WO2023202434A1 - 3d模型匹配方法、电子设备及相关装置 - Google Patents

3d模型匹配方法、电子设备及相关装置 Download PDF

Info

Publication number
WO2023202434A1
WO2023202434A1 PCT/CN2023/087724 CN2023087724W WO2023202434A1 WO 2023202434 A1 WO2023202434 A1 WO 2023202434A1 CN 2023087724 W CN2023087724 W CN 2023087724W WO 2023202434 A1 WO2023202434 A1 WO 2023202434A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
electronic device
key point
adjusted
key
Prior art date
Application number
PCT/CN2023/087724
Other languages
English (en)
French (fr)
Inventor
李子健
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023202434A1 publication Critical patent/WO2023202434A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/64Three-dimensional objects
    • G06V20/653Three-dimensional objects by matching three-dimensional models, e.g. conformal mapping of Riemann surfaces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/64Three-dimensional objects

Definitions

  • This application relates to the field of computer technology, and in particular to 3D model matching methods, electronic equipment and related devices.
  • 3D is the abbreviation of three-dimensional, which is three-dimensional graphics. Any object existing in physical nature can be represented by a three-dimensional model. By displaying the three-dimensional model on an electronic device, the object existing in nature can be realistically presented in a virtual manner.
  • the hairstyles of other characters can be reused on the character model made by the modeler.
  • the hairstyles of different characters are specially customized hairstyles for different characters, they must be reused on the character model.
  • the fitting surface of the hairstyle does not match the fitting surface of the character model. Therefore, how to match the fitting surfaces of two 3D models is an urgent problem that needs to be solved.
  • This application provides a 3D model matching method, electronic equipment and related devices to realize the joining of two 3D models.
  • embodiments of the present application provide a 3D model matching method.
  • the method includes: an electronic device displays a first model and a second model; the electronic device determines a first area in the first model, so The first area refers to the 3D surface that needs to be fitted to the second area in the second model; the electronic device controls the deformation of the first area so that the deformed first area is consistent with the The second area is fit, and the electronic device controls the first part connected to the first area in the first model to deform, and the degree of deformation of the first part is less than or equal to the deformation of the first area. degree.
  • one 3D model can be controlled to deform, so that the deformed 3D model fits the 3D surface of another 3D model, thereby completing the matching of the two 3D models.
  • this method can be applied to match the hair model to the human head model, match the vegetation to the terrain, match the clothing to the human body model, etc. In this way, it can reduce the trouble of manual modeling by modelers, save modelers a lot of manual production time and energy, effectively shorten modelers' modeling time, and improve the reuse rate of 3D models.
  • the method before the electronic device determines the first area in the first model, the method further includes: the electronic device detects an action on the first model. The first operation on the M key points in composition.
  • the user Before fitting two 3D models, the user can manually determine the adjustable area in the model to be adjusted. so, The electronic device can control the 3D surface specified by the user to fit the 3D model according to the user's needs, thereby enhancing the user's operability during the 3D model matching process and improving the user's sense of participation in adjusting the 3D model.
  • the method further includes: responding to the first In one operation, the electronic device changes the display effect of one or more key points selected in the first operation, and the display effect includes one or more of the following: color, size, transparency or brightness.
  • the electronic device can visually distinguish key points selected and unselected by the user, preventing the user from repeatedly selecting key points that have been selected, and selecting other unselected key points more quickly.
  • the second area includes: one or more key points, and the key points in the second area correspond one-to-one to the key points in the first area.
  • the first region includes a first key point, and the key point corresponding to the first key point in the second region is the closest distance to the first key point in the second model. key point.
  • the electronic device can automatically find the 3D surface in the target model that is closest to the adjustable area based on the adjustable area, so that the model to be adjusted automatically moves to the target model. Fitting effect.
  • the first region includes a first key point, and the key point in the second region corresponding to the first key point is a second key point;
  • the electronic device controls the first region to deform so that the deformed first region fits the second region, specifically including: the electronic device controls the first key point to move toward the third region. Two key points move, and the distance between the moved first key point and the second key point is less than a first threshold.
  • the first region includes a first key point
  • the first part includes N key points connected to the first key point
  • N is a positive integer
  • the electronic device controls the deformation of the first part connected to the first area in the first model, which specifically includes: the electronic device controls the N parameters according to the distance and direction of movement of the first key point.
  • the key points move in the same or similar direction, and the distance moved by the N key points is less than or equal to the distance moved by the first key point.
  • the N key points satisfy at least one of the following: among the N key points, the closer a key point is to the first key point, the more direction, the closer it is to the direction in which the first key point moves; or among the N key points, the closer the key point is to the first key point, the distance it moves is closer to the direction in which the first key point moves. distance.
  • the method before the electronic device controls the first region to deform, the method further includes: the electronic device determines the deformation range of the first model, and the The first model within the deformation range can follow the deformation of the first region and deform; the electronic device determines the first part according to the deformation range.
  • the electronic device can determine a deformation range in the model to be adjusted, and the model to be adjusted within the deformation range can deform following the deformation of the adjustable area. In this way, the electronic device can distinguish deformable parts and non-deformable parts in the model to be adjusted, thereby preventing all parts of the model to be adjusted from deforming following the fitting process of the model to be adjusted.
  • the method before the electronic device determines the deformation range, the method It also includes: the electronic device detecting a second operation, the second operation being used to trigger the electronic device to determine the deformation range.
  • the user can manually determine the deformation range in the model to be adjusted.
  • the user can control which part of the model to be adjusted can deform and which part cannot deform according to his own needs. Enhance the user's operability and enhance the user's sense of participation in adjusting the 3D model.
  • the method further includes: the electronic device A third operation acting on L key points in the first area is detected, L is a positive integer; in response to the third operation, the electronic device controls the L key points toward the third The first direction of the operation instruction moves a first distance, and the electronic device controls the second part connected to the L key points in the first model to deform.
  • the second part moves The difference between the direction and the first direction is less than the second threshold, and the distance moved by the second part is less than or equal to the first distance.
  • the electronic device can also receive user operations and adjust the model to be adjusted according to the user's needs.
  • the user can manually fine-tune the model to be adjusted, so that the model to be adjusted can fit the target model more perfectly, so that the fit model to be adjusted and the target model are more in line with the user's aesthetics, and provide the user with a more complete adjustment effect.
  • the third operation is a drag operation
  • the first direction is the direction in which the drag operation moves
  • the first distance is distance moved.
  • the method further includes: the electronic device generates and displays a A three-dimensional mesh surface used to prompt the user that the first area can be fitted to the second model.
  • a 3D mesh surface can be generated and displayed based on the adjustable area.
  • the 3D mesh surface is used to prompt the user that the model to be adjusted has an adjustable area that can resemble the target model. Fitting, the user can clearly understand the area on the model to be adjusted that needs to be fitted to the target model through the 3D mesh surface.
  • the method further includes: the electronic device detects a fourth operation; in response to the fourth In operation, the electronic device adjusts any one or more of the relative positions or relative proportions of the first model and the second model, so that the first model and the second model are combined together.
  • the electronic device 100 can roughly adjust the size and position of the model to be adjusted and the target model, and combine the model to be adjusted and the target model so that the model to be adjusted and the target model are combined.
  • the relative position and relative proportion of the target model are basically adapted.
  • the first model includes a hair model
  • the second model includes a human head model
  • the first model includes a vegetation model
  • the second model includes a terrain model
  • the first model includes a clothing model
  • the second model includes a human body model
  • embodiments of the present application provide an electronic device, including a memory, one or more processors, and one or more programs; when the one or more processors execute the one or more programs, such that The electronic device implements the method described in the first aspect or any implementation manner of the first aspect.
  • embodiments of the present application provide a computer-readable storage medium, including instructions, which are characterized in that, when the instructions are run on an electronic device, the electronic device causes the electronic device to execute the first aspect or the first aspect. The method described in any of the embodiments.
  • embodiments of the present application provide a computer program product, characterized in that when the computer program When the product is run on the computer, the computer is caused to perform the method described in the first aspect or any implementation manner of the first aspect.
  • Figure 1 is a schematic diagram of the hardware structure of an electronic device provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of the software structure of the electronic device provided by the embodiment of the present application.
  • Figure 3 is a schematic flow chart of the 3D model matching method provided by the embodiment of the present application.
  • Figure 4 is a schematic diagram of some models provided by embodiments of this application.
  • Figure 5 is a schematic diagram of some models provided by embodiments of this application.
  • Figure 6 is a schematic diagram of some models provided by embodiments of this application.
  • Figure 7 is another schematic flow chart of the 3D model matching method provided by the embodiment of the present application.
  • Figure 8 is a schematic diagram of some models provided by embodiments of this application.
  • FIGS 9A-9G are some schematic diagrams of principles provided by embodiments of the present application.
  • first and second are used for descriptive purposes only and shall not be understood as implying or implying relative importance or implicitly specifying the quantity of indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the embodiments of this application, unless otherwise specified, “plurality” The meaning is two or more.
  • GUI graphical user interface
  • Embodiments of the present application provide a 3D model matching method.
  • the method includes: displaying the model to be adjusted and the target model, determining the adjustable area in the model to be adjusted, controlling the adjustable area to fit to the target model, and performing the fitting on the target model.
  • the adjustable area drives the first part of the model to be adjusted, and deforms following the deformation of the adjustable area, and the degree of deformation of the first part is less than or equal to the degree of deformation of the adjustable area, so that the model to be adjusted fits the target model. effect, so that While the 3D surfaces of the model to be adjusted and the target model are matched, the external shape of the model to be adjusted does not change much.
  • both the model to be adjusted and the target model are 3D models.
  • 3D models refer to three-dimensional models produced using 3D software. These 3D models are composed of multiple key points and the surfaces composed of these key points. The coordinates of these key points can be located in the three-dimensional coordinate system, making the 3D model appear 3D. Three-dimensional effect.
  • the 3D model matching method provided by the embodiments of this application can be applied to application scenarios such as matching hair models to human head models, matching vegetation to terrain, and matching clothing to human body models.
  • the hair model is the model to be adjusted, and the human head model is the target model.
  • the hair models of other characters can be directly reused in On the human head model, in this way, the modeler no longer needs to manually make a hair model suitable for the human head model, and does not need to worry about whether the existing hair model is suitable for the human head model.
  • the 3D model matching method can make the hair
  • the hair roots of the model automatically fit the "scalp" of the human head model, thereby quickly obtaining a character model with hair, and the modeling effect of the character model is comparable to that of direct manual modeling, saving a lot of manual work by the modeler.
  • the production time and energy are effectively shortened by the modeler’s modeling time and the reusability of the 3D model is improved.
  • the 3D model matching method provided by the embodiment of the present application can quickly complete the fitting between two 3D models, facilitate user operations, provide modelers with a more convenient modeling method, and reduce the complexity of modeling.
  • Technical threshold improves the production efficiency of modeling.
  • FIG. 1 shows a schematic diagram of the hardware structure of the electronic device 100 .
  • the electronic device 100 may be a mobile phone, a tablet computer, a desktop computer, a laptop computer, a handheld computer, a notebook computer, an ultra-mobile personal computer (UMPC), a netbook, a cellular phone, a personal digital assistant (personal digital assistant) digital assistant (PDA), augmented reality (AR) device, virtual reality (VR) device, artificial intelligence (AI) device, wearable device, vehicle-mounted device, smart home device and/or Smart city equipment, the embodiment of this application does not place special restrictions on the specific type of electronic equipment.
  • PDA personal digital assistant
  • AR augmented reality
  • VR virtual reality
  • AI artificial intelligence
  • wearable device wearable device
  • vehicle-mounted device smart home device and/or Smart city equipment
  • the electronic device 100 may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, an antenna 2 , mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, headphone interface 170D, sensor module 180, button 190, motor 191, indicator 192, camera 193, display screen 194, and Subscriber identification module (SIM) card interface 195, etc.
  • a processor 110 an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, an antenna 2 , mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, headphone interface 170D, sensor module 180, button 190, motor 191, indicator 192, camera 193, display
  • the sensor module 180 may include a pressure sensor 180A, a gyro sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, and ambient light. Sensor 180L, bone conduction sensor 180M, etc.
  • the structure illustrated in the embodiment of the present invention does not constitute a specific limitation on the electronic device 100 .
  • the electronic device 100 may include more or fewer components than shown in the figures, or some components may be combined, some components may be separated, or some components may be arranged differently.
  • the components illustrated may be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 may include one or more processing units.
  • the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processing unit (GPU), and an image signal processor. (image signal processor, ISP), controller, video codec, digital signal processor (DSP), baseband processor, and/or neural-network processing unit, NPU) etc.
  • application processor application processor
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • DSP digital signal processor
  • NPU neural-network processing unit
  • different processing units can be independent devices or integrated in one or more processors.
  • the controller can generate operation control signals based on the instruction operation code and timing signals to complete the control of fetching and executing instructions.
  • the processor 110 may also be provided with a memory for storing instructions and data.
  • the memory in processor 110 is cache memory. This memory may hold instructions or data that have been recently used or recycled by processor 110 . If the processor 110 needs to use the instructions or data again, it can be called directly from the memory. Repeated access is avoided and the waiting time of the processor 110 is reduced, thus improving the efficiency of the system.
  • the processor 110 may be used to determine the adjustable area according to the selected key points, control the adjustable area, and drive the first part of the model to be adjusted to automatically fit the 3D surface of the target model.
  • the charging management module 140 is used to receive charging input from the charger.
  • the charger can be a wireless charger or a wired charger.
  • the charging management module 140 may receive charging input from the wired charger through the USB interface 130 .
  • the charging management module 140 may receive wireless charging input through the wireless charging coil of the electronic device 100 . While the charging management module 140 charges the battery 142, it can also provide power to the electronic device through the power management module 141.
  • the power management module 141 is used to connect the battery 142, the charging management module 140 and the processor 110.
  • the power management module 141 receives input from the battery 142 and/or the charging management module 140, and supplies power to the processor 110, the internal memory 121, the display screen 194, the camera 193, the wireless communication module 160, and the like.
  • the power management module 141 can also be used to monitor battery capacity, battery cycle times, battery health status (leakage, impedance) and other parameters.
  • the power management module 141 may also be provided in the processor 110 .
  • the power management module 141 and the charging management module 140 may also be provided in the same device.
  • the wireless communication function of the electronic device 100 can be implemented through the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modem processor and the baseband processor.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in electronic device 100 may be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization. For example: Antenna 1 can be reused as a diversity antenna for a wireless LAN. In other embodiments, antennas may be used in conjunction with tuning switches.
  • the mobile communication module 150 can provide solutions for wireless communication including 2G/3G/4G/5G applied on the electronic device 100 .
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA), etc.
  • the mobile communication module 150 can receive electromagnetic waves through the antenna 1, perform filtering, amplification and other processing on the received electromagnetic waves, and transmit them to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modem processor and convert it into electromagnetic waves through the antenna 1 for radiation.
  • at least part of the functional modules of the mobile communication module 150 may be disposed in the processor 110 .
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be provided in the same device.
  • a modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low-frequency baseband signal to be sent into a medium-high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low-frequency baseband signal.
  • the demodulator then transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the application processor outputs sound signals through audio devices (not limited to speaker 170A, receiver 170B, etc.), or displays images or videos through display screen 194.
  • the modem processor may be a stand-alone device.
  • the modem processor may be independent of the processor 110 and may be provided in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 may provide a wireless communication network (such as a wireless local area network, WLAN) (such as a wireless fidelity (Wi-Fi) network), Bluetooth (BT), and global navigation that are applied on the electronic device 100.
  • Wireless communication solutions such as global navigation satellite system (GNSS), frequency modulation (FM), near field communication (NFC), infrared technology (infrared, IR), etc.
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2 , demodulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110, frequency modulate it, amplify it, and convert it into electromagnetic waves through the antenna 2 for radiation.
  • the antenna 1 of the electronic device 100 is coupled to the mobile communication module 150, and the antenna 2 is coupled to the wireless communication module 160, so that the electronic device 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time division code division multiple access (time-division code division multiple access, TD-SCDMA), long term evolution (long term evolution, LTE), BT, GNSS, WLAN, NFC , FM, and/or IR technology, etc.
  • the GNSS may include global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), quasi-zenith satellite system (quasi) -zenith satellite system (QZSS) and/or satellite based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • the mobile communication module 150 and the wireless communication module 160 may be used to obtain the model to be adjusted and the target model.
  • the electronic device 100 implements display functions through a GPU, a display screen 194, an application processor, and the like.
  • the GPU is an image processing microprocessor and is connected to the display screen 194 and the application processor. GPUs are used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute program instructions to generate or alter display information.
  • the display screen 194 is used to display images, videos, etc.
  • Display 194 includes a display panel.
  • the display panel can use a liquid crystal display (LCD).
  • the display panel can also use organic light-emitting diode (OLED), active matrix organic light-emitting diode or active matrix organic light-emitting diode (active-matrix organic light emitting diode, AMOLED), flexible light-emitting diode ( Manufacturing of flex light-emitting diodes (FLED), miniled, microled, micro-oled, quantum dot light emitting diodes (QLED), etc.
  • the electronic device may include 1 or N display screens 194, where N is a positive integer greater than 1.
  • the display screen 194 may be used to display the model to be adjusted and the target model, as well as tools or user interfaces required in the process of adjusting the model to be adjusted and the target model, and the like.
  • the electronic device 100 can implement the shooting function through an ISP, a camera 193, a video codec, a GPU, a display screen 194, an application processor, and the like.
  • the ISP is used to process the data fed back by the camera 193. For example, when taking a photo, the shutter is opened, the light is transmitted to the camera sensor through the lens, the optical signal is converted into an electrical signal, and the camera sensor passes the electrical signal to the ISP for processing, and converts it into an image visible to the naked eye. ISP can also perform algorithm optimization on image noise and brightness. ISP can also optimize the exposure, color temperature and other parameters of the shooting scene. In some embodiments, the ISP may be provided in the camera 193.
  • Camera 193 is used to capture still images or video.
  • the object passes through the lens to produce an optical image that is projected onto the photosensitive element.
  • the photosensitive element may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the optical signal into an electrical signal, and then passes the electrical signal to the ISP to convert it into a digital image signal.
  • ISP outputs digital image signals to DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other format image signals.
  • the electronic device 100 may include 1 or N cameras 193, where N is a positive integer greater than 1.
  • Digital signal processors are used to process digital signals. In addition to digital image signals, they can also process other digital signals. For example, when the electronic device 100 selects a frequency point, the digital signal processor is used to perform Fourier transform on the frequency point energy.
  • Video codecs are used to compress or decompress digital video.
  • Electronic device 100 may support one or more video codecs. In this way, the electronic device 100 can play or record videos in multiple encoding formats, such as moving picture experts group (MPEG) 1, MPEG2, MPEG3, MPEG4, etc.
  • MPEG moving picture experts group
  • MPEG2 MPEG2, MPEG3, MPEG4, etc.
  • NPU is a neural network (NN) computing processor.
  • NN neural network
  • Intelligent cognitive applications of the electronic device 100 can be implemented through the NPU, such as image recognition, face recognition, speech recognition, text understanding, etc.
  • the internal memory 121 may include one or more random access memories (RAM) and one or more non-volatile memories (NVM).
  • RAM random access memories
  • NVM non-volatile memories
  • the internal memory 121 may be used to store the model to be adjusted and the target model, as well as the adjusted model to be adjusted and the target model.
  • Random access memory can include static random-access memory (SRAM), dynamic random-access memory (DRAM), synchronous dynamic random-access memory (SDRAM), double data rate synchronous Dynamic random access memory (double data rate synchronous dynamic random access memory, DDR SDRAM, for example, the fifth generation DDR SDRAM is generally called DDR5SDRAM), etc.; non-volatile memory can include disk storage devices and flash memory (flash memory).
  • SRAM static random-access memory
  • DRAM dynamic random-access memory
  • SDRAM synchronous dynamic random-access memory
  • DDR SDRAM double data rate synchronous Dynamic random access memory
  • non-volatile memory can include disk storage devices and flash memory (flash memory).
  • Flash memory can be divided according to the operating principle to include NOR FLASH, NAND FLASH, 3D NAND FLASH, etc.
  • the storage unit potential level it can include single-level storage cells (single-level cell, SLC), multi-level storage cells (multi-level cell, MLC), third-level storage unit (triple-level cell, TLC), fourth-level storage unit (quad-level cell, QLC), etc., which can include universal flash storage (English: universal flash storage, UFS) according to storage specifications. , embedded multi media card (embedded multi media Card, eMMC), etc.
  • the random access memory can be directly read and written by the processor 110, can be used to store executable programs (such as machine instructions) of the operating system or other running programs, and can also be used to store user and application data, etc.
