WO2023202078A1 - 一种电弧故障检测方法、装置及设备 - Google Patents

一种电弧故障检测方法、装置及设备 Download PDF

Info

Publication number
WO2023202078A1
WO2023202078A1 PCT/CN2022/134752 CN2022134752W WO2023202078A1 WO 2023202078 A1 WO2023202078 A1 WO 2023202078A1 CN 2022134752 W CN2022134752 W CN 2022134752W WO 2023202078 A1 WO2023202078 A1 WO 2023202078A1
Authority
WO
WIPO (PCT)
Prior art keywords
arc
threshold
preset
inverter
characteristic
Prior art date
Application number
PCT/CN2022/134752
Other languages
English (en)
French (fr)
Other versions
WO2023202078A9 (zh
Inventor
张然
李海涛
周银银
戚蒙
黄志锋
Original Assignee
阳光电源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阳光电源股份有限公司 filed Critical 阳光电源股份有限公司
Publication of WO2023202078A1 publication Critical patent/WO2023202078A1/zh
Publication of WO2023202078A9 publication Critical patent/WO2023202078A9/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification

Definitions

  • the present invention relates to the field of arc detection, and more specifically, to an arc fault detection method, device and equipment.
  • Arc is a gas discharge phenomenon.
  • photovoltaic systems once a fault arc occurs, if effective protection measures are not taken, the high temperature generated by the continuous DC arc can easily cause a fire and cause a major safety accident.
  • arc fault detection technology is usually used for arc detection. During detection, features are extracted and compared with feature thresholds, and the comparison results are used to determine whether an arc fault has occurred.
  • the characteristic threshold is generally a fixed threshold.
  • this characteristic threshold When using this characteristic threshold for arc fault detection, false alarms or missed alarms are prone to occur, and the accuracy of arc fault detection is low.
  • the present invention provides an arc fault detection method, device and equipment to solve the problem of low arc fault detection accuracy.
  • the present invention adopts the following technical solutions:
  • An arc fault detection method includes:
  • the arc detection result includes a real arc or False arc
  • the initial threshold is adjusted to obtain a target threshold, and the initial characteristic threshold is updated to the target threshold.
  • obtain the preset arc characteristic value calculated based on the collected DC side signal of the inverter including:
  • the preset arc characteristics include at least one of mean, root mean square value, variance and kurtosis;
  • a preset arc characteristic value corresponding to the preset arc characteristic is calculated according to the characteristic calculation method of the preset arc characteristic.
  • judging whether a suspected arc occurs based on the relationship between the preset arc characteristic value and the initial characteristic threshold value includes:
  • the preset arc characteristic value is greater than the initial characteristic threshold, it is determined that a suspected arc occurs.
  • determining the arc detection result corresponding to the suspected arc includes:
  • the arc detection result is determined to be a false arc.
  • the initial threshold is adjusted to obtain a target threshold, including:
  • the value of the initial characteristic threshold is increased according to the preset threshold increment calculation rule to obtain the target threshold.
  • the sum or difference between the initial feature threshold and the threshold increment is used as the target threshold.
  • calculating the threshold increment corresponding to the grid connection time includes:
  • the method further includes:
  • the inverter is controlled to perform a shutdown operation and arc fault information is output.
  • the value of the characteristic threshold reference value corresponding to the initial characteristic threshold is configured as a preset threshold; the preset threshold is a value that makes the arc detection sensitivity greater than the preset sensitivity.
  • An arc fault detection device including:
  • the characteristic value acquisition module is used to obtain the preset arc characteristic value calculated based on the collected DC side signal of the inverter
  • An arc judgment module is used to obtain an initial characteristic threshold, and determine whether a suspected arc occurs based on the relationship between the preset arc characteristic value and the initial characteristic threshold;
  • an arc detection module configured to perform a wave blocking operation on the inverter if so, and determine the arc detection result corresponding to the suspected arc based on at least the electrical signal of the inverter after the wave blocking operation; the arc Detection results include true arc or false arc;
  • a threshold adjustment module configured to adjust the initial threshold based on the arc detection result to obtain a target threshold, and update the initial characteristic threshold to the target threshold.
  • An electronic device including: memory and processor;
  • the memory is used to store programs
  • the processor calls a program and is used to execute the above arc fault detection method.
  • An inverter includes the above electronic device.
  • the present invention has the following beneficial effects:
  • the invention provides an arc fault detection method, device and equipment, which obtains a preset arc characteristic value calculated based on the collected DC side signal of the inverter, obtains an initial characteristic threshold, and based on the preset arc characteristic value and The magnitude relationship of the initial characteristic threshold is used to determine whether a suspected arc occurs. If so, perform a wave blocking operation on the inverter, and determine the suspected arc based on at least the electrical signal of the inverter after the wave blocking operation. Corresponding arc detection results; the arc detection results include real arcs or false arcs. Based on the arc detection results, the initial threshold is adjusted to obtain a target threshold, and the initial characteristic threshold is updated to the target threshold. .
  • the initial characteristic threshold used can be adjusted according to the actual detected arc detection results of suspected arcs, so that the initial characteristic threshold is more in line with the actual application environment, and the accuracy of the initial characteristic threshold is improved, thereby improving the accuracy of arc fault detection. degree, reducing the probability of false positives and false negatives.
  • Figure 1 is a method flow chart of an arc fault detection method provided by an embodiment of the present invention
  • Figure 2 is a schematic diagram of an inverter scenario provided by an embodiment of the present invention.
  • Figure 3 is a method flow chart of another arc fault detection method provided by an embodiment of the present invention.
  • Figure 4 is a method flow chart of yet another arc fault detection method provided by an embodiment of the present invention.
  • Figure 5 is a method flow chart of yet another arc fault detection method provided by an embodiment of the present invention.
  • Figure 6 is a method flow chart of the fifth arc fault detection method provided by an embodiment of the present invention.
  • Figure 7 is a schematic structural diagram of an arc fault detection device provided by an embodiment of the present invention.
  • arc fault detection technology such as DC arc detection technology
  • features are extracted and compared with feature thresholds, and the comparison results are used to determine whether an arc fault has occurred.
  • the characteristic threshold is generally a fixed threshold.
  • this characteristic threshold When using this characteristic threshold for arc fault detection, false alarms or missed alarms are prone to occur, and the accuracy of arc fault detection is low.
  • the feature thresholds can be adaptively adjusted based on historical time-frequency domain features.
  • the characteristic threshold due to the complexity of the actual power plant environment and the diverse changes in weather, temperature, etc., it is difficult to adaptively adjust the characteristic threshold to balance the high-precision arc detection rate and the ability to prevent false alarms. If the threshold value is selected lower, the detection sensitivity will be higher, and false alarms will often occur under working conditions such as sudden changes in inverter power caused by light, or sudden changes in time-frequency domain characteristics caused by environmental noise interference; if the threshold value is set higher, then The detection sensitivity is low, and false alarms often occur under arcing conditions where changes in time-frequency domain characteristics are relatively weak.
  • the value of the characteristic threshold needs to be reasonably determined.
  • embodiments of the present invention provide an arc fault detection method, device and electronic equipment to obtain a preset arc characteristic value calculated based on the collected DC side signal of the inverter, obtain an initial characteristic threshold, and perform the arc fault detection according to the Preset the relationship between the arc characteristic value and the initial characteristic threshold value to determine whether a suspected arc occurs. If so, perform a wave blocking operation on the inverter, and at least based on the electrical signal of the inverter after the wave blocking operation , determine the arc detection result corresponding to the suspected arc; the arc detection result includes a real arc or a false arc, based on the arc detection result, the initial threshold is adjusted to obtain a target threshold, and the initial characteristic threshold is Updated to the target threshold.
  • the initial characteristic threshold used can be adjusted according to the actual detected arc detection results of suspected arcs, so that the initial characteristic threshold is more in line with the actual application environment, and the accuracy of the initial characteristic threshold is improved, thereby improving the accuracy of arc fault detection. degree, reducing the probability of false positives and false negatives.
  • an embodiment of the present invention provides an arc fault detection method. Referring to Figure 1, it may include:
  • FIG 2 provides a schematic diagram of a photovoltaic system.
  • the photovoltaic system includes photovoltaic strings (connected by at least one photovoltaic module) and an inverter (such as a photovoltaic inverter).
