WO2023200027A1 - Method for removing photoresist particles - Google Patents

Method for removing photoresist particles Download PDF

Info

Publication number
WO2023200027A1
WO2023200027A1 PCT/KR2022/005420 KR2022005420W WO2023200027A1 WO 2023200027 A1 WO2023200027 A1 WO 2023200027A1 KR 2022005420 W KR2022005420 W KR 2022005420W WO 2023200027 A1 WO2023200027 A1 WO 2023200027A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
photoresist
particles
pattern
water
Prior art date
Application number
PCT/KR2022/005420
Other languages
French (fr)
Korean (ko)
Inventor
심재희
Original Assignee
주식회사 올도완
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 올도완 filed Critical 주식회사 올도완
Publication of WO2023200027A1 publication Critical patent/WO2023200027A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/3021Imagewise removal using liquid means from a wafer supported on a rotating chuck
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Definitions

  • the present invention relates to a method for removing photoresist particles, and more specifically, to a method for removing photoresist particles from the surface of a wafer on which a photoresist pattern is formed.
  • photo process is a process of drawing a semiconductor circuit on a wafer
  • the etching process is a process of forming an oxide film pattern
  • the deposition and ion implantation process is a process of forming a thin film to distinguish and connect circuits and giving the semiconductor electrical properties.
  • the photo process is divided into three stages: PR coating stage, exposure stage, and development stage.
  • PR coating stage the product is developed with a developer (TMAH, TetraMethylAmmonium Hydroxide) and then washed with ultrapure water (DI Water).
  • DI Water ultrapure water
  • the purpose of the present invention is to provide a method for removing PR particles in a photo process.
  • the purpose of the present invention is to provide a method for efficiently removing PR particles without damaging the PR pattern by removing PR particles at the development step during the photo process.
  • the particle removal method is a method of removing photoresist particles in a development step of forming a pattern on an exposed semiconductor wafer, wherein the development step includes spraying a developer onto the wafer for a first time. It includes a second process of spraying DI Water on the wafer for a first process and a second time, and the second process rotates the wafer on which the photoresist pattern is formed at a predetermined speed, while rotating the wafer on the wafer with a frequency of 1 MHz to 1 MHz. It includes the process of spraying DI Water using 5 MHz Megasonic. Through this method, it is possible to clean the wafer using megasonics without damaging the PR pattern formed on the wafer.
  • the photoresist is any one photoresist selected from the group consisting of KrF Positive PR, Krf Negative PR, I-Line Positive PR, and I-Line Negative PR, and the particle removal method according to an embodiment of the present invention is It may be a method that can be applied to a pattern with a line width of 200 nm to 800 nm in which a resist is used.
  • the rotation speed of the wafer is 50 RPM to 2000 RPM, and if it exceeds 2000 RPM, the pattern may be damaged or black lines may appear on the wafer and PR particles may increase.
  • the output per unit area of the Megasonic is 0.079W/mm2 to 1.194W/mm2. More specifically, the rotation speed of the wafer is 200rpm, and the output per unit area of the Megasonic applied to DI water is 0.079W/mm2. It is preferable that it is 0.238W/mm2.
  • the wafer cleaning method according to an embodiment of the present invention is capable of removing PR particles without damaging the PR pattern, which is a so-called soft pattern.
  • FIG. 1 is a conceptual diagram of track equipment according to an embodiment of the present invention.
  • Figure 2 is a photograph before and after megasonic application for each line width according to an embodiment of the present invention.
  • Figure 3 is an actual photo of PR particles that may occur on the wafer surface.
  • Figure 4 is a flowchart of a method for cleaning a wafer according to an embodiment of the present invention.
  • Megasonic applied to the method according to an embodiment of the present invention is applied to a shower-type DI water nozzle and is designed to enable precise cleaning, removing particles with a size of tens to hundreds of nm.
  • a wafer with a diameter of 200 mm is used, and a 200 nm to 800 nm pattern is formed on the wafer surface.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

A method or removing photoresist particles according to an embodiment of the present invention is a method for removing photoresist particles in a development step for forming a pattern on an exposed semiconductor wafer, the development step comprising: a first process for spraying developer on a wafer for a first duration; and a second process for spraying DI water on the wafer for a second duration, wherein the second process includes a process for spraying DI water, to which megasonics of a frequency of 1 MHz to 5 MHz is applied, on a wafer having a photoresist pattern while rotating the wafer at a prescribed speed.

