConfig associated with the CSI-ReportConfig, that is, determine the number of ports for the second channel information.
  • CSI-ResourceConfig is used to configure P port NZP CSI-RS resources, then the number of ports for the first channel information is P.
  • the resources configured by CSI-ResourceConfig can be understood as N CSI-RS resources in the first time window.
  • CSI-ReportConfig has an associated CSI-ResourceConfig.
  • the terminal device can not only determine the number of ports for the first channel information, but also predict the second channel information based on the first channel information, thus helping to improve network performance. .
  • Figure 8 is a schematic structural diagram of a device for obtaining channel information provided by an embodiment of the present application.
  • the channel information acquisition device 80 may be a terminal device, or may be a device matching the terminal device. As shown in Figure 8, the channel information acquisition device 80 includes a processing unit 801 and a communication unit 802.
  • Communication unit 802 configured to receive indication information from the network device, where the indication information is used to indicate predicted channel information
  • the processing unit 801 is configured to determine second channel information according to the first channel information; wherein the first channel information includes at least one channel information of the first time window, and the second channel information includes at least one channel information of the second time window, The end time of the first time window is earlier than the start time of the second time window.
  • the processing unit 801 is also configured to determine the CSI of the second time window according to the second channel information.
  • the first time window includes one or more time units
  • the second time window includes one or more time units
  • the first channel information includes at least one channel information of the first time window, including: the first channel information includes channel information associated with M first CSI reports of the first time window, M is positive integer;
  • the starting time of the first time window is not earlier than the end time of the first time unit, and/or the end time of the first time window is not later than the end time of the second time unit; the first time unit and the third time are There is a first difference between units, a second difference between the second time unit and the third time unit, the first difference is greater than or equal to the second difference, and the third time unit is used to send the second time window.
  • the first difference is predefined, or the first difference is indicated by the network device, or the first difference is determined based on the capability information of the terminal device;
  • the second difference value is predefined, or the second difference value is indicated by the network device, or the second difference value is determined based on the capability information of the terminal device.
  • the first channel information includes channel information associated with M consecutive first CSI reports of the first time window
  • the M first CSI reports correspond to the non-zero power channel state information reference signal NZP CSI-RS used for channel measurement, and the number of ports corresponding to the NZP CSI-RS is the same as the number of ports corresponding to the first channel information.
  • the processing unit 801 is also configured to determine a reference CSI report from the M first CSI reports, and the difference between the second time unit and the time unit occupied by the reference CSI report is less than or equal to the threshold. .
  • the CSI of the second time window is included in the second CSI report, and the CSI processing time corresponding to the second CSI report is the time interval between the first physical uplink channel resource and the second physical uplink channel resource in the time domain.
  • the first physical uplink channel resource is used to carry the reference CSI report
  • the second physical uplink channel resource is used to carry the second CSI report.
  • the CSI of the second time window is included in the second CSI report, and the number of CSI processing units CPU corresponding to the second CSI report is R, R is a positive integer, R is predefined, or R is Indicated by the network device.
  • the first channel information includes at least one channel information of the first time window, including: the first channel information includes channel information associated with N CSI-RS resources of the first time window, N is positive integer;
  • the starting time of the first time window is not earlier than the end time of the first time unit, and/or the end time of the first time window is not later than the end time of the second time unit.
  • the first channel information includes channel information associated with N consecutive CSI-RS resources of the first time window
  • the N CSI resources are NZP CSI-RS resources used for channel measurement.
  • the number of ports corresponding to the NZP CSI-RS resources is the same as the number of ports corresponding to the second channel information.
  • the processing unit 801 is also configured to determine the fourth time unit occupied by the CSI reference resource in the time domain, and the CSI reference resource corresponds to the CSI of the second time window.
  • the start time of the fourth time unit is later than the end time of the first time unit, and/or the end time of the fourth time unit is earlier than the start time of the second time window.
  • the starting time of the fourth time unit is later than the starting time of the second time window, there is a third difference between the first time unit and the fourth time unit, and the second time unit is There is a fourth difference between the fourth time units, and the third difference is greater than or equal to the fourth difference.
  • the third difference value is predefined, or the third difference value is indicated by the network device, or the third difference value is determined based on the capability information of the terminal device;
  • the fourth difference value is predefined, or the fourth difference value is indicated by the network device, or the fourth difference value is determined based on the capability information of the terminal device.
  • the index number S1 of the fourth time unit satisfies the following expression:
  • n is determined based on the third time unit, which is used to send the CSI of the second time window;
  • K offset is configured by high-level parameters;
  • ⁇ Koffset is the subcarrier interval corresponding to K offset ;
  • ⁇ DL is the downlink subcarrier spacing;
  • s offset is the time unit offset, s offset is predefined, or s offset is indicated by the network device, or s offset is determined based on the capability information of the terminal device.
  • the index number S1 of the fourth time unit satisfies the following expression:
  • n is determined based on the third time unit, which is used to send the CSI of the second time window;
  • K offset is configured by high-level parameters;
  • ⁇ Koffset is the subcarrier interval corresponding to K offset ;
  • ⁇ DL is the downlink subcarrier spacing;
  • the difference between n' CSI_ref and n CSI_ref is S is a positive integer greater than or equal to 0;
  • S is predefined, or S is indicated by the network device, or S is determined based on the capability information of the terminal device.
  • the communication unit 802 is also configured to receive CSI report configuration information from the network device, where the CSI report configuration information has no associated CSI resource configuration information.
  • the communication unit 802 is also configured to receive CSI report configuration information from the network device, where the CSI report configuration information has associated CSI resource configuration information.
  • the CSI resource configuration information is NZP CSI-RS resource configuration information
  • the communication unit 802 is also used to determine the number of ports corresponding to the second channel information according to the NZP CSI-RS resource configuration information.
  • the CSI of the second time window is included in the second CSI report
  • the CSI processing time requirement of the second CSI report is different from the CSI processing time requirement of the first CSI report
  • the first CSI report carries L1 -RSRP or L1-SINR.
  • the number of ports corresponding to the first channel information is the same as the number of ports corresponding to the second channel information.
  • Figure 9 is a schematic structural diagram of another device for obtaining channel information provided by an embodiment of the present application.
  • the channel information acquisition device 90 may be a terminal device, or may be a device matching the terminal device.
  • the channel information acquisition device 90 may include a transceiver 901 and a processor 902.
  • the channel information acquisition device may also include a memory 903.
  • the transceiver 901, the processor 902, and the memory 903 can be connected through the bus 904 or other means.
  • the bus is represented by a thick line in Figure 9, and the connection methods between other components are only schematically illustrated and are not limiting.
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in Figure 9, but it does not mean that there is only one bus or one type of bus.
  • the coupling in the embodiment of this application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information interaction between devices, units or modules.
  • the specific connection medium between the above-mentioned transceiver 901, processor 902, and memory 903 is not limited in the embodiment of the present application.
  • Memory 903 may include read-only memory and random access memory and provides instructions and data to processor 902. A portion of memory 903 may also include non-volatile random access memory.
  • the processor 902 can be a central processing unit (Central Processing Unit, CPU).
  • the processor 902 can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC). ), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor, and optionally, the processor 902 may also be any conventional processor.
  • the memory 903 is used to store program instructions; the processor 902 is used to call the program instructions stored in the memory 903 to execute the steps performed by the terminal device in the corresponding embodiment of Figure 4 .
  • a general-purpose computing device such as a computer including a CPU, a random access storage medium (Random Access Memory, RAM), a read-only storage medium (Read-Only Memory, ROM) and other processing elements and storage elements can be used.
  • a computer program (including program code) capable of executing each step involved in the above method is run on the device, and the method provided by the embodiment of the present application is implemented.
  • the computer program can be recorded on, for example, a computer-readable recording medium, loaded into the above-mentioned computing device through the computer-readable recording medium, and run therein.
  • the channel information acquisition device 90 provided in the embodiment of the present application has the same principles and advantages in solving the problem.
  • the beneficial effects are similar to the problem-solving principles and beneficial effects in the embodiment shown in FIG. 4 of the present application. Please refer to the principles and beneficial effects of the implementation of the method. For the sake of concise description, they will not be described again here.
  • the aforementioned channel information acquisition device may be, for example, a chip or a chip module.
  • An embodiment of the present application also provides a chip.
  • the chip includes a processor, and the processor can execute relevant steps of the terminal device in the foregoing method embodiment.
  • the chip is used to: receive indication information from network equipment, the indication information is used to indicate predicted channel information; determine second channel information according to the first channel information; wherein the first channel information includes at least one channel information of the first time window , the second channel information includes at least one channel information of the second time window, and the end time of the first time window is earlier than the start time of the second time window.
  • FIG. 10 is a schematic structural diagram of a chip module provided by an embodiment of the present application.
  • the chip module 100 can perform the relevant steps of the terminal device in the foregoing method embodiment.
  • the chip module 100 includes: a communication interface 1001 and a chip 1002.
  • the communication interface is used for internal communication of the chip module, or for the chip module to communicate with external devices; the chip is used to implement the functions of the terminal device in the embodiment of the present application.
  • the communication interface 1001 is used to receive indication information from the network device, and the indication information is used to indicate predicted channel information; the chip 1002 is used to determine the second channel information according to the first channel information; wherein the first channel information includes the third channel information. At least one channel information of a time window, the second channel information includes at least one channel information of a second time window, and the end time of the first time window is earlier than the start time of the second time window.
  • the chip module 100 may also include a storage module 1003 and a power module 1004.
  • the storage module 1003 is used to store data and instructions.
  • the power module 1004 is used to provide power to the chip module.
  • each module included in it can be implemented in the form of hardware such as circuits.
  • Different modules can be located in the same component of the chip module (such as chips, circuit modules, etc.) or Among different components, or at least some of the modules can be implemented in the form of software programs, which run on the processor integrated within the chip module, and the remaining (if any) modules can be implemented in hardware such as circuits.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • One or more instructions are stored in the computer-readable storage medium.
  • the one or more instructions are suitable for the processor to load and execute the method provided by the above method embodiment.
  • Embodiments of the present application also provide a computer program product containing a computer program or instructions.
  • the computer program or instructions When the computer program or instructions are run on a computer, the computer is caused to execute the method provided by the above method embodiments.
  • the steps of the methods or algorithms described in the embodiments of this application can be implemented in hardware, or they can be implemented by It is implemented by the processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and the software modules can be stored in RAM, flash memory, ROM, erasable programmable read-only memory (erasable programmable ROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM), register, hard disk, removable hard disk, CD-ROM or any other form of storage media well known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage media may be located in an ASIC. Additionally, the ASIC can be located in the terminal device or management device.
  • the processor and the storage medium may also exist as discrete components in the terminal device or management device.
  • the functions described in the embodiments of the present application may be implemented in whole or in part through software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions can be transmitted from a website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means Transmission to another website, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the available media may be magnetic media (e.g., floppy disks, hard disks, tapes), optical media (e.g., digital video discs (DVD)), or semiconductor media (e.g., solid state disks (SSD)) wait.
  • each device and product described in the above embodiments may be software modules/units or hardware modules/units, or they may be partly software modules/units and partly hardware modules/units.
  • each module/unit included therein can be implemented in the form of hardware such as circuits, or at least some of the modules/units can be implemented in the form of a software program.
  • the software program Running on the processor integrated inside the chip, the remaining (if any) modules/units can be implemented using circuits and other hardware methods; for various devices and products applied to or integrated into the chip module, each module/unit included in it can They are all implemented in the form of hardware such as circuits.
  • Different modules/units can be located in the same component of the chip module (such as chips, circuit modules, etc.) or in different components.
  • at least some modules/units can be implemented in the form of software programs.
  • the software program runs on the processor integrated inside the chip module, and the remaining (if any) modules/units can be implemented using circuits and other hardware methods; for each device or product that is applied to or integrated into the terminal, each module it contains /Units can all be implemented in the form of hardware such as circuits, and different modules/units can be located in the same component (for example, chip, circuit module, etc.) or in different components within the terminal, or at least some of the modules/units can be implemented in the form of software programs.
  • the software program runs on the processor integrated inside the terminal, and the remaining (if any) modules/units can be implemented using circuits and other hardware methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种信道信息获取方法及装置,使得终端设备可以实现对信道信息的预测,有助于提升网络性能。其中,该方法可包括:接收来自网络设备的指示信息,该指示信息用于指示预测信道信息;根据第一信道信息,确定第二信道信息;其中,第一信道信息包括第一时间窗的至少一个信道信息,第二信道信息包括第二时间窗的至少一个信道信息,第一时间窗的结束时刻早于第二时间窗的起始时刻。