  • the number of photovoltaic strings and inverters is at least one.
  • the inverter is connected to the power grid and the load through an L/N connection line.
  • An arc detection device is provided inside the inverter. The arc detection device executes the arc fault detection method in this embodiment.
  • the characteristic threshold built into the arc detection device is the characteristic threshold reference value, and the value of the characteristic threshold reference value is configured as the preset threshold value.
  • the preset threshold is a value that makes the arc detection sensitivity greater than the preset sensitivity.
  • the preset threshold is a lower value (for example, 10), that is, the initial arc detection sensitivity is higher.
  • the detection period can be set according to the actual scenario, which can generally be 3 milliseconds or 5 milliseconds.
  • the preset arc characteristic value calculated based on the collected DC side signal of the inverter is obtained.
  • "obtaining the preset arc characteristic value calculated based on the collected DC side signal of the inverter” may include:
  • the arc detection device collects the DC side signal of the inverter in real time.
  • the DC side signals include DC signals and AC signals.
  • the DC signal may include data such as DC current values.
  • the AC signal needs to be extracted from the DC side signal.
  • the signal strength at each frequency point can be obtained, and the signal strength at each frequency point forms a frequency domain diagram.
  • the frequency domain diagram is the analysis result obtained by performing fast Fourier analysis on the AC signal.
  • the acquired preset arc characteristics may include at least one of a mean value, a root mean square value, a variance, and a kurtosis.
  • other arc characteristics can be added according to actual needs.
  • Each preset arc characteristic has a corresponding characteristic calculation method.
  • the average value is the average value of the signal intensity at each frequency point.
  • Other preset arc characteristics are similar.
  • the preset arc characteristic value corresponding to the preset arc characteristic can be calculated based on the above analysis result, that is, the frequency domain diagram, according to the characteristic calculation method of the preset arc characteristic.
  • the average value of the signal intensity at each frequency point is used as the mean value, and the root mean square of the signal intensity at each frequency point is used as the root mean square value, etc.
  • the preset arc characteristics are obtained, and based on the frequency domain diagram, the preset arc characteristic values corresponding to the preset arc characteristics are calculated, including:
  • the preset arc characteristics include at least one of mean, root mean square value, variance and kurtosis.
  • the preset arc characteristic value corresponding to the preset arc characteristics is calculated.
  • the initial characteristic threshold is the above-mentioned characteristic threshold reference value, for example, 10.
  • the initial characteristic threshold is the characteristic threshold at the end of the previous detection cycle.
  • the value of the initial feature threshold reference value is still configured as the preset threshold value, that is, the feature threshold value is traced, and the first feature threshold value is the feature threshold reference value. That is to say, the value of the characteristic threshold reference value corresponding to the initial characteristic threshold is configured as a preset threshold; the preset threshold is a value that makes the arc detection sensitivity greater than the preset sensitivity.
  • step S13 Determine whether a suspected arc occurs; if yes, execute step S14; if not, return to step S11 and continue to monitor the current side signal.
  • step S11 is continued, that is, the current side signal is continued to be monitored.
  • the arc detection result includes a real arc or a false arc. That is to say, determine whether the suspected arc is a real arc or a false arc.
  • a wave blocking command is sent to the inverter to cause the inverter to perform a wave blocking operation.
  • the wave sealing operation After performing the wave sealing operation, perform secondary arc judgment. At this time, the DC side signal of the inverter is collected, and the DC current is extracted from it as an electrical signal. Then, based on the electrical signal, it is determined whether the suspected arc is a real arc or a false arc.
  • determining the arc detection result corresponding to the suspected arc based on at least the electrical signal of the inverter after the wave sealing operation may include:
  • the electrical signal may include a DC input value.
  • the inverter when it performs a wave blocking operation, it will close the energy transmission channels on the DC side and AC side.
  • the wave blocking time is at the millisecond level, such as 200ms wave blocking time
  • the suspected arc is a real arc.
  • step S11 it can be extracted from the DC side signal in step S11. Specifically, it can be extracted from the DC side signal in step S11. Generally, the DC current value in the DC signal is extracted.
  • the above DC current value is the same as the current input value, that is, the corresponding channel can be connected to the grid again after the wave is blocked, and the current will quickly return to the value before the wave is blocked, which means that the suspected arc is a false arc.
  • the false arc and the real arc are judged based on the current value.
  • the false arc and the real arc can also be judged based on the power value.
  • step S15 includes:
  • reducing the value of the initial feature threshold according to the preset threshold increment calculation rules to obtain the target threshold may include:
  • the grid connection time of the inverter refers to the time when the inverter is connected to the grid.
  • threshold increment calculation formulas there are three threshold increment calculation formulas, and one can be selected and used according to the actual scenario.
  • the threshold increment calculation formula is:
  • ⁇ T and t represent the threshold increment and grid connection time respectively, and the grid connection time is generally the total grid connection hours.
  • the threshold increment calculation formula is in the form of an inverse function.
  • the threshold increment decays with the total grid connection time, that is, the longer the grid connection time, the smaller the threshold increment.
  • the threshold increment first changes quickly and then slowly with the grid connection time.
  • the threshold increment calculation formula is:
  • ⁇ T and t represent the threshold increment and grid connection time respectively.
  • the threshold increment calculation formula is in the form of an exponential function. In the exponential function form, the threshold increment changes slowly with the grid connection time.
  • the threshold increment calculation formula is:
  • ⁇ T and t represent the threshold increment and grid connection time respectively.
  • the threshold increment calculation formula is in the form of a Gaussian function. In the Gaussian function form, the threshold increment changes first slowly, then quickly, and then slowly again with the grid connection time.
  • the threshold increment corresponding to the grid connection time is calculated based on the threshold increment calculation formula.
  • the initial characteristic threshold used at this time has the ability to identify the real arc, but there is still room for optimization between the initial characteristic threshold and the threshold that falsely reports a false arc.
  • the difference between the initial feature threshold and the threshold increment is used as the target threshold.
  • the threshold value is corrected as:
  • T is the target threshold.
  • the arc detection result is a false arc
  • the initial characteristic threshold used at this time is too sensitive, has poor anti-interference ability, and does not have the ability to identify interference signals and real arcs.
  • Ability therefore, can positively correct the current initial characteristic threshold, improve anti-interference ability, and reduce arc false alarms.
  • the target threshold which may include:
  • the difference between this step and the above step is that when the suspected arc is a real arc, the difference between the initial characteristic threshold and the threshold increment is used as the target threshold, that is, a negative correction threshold is used.
  • the suspected arc is a false arc, the sum of the initial characteristic threshold and the threshold increment is used as the target threshold, and a forward correction method is used to modify the threshold.
  • the initial characteristic threshold is updated to the target threshold, and then in the next detection cycle, the new initial characteristic threshold is used for arc detection.
  • the target threshold is determined based on the grid connection time after the suspected arc is detected.
  • the implementation method can also be to not detect the suspected arc, but directly obtain the initial characteristic threshold during the grid-connected operation of the inverter, and determine the target threshold based on the grid-connected time.
  • the arc fault detection method in the present invention also includes:
  • the method further includes:
  • the inverter is controlled to perform a shutdown operation and arc fault information is output.
  • the inverter can be controlled to shut down and output arc fault information, allowing operation and maintenance personnel to repair the fault in a timely manner.
  • the inverter may be controlled to perform a shutdown operation and output arc fault information.
  • the specific operation sequence can be set according to the actual scenario. However, in order to protect the inverter from being burned, the inverter can be controlled to shut down after determining that it is a real arc.
  • a preset arc characteristic value calculated based on the collected DC side signal of the inverter is obtained, an initial characteristic threshold is obtained, and based on the relationship between the preset arc characteristic value and the initial characteristic threshold, it is judged Whether a suspected arc occurs, and if so, perform a wave blocking operation on the inverter, and determine the arc detection result corresponding to the suspected arc based on at least the electrical signal of the inverter after the wave blocking operation; the arc detection The results include real arcs or false arcs.