Description

포토레지스트 파티클 제거방법How to remove photoresist particles
본 발명은 포토레지스트 파티클 제거방법에 관한 것으로서, 보다 상세하게는 포토레지스트 패턴이 형성되어 있는 웨이퍼 표면에 포토레지스트 파티클을 제거하는 방법에 관한 것이다.The present invention relates to a method for removing photoresist particles, and more specifically, to a method for removing photoresist particles from the surface of a wafer on which a photoresist pattern is formed.
반도체 집적회로를 제작하는 공정 중, 포토공정, 식각공정, 증착 및 이온주입공정은 미세한 패턴형성을 위한 매우 중요한 공정에 해당한다. 포토공정은 웨이퍼 위에 반도체 회로를 그려넣는 과정이고, 식각공정은 산화막 패턴을 형성하는 과정이며, 증착 및 이온주입공정은 회로간의 구분과 연결을 위한 박막을 형성하고, 반도체가 전기적 특성을 갖도록 하는 과정이다.Among the processes for manufacturing semiconductor integrated circuits, photo process, etching process, deposition, and ion implantation process are very important processes for forming fine patterns. The photo process is a process of drawing a semiconductor circuit on a wafer, the etching process is a process of forming an oxide film pattern, and the deposition and ion implantation process is a process of forming a thin film to distinguish and connect circuits and giving the semiconductor electrical properties. am.
일반적으로 포토공정은 PR코팅 단계, 노광단계, 현상단계 3가지 단계로 구분된다. 현상단계에서는 현상액(TMAH, TetraMethylAmmonium Hydroxide)으로 현상한 후, 초순수 물(DI Water)로 세정을 진행한다. Generally, the photo process is divided into three stages: PR coating stage, exposure stage, and development stage. In the development stage, the product is developed with a developer (TMAH, TetraMethylAmmonium Hydroxide) and then washed with ultrapure water (DI Water).
식각공정에서 형성된 패턴을 제외한 부분에 남아있는 잔류물을 제거하기 위한 다양한 장치 및 방법이 개발되어오고 있으나, 포토공정(현상스텝)에서 PR패턴이 형성된 웨이퍼상에 PR파티클을 제거하는 공정에는 적용하기 어렵다.Various devices and methods have been developed to remove residues remaining in areas other than the pattern formed in the etching process, but they cannot be applied to the process of removing PR particles on the wafer on which the PR pattern was formed in the photo process (development step). difficult.
본 발명의 목적은 포토공정에서 PR파티클을 제거하기 위한 방법을 제공하는데 있다. 특히 본 발명은 포토공정 중 현상스텝에서의 PR파티클을 제거하는 방법으로 PR패턴에 손상을 주지 않으면서 효율적으로 PR파티클을 제거하는 방법을 제공하는 것을 목적으로 한다.The purpose of the present invention is to provide a method for removing PR particles in a photo process. In particular, the purpose of the present invention is to provide a method for efficiently removing PR particles without damaging the PR pattern by removing PR particles at the development step during the photo process.
본 발명의 실시예에 따른 파티클 제거방법은 노광이 완료된 반도체 웨이퍼 상에 패턴을 형성하는 현상스텝에서 포토레지스트 파티클을 제거하는 방법으로서, 상기 현상스텝은 제1시간동안 현상액을 웨이퍼상에 분사하는 제1과정 및 제2시간동안 DI Water를 웨이퍼상에 분사하는 제2과정을 포함하고, 상기 제2과정은 포토레지스트 패턴이 형성되어 있는 웨이퍼를 소정의 속도로 회전시키면서, 상기 웨이퍼 상에 주파수 1MHz 내지 5MHz의 메가소닉을 인가한 DI Water를 분사하는 과정을 포함한다. 