Description

信道信息获取方法及装置
本申请要求于2022年4月18日提交中国专利局、申请号为202210406402.6、申请名称为“信道信息获取方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种信道信息获取方法及装置。
背景技术
在第五代(5th-generation,5G)通信***中,终端设备可向网络设备反馈下行信道质量,例如通过信道状态信息(channel state information,CSI)反馈下行信道指令。网络设备在接收到CSI的情况下,可根据CSI进行波束管理、移动性管理、速率匹配等处理,以提升通信质量。终端设备如何获得CSI是目前研究的热点。
发明内容
本申请实施例提供一种信道信息获取方法及装置,可以实现对信道信息的预测,有助于提升网络性能。
第一方面,本申请提供一种信道信息获取方法,该方法应用于终端设备,该方法可包括:接收来自网络设备的指示信息,该指示信息用于指示预测信道信息;根据第一信道信息,确定第二信道信息;
其中,第一信道信息包括第一时间窗的至少一个信道信息,第二信道信息包括第二时间窗的至少一个信道信息,第一时间窗的结束时刻早于第二时间窗的起始时刻。
可见,终端设备在接收到预测信道信息的指示信息的情况下,根据第一信道信息预测第二信道信息,从而实现对信道信息的预测,有助于提升网络性能。
在一种可能的实现方式中,在确定第二信道信息的情况下,可根据第二信道信息,确定第二时间窗的CSI,以便向网络设备发送第二时间窗的CSI,进而网络设备可根据第二时间窗的CSI进行波束管理、移动性管理、链路自适应等处理。
在一种可能的实现方式中,第一时间窗包括一个或多个时间单元,第二时间窗包括一个或多个时间单元。
在一种可能的实现方式中,第一信道信息包括第一时间窗的至少一个信道信息,包括:第一信道信息包括与第一时间窗的M个第一CSI报告关联的信道信息,M为正整数,以便终端设备根据第一时间窗的M个第一CSI报告关联的信道信息,预测第二信道信息,进而有助于提升网络性能。
其中,第一时间窗的起始时刻不早于第一时间单元的结束时刻,和/或第一时间窗的结束时刻不晚于第二时间单元的结束时刻;第一时间单元与第三时间单元之间间隔第一差值,第二时间单元与第三时间单元之间间隔第二差值,第一差值大于或等于第二差值,第三时间单元用于发送第二时间窗的CSI。
示例的,第一差值为预定义的,或者,第一差值为网络设备指示的,或者,第一差值是根据终端设备的能力信息确定的。
和/或,
示例的,第二差值为预定义的,或者,第二差值为网络设备指示的,或者,第二差值是根据终端设备的能力信息确定的。
在一种可能的实现方式中,第一信道信息包括与第一时间窗的M个连续的第一CSI报告关联的信道信息;
和/或,
M个第一CSI报告与用于信道测量的非零功率信道状态信息参考信号(non-zero-power channel state information reference signal,NZP CSI-RS)对应,NZP CSI-RS对应的端口数目与第一信道信息对应的端口数目相同。
在一种可能的实现方式中,上述方法还包括:从M个第一CSI报告中确定参考CSI报告,第二时间单元与参考CSI报告占用的时间单元之间的差值小于或等于阈值。
在一种可能的实现方式中,第二时间窗的CSI包含于第二CSI报告,第二CSI报告对应的CSI处理时间为第一物理上行信道资源至第二物理上行信道资源在时域上的时间间隔,第一物理上行信道资源用于承载参考CSI报告,第二物理上行信道资源用于承载第二CSI报告。
在一种可能的实现方式中,第二时间窗的CSI包含于第二CSI报告,第二CSI报告对应的CSI处理单元CPU为R个,R为正整数。
示例的,R为预定义的,或者R为网络设备指示的。
在一种可能的实现方式中,第一信道信息包括第一时间窗的至少一个信道信息,包括:第一信道信息包括与第一时间窗的N个CSI-RS资源关联的信道信息,N为正整数,以便终端设备根据第一时间窗的N个CSI-RS资源关联的信道信息,预测第二信道信息。
其中,第一时间窗的起始时刻不早于第一时间单元的结束时刻,和/或第一时间窗的结束时刻不晚于第二时间单元的结束时刻。
在一种可能的实现方式中,第一信道信息包括与第一时间窗的N个连续的CSI-RS资源关联的信道信息;
和/或,
N个CSI资源为用于信道测量的NZP CSI-RS资源,NZP CSI-RS资源对应的端口数目与第二信道信息对应的端口数目相同。
在一种可能的实现方式中,上述方法还包括:确定CSI参考资源在时域上占用的第四时间单元,CSI参考资源与第二时间窗的CSI对应。
在一种可能的实现方式中,第四时间单元的起始时刻晚于第一时间单元的结束时刻,和/或第四时间单元的结束时刻早于第二时间窗的起始时刻。
在一种可能的实现方式中,第四时间单元的起始时刻晚于第二时间窗的起始时刻,第一时间单元与第四时间单元之间间隔第三差值,第二时间单元与第四时间单元之间间隔第四差值,第三差值大于或等于第四差值。
示例的,第三差值为预定义的,或者,第三差值为网络设备指示的,或者,第三差值 是根据终端设备的能力信息确定的。
和/或,
示例的,第四差值为预定义的,或者,第四差值为网络设备指示的,或者,第四差值是根据终端设备的能力信息确定的。
在一种可能的实现方式中,第四时间单元的索引号S1可以满足如下表达式:
其中,n为根据第三时间单元确定的,第三时间单元用于发送第二时间窗的CSI;Koffset由高层参数配置;μKoffset为Koffset对应的子载波间隔;μDL为下行链路的子载波间隔;soffset为时间单元偏移,soffset为预定义的,或者,soffset为网络设备指示的,或者,soffset是根据终端设备的能力信息确定的。
在一种可能的实现方式中,第四时间单元的索引号S1可以满足如下表达式:
其中,n为根据第三时间单元确定的,第三时间单元用于发送第二时间窗的CSI;Koffset由高层参数配置;μKoffset为Koffset对应的子载波间隔;μDL为下行链路的子载波间隔;n'CSI_ref与nCSI_ref之间的差值为S为大于或等于0的正整数;
示例的,S为预定义的,或者,S为网络设备指示的,或者,S是根据终端设备的能力信息确定的。
在一种可能的实现方式中,上述方法还包括:接收来自网络设备的CSI报告配置信息,CSI报告配置信息无关联的CSI资源配置信息。即使CSI报告配置信息无关联的CSI资源配置信息,终端设备也可以根据第一信道信息预测第二信道信息,有助于提升网络性能。
在一种可能的实现方式中,上述方法还包括:接收来自网络设备的CSI报告配置信息,CSI报告配置信息有关联的CSI资源配置信息。
在一种可能的实现方式中,上述CSI资源配置信息为NZP CSI-RS资源配置信息;上述方法还包括:根据NZP CSI-RS资源配置信息确定第二信道信息对应的端口数目。
在一种可能的实现方式中,第二时间窗的CSI包含于第二CSI报告,第二CSI报告的CSI处理时间需求,不同于第一CSI报告的CSI处理时间需求。
示例的,第一CSI报告携带:层1参考信号接收功率(layer 1 reference signal received power,L1-RSRP)或层1信号与干扰加噪比(layer 1 signal-to-noise and interference ratio,L1-SINR)。
在一种可能的实现方式中,上述第一信道信息对应的端口数目与上述第二信道信息对应的端口数目相同。
需要说明的是,第一方面以及第一方面的各个实现方式中涉及的“第二时间窗的CSI包含于第二CSI报告”,可以理解为:第二CSI报告包括第二时间窗的CSI,也就是说,第二CSI报告为包含或携带第二时间窗的CSI的报告。
第二方面,本申请提供一种信道信息获取装置,该装置包括:
通信单元,用于接收来自网络设备的指示信息,指示信息用于指示预测信道信息;
处理单元,用于根据第一信道信息,确定第二信道信息;其中,第一信道信息包括第一时间窗的至少一个信道信息,第二信道信息包括第二时间窗的至少一个信道信息,第一时间窗的结束时刻早于第二时间窗的起始时刻。
第三方面,上述第一方面所设计的方法中的步骤应用于终端设备之中。
第四方面,本申请提供一种终端设备,包括处理器、存储器及存储在所述存储器上的计算机程序或指令,其中,所述处理器执行所述计算机程序或指令以实现上述第一方面所涉及的方法中的步骤。
第五方面,本申请提供一种芯片,包括处理器,其中,处理器执行上述第一方面所涉及的方法中的步骤。
第六方面,本申请提供一种芯片模组,包括通信接口和芯片,所述芯片包括处理器,其中,所述处理器执行上述第一方面所涉及的方法中的步骤。
第七方面,本申请提供一种计算机可读存储介质,其中,其存储有计算机程序或指令,所述计算机程序或指令被执行时实现上述第一方面所涉及的方法中的步骤。
第八方面,本申请提供一种计算机程序产品,包括计算机程序或指令,其中,该计算机程序或指令被执行时实现上述第一方面所涉及的方法中的步骤。
附图说明
图1是应用本申请的一种通信***的架构示意图;
图2是两个时间窗之间的关系的示例图;
图3是本申请提供的一种可能的时间单元关系的示意图;
图4是本申请提供的信道信息获取方法的流程示意图;
图5是本申请提供的第一时间单元、第二时间单元与第一时间窗之间的关系示例图;
图6是本申请提供的第三时间单元与第二时间窗之间的关系示例图;
图7是本申请提供的第四时间单元与第二时间窗之间的关系示例图;
图8是本申请提供的一种信道信息获取装置的结构示意图;
图9是本申请提供的另一种信道信息获取装置的结构示意图;
图10是本申请实施例提供的一种芯片模组的结构示意图。
具体实施方式
在本申请中,“第一”、“第二”等字样用于对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独 存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
应当理解,本申请中,“至少一个”指的是一个或多个;“多个”是指两个或两个以上。此外,本申请的“等于”可以与“大于”连用,也可以与“小于”连用。在“等于”与“大于”连用的情况下,采用“大于”的技术方案;在“等于”与“小于”连用的情况下,采用“小于”的技术方案。
首先,对本申请涉及的***架构进行阐述。
本申请可应用于第五代(5th generation,5G)***,也可以称为新空口(new radio,NR)***;或者可应用于第六代(6th generation,6G)***,或者第七代(7th generation,7G)***,或未来的其他通信***;或者还可用于设备到设备(device to device,D2D)***,机器到机器(machine to machine,M2M)***、车联网(vehicle to everything,V2X)等等。
本申请可应用于图1所示的***架构中。图1所示的通信***10可包括但不限于:网络设备110和终端设备120。图1中设备的数量和形态用于举例,并不构成对本申请实施例的限定,例如实际应用中可以包括多个终端设备。
终端设备,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是指向用户提供语音和/或数据连通性的设备。例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端设备的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
网络设备,也可以称为接入网设备,是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备),又可以称为基站。目前,一些RAN节点的举例为:继续演进的节点B(gNB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。另外,在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。需要说明的是,集中单元节点、分布单元节点还可能采用其他名称,本申请并不限定。
在本申请中,终端设备可包括预测模块(例如人工智能(artificial intelligence,AI)模块)。预测模块可用于实现对下行信道信息的预测。例如根据第一信道信息预测或确定第二信道信息,从而第二信道信息不依赖于下行参考信号,可节省下行参考信号占用的网络资源。预测模块可具有学习能力,例如机器学习(machine learning,ML)和/或深度学习(deep learning,DL)能力,以对第一信道信息进行学习,从而预测或确定第二信道信息。
可选的,预测模块可以是利用一些算法对信道信息进行预测的软件单元和/或硬件单元, 一些算法例如卷积神经网络算法、深度神经网络算法等。可选的,预测模块可以是芯片、芯片模组等。
可选的,在本申请中,网络设备可包括预测模块,以实现对上行信道信息的预测。
其次,对本申请涉及的相关名称或术语进行阐述,以便于本领域技术人员理解。
一、时间窗和时间单元
在本申请中,时间窗可用于描述时域上连续的一段时间。具体的,时间窗可包括起始时刻和结束时刻,结束时刻与起始时刻之间的时间差值即为时间窗的大小或时间窗的长度。相邻两个时间窗的大小可以相同或不同。其中,结束时刻也可以描述为结束时间点或结束时间戳等,起始时刻也可以描述为起始时间点或起始时间戳等。
在本申请中,两个时间窗之间可以不重叠,例如两个时间窗之间存在时间间隔。或者,两个时间窗之间也可以部分重叠。例如,以时间窗1和时间窗2为例,对两个时间窗之间的关系进行介绍。如图2中的(1)所示,时间窗1与时间窗2之间存在时间间隔。比如,该时间间隔的大小可以是时间窗2的起始时刻与时间窗1的起始时刻之间的差值。再比如,该时间间隔也可以是时间窗2的结束时刻与时间窗1的结束时刻之间的差值。又比如,该时间间隔还可以为时间窗1的结束时刻与时间窗2的起始时刻之间的差值。又比如,该时间间隔可以为时间窗1的起始时刻与时间窗2的结束时刻之间的差值。具体的,本申请中两个时间窗之间的时间间隔的大小可以基于实际需求进行定义,对此不做限定。如图2中的(2)所示,以时间窗1与时间窗2之间不存在时间间隔,时间窗1与时间窗2在时域上连续为例,即时间窗2的起始时刻即为时间窗1的结束时刻。如图2中的(3)所示,时间窗1与时间窗2之间存在部分重叠,例如,时间窗2的起始时刻早于时间窗1的结束时刻,时间窗2的起始时刻晚于时间窗1的起始时刻。图2所示的相邻两个时间窗之间的关系用于举例,并不构成对本申请的限定。
进一步的,在一些实施例中,一个时间窗可以包括一个或多个时间单元。
在本申请中,时间单元为用于信号传输的时域单元,也就是说,在时域上,终端设备与网络设备以时间单元为单位或粒度进行通信。示例的,时间单元可为无线帧(radio frame)、子帧(subframe)、时隙(slot)、微时隙(mini-slot)或符号等。例如,符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,OFDM符号也可以简称为时域符号。
示例的,时间单元还可以基于通信方向划分为上行时间单元和下行时间单元。其中,上行时间单元用于上行通信,下行时间单元用于下行通信。例如,以时间单元为时隙为例,时隙可以基于通信方向划分为上行时隙和下行时隙。基本时间单元也可以基于通信方向划分为上行基本时间单元和下行基本时间单元。进一步的,基本时间单元基于通信方向划分为上行基本时间单元、下行基本时间单元和灵活基本时间单元。其中,上行基本时间单元用于上行通信。下行基本时间单元用于下行通信。灵活基本时间单元可以是终端设备或网络设备根据实际需求用于上行通信或下行通信。例如,以基本时间单元为符号为例。符号可以基于通信方向划分为上行符号、下行符号和灵活(flexible)符号,灵活符号可用于上行通信或下行通信,视实际需求而定。
进一步的,在本申请的一些实施例中,时间单元可以包括一个或多个基本时间单元,基本时间单元也可以描述为子时间单元等。示例的,时间单元为子帧,基本时间单元可以为时隙。即一个子帧可以包括一个或多个时隙,具体一个子帧包括多少个时隙与子载波间隔(Subcarrier Space,SCS)相关。例如,对于SCS为15kHz而言,一个时隙的时域长度为1ms,一个子帧可以包括14个时隙。又示例的,时间单元为时隙,基本时间单元可以为符号,即一个时隙可以包括一个或多个符号。例如,一个时隙包括14个符号。
以时间单元为无线帧,基本时间单元为子帧为例。图3所示为本申请中一种可能的时间单元关系的示意图。如图3所示,一个无线帧的时域长度为10ms,一个无线帧可以包括10个无线子帧,一个无线子帧的时域长度为1ms。
在本申请中,两个时间单元之间可以不重叠,例如两个时间单元之间存在时间间隔。两个时间单元之间存在时间间隔,与上述两个时间窗之间存在时间间隔类似。或者,两个时间单元之间不存在时间间隔,例如两个时间单元在时域上连续,即一个时间单元的结束时刻为另一个时间单元的起始时刻。
二、信道信息
在本申请中,信道信息可用于表征信道特征或特性。例如,信道信息可以是信道矩阵信息和/或CSI和/或信道特征向量。或者,信道信息还可以是CSI报告。又或者,信道信息还可以是信道的时域信息、频域信息、时频域信息或者时延多普勒(delay-doppler)域的信道信息等,对此不作具体限制。下面对信道矩阵信息和CSI进行阐述。
1、信道矩阵信息
在本申请中,信道矩阵信息可用于描述信道矩阵相关的信息。例如,信道矩阵信息可以包括以下一项或多项:信道矩阵H、等效信道矩阵、预编码矩阵W(预编码矩阵W可以由信道矩阵H推导出来)、信道矩阵H的右奇异向量V、方阵HTH的特征向量vi、信道矩阵H关联的向量(例如信道矩阵H在某种变形下的向量等)等。
(1)信道矩阵H、等效信道矩阵、预编码矩阵W
在多输入多输出(multiple input multiple output,MIMO)***中,对于发射机有a根天线,接收机有b根天线,MIMO信道的信道模型可以表示为:
r=Hs+n0
其中,r为经过MIMO信道后的接接收信号向量;s为发射端的发送信号向量;H为针对MIMO信道的b×a阶的信道矩阵;n0为加性噪声向量。需要说明的是,对于a=1,b=1而言,即发射机和接收机均有1根天线,也可以采用H来表示1×1的信道矩阵。
在预编码方式中,发射机可以根据信道矩阵H,采用预编码方式对发送信号向量s的空间特性进行优化,使得发送信号向量s的空间分布特性与信道矩阵H相匹配,从而可以有效降低对接收机算法的依赖程度,简化接收机算法。通过预编码,可以有效提升***性能。
预编码可以采用线性或非线性方法。由于复杂度等方面的原因,因此在目前的无线通信***中一般只考虑线性预编码。经过预编码之后,MIMO信号的信道模型可以表示为:
r=HWs+n0
其中,W为预编码矩阵。
对于多用户MIMO(multiple user,MU-MIMO)***,接收机无法对发给其他设备的 信号进行信道估计,因此发射机预编码能有效抑制多用户干扰。可见,发射机知道信道矩阵并采用合适的预编码对其进行处理是对***有益的。
另外,在预编码方式中,预编码矩阵W和信道矩阵H共同决定了等效信道矩阵(例如H·W),而等效信道矩阵决定了信道特性/特征等。另外,在一些情况下,预编码矩阵W可以由信道矩阵H推导出来,比如预编码矩阵W可以是信道矩阵H某个变换下的矩阵。
(2)信道矩阵H的右奇异向量V、方阵HTH的特征向量vi
信道矩阵H的奇异值分解可以为:H=U∑VT
其中,U=[u1,u2,...,ub]为b×b阶的正交矩阵(orthogonal matrix)或者酋矩阵(unitary matrix);V=[v1,v2,...,va]为a×a阶的正交矩阵或酋矩阵,V中的列向量可以称为信道矩阵H的奇异向量(right-singular vectors);∑为a×a阶的对角阵,对角线上的元素是信道矩阵H的p=min(b,a)个奇异值σ12,...,σp,并按递减的顺序排列,即σ12>...>σp
将信道矩阵的共轭转置HT乘以信道矩阵H,得到a×a阶的方阵HTH,对方阵HTH进行特征分解,得到特征值和特征向量表示为:
(HTH)vi=λivi,i∈[1,a];
其中,λi表示方阵HTH的特征值;vi表示方阵HTH的特征向量。
由H=U∑VT可得(HTH)vi=V∑2VT,因此,方阵HTH的特征向量也表示上述V中的列向量。也就是说,方阵HTH的所有特征向量能够组成上述V,且方阵HTH的特征向量可以为信道矩阵H的右奇异向量。