  • the initial threshold is adjusted to obtain a target threshold, and the initial characteristic threshold is updated to the target threshold.
  • the initial characteristic threshold used can be adjusted according to the actual detected arc detection results of suspected arcs, so that the initial characteristic threshold is more in line with the actual application environment, and the accuracy of the initial characteristic threshold is improved, thereby improving the accuracy of arc fault detection. degree, reducing the probability of false positives and false negatives.
  • the present invention realizes threshold optimization by presetting the initial characteristic threshold when connecting to the grid for the first time, and then using the threshold increment function and combining the arc detection device and the inverter to determine the true and false arc.
  • the obtained threshold parameters can best suit the diverse working conditions of the power station environment, climate and temperature in which each inverter operates.
  • the present invention greatly reduces inappropriate threshold selection during the normal operation of the inverter and improves arc identification capabilities by blocking false alarms during the large-scale threshold optimization process during the first grid connection and realizing the optimal threshold optimization. At the same time, it avoids frequent false alarms caused by periodic interference.
  • another embodiment of the present invention provides an arc fault detection device. Referring to Figure 7, it may include:
  • the characteristic value acquisition module 11 is used to obtain the preset arc characteristic value calculated based on the collected DC side signal of the inverter;
  • the arc judgment module 12 is used to obtain an initial characteristic threshold, and determine whether a suspected arc occurs based on the relationship between the preset arc characteristic value and the initial characteristic threshold;
  • the arc detection module 13 is configured to, if so, perform a wave blocking operation on the inverter, and determine the arc detection result corresponding to the suspected arc based at least on the electrical signal of the inverter after the wave blocking operation; Arc detection results include real arc or false arc;
  • the threshold adjustment module 14 is configured to adjust the initial threshold based on the arc detection result to obtain a target threshold, and update the initial characteristic threshold to the target threshold.
  • the feature value acquisition module 11 includes:
  • the signal extraction submodule is used to obtain the DC side signal of the inverter and extract the AC signal from the DC side signal;
  • the signal analysis sub-module is used to perform fast Fourier analysis on the AC signal to obtain the preset arc characteristic value corresponding to the preset arc characteristic.
  • the signal analysis sub-module includes:
  • An analysis unit is used to perform fast Fourier analysis on the AC signal to obtain analysis results
  • a feature acquisition unit configured to acquire preset arc features, where the preset arc features include at least one of mean, root mean square, variance and kurtosis;
  • the calculation unit is configured to calculate a preset arc characteristic value corresponding to the preset arc characteristic based on the analysis result and in accordance with the characteristic calculation method of the preset arc characteristic.
  • arc judgment module 12 is specifically used for:
  • the preset arc characteristic value is greater than the initial characteristic threshold, it is determined that a suspected arc occurs.
  • the arc detection module 13 includes:
  • the first signal acquisition submodule is used to acquire the electrical signal after the inverter performs the wave blocking operation
  • the first arc judgment sub-module is used to determine that the arc detection result is a real arc if the value of the electrical signal is zero;
  • the second signal acquisition submodule is used to acquire the DC electric signal in the DC side signal if the value of the electric signal is not zero;
  • the second arc determination sub-module is used to determine that the arc detection result is a false arc when the value of the direct current signal is the same as the value of the electrical signal.
  • threshold adjustment module 14 is specifically used to:
  • the value of the initial characteristic threshold is reduced according to the preset threshold increment calculation rules to obtain the target threshold.
  • the target threshold is obtained according to Preset threshold increment calculation rules to increase the value of the initial feature threshold to obtain the target threshold.
  • a time acquisition module used to acquire the grid connection time of the inverter
  • Increment calculation module used to calculate the threshold increment corresponding to the grid connection time
  • a threshold determination module configured to use the sum or difference of the initial feature threshold and the threshold increment as a target threshold.
  • the incremental calculation module is specifically used for:
  • a shutdown control module is used to control the inverter to perform a shutdown operation and output arc fault information when the arc detection result is a real arc.
  • the value of the characteristic threshold reference value corresponding to the initial characteristic threshold is configured as a preset threshold; the preset threshold is a value that makes the arc detection sensitivity greater than the preset sensitivity.
  • a preset arc characteristic value calculated based on the collected DC side signal of the inverter is obtained, an initial characteristic threshold is obtained, and based on the relationship between the preset arc characteristic value and the initial characteristic threshold, it is judged Whether a suspected arc occurs, and if so, perform a wave blocking operation on the inverter, and determine the arc detection result corresponding to the suspected arc based on at least the electrical signal of the inverter after the wave blocking operation; the arc detection The results include real arcs or false arcs.
  • the initial threshold is adjusted to obtain a target threshold, and the initial characteristic threshold is updated to the target threshold.
  • the initial characteristic threshold used can be adjusted according to the actual detected arc detection results of suspected arcs, so that the initial characteristic threshold is more in line with the actual application environment, and the accuracy of the initial characteristic threshold is improved, thereby improving the accuracy of arc fault detection. degree, reducing the probability of false positives and false negatives.
  • the present invention realizes threshold optimization by presetting the initial characteristic threshold when connecting to the grid for the first time, and then using the threshold increment function and combining the arc detection device and the inverter to determine the true and false arc.
  • the obtained threshold parameters can best suit the diverse working conditions of the power station environment, climate and temperature in which each inverter operates.
  • the present invention greatly reduces inappropriate threshold selection during the normal operation of the inverter and improves arc identification capabilities by blocking false alarms during the large-scale threshold optimization process during the first grid connection and realizing the optimal threshold optimization. At the same time, it avoids frequent false alarms caused by periodic interference.
  • another embodiment of the present invention provides an electronic device, including: a memory and a processor;
  • the memory is used to store programs
  • the processor calls a program and is used to execute the above arc fault detection method.
  • the electronic device in this embodiment may be the above-mentioned arc detection device.
  • another embodiment of the present invention provides an inverter, including the above electronic device.
  • a preset arc characteristic value calculated based on the collected DC side signal of the inverter is obtained, an initial characteristic threshold is obtained, and based on the relationship between the preset arc characteristic value and the initial characteristic threshold, it is judged Whether a suspected arc occurs, and if so, perform a wave blocking operation on the inverter, and determine the arc detection result corresponding to the suspected arc based on at least the electrical signal of the inverter after the wave blocking operation; the arc detection The results include real arcs or false arcs.
  • the initial threshold is adjusted to obtain a target threshold, and the initial characteristic threshold is updated to the target threshold.
  • the initial characteristic threshold used can be adjusted according to the actual detected arc detection results of suspected arcs, so that the initial characteristic threshold is more in line with the actual application environment, and the accuracy of the initial characteristic threshold is improved, thereby improving the accuracy of arc fault detection. degree, reducing the probability of false positives and false negatives.
  • the present invention realizes threshold optimization by presetting the initial characteristic threshold when connecting to the grid for the first time, and then using the threshold increment function and combining the arc detection device and the inverter to determine the true and false arc.
  • the obtained threshold parameters can best suit the diverse working conditions of the power station environment, climate and temperature in which each inverter operates.
  • the present invention greatly reduces inappropriate threshold selection during the normal operation of the inverter and improves arc identification capabilities by blocking false alarms during the large-scale threshold optimization process during the first grid connection and realizing the optimal threshold optimization. At the same time, it avoids frequent false alarms caused by periodic interference.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inverter Devices (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