  • the non-volatile memory can also store executable programs and user and application program data, etc., and can be loaded into the random access memory in advance for direct reading and writing by the processor 110.
  • the external memory interface 120 can be used to connect an external non-volatile memory to expand the storage capacity of the electronic device 100 .
  • the external non-volatile memory communicates with the processor 110 through the external memory interface 120 to implement the data storage function. For example, save music, video and other files in external non-volatile memory.
  • the electronic device 100 can implement audio functions through the audio module 170, the speaker 170A, the receiver 170B, the microphone 170C, the headphone interface 170D, and the application processor. Such as music playback, recording, etc.
  • the audio module 170 is used to convert digital audio information into analog audio signal output, and is also used to convert analog audio input into digital audio signals. Audio module 170 may also be used to encode and decode audio signals. In some embodiments, the audio module 170 may be provided in the processor 110 , or some functional modules of the audio module 170 may be provided in the processor 110 .
  • Speaker 170A also called “speaker” is used to convert audio electrical signals into sound signals.
  • the electronic device 100 can listen to music through the speaker 170A, or listen to hands-free calls.
  • Receiver 170B also called “earpiece” is used to convert audio electrical signals into sound signals.
  • the electronic device 100 receives a call
  • the voice can be heard by bringing the receiver 170B close to the human ear.
  • Microphone 170C also called “microphone” or “microphone” is used to convert sound signals into electrical signals. When making a call or sending a voice message, the user can speak close to the microphone 170C with the human mouth and input the sound signal to the microphone 170C.
  • the electronic device 100 may be provided with at least one microphone 170C. In other embodiments, the electronic device 100 may be provided with two microphones 170C, which in addition to collecting sound signals, may also implement a noise reduction function. In other embodiments, the electronic device 100 can also be provided with three, four or more microphones 170C to collect sound signals, reduce noise, identify sound sources, and implement directional recording functions, etc.
  • the headphone interface 170D is used to connect wired headphones.
  • the headphone interface 170D may be a USB interface 130, or may be a 3.5mm open mobile terminal platform (OMTP) standard interface, or a Cellular Telecommunications Industry Association of the USA (CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA Cellular Telecommunications Industry Association of the USA
  • the pressure sensor 180A is used to sense pressure signals and can convert the pressure signals into electrical signals.
  • pressure sensor 180A may be disposed on display screen 194 .
  • pressure sensors 180A there are many types of pressure sensors 180A, such as resistive pressure sensors, inductive pressure sensors, capacitive pressure sensors, etc.
  • a capacitive pressure sensor may include at least two parallel plates of conductive material.
  • the electronic device 100 determines the intensity of the pressure based on the change in capacitance.
  • the electronic device 100 detects the intensity of the touch operation according to the pressure sensor 180A.
  • the electronic device 100 may also calculate the touched position based on the detection signal of the pressure sensor 180A.
  • touch operations acting on the same touch location but with different touch operation intensities may correspond to different operation instructions. For example: when a touch operation with a touch operation intensity less than the first pressure threshold is applied to the short message application icon, an instruction to view the short message is executed. When a touch operation with a touch operation intensity greater than or equal to the first pressure threshold is applied to the short message application icon, an instruction to create a new short message is executed.
  • the gyro sensor 180B may be used to determine the motion posture of the electronic device 100 .
  • the angular velocity of electronic device 100 about three axes ie, x, y, and z axes
  • the gyro sensor 180B can be used for image stabilization. For example, when the shutter is pressed, the gyro sensor 180B detects the angle at which the electronic device 100 shakes, calculates the distance that the lens module needs to compensate based on the angle, and allows the lens to offset the shake of the electronic device 100 through reverse movement to achieve anti-shake.
  • the gyro sensor 180B can also be used for navigation and somatosensory game scenes.
  • Air pressure sensor 180C is used to measure air pressure. In some embodiments, the electronic device 100 calculates the altitude through the air pressure value measured by the air pressure sensor 180C to assist positioning and navigation.
  • Magnetic sensor 180D includes a Hall sensor.
  • the electronic device 100 may utilize the magnetic sensor 180D to detect opening and closing of the flip holster.
  • the electronic device 100 may detect the opening and closing of the flip according to the magnetic sensor 180D. Then, based on the detected opening and closing status of the leather case or the opening and closing status of the flip cover, features such as automatic unlocking of the flip cover are set.
  • the acceleration sensor 180E can detect the acceleration of the electronic device 100 in various directions (generally three axes). When the electronic device 100 is stationary, the magnitude and direction of gravity can be detected. It can also be used to identify the posture of electronic devices and be used in horizontal and vertical screen switching, pedometer and other applications.
  • Distance sensor 180F for measuring distance.
  • Electronic device 100 can measure distance via infrared or laser. In some embodiments, when shooting a scene, the electronic device 100 may utilize the distance sensor 180F to measure distance to achieve fast focusing.
  • Proximity light sensor 180G may include, for example, a light emitting diode (LED) and a light detector, such as a photodiode.
  • the light emitting diode may be an infrared light emitting diode.
  • the electronic device 100 emits infrared light outwardly through the light emitting diode.
  • Electronic device 100 uses photodiodes to detect infrared reflected light from nearby objects. When sufficient reflected light is detected, it can be determined that there is an object near the electronic device 100 . When insufficient reflected light is detected, the electronic device 100 may determine that there is no object near the electronic device 100 .
  • the electronic device 100 can use the proximity light sensor 180G to detect that the user holds the electronic device 100 close to the ear. Make multiple calls to automatically turn off the screen to save power.
  • the proximity light sensor 180G can also be used in holster mode, and pocket mode automatically unlocks and locks the screen.
  • the ambient light sensor 180L is used to sense ambient light brightness.
  • the electronic device 100 can adaptively adjust the brightness of the display screen 194 according to the perceived ambient light brightness.
  • the ambient light sensor 180L can also be used to automatically adjust the white balance when taking pictures.
  • the ambient light sensor 180L can also cooperate with the proximity light sensor 180G to detect whether the electronic device 100 is in the pocket to prevent accidental touching.
  • Fingerprint sensor 180H is used to collect fingerprints.
  • the electronic device 100 can use the collected fingerprint characteristics to achieve fingerprint unlocking, access to application locks, fingerprint photography, fingerprint answering of incoming calls, etc.
  • Temperature sensor 180J is used to detect temperature.
  • the electronic device 100 utilizes the temperature detected by the temperature sensor 180J to execute the temperature processing strategy. For example, when the temperature reported by the temperature sensor 180J exceeds a threshold, the electronic device 100 reduces the performance of a processor located near the temperature sensor 180J in order to reduce power consumption and implement thermal protection. In other embodiments, when the temperature is lower than another threshold, the electronic device 100 heats the battery 142 to prevent the low temperature from causing the electronic device 100 to shut down abnormally. In some other embodiments, when the temperature is lower than another threshold, the electronic device 100 performs boosting on the output voltage of the battery 142 to avoid abnormal shutdown caused by low temperature.
  • Touch sensor 180K also known as "touch device”.
  • the touch sensor 180K can be disposed on the display screen 194.
  • the touch sensor 180K and the display screen 194 form a touch screen, which is also called a "touch screen”.
  • the touch sensor 180K is used to detect a touch operation on or near the touch sensor 180K.
  • the touch sensor can pass the detected touch operation to the application processor to determine the touch event type.
  • Visual output related to the touch operation may be provided through display screen 194 .
  • the touch sensor 180K may also be disposed on the surface of the electronic device 100 at a location different from that of the display screen 194 .
  • Bone conduction sensor 180M can acquire vibration signals.
  • the bone conduction sensor 180M can acquire the vibration signal of the vibrating bone mass of the human body's vocal part.
  • the bone conduction sensor 180M can also contact the human body's pulse and receive blood pressure beating signals.
  • the bone conduction sensor 180M can also be provided in an earphone and combined into a bone conduction earphone.
  • the audio module 170 can analyze the voice signal based on the vibration signal of the vocal vibrating bone obtained by the bone conduction sensor 180M to implement the voice function.
  • the application processor can analyze the heart rate information based on the blood pressure beating signal acquired by the bone conduction sensor 180M to implement the heart rate detection function.
  • the buttons 190 include a power button, a volume button, etc.
  • Key 190 may be a mechanical key. It can also be a touch button.
  • the electronic device 100 may receive key inputs and generate key signal inputs related to user settings and function control of the electronic device 100 .
  • the motor 191 can generate vibration prompts.
  • the motor 191 can be used for vibration prompts for incoming calls and can also be used for touch vibration feedback.
  • touch operations for different applications can correspond to different vibration feedback effects.
  • the motor 191 can also respond to different vibration feedback effects for touch operations in different areas of the display screen 194 .
  • Different application scenarios such as time reminders, receiving information, alarm clocks, games, etc.
  • the touch vibration feedback effect can also be customized.
  • the indicator 192 may be an indicator light, which may be used to indicate charging status, power changes, or may be used to indicate messages, missed calls, notifications, etc.
  • the SIM card interface 195 is used to connect a SIM card.
  • the SIM card can be connected to or separated from the electronic device 100 by inserting it into the SIM card interface 195 or pulling it out from the SIM card interface 195 .
  • the electronic device 100 can support 1 or N SIM card interfaces, where N is a positive integer greater than 1.
  • SIM card interface 195 can support Nano SIM card, Micro SIM card, SIM card, etc. Multiple cards can be inserted into the same SIM card interface 195 at the same time. The types of the plurality of cards may be the same or different.
  • the SIM card interface 195 is also compatible with different types of SIM cards.
  • the SIM card interface 195 is also compatible with external memory cards.
  • the electronic device 100 interacts with the network through the SIM card to implement functions such as calls and data communications.
  • the electronic device 100 uses an eSIM, that is, an embedded SIM card.
  • the eSIM card can be embedded in the electronic device 100 and cannot be combined with the electronic device 100. Device 100 detached.
  • the electronic device may be a portable terminal device equipped with iOS, Android, Microsoft or other operating systems, such as a mobile phone, a tablet, a wearable device, etc., or a laptop computer (Laptop) with a touch-sensitive surface or touch panel.
  • Non-portable terminal devices such as desktop computers with touch-sensitive surfaces or touch panels.
  • the software system of the electronic device 100 may adopt a layered architecture, an event-driven architecture, a microkernel architecture, a microservice architecture, or a cloud architecture. This embodiment of the present invention takes the Android system with a layered architecture as an example to illustrate the software structure of the electronic device 100 .
  • FIG. 2 is a software structure block diagram of the electronic device 100 according to the embodiment of the present application.
  • the layered architecture divides the software into several layers, and each layer has clear roles and division of labor.
  • the layers communicate through software interfaces.
  • the Android system is divided into four layers, from top to bottom: application layer, application framework layer, Android runtime and system libraries, and kernel layer.
  • the application layer can include a series of application packages.
  • the application package can include camera, gallery, calendar, calling, map, navigation, WLAN, Bluetooth, music, video, short message and other applications.
  • the application framework layer provides an application programming interface (API) and programming framework for applications in the application layer.
  • API application programming interface
  • the application framework layer includes some predefined functions.
  • the application framework layer can include a window manager, content provider, view system, phone manager, resource manager, notification manager, etc.
  • a window manager is used to manage window programs.
  • the window manager can obtain the display size, determine whether there is a status bar, lock the screen, capture the screen, etc.
  • Content providers are used to store and retrieve data and make this data accessible to applications.
  • Said data can include videos, images, audio, calls made and received, browsing history and bookmarks, phone books, etc.
  • the view system includes visual controls, such as controls that display text, controls that display pictures, etc.
  • a view system can be used to build applications.
  • the display interface can be composed of one or more views.
  • a display interface including a text message notification icon may include a view for displaying text and a view for displaying pictures.
  • the phone manager is used to provide communication functions of the electronic device 100 .
  • call status management including connected, hung up, etc.
  • the resource manager provides various resources to applications, such as localized strings, icons, pictures, layout files, video files, etc.
  • the notification manager allows applications to display notification information in the status bar, which can be used to convey notification-type messages and can automatically disappear after a short stay without user interaction.
  • the notification manager is used to notify download completion, message reminders, etc.
  • the notification manager can also be notifications that appear in the status bar at the top of the system in the form of charts or scroll bar text, such as notifications for applications running in the background, or notifications that appear on the screen in the form of conversation windows. For example, text information is prompted in the status bar, a beep sounds, the electronic device vibrates, the indicator light flashes, etc.
  • Android Runtime includes core libraries and virtual machines. Android runtime is responsible for the scheduling and management of the Android system.
  • the core library contains two parts: one is the functional functions that need to be called by the Java language, and the other is the core library of Android.
  • the application layer and application framework layer run in virtual machines.
  • the virtual machine executes the java files of the application layer and application framework layer into binary files.
  • the virtual machine is used to perform object life cycle management, stack management, thread management, security and exception management, and garbage collection and other functions.
  • System libraries can include multiple functional modules. For example: surface manager (surface manager), media libraries (Media Libraries), 3D graphics processing library (for example: OpenGL ES), 2D graphics engine (for example: SGL), etc.
  • the surface manager is used to manage the display subsystem and provides the fusion of 2D and 3D layers for multiple applications.
  • the media library supports playback and recording of a variety of commonly used audio and video formats, as well as static image files, etc.
  • the media library can support a variety of audio and video encoding formats, such as: MPEG4, H.264, MP3, AAC, AMR, JPG, PNG, etc.
  • the 3D graphics processing library is used to implement 3D graphics drawing, image rendering, composition, and layer processing.
  • 2D Graphics Engine is a drawing engine for 2D drawing.
  • the kernel layer is the layer between hardware and software.
  • the kernel layer contains at least display driver, camera driver, audio driver, and sensor driver.
  • the following exemplifies the workflow of the software and hardware of the electronic device 100 in conjunction with capturing the photographing scene.
  • the corresponding hardware interrupt is sent to the kernel layer.
  • the kernel layer processes touch operations into raw input events (including touch coordinates, timestamps of touch operations, and other information). Raw input events are stored at the kernel level.
  • the application framework layer obtains the original input event from the kernel layer and identifies the control corresponding to the input event. Taking the touch operation as a touch click operation and the control corresponding to the click operation as a camera application icon control as an example, the camera application calls the interface of the application framework layer to start the camera application, and then starts the camera driver by calling the kernel layer. Camera 193 captures still images or video.
  • Figure 3 shows a schematic flow chart of the 3D model matching method provided by the embodiment of the present application.
  • the method includes:
  • the electronic device 100 obtains and displays the model to be adjusted and the target model.
  • 3D models can refer to three-dimensional models produced using three-dimensional software, including buildings, characters, vegetation, machinery, etc.
  • the 3D model consists of multiple key points and the surfaces formed by these key points. The coordinates of these key points are located in the three-dimensional coordinate system, making the 3D model present a 3D three-dimensional effect.
  • the model to be adjusted refers to the 3D model whose shape needs to be adjusted to match the target surface of the target model.
  • the model to be adjusted may also be called the first model, and the target model may also be called the second model.
  • the model to be adjusted may refer to the hair model shown in (a) of Figure 4
  • the target model may refer to the human head model shown in (b) of Figure 4. It can be seen that a human head model with a hairstyle can be obtained by adjusting the hair root area of the hair model so that it fits the top surface of the human head model.
  • the electronic device 100 may acquire the 3D model in the following two ways:
  • the electronic device 100 downloads the 3D model from the network
  • users can find the required 3D model in the 3D model market and download it locally through the network.
  • the electronic device 100 obtains the 3D model locally
  • the electronic device 100 may store one or more 3D models locally.
  • the one or more 3D models may be 3D models obtained in advance from other devices, or may be 3D models produced locally using 3D software. Model.
  • the target model may be a 3D model produced locally by the electronic device 100
  • the model to be adjusted may be a 3D model downloaded by the electronic device 100 from the network.
  • users can choose their favorite templates or materials online and assemble them on the 3D model they make themselves, thereby reducing the user's workload in making models, and users do not need to worry about the selected templates or materials not being suitable.
  • users can quickly adjust templates or materials through the following steps S102-S108 to make them perfectly fit the user-made models.
  • the model to be adjusted is not limited to the hair model mentioned above, and the target model is not limited to the human head model mentioned above.
  • the model to be adjusted can be a vegetation model
  • the target model can be a terrain model
  • the electronic device 100 can By adjusting the bottom end of the vegetation model so that it fits the terrain model, a terrain model with vegetation can be obtained.
  • the model to be adjusted can be a clothing model
  • the target model can be a human body model.
  • the electronic device 100 can adjust the shape of the clothing model so that it fits the human body model, thereby obtaining a human body model wearing clothing.
  • the embodiment of the present application does not limit the model to be adjusted and the target model.
  • the model to be adjusted is a 3D model created through patch modeling.
  • Patch modeling refers to building the skeleton of the model by creating splines, and then using the splines to form one or more surfaces to complete the creation of the model.
  • the model shape can be adjusted by adjusting key points, splines or surfaces on the splines.
  • patch modeling is similar to the process of making a paper lantern.
  • the model to be adjusted using patch modeling can be composed of multiple independent surfaces, and each surface contains multiple key points. By adjusting the positions of key points, you can adjust the shape of the model to be adjusted.
  • the hair model to be adjusted is a hair model made by patch modeling
  • the hair model can be composed of multiple clusters of hair, and each cluster of hair is represented by a surface.
  • patch modeling to create a hair model can use less The details convey a smooth shape that follows the contours of the hair.
  • the electronic device 100 may display the model to be adjusted and the target model through the first application.
  • the first application can be used to create and render three-dimensional models.
  • the electronic device 100 can also adjust the model to be adjusted and the target model through the first application, so that the 3D surfaces of the model to be adjusted and the target model fit together.
  • the first application may refer to applications such as Houdini, Maya, Max, Cinema4D, blender, Zbrush, Nuke, Kantana, SD or realflow.
  • the electronic device 100 adjusts the relative position and relative proportion of the model to be adjusted and the target model.
  • the electronic device 100 can roughly adjust the size and position of the model to be adjusted and the target model, and combine the model to be adjusted and the target model so that the model to be adjusted and the target model are combined.
  • the relative position and relative proportion of the target model are basically adapted, that is, the fitting surfaces of the model to be adjusted and the target model are roughly aligned.
  • the electronic device 100 can adjust the size and position of the model to be adjusted based on the size and position of the target model, so that the fitting surfaces of the model to be adjusted and the target model are basically fit together.
  • the electronic device 100 can obtain the result shown in (b) of Figure 5 by adjusting the size of the hair model.
  • the hair model and the human head model make the size of the hair model basically the same as the head size of the human head model.
  • the electronic device 100 can adjust the relative positions of the model to be adjusted and the target model according to the user's operation on the movement position of the model to be adjusted and/or the target model.
  • the electronic device 100 can adjust the relative positions of the model to be adjusted and the target model according to the user's operation on the movement position of the model to be adjusted and/or the target model. The operation of adjusting the model and/or the target model by zooming in or out, and adjusting the relative proportions of the model to be adjusted and the target model.
  • the electronic device 100 can automatically adjust the relative position and relative proportion of the model to be adjusted and the target model. Specifically, the electronic device 100 can automatically adjust the relative positions of the model to be adjusted and the target model according to the positions of the model to be adjusted and the target model, or the electronic device 100 can automatically adjust the model to be adjusted according to the sizes of the model to be adjusted and the target model. relative to the target model.
  • step S102 is an optional step.
  • the electronic device 100 does not need to adjust the relative positions of the model to be adjusted and the target model.
  • the electronic device 100 does not need to adjust the relative positions of the model to be adjusted and the target model.
  • the electronic device 100 does not need to adjust the relative proportions of the model to be adjusted and the target model.
  • the electronic device 100 receives a selection operation acting on key points of the model to be adjusted.
  • the electronic device 100 selects one or more key points (for example, M key points, M is a positive integer) based on the user's selection operation (such as the first operation) on the key points of the model to be adjusted.
  • This one or more key points The formed 3D surface is the fitting surface in the model to be adjusted that needs to fit with the target model.
  • the electronic device 100 can display the mode to be adjusted and the target model through a first application.
  • the first application can include a selection tool, such as a brush tool, and the electronic device 100 can detect the user's operation of selecting the selection tool. , use this selection tool to select one or more key points in the model to be adjusted.
  • the electronic device 100 may highlight the model to be adjusted so that the user can more clearly view the model to be adjusted and select the model to be adjusted. Adjust key points of the model.
  • highlighting the model to be adjusted can include but is not limited to the following three methods: 1) hiding the target model; 2) changing the color of the model to be adjusted or the target model, and distinguishing the model to be adjusted from the target model through color; 3) lowering the target model transparency.
  • the electronic device 100 can change the display effect of the key point, including but not limited to: color, size, transparency or brightness, etc., thereby visually assisting the user. Distinguish between selected and unselected key points on the model to be adjusted, avoid repeatedly selecting selected key points, and select other unselected key points more quickly.
  • the electronic device 100 can hide the human head model. At this time, the electronic device 100 only displays There are hair models.
  • the electronic device 100 may receive a selection operation acting on some key points of the hair model, and select the key points.
  • the key points may refer to the location of the "hair roots" of the hair model as shown in (a) of Figure 6 key point.
  • the color of a key can be black when the key is unselected, and change to a light color when the key is selected.
  • the electronic device 100 can display the hair model as shown in (b) of FIG. 6 .
  • the electronic device 100 determines the deformable adjustable area according to the selected key points.
  • the electronic device 100 determines an adjustable area formed by the selected key points based on the selected key points.
  • the adjustable area is composed of one or more surfaces formed by the selected key points.
  • the adjustable area may also be called a first area.
  • the first area refers to a 3D surface of the first model that needs to be fitted to a 3D surface of the second model (for example, the second area). surface.