2、CSI
在本申请中,CSI可用于描述信道质量相关的信息。例如,CSI描述无线信号在发射机和接收机之间的传播过程,包含距离、散射、衰落等对信号的影响。对下行传输而言,CSI可用于终端设备向网络设备反馈下行信道质量,以便网络设备根据CSI进行波束管理、移动性管理等处理。终端设备向网络设备发送的CSI可携带在CSI报告中。例如,CSI也可以包括下述至少一项:CSI参考信号资源指示索引(CSI-RS Resource Indicator,CRI)、秩指示索引(Rank Indicator,RI)、信道质量指示索引(Channel quality indicator,CQI)、预编码矩阵指示索引(Precoding Matrix Indicator,PMI)、层指示索引(Layer Indicator,LI)、L1-RSRP、L1-SINR。
在本申请中,终端设备通过下行参考信号进行信道测量以获取信道信息。测量也可以描述为评估、检测或估计等。其中,下行参考信号可以包括但不限于CSI-RS、同步信号和物理广播信道块(Synchronization Signal Block,SSB)或物理广播信道解调参考信号(PBCH DMRS)等。例如,终端设备可以根据CSI-RS进行下行信道测量以获取信道矩阵信息,从而可以根据信道矩阵信息获取CSI。
三、CSI报告
在本申请中,CSI报告(CSI-Report)用于上报CSI。例如CSI报告可以包括L1-RSRP、L1-SINR、CSI相关(CSI-related)信息等中的至少一项。具体的,在一些实施例中,CSI 报告可由高层参数CSI报告配置信息(CSI-ReportConfig)配置。CSI-ReportConfig可由高层参数CSI-MeasConfig配置。其中,CSI-MeasConfig可以指示或者包括如下两个高层参数:CSI报告配置信息(CSI-ReportConfig)和CSI资源配置信息(CSI-ResourceConfig)。
CSI-ReportConfig可指示或者包括CSI-ResourceConfigId。通过CSI-ResourceConfigId,CSI-ReportConfig可关联CSI-ResourceConfig,或CSI-ResourceConfig可关联CSI-ReportConfig。关联也可以描述为映射或对应等。在本申请中,CSI-ReportConfig指示或包括CSI-ResourceConfigId,可以理解为CSI报告配置信息有关联的CSI资源配置信息;CSI-ReportConfig不指示或不包括CSI-ResourceConfigId,可以理解为CSI报告配置信息无关联的CSI资源配置信息。
CSI-ResourceConfig可用于配置CSI测量的CSI-RS资源。CSI-ResourceConfig可以配置资源集(例如ResourceSet),ResourceSet可以包括一个或多个CSI-RS资源(例如CSI-RS-Resource)。
CSI-ResourceConfig可以指示或者包括:NZP-CSI-RS资源集(NZP-CSI-RS-ResourceSet),或者CSI干扰测量(CSI Interference Measurement,CSI-IM)资源集(CSI-IM-ResourceSet),或者同步信号块(SSB)资源集(SSB-ResourceSet)。
NZP-CSI-RS-ResourceSet可以用于信道测量和/或干扰测量;CSI-IM-ResourceSet可以用于干扰测量;SSB-ResourceSet可以用于信道测量。
CSI-RS资源的类型可以是周期的、半持续性的或者非周期的。
CSI-ReportConfig中的报告配置类型(reportConfigType)可用于指示CSI报告的报告类型,CSI报告的报告类型可以是周期CSI报告、非周期CSI报告或半持续性CSI报告。CSI报告可以通过物理上行链路控制信道(physical uplink control channel,PUCCH)或物理上行链路共享信道(physical uplink shared channel,PUSCH)进行传输。
1、CSI报告的上报时机
以下以时间单元为时隙,基本时间单元为符号为例对CSI报告的上报时机进行阐述。
当终端设备接收到不晚于CSI参考资源的至少一个传输时机,才有可能上报CSI报告,否则不上报CSI报告。其中,传输时机为用于信道测量的CSI-RS传输时机,和/或用于干扰测量的CSI-RS和/或CSI-IM时机。
其中,CSI参考资源的定义如下:
在频域上,CSI参考资源被定义为一组下行物理资源块,获得的CSI与该组下行物理资源块相应的带宽有关。
在时域上,上行时隙n'(即上行时隙的索引号表示为n')上报CSI报告,该CSI报告对应的CSI参考资源的时域位置为一个单个下行时隙,该单个下行时隙的索引号可表示为其中,μKoffset为Koffset对应的子载波间隔;μDL为下行链路的子载波间隔。
Koffset可由高层参数配置,其单位可以是毫秒(ms)。例如Koffset可由CellSpecific_Koffset 配置,或Koffset的取值等于CellSpecific_Koffset-UESpecific_Koffset,如果媒体接入控制-控制元素(media access control-control element,MAC-CE)提供UESpecific_Koffset。
时隙n(即时隙的索引号表示为n)与上行时隙n'有关,例如时隙n为上行时隙n'对应的下行时隙,两者之间的关系可表示为:
其中,表示向下取整;μUL为上行链路的子载波间隔;和μoffset可根据高层参数ca-SlotOffset确定。
对于周期CSI报告和半持续性CSI报告,如果单个CSI-RS/SSB资源被配置用于信道测量,nCSI_ref为大于或等于的最小值,且是一个有效下行时隙;或者,如果多个CSI-RS/SSB资源被配置用于信道测量,nCSI_ref为大于或等于的最小值,且是一个有效下行时隙。其中,μDL为下行链路的子载波间隔。
对于非周期CSI报告,如果下行控制信息(downlink control information,DCI)指示终端设备上报CSI报告的时隙与CSI请求占用的时隙相同,那么nCSI_ref使得参考资源占用的时隙与CSI请求占用的有效下行时隙相同。否则,nCSI_ref为大于或等于的最小值,且n-nCSI_ref是一个有效下行时隙,Z'表示CSI报告的CSI处理时间需求,表示一个时隙包括的符号数目。
当周期性的或半持续性的CSI-RS/CSI-IM/SSB资源被用于信道测量/干扰测量,终端设备不期待在CSI-RS/CSI-IM/SSB资源上测量信道/干扰,该CSI-RS/CSI-IM/SSB资源的最后一个符号在传输非周期性CSI报告的第一个符号的传输时间之前达到(up to)Z'被接收。可选的,该CSI-RS/CSI-IM/SSB资源的最后一个符号为该CSI-RS/CSI-IM/SSB资源的最后一个OFDM符号,和/或,传输非周期性CSI报告的第一个符号为传输非周期性CSI报告的第一个OFDM符号。
上述有效下行时隙可以包括高层参数配置的至少一个下行符号或灵活符号,并且不属于为终端设备配置的测量间隔(gap)内。如果对于CSI报告对应的CSI参考资源,不存在有效下行时隙,那么终端设备不在上行时隙n'上发送CSI报告。
需要说明的是,上述“1、CSI报告的上报时机”中的相关内容/概念/定义/解释等可以详见3GPP标准协议38.214中的对应章节,对此不作具体限制。另外,“1、CSI报告的上报时机”中的相关内容/概念/定义/解释等也可能会随着标准协议38.214的修改/变动而适配的修改。在本领域技术人员结合“1、CSI报告的上报时机”中的相关内容/概念/定义/解释等也能推导/获取修改后的内容。因此,修改后的内容也在本申请所要求保护的范围内,对此不再赘述。
2、CSI报告包括的信息
CSI报告可能包括以下信息中的至少一项:L1-RSRP、L1-SINR、CSI相关(CSI-related)信息等。其中,CSI相关(CSI-related)信息可能包括以下信息中的至少一项:CRI、同步信号块资源指示索引(SS/PBCH block resource indicator,SSBRI)、RI、PMI、CQI、LI等。
需要说明的是,CRI(或SSBRI)可以表示终端设备所推荐(或所选)的CSI-RS(或SSB)资源。其中,一个CSI-RS(或SSB)资源可以表示一个波束或天线方向。
RI可以表示终端设备所推荐(或所选)的层数。而层数可以决定哪个码本。其中,每个层数对应一个码本,一个码本由一个或多个码字组成。比如,层数为2的码本或者层数为1的码本。
PMI可以表示终端设备所推荐(或所选)的码本里的码字的索引,或者量化的预编码信息。其中,一个码字对应一个预编码矩阵。RI和PMI可以整体表示终端设备所推荐的层数和预编码矩阵。
CQI可以表示终端设备向网络设备反馈当前信道的信道质量的好坏。其中,终端设备需要计算CQI。
3、CSI报告占用的CSI处理单元(CSI processing unit,CPU)
以下以时间单元为时隙、以基本时间单元为符号为例对CSI报告占用的CPU进行阐述。其中,以符号为OFDM符号为例。在以下描述中,符号和OFDM符号可以互换。
(1)CPU的含义
在一个分量载波(component carrier,CC)中,终端设备可以通过高层参数simultaneousCSI-ReportsPerCC指示自身支持的同时CSI计算(simultaneous CSI calculation)的数量,NCPU;在所有分量载波中,终端设备可以通过高层参数simultaneousCSI-ReportsAllCC指示自身支持的同时CSI计算的数量,NCPU。若终端设备支持同时CSI计算,则称终端设备具有用于处理CSI报告的NCPU个CPU。
需要说明的是,CSI报告占用的CPU,可以表征终端设备处理CSI的能力。NCPU,可以理解为,终端设备支持的CPU的最大数量或总数量。另外,NCPU可以由终端设备通过高层参数(如simultaneousCSI-ReportsPerCC和/或simultaneousCSI-ReportsAllCC)上报给网络设备。
若在一个给定OFDM符号中CSI的计算已占用了L个CPU,则终端设备具有NCPU-L个未占用的CPU。
在NCPU-L个未占用的CPU中,如果N个CSI报告在同一OFDM符号上依次占用它们各自的CPU,且第n(n=0,...,N-1)个CSI报告所占用的CPU的数量为则终端设备不需要更新(update)N-M个具有低优先级的CSI报告,0≤M≤N是使成立的最大值。
例如,网络设备给终端设备配置了3个CSI报告,分别为CSI报告0、CSI报告1和CSI报告2。其中,在该3个CSI报告各自对应的优先级中,CSI报告0的优先级高于CSI报告1的优先级,CSI报告1的优先级高于CSI报告2的优先级。在终端设备具有10个未占用的CPU的情况下,若CSI报告0占用5个CPU(即),CSI报告1占用3个CPU(即),CSI报告2占用5个CPU(即),则由于5+3+5>10,因此终端设备不需要更新CSI报告2。
(2)一个CSI报告所占用的CPU的数量OCPU,可以存在如下:
1)如果CSI-ReportConfig中的高层参数reportQuantity设置为‘none’,且CSI-RS-ResourceSet中配置了高层参数trs-Info,则OCPU=0。也就是说,CSI报告所占用的CPU的数量为0。
2)如果CSI-ReportConfig中的高层参数reportQuantity设置为'cri-RSRP'、'ssb-Index-RSRP'、'cri-SINR'、'ssb-Index-SINR'或者'none'(此时CSI-RS-ResourceSet未配置高层参数trs-Info),则OCPU=1。也就是说,CSI报告所占用的CPU的数量为1。
3)如果CSI-ReportConfig中的高层参数reportQuantity设置为'cri-RI-PMI-CQI'、'cri-RI-i1'、'cri-RI-i1-CQI'、'cri-RI-CQI'或者'cri-RI-LI-PMI-CQI',则:
-如果max(μPDCCHCSI-RSUL)<3,一个CSI报告被非周期触发,L=0个CPU被占用,终端设备不发送带有传输块(或HARQ-ACK或两者)的PUSCH,且该CSI对应于具有宽带频率粒度的单个CSI,以及对应于单个资源中的最多4个CSI-RS端口,其中codebookType设置为'typeI-SinglePanel”或reportQuantity设置为'cri-RI-CQI',则OCPU=NCPU。也就是说,CSI报告所占用的CPU的数量为终端设备上报的CPU的总数量。其中,μPDCCH对应传输DCI的PDCCH的子载波间隔,μUL对应承载CSI的PUSCH的子载波间隔,μCSI-RS对应DCI触发的非周期CSI-RS的子载波间隔。
-如果一个CSI报告对应的CSI-ReportConfig中codebookType设置为'typeI-SinglePanel”,且相应的用于信道测量的CSI-RS资源集被配置了2个资源组,其中包含N个资源对,M个用于单站点传输假设下的资源,则OCPU=2N+M。也就是说,CSI报告所占用的CPU的数量为2N+M。
-否则,OCPU=Ks,Ks是NZP-CSI-RS-ResourceSet中用于信道测量的NZP-CSI-RS资源(也可以称为信道测量资源)的数量。也就是说,CSI报告所占用的CPU的数量为该CSI报告所关联的信道测量资源的数量。
(3)CPU占用的OFDM符号的数量
1)对于CSI-ReportConfig中的高层参数reportQuantity未设置为‘none’的CSI报告,该CSI报告占用的CPU所占用的OFDM符号的数量,可以存在如下:
-周期CSI报告或半持续性CSI报告(不包括由PDCCH触发报告之后在PUSCH上的第一次(initial)半持续性CSI报告)占用的CPU所占用的OFDM符号为:从用于信道测量或干扰测量的CSI-RS/CSI-IM/SSB资源中最早的一个的第一个OFDM符号开始,且各自最近(latest)的CSI-RS/CSI-IM/SSB时机不晚于相应的CSI参考资源,直到上报资源的最后一个OFDM符号,其中,该上报资源为用于承载该周期CSI报告或半持续性CSI报告的 PUSCH/PUCCH。
-非周期CSI报告占用的CPU所占用的OFDM符号为:从触发该非周期CSI报告的PDCCH之后的第一个OFDM符号开始,直到上报资源的最后一个OFDM符号,其中,该上报资源为用于承载该非周期CSI报告的PUSCH。
-由PDCCH触发的第一次半持续性CSI报告在PUSCH上占用的CPU所占用的OFDM符号为:从该PDCCH之后的第一个OFDM符号开始,直到上报资源的最后一个OFDM符号,其中,该上报资源为用于承载该第一次半持续性CSI报告的PUSCH。
2)对于CSI-ReportConfig中的高层参数reportQuantity设置为‘none’以及CSI-RS-ResourceSet未配置高层参数trs-Info的CSI报告,该CSI报告占用的CPU所占用的OFDM符号的数量,可以存在如下:
-半持续性CSI报告(不包括由PDCCH触发报告之后在PUSCH上的第一次半持续性CSI报告)占用的CPU所占用的OFDM符号为:从用于L1-RSRP计算的信道测量的周期或半持续性CSI-RS/SSB资源的每个传输时机中的最早一个的第一个OFDM符号开始,直到每个传输时机中用于L1-RSRP计算的信道测量的CSI-RS/SSB资源中的最近(latest)一个的的最后一个OFDM符号之后的Z'3个OFDM符号。
-非周期CSI报告占用的CPU所占用的OFDM符号为:从触发该CSI报告的PDCCH之后的第一个OFDM符号到在触发该CSI报告的PDCCH之后的第一个OFDM符号之后的Z3个OFDM符号与测量资源的最后一个OFDM符号之后的Z'3个OFDM符号之间的最后一个OFDM符号;其中,该测量资源为用于L1-RSRP计算的信道测量的CSI-RS/SSB资源中的最近(latest)一个。
需要说明的是,上述“3、CSI报告占用的CPU”中的相关内容/概念/定义/解释等可以详见3GPP标准协议38.214中的对应章节,对此不作具体限制。另外,“3、CSI报告占用的CPU”中的相关内容/概念/定义/解释等也可能会随着标准协议38.214的修改/变动而适配的修改。在本领域技术人员结合“3、CSI报告占用的CPU”中的相关内容/概念/定义/解释等也能推导/获取修改后的内容。因此,修改后的内容也在本申请所要求保护的范围内,对此不再赘述。
4、CSI报告的CSI处理时间需求(CSI computation time requirement)
以下以时间单元为时隙、以基本时间单元为符号为例对CSI报告占用的CPU进行阐述。
CSI处理时间需求也可以描述为CSI计算时间需求、CSI计算时间要求、CSI处理时间要求等。
当DCI上的CSI请求字段触发PUSCH上的CSI报告,若用于携带CSI报告(包括时间提前的影响)的第一个上行符号的开始时间不早于符号Zref,以及用于携带第n个CSI报告(包括时间提前的影响)的第一个上行符号的开始时间不早于符号Z'ref(n),则对于第n个被触发的报告,终端设备可以提供有效的CSI报告。
其中,Zref定义为下一个上行符号,该下一个上行符号的循环前缀(cyclic prefix,CP)在触发该CSI报告的PDCCH的最后一个符号结束后的T=(Z)(2048+144)·κ2·TC+Tswitch开始。
其中,Z'ref(n)定义为下一个上行符号,该下一个上行符号的CP在测量资源的最后一个 符号结束后的T′=(Z′)(2048+144)·κ2·TC开始,该测量资源为用于信道测量的非周期CSI-RS资源(当非周期CSI-RS用于第n个被触发的CSI报告的信道测量时)、用于干扰测量的非周期CSI-IM、用于干扰测量的非周期NZP CSI-RS中最近(latest)一个。
当DCI上的CSI请求字段触发PUSCH上的CSI报告,若用于携带CSI报告(包括时间提前影响)的第一个上行符号的开始时间早于符号Zref,则如果在该PUSCH上没有复用HARQ-ACK或传输块,则终端设备可以忽略该DCI。也就是说,终端设备可以不上报该DCI所触发的CSI报告。
当DCI上的CSI请求字段触发PUSCH上的CSI报告,若用于携带第n个CSI报告(包括时间提前影响)的第一个上行符号的开始时间早于符号Z'ref(n),则:若触发的CSI报告的数量为1,且在PUSCH上没有复用HARQ-ACK或传输块,则终端设备可以忽略该DCI;否则,终端设备不需要为第n个被触发的CSI报告更新CSI。
在本申请实施例中,CSI报告的CSI计算时间要求,可以根据(Z,Z')确定。其中,Z=maxm=0,...,M-1(Z(m)),Z'=maxm=0,...,M-1(Z'(m)),M为更新的CSI报告的数量。
(Z(m),Z'(m))对应第m个更新的CSI报告,具体可以定义如下:
1)如果max(μPDCCHCSI-RSUL)<3,一个CSI报告被非周期触发,L=0个CPU被占用,终端设备不发送带有传输块(或HARQ-ACK或两者)的PUSCH,且该CSI对应于具有宽带频率粒度的单个CSI,以及对应于单个资源中的最多4个CSI-RS端口,其中codebookType设置为'typeI-SinglePanel”或reportQuantity设置为'cri-RI-CQI',则(Z(m),Z'(m))可以定义为表1的(Z1,Z'1)。
表1 CSI处理时间需求1
其中,μ为子载波间隔,并对应min(μPDCCHCSI-RSUL)。其中,μPDCCH对应传输DCI的PDCCH的子载波间隔,μUL对应承载CSI的PUSCH的子载波间隔,μCSI-RS对应DCI触发的非周期CSI-RS的子载波间隔。
2)如果要传输的CSI对应于宽带频率粒度,以及对应于单个资源中的最多4个CSI-RS端口,其中codebookType设置为'typeI-SinglePanel'或reportQuantity设置为'cri-RI-CQI',则(Z(m),Z'(m))可以定义为表2的(Z1,Z'1)。
表2 CSI处理时间需求2