一种电弧故障检测方法、装置及设备,该方法包括:获取基于采集的逆变器的直流侧信号计算得到的预设电弧特征值(S11),获取初始特征阈值(S12),并根据预设电弧特征值和初始特征阈值的大小关系,判断是否发生疑似电弧(S13),若是,则对逆变器执行封波操作,并至少基于封波操作后逆变器的电信号,确定疑似电弧对应的电弧检测结果(S14);电弧检测结果包括真实电弧或虚假电弧,基于电弧检测结果,对初始阈值进行调整,得到目标阈值,并将初始特征阈值更新为目标阈值(S15)。即该方法中,使用的初始特征阈值,能够根据实际检测到的疑似电弧的电弧检测结果来调整,使得初始特征阈值更加符合实际应用环境,提高初始特征阈值的准确度,从而提高电弧故障检测准确度。

Description

一种电弧故障检测方法、装置及设备
本申请要求于2022年4月21日提交中国专利局、申请号为CN202210421305.4、发明名称为“一种电弧故障检测方法、装置及设备”的国内申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电弧检测领域,更具体的说,涉及一种电弧故障检测方法、装置及设备。
背景技术
电弧是一种气体放电的现象,在光伏***中,故障电弧一旦发生,若不采取有效措施防护,持续的直流电弧产生的高温极易引发火灾,造成重大安全事故。
为了避免电弧引起故障,通常采用电弧故障检测技术进行电弧检测。在检测时,提取特征并将该特征与特征阈值进行比对,通过比对结果确定是否发生电弧故障。
在实际应用中,特征阈值一般为固定阈值,使用该特征阈值进行电弧故障检测时,容易出现误报或漏报情况,电弧故障检测准确度较低。
发明内容
有鉴于此,本发明提供一种电弧故障检测方法、装置及设备,以解决电弧故障检测准确度较低的问题。
为解决上述技术问题,本发明采用了如下技术方案:
一种电弧故障检测方法,包括:
获取基于采集的逆变器的直流侧信号计算得到的预设电弧特征值;
获取初始特征阈值,并根据所述预设电弧特征值和所述初始特征阈值的大小关系,判断是否发生疑似电弧;
若是,则对所述逆变器执行封波操作,并至少基于封波操作后所述逆变器的电信号,确定所述疑似电弧对应的电弧检测结果;所述电弧检测结 果包括真实电弧或虚假电弧;
基于所述电弧检测结果,对所述初始阈值进行调整,得到目标阈值,并将所述初始特征阈值更新为所述目标阈值。
可选地,获取基于采集的逆变器的直流侧信号计算得到的预设电弧特征值,包括:
获取逆变器的直流侧信号,并从所述直流侧信号中提取出交流信号;
对所述交流信号进行快速傅里叶分析,得到所述预设电弧特征对应的预设电弧特征值。
可选地,对所述交流信号进行快速傅里叶分析,得到所述预设电弧特征对应的预设电弧特征值,包括:
对所述交流信号进行快速傅里叶分析,得到分析结果;
获取预设电弧特征,所述预设电弧特征包括均值、均方根值、方差和峰度中的至少一个;
基于所述分析结果,按照所述预设电弧特征的特征计算方式,计算得到所述预设电弧特征对应的预设电弧特征值。
可选地,根据所述预设电弧特征值和所述初始特征阈值的大小关系,判断是否发生疑似电弧,包括:
在所述预设电弧特征值大于所述初始特征阈值的情况下,判断出发生疑似电弧。
可选地,至少基于封波操作后所述逆变器的电信号,确定所述疑似电弧对应的电弧检测结果,包括:
获取所述逆变器执行封波操作后的电信号;
若所述电信号的值为零,则确定电弧检测结果为真实电弧;
若所述电信号的值不为零,获取所述直流侧信号中的直流电信号;
在所述直流电信号的值与所述电信号的值相同的情况下,确定电弧检测结果为虚假电弧。
可选地,基于所述电弧检测结果,对所述初始阈值进行调整,得到目标阈值,包括:
在所述电弧检测结果为真实电弧的情况下,按照预设阈值增量计算规则,减小所述初始特征阈值的数值,得到目标阈值;
在所述电弧检测结果为虚假电弧的情况下,按照预设阈值增量计算规则,增大所述初始特征阈值的数值,得到目标阈值。
可选地,还包括:
获取所述逆变器的并网时间;
计算所述并网时间对应的阈值增量;
将所述初始特征阈值与所述阈值增量之和或之差,作为目标阈值。
可选地,计算所述并网时间对应的阈值增量,包括:
获取阈值增量计算公式,并基于所述阈值增量计算公式,计算所述并网时间对应的阈值增量。
可选地,在至少基于封波操作后所述逆变器的电信号,确定所述疑似电弧对应的电弧检测结果之后,还包括:
在所述电弧检测结果为真实电弧的情况下,控制所述逆变器进行停机操作,并输出电弧故障信息。
可选地,所述初始特征阈值对应的特征阈值参考值的数值配置为预设阈值;所述预设阈值为使得电弧检测灵敏度大于预设灵敏度的数值。
一种电弧故障检测装置,包括:
特征值获取模块,用于获取基于采集的逆变器的直流侧信号计算得到的预设电弧特征值;
电弧判断模块,用于获取初始特征阈值,并根据所述预设电弧特征值和所述初始特征阈值的大小关系,判断是否发生疑似电弧;
电弧检测模块,用于若是,则对所述逆变器执行封波操作,并至少基于封波操作后所述逆变器的电信号,确定所述疑似电弧对应的电弧检测结果;所述电弧检测结果包括真实电弧或虚假电弧;
阈值调整模块,用于基于所述电弧检测结果,对所述初始阈值进行调整,得到目标阈值,并将所述初始特征阈值更新为所述目标阈值。
一种电子设备,包括:存储器和处理器;
其中,所述存储器用于存储程序;
处理器调用程序并用于执行上述的电弧故障检测方法。
一种逆变器,包括上述的电子设备。
相较于现有技术,本发明具有以下有益效果:
本发明提供了一种电弧故障检测方法、装置及设备,获取基于采集的逆变器的直流侧信号计算得到的预设电弧特征值,获取初始特征阈值,并根据所述预设电弧特征值和所述初始特征阈值的大小关系,判断是否发生疑似电弧,若是,则对所述逆变器执行封波操作,并至少基于封波操作后所述逆变器的电信号,确定所述疑似电弧对应的电弧检测结果;所述电弧检测结果包括真实电弧或虚假电弧,基于所述电弧检测结果,对所述初始阈值进行调整,得到目标阈值,并将所述初始特征阈值更新为所述目标阈值。即本发明中,使用的初始特征阈值,能够根据实际检测到的疑似电弧的电弧检测结果来调整,使得初始特征阈值更加符合实际应用环境,提高初始特征阈值的准确度,从而提高电弧故障检测准确度,降低误报和漏报的概率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种电弧故障检测方法的方法流程图;
图2为本发明实施例提供的一种逆变器的场景示意图;
图3本发明实施例提供的另一种电弧故障检测方法的方法流程图;
图4为本发明实施例提供的再一种电弧故障检测方法的方法流程图;
图5为本发明实施例提供的又一种电弧故障检测方法的方法流程图;
图6为本发明实施例提供的第五种电弧故障检测方法的方法流程图;
图7为本发明实施例提供的一种电弧故障检测装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了避免电弧引起故障,通常采用电弧故障检测技术,如直流电弧检测技术,进行电弧检测。在检测时,提取特征并将该特征与特征阈值进行比对,通过比对结果确定是否发生电弧故障。
在实际应用中,特征阈值一般为固定阈值,使用该特征阈值进行电弧故障检测时,容易出现误报或漏报情况,电弧故障检测准确度较低。
为了解决固定阈值带来的电弧故障检测准确度较低的问题,可以基于历史时频域特征自适应调节特征阈值。但是,由于实际电站环境的复杂性和天气、温度等的多样性变化,自适应调节特征阈值很难平衡高精度的电弧检出率和防误报能力。若阈值选取较低,则检测灵敏度较高,在光照等引起逆变器功率突变或环境噪声干扰引起时频域特征突变等的工况下,往往会产生误报;若阈值设置较高,则检测灵敏度较低,在时频域特征变化相对微弱的燃弧下,往往会产生漏报。
因此,为了提高电弧检出率,保障电站***安全可靠运行,并有效防止无效误报,需要对特征阈值的数值进行合理确定。
为此,本发明实施例提供了一种电弧故障检测方法、装置及电子设备,获取基于采集的逆变器的直流侧信号计算得到的预设电弧特征值,获取初始特征阈值,并根据所述预设电弧特征值和所述初始特征阈值的大小关系,判断是否发生疑似电弧,若是,则对所述逆变器执行封波操作,并至少基于封波操作后所述逆变器的电信号,确定所述疑似电弧对应的电弧检测结果;所述电弧检测结果包括真实电弧或虚假电弧,基于所述电弧检测结果,对所述初始阈值进行调整,得到目标阈值,并将所述初始特征阈值更新为所述目标阈值。即本发明中,使用的初始特征阈值,能够根据实际检测到的疑似电弧的电弧检测结果来调整,使得初始特征阈值更加符合实际应用环境,提高初始特征阈值的准确度,从而提高电弧故障检测准确度,降低误报和漏报的概率。
在上述内容的基础上,本发明实施例提供了一种电弧故障检测方法,参照图1,可以包括:
S11、获取基于采集的逆变器的直流侧信号计算得到的预设电弧特征值。