  • the electronic device 100 can generate and display a 3D mesh surface with smooth edges according to the adjustable area, and the 3D mesh surface can be a 3D surface including the adjustable area.
  • the color of the 3D mesh surface can be different from the color of the model to be adjusted, thereby visually highlighting the 3D mesh surface.
  • the 3D mesh surface is used to prompt the user that the model to be adjusted has an adjustable area that can be adjusted like By fitting the target model, the user can clearly understand the area on the model to be adjusted that needs to be fitted to the target model through the 3D mesh surface.
  • the electronic device 100 can display the image in the hair model according to the one or more key points as shown in the figure.
  • the appearance of the mesh surface 001 shown in (c) in 6 makes the hair model visually look like a "wig with a hood", giving the user a This can adjust the visual experience of the model to be adjusted, making the model adjustment process more interesting.
  • the electronic device 100 may receive a confirmation operation from the user to confirm the selection of the one or more key points, and in response to the confirmation operation, trigger the generation of And display the 3D mesh surface.
  • the electronic device 100 can also accept the user's operations of changing, adding, deleting, and reselecting key points to adjust the adjustable area or 3D mesh surface. Grid faces. In this way, the user can re-adjust the adjustable area while selecting key points or viewing 3D mesh faces.
  • the electronic device 100 can determine the adjustable area according to the selected key points during the process of the user selecting key points, the electronic device 100 can repeatedly perform steps S103-S104, that is, after performing step S104 After that, return to step S103. That is to say, the electronic device 100 can gradually expand the deformable adjustable area when the user gradually selects more key points until the user is satisfied and obtains the final adjustable area.
  • the electronic device 100 determines the adjustable area in the model to be adjusted according to the user's operation.
  • the user can manually determine the 3D surface in the model to be adjusted that needs to be fitted to the target model.
  • the electronic device 100 can control according to the user's needs.
  • the 3D surface specified by the user is fitted to the 3D model, which enhances the user's operability during the 3D model matching process and enhances the user's sense of participation in adjusting the 3D model.
  • the electronic device 100 can also automatically determine the adjustable area in the model to be adjusted. Specifically, the electronic device 100 can automatically determine the adjustable area in the model to be adjusted based on the identification information of different parts in the adjustable model. For example, when the model to be adjusted is a hair model, the modeler can divide the hair model into multiple partitions during the modeling process or after completing the modeling of the hair model, for example, the hair root area and the mid-hair area. , hair tail area, different partitions can be set with different identification information. After acquiring the hair model, the electronic device 100 can determine the hair root area of the hair model based on the identification information carried by the hair model.
  • the model to be adjusted is a hair model
  • the modeler can divide the hair model into multiple partitions during the modeling process or after completing the modeling of the hair model, for example, the hair root area and the mid-hair area. , hair tail area, different partitions can be set with different identification information.
  • the electronic device 100 can determine the hair root area of the hair model based on the identification information carried by the
  • the hair root area It is the area that fits the head, so the hair root area can be determined as the adjustable area of the hair model.
  • the electronic device 100 may automatically recognize the shape of the model to determine the adjustable area in the model to be adjusted. The embodiment of the present application does not limit the way in which the electronic device 100 determines the adjustable area.
  • the electronic device 100 determines the deformation range close to the adjustable area in the model to be adjusted.
  • the electronic device 100 needs to adjust the shape of the model to be adjusted so that the adjustable area fits the target model. Therefore, the electronic device 100 can determine a deformation range in the model to be adjusted, and the model to be adjusted within the deformation range can follow the deformation of the adjustable area and deform, thereby achieving the effect of the model to be adjusted fitting the target model.
  • the deformation range may refer to a length range in the model to be adjusted from one end close to the adjustable area to the other end far away from the adjustable area.
  • the deformation range may refer to 10% of the total thickness of the model to be adjusted.
  • the electronic device 100 can determine the deformation range of the adjustable area according to the following two methods:
  • the electronic device 100 can determine the deformation range according to a preset threshold
  • the electronic device 100 can automatically determine the deformation range of the model to be adjusted.
  • the numerical size of the deformation range may refer to 10 centimeters, or may refer to the distance between three key points included in the model to be adjusted, and so on.
  • the embodiment of the present application does not limit the definition of the deformation range.
  • the electronic device 100 determines the deformation range according to user operations.
  • the electronic device 100 may detect a user operation (eg, a second operation), and determine the deformation range in the model to be adjusted in response to the operation.
  • the electronic device 100 can adjust the value of the deformation range according to the user, or, Select the deformable key points in the model to be adjusted to determine the deformation range of the model to be adjusted.
  • step S105 is an optional step.
  • the electronic device 100 directly executes step S106 to control the adjustable area and drive the model to be adjusted toward the target. 3D surface fitting of the model.
  • the electronic device 100 controls the adjustable area to drive the model to be adjusted within the deformation range to fit to the 3D surface of the target model.
  • the electronic device 100 can control the adjustable area to deform, so that the deformed adjustable area fits a 3D surface of the target model. Moreover, during the deformation process of the adjustable area, the electronic device 100 can also control the deformation of a part of the model to be adjusted that is connected to the adjustable area, thereby achieving the effect of fitting the model to be adjusted to the target model. Specifically, the electronic device 100 can control the adjustable area to drive the first part of the model to be adjusted to fit to the 3D surface of the target model, where the first part may refer to the model to be adjusted within the deformation range.
  • the 3D surface of the target model may also be referred to as the second area.
  • step S106 is introduced in detail below with reference to the method flow chart shown in Figure 7:
  • this step S106 may include:
  • the electronic device 100 determines the key point qi in the target model that matches the key point pi in the adjustable area.
  • the only nearest key point qi (such as the second key point) can be found in the target model as a match with the key point Pi key points.
  • the 3D surface composed of all key points in Q can refer to the fitting surface in the target model that needs to fit the model to be adjusted.
  • step S201 is to establish a matching relationship between the adjustable area and the target model, and find a fitting area that matches the adjustable area in the target model.
  • the key points contained in the fitting area are the key points contained in Q. All key points, the key points in Q correspond to the key points in P one-to-one.
  • the fitting area in the human head model that needs to be matched to the hair model may refer to the "scalp" area in the human head model.
  • the electronic device 100 calculates the average distance A from all key points in the adjustable area to matching key points in the target model.
  • the electronic device 100 can calculate the distance between each pair of matching key points and average all distances to obtain the average distance A, where, the electronic device 100
  • the average distance A can be calculated by the following formula 1:
  • M represents the number of all key points contained in the adjustable area.
  • the electronic device 100 determines the transformation matrix from the key point pi to the key point qi.
  • the transformation matrix may include a translation matrix T and a rotation matrix R.
  • the obtained R and T are the transformation matrices from key point pi to key point qi.
  • the electronic device 100 can determine the offset angle ⁇ and the movement distance S when the key point pi moves to the key point qi based on the positions of the key point pi and the key point qi.
  • the electronic device 100 adjusts the position of the key point pi in the adjustable area according to the transformation matrix.
  • the electronic device 100 performs transformations such as translation and rotation on the key point pi according to the translation matrix T and the rotation matrix R, thereby changing the position of each key point in the adjustable area so that it is closer to the matching key point in the target model.
  • the electronic device 100 can adjust the position of the key point pi according to the offset angle ⁇ and the movement distance S of the key point pi, so that the key point pi is close to the key point in the target model, or coincides with the key point in the target model. , that is, the distance between the adjusted key point pi (for example, the first key point) and the corresponding key point (for example, the second key point) in the target model is less than the threshold (for example, the first threshold).
  • the adjustment degree of the key point pi is greater.
  • the adjustment degree of the key point pi is smaller. The smaller the degree of adjustment of point pi.
  • the electronic device 100 determines the deformation weight W of the key point within the deformation range of the model to be adjusted.
  • the electronic device 100 may determine the deformation weight W of the key point within the variability range according to the distance between the key point within the deformation range and the key point in the adjustable area.
  • the adjustment degree of the key points within the deformation range of the model to be adjusted is less than or equal to the adjustment degree of the key points in the adjustable area, and among the key points within the deformation range of the model to be adjusted, the closer to the adjustable area The closer the offset angle ⁇ and/or the movement distance S of a key point is to the offset angle ⁇ and/or movement distance S of the key point in the adjustable area connected to it.
  • the degree of deformation of the model to be adjusted within the deformation range is less than or equal to the degree of deformation of the adjustable area, and the closer the part of the model to be adjusted within the deformation range is to the adjustable area, the greater the degree of deformation.
  • the electronic device 100 adjusts the positions of key points within the deformation range of the model to be adjusted according to the deformation weight W.
  • the key point wi within the variable range can change its position following the movement of the key point pi in the adjustable area connected to it. Since the model to be adjusted is composed of multiple key points and a plane composed of lines connecting the multiple key points, the key point pi in the adjustable area can be connected to one or more key points wi in the model to be adjusted. , when the key point pi moves to the key point qi in the target model, the key point wi can move according to the movement direction and distance of the key point pi.
  • the part closer to the adjustable area has a greater deformation
  • the part further away from the adjustable area has a smaller deformation. This can ensure that the fitting surfaces of the model to be adjusted and the target model coincide with each other, while trying to avoid changing the external shape of the model to be adjusted.
  • the electronic device 100 calculates the average distance B from all key points in the adjusted adjustable area to matching key points in the target model.
  • the electronic device 100 may calculate the average distance B according to Formula 4:
  • M represents the number of all key points contained in the adjustable area.
  • the electronic device 100 determines whether
  • step S209 the electronic device 100 ends the automatic adjustment and executes step S209 to obtain the adjusted model to be adjusted. Otherwise, the electronic device 100 returns to step S201 to re-determine the key point qi in the target model that matches the key point pi in the adjustable area, where the adjustable area here is the adjustable area adjusted in step S204.
  • the electronic device 100 can calculate the conversion relationship between the adjustable area and the target model, and continuously bring the key points of the adjustable area closer to the closest key points in the target model, thereby achieving the effect of the adjustable area automatically fitting the target model.
  • the adjustable area will also drive the key points close to the adjustable area in the model to be adjusted to synchronously move closer to the target model.
  • the closer the key points are to the adjustable area The greater the degree of adjustment, the further away from the key points in the adjustable area, the smaller the degree of adjustment. This ensures that the model to be adjusted does not change the rough outline of the model to be adjusted in the process of fitting the target model.
  • the electronic device 100 obtains the adjusted model to be adjusted.
  • the electronic device 100 acquires the adjusted model to be adjusted, it means that the electronic device 100 ends the automatic adjustment and the fitting surfaces of the adjusted model to be adjusted and the target model coincide with each other.
  • the embodiments of the present application provide a method of determining the adjustable area in the model to be adjusted, controlling the adjustable area to fit toward the target model, and during the fitting process, driving part or all of the model to be adjusted toward the target model.
  • a 3D model matching method for target model fitting in which the fitting process of the adjustable area and the fitting process of the model to be adjusted are not limited to the specific implementation process shown in the above steps S201-S209.
  • the electronic device 100 can also adopt other methods. To realize the fit between the adjustable area and the model to be adjusted, the embodiment of the present application does not limit this.
  • the electronic device 100 receives a drag operation acting on one or more key points in the adjustable area.
  • the electronic device 100 can also receive a user operation (such as a third operation) and adjust the model to be adjusted according to the user's needs.
  • a user operation such as a third operation
  • the user can manually fine-tune the model to be adjusted, so that the model to be adjusted can fit the target model more perfectly, so that the fit model to be adjusted and the target model are more in line with the user's aesthetics, and provide the user with a more complete adjustment effect.
  • the electronic device 100 may receive one or more key points P1 acting in the adjustable area.
  • the drag operation drives the key points in the model to be adjusted that are close to the one or more key points P1 to change their positions in the same or similar moving direction and distance, and the closer the key points are to the adjustable area, The greater the degree of adjustment, and the farther away from the key point of the adjustable area, the smaller the degree of adjustment.
  • the electronic device 100 can detect A drag operation that acts on the scalp area of the forehead of a human head model, such as a drag operation that moves toward the forehead.
  • the operations received by the electronic device 100 that act on the adjustable area are not limited to drag operations, but can also be click operations, etc. This embodiment of the present application does not limit this operation.
  • the electronic device 100 stretches or contracts a part of the model to be adjusted.
  • the electronic device 100 can change the one or more key points P1, as well as the key points connected to the one or more key points P1 in the model to be adjusted. position, thereby changing the shape of the adjustable area.
  • the adjustable area can also cause the key points in the model to be adjusted to change simultaneously, stretching or shrinking the part of the model to be adjusted corresponding to the key points.
  • the moving direction of the key point pj is the direction of the drag operation
  • the moving distance (for example, the first distance) of the key point pj is the drag operation. distance moved.
  • the closer the key point is to the key point pj the closer its movement distance is to the movement distance of the key point pj, and the farther away the key point is from the key point pj, the closer its movement distance is.
  • the distance is smaller than the moving distance of key point pj.
  • the key points connected to the key point pj may belong to the second part of the model to be adjusted.
  • the offset angle of the key point pj is smaller than the offset angle of the key point pj.
  • the offset angle of the key point connected to the key point pj is equal to the offset angle of the key point pj.
  • the electronic device 100 when the electronic device 100 controls the movement of one or more key points in the model to be adjusted according to the user's drag operation, the electronic device 100 can control a part of the model to be adjusted that is connected to the one or more key points. (for example, the second part) is deformed, and during the deformation process, the difference between the direction in which the second part moves and the direction in which the drag operation moves is less than a threshold (for example, a second threshold), and the distance that the second part moves is less than or Equal to the distance moved by this key or points.
  • a threshold for example, a second threshold
  • the principle of the user manually dragging the adjustable area to cause the model to be adjusted to deform is similar to the principle of the adjustable area automatically fitting to the target model to cause the model to be adjusted to deform in the aforementioned steps S201-S209.
  • the principle of the user manually dragging the adjustable area to cause the model to be adjusted to deform is similar to the principle of the adjustable area automatically fitting to the target model to cause the model to be adjusted to deform in the aforementioned steps S201-S209.
  • a part of the model to be adjusted by stretching and shrinking the electronic device 100 please refer to the foregoing content and will not be described again here.
  • the electronic device 100 can adjust the hair model and display as shown in Figure 8 In the hair model shown in (c) in Figure 8, compared to the human head model shown in (b) in Figure 8, the hair growth area is further forward and the hairline is lower.
  • the front view of the human head model can be seen as shown in (d) in Figure 8 .
  • steps S107-S108 are optional steps. If the model to be adjusted has no adjustable parts after automatically fitting the target model, the user does not need to manually adjust the model to be adjusted. Alternatively, the electronic device 100 can repeatedly perform steps S107-S108 after executing step S108. That is to say, the user can repeatedly drag the model to be adjusted, Stretch or shrink a portion of the model to be adjusted until the user is satisfied.
  • Figure 9A shows a side cutaway view of the hair model and the human head model. It can be seen that since the hair model is not a hairstyle designed for the human head model, after adjusting the relative positions and relative proportions of the human head model and the hair model, the "roots" of the hair model do not fit on the surface of the human head model. . Among them, Area 1, Area 2 and Area 3 are particularly obvious. In area 1, the hair model and the human head model have a cross-mold phenomenon, that is, the hair model is transmitted to the surface of the human head model. In areas 2 and 3, there is obviously a certain distance between the "roots" of the hair model and the surface of the human head model. .
  • the electronic device 100 detects the user's selection operation on multiple key points in the hair model, and selects the multiple key points.
  • the electronic device 100 determines the adjustable area composed of the multiple key points based on the multiple key points selected in FIG. 9B . Or, further, the electronic device 100 can also display a 3D grid surface at the location of the adjustable area. Afterwards, the electronic device 100 can control key points in the adjustable area, find matching key points on the head model, and drive the adjustable model to fit to the key points. Among them, in area 1 to area 3, the moving direction of the key points in the adjustable area can be viewed in the direction shown in Figure 9C.
  • the hair model can be composed of multiple independent surfaces, a surface can be regarded as a tuft of hair, and each surface is composed of multiple key points.
  • the shape and position of the surface can be adjusted by changing the position of key points to achieve the effect of adjusting the hair model.
  • the cluster of hair when looking at a cluster of hair contained in the hair model alone, the cluster of hair can contain key point 1, key point 2 and key point 3.
  • key point 1 is a key point included in the adjustable area
  • key point 2 and key point 3 are two key points in the hair model that are close to key point 1 and connected to key point 1.
  • the deformation range of the hair model can be is the distance from key point 1 to key point 3.
  • the moving direction of key point 2 to key point 5 and the moving direction of key point 3 to key point 6 are the same or similar to the moving direction of key point 1 to key point 4, and the moving direction of key point 3 to key point 6.
  • the distance is smaller than the distance that key point 2 moves to key point 5, which is smaller than the distance that key point 1 moves to key point 4. That is to say, in the process of the key points in the adjustable area moving to the matching key points in the human head model, the key points in the adjustable area will drive the nearest key points of the hair model connected to it, towards the same direction. Or move in a similar direction, and the closer to the key point in the adjustable area, the farther the key point moves, the greater the degree of adjustment.
  • each cluster of hair in the hair model that is, all the surfaces included, is adjusted according to the above principle.
  • the hair before adjustment and the hair after adjustment can be referred to as shown in Figure 9D.
  • Figure 9E shows the human head model and the adjusted hair model. It can be seen that the "root" of the adjusted hair model fits the "scalp" of the human head model at this time. However, the hair close to the forehead of the human head model appears to have a higher hairline, which is not consistent with the actual character's hairstyle. .
  • the electronic device 100 can detect the user's drag operation on the adjustable area in area 4.
  • the adjustable model in area 4 moves in the direction of the user's drag and can be adjusted.
  • the area still fits the "scalp" of the human head model.
  • the electronic device 100 responds to the user's drag operation, stretches the hair model in area 4, and completes the deformation of the model, thereby obtaining the final model.
  • the 3D model matching method provided by the embodiment of the present application can be applied to digital content generation tools (Digital Content Creation Tool, DCCTool), as a plug-in, or function of DCC Tool, or the like, or the 3D model matching method can also be expressed as an application specifically used to adjust 3D models.
  • DCC Tool refers to all-round 3D software such as Houdini, Maya, Max, Cinema4D and Blender, or it can also refer to special tools such as Zbrush, Nuke, Kantana, SD, realflow and so on.
  • each step in the above method embodiment can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the method steps disclosed in conjunction with the embodiments of this application can be directly implemented by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • This application also provides an electronic device, which may include a memory and a processor.
  • the memory can be used to store computer programs; the processor can be used to call the computer program in the memory, so that the electronic device executes the method executed by the electronic device 100 in any of the above embodiments.
  • the present application also provides a chip system, which includes at least one processor for implementing the functions involved in the method performed by the electronic device 100 in any of the above embodiments.
  • the chip system further includes a memory, the memory is used to store program instructions and data, and the memory is located within the processor or outside the processor.
  • the chip system can be composed of chips or include chips and other discrete devices.
  • processors in the chip system there may be one or more processors in the chip system.
  • the processor can be implemented in hardware or software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor implemented by reading software code stored in memory.
  • the memory may be integrated with the processor or may be provided separately from the processor, which is not limited by the embodiments of the present application.
  • the memory may be a non-transient processor, such as a read-only memory ROM, which may be integrated with the processor on the same chip, or may be separately provided on different chips.
  • the embodiments of this application vary on the type of memory, and The arrangement of the memory and processor is not specifically limited.
  • the chip system can be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC). It can also be a central processor (central processor unit, CPU), a network processor (network processor, NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (micro controller unit (MCU), or a programmable logic device (PLD) or other integrated chip.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processing circuit
  • MCU microcontroller
  • PLD programmable logic device
  • the computer program product includes: a computer program (which can also be called a code, or an instruction).
  • a computer program which can also be called a code, or an instruction.
  • the computer program When the computer program is run, it causes the computer to execute the electronic device in any of the above embodiments. 100 any method of execution.
  • This application also provides a computer-readable storage medium that stores a computer program (which may also be called a code, or an instruction).
  • a computer program which may also be called a code, or an instruction.
  • the computer program When the computer program is run, the computer is caused to perform the method performed by any one of the electronic devices 100 in any of the above embodiments.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (DSP), an AP 800plication specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other Programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC AP 800plication specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the embodiment of the present application also provides a device.
  • the device may specifically be a component or module, and the device may include one or more connected processors and memories. Among them, memory is used to store computer programs. When the computer program is executed by one or more processors, the device is caused to execute the methods in each of the above method embodiments.
  • the devices, computer-readable storage media, computer program products or chips provided by the embodiments of the present application are all used to execute the corresponding methods provided above. Therefore, the beneficial effects it can achieve can be referred to the beneficial effects in the corresponding methods provided above, and will not be described again here.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, solid state disk (SSD)), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Processing Or Creating Images (AREA)