其中,μ为子载波间隔,并对应min(μPDCCHCSI-RSUL)。
3)如果传输的CSI对应于宽带频率粒度,其中reportQuantity设置为'ssb-Index-SINR'或者'cri-SINR',则(Z(m),Z'(m))可以定义为表2的(Z1,Z'1)。
4)如果reportQuantity设置为'cri-RSRP'或者'ssb-Index-RSRP',则(Z(m),Z'(m))可以定义为表2的(Z3,Z'3)。其中,Xμ是根据终端设备报告的波束报告时间(beamReportTiming)能力确定的,KBl是根据终端设备报告的波束切换时间(beamSwitchTiming)能力确定的。
5)否则,(Z(m),Z'(m))可以定义为表2的(Z2,Z'2)。
需要说明的是,上述“4、CSI报告的CSI处理时间需求”中的相关内容/概念/定义/解释等可以详见3GPP标准协议38.214中的对应章节,对此不作具体限制。另外,“4、CSI报告的CSI处理时间需求”中的相关内容/概念/定义/解释等也可能会随着标准协议38.214的修改/变动而适配的修改。在本领域技术人员结合“4、CSI报告的CSI处理时间需求”中的相关内容/概念/定义/解释等也能推导/获取修改后的内容。因此,修改后的内容也在本申请所要求保护的范围内,对此不再赘述。
四、应用场景
本申请可以应用于即时通信场景,例如在即时通信场景下可较快地预测信道信息。本申请还可以应用于高速通信场景,例如在高速行驶的动车上,可获得预测的信道信息。这两种应用场景用于举例,并不构成对本申请的限定,本申请还可以应用于其他场景,例如低速移动场景。
下面对本申请提供的信道信息获取方法进行阐述。
请参考图4,是本申请提供的信道信息获取方法的流程示意图,该流程具体包括以下步骤:
S101,网络设备发送指示信息。相应的,终端设备接收指示信息。其中,指示信息用于指示预测信道信息。
在本申请中,指示信息用于指示预测信道信息,也可以描述为:指示信息用于指示信道信息的预测;或者,指示信息用于指示未知的信道信息使用已知的信道信息确定;或者,指示信息用于指示使用已知的信道信息预测/确定未知的信道信息;或者,指示信息用于指示使用未知的信道信息预测/确定未知的信道信息;或者,指示信息用于指示调用/使用预测模块或预测功能获取信道信息;或者,指示信息用于指示信道信息的确定方式为预测等。换句话说,指示信息的本质是指示不依赖于下行参考信号获得信道信息,其他用于描述指示信息本质的内容在此不一一列举。其中,信道信息可参见上述“二、信道信息”的相关描述,在此不再赘述。
其中,已知的信道信息与未知的信道信息,是相对是否已经确定的信道信息而言。已经确定的信道信息即已知的信道信息,还未确定的信道信息即未知的信道信息。例如,已知的信道信息可以理解为之前的信道信息或历史信道信息,未知的信道信息可以理解为现在的信道信息和/或未来的信道信息。再例如,已知的信道信息可以理解为之前的信道信息和/或现在的信道信息,未知的信道信息可以理解为未来的信道信息。需要说明的是,在本 申请中,现在的信道信息也可以描述为当前的信道信息,目前的信道信息,或当下的信道信息等。
在一些实施例中,之前的信道信息、现在的信道信息、未来的信道信息可以是相对指示信息关联的测量资源(例如CSI-RS资源和/或CSI-IM资源等)的接收时刻而言。可选的,指示信息关联的测量资源的接收时刻可以早于或等于指示信息的接收时刻,例如在指示信息关联的测量资源的接收时刻之前确定的信道信息即为之前的信道信息;根据指示信息关联的测量资源确定的信道信息即为现在的信道信息;在指示信息关联的测量资源的接收时刻之后的某段时间(可以包括或不包括指示信息关联的测量资源的接收时刻)的信道信息即为未来的信道信息。可选的,指示信息关联的测量资源的接收时刻可以晚于指示信息的接收时刻,例如在指示信息关联的测量资源的接收时刻之前确定的信道信息即为之前的信道信息;根据指示信息关联的测量资源确定的(例如测量得到的或预测的)信道信息即为现在的信道信息;在指示信息关联的测量资源的接收时刻之后的某段时间(可以包括或不包括指示信息关联的测量资源的接收时刻)的信道信息即为未来的信道信息。其中,指示信息关联的测量资源可配置在配置信息中,例如,该配置信息可以是CSI-MeasConfig,也可以是CSI报告配置信息(即CSI-ReportConfig)。其中,测量资源的接收时刻,可以理解为测量资源的接收时间,或接收测量资源的时间单元,或接收测量资源的基本时间单元等。
在另一些实施例中,之前的信道信息、现在的信道信息、未来的信道信息可以是相对指示信息关联的测量资源所在的时刻而言。测量资源所在的时刻,可以理解为测量资源所在的时间或所在的时间单元或所在的基本时间单元等,也可以理解为测量资源占用的时域资源,例如可以是测量资源占用的时间单元,或测量资源占用的基本时间单元等。测量资源所在的时刻以测量资源占用的时间单元为例,指示信息关联的测量资源占用的时间单元可以早于或等于或晚于指示信息的接收时刻所在的时间单元。例如,在指示信息关联的测量资源占用的时间单元之前确定的信道信息即为之前的信道信息;根据指示信息关联的测量资源确定的信道信息即为现在的信道信息;在指示信息关联的测量资源占用的时间单元之后的某段时间的信道信息即为未来的信道信息。举例来说,以时间单元为时隙为例,假设指示信息的接收时刻所在的时间单元为时隙3(即时隙的索引号为3),指示信息关联的测量资源占用的时隙为时隙4,那么在时隙3及其之前确定的信道信息即为之前的信道信息,根据指示信息关联的测量资源确定的信道信息即为现在的信道信息,在时隙5至时隙7这段时间内的信道信息即为未来的信道信息。
在一些实施例中,网络设备可以将指示信息携带在配置信息中发送给终端设备,从而有助于节省信令开销。例如,该配置信息可以是CSI-MeasConfig,也可以是CSI报告配置信息(即CSI-ReportConfig)。携带指示信息的配置信息与携带测量资源的配置信息可以是同一配置信息或不同配置信息。在另一些实施例中,网络设备也可以通过其它信息携带指示信息,其中,其它信息不同于配置信息,可以为新定义的一个信息,也可以为已有信息,对此不做限定。网络设备发送配置信息与指示信息的先后顺序在本申请中不作限定。
S102,终端设备根据第一信道信息,确定第二信道信息。
在一种实现方式中,第一信道信息可以理解为已知的信道信息,第二信道信息可以理解为未知的信道信息。例如,第一信道信息为之前的信道信息,第二信道信息为现在的信 道信息,那么终端设备可以根据之前的信道信息预测现在的信道信息。在这种情况下,之前的信道信息即为已知的信道信息,而现在的信道信息为未知的信道信息。再例如,第一信道信息为之前的信道信息,第二信道信息为未来的信道信息,那么终端设备可以根据之前的信道信息预测未来的信道信息。在这种情况下,之前的信道信息即为已知的信道信息,而未来的信道信息为未知的信道信息。又例如,第一信道信息为现在的信道信息,第二信道信息为未来的信道信息,那么终端设备可以根据现在的信道信息预测未来的信道信息。在这种情况下,现在的信道信息即为已知的信道信息,而未来的信道信息为未知的信道信息。又例如,第一信道信息为之前的信道信息及现在的信道信息,第二信道信息为未来的信道信息,那么终端设备可以根据之前的及现在的信道信息预测未来的信道信息。在这种情况下,之前的信道信息和现在的信道信息即为已知的信道信息,而未来的信道信息即为未知的信道信息。
在另一种实现方式中,第一信道信息可以理解为未知的信道信息,第二信道信息可以理解为未知的信道信息。例如,第一信道信息为现在的信道信息,第二信道信息为未来的信道信息,那么终端设备可以根据现在的信道信息预测未来的信道信息。在这种情况下,现在的信道信息即为未知的信道信息,未来的信道信息也为未知的信道信息。
以第一信道信息包括第一时间窗的至少一个信道信息,第二信道信息包括第二时间窗的至少一个信道信息,第一时间窗早于第二时间窗为例。下面对第一信道信息和第二信道信息分别进行阐述。
1、第一信道信息
第一信道信息包括第一时间窗的至少一个信道信息。在一种实现方式中,第一时间窗的至少一个信道信息可以为第一时间窗内确定的(例如测量得到的或预测的)至少一个信道矩阵信息。在另一种实现方式中,第一时间窗的至少一个信道信息可以为第一时间窗内确定的(例如测量得到的或预测的)至少一个CSI。示例的,一个CSI可携带在一个CSI报告中,或多个CSI可携带在同一个CSI报告中。在又一种实现方式中,第一时间窗的至少一个信道信息可以为第一时间窗内确定的(例如测量得到的或预测的)至少一个CSI报告。在又一种实现方式中,第一时间窗的至少一个信道信息可以为第一时间窗内承载的至少一个CSI报告,可以理解为第一时间窗内上报的至少一个CSI报告。
需要说明的是,在本申请中,第一时间窗的至少一个信道信息的类型可以相同,例如均为CSI或信道矩阵信息;第一时间窗的至少一个信道信息的类型可以不相同,例如一部分信道信息为CSI,另一部分信道信息为信道矩阵信息。
可选的,第一时间窗的至少一个信道信息可以是第一时间窗内的所有信道信息,也可以是第一时间窗内的部分信道信息。例如第一时间窗的信道信息的总数为10个,至少一个信道信息可以是这10个信道信息,或10个信道信息中的5个信道信息,这5个信道信息可以是满足一定条件(例如是按照从高到低的顺序排序的前5个,或是按照时间先后顺序排序的前5个等)。
可选的,第一时间窗的至少一个信道信息的具体数量可以根据以下一项或多项确定:
根据协议定义的数量确定,例如协议预定义第一时间窗的至少一个信道信息的数量;
根据网络设备的指示确定,例如网络设备可指示第一时间窗的至少一个信道信息的数 量,进而终端设备可确定其具体数量;网络设备可以显示或隐式地指示第一时间窗的至少一个信道信息的数量;
根据终端设备的能力信息确定,例如终端设备的能力信息表明终端设备可支持处理4个信道信息,那么第一时间窗的至少一个信道信息可为4个。
举例来说,网络设备指示的数量为5个,但终端设备可支持4个信道信息,那么第一时间窗的至少一个信道信息的数量为4个。
2、第二信道信息
第二信道信息可以包括第二时间窗的至少一个信道信息。在一种实现方式中,第二时间窗的至少一个信道信息可以为第二时间窗内需预测的至少一个信道矩阵信息。可选的,终端设备可根据第二时间窗的至少一个信道矩阵信息,确定第二时间窗的至少一个CSI,一个信道矩阵信息可对应一个CSI。在另一种实现方式中,第二时间窗的至少一个信道信息可以为第二时间窗内需预测的至少一个CSI。一个CSI可携带在一个CSI报告中,或多个CSI可携带在同一个CSI报告中。在又一种实现方式中,第二时间窗的至少一个信道信息可以为第二时间窗内需预测的至少一个CSI报告。
需要说明的是,在本申请中,第二时间窗的至少一个信道信息的类型可以相同,例如均为CSI或信道矩阵信息;第二时间窗的至少一个信道信息的类型可以不相同,例如一部分信道信息为CSI,另一部分信道信息为信道矩阵信息。
可选的,第二时间窗的至少一个信道信息的具体数量可以根据以下一项或多项确定:
根据协议定义的数量确定,例如协议预定义第二时间窗的至少一个信道信息的数量;
根据网络设备的指示确定,例如网络设备可指示第二时间窗的至少一个信道信息的数量,进而终端设备可确定其具体数量;
根据终端设备的能力信息确定,例如终端设备的能力信息表明终端设备可预测4个信道信息,那么第二时间窗的至少一个信道信息可为4个。
举例来说,网络设备指示的数量为5个,但终端设备可预测4个信道信息,那么第二时间窗的至少一个信道信息的数量为4个。
其中,上述第二时间窗可以晚于上述第一时间窗,换言之,上述第一时间窗早于上述第二时间窗。
在一种实现方式中,第一时间窗早于第二时间窗,可以是第一时间窗的结束时刻早于第二时间窗的起始时刻,可以理解为第一时间窗的结束时刻与第二时间窗的起始时刻之间存在一定的时间间隔,和/或第一时间窗的结束时刻早于第二时间窗的起始时刻。例如,第一时间窗与第二时间窗之间的关系可参考图2的(1)所示的时间窗1与时间窗2之间的关系。第一时间窗的结束时刻早于第二时间窗的起始时刻,也可以描述第一时间窗的结束时刻在第二时间窗的起始时刻之前;或在时域上,第一时间窗的结束时刻位于第二时间窗的起始时刻之前;或第一时间窗的结束时刻与第二时间窗的起始时刻之间存在时间间隔,该时间间隔不为零等。
在另一种实现方式中,第一时间窗早于第二时间窗,可以是第一时间窗的结束时刻即为第二时间窗的起始时刻。例如,第一时间窗与第二时间窗之间的关系可参考图2的(2)所示的时间窗1与时间窗2之间的关系。
在又一种实现方式中,第一时间窗早于第二时间窗,可以是第一时间窗的起始时刻早于第二时间窗的起始时刻,第一时间窗与第二时间窗可能存在部分重叠。例如,第一时间窗与第二时间窗之间的关系可参考图2的(3)所示的时间窗1与时间窗2之间的关系。
在第一信道信息包括第一时间窗的至少一个信道信息、第二信道信息包括第二时间窗的至少一个信道信息的情况下,终端设备根据第一时间窗的至少一个信道信息,确定第二时间窗的至少一个信道信息。例如,第一信道信息包括第一时间窗的3个信道信息,第二信道信息包括第二时间窗的2个信道信息,那么终端设备根据第一时间窗的3个信道信息,确定第二时间窗的2个信道信息。可选的,终端设备根据第一时间窗的至少一个信道矩阵信息,确定第二时间窗的至少一个信道矩阵信息,或者,终端设备根据第一时间窗的至少一个信道矩阵信息,确定第二时间窗的至少一个CSI。可选的,终端设备根据第一时间窗的至少一个CSI,确定第二时间窗的至少一个CSI。示例的,终端设备在获得第二时间窗的至少一个CSI的情况下,向网络设备发送包括第二时间窗的至少一个CSI的CSI报告。该至少一个CSI的CSI报告可以为多个,如一个CSI对应一个CSI报告。在该至少一个CSI的CSI报告为多个的情况下,终端设备可按时间先后顺序上报多个CSI报告,或终端设备从多个CSI报告选择CSI报告上报,视具体情况而定。或者,该至少一个CSI的CSI报告也可以为一个,如多个CSI携带在一个CSI报告中。
在图4所示的实施例中,终端设备在接收到预测信道信息的指示信息的情况下,根据第一信道信息预测第二信道信息,从而实现对信道信息的预测,可以有效降低网络开销,有助于提升网络性能,有利于降低终端功耗。
可选的,对于上述步骤S101而言,网络设备可通过如下方式(1)或方式(2)发送上述指示信息。
方式(1),网络设备可确定终端设备采用第一种获取方式,获取信道信息。进而向终端设备发送指示信息,该指示信息用于指示终端设备采用第一种获取方式。第一种获取方式是终端设备采用预测模块,基于已知的信道信息预测未知的信道信息。举例来说,指示信息可以是一个比特位,该位的取值为“1”,表示指示终端设备采用第一种获取方式,即指示预测信道信息;该位的取值为“0”,表示指示终端设备采用第二种获取方式。第二种获取方式可以是终端设备根据网络设备发送的下行参考信号确定信道信息,即目前终端设备所采用的获取信道信息的方式,接收到下行参考信号以及高层参数CSI-MeasConfig,便根据下行参考信号对信道进行下行信道测量以获取信道信息。例如,网络设备可根据网络负载率和/或下行资源占用率等信息,确定终端设备采用的信道信息的获取方式。
方式(2),网络设备根据终端设备的能力信息确定是否发送指示信息。例如,终端设备的能力信息指示终端设备支持预测信道信息,或终端设备的能力信息指示终端设备包括预测模块(该预测模块可根据已知的信道信息预测未知的信道信息),或终端设备的能力信息指示终端设备具有预测信道信息的能力等情况下,网络设备可向终端设备发送指示信息。再例如,终端设备的能力信息指示终端设备不支持预测信道信息,或终端设备的能力信息指示终端设备不包括预测模块,或终端设备的能力信息指示终端设备不具有预测信道信息的能力等情况下,网络设备可不向终端设备发送指示信息。
上述方式(1)和(2)用于举例,并不构成对本申请的限定。
此外,在本申请的另一些实施例中,网络设备可以不发送上述指示信息,终端设备根据自身的能力信息,根据第一信道信息,确定第二信道信息。例如,终端设备支持预测信道信息或包括预测模块或具有根据已知的信道信息预测未知的信道信息的能力,那么终端设备可以根据第一信道信息确定第二信道信息。网络设备不发送指示信息,有助于节省信令开销,提升网络性能。
进一步的,在一些实施例中,第一信道信息对应的端口数目和第二信道信息对应的端口数目相同。例如,以第一信道信息包括第一时间窗的至少一个信道信息、第二信道信息包括第二时间窗的至少一个信道信息为例。第一时间窗的至少一个信道信息对应的端口数目、与第二时间窗的至少一个信道信息对应的端口数目相同。可以理解的是,第一时间窗的任意一个信道信息对应的端口数目,与第二时间窗的任意一个信道信息对应的端口数目相同。比如,以第一时间窗的一个信道信息为例,该信道信息对应的端口数目指的是:用于确定该信道信息的CSI-RS资源的端口数目,或用于确定该信道信息的CSI-RS的端口数目。举例来说,用于确定该信道信息的CSI-RS的端口数目为P个,即P端口CSI-RS,那么第一信道信息对应的端口数目为P个,第二信道信息对应的端口数目也为P个。其中,P的取值例如可以是1,2,4,8,16,24或32等。
此外,在另一些实施例中,终端设备还可以根据第二信道信息,确定第二时间窗的CSI。例如,第二信道信息包括第二时间窗的至少一个信道矩阵信息,终端设备还可以根据第二时间窗的至少一个信道矩阵信息,确定第二时间窗的CSI。需要说明的是,第二时间窗的CSI可以为第二时间窗内的一个或多个CSI,对此不做限定。
可选的,网络设备发送配置信息,相应的,终端设备接收配置信息。该配置信息可以是CSI-MeasConfig,也可以是CSI-ReportConfig。该配置信息可携带上述指示信息,或不携带上述指示信息。对于上述指示信息通过其它信息携带的情况,本申请不限定配置信息与指示信息发送的先后顺序。可选的,配置信息为CSI-ReportConfig,CSI-ReportConfig可以有关联的CSI-RS资源配置信息(CSI-ResourceConfig),也可以无关联的CSI-ResourceConfig。其中,CSI-ResourceConfig配置的资源可用于信道测量和/或干扰测量。