参照图2,图2给出了光伏***的示意图,光伏***包括光伏组串(由至少一个光伏组件连接)和逆变器(如为光伏逆变器)。光伏组串和逆变器的数量均为至少一个。
逆变器通过L/N连接线连接于电网和负载,逆变器内部设置有电弧检测装置,电弧检测装置执行本实施例中的电弧故障检测方法。
在逆变器首次并网时,电弧检测装置内置的特征阈值为特征阈值参考值,特征阈值参考值的数值配置为预设阈值。所述预设阈值为使得电弧检测灵敏度大于预设灵敏度的数值。
在实际应用中,预设阈值为一个较低数值(例如10),即初始电弧检测灵敏度较高。
在逆变器运行过程中,可以按照检测周期,一般可以是3毫秒或5毫秒,具体根据实际场景设定。在每一检测周期内,获取基于采集的逆变器的直流侧信号计算得到的预设电弧特征值。具体的,参照图3,“获取基于采集的逆变器的直流侧信号计算得到的预设电弧特征值”可以包括:
S21、获取逆变器的直流侧信号,并从所述直流侧信号中提取出交流信号。
具体的,在进行直流电弧检测过程中,电弧检测装置实时采集逆变器的直流侧信号。其中,直流侧信号中包括直流电信号和交流信号。直流电信号可以包括直流电流值等数据。
本实施例中,需要从直流侧信号中提取出交流信号。
S22、对所述交流信号进行快速傅里叶分析,得到所述预设电弧特征对应的预设电弧特征值。
具体的,通过对交流信号进行快速傅里叶分析,可以得到各个频率点的信号强度,各个频率点的信号强度组成频域图。频域图即为对所述交流信号进行快速傅里叶分析,得到的分析结果。
然后,获取预设电弧特征。获取的预设电弧特征可以包括均值、均方根值、方差和峰度中的至少一个。此外,还可以根据实际需求添加其他电弧特征。
每一预设电弧特征有对应的特征计算方式,如均值为各个频率点的信号强度的平均值。其他预设电弧特征类同。
则可以按照所述预设电弧特征的特征计算方式,基于上述的分析结果,即所述频域图,计算得到所述预设电弧特征对应的预设电弧特征值。
如,将各个频率点的信号强度的平均值作为均值,将各个频率点的信号强度的均方根作为均方根值等。
即获取预设电弧特征,并基于所述频域图,计算得到所述预设电弧特征对应的预设电弧特征值,包括:
获取预设电弧特征,所述预设电弧特征包括均值、均方根值、方差和峰度中的至少一个。
按照所述预设电弧特征的特征计算方式,基于所述频域图,计算得到所述预设电弧特征对应的预设电弧特征值。
S12、获取初始特征阈值。
本实施例中,若是逆变器刚并网,电弧检测装置还未进行过电弧故障检测,则初始特征阈值为上述的特征阈值参考值,例如10。
若是,电弧检测装置已经进行过电弧故障检测,则初始特征阈值为上一检测周期末的特征阈值。此时,最初的特征阈值参考值的数值仍配置为预设阈值,也即进行特征阈值的追溯,第一个特征阈值为特征阈值参考值。也就是说,所述初始特征阈值对应的特征阈值参考值的数值配置为预设阈值;所述预设阈值为使得电弧检测灵敏度大于预设灵敏度的数值。
S13、判断是否发生疑似电弧;若是,则执行步骤S14;若否,则返回执行步骤S11,继续监测电流侧信号。
具体的,根据所述预设电弧特征值和所述初始特征阈值的大小关系,判断是否发生疑似电弧。
详细来说,在所述预设电弧特征值大于所述初始特征阈值的情况下,判断出发生疑似电弧。在所述预设电弧特征值不大于所述初始特征阈值的情况下,判断出未发生疑似电弧,此时继续执行步骤S11,即继续监测电流侧信号。
S14、对所述逆变器执行封波操作,并至少基于封波操作后所述逆变器的电信号,确定所述疑似电弧对应的电弧检测结果。
其中,所述电弧检测结果包括真实电弧或虚假电弧。也即是说,确定疑似电弧是真实电弧,还是虚假电弧。
详细来说,发送封波指令至逆变器,以使逆变器执行封波操作。
在执行封波操作后,进行二次电弧判断。此时,采集逆变器的直流侧信号,并从中提取出直流电流,作为电信号,然后,基于电信号确定疑似电弧是真实电弧,还是虚假电弧。
详细来说,参照图4,“至少基于封波操作后所述逆变器的电信号,确定所述疑似电弧对应的电弧检测结果”,可以包括:
S31、获取所述逆变器执行封波操作后的电信号。
电信号中可以包括直流输入值,具体获取过程参照上述相应说明。
S32、判断电信号的值是否为零;若为零,则执行步骤S33;若不为零,则执行步骤S34。
具体的,逆变器执行封波操作,会将直流侧和交流测的能量传输通道关闭。(封波时间为毫秒级别,例如200ms封波时长)
若发生真实电弧,封波期间由于能量传输通道关闭,电弧会灭掉,发生电弧的地方就会产生空隙((电弧为电解空气形成,切断能量传输,电弧灭掉,起弧的地方就产生了空隙))导致断路,该通道就无法再次并网运行,因此封波后发生电弧的通道电流为0。
若发生虚假电弧,封波后相应通道可以再次并网运行,电流将会快速恢复至封波前的数值。(虚假电弧为高频谐波干扰等引起,封波操作不会影响逆变器再次并网)。
S33、确定电弧检测结果为真实电弧。
也即,疑似电弧为真实电弧。
S34、获取所述直流侧信号中的直流电信号。
具体可以从步骤S11中的直流侧信号中提取得到,一般提取的是直流电信号中的直流电流值。
S35、在所述直流电信号的值与所述电信号的值相同的情况下,确定电弧检测结果为虚假电弧。
上述的直流电流值和电流输入值相同,也即封波后相应通道可以再次并网运行,电流将快速恢复至封波前的数值,则说明疑似电弧为虚假电弧。
需要说明的是,本实施例中,是基于电流值进行虚假电弧和真实电弧的判断,此外,还可以根据功率值进行虚假电弧和真实电弧的判断。
S15、基于所述电弧检测结果,对所述初始阈值进行调整,得到目标阈值,并将所述初始特征阈值更新为所述目标阈值。
具体的,步骤S15包括:
1)在所述电弧检测结果为真实电弧的情况下,按照预设阈值增量计算规则,减小所述初始特征阈值的数值,得到目标阈值。
其中,参照图5,按照预设阈值增量计算规则,减小所述初始特征阈值的数值,得到目标阈值,可以包括:
S41、获取所述逆变器的并网时间。
具体的,逆变器的并网时间,是指逆变器连接至电网的时间。
S42、计算所述并网时间对应的阈值增量。
在实际应用中,计算阈值增量时,设置有对应的阈值增量计算公式。
本实施例中,有三种阈值增量计算公式,可以根据实际场景选择一个使用。
1、阈值增量计算公式为:
Figure PCTCN2022134752-appb-000001
其中,ΔT和t分别表示阈值增量和并网时间,并网时间一般为总并网小时数。本实施例中,阈值增量计算公式为反函数形式。阈值增量,随总并网时间衰减,即并网时间越长,阈值增量越小。反函数形式中,阈值增量随着并网时间先快速、后缓慢变化。
例如,若逆变器的并网时间0.1h时发生虚假拉弧,则ΔT=1/0.1=10。
2、阈值增量计算公式为:
Figure PCTCN2022134752-appb-000002
其中,ΔT和t分别表示阈值增量和并网时间。本实施例中,阈值增量计算公式为指数函数形式,指数函数形式中,阈值增量随着并网时间缓慢变化。
3、阈值增量计算公式为:
Figure PCTCN2022134752-appb-000003
其中,ΔT和t分别表示阈值增量和并网时间。本实施例中,阈值增量计算公式为高斯函数形式,高斯函数形式中,阈值增量随着并网时间先缓慢、后快速、再缓慢变化。
在获取阈值增量计算公式之后,基于所述阈值增量计算公式,计算所述得到并网时间对应的阈值增量。
S43、将所述初始特征阈值与所述阈值增量之差,作为目标阈值。
本实施例中,在检测到真实电弧时,说明此时使用的初始特征阈值已具备识别真实电弧的能力,但是在初始特征阈值和误报虚假电弧的阈值之间仍然具有优化空间,此时,可以尝试负向修正当前特征阈值,进一步提高真实电弧识别能力,提高电弧检出率,防止微弱电弧的漏报。
则,将所述初始特征阈值与所述阈值增量的差值,作为目标阈值。
如,在逆变器并网1h时发生真实电弧,阈值修正为:
T=T-ΔT=22-1=21
其中,T为目标阈值。
2)在所述电弧检测结果为虚假电弧的情况下,按照预设阈值增量计算规则,增大所述初始特征阈值的数值,得到目标阈值。
本实施例中,在电弧检测结果为虚假电弧的情况下,说明检测到虚假电弧,也即说明此时使用的初始特征阈值过于灵敏,抗干扰能力较差,不具备识别干扰信号和真实电弧的能力,因此,可以正向修正当前的初始特征阈值,提高抗干扰能力,降低电弧的误报。
则,参照图6,按照预设阈值增量计算规则,增大所述初始特征阈值的数值,得到目标阈值,可以包括:
S51、获取所述逆变器的并网时间。
S52、计算所述并网时间对应的阈值增量。
这两个步骤的具体实现过程,参照上述的相应说明。
S53、将所述初始特征阈值与所述阈值增量之和,作为目标阈值。
本步骤与上述步骤不同的是,在疑似电弧为真实电弧时,将所述初始特征阈值与所述阈值增量的差值,作为目标阈值,即采用负向修正阈值 的方式。在疑似电弧为虚假电弧时,将所述初始特征阈值与所述阈值增量之和,作为目标阈值,采用正向修正阈值的方式。