Abstract

本申请公开了一种3D模型匹配方法、电子设备及相关装置,该方法可应用于3D模型之间的适配,该方法包括:显示待调整模型和目标模型,确定待调整模型中的可调整区域,该可调整区域是指待调整模型中需要向目标模型贴合的3D表面,之后,控制可调整区域,带动待调整模型自动贴合目标模型的3D表面。可以看出,该3D模型匹配方法能够快速完成两个3D模型之间的贴合,尽可能减少用户手动制作3D模型的麻烦,为用户提供更加便捷的建模方式,降低了建模的技术门槛,提高建模的生产效率。

Description

3D模型匹配方法、电子设备及相关装置
本申请要求于2022年04月19日提交中国专利局、申请号为202210410336.X、申请名称为“3D模型匹配方法、电子设备及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及计算机技术领域,尤其涉及3D模型匹配方法、电子设备及相关装置。
背景技术
3D是three-dimensional的缩写,就是三维图形。物理自然界中存在的任何物体都可以用三维模型表示,通过电子设备显示该三维模型,可以以虚拟的方式逼真地呈现自然界中存在的物体。
在3D模型的某些应用场景中,随着虚拟偶像、虚拟化身、虚拟角色等概念的兴起,对于制作实时渲染环境下的3D角色模型的需求也越来越多。其中,由于发型对于人物的造型起着非常重要的作用,3D角色模型的发型制作也会花费建模师大量的时间。
为了节约建模师的建模时间,可以将其他角色的发型复用到建模师制作的人物模型上,但是,由于不同角色的发型是针对不同角色专门定制的发型,因此复用到该人物模型上时,可能会存在大小尺寸、发型和人物模型无法匹配的问题,即发型的贴合面和人物模型的贴合面不吻合的问题。因此,如何匹配两个3D模型的贴合面,是目前亟待解决的问题。
发明内容
本申请提供了3D模型匹配方法、电子设备及相关装置,实现了两个3D模型的贴合。
第一方面,本申请实施例提供了一种3D模型匹配方法,所述方法包括:电子设备显示第一模型和第二模型;所述电子设备确定所述第一模型中的第一区域,所述第一区域是指需要向所述第二模型中的第二区域贴合的3D表面;所述电子设备控制所述第一区域发生形变,以使得形变后的所述第一区域与所述第二区域贴合,并且,所述电子设备控制所述第一模型中,与所述第一区域相连的第一部分发生形变,所述第一部分的形变程度小于或等于所述第一区域的形变程度。
实施第一方面提供的方法,可以控制一个3D模型进行变形,使得变形后的该3D模型与另一个3D模型的3D表面贴合,从而完成两个3D模型的匹配。示例性地,该方法可以应用于头发模型匹配人头模型,植被匹配地形、服饰匹配人体模型等等。这样,可以减少建模师手动建模的麻烦,省去了建模师大量的人工制作时间和精力,有效缩短了建模师的建模时间,提高了3D模型的复用率。
结合第一方面,在一种可能的实施方式中,所述电子设备确定所述第一模型中的第一区域之前,所述方法还包括:所述电子设备检测到作用于所述第一模型中的M个关键点的第一操作,M为正整数,所述第一操作用于触发确定所述第一区域,所述第一区域由所述M个关键点构成的一个或多个面组成。
在进行两个3D模型的贴合之前,用户可以手动确定待调整模型中的可调整区域。这样, 电子设备可以根据用户的需求,控制用户指定的3D表面向3D模型进行贴合,增强3D模型匹配过程中,用户的可操作性,提升用户在调整3D模型中的参与感。
结合第一方面,在一种可能的实施方式中,所述电子设备检测到作用于所述第一模型中的M个关键点的第一操作之后,所述方法还包括:响应于所述第一操作,所述电子设备更改所述第一操作选择的一个或多个关键点的显示效果,所述显示效果包括以下一项或多项:颜色、大小、透明度或亮度。
也就是说,电子设备可以从可视化的角度区分用户选中和未选中的关键点,避免用户重复选择已选择过的关键点,更加快速的选择其他未选中的关键点。
结合第一方面,在一种可能的实施方式中,所述第二区域包括:一个或多个关键点,所述第二区域中的关键点与所述第一区域中的关键点一一对应,所述第一区域中包括第一关键点,所述第二区域中与所述第一关键点相对应的关键点,为所述第二模型中,与所述第一关键点距离最近的关键点。
也就是说,在电子设备确定待调整模型中的可调整区域之后,电子设备可以自动根据该可调整区域,寻找目标模型中距离可调整区域最近的3D表面,从而实现待调整模型自动向目标模型贴合的效果。
结合第一方面,在一种可能的实施方式中,所述第一区域中包括第一关键点,所述第二区域中与所述第一关键点相对应的关键点为第二关键点;所述电子设备控制所述第一区域发生形变,以使得形变后的所述第一区域与所述第二区域贴合,具体包括:所述电子设备控制所述第一关键点向所述第二关键点移动,所述移动后的所述第一关键点与所述第二关键点的距离小于第一阈值。
结合第一方面,在一种可能的实施方式中,所述第一区域中包括第一关键点,所述第一部分包括与所述第一关键点相连的N个关键点,N为正整数;所述电子设备控制所述第一模型中,与所述第一区域相连的第一部分发生形变,具体包括:所述电子设备根据所述第一关键点移动的距离和方向,控制所述N个关键点,朝相同或相近的方向移动,所述N个关键点移动的距离小于或等于所述第一关键点移动的距离。
结合第一方面,在一种可能的实施方式中,所述N个关键点,至少满足以下一项:所述N个关键点中,越靠近所述第一关键点的关键点,其移动的方向,越接近所述第一关键点移动的方向;或所述N个关键点中,越靠近所述第一关键点的关键点,其移动的距离,越接近所述第一关键点移动的距离。
也就是说,在待调整模型向目标模型贴合的过程中,待调整模型中越靠近可调整区域的关键点其调整的程度越大,越远离可调整区域的关键点其调整的程度越小,从而达到待调整模型向目标模型贴合的同时,待调整模型的外在造型变化不大。
结合第一方面,在一种可能的实施方式中,所述电子设备控制所述第一区域发生形变之前,所述方法还包括:所述电子设备确定所述第一模型的变形范围,所述变形范围内的第一模型能够跟随所述第一区域的形变,发生形变;所述电子设备根据所述变形范围确定所述第一部分。
也就是说,电子设备可以在待调整模型中确定一个变形范围,该变形范围内的待调整模型能够跟随可调整区域的形变,发生形变。这样,电子设备可以在待调整模型中区分出可变形的部分和不可变形的部分,避免待调整模型的所有部分都跟随待调整模型的贴合过程发生形变。
结合第一方面,在一种可能的实施方式中,所述电子设备确定变形范围之前,所述方法 还包括:所述电子设备检测到第二操作,所述第二操作用于触发所述电子设备确定所述变形范围。
可见,用户可以手动确定待调整模型中的变形范围,这样,在待调整模型向目标模型贴合时,用户可以根据自己的需求控制待调整模型的哪一部分可以发生形变,哪一部分不能发生形变,增强用户的可操作性性,提升用户在调整3D模型中的参与感。
结合第一方面,在一种可能的实施方式中,所述电子设备控制所述第一模型中,与所述第一区域相连的第一部分发生形变之后,所述方法还包括:所述电子设备检测到作用于所述第一区域中的L个关键点的第三操作,L为正整数;响应于所述第三操作,所述电子设备控制所述L个关键点,朝所述第三操作指示的第一方向移动第一距离,并且,所述电子设备控制所述第一模型中,与所述L个关键点相连的第二部分发生形变,形变过程中,所述第二部分移动的方向与所述第一方向的差值小于第二阈值,所述第二部分移动的距离小于或等于所述第一距离。
可见,电子设备除了可以自动完成待调整模型向目标模型贴合的效果外,还可以接收到用户操作,根据用户的需求调整待调整模型。这样,用户可以手动微调待调整模型,使待调整模型更够更加完美的贴合目标模型,使贴合后的待调整模型和目标模型更符合用户的审美,为用户提供更加完善的调整效果。
结合第一方面,在一种可能的实施方式中,所述第三操作为拖动操作,所述第一方向为所述拖动操作移动的方向,所述第一距离为所述拖动操作移动的距离。
结合第一方面,在一种可能的实施方式中,所述电子设备确定所述第一模型中的第一区域之后,所述方法还包括:所述电子设备在所述第一区域生成并显示一个三维网格面,所述三维网格面用于提示用户所述第一区域能够向所述第二模型贴合。
也就是说,在电子设备确定可调整区域之后,可以根据该可调整区域生成并显示一个3D网格面,该3D网格面用于提示用户该待调整模型存在一个可调整区域能够像目标模型贴合,用户可以通过该3D网格面,清楚地了解到该待调整模型上的需要向目标模型贴合的区域。
结合第一方面,在一种可能的实施方式中,电子设备获取并显示第一模型和第二模型之后,所述方法还包括:所述电子设备检测到第四操作;响应于所述第四操作,所述电子设备调整所述第一模型和所述第二模型的相对位置或相对比例中的任意一项或多项,使得所述第一模型与所述第二模型组合在一起。
由于待调整模型和目标模型的尺寸和位置可能并不适配,电子设备100可以大致调整待调整模型和目标模型的尺寸和位置,将待调整模型和目标模型组合在一起,使待调整模型和目标模型的相对位置和相对比例基本适配。
结合第一方面,在一种可能的实施方式中,所述第一模型包括头发模型,所述第二模型包括人头模型,或者,所述第一模型包括植被模型,所述第二模型包括地形模型,或者,所述第一模型包括服饰模型,所述第二模型包括人体模型。
第二方面,本申请实施例提供了一种电子设备,包括存储器,一个或多个处理器,以及一个或多个程序;该一个或多个处理器在执行该一个或多个程序时,使得该电子设备实现如第一方面或第一方面的任意一种实施方式所描述的方法。
第三方面,本申请实施例提供了一种计算机可读存储介质,包括指令,其特征在于,当所述指令在电子设备上运行时,使得所述电子设备执行如第一方面或第一方面的任意一种实施方式所描述的方法。
第四方面,本申请实施例提供了一种计算机程序产品,其特征在于,当所述计算机程序 产品在计算机上运行时,使得计算机执行如第一方面或第一方面的任意一种实施方式所描述的方法。
实施本申请实施例提供的技术方法,能够快速完成两个3D模型之间的贴合,为建模师提供更加便捷的建模方式,降低了建模的技术门槛,省去了建模师手动建模的麻烦,提高了建模的生产效率。
附图说明
图1为本申请实施例提供的电子设备的硬件结构示意图;
图2为本申请实施例提供的电子设备的软件结构示意图;
图3为本申请实施例提供的3D模型匹配方法的流程示意图;
图4为本申请实施例提供的一些模型示意图;
图5为本申请实施例提供的一些模型示意图;
图6为本申请实施例提供的一些模型示意图;
图7为本申请实施例提供的3D模型匹配方法的另一个流程示意图;
图8为本申请实施例提供的一些模型示意图;
图9A-图9G为本申请实施例提供的一些原理示意图。
具体实施方式
下面将结合附图对本申请实施例中的技术方案进行清楚、详尽地描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;文本中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,另外,在本申请实施例的描述中,“多个”是指两个或多于两个。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为暗示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征,在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本申请以下实施例中的术语“用户界面(user interface,UI)”,是应用程序或操作***与用户之间进行交互和信息交换的介质接口,它实现信息的内部形式与用户可以接受形式之间的转换。用户界面是通过java、可扩展标记语言(extensible markup language,XML)等特定计算机语言编写的源代码,界面源代码在电子设备上经过解析,渲染,最终呈现为用户可以识别的内容。用户界面常用的表现形式是图形用户界面(graphic user interface,GUI),是指采用图形方式显示的与计算机操作相关的用户界面。它可以是在电子设备的显示屏中显示的文本、图标、按钮、菜单、选项卡、文本框、对话框、状态栏、导航栏、Widget等可视的界面元素。
本申请实施例提供了一种3D模型匹配方法,该方法包括:显示待调整模型和目标模型,确定待调整模型中的可调整区域,控制可调整区域向目标模型贴合,并在贴合的过程中,可调整区域带动待调整模型的第一部分,跟随可调整区域的形变发生形变,且该第一部分的形变程度小于或等于可调整区域的形变程度,从而达到待调整模型向目标模型贴合的效果,使 得待调整模型和目标模型的3D表面匹配的同时,待调整模型的外在造型变化不大。
其中,在本申请实施例中,待调整模型和目标模型都为3D模型。3D模型是指利用三维软件制作而成的立体模型,这些3D模型由多个关键点,以及这些关键点构成的面组成,这些关键点的坐标可以位于三维坐标系中,使得3D模型呈现出3D立体的效果。
本申请实施例提供的3D模型匹配方法可以应用于头发模型匹配人头模型,植被匹配地形、服饰匹配人体模型等等应用场景。其中,以头发模型匹配人头模型的场景而言,头发模型即为待调整模型,人头模型即为目标模型,在建模师完成人头模型的制作后,可以直接将其他角色的头发模型复用在该人头模型上,这样,建模师无需再手动制作适用于该人头模型的头发模型,且无需顾虑现有的头发模型与该人头模型是否适配的问题,该3D模型匹配方法可以使该头发模型的发根自动贴合人头模型的“头皮”,从而迅速得到拥有头发的人物模型,且该人物模型的造型效果可以媲美于直接手动建模的造型效果,省去了建模师大量的人工制作时间和精力,有效缩短了建模师的建模时间,提高了3D模型的复用性。具体关于头发模型匹配人头模型的具体描述可以参见后续方法实施例,这里先不展开。
可以看出,本申请实施例提供的3D模型匹配方法,能够快速完成两个3D模型之间的贴合,便捷用户的操作,为建模师提供更加便捷的建模方式,降低了建模的技术门槛,提高了建模的生产效率。
图1示出了电子设备100的硬件结构示意图。
电子设备100可以是手机、平板电脑、桌面型计算机、膝上型计算机、手持计算机、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本,以及蜂窝电话、个人数字助理(personal digital assistant,PDA)、增强现实(augmented reality,AR)设备、虚拟现实(virtual reality,VR)设备、人工智能(artificial intelligence,AI)设备、可穿戴式设备、车载设备、智能家居设备和/或智慧城市设备,本申请实施例对该电子设备的具体类型不作特殊限制。
电子设备100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本发明实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit, NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了***的效率。
在一些实施例中,处理器110可用于根据选中的关键点确定可调整区域,控制可调整区域,带动待调整模型的第一部分自动贴合目标模型的3D表面。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过电子设备100的无线充电线圈接收无线充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为电子设备供电。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
电子设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在电子设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在电子设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导 航卫星***(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号解调以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,电子设备100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得电子设备100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯***(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位***(global positioning system,GPS),全球导航卫星***(global navigation satellite system,GLONASS),北斗卫星导航***(beidou navigation satellite system,BDS),准天顶卫星***(quasi-zenith satellite system,QZSS)和/或星基增强***(satellite based augmentation systems,SBAS)。
在一些实施例中,移动通信模块150和无线通信模块160可用于获取待调整模型和目标模型。
电子设备100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD)。显示面板还可以采用有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),miniled,microled,micro-oled,量子点发光二极管(quantum dot light emitting diodes,QLED)等制造。在一些实施例中,电子设备可以包括1个或N个显示屏194,N为大于1的正整数。
在一些实施例中,显示屏194可用于显示待调整模型和目标模型,以及调整待调整模型和目标模型过程中所需的工具或用户界面等等。
电子设备100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中, 电子设备100可以包括1个或N个摄像头193,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当电子设备100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。电子设备100可以支持一种或多种视频编解码器。这样,电子设备100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现电子设备100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
内部存储器121可以包括一个或多个随机存取存储器(random access memory,RAM)和一个或多个非易失性存储器(non-volatile memory,NVM)。
在一些实施例中,内部存储器121可用于存储待调整模型和目标模型,以及调整后的待调整模型和目标模型。
随机存取存储器可以包括静态随机存储器(static random-access memory,SRAM)、动态随机存储器(dynamic random access memory,DRAM)、同步动态随机存储器(synchronous dynamic random access memory,SDRAM)、双倍资料率同步动态随机存取存储器(double data rate synchronous dynamic random access memory,DDR SDRAM,例如第五代DDR SDRAM一般称为DDR5SDRAM)等;非易失性存储器可以包括磁盘存储器件、快闪存储器(flash memory)。
快闪存储器按照运作原理划分可以包括NOR FLASH、NAND FLASH、3D NAND FLASH等,按照存储单元电位阶数划分可以包括单阶存储单元(single-level cell,SLC)、多阶存储单元(multi-level cell,MLC)、三阶储存单元(triple-level cell,TLC)、四阶储存单元(quad-level cell,QLC)等,按照存储规范划分可以包括通用闪存存储(英文:universal flash storage,UFS)、嵌入式多媒体存储卡(embedded multi media Card,eMMC)等。
随机存取存储器可以由处理器110直接进行读写,可以用于存储操作***或其他正在运行中的程序的可执行程序(例如机器指令),还可以用于存储用户及应用程序的数据等。
非易失性存储器也可以存储可执行程序和存储用户及应用程序的数据等,可以提前加载到随机存取存储器中,用于处理器110直接进行读写。
外部存储器接口120可以用于连接外部的非易失性存储器,实现扩展电子设备100的存储能力。外部的非易失性存储器通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部的非易失性存储器中。