情况一:CSI-ReportConfig无关联的CSI-ResourceConfig。
对情况一而言,第一信道信息可以包括与第一时间窗的M个第一CSI报告关联的信道信息,或可以包括与第一时间窗的N个CSI-RS资源关联的信道信息。其中,M、N为大于或等于1的正整数。
需要进一步规范上报CSI和第一时间窗的时间关系,适当稍微具体点
方式一:第一信道信息包括与第一时间窗的M个第一CSI报告关联的信道信息。
本申请可将第一时间窗内的CSI报告称为第一CSI报告。第一时间窗内的CSI报告可以是基于第一时间窗内的信道信息获取的。第一时间窗内的CSI报告也可以是基于第一时间窗之前的信道信息获取的。第一时间窗内的CSI报告也可以是基于第一时间窗内的信道信息和基于第一时间窗之前的信道信息获取的。一个信道信息可以对应一个CSI报告。示例的,M可以与第一时间窗的至少一个信道信息的数量相同,或M小于第一时间窗的至少一个信道信息的数量。M的具体数值可以由协议预定义,或由网络设备指示,或根据终端设备的能力信息确定,或根据网络设备指示和能力信息确定等。
第一信道信息包括第一时间窗的M个第一CSI报告关联的信道信息,可以理解为第一信道信息为第一时间窗的M个第一CSI报告所包含的信道信息,该信道信息例如可以是RI、CQI或PMI等中的一种或多种;也可以理解为第一信道信息为第一时间窗的M个第一CSI报告所关联CSI-RS对应的信道信息,即用于获取或确定M个第一CSI报告的CSI-RS对应的信道信息,例如该信道信息可以是信道矩阵信息。
可选的,M个第一CSI报告为M个连续的第一CSI报告,可以理解为连续上报的M个第一CSI报告,M个第一CSI报告占用的时间单元不一定是连续的。可选的,M个第一CSI报告与用于信道测量的NZP CSI-RS对应,例如基于该NZP CSI-RS进行测量可得第一CSI报告。NZP CSI-RS的端口数目也可以是特定的时频资源组合,可参考上述CSI-RS的端口数目。NZP CSI-RS的端口数目即为第一信道信息对应的端口数目,也即第二信道信息对应的端口数目。NZP CSI-RS的端口数目为P个,也可以描述为P端口NZP CSI-RS。
可选的,上述第一时间窗可以包括一个或多个时间单元,终端设备需确定第一时间窗的起始时刻和/或结束时刻,以便获取第一时间窗的M个第一CSI报告关联的信道信息。本申请可采用第一时间单元来限定第一时间窗的起始时刻的范围,采用第二时间单元来限定第一时间窗的结束时刻的范围。M个第一CSI报告中最早上报的第一CSI报告占用的时间单元不早于第一时间单元,M个第一CSI报告中最晚上报的第一CSI报告占用的时间单元不晚于第二时间单元,进而第一时间窗可以不早于第一时间单元,和/或第一时间窗可以不晚于第二时间单元。若第一时间窗包括一个时间单元,那么第一时间单元和第二时间单元为同一时间单元;若第一时间窗包括多个时间单元,那么第二时间单元与第一时间单元为不同的时间单元,和/或两者之间存在时间间隔。
其中,第一时间窗不早于第一时间单元,可以是第一时间窗的起始时刻不早于第一时间单元的结束时刻,可以理解为第一时间窗的起始时刻即为第一时间单元的结束时刻,或第一时间窗的起始时刻晚于第一时间单元的结束时刻。第一时间窗不晚于第二时间单元,可以是第一时间窗的结束时刻不晚于第二时间单元的结束时刻,可以理解为第一时间窗的结束时刻即为第二时间单元的结束时刻,或第一时间窗的结束时刻晚于第二时间单元的结束时刻。图5所示为本申请中第一时间单元、第二时间单元与第一时间窗之间的关系示例图。如图5中的(1)所示,以第一时间窗的起始时刻晚于第一时间单元的结束时刻,第二时间单元的结束时刻与第一时间窗的结束时刻相同为例;如图5中的(2)所示,以第一时间窗的起始时刻晚于第一时间单元的结束时刻,第二时间单元的结束时刻早于第一时间窗的结束时刻为例。
对方式一而言,终端设备可以根据第一时间窗的M个第一CSI报告关联的信道信息,确定第二时间窗的至少一个信道矩阵信息,进而根据第二时间窗的至少一个信道矩阵信息,预测第二时间窗的CSI。或者,终端设备可以根据第一时间窗的M个第一CSI报告关联的信道信息,预测第二时间窗的CSI。终端设备预测的第二时间窗的CSI可发送至网络设备,以便网络设备进行波束管理、移动性管理、速率匹配等处理。以终端设备在第三时间单元上发送第二时间窗的CSI为例。即终端设备在第三时间单元发送第二CSI报告,其中第二CSI报告包括第二时间窗的CSI。也就是说,第三时间单元用于发送第二时间窗的CSI或第二CSI报告、或者,第三时间单元用于第二时间窗的CSI或第二CSI报告的发送。可以理 解的是,第二CSI报告对应于CSI-ReportConfig,即第二CSI报告为CSI-ReportConfig配置的需上报的CSI报告。需要说明的是,在本申请中,第二时间窗的CSI可以为一个或多个,与第二时间窗的至少一个信道信息有关。可以理解的是,第二CSI报告包括第二时间窗的CSI,也可以描述为第二时间窗的CSI包含于第二CSI报告,或包括/包含第二时间窗的CSI的第二CSI报告等。终端设备发送第二CSI报告的第三时间单元的索引号可由网络设备指示,例如网络设备指示终端设备在时隙n’(即时隙索引号为n’)上发送第二CSI报告。
在网络设备指示第三时间单元的索引号的情况下,终端设备可根据第三时间单元的索引号确定第一时间窗的起始时刻和/或结束时刻的范围。
示例1,第三时间单元与第一时间单元之间间隔第一差值,第一差值是绝对差值。其中,第一差值为协议预定义的,或者,第一差值为网络设备指示的,或者,第一差值是根据终端设备的能力信息确定的。或者第一差值大于第一门限,其中第一门限为网络设备指示的,或者协议预定义的,或者根据终端设备的能力信息确定的。终端设备根据第三时间单元的索引号和第一差值,可以确定出第一时间单元的索引号,进而确定出第一时间窗的起始时刻的范围。举例来说,时间单元以时隙为例,第一差值可表示为q,q为正整数,第三时间单元可表示为时隙n’,第一时间单元的时隙索引号可表示为U=n’-q。可选的,网络设备可显示地指示第一时间单元的索引号。可选的,根据第一时间单元的索引号,第三时间单元的索引号以及M的数值,终端设备可确定出第一时间窗的大小,进而获得第一时间窗的M个第一CSI报告关联的信道信息,以便获得第二CSI报告,并在第三时间单元上发送第二CSI报告。
示例2,第三时间单元与第二时间单元之间间隔第二差值,第二差值是绝对差值。其中,第二差值为协议预定义的,或者,第二差值为网络设备指示的,或者,第二差值是根据终端设备的能力信息确定的。或者第二差值大于第二门限,其中第二门限为网络设备指示的,或者协议预定义的,或者根据终端设备的能力信息确定的。终端设备根据第三时间单元的索引号和第二差值,可以确定出第二时间单元的索引号,进而确定出第一时间窗的结束时刻的范围。举例来说,时间单元以时隙为例,第二差值可表示为k,k小于或等于q,k为正整数,第三时间单元可表示为时隙n’,第二时间单元的时隙索引号可表示为L=n’-k。可选的,网络设备可显示地指示第二时间单元的索引号。可选的,根据第二时间单元的索引号,第三时间单元的索引号以及M的数值,终端设备可确定出第一时间窗的大小,进而获得第一时间窗的M个第一CSI报告关联的信道信息,以便获得第二CSI报告,并在第三时间单元上发送第二CSI报告。
需要说明的是,在第三时间单元的索引号确定的情况下,即指明终端设备在哪个时间单元上发送第二CSI报告,那么终端设备根据第一差值可以确定出第一时间单元的索引号,根据第二差值可以确定出第二时间单元的索引号。
示例3,第三时间单元与第一时间单元之间间隔第一差值,第三时间单元与第二时间单元之间间隔第二差值,第一差值和第二差值是绝对差值。其中,第一差值为协议预定义的,或者,第一差值为网络设备指示的,或者,第一差值是根据终端设备的能力信息确定的。或者第一差值大于第一门限,其中第一门限为网络设备指示的,或者协议预定义的,或者根据终端设备的能力信息确定的。其中,第二差值为协议预定义的,或者,第二差值 为网络设备指示的,或者,第二差值是根据终端设备的能力信息确定的。或者第二差值大于第二门限,其中第二门限为网络设备指示的,或者协议预定义的,或者根据终端设备的能力信息确定的。可选的,网络设备可显示地指示第一时间单元的索引号和第二时间单元的索引号。可选的,根据第一时间单元的索引号,第二时间单元的索引号,以及第三时间单元的索引号(可选的M的数值),终端设备可确定出第一时间窗的范围,进而获得第一时间窗的M个第一CSI报告关联的信道信息,以便获得第二CSI报告,并在第三时间单元上发送第二CSI报告。
在一种实现方式中,第三时间单元可以在第二时间窗内,可以理解为终端设备可以在第二时间窗内向网络设备上报预测的第二CSI报告,该方式中,第三时间单元的起始时刻不早于第二时间窗的起始时刻,和/或第三时间单元的结束时刻不晚于第二时间窗的结束时刻,例如可参考图6中的(1)所示。在另一种实现方式中,第三时间单元可以早于第二时间窗,即终端设备在第二时间窗的起始时刻达到之前,向网络设备上报第二CSI报告,该方式中,第三时间单元的结束时刻早于第二时间窗的起始时刻,和/或第三时间单元的起始时刻可以晚于第二时间单元的结束时刻,例如可参考图6中的(2)所示。在又一种实现方式中,第三时间单元的起始时刻晚于第二时间窗的结束时刻,可以理解为终端设备在第二时间窗的结束时刻之后向网络设备上报第二CSI报告,例如可参见图6中的(3)所示。
对方式一而言,终端设备确定第二CSI报告对应的CSI处理时间和第二CSI报告的处理时间需求。
第二CSI报告对应的CSI处理时间:
第二CSI报告对应的CSI处理时间也可以描述为第二CSI报告需占用的CPU时间,或第二CSI报告对应的CPU时间等。可选的,终端设备可根据参考CSI报告,确定第二CSI报告对应的CSI处理时间。终端设备从M个第一CSI报告中确定参考CSI报告,第二时间单元与参考CSI报告占用的时间单元之间的差值小于或等于阈值。可以理解为参考CSI报告的本质是第一CSI报告,该第一CSI报告占用的时间单元(例如时隙)距离第二时间单元最近,和/或参考CSI报告占用的时间单元的起始时刻早于第二时间单元的起始时刻。
进而,第二CSI报告对应的CSI处理时间为第一物理上行信道资源至第二物理上行信道资源在时域上的时间间隔。第一物理上行信道资源用于承载参考CSI报告,即第一物理上行信道资源为传输参考CSI报告占用的物理上行信道资源;第二物理上行信道资源用于承载第二CSI报告,即第二物理上行信道资源为传输第二CSI报告的物理上行信道资源。其中,物理上行信道可以是PUCCH或PUSCH。物理上行信道资源指的是PUCCH或PUSCH占用的资源。
例如,若上述第一时间单元和第二时间单元以时隙为例,基本时间单元以符号为例,对第一物理上行信道至第二物理上行信道在时域上的时间间隔进行介绍。示例的,物理上行信道在时域上占用至少一个符号,那么第二CSI报告对应的CSI处理时间为第一物理上行信道的最后一个符号至第二物理上行信道的第一个符号。再例如,若上述第一时间单元和第二时间单元以时隙为例,物理上行信道在时域上占用至少一个时隙,那么第二CSI报告对应的CSI处理时间为第一物理上行信道占用的时隙至第二物理上行信道占用的时隙之间的时隙间隔。
可选的,第二CSI报告对应的CPU为R个,R为正整数,R为协议预定义的,或者R为网络设备指示的,或者R为根据终端能力确定的。
可以理解的是,第二CSI报告对应的CSI处理时间为第二CSI报告对应的CPU占用的时间,例如CPU占用的符号的数量或CPU占用的OFDM符号的数量;第二CSI报告对应的CPU个数表示第二CSI报告占用多少个CPU。
第二CSI报告的处理时间需求:
第二CSI报告的处理时间需求不同于第一CSI报告的CSI处理时间需求,第一CSI报告携带L1-RSRP或L1-SINR。可以理解的是,第一CSI报告的CSI处理时间需求与L1-RSRP或L1-SINR有关,即上述“4、CSI报告的CSI处理时间需求”。可选的,第一CSI报告携带CSI相关。可以理解的是,第一CSI报告的CSI处理时间需求与CSI相关有关,即上述“4、CSI报告的CSI处理时间需求”。可选的,第一CSI报告的CSI处理时间需求携带压缩信道信息,压缩信道信息指的是对信道信息进行压缩处理后得到的信道信息。
方式二:第一信道信息包括与第一时间窗的N个CSI-RS资源关联的信道信息。
示例的,N可以与第一时间窗的至少一个信道信息的数量相同,或N小于第一时间窗的至少一个信道信息的数量。N的具体数值可以由协议预定义,或由网络设备指示,或根据终端设备的能力信息确定,或根据网络设备指示和能力信息确定等。
N个CSI-RS资源关联的信道信息,可以理解为基于N个CSI-RS资源获取的信道信息。例如,可以基于一个CSI-RS资源获取一个信道信息。可选的,N个CSI-RS资源为N个连续的CSI-RS资源,即连续接收到的N个CSI-RS资源,N个CSI-RS资源占用的时间单元不一定是连续的。可选的,N个CSI-RS资源为用于信道测量的NZP CSI-RS资源,NZP CSI-RS资源的端口数目可以理解为NZP CSI-RS资源占用的端口数目。NZP CSI-RS资源的端口数目即为第一信道信息对应的端口数目,也即第二信道信息对应的端口数目。NZP CSI-RS资源的端口数目为P个,也可以描述为P端口NZP CSI-RS资源。
可选的,上述第一时间窗可以包括一个或多个时间单元,终端设备需确定第一时间窗的起始时刻和/或结束时刻,以便获取第一时间窗的N个CSI-RS资源关联的信道信息。本申请可采用第一时间单元来限定第一时间窗的起始时刻的范围,采用第二时间单元来限定第一时间窗的结束时刻的范围。N个CSI-RS资源中最早的CSI-RS资源占用的时间单元不早于第一时间单元,N个CSI-RS资源中最晚的CSI-RS资源占用的时间单元不晚于第二时间单元,进而第一时间窗不早于第一时间单元,和/或不晚于第二时间单元。
对方式二而言,终端设备可以根据第一时间窗的N个CSI-RS资源关联的信道信息,确定第二时间窗的至少一个信道矩阵信息,进而根据第二时间窗的至少一个信道矩阵信息,预测第二时间窗的CSI。或者,终端设备可以根据第一时间窗的N个CSI-RS资源关联的信道信息,预测第二时间窗的CSI。终端设备预测的第二时间窗的CSI可发送至网络设备,以便网络设备进行波束管理、移动性管理、速率匹配等处理。本申请以终端设备在第三时间单元上发送第二时间窗的CSI为例。终端设备发送第二CSI报告的第三时间单元的索引号可由网络设备指示,例如网络设备指示终端设备在时隙n’(即时隙索引号为n’)上发送第二CSI报告。其中第二CSI报告包括第二时间窗的CSI。
终端设备向网络设备发送第二CSI报告之前,需确定能否上报,当终端设备接收到不 晚于CSI参考资源的至少一个测量资源(例如CSI-RS资源和/或CSI-IM资源等)时,才有可能上报。进而,终端设备需确定CSI参考资源在时域上占用的时间单元,本申请以CSI参考资源在时域上占用的时间单元为第四时间单元为例。可以理解的是,CSI参考资源与第二时间窗的CSI对应,即与第二CSI报告对应。第二时间窗的CSI的上报时机可以理解为发送第二CSI报告的时间单元。
在网络设备指示第三时间单元的索引号的情况下,终端设备可根据第三时间单元的索引号确定第四时间单元的索引号。举例来说,时间单元以时隙为例,第三时间单元可表示为时隙n',第四时间单元的时隙索引号可表示为n为上行时隙n'对应的下行时隙,两者之间的关系可参考“1、CSI报告的上报时机”中对其的具体描述。
可选的,在确定出第四时间单元的索引号的情况下,终端设备可根据第四时间单元的索引号确定第一时间窗的起始时刻和/或结束时刻的范围。
示例1,第四时间单元与第一时间单元之间间隔第三差值,第三差值是绝对差值。其中,第三差值为协议预定义的,或者,第三差值为网络设备指示的,或者,第三差值是根据终端设备的能力信息确定的。或者第三差值大于第三门限,其中第三门限为网络设备指示的,或者协议预定义的,或者根据终端设备的能力信息确定的。终端设备根据第四时间单元的索引号和第三差值,可以确定出第一时间单元的索引号,进而确定出第一时间窗的起始时刻的范围。举例来说,时间单元以时隙为例,第三差值可表示为q1,q1为正整数,第四时间单元的时隙索引号可表示为第一时间单元的时隙索引号可表示为
示例2,第四时间单元与第二时间单元之间间隔第四差值,第四差值是绝对差值。其中,第四差值为协议预定义的,或者,第四差值为网络设备指示的,或者,第四差值是根据终端设备的能力信息确定的。或者第四差值大于第四门限,其中第四门限为网络设备指示的,或者协议预定义的,或者根据终端设备的能力信息确定的。终端设备根据第四时间单元的索引号和第四差值,可以确定出第二时间单元的索引号,进而确定出第一时间窗的结束时刻的范围。举例来说,时间单元以时隙为例,第四差值可表示为k1,k1小于或等于q1,k1为正整数,第四时间单元的时隙索引号可表示为第二时间单元的时隙索引号可表示为
示例3,第四时间单元与第一时间单元之间间隔第三差值,第四时间单元与第二时间单元之间间隔第四差值,第三差值和第四差值是绝对差值。其中,第三差值为协议预定义的,或者,第三差值为网络设备指示的,或者,第三差值是根据终端设备的能力信息确定的。或者第三差值大于第三门限,其中第三门限为网络设备指示的,或者协议预定义的,或者根据终端设备的能力信息确定的。其中,第四差值为协议预定义的,或者,第四差值 为网络设备指示的,或者,第四差值是根据终端设备的能力信息确定的。或者第四差值大于第四门限,其中第四门限为网络设备指示的,或者协议预定义的,或者根据终端设备的能力信息确定的。终端设备根据第四时间单元的索引号、第三差值和第四差值,可以确定出第一时间窗的范围。