如,初始特征阈值为10,若逆变器并网时间0.1h时发生虚假电弧,阈值修正为T=T+ΔT=10+10=20;在并网0.5h时再次发生虚假电弧,阈值修正为T=T+ΔT=20+2=22。其中,T为目标阈值。
在得到目标阈值之后,将所述初始特征阈值更新为所述目标阈值,然后在下一检测周期内,使用新的初始特征阈值进行电弧检测。
需要说明的是,本实施例中,是在检测到疑似电弧之后,基于并网时间确定目标阈值。此外,实现方式还可以是不检测疑似电弧,直接在逆变器并网运行过程中,获取初始特征阈值,并根据并网时间确定目标阈值。
即本发明中的电弧故障检测方法还包括:
获取所述逆变器的并网时间,计算所述并网时间对应的阈值增量,将所述初始特征阈值与所述阈值增量之和或之差,作为目标阈值。
其中,计算所述并网时间对应的阈值增量的过程参照上述相应说明。
本发明的另一实施例中,在至少基于封波操作后所述逆变器的电信号,确定所述疑似电弧对应的电弧检测结果之后,还包括:
在所述电弧检测结果为真实电弧的情况下,控制所述逆变器进行停机操作,并输出电弧故障信息。
具体的,若是电弧检测结果为真实电弧,若是继续运行逆变器,封波灭掉的电弧容易再次起弧,电弧危害继续存在,可能会烧毁逆变器或光伏组件,甚至引发重大火灾。此时可以控制所述逆变器进行停机操作,输出电弧故障信息,使得运维人员及时进行故障修复。
此外,还可以是在确定目标阈值后,控制所述逆变器进行停机操作,并输出电弧故障信息。具体操作顺序,可以根据实际场景设定。但是,为了保护逆变器不被烧毁,可以在确定出是真实电弧后,就控制所述逆变器进行停机操作。
本实施例中,获取基于采集的逆变器的直流侧信号计算得到的预设电弧特征值,获取初始特征阈值,并根据所述预设电弧特征值和所述初始特征阈值的大小关系,判断是否发生疑似电弧,若是,则对所述逆变器执行 封波操作,并至少基于封波操作后所述逆变器的电信号,确定所述疑似电弧对应的电弧检测结果;所述电弧检测结果包括真实电弧或虚假电弧,基于所述电弧检测结果,对所述初始阈值进行调整,得到目标阈值,并将所述初始特征阈值更新为所述目标阈值。即本发明中,使用的初始特征阈值,能够根据实际检测到的疑似电弧的电弧检测结果来调整,使得初始特征阈值更加符合实际应用环境,提高初始特征阈值的准确度,从而提高电弧故障检测准确度,降低误报和漏报的概率。
另外,本发明通过在首次并网时预设初始特征阈值,再通过阈值增量函数,结合电弧检测装置和逆变器整机对真假电弧的判定,实现阈值寻优。所获得的阈值参数可以最大程度契合于各个逆变器所运行的电站环境、气候和温度等多样性工况。
此外,本发明通过首次并网期间阈值大范围寻优过程的封波误报、实现最佳阈值寻优后,极大程度减少逆变器正常运行过程中不合适的阈值选择,提高电弧识别能力的同时,避免周期性干扰等引起的频繁误报。
可选地,在上述电弧故障检测方法的实施例的基础上,本发明的另一实施例提供了一种电弧故障检测装置,参照图7,可以包括:
特征值获取模块11,用于获取基于采集的逆变器的直流侧信号计算得到的预设电弧特征值;
电弧判断模块12,用于获取初始特征阈值,并根据所述预设电弧特征值和所述初始特征阈值的大小关系,判断是否发生疑似电弧;
电弧检测模块13,用于若是,则对所述逆变器执行封波操作,并至少基于封波操作后所述逆变器的电信号,确定所述疑似电弧对应的电弧检测结果;所述电弧检测结果包括真实电弧或虚假电弧;
阈值调整模块14,用于基于所述电弧检测结果,对所述初始阈值进行调整,得到目标阈值,并将所述初始特征阈值更新为所述目标阈值。
进一步,特征值获取模块11包括:
信号提取子模块,用于获取逆变器的直流侧信号,并从所述直流侧信号中提取出交流信号;
信号分析子模块,用于对所述交流信号进行快速傅里叶分析,得到所述预设电弧特征对应的预设电弧特征值。
进一步,信号分析子模块包括:
分析单元,用于对所述交流信号进行快速傅里叶分析,得到分析结果;
特征获取单元,用于获取预设电弧特征,所述预设电弧特征包括均值、均方根值、方差和峰度中的至少一个;
计算单元,用于基于所述分析结果,按照所述预设电弧特征的特征计算方式,计算得到所述预设电弧特征对应的预设电弧特征值。
进一步,电弧判断模块12具体用于:
在所述预设电弧特征值大于所述初始特征阈值的情况下,判断出发生疑似电弧。
进一步,电弧检测模块13包括:
第一信号获取子模块,用于获取所述逆变器执行封波操作后的电信号;
第一电弧判断子模块,用于若所述电信号的值为零,则确定电弧检测结果为真实电弧;
第二信号获取子模块,用于若所述电信号的值不为零,获取所述直流侧信号中的直流电信号;
第二电弧判断子模块,用于在所述直流电信号的值与所述电信号的值相同的情况下,确定电弧检测结果为虚假电弧。
进一步,阈值调整模块14具体用于:
在所述电弧检测结果为真实电弧的情况下,按照预设阈值增量计算规则,减小所述初始特征阈值的数值,得到目标阈值,在所述电弧检测结果为虚假电弧的情况下,按照预设阈值增量计算规则,增大所述初始特征阈值的数值,得到目标阈值。
进一步,还包括:
时间获取模块,用于获取所述逆变器的并网时间;
增量计算模块,用于计算所述并网时间对应的阈值增量;
阈值确定模块,用于将所述初始特征阈值与所述阈值增量之和或之差,作为目标阈值。
进一步,增量计算模块具体用于:
获取阈值增量计算公式,并基于所述阈值增量计算公式,计算所述 并网时间对应的阈值增量。
进一步,还包括:
停机控制模块,用于在所述电弧检测结果为真实电弧的情况下,控制所述逆变器进行停机操作,并输出电弧故障信息。
进一步,所述初始特征阈值对应的特征阈值参考值的数值配置为预设阈值;所述预设阈值为使得电弧检测灵敏度大于预设灵敏度的数值。
本实施例中,获取基于采集的逆变器的直流侧信号计算得到的预设电弧特征值,获取初始特征阈值,并根据所述预设电弧特征值和所述初始特征阈值的大小关系,判断是否发生疑似电弧,若是,则对所述逆变器执行封波操作,并至少基于封波操作后所述逆变器的电信号,确定所述疑似电弧对应的电弧检测结果;所述电弧检测结果包括真实电弧或虚假电弧,基于所述电弧检测结果,对所述初始阈值进行调整,得到目标阈值,并将所述初始特征阈值更新为所述目标阈值。即本发明中,使用的初始特征阈值,能够根据实际检测到的疑似电弧的电弧检测结果来调整,使得初始特征阈值更加符合实际应用环境,提高初始特征阈值的准确度,从而提高电弧故障检测准确度,降低误报和漏报的概率。
另外,本发明通过在首次并网时预设初始特征阈值,再通过阈值增量函数,结合电弧检测装置和逆变器整机对真假电弧的判定,实现阈值寻优。所获得的阈值参数可以最大程度契合于各个逆变器所运行的电站环境、气候和温度等多样性工况。
此外,本发明通过首次并网期间阈值大范围寻优过程的封波误报、实现最佳阈值寻优后,极大程度减少逆变器正常运行过程中不合适的阈值选择,提高电弧识别能力的同时,避免周期性干扰等引起的频繁误报。
需要说明的是,本实施例中的各个模块、子模块和单元的工作过程,请参照上述实施例中的相应说明,在此不再赘述。
可选地,在上述电弧故障检测方法及装置的实施例的基础上,本发明的另一实施例提供了一种电子设备,包括:存储器和处理器;
其中,所述存储器用于存储程序;
处理器调用程序并用于执行上述的电弧故障检测方法。
需要说明的是,本实施例中的电子设备可以是上述的电弧检测装置。
可选地,在上述电子设备的实施例的基础上,本发明的另一实施例提供了一种逆变器,包括上述的电子设备。
本实施例中,获取基于采集的逆变器的直流侧信号计算得到的预设电弧特征值,获取初始特征阈值,并根据所述预设电弧特征值和所述初始特征阈值的大小关系,判断是否发生疑似电弧,若是,则对所述逆变器执行封波操作,并至少基于封波操作后所述逆变器的电信号,确定所述疑似电弧对应的电弧检测结果;所述电弧检测结果包括真实电弧或虚假电弧,基于所述电弧检测结果,对所述初始阈值进行调整,得到目标阈值,并将所述初始特征阈值更新为所述目标阈值。即本发明中,使用的初始特征阈值,能够根据实际检测到的疑似电弧的电弧检测结果来调整,使得初始特征阈值更加符合实际应用环境,提高初始特征阈值的准确度,从而提高电弧故障检测准确度,降低误报和漏报的概率。
另外,本发明通过在首次并网时预设初始特征阈值,再通过阈值增量函数,结合电弧检测装置和逆变器整机对真假电弧的判定,实现阈值寻优。所获得的阈值参数可以最大程度契合于各个逆变器所运行的电站环境、气候和温度等多样性工况。
此外,本发明通过首次并网期间阈值大范围寻优过程的封波误报、实现最佳阈值寻优后,极大程度减少逆变器正常运行过程中不合适的阈值选择,提高电弧识别能力的同时,避免周期性干扰等引起的频繁误报。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (13)