电子设备100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。电子设备100可以通过扬声器170A收听音乐,或收听免提通话。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当电子设备100接听电 话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。电子设备100可以设置至少一个麦克风170C。在另一些实施例中,电子设备100可以设置两个麦克风170C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,电子设备100还可以设置三个,四个或更多麦克风170C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.5mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。压力传感器180A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器180A,电极之间的电容改变。电子设备100根据电容的变化确定压力的强度。当有触摸操作作用于显示屏194,电子设备100根据压力传感器180A检测所述触摸操作强度。电子设备100也可以根据压力传感器180A的检测信号计算触摸的位置。在一些实施例中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的操作指令。例如:当有触摸操作强度小于第一压力阈值的触摸操作作用于短消息应用图标时,执行查看短消息的指令。当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于短消息应用图标时,执行新建短消息的指令。
陀螺仪传感器180B可以用于确定电子设备100的运动姿态。在一些实施例中,可以通过陀螺仪传感器180B确定电子设备100围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器180B可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器180B检测电子设备100抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消电子设备100的抖动,实现防抖。陀螺仪传感器180B还可以用于导航,体感游戏场景。
气压传感器180C用于测量气压。在一些实施例中,电子设备100通过气压传感器180C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器180D包括霍尔传感器。电子设备100可以利用磁传感器180D检测翻盖皮套的开合。在一些实施例中,当电子设备100是翻盖机时,电子设备100可以根据磁传感器180D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。
加速度传感器180E可检测电子设备100在各个方向上(一般为三轴)加速度的大小。当电子设备100静止时可检测出重力的大小及方向。还可以用于识别电子设备姿态,应用于横竖屏切换,计步器等应用。
距离传感器180F,用于测量距离。电子设备100可以通过红外或激光测量距离。在一些实施例中,拍摄场景,电子设备100可以利用距离传感器180F测距以实现快速对焦。
接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。电子设备100通过发光二极管向外发射红外光。电子设备100使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定电子设备100附近有物体。当检测到不充分的反射光时,电子设备100可以确定电子设备100附近没有物体。电子设备100可以利用接近光传感器180G检测用户手持电子设备100贴近耳 朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器180G也可用于皮套模式,口袋模式自动解锁与锁屏。
环境光传感器180L用于感知环境光亮度。电子设备100可以根据感知的环境光亮度自适应调节显示屏194亮度。环境光传感器180L也可用于拍照时自动调节白平衡。环境光传感器180L还可以与接近光传感器180G配合,检测电子设备100是否在口袋里,以防误触。
指纹传感器180H用于采集指纹。电子设备100可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器180J用于检测温度。在一些实施例中,电子设备100利用温度传感器180J检测的温度,执行温度处理策略。例如,当温度传感器180J上报的温度超过阈值,电子设备100执行降低位于温度传感器180J附近的处理器的性能,以便降低功耗实施热保护。在另一些实施例中,当温度低于另一阈值时,电子设备100对电池142加热,以避免低温导致电子设备100异常关机。在其他一些实施例中,当温度低于又一阈值时,电子设备100对电池142的输出电压执行升压,以避免低温导致的异常关机。
触摸传感器180K,也称“触控器件”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于电子设备100的表面,与显示屏194所处的位置不同。
骨传导传感器180M可以获取振动信号。在一些实施例中,骨传导传感器180M可以获取人体声部振动骨块的振动信号。骨传导传感器180M也可以接触人体脉搏,接收血压跳动信号。在一些实施例中,骨传导传感器180M也可以设置于耳机中,结合成骨传导耳机。音频模块170可以基于所述骨传导传感器180M获取的声部振动骨块的振动信号,解析出语音信号,实现语音功能。应用处理器可以基于所述骨传导传感器180M获取的血压跳动信号解析心率信息,实现心率检测功能。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。电子设备100可以接收按键输入,产生与电子设备100的用户设置以及功能控制有关的键信号输入。
马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏194不同区域的触摸操作,马达191也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。SIM卡可以通过***SIM卡接口195,或从SIM卡接口195拔出,实现和电子设备100的接触和分离。电子设备100可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口195可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口195可以同时***多张卡。所述多张卡的类型可以相同,也可以不同。SIM卡接口195也可以兼容不同类型的SIM卡。SIM卡接口195也可以兼容外部存储卡。电子设备100通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,电子设备100采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在电子设备100中,不能和电子 设备100分离。
电子设备可以是搭载iOS、Android、Microsoft或者其它操作***的便携式终端设备,例如手机、平板电脑、可穿戴设备等,还可以是具有触敏表面或触控面板的膝上型计算机(Laptop)、具有触敏表面或触控面板的台式计算机等非便携式终端设备。电子设备100的软件***可以采用分层架构,事件驱动架构,微核架构,微服务架构,或云架构。本发明实施例以分层架构的Android***为例,示例性说明电子设备100的软件结构。
图2是本申请实施例的电子设备100的软件结构框图。
分层架构将软件分成若干个层,每一层都有清晰的角色和分工。层与层之间通过软件接口通信。在一些实施例中,将Android***分为四层,从上至下分别为应用程序层,应用程序框架层,安卓运行时(Android runtime)和***库,以及内核层。
应用程序层可以包括一系列应用程序包。
如图2所示,应用程序包可以包括相机,图库,日历,通话,地图,导航,WLAN,蓝牙,音乐,视频,短信息等应用程序。
应用程序框架层为应用程序层的应用程序提供应用编程接口(application programming interface,API)和编程框架。应用程序框架层包括一些预先定义的函数。
如图2所示,应用程序框架层可以包括窗口管理器,内容提供器,视图***,电话管理器,资源管理器,通知管理器等。
窗口管理器用于管理窗口程序。窗口管理器可以获取显示屏大小,判断是否有状态栏,锁定屏幕,截取屏幕等。
内容提供器用来存放和获取数据,并使这些数据可以被应用程序访问。所述数据可以包括视频,图像,音频,拨打和接听的电话,浏览历史和书签,电话簿等。
视图***包括可视控件,例如显示文字的控件,显示图片的控件等。视图***可用于构建应用程序。显示界面可以由一个或多个视图组成的。例如,包括短信通知图标的显示界面,可以包括显示文字的视图以及显示图片的视图。
电话管理器用于提供电子设备100的通信功能。例如通话状态的管理(包括接通,挂断等)。
资源管理器为应用程序提供各种资源,比如本地化字符串,图标,图片,布局文件,视频文件等等。
通知管理器使应用程序可以在状态栏中显示通知信息,可以用于传达告知类型的消息,可以短暂停留后自动消失,无需用户交互。比如通知管理器被用于告知下载完成,消息提醒等。通知管理器还可以是以图表或者滚动条文本形式出现在***顶部状态栏的通知,例如后台运行的应用程序的通知,还可以是以对话窗口形式出现在屏幕上的通知。例如在状态栏提示文本信息,发出提示音,电子设备振动,指示灯闪烁等。
Android Runtime包括核心库和虚拟机。Android runtime负责安卓***的调度和管理。
核心库包含两部分:一部分是java语言需要调用的功能函数,另一部分是安卓的核心库。
应用程序层和应用程序框架层运行在虚拟机中。虚拟机将应用程序层和应用程序框架层的java文件执行为二进制文件。虚拟机用于执行对象生命周期的管理,堆栈管理,线程管理,安全和异常的管理,以及垃圾回收等功能。
***库可以包括多个功能模块。例如:表面管理器(surface manager),媒体库(Media Libraries),三维图形处理库(例如:OpenGL ES),2D图形引擎(例如:SGL)等。
表面管理器用于对显示子***进行管理,并且为多个应用程序提供了2D和3D图层的融合。
媒体库支持多种常用的音频,视频格式回放和录制,以及静态图像文件等。媒体库可以支持多种音视频编码格式,例如:MPEG4,H.264,MP3,AAC,AMR,JPG,PNG等。
三维图形处理库用于实现三维图形绘图,图像渲染,合成,和图层处理等。
2D图形引擎是2D绘图的绘图引擎。
内核层是硬件和软件之间的层。内核层至少包含显示驱动,摄像头驱动,音频驱动,传感器驱动。
下面结合捕获拍照场景,示例性说明电子设备100软件以及硬件的工作流程。
当触摸传感器180K接收到触摸操作,相应的硬件中断被发给内核层。内核层将触摸操作加工成原始输入事件(包括触摸坐标,触摸操作的时间戳等信息)。原始输入事件被存储在内核层。应用程序框架层从内核层获取原始输入事件,识别该输入事件所对应的控件。以该触摸操作是触摸单击操作,该单击操作所对应的控件为相机应用图标的控件为例,相机应用调用应用框架层的接口,启动相机应用,进而通过调用内核层启动摄像头驱动,通过摄像头193捕获静态图像或视频。
图3示出了本申请实施例提供的3D模型匹配方法的流程示意图。
如图3所示,该方法包括:
S101.电子设备100获取并显示待调整模型和目标模型。
待调整模型和目标模型都为3D模型。3D模型可以是指利用三维软件制作而成的立体模型,包括建筑、人物、植被、机械等等。该3D模型由多个关键点,以及这些关键点构成的面组成,这些关键点的坐标位于三维坐标系中,使得3D模型呈现出3D立体的效果。其中,待调整模型是指需要调整形状,使其匹配目标模型的目标表面的3D模型。
在本申请实施例中,待调整模型还可以被称为第一模型,目标模型还可以被称为第二模型。
示例性地,参见图4,待调整模型可以是指图4中(a)所示的头发模型,目标模型可以是指图4中(b)所示的人头模型。可以看出,可以通过调整头发模型的发根区域,使其贴合到人头模型的头顶表面,从而获得一个拥有发型的人头模型。
电子设备100获取3D模型的方式可以包括以下两种:
1)电子设备100从网络中下载3D模型
也就是说,用户可以在3D模型市场中查找所需的3D模型,通过网络将其下载到本地。
2)电子设备100从本地获取3D模型
也就是说,电子设备100可以在本地存储有一个或多个3D模型,该一个或多个3D模型可以为提前从其他设备获取的3D模型,也可以为在本地利用三维软件制作而成的3D模型。
示例性地,目标模型可以为电子设备100在本地制作的3D模型,待调整模型可以为电子设备100从网络中下载的3D模型。也就是说,用户可以通过在网上挑选喜欢的模板或素材,将其组装在用户自己制作的3D模型上,从而减少用户制作模型的工作量,并且用户也无需担心挑选的模板或素材不适配自己制作的模型的问题,用户可以通过以下步骤S102-S108来快速调整模板或素材,使其完美适配用户制作的模型。
可以理解的是,待调整模型不限于上述提及的头发模型,目标模型也不限于上述提及的人头模型。例如,待调整模型可以为植被模型,目标模型可以为地形模型,电子设备100可 以通过调整植被模型的底端,使其贴合地形模型,从而得到一块生长有植被的地形模型。又例如,待调整模型可以为服饰模型,目标模型可以为人体模型,电子设备100可以通过调整服饰模型的形状,使其贴合人体模型,从而得到一个穿搭有服饰的人体模型。本申请实施例对该待调整模型和目标模型不作限制。
在一些实施例中,该待调整模型为通过面片建模方式创建的3D模型。面片建模是指通过创建样条线来搭建模型的骨架,再通过样条线组成一个或多个曲面,从而完成模型的创建。其中,可以通过调整样条线上的关键点、样条线或曲面,来完成该模型造型的调整。换句话说,面片建模类似于用纸糊灯笼的过程,利用面片建模制作完成的待调整模型可以由多个独立的曲面组合而成,而每一个曲面都包含多个关键点,通过调整关键点的位置,即可调整该待调整模型的造型。例如,当待调整模型为通过面片建模方式制作的头发模型时,该头发模型可以有多簇头发组成,一簇头发用一个曲面表示,利用面片建模方式创建头发模型可以利用较少的细节表达出光滑的、与头发轮廓相符的形状。
在一些实施例中,电子设备100可以通过第一应用显示该待调整模型和目标模型。其中,该第一应用可以用于制作和渲染三维模型。进一步地,电子设备100还可以通过该第一应用调整待调整模型和目标模型,使待调整模型和目标模型的3D表面贴合。示例性地,该第一应用可以是指houdini,maya,max,cinema4D,blender,Zbrush,Nuke,Kantana,SD或realflow等等应用。
可以理解的是,3D模型上的关键点还可以被称为顶点、节点、端点等等,本申请实施例对此不作限制。
S102.电子设备100调整待调整模型和目标模型的相对位置和相对比例。
由于待调整模型和目标模型的尺寸和位置可能并不适配,电子设备100可以大致调整待调整模型和目标模型的尺寸和位置,将待调整模型和目标模型组合在一起,使待调整模型和目标模型的相对位置和相对比例基本适配,即待调整模型和目标模型的贴合面大致对齐。例如,电子设备100可以以目标模型的尺寸和位置为标准,调整待调整模型的尺寸和位置,使待调整模型与目标模型的贴合面基本贴合在一起。
示例性地,如图5中(a)所示,由于头发模型的尺寸比人头模型的尺寸小,因此,电子设备100可以通过调整头发模型的尺寸,获得如图5中(b)所示的头发模型和人头模型,使该头发模型的大小与人头模型的头部大小基本相同。
在一些实施例中,电子设备100可以根据用户作用于待调整模型和/或目标模型的移动位置的操作,调整待调整模型和目标模型的相对位置,另外,电子设备100可以根据用户作用于待调整模型和/或目标模型的放大或缩小的操作,调整待调整模型和目标模型的相对比例。
在另一些实施例中,电子设备100可以自动调整待调整模型和目标模型的相对位置和相对比例。具体地,电子设备100可以根据待调整模型和目标模型的位置,自动调整待调整模型和目标模型的相对位置,或者,电子设备100可以根据待调整模型和目标模型的大小,自动调整待调整模型和目标模型的相对比例。
可以理解的是,步骤S102为可选的步骤,当待调整模型与目标模型的相对位置适配时,电子设备100可以不用调整待调整模型和目标模型的相对位置,同理,当待调整模型与目标模型的相对比例适配时,电子设备100可以不用调整待调整模型和目标模型的相对比例。
需要注意的是,电子设备100调整待调整模型与目标模型的相对位置和相对比例时,并 没有改变待调整模型和目标模型的形状,即未改变待调整模型和目标模型的造型,因此,即时待调整模型和目标模型组合在一起,待调整模型和目标模型仍在存在3D表面不贴合的问题。
S103.电子设备100接收到作用于待调整模型的关键点的选择操作。
电子设备100根据用户作用于待调整模型的关键点的选择操作(例如第一操作),选中一个或多个关键点(例如M个关键点,M为正整数),这一个或多个关键点构成的3D表面即为待调整模型中需要与目标模型进行贴合的贴合面。
在一些实施例中,电子设备100可以通过第一应用显示该待调整模式和目标模型,该第一应用中可以包含选择工具,例如刷子工具,电子设备100可以检测到用户选中该选择工具的操作,使用该选择工具完成对待调整模型中一个或多个关键点的选择。
在一些实施例中,在电子设备100接收到作用于待调整模型的关键点的选择操作之前,电子设备100可以突出显示待调整模型,以便用户能够更加清晰地查看到待调整模型,并选择待调整模型的关键点。其中,突出显示待调整模型可以包括但不限于以下三种方式:1)隐藏目标模型;2)更改待调整模型或目标模型的颜色,通过颜色区分待调整模型和目标模型;3)降低目标模型的透明度。
在一些实施例中,当待检测模型的关键点被选中时,电子设备100可以改变该关键点的显示效果,包括但不限于:颜色、大小、透明度或亮度等等,从而从视觉上帮助用户区分出该待调整模型上选中和未选中的关键点,避免重复选择已选择过的关键点,更加快速的选择其他未选中的关键点。
示例性地,如图6中(a)、(b)所示,在头发模型和人头模型的相对位置和相对比例基本适配后,电子设备100可以隐***头模型,这时电子设备100仅显示有头发模型。电子设备100可以接收到作用于头发模型的部分关键点的选择操作,选中该部分关键点,该部分关键点可以是指如图6中(a)所示的头发模型的“发根”所在的关键点。另外,在关键点未选中的情况下,关键点的颜色可以为黑色,当关键点被选中时,该关键点的颜色可以更改为浅色。当头发模型的所有“发根”所在的关键点都被选中时,电子设备100可以显示如图6中(b)所示的头发模型。
S104.电子设备100根据选中的关键点确定可变形的可调整区域。
由于三点即可构成一个面,电子设备100根据选中的关键点,确定该选中的关键点构成的可调整区域,该可调整区域由选中的关键点构成的一个或多个面组成。在本申请实施例中,该可调整区域还可以被称为第一区域,该第一区域是指第一模型中需要向第二模型的一个3D表面(例如第二区域)进行贴合的3D表面。
在一些实施例中,电子设备100可以根据该可调整区域生成并显示一个边缘光滑的3D网格面,该3D网格面可以为包含该可调整区域的一个3D表面。另外,该3D网格面的颜色可以不同于待调整模型的颜色,从而在视觉上突出显示该3D网格面,该3D网格面用于提示用户该待调整模型存在一个可调整区域能够像目标模型贴合,用户可以通过该3D网格面,清楚地了解到该待调整模型上的需要向目标模型贴合的区域。
示例性地,如图6中(c)所示,在电子设备100选中头发模型中的一个或多个关键点后,电子设备100可以根据该一个或多个关键点在头发模型中显示如图6中(c)所示的网格面001,该网格面001的出现,使该头发模型从视觉上就像一个“带有头套的假发”,给用户一 种可调整待调整模型的视觉感受,提高模型调整过程的趣味性。
在一些实施例中,在电子设备100根据用户操作选中一个或多个关键点之后,电子设备100可以接收到用户确认选择该一个或多个关键点的确认操作,响应于该确认操作,触发生成并显示3D网格面。
在一些实施例中,在电子设备100确定可调整区域或显示3D网格面之后,电子设备100还可以接受到用户更改、增加、删除以及重新选择关键点的操作,调整该可调整区域或3D网格面。这样,在用户选中关键点或查看3D网格面的过程中,用户可以重新调整该可调整区域。
另外,需要注意的是,由于电子设备100可以在用户选择关键点的过程中,根据选中的关键点确定可调整区域,因此,电子设备100可以重复执行步骤S103-S104,即在执行完步骤S104之后,重新回到步骤S103。也就是说,电子设备100可以在用户逐渐增多选择的关键点时,逐渐扩大可变形的可调整区域,直到用户满意为止,得到最终的可调整区域。
可以看出,电子设备100根据用户的操作确定待调整模型中的可调整区域,用户可以手动确定待调整模型中的需要向目标模型贴合的3D表面,电子设备100可以根据用户的需求,控制用户指定的3D表面向3D模型进行贴合,增强3D模型匹配过程中,用户的可操作性,提升用户在调整3D模型中的参与感。