在第一种实现方式中,第四时间单元的起始时刻晚于第一时间单元的结束时刻,和/或第四时间单元的结束时刻早于第二时间窗的起始时刻。例如可参考图7中的(1)和(2)所示。图7的(1)中,以第四时间单元的起始时刻晚于第一时间单元的结束时刻,第四时间单元的结束时刻早于第一时间窗的结束时刻,也即早于第二时间窗的起始时刻为例。图7的(2)中,以第四时间单元的起始时刻晚于第一时间窗的结束时刻,也即晚于第一时间单元的结束时刻,第四时间单元的结束时刻早于第一时间窗的结束时刻为例。
在第二种实现方式中,第四时间单元的起始时刻晚于第二时间窗的起始时刻,例如可参考图7中的(3)和(4)所示。图7的(3)中,以第四时间单元的起始时刻晚于第二时间窗的结束时刻,即第四时间单元晚于第二时间窗为例。图7的(3)中,以第四时间单元的起始时刻晚于第二时间窗的起始时刻,第四时间单元的结束时刻早于第二时间窗的结束时刻为例,可以理解为第四时间单元位于第二时间窗内。
对方式二而言,第二CSI报告占用的CPU以及第二CSI报告的处理时间需求可参考上述“3、CSI报告占用的CPU”和“4、CSI报告的CSI处理时间需求”。或者,第二CSI报告占用的CPU以及第二CSI报告的处理时间需求可参考上述方式一。
对上述情况一而言,即使CSI-ReportConfig无关联的CSI-ResourceConfig,终端设备也可以根据第一信道信息预测第二信道信息,从而可以有效降低网络开销,有助于提升网络性能。
情况二:CSI-ReportConfig有关联的CSI-ResourceConfig。
在一种实现方式中,对情况二而言,第一信道信息可以包括与第一时间窗的M个第一CSI报告关联的信道信息,或可以包括与第一时间窗的N个CSI-RS资源关联的信道信息。这两种方式可参考情况一中对方式一和方式二的描述,在此不再赘述。
在另一种实现方式中,对第一信道信息包括与第一时间窗的N个CSI-RS资源关联的信道信息而言,第四时间单元可与上述情况一中的方式二涉及的第四时间单元有所不同。该种实现方式中,第四时间单元的索引号S1满足如下表达式:
其中,S1表示第四时间单元的索引号,用于举例,实际可能采用其他字母和/或数字表示CSI参考资源在时域上占用的时间单元的索引号。n为根据第三时间单元确定的,以第三时间单元表示为时隙n'为例(即以第三时间单元的时隙索引号为n'为例)。nCSI_ref可参考“1、CSI报告的上报时机”中对nCSI_ref的描述;Koffset由高层参数配置;μKoffset为Koffset对应的子载波间隔;μDL为下行链 路的子载波间隔;soffset为时间单元偏移,例如为时隙偏移。soffset为协议预定义的,或者,soffset为网络设备指示的,或者,soffset是根据终端设备的能力信息确定的。上述时间单元偏移可以是正值或负值,例如正值可表示向时间前进方向偏移,负值可表示向时间前进的反方向偏移。
可以理解的是,该种实现方式重新定义了CSI参考资源的下行时隙,该CSI参考资源的下行时隙相比“1、CSI报告的上报时机”中的CSI参考资源的下行时隙,存在时间单元偏移。
或,该种实现方式中,第四时间单元的索引号S1满足如下表达式:
其中,S1表示第四时间单元的索引号,用于举例,实际可能采用其他字母和/或数字表示CSI参考资源在时域上占用的时间单元的索引号。n为根据第三时间单元确定的,以第三时间单元表示为时隙n'为例,那么Koffset由高层参数配置;μKoffset为Koffset对应的子载波间隔;μDL为下行链路的子载波间隔;n'CSI_ref与nCSI_ref之间的差值为S为大于或等于0的正整数;S为协议预定义的,或者,S为网络设备指示的,或者,S是根据终端设备的能力信息确定的。n'CSI_ref与nCSI_ref之间的差值可以是也可以是
可以理解的是,该种实现方式中,重新定义了nCSI_ref,即n'CSI_ref,n'CSI_ref相比“1、CSI报告的上报时机”中的nCSI_ref存在偏移。
对情况二而言,第二CSI报告占用的CPU以及第二CSI报告的处理时间需求可参考上述“3、CSI报告占用的CPU”和“4、CSI报告的CSI处理时间需求”。或者,第二CSI报告占用的CPU以及第二CSI报告的处理时间需求可参考上述情况一中的方式一。
对于情况二而言,由于CSI-ReportConfig有关联的CSI-ResourceConfig,那么终端设备可根据CSI-ReportConfig关联的CSI-ResourceConfig,确定第一信道信息的端口数目,也即确定第二信道信息的端口数目。例如,CSI-ResourceConfig用于配置P端口NZP CSI-RS资源,那么第一信道信息的端口数目为P个。
对于情况二而言,由于CSI-ReportConfig有关联的CSI-ResourceConfig,那么,可选地,CSI-ResourceConfig所配置的资源可以理解为第一时间窗的N个CSI-RS资源。
对上述情况二而言,CSI-ReportConfig有关联的CSI-ResourceConfig,终端设备不仅可以确定第一信道信息的端口数目,还可以根据第一信道信息预测第二信道信息,从而有助于提升网络性能。
请参见图8,图8是本申请实施例提供的一种信道信息获取装置的结构示意图。该信道信息获取装置80可以是终端设备,也可以是与终端设备匹配的装置。如图8所示,该信道信息获取装置80包括处理单元801和通信单元802。
通信单元802,用于接收来自网络设备的指示信息,指示信息用于指示预测信道信息;
处理单元801,用于根据第一信道信息,确定第二信道信息;其中,第一信道信息包括第一时间窗的至少一个信道信息,第二信道信息包括第二时间窗的至少一个信道信息,第一时间窗的结束时刻早于第二时间窗的起始时刻。
在一种可能的实现方式中,处理单元801,还用于根据第二信道信息,确定第二时间窗的CSI。
在一种可能的实现方式中,第一时间窗包括一个或多个时间单元,第二时间窗包括一个或多个时间单元。
在一种可能的实现方式中,第一信道信息包括第一时间窗的至少一个信道信息,包括:第一信道信息包括与第一时间窗的M个第一CSI报告关联的信道信息,M为正整数;
其中,第一时间窗的起始时刻不早于第一时间单元的结束时刻,和/或第一时间窗的结束时刻不晚于第二时间单元的结束时刻;第一时间单元与第三时间单元之间间隔第一差值,第二时间单元与第三时间单元之间间隔第二差值,第一差值大于或等于第二差值,第三时间单元用于发送第二时间窗的CSI。
在一种可能的实现方式中,第一差值为预定义的,或者,第一差值为网络设备指示的,或者,第一差值是根据终端设备的能力信息确定的;
和/或,
第二差值为预定义的,或者,第二差值为网络设备指示的,或者,第二差值是根据终端设备的能力信息确定的。
在一种可能的实现方式中,第一信道信息包括与第一时间窗的M个连续的第一CSI报告关联的信道信息;
和/或,
M个第一CSI报告与用于信道测量的非零功率信道状态信息参考信号NZP CSI-RS对应,NZP CSI-RS对应的端口数目与第一信道信息对应的端口数目相同。
在一种可能的实现方式中,处理单元801,还用于从M个第一CSI报告中确定参考CSI报告,第二时间单元与参考CSI报告占用的时间单元之间的差值小于或等于阈值。
在一种可能的实现方式中,第二时间窗的CSI包含于第二CSI报告,第二CSI报告对应的CSI处理时间为第一物理上行信道资源至第二物理上行信道资源在时域上的时间间隔,第一物理上行信道资源用于承载参考CSI报告,第二物理上行信道资源用于承载第二CSI报告。
在一种可能的实现方式中,第二时间窗的CSI包含于第二CSI报告,第二CSI报告对应的CSI处理单元CPU为R个,R为正整数,R为预定义的,或者R为网络设备指示的。
在一种可能的实现方式中,第一信道信息包括第一时间窗的至少一个信道信息,包括:第一信道信息包括与第一时间窗的N个CSI-RS资源关联的信道信息,N为正整数;
其中,第一时间窗的起始时刻不早于第一时间单元的结束时刻,和/或第一时间窗的结束时刻不晚于第二时间单元的结束时刻。
在一种可能的实现方式中,第一信道信息包括与第一时间窗的N个连续的CSI-RS资源关联的信道信息;
和/或,
N个CSI资源为用于信道测量的NZP CSI-RS资源,NZP CSI-RS资源对应的端口数目与第二信道信息对应的端口数目相同。
在一种可能的实现方式中,处理单元801,还用于确定CSI参考资源在时域上占用的第四时间单元,CSI参考资源与第二时间窗的CSI对应。
在一种可能的实现方式中,第四时间单元的起始时刻晚于第一时间单元的结束时刻,和/或第四时间单元的结束时刻早于第二时间窗的起始时刻。
在一种可能的实现方式中,第四时间单元的起始时刻晚于第二时间窗的起始时刻,第一时间单元与第四时间单元之间间隔第三差值,第二时间单元与第四时间单元之间间隔第四差值,第三差值大于或等于第四差值。
在一种可能的实现方式中,第三差值为预定义的,或者,第三差值为网络设备指示的,或者,第三差值是根据终端设备的能力信息确定的;
和/或,
第四差值为预定义的,或者,第四差值为网络设备指示的,或者,第四差值是根据终端设备的能力信息确定的。
在一种可能的实现方式中,第四时间单元的索引号S1满足如下表达式:
其中,n为根据第三时间单元确定的,第三时间单元用于发送第二时间窗的CSI;Koffset由高层参数配置;μKoffset为Koffset对应的子载波间隔;μDL为下行链路的子载波间隔;soffset为时间单元偏移,soffset为预定义的,或者,soffset为网络设备指示的,或者,soffset是根据终端设备的能力信息确定的。
在一种可能的实现方式中,第四时间单元的索引号S1满足如下表达式:
其中,n为根据第三时间单元确定的,第三时间单元用于发送第二时间窗的CSI;Koffset由高层参数配置;μKoffset为Koffset对应的子载波间隔;μDL为下行链路的子载波间隔;n'CSI_ref与nCSI_ref之间的差值为S为大于或等于0的正整数;S为预定义的,或者,S为网络设备指示的,或者,S是根据终端设备的能力信息确定的。
在一种可能的实现方式中,通信单元802,还用于接收来自网络设备的CSI报告配置信息,CSI报告配置信息无关联的CSI资源配置信息。
在一种可能的实现方式中,通信单元802,还用于接收来自网络设备的CSI报告配置信息,CSI报告配置信息有关联的CSI资源配置信息。
在一种可能的实现方式中,CSI资源配置信息为NZP CSI-RS资源配置信息;
通信单元802,还用于根据NZP CSI-RS资源配置信息确定第二信道信息对应的端口数目。
在一种可能的实现方式中,第二时间窗的CSI包含于第二CSI报告,第二CSI报告的CSI处理时间需求,不同于第一CSI报告的CSI处理时间需求,第一CSI报告携带L1-RSRP或L1-SINR。
在一种可能的实现方式中,第一信道信息对应的端口数目与第二信道信息对应的端口数目相同。
请参见图9,图9是本申请实施例提供的另一种信道信息获取装置的结构示意图。该信道信息获取装置90可以是终端设备,也可以是与终端设备匹配的装置。该信道信息获取装置90可以包括收发器901和处理器902。可选的,该信道信息获取装置还可以包括存储器903。其中,收发器901、处理器902、存储器903可以通过总线904或其他方式连接。总线在图9中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图9中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。本申请实施例中不限定上述收发器901、处理器902、存储器903之间的具体连接介质。
存储器903可以包括只读存储器和随机存取存储器,并向处理器902提供指令和数据。存储器903的一部分还可以包括非易失性随机存取存储器。
处理器902可以是中央处理单元(Central Processing Unit,CPU),该处理器902还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器,可选的,该处理器902也可以是任何常规的处理器等。
在一种可选的实施方式中,存储器903,用于存储程序指令;处理器902,用于调用存储器903中存储的程序指令,以用于执行图4对应实施例中终端设备所执行的步骤。
在本申请实施例中,可以通过在包括CPU、随机存取存储介质(Random Access Memory,RAM)、只读存储介质(Read-Only Memory,ROM)等处理元件和存储元件的例如计算机的通用计算装置上运行能够执行上述方法所涉及的各步骤的计算机程序(包括程序代码),以及来实现本申请实施例所提供的方法。计算机程序可以记载于例如计算机可读记录介质上,并通过计算机可读记录介质装载于上述计算装置中,并在其中运行。
基于同一发明构思,本申请实施例中提供的信道信息获取装置90解决问题的原理与有 益效果与本申请图4所示实施例中解决问题的原理和有益效果相似,可以参见方法的实施的原理和有益效果,为简洁描述,在这里不再赘述。
前述信道信息获取装置,例如可以是:芯片、或者芯片模组。
本申请实施例还提供一种芯片,该芯片包括处理器,处理器可以执行前述方法实施例中终端设备的相关步骤。
该芯片用于:接收来自网络设备的指示信息,指示信息用于指示预测信道信息;根据第一信道信息,确定第二信道信息;其中,第一信道信息包括第一时间窗的至少一个信道信息,第二信道信息包括第二时间窗的至少一个信道信息,第一时间窗的结束时刻早于第二时间窗的起始时刻。
请参阅图10,图10是本申请实施例提供的一种芯片模组的结构示意图。该芯片模组100可以执行前述方法实施例中终端设备的相关步骤,该芯片模组100包括:通信接口1001和芯片1002。
其中,通信接口用于进行芯片模组内部通信,或者用于该芯片模组与外部设备进行通信;该芯片用于实现本申请实施例中终端设备的功能。
例如,通信接口1001,用于接收来自网络设备的指示信息,指示信息用于指示预测信道信息;芯片1002,用于根据第一信道信息,确定第二信道信息;其中,第一信道信息包括第一时间窗的至少一个信道信息,第二信道信息包括第二时间窗的至少一个信道信息,第一时间窗的结束时刻早于第二时间窗的起始时刻。
可选的,芯片模组100还可以包括存储模组1003、电源模组1004。存储模组1003用于存储数据和指令。电源模组1004用于为芯片模组提供电能。
对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块可以都采用电路等硬件的方式实现,不同的模块可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块可以采用电路等硬件方式实现。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有一条或多条指令,一条或多条指令适于由处理器加载并执行上述方法实施例所提供的方法。
本申请实施例还提供一种包含计算机程序或指令的计算机程序产品,当计算机程序或指令在计算机上运行时,使得计算机执行上述方法实施例所提供的方法。
需要说明的是,对于上述的各个实施例,为了简单描述,将其都表述为一系列的动作组合。本领域技术人员应该知悉,本申请不受所描述的动作顺序的限制,因为本申请实施例中的某些步骤可以采用其他顺序或者同时进行。另外,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作、步骤、模块或单元等并不一定是本申请实施例所必须的。
在上述实施例中,本申请实施例对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
本申请实施例所描述的方法或者算法的步骤可以以硬件的方式来实现,也可以是由处 理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM、闪存、ROM、可擦除可编程只读存储器(erasable programmable ROM,EPROM)、电可擦可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于终端设备或管理设备中。当然,处理器和存储介质也可以作为分立组件存在于终端设备或管理设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输。例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
关于上述实施例中描述的各个装置、产品包含的各个模块/单元,其可以是软件模块/单元,也可以是硬件模块/单元,或者也可以部分是软件模块/单元,部分是硬件模块/单元。例如,对于应用于或集成于芯片的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于终端的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于终端内同一组件(例如,芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于终端内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现。
以上所述的具体实施方式,对本申请实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请实施例的具体实施方式而已,并不用于限定本申请实施例的保护范围,凡在本申请实施例的技术方案的基础之上,所做的任何修 改、等同替换、改进等,均应包括在本申请实施例的保护范围之内。