  1. 一种电弧故障检测方法,其特征在于,包括:
    获取基于采集的逆变器的直流侧信号计算得到的预设电弧特征值;
    获取初始特征阈值,并根据所述预设电弧特征值和所述初始特征阈值的大小关系,判断是否发生疑似电弧;
    若是,则对所述逆变器执行封波操作,并至少基于封波操作后所述逆变器的电信号,确定所述疑似电弧对应的电弧检测结果;所述电弧检测结果包括真实电弧或虚假电弧;
    基于所述电弧检测结果,对所述初始阈值进行调整,得到目标阈值,并将所述初始特征阈值更新为所述目标阈值。
  2. 根据权利要求1所述的电弧故障检测方法,其特征在于,获取基于采集的逆变器的直流侧信号计算得到的预设电弧特征值,包括:
    获取逆变器的直流侧信号,并从所述直流侧信号中提取出交流信号;
    对所述交流信号进行快速傅里叶分析,得到所述预设电弧特征对应的预设电弧特征值。
  3. 根据权利要求2所述的电弧故障检测方法,其特征在于,对所述交流信号进行快速傅里叶分析,得到所述预设电弧特征对应的预设电弧特征值,包括:
    对所述交流信号进行快速傅里叶分析,得到分析结果;
    获取预设电弧特征,所述预设电弧特征包括均值、均方根值、方差和峰度中的至少一个;
    基于所述分析结果,按照所述预设电弧特征的特征计算方式,计算得到所述预设电弧特征对应的预设电弧特征值。
  4. 根据权利要求1所述的电弧故障检测方法,其特征在于,根据所述预设电弧特征值和所述初始特征阈值的大小关系,判断是否发生疑似电弧,包括:
    在所述预设电弧特征值大于所述初始特征阈值的情况下,判断出发生疑似电弧。
  5. 根据权利要求1所述的电弧故障检测方法,其特征在于,至少基于封波操作后所述逆变器的电信号,确定所述疑似电弧对应的电弧检测结果,包括:
    获取所述逆变器执行封波操作后的电信号;
    若所述电信号的值为零,则确定电弧检测结果为真实电弧;
    若所述电信号的值不为零,获取所述直流侧信号中的直流电信号;
    在所述直流电信号的值与所述电信号的值相同的情况下,确定电弧检测结果为虚假电弧。
  6. 根据权利要求1所述的电弧故障检测方法,其特征在于,基于所述电弧检测结果,对所述初始阈值进行调整,得到目标阈值,包括:
    在所述电弧检测结果为真实电弧的情况下,按照预设阈值增量计算规则,减小所述初始特征阈值的数值,得到目标阈值;
    在所述电弧检测结果为虚假电弧的情况下,按照预设阈值增量计算规则,增大所述初始特征阈值的数值,得到目标阈值。
  7. 根据权利要求1所述的电弧故障检测方法,其特征在于,还包括:
    获取所述逆变器的并网时间;
    计算所述并网时间对应的阈值增量;
    将所述初始特征阈值与所述阈值增量之和或之差,作为目标阈值。
  8. 根据权利要求7所述的电弧故障检测方法,其特征在于,计算所述并网时间对应的阈值增量,包括:
    获取阈值增量计算公式,并基于所述阈值增量计算公式,计算所述并网时间对应的阈值增量。
  9. 根据权利要求1所述的电弧故障检测方法,其特征在于,在至少基于封波操作后所述逆变器的电信号,确定所述疑似电弧对应的电弧检测结果之后,还包括:
    在所述电弧检测结果为真实电弧的情况下,控制所述逆变器进行停机操作,并输出电弧故障信息。
  10. 根据权利要求1所述的电弧故障检测方法,其特征在于,所述初始特征阈值对应的特征阈值参考值的数值配置为预设阈值;所述预设阈 值为使得电弧检测灵敏度大于预设灵敏度的数值。
  11. 一种电弧故障检测装置,其特征在于,包括:
    特征值获取模块,用于获取基于采集的逆变器的直流侧信号计算得到的预设电弧特征值;
    电弧判断模块,用于获取初始特征阈值,并根据所述预设电弧特征值和所述初始特征阈值的大小关系,判断是否发生疑似电弧;
    电弧检测模块,用于若是,则对所述逆变器执行封波操作,并至少基于封波操作后所述逆变器的电信号,确定所述疑似电弧对应的电弧检测结果;所述电弧检测结果包括真实电弧或虚假电弧;
    阈值调整模块,用于基于所述电弧检测结果,对所述初始阈值进行调整,得到目标阈值,并将所述初始特征阈值更新为所述目标阈值。
  12. 一种电子设备,其特征在于,包括:存储器和处理器;
    其中,所述存储器用于存储程序;
    处理器调用程序并用于执行如权利要求1-10任一项所述的电弧故障检测方法。
  13. 一种逆变器,其特征在于,包括如权利要求12所述的电子设备。
PCT/CN2022/134752 2022-04-21 2022-11-28 一种电弧故障检测方法、装置及设备 WO2023202078A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210421305.4 2022-04-21
CN202210421305.4A CN114755542B (zh) 2022-04-21 2022-04-21 一种电弧故障检测方法、装置及设备