在一些实施例中,电子设备100除了根据用户作用于关键点的选择操作确定可调整区域外,还可以自动确定待调整模型中的可调整区域。具体地,电子设备100可以根据可调整模型中不同部位的标识信息来自动确定待调整模型中的可调整区域。示例性地,当待调整模型为头发模型时,建模师可以在建模过程中或完成该头发模型的建模后,将头发模型划分成多个分区,例如,发根区、发中区、发尾区,不同的分区可以设置有不同的标识信息,电子设备100在获取到该头发模型后,可以根据该头发模型携带的标识信息来确定该头发模型的发根区,由于发根区是贴合头部的区域,所以可以将该发根区确定为头发模型的可调整区域。或者,电子设备100可以自动识别模型的造型来确定待调整模型中的可调整区域。本申请实施例对电子设备100确定可调整区域的方式不作限制。
S105.电子设备100确定待调整模型中靠近可调整区域的变形范围。
由于电子设备100需要调整待调整模型的形状来使得可调整区域贴合目标模型。因此,电子设备100可以在待调整模型中确定一个变形范围,该变形范围内的待调整模型能够跟随可调整区域的形变,发生形变,从而达到待调整模型贴合目标模型的效果。
该变形范围可以是指待调整模型中,靠近可调整区域的一端到远离可调整区域的另一端的一个长度范围,例如该变形范围可以是指该待调整模型的总厚度的10%。
电子设备100可以根据以下两种方式确定可调整区域的变形范围:
1)电子设备100可以根据预设的阈值来确定该变形范围
也就是说,在电子设备100确定待调整模型中的可调整区域后,电子设备100可以自动确定该待调整模型的变形范围。示例性地,该变形范围的数值大小可以是指10厘米,或者,可以是指待调整模型中包含的三个关键点的距离等等。本申请实施例对该变形范围的定义不作限制。
2)电子设备100根据用户操作确定该变形范围
也就是说,电子设备100可以检测到用户操作(例如第二操作),响应于该操作,确定待调整模型中的变形范围。电子设备100可以根据用户调整的变形范围的数值大小,或者,在 待调整模型中选择的可变形的关键点,来确定待调整模型的变形范围。
可以理解的是,如果变形范围包含了待调整模型的全部,则步骤S105为可选的步骤,电子设备100在执行步骤S104后,直接执行步骤S106,控制可调整区域,带动待调整模型向目标模型的3D表面贴合。
S106.电子设备100控制可调整区域,带动变形范围内的待调整模型向目标模型的3D表面贴合。
电子设备100可以控制可调整区域发生形变,以使得形变后的可调整区域与目标模型的一个3D表面贴合。并且,在可调整区域形变的过程中,电子设备100还可以控制待调整模型中,与可调整区域相连的一部分发生形变,从而实现待调整模型向目标模型贴合的效果。具体地,电子设备100可以控制可调整区域,带动待调整模型中的第一部分向目标模型的3D表面贴合,其中,该第一部分可以是指变形范围内的待调整模型。目标模型的3D表面还可以被称为第二区域。
下面结合图7所示的方法流程图详细介绍步骤S106的具体实现过程:
如图7所示,该步骤S106可以包括:
S201.电子设备100确定目标模型中与可调整区域中的关键点pi匹配的关键点qi。
假设用Q={qi,i=1,2,3,……,K}表示目标模型中包含的部分或全部的关键点集合,用P={pi,i=1,2,3,……,M}表示可调整区域中包含的全部的关键点集合。
具体地,对于可调整区域中的一个关键点pi(例如第一关键点),可以在目标模型中找到唯一一个距离最近的关键点qi(例如第二关键点),作为与该关键点Pi匹配的关键点。那么,Q中所有的关键点构成的3D表面可以是指目标模型中,需要与待调整模型贴合的贴合面。
也就是说,步骤S201是为了建立可调整区域与目标模型的匹配关系,在目标模型中找到一块与可调整区域匹配的贴合区域,该贴合区域内包含的关键点即为Q中包含的所有关键点,Q中的关键点与P中的关键点一一对应。示例性地,在图4所示的人头模型中,该人头模型中需要向头发模型匹配的贴合区域,可以是指人头模型中的“头皮”区域。
S202.电子设备100计算可调整区域中的所有关键点到目标模型中的匹配的关键点的平均距离A。
由于每一个关键点pi都存在一个匹配的关键点qi,电子设备100可以计算每一对匹配的关键点之间的距离,并对所有的距离取平均,得到平均距离A,其中,电子设备100可以通过以下公式1计算平均距离A:
其中,pi,i=1,2,3,……,M表示可调整区域中的关键点,qi,i=1,2,3,……,K表示目标模型中,与pi匹配的关键点,M表示可调整区域中包含的所有关键点的数量。
S203.电子设备100确定关键点pi到关键点qi的变换矩阵。
其中,该变换矩阵可包括平移矩阵T和旋转矩阵R。关键点pi、关键点qi和变换矩阵的关系可以通过以下公式2来表示:
qi=R×pi+T公式2
同时,由于噪声的影响,无法做到所有的点都完全重合,因此可以利用公式3来计算变换矩阵:
F=∑|qi-(R×pi+)|2公式3
其中,当F达到最小值时,求得的R和T即为关键点pi到关键点qi的变换矩阵。
总的来说,电子设备100可以根据关键点pi和关键点qi位置,确定关键点pi移动到关键点qi时的偏移角度θ和移动距离S。
S204.电子设备100根据变换矩阵,调整可调整区域中的关键点pi的位置。
电子设备100根据平移矩阵T以及旋转矩阵R对关键点pi进行平移和旋转等等变换,从而更改可调整区域中各关键点的位置,使其向目标模型中匹配的关键点靠近。
具体地,电子设备100可以根据关键点pi的偏移角度θ和移动距离S,调整关键点pi的位置,使得关键点pi向目标模型中的关键点靠近,或与目标模型中的关键点重合,即调整后的关键点pi(例如第一关键点)与目标模型中相对应的关键点(例如第二关键点)之间的距离小于阈值(例如第一阈值)。其中,当关键点pi的偏移角度θ和/或移动距离S越大,该关键点pi的调整程度越大,当关键点pi的偏移角度θ和/或移动距离S越小,该关键点pi的调整程度越小。
S205.电子设备100确定待调整模型的变形范围内的关键点的变形权重W。
电子设备100可以根据变形范围内的关键点与可调整区域中的关键点的距离,来确定可变性范围内的关键点的变形权重W。待调整模型的变形范围内可以包括N(N为正整数)个关键点wi,i=1,2,3,……,N,其中,越靠近可调整区域的关键点的变形权重W越大,越远离可调整区域的关键点的变形权重W越小。其中,0≤W≤1,该变形权重W指示了关键点的调整程度,变形权重W越大,关键点wi的调整程度(或形变程度)越大,且越接近于与其相连的可调整区域中的关键点pi的调整程度,变形权重W越小,关键点wi的调整程度越小,且越小于与其相连的可调整区域中的关键点pi的调整程度。
可以看出,待调整模型的变形范围内的关键点的调整程度小于或等于可调整区域中的关键点的调整程度,且待调整模型的变形范围内的关键点中,越靠近可调整区域的关键点,其偏移角度θ和/或移动距离S越接近与其相连的该可调整区域中的关键点的偏移角度θ和/或移动距离S。换句话说,变形范围内的待调整模型的形变程度小于或等于可调整区域的形变程度,且,变形范围内的待调整模型,越靠近可调整区域的部分,其形变程度越大。
S206.电子设备100根据变形权重W调整待调整模型的变形范围内的关键点的位置。
可变范围内的关键点wi可以跟随与其相连的可调整区域中的关键点pi的移动而更改其所在的位置。由于待调整模型由多个关键点,以及该多个关键点连接的连线组成的平面构成,因此,可调整区域中的关键点pi可以与待调整模型中的一个或多个关键点wi相连,当关键点pi向目标模型中的关键点qi移动时,关键点wi可以根据关键点pi的移动方向和移动距离,进行移动。
在一些实施例中,可变范围内的关键点wi的偏移角度θ’=θ*W,或θ’=θ。也就是说,可变范围内的关键点wi可以跟随与其相连的可调整区域中的关键点pi的移动方向,向相同或相近的方向移动,或者,进一步地,越接近关键点pi的关键点wi的移动方向,越接近关键点pi的移动方向,越接近关键点pi的关键点wi的移动方向越小于关键点pi的移动方向。
在一些实施例中,可变范围内的关键点wi的移动距离S’=S*W。也就是说,与可调整区域中的关键点pi相连的关键点wi中,越接近关键点pi的关键点wi,其移动距离越接近关键 点pi的移动距离,越远离关键点pi的关键点wi,其移动距离越小于关键点pi的移动距离。
可以看出,待调整模型中,越接近可调整区域的部分,其形变越大,越远离可调整区域的部分,其形变越小。这样可以保证待调整模型和目标模型的贴合面重合的同时,尽量避免更改待调整模型的外在造型。
S207.电子设备100计算调整后的可调整区域中的所有关键点到目标模型中的匹配的关键点的平均距离B。
类似于步骤S202,电子设备100可以按照公式4计算平均距离B:
其中,pi,i=1,2,3,……,M表示调整后的可调整区域中的关键点,qi,i=1,2,3,……,K表示目标模型中,与pi匹配的关键点,M表示可调整区域中包含的所有关键点的数量。
S208.电子设备100判断|A-B|是否小于阈值。
如果是,则电子设备100结束自动调整,执行步骤S209,获得调整后的待调整模型。否则,电子设备100返回执行步骤S201,重新确定目标模型中与可调整区域中的关键点pi匹配的关键点qi,其中,这里的可调整区域为经过步骤S204调整后的可调整区域。
也就是说,电子设备100可以计算可调整区域与目标模型的转换关系,将可调整区域的关键点不断靠近目标模型中其最接近的关键点,从而达到可调整区域自动贴合目标模型的效果,另外,在可调整区域不断靠近目标模型的过程中,可调整区域还会带动待调整模型中,紧靠可调整区域的关键点同步向目标模型靠近,其中,越靠近可调整区域的关键点其调整的程度越大,越远离可调整区域的关键点其调整的程度越小,从而保证待调整模型在贴合目标模型的过程中,不更改待调整模型的大致轮廓。
S209.电子设备100获取调整后的待调整模型。
电子设备100获取调整后的待调整模型是指,电子设备100结束自动调整,且调整后的待调整模型和目标模型的贴合面重合。
应理解,本申请实施例提供了一种通过确定待调整模型中的可调整区域,控制可调整区域向目标模型贴合,并在贴合的过程中,带动待调整模型中的部分或全部向目标模型贴合的3D模型匹配方法,其中,可调整区域的贴合过程以及带动待调整模型的贴合过程不限于上述步骤S201-S209所示的具体实现过程,电子设备100还可以通过其他方式实现可调整区域和待调整模型的贴合,本申请实施例对此不作限制。
S107.电子设备100接收到作用于可调整区域中一个或多个关键点的拖动操作。
另外,电子设备100除了可以自动完成待调整模型向目标模型贴合的效果外,还可以接收到用户操作(例如第三操作),根据用户的需求调整待调整模型。这样,用户可以手动微调待调整模型,使待调整模型更够更加完美的贴合目标模型,使贴合后的待调整模型和目标模型更符合用户的审美,为用户提供更加完善的调整效果。
具体地,电子设备100可以接收到作用于可调整区域中的一个或多个关键点P1的拖动操作,带动待调整模型中,靠近该一个或多个关键点P1的关键点向相同或相近的移动方向和移动距离更改其所在的位置,并且,越靠近可调整区域的关键点,其调整的程度越大,越远离可调整区域的关键点,其调整的程度越小。其中,关键点P1中可以包括L(L为正整 数)个关键点pj(pj∈P1,j=1,2,3,……,L,L≤N,且L为正整数)。
示例性地,如图8中(a)和(b)所示,从图8中(a)可以看出,电子设备100在控制头皮区域,带动头发模型贴合人头模型后,虽然头发模型与人头模型完美贴合,但是可以看出头发边缘过于靠上,显得发际线过高,不太符合实际人物的头发造型,因此,如图8中(b)所示,电子设备100可以检测到作用于人头模型的前额的头皮区域的拖动操作,例如向前额移动的拖动操作。
可以理解的是,电子设备100接收到的作用于可调整区域的操作不限于拖动操作,还可以为点击操作等等,本申请实施例对该操作不做限制。
S108.电子设备100拉伸或收缩待调整模型的一部分。
响应于该作用于一个或多个关键点P1的拖动操作,电子设备100可以更改该一个或多个关键点P1,以及待调整模型中,与该一个或多个关键点P1相连的关键点的位置,从而达到更改可调整区域的形状,同时可调整区域还可以带动待调整模型中的关键点同步发生改变,拉伸或收缩关键点对应的待调整模型的一部分的效果。
其中,用户的拖动操作选中的一个或多个关键点P1中,关键点pj的移动方向为该拖动操作移动的方向,关键点pj的移动距离(例如第一距离)为该拖动操作移动的距离。
待调整模型中,与该关键点pj相连的关键点中,越靠近该关键点pj的关键点,其移动距离越接近关键点pj的移动距离,越远离该关键点pj的关键点,其移动距离越小于关键点pj的移动距离。在本申请实施例中,待调整模型中,与该关键点pj相连的关键点可以属于待调整模型的第二部分。
另外,待调整模型中,与该关键点pj相连的关键点中,越靠近该关键点pj的关键点,其移动过程中的偏移角度越接近关键点pj的偏移角度,越远离该关键点pj的关键点,其偏移角度越小于关键点pj的偏移角度。或者,待调整模型中,与该关键点pj相连的关键点的偏移角度等于关键点pj的偏移角度。
也就是说,在电子设备100根据用户的拖动操作控制待调整模型中的一个或多个关键点移动时,电子设备100可以控制待调整模型中,与这一个或多个关键点相连的一部分(例如第二部分)发生形变,且形变过程中,该第二部分移动的方向与该拖动操作移动的方向的差值小于阈值(例如第二阈值),该第二部分移动的距离小于或等于这一个或多个关键点移动的距离。
可以理解的是,用户手动拖动可调整区域,带动待调整模型发生形变的原理和前述步骤S201-S209中,可调整区域自动向目标模型贴合,带动待调整模型发生形变的原理类似,具体关于电子设备100拉伸额收缩待调整模型的一部分的详细描述可以参见前述内容,这里不再赘述。
示例性地,如图8中(c)和(d)所示,在电子设备100检测到如图8中(b)所示的用户操作后,电子设备100可以调整头发模型,并显示如图8中(c)所示的头发模型,相比于图8中(b),图8中(c)所示的人头模型中,头发的生长区域更靠前,发际线更低。另外,该调整后的头发模型匹配在人头模型上后,该人头模型的正面示意图可以参见图8中(d)所示的内容。
需要注意的是,步骤S107-S108为可选的步骤,如果待调整模型在自动贴合目标模型后,已不存在可调整的部分,则用户无需再手动调整待调整模型。或者,电子设备100可以在执行完步骤S108之后,重复执行步骤S107-S108,也就是说,用户可以重复拖动待调整模型, 拉伸或收缩待调整模型的一部分,直到用户满意为止。
为了更好的理解本方案,下面结合图9A-图9G所示的原理图,详细描述图4中(a)所示的头发模型和(b)所示的人头模型在匹配过程中的变化过程。
图9A示出了头发模型和人头模型的侧面剖析图。可以看出,由于该头发模型并不是针对该人头模型制定的发型,所以在调整完人头模型和头发模型的相对位置和相对比例后,头发模型的“根部”并没有贴合在人头模型的表面。其中,区域1、区域2和区域3尤为明显。区域1中,头发模型与人头模型出现了穿模现象,即头发模型传过来人头模型的表面,区域2和区域3中,头发模型的“根部”明显与人头模型的表面还存有一定的距离。
如图9B所示,电子设备100检测到用户作用于头发模型中的多个关键点的选择操作,选中该多个关键点。
如图9C所示,电子设备100根据图9B中选中的多个关键点,确定该多个关键点构成的可调整区域。或者,进一步地,电子设备100还可以在可调整区域所在的位置上显示一个3D网格面。之后,电子设备100可以控制该可调整区域中的关键点,寻找在人头模型上匹配的关键点,并带动可调整模型向该关键点贴合。其中,区域1-区域3中,可调整区域中的关键点的移动方向可以查看图9C中示出的方向。
由于头发模型可以是由多个独立的曲面组合而成,一个曲面就可以看作是一簇头发,而每一个曲面由多个关键点构成。可以通过改变关键点的位置来调整曲面的形状和位置,从而达到调整头发模型的效果。
如图9D所示,单看头发模型中包含的一簇头发时,该一簇头发可以包含关键点1、关键点2和关键点3。其中,关键点1为可调整区域中包含的关键点,关键点2和关键点3为头发模型中,靠近关键点1并与关键点1相连的两个关键点,该头发模型的变形范围可以为关键点1到关键点3的距离。在关键点1向人头模型中匹配的关键点移动,即关键点1向关键点4所在的位置移动的过程中,关键点1会带动关键点2和关键3分别向关键点5和关键点6所在的位置移动。可以看出,关键点2向关键点5的移动方向,以及关键点3向关键点6的移动方向,与关键点1向关键点4移动的方向相同或相近,关键点3向关键点6移动的距离,小于,关键点2向关键点5移动的距离,小于,关键点1向关键点4移动的距离。也就是说,在可调整区域中的关键点向人头模型中匹配的关键点移动的过程中,可调整区域中的关键点会带动与其相连的头发模型的中最近的几个关键点,朝相同或相近的方向移动,且越接近可调整区域中的关键点移动的距离越远,其调整程度越大。
那么,头发模型中每一簇头发,即包含的所有曲面,都按照上述原理进行调整,其调整前的头发和调整后的头发可以参考图9D所示的内容。
之后,图9E示出了人头模型和调整后的头发模型。可以看出,此时调整后的头发模型的“根部”贴合在人头模型的“头皮”上,但是,靠近人头模型前额的头发显得人物的发际线偏高,不太符合实际人物的发型。
如图9F所示,电子设备100可以检测到用户作用于区域4中的可调整区域的拖动操作,响应于该操作,区域4中的可调整模型跟随用户拖动的方向移动,且可调整区域仍贴合人头模型的“头皮”。
如图9G所示,电子设备100响应于用户的拖动操作,拉伸区域4中的头发模型,完成模型的变形,从而得到最终的模型。
需要注意的是,本申请实施例提供的3D模型匹配方法可以应用在数字内容生成工具 (Digitalcontentcreation tool,DCCTool)中,做为DCC Tool的一个插件、或功能等等,或者,该3D模型匹配方法也可以表现为一个专门用于调整3D模型的应用程序。其中,DCC Tool是指houdini,maya,max,cinema4D和blender等全能三维软件,或者也可以是指Zbrush,Nuke,Kantana,SD,realflow等专项工具。
应理解,上述方法实施例中的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请还提供一种电子设备,该电子设备可以包括:存储器和处理器。其中,存储器可用于存储计算机程序;处理器可用于调用所述存储器中的计算机程序,以使得该电子设备执行上述任意一个实施例中电子设备100执行的方法。
本申请还提供了一种芯片***,所述芯片***包括至少一个处理器,用于实现上述任一个实施例中电子设备100执行的方法中所涉及的功能。
在一种可能的设计中,所述芯片***还包括存储器,所述存储器用于保存程序指令和数据,存储器位于处理器之内或处理器之外。
该芯片***可以由芯片构成,也可以包含芯片和其他分立器件。
可选地,该芯片***中的处理器可以为一个或多个。该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片***中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请实施例并不限定。示例性地,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
示例性地,该芯片***可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是***芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
本申请还提供一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述任一个实施例中电子设备100任意一个执行的方法。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序(也可以称为代码,或指令)。当所述计算机程序被运行时,使得计算机执行上述任一个实施例中电子设备100任意一个执行的方法。
应理解,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(AP 800plication specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。 通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
另外,本申请实施例还提供一种装置。该装置具体可以是组件或模块,该装置可包括相连的一个或多个处理器和存储器。其中,存储器用于存储计算机程序。当该计算机程序被一个或多个处理器执行时,使得装置执行上述各方法实施例中的方法。
其中,本申请实施例提供的装置、计算机可读存储介质、计算机程序产品或芯片均用于执行上文所提供的对应的方法。因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
本申请的各实施方式可以任意进行组合,以实现不同的技术效果。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。
总之,以上所述仅为本发明技术方案的实施例而已,并非用于限定本发明的保护范围。凡根据本发明的揭露,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (15)