Claims (27)

  1. 一种信道信息获取方法,其特征在于,所述方法包括:
    接收来自网络设备的指示信息,所述指示信息用于指示预测信道信息;
    根据第一信道信息,确定第二信道信息;其中,所述第一信道信息包括第一时间窗的至少一个信道信息,所述第二信道信息包括第二时间窗的至少一个信道信息,所述第一时间窗的结束时刻早于所述第二时间窗的起始时刻。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述第二信道信息,确定所述第二时间窗的信道状态信息CSI。
  3. 根据权利要求1所述的方法,其特征在于,所述第一时间窗包括一个或多个时间单元,所述第二时间窗包括一个或多个时间单元。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述第一信道信息包括第一时间窗的至少一个信道信息,包括:
    所述第一信道信息包括与所述第一时间窗的M个第一CSI报告关联的信道信息,所述M为正整数;
    其中,所述第一时间窗的起始时刻不早于第一时间单元的结束时刻,和/或所述第一时间窗的结束时刻不晚于第二时间单元的结束时刻;所述第一时间单元与第三时间单元之间间隔第一差值,所述第二时间单元与所述第三时间单元之间间隔第二差值,所述第一差值大于或等于所述第二差值,所述第三时间单元用于发送所述第二时间窗的CSI。
  5. 根据权利要求4所述的方法,其特征在于,所述第一差值为预定义的,或者,所述第一差值为所述网络设备指示的,或者,所述第一差值是根据终端设备的能力信息确定的;
    和/或,
    所述第二差值为预定义的,或者,所述第二差值为所述网络设备指示的,或者,所述第二差值是根据终端设备的能力信息确定的。
  6. 根据权利要求4所述的方法,其特征在于,所述第一信道信息包括与所述第一时间窗的M个连续的第一CSI报告关联的信道信息;
    和/或,
    所述M个第一CSI报告与用于信道测量的非零功率信道状态信息参考信号NZP CSI-RS对应,所述NZP CSI-RS对应的端口数目与所述第一信道信息对应的端口数目相同。
  7. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    从所述M个第一CSI报告中确定参考CSI报告,所述第二时间单元与所述参考CSI报告占用的时间单元之间的差值小于或等于阈值。
  8. 根据权利要求7所述的方法,其特征在于,所述第二时间窗的CSI包含于第二CSI报告,所述第二CSI报告对应的CSI处理时间为第一物理上行信道资源至第二物理上行信道资源在时域上的时间间隔,所述第一物理上行信道资源用于承载所述参考CSI报告,所述第二物理上行信道资源用于承载所述第二CSI报告。
  9. 根据权利要求4所述的方法,其特征在于,所述第二时间窗的CSI包含于第二CSI报告,所述第二CSI报告对应的CSI处理单元CPU为R个,所述R为正整数,所述R为 预定义的,或者所述R为所述网络设备指示的。
  10. 根据权利要求1至3任一项所述的方法,其特征在于,所述第一信道信息包括第一时间窗的至少一个信道信息,包括:
    所述第一信道信息包括与所述第一时间窗的N个CSI-RS资源关联的信道信息,所述N为正整数;
    其中,所述第一时间窗的起始时刻不早于第一时间单元的结束时刻,和/或所述第一时间窗的结束时刻不晚于第二时间单元的结束时刻。
  11. 根据权利要求10所述的方法,其特征在于,所述第一信道信息包括与所述第一时间窗的N个连续的CSI-RS资源关联的信道信息;
    和/或,
    所述N个CSI资源为用于信道测量的NZP CSI-RS资源,所述NZP CSI-RS资源对应的端口数目与所述第二信道信息对应的端口数目相同。
  12. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    确定CSI参考资源在时域上占用的第四时间单元,所述CSI参考资源与所述第二时间窗的CSI对应。
  13. 根据权利要求12所述的方法,其特征在于,所述第四时间单元的起始时刻晚于所述第一时间单元的结束时刻,和/或所述第四时间单元的结束时刻早于所述第二时间窗的起始时刻。
  14. 根据权利要求12所述的方法,其特征在于,所述第四时间单元的起始时刻晚于所述第二时间窗的起始时刻,所述第一时间单元与所述第四时间单元之间间隔第三差值,所述第二时间单元与所述第四时间单元之间间隔第四差值,所述第三差值大于或等于所述第四差值。
  15. 根据权利要求14所述的方法,其特征在于,所述第三差值为预定义的,或者,所述第三差值为所述网络设备指示的,或者,所述第三差值是根据终端设备的能力信息确定的;
    和/或,
    所述第四差值为预定义的,或者,所述第四差值为所述网络设备指示的,或者,所述第四差值是根据终端设备的能力信息确定的。
  16. 根据权利要求12所述的方法,其特征在于,所述第四时间单元的索引号S1满足如下表达式:
    其中,n为根据第三时间单元确定的,所述第三时间单元用于发送所述第二时间窗的CSI;Koffset由高层参数配置;为Koffset对应的子载波间隔;μDL为下行链路的子载波间隔;soffset为时间单元偏移,soffset为预定义的,或者,soffset为所述网络设备指示的,或者,soffset是根据终端设备的能力信息确定的。
  17. 根据权利要求12所述的方法,其特征在于,所述第四时间单元的索引号S1满足如下表达式:
    其中,n为根据第三时间单元确定的,所述第三时间单元用于发送所述第二时间窗的CSI;Koffset由高层参数配置;为Koffset对应的子载波间隔;μDL为下行链路的子载波间隔;n'CSI_ref与nCSI_ref之间的差值为所述S为大于或等于0的正整数;所述S为预定义的,或者,所述S为所述网络设备指示的,或者,所述S是根据终端设备的能力信息确定的。
  18. 根据权利要求1至10任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的CSI报告配置信息,所述CSI报告配置信息无关联的CSI资源配置信息。
  19. 根据权利要求1至10任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的CSI报告配置信息,所述CSI报告配置信息有关联的CSI资源配置信息。
  20. 根据权利要求19所述的方法,其特征在于,所述CSI资源配置信息为NZP CSI-RS资源配置信息;
    所述方法还包括:
    根据所述NZP CSI-RS资源配置信息确定所述第二信道信息对应的端口数目。
  21. 根据权利要求4至9任一项所述的方法,其特征在于,所述第二时间窗的CSI包含于第二CSI报告,所述第二CSI报告的CSI处理时间需求,不同于所述第一CSI报告的CSI处理时间需求,所述第一CSI报告携带层1参考信号接收功率L1-RSRP或层1信号与干扰加噪比L1-SINR。
  22. 根据权利要求1至10任一项所述的方法,其特征在于,所述第一信道信息对应的端口数目与所述第二信道信息对应的端口数目相同。
  23. 一种信道信息获取装置,其特征在于,所述装置包括:
    通信单元,用于接收来自网络设备的指示信息,所述指示信息用于指示预测信道信息;
    处理单元,用于根据第一信道信息,确定第二信道信息;其中,所述第一信道信息包括第一时间窗的至少一个信道信息,所述第二信道信息包括第二时间窗的至少一个信道信息,所述第一时间窗的结束时刻早于所述第二时间窗的起始时刻。
  24. 一种终端设备,包括处理器、存储器及存储在所述存储器上的计算机程序或指令,其特征在于,所述处理器执行所述计算机程序或指令以实现权利要求1-22中任一项所述方法的步骤。
  25. 一种芯片,包括处理器,其特征在于,所述处理器执行权利要求1-22中任一项所述方法的步骤。
  26. 一种芯片模组,其特征在于,所述芯片模组包括通信接口和芯片,其中:
    所述通信接口用于进行芯片模组内部通信,或者用于所述芯片模组与外部设备进行通 信;
    所述芯片用于接收来自网络设备的指示信息,所述指示信息用于指示预测信道信息;根据第一信道信息,确定第二信道信息;其中,所述第一信道信息包括第一时间窗的至少一个信道信息,所述第二信道信息包括第二时间窗的至少一个信道信息,所述第一时间窗的结束时刻早于所述第二时间窗的起始时刻。
  27. 一种计算机可读存储介质,其特征在于,其存储有计算机程序或指令,所述计算机程序或指令被执行时实现权利要求1-22中任一项所述方法的步骤。
PCT/CN2023/088546 2022-04-18 2023-04-15 信道信息获取方法及装置 WO2023202498A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210406402.6 2022-04-18
CN202210406402.6A CN116963107A (zh) 2022-04-18 2022-04-18 信道信息获取方法及装置