Publications (2)

Publication Number Publication Date
WO2023202078A1 true WO2023202078A1 (zh) 2023-10-26
WO2023202078A9 WO2023202078A9 (zh) 2023-12-07

Family

ID=82330677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134752 WO2023202078A1 (zh) 2022-04-21 2022-11-28 一种电弧故障检测方法、装置及设备

Country Status (2)

Country Link
CN (1) CN114755542B (zh)
WO (1) WO2023202078A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114755542B (zh) * 2022-04-21 2024-02-09 阳光电源股份有限公司 一种电弧故障检测方法、装置及设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2466323A2 (de) * 2010-12-17 2012-06-20 Siemens Aktiengesellschaft Verfahren zum Detektieren von Störlichtbogenereignissen durch einen Fehlerzähler und Vorrichtung
CN103913663A (zh) * 2014-04-21 2014-07-09 南京航空航天大学 一种直流***电弧故障在线检测方法和保护装置
JP2019207130A (ja) * 2018-05-29 2019-12-05 東日本旅客鉄道株式会社 直流き電線の高抵抗地絡検出装置
CN113285430A (zh) * 2021-06-07 2021-08-20 阳光电源股份有限公司 一种直流电弧检测方法、能量转换设备和发电***
CN113687258A (zh) * 2021-09-10 2021-11-23 阳光电源股份有限公司 一种直流电源供电***及其直流电弧检测方法和装置
CN114755542A (zh) * 2022-04-21 2022-07-15 阳光电源股份有限公司 一种电弧故障检测方法、装置及设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104092440B (zh) * 2014-07-21 2017-07-28 阳光电源股份有限公司 光伏***直流电弧故障检测方法、装置、处理器及其***
CN110874674B (zh) * 2018-08-29 2023-06-27 阿里巴巴集团控股有限公司 一种异常检测方法、装置及设备
CN111474451A (zh) * 2020-04-26 2020-07-31 威胜集团有限公司 提高故障电弧准确率的检测方法、装置和可读存储介质
CN114355123A (zh) * 2022-01-04 2022-04-15 阳光电源股份有限公司 一种电弧检测方法、装置及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2466323A2 (de) * 2010-12-17 2012-06-20 Siemens Aktiengesellschaft Verfahren zum Detektieren von Störlichtbogenereignissen durch einen Fehlerzähler und Vorrichtung
CN103913663A (zh) * 2014-04-21 2014-07-09 南京航空航天大学 一种直流***电弧故障在线检测方法和保护装置
JP2019207130A (ja) * 2018-05-29 2019-12-05 東日本旅客鉄道株式会社 直流き電線の高抵抗地絡検出装置
CN113285430A (zh) * 2021-06-07 2021-08-20 阳光电源股份有限公司 一种直流电弧检测方法、能量转换设备和发电***
CN113687258A (zh) * 2021-09-10 2021-11-23 阳光电源股份有限公司 一种直流电源供电***及其直流电弧检测方法和装置
CN114755542A (zh) * 2022-04-21 2022-07-15 阳光电源股份有限公司 一种电弧故障检测方法、装置及设备

Also Published As

Publication number Publication date
WO2023202078A9 (zh) 2023-12-07
CN114755542A (zh) 2022-07-15
CN114755542B (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
WO2023202078A1 (zh) 一种电弧故障检测方法、装置及设备
WO2017036112A1 (zh) 一种直流故障电弧检测方法
WO2021043027A1 (zh) 一种基于机器学习的光伏***直流故障电弧检测方法
CN104092440A (zh) 光伏***直流电弧故障检测方法、装置、处理器及其***
JP2015145847A (ja) 直流アーク検出装置及び方法
WO2019127440A1 (zh) 一种直流电弧的处理方法及装置
WO2021047568A1 (zh) 一种通过拖尾电流辨识自动调整失灵保护延时的方法
CN112653393B (zh) 一种光伏***iv诊断的控制方法及装置
CN115091491B (zh) 一种配电房巡维机器人及其控制方法
CN114355123A (zh) 一种电弧检测方法、装置及电子设备
CN111983402A (zh) 一种直流电弧故障检测方法及光伏逆变***
CN116226766A (zh) 一种高压电器运行状态监测***
CN110165674B (zh) 一种有源滤波器安全管理***
CN115248292A (zh) 一种变压器故障分析诊断方法及***
JP2024517822A (ja) インバータ及び太陽光発電システムの交流故障の認識方法
CN115097270A (zh) 一种基于神经网络的直流拉弧检测方法及***
WO2023231404A1 (zh) 光伏***直流电弧故障检测方法、装置、设备及介质
CN105975737A (zh) 转折点计算模型及电机电流的断路器状态监测方法、***
TW201411160A (zh) 電器設備的異常狀態偵測系統及方法
CN114755546B (zh) 一种光伏***直流故障电弧的检测方法、装置及光伏***
CN116111729B (zh) 一种用于机房设备的高频开关电源电路***
CN112345885A (zh) 一种高压直流输电线路故障检测方法
CN114895137A (zh) 一种供电设备供电质量测试方法
CN117148049B (zh) 一种直流拉弧故障检测***、方法及光伏并网***
CN105206544A (zh) 终点检测***及其运行状态监测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938297

Country of ref document: EP

Kind code of ref document: A1