  1. 一种3D模型匹配方法,其特征在于,应用于电子设备,所述方法包括:
    所述电子设备显示第一模型和第二模型;
    所述电子设备确定所述第一模型中的第一区域,所述第一区域是指需要向所述第二模型中的第二区域贴合的3D表面;
    所述电子设备控制所述第一区域发生形变,以使得形变后的所述第一区域与所述第二区域贴合,并且,所述电子设备控制所述第一模型中,与所述第一区域相连的第一部分发生形变,所述第一部分的形变程度小于或等于所述第一区域的形变程度。
  2. 根据权利要求1所述的方法,其特征在于,所述电子设备确定所述第一模型中的第一区域之前,所述方法还包括:
    所述电子设备检测到作用于所述第一模型中的M个关键点的第一操作,M为正整数,所述第一操作用于触发确定所述第一区域,所述第一区域由所述M个关键点构成的一个或多个面组成。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第二区域包括:一个或多个关键点,所述第二区域中的关键点与所述第一区域中的关键点一一对应,
    所述第一区域中包括第一关键点,所述第二区域中与所述第一关键点相对应的关键点,为所述第二模型中,与所述第一关键点距离最近的关键点。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一区域中包括第一关键点,所述第二区域中与所述第一关键点相对应的关键点为第二关键点;
    所述电子设备控制所述第一区域发生形变,以使得形变后的所述第一区域与所述第二区域贴合,具体包括:
    所述电子设备控制所述第一关键点向所述第二关键点移动,所述移动后的所述第一关键点与所述第二关键点的距离小于第一阈值。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一区域中包括第一关键点,所述第一部分包括与所述第一关键点相连的N个关键点,N为正整数;
    所述电子设备控制所述第一模型中,与所述第一区域相连的第一部分发生形变,具体包括:
    所述电子设备根据所述第一关键点移动的距离和方向,控制所述N个关键点,朝相同或相近的方向移动,所述N个关键点移动的距离小于或等于所述第一关键点移动的距离。
  6. 根据权利要求5所述的方法,其特征在于,所述N个关键点,至少满足以下一项:
    所述N个关键点中,越靠近所述第一关键点的关键点,其移动的方向,越接近所述第一关键点移动的方向;或
    所述N个关键点中,越靠近所述第一关键点的关键点,其移动的距离,越接近所述第一关键点移动的距离。
  7. 根据权利要求1-6所述的方法,其特征在于,所述电子设备控制所述第一区域发生形变 之前,所述方法还包括:
    所述电子设备确定所述第一模型的变形范围,所述变形范围内的第一模型能够跟随所述第一区域的形变,发生形变;
    所述电子设备根据所述变形范围确定所述第一部分。
  8. 根据权利要求7所述的方法,其特征在于,所述电子设备确定变形范围之前,所述方法还包括:
    所述电子设备检测到第二操作,所述第二操作用于触发所述电子设备确定所述变形范围。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述电子设备控制所述第一模型中,与所述第一区域相连的第一部分发生形变之后,所述方法还包括:
    所述电子设备检测到作用于所述第一区域中的L个关键点的第三操作,L为正整数;
    响应于所述第三操作,所述电子设备控制所述L个关键点,朝所述第三操作指示的第一方向移动第一距离,并且,所述电子设备控制所述第一模型中,与所述L个关键点相连的第二部分发生形变,形变过程中,所述第二部分移动的方向与所述第一方向的差值小于第二阈值,所述第二部分移动的距离小于或等于所述第一距离。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述电子设备确定所述第一模型中的第一区域之后,所述方法还包括:
    所述电子设备在所述第一区域生成并显示一个三维网格面,所述三维网格面用于提示用户所述第一区域能够向所述第二模型贴合。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,电子设备获取并显示第一模型和第二模型之后,所述方法还包括:
    所述电子设备检测到第四操作;
    响应于所述第四操作,所述电子设备调整所述第一模型和所述第二模型的相对位置或相对比例中的任意一项或多项,使得所述第一模型与所述第二模型组合在一起。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述第一模型包括头发模型,所述第二模型包括人头模型,或者,所述第一模型包括植被模型,所述第二模型包括地形模型,或者,所述第一模型包括服饰模型,所述第二模型包括人体模型。
  13. 一种电子设备,其特征在于,包括存储器,一个或多个处理器,以及一个或多个程序;所述一个或多个处理器在执行所述一个或多个程序时,使得所述电子设备实现如权利要求1至12任一项所述的方法。
  14. 一种计算机可读存储介质,包括指令,其特征在于,当所述指令在电子设备上运行时,使得所述电子设备执行如权利要求1至12任一项所述的方法。
  15. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得计算机执行如权利要求1至12任一项所述的方法。
PCT/CN2023/087724 2022-04-19 2023-04-12 3d模型匹配方法、电子设备及相关装置 WO2023202434A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210410336.XA CN116958955A (zh) 2022-04-19 2022-04-19 3d模型匹配方法、电子设备及相关装置
CN202210410336.X 2022-04-19