Publications (1)

Publication Number Publication Date
WO2023202498A1 true WO2023202498A1 (zh) 2023-10-26

Family

ID=88419186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/088546 WO2023202498A1 (zh) 2022-04-18 2023-04-15 信道信息获取方法及装置

Country Status (2)

Country Link
CN (1) CN116963107A (zh)
WO (1) WO2023202498A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034792A (zh) * 2018-01-11 2019-07-19 ***通信有限公司研究院 一种多入多出传输方法、设备及计算机可读存储介质
WO2020063460A1 (zh) * 2018-09-28 2020-04-02 华为技术有限公司 信息处理方法和终端设备
US20210091838A1 (en) * 2019-09-19 2021-03-25 Qualcomm Incorporated System and method for determining channel state information
WO2021075889A1 (ko) * 2019-10-15 2021-04-22 삼성전자 주식회사 무선 통신 시스템에서 채널을 추정하기 위한 위한 장치 및 방법
US20210376895A1 (en) * 2020-05-29 2021-12-02 Qualcomm Incorporated Qualifying machine learning-based csi prediction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034792A (zh) * 2018-01-11 2019-07-19 ***通信有限公司研究院 一种多入多出传输方法、设备及计算机可读存储介质
WO2020063460A1 (zh) * 2018-09-28 2020-04-02 华为技术有限公司 信息处理方法和终端设备
US20210091838A1 (en) * 2019-09-19 2021-03-25 Qualcomm Incorporated System and method for determining channel state information
WO2021075889A1 (ko) * 2019-10-15 2021-04-22 삼성전자 주식회사 무선 통신 시스템에서 채널을 추정하기 위한 위한 장치 및 방법
US20210376895A1 (en) * 2020-05-29 2021-12-02 Qualcomm Incorporated Qualifying machine learning-based csi prediction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "CSI enhancement for IOT and URLLC", 3GPP DRAFT; R1-2103800, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210412 - 20210420, 11 April 2021 (2021-04-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051994791 *

Also Published As

Publication number Publication date
CN116963107A (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
JP7179156B2 (ja) 信号伝送方法及び通信機器
CN113228731B (zh) 指示信道状态信息的测量目的的方法、装置和***
CN105191462B (zh) 用于上行干扰对齐的Wi-Fi下行-上行协议设计的***和方法
US11863271B2 (en) Reporting of coefficients for channel state information
WO2020143647A1 (zh) 传输信道状态信息的方法和装置
WO2019136941A1 (zh) 一种用于终端设备能力传输的方法、装置及***
WO2018177229A1 (zh) 信令的发送方法,装置和***
US20230231605A1 (en) Statistical channel state information reporting
WO2020155119A1 (zh) 上报信道状态信息的方法和装置
WO2017152747A1 (zh) 一种csi反馈方法、预编码方法及装置
WO2021134731A1 (zh) 一种信道信息反馈方法及通信装置
US11832251B2 (en) Apparatus for CSI prediction control
WO2022048497A1 (zh) 信道状态信息发送方法、信道状态信息接收方法、信令信息传输方法、节点和介质
WO2023109647A1 (zh) 信道状态信息的反馈方法及装置
WO2021056588A1 (zh) 一种配置预编码的方法及装置
US20190305902A1 (en) Reference signal transmission method and apparatus
WO2017076220A1 (zh) 一种信道状态信息csi反馈方法、终端及基站
US11510213B2 (en) Method for signal transmission, and corresponding user terminals and base stations
WO2022141299A1 (zh) 参考信号资源的传输方法、设备及存储介质
WO2017114513A1 (zh) 一种csi反馈方法及装置
WO2023202498A1 (zh) 信道信息获取方法及装置
US9578539B1 (en) Transmitting a data packet over a wireless communication link
WO2015003367A1 (zh) 反馈信道状态信息csi的方法、用户设备和基站
WO2023207852A1 (zh) 通信方法及装置、芯片、芯片模组、存储介质
WO2023134699A1 (zh) Csi上报方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791153

Country of ref document: EP

Kind code of ref document: A1