Publications (1)

Publication Number Publication Date
WO2023202434A1 true WO2023202434A1 (zh) 2023-10-26

Family

ID=88419121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/087724 WO2023202434A1 (zh) 2022-04-19 2023-04-12 3d模型匹配方法、电子设备及相关装置

Country Status (2)

Country Link
CN (1) CN116958955A (zh)
WO (1) WO2023202434A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106157358A (zh) * 2015-03-26 2016-11-23 成都理想境界科技有限公司 基于视频图像的对象融合方法及终端
CN106162326A (zh) * 2015-04-10 2016-11-23 北京云创视界科技有限公司 基于视频图像的对象融合方法及终端
US20190340649A1 (en) * 2018-05-07 2019-11-07 Adobe Inc. Generating and providing augmented reality representations of recommended products based on style compatibility in relation to real-world surroundings

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106157358A (zh) * 2015-03-26 2016-11-23 成都理想境界科技有限公司 基于视频图像的对象融合方法及终端
CN106162326A (zh) * 2015-04-10 2016-11-23 北京云创视界科技有限公司 基于视频图像的对象融合方法及终端
US20190340649A1 (en) * 2018-05-07 2019-11-07 Adobe Inc. Generating and providing augmented reality representations of recommended products based on style compatibility in relation to real-world surroundings

Also Published As

Publication number Publication date
CN116958955A (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
WO2021129326A1 (zh) 一种屏幕显示方法及电子设备
WO2020125410A1 (zh) 一种图像处理的方法及电子设备
CN112262563B (zh) 图像处理方法及电子设备
WO2020029306A1 (zh) 一种图像拍摄方法及电子设备
CN111669462B (zh) 一种显示图像的方法及相关装置
WO2021258814A1 (zh) 视频合成方法、装置、电子设备及存储介质
CN112712470A (zh) 一种图像增强方法及装置
CN113170037B (zh) 一种拍摄长曝光图像的方法和电子设备
CN114140365B (zh) 基于事件帧的特征点匹配方法及电子设备
WO2023284715A1 (zh) 一种物体重建方法以及相关设备
WO2022262475A1 (zh) 拍摄方法、图形用户界面及电子设备
WO2022007707A1 (zh) 家居设备控制方法、终端设备及计算机可读存储介质
CN112150499A (zh) 图像处理方法及相关装置
US20240193945A1 (en) Method for determining recommended scenario and electronic device
CN114004732A (zh) 图像编辑提示方法、装置、电子设备和可读存储介质
CN114979457A (zh) 一种图像处理方法及相关装置
CN115145436A (zh) 一种图标处理方法及电子设备
CN113515327A (zh) 一种显示时间的方法及电子设备
WO2023202434A1 (zh) 3d模型匹配方法、电子设备及相关装置
CN114283195B (zh) 生成动态图像的方法、电子设备及可读存储介质
CN115437601A (zh) 图像排序方法、电子设备、程序产品及介质
CN115032640A (zh) 手势识别方法和终端设备
CN115808997A (zh) 一种预览方法、电子设备及***
CN115994006A (zh) 动画效果显示方法及电子设备
CN117764853B (zh) 人脸图像增强方法和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791089

Country of ref document: EP

Kind code of ref document: A1