이러한 방법을 통해 웨이퍼 상에 형성되어 있는 PR패턴을 손상시키지 않고, 메가소닉에 의해서 웨이퍼 세척이 가능하다. The particle removal method according to an embodiment of the present invention is a method of removing photoresist particles in a development step of forming a pattern on an exposed semiconductor wafer, wherein the development step includes spraying a developer onto the wafer for a first time. It includes a second process of spraying DI Water on the wafer for a first process and a second time, and the second process rotates the wafer on which the photoresist pattern is formed at a predetermined speed, while rotating the wafer on the wafer with a frequency of 1 MHz to 1 MHz. It includes the process of spraying DI Water using 5 MHz Megasonic. Through this method, it is possible to clean the wafer using megasonics without damaging the PR pattern formed on the wafer.
또한, 상기 포토레지스트는 KrF Positive PR, Krf Negative PR, I-Line Positive PR 및 I-Line Negative PR로 이루어진 군에서 선택된 어느 하나의 포토레지스트이며, 본 발명의 실시예에 따른 파티클 제거방법은 상기 포토레지스트가 사용되는 200nm 내지 800nm의 선폭을 갖는 패턴에 적용될 수 있는 방법일 수 있다.In addition, the photoresist is any one photoresist selected from the group consisting of KrF Positive PR, Krf Negative PR, I-Line Positive PR, and I-Line Negative PR, and the particle removal method according to an embodiment of the present invention is It may be a method that can be applied to a pattern with a line width of 200 nm to 800 nm in which a resist is used.
또한, 상기 웨이퍼의 회전속도는 50RPM 내지 2000RPM이며, 2000RPM을 초과하는 경우 패턴에 손상이 가거나 웨이퍼 상에 흑선이 발현되어 PR파티클이 증가할 수 있다.In addition, the rotation speed of the wafer is 50 RPM to 2000 RPM, and if it exceeds 2000 RPM, the pattern may be damaged or black lines may appear on the wafer and PR particles may increase.
또한, 상기 메가소닉의 단위면적당 출력은 0.079W/㎟ 내지 1.194W/㎟이며, 보다 상세하게는 상기 웨이퍼의 회전수는 200rpm이며, DI water에 가해지는 메가소닉의 단위면적당 출력은 0.079W/㎟ 내지 0.238W/㎟인 것이 바람직하다.In addition, the output per unit area of the Megasonic is 0.079W/㎟ to 1.194W/㎟. More specifically, the rotation speed of the wafer is 200rpm, and the output per unit area of the Megasonic applied to DI water is 0.079W/㎟. It is preferable that it is 0.238W/㎟.
본 발명의 실시예에 따른 웨이퍼 세정방법은 소위 소프트 패턴인 PR패턴의 손상없이 PR파티클을 제거하는 것이 가능하다.The wafer cleaning method according to an embodiment of the present invention is capable of removing PR particles without damaging the PR pattern, which is a so-called soft pattern.
또한, 장비를 별도로 제작할 필요 없이, 기존 트랙장비를 개량하여 사용이 가능하다.In addition, it is possible to improve and use existing track equipment without the need to manufacture separate equipment.
도 1은 본 발명의 실시예에 따른 트랙장비 개념도이다.1 is a conceptual diagram of track equipment according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 선폭별 메가소닉 인가전후의 사진이다.Figure 2 is a photograph before and after megasonic application for each line width according to an embodiment of the present invention.
도 3은 웨이퍼 표면에 발생할 수 있는 PR파티클의 실제사진이다.Figure 3 is an actual photo of PR particles that may occur on the wafer surface.
도 4는 본 발명의 실시예에 따른 웨이퍼를 세정하는 방법의 순서도이다.Figure 4 is a flowchart of a method for cleaning a wafer according to an embodiment of the present invention.
본 명세서에 개시되어 있는 본 발명의 개념에 따른 실시 예들에 대해서 특정한 구조적 또는 기능적 설명들은 단지 본 발명의 개념에 따른 실시 예들을 설명하기 위한 목적으로 예시된 것으로서, 본 발명의 개념에 따른 실시 예들은 다양한 형태들로 실시될 수 있으며 본 명세서에 설명된 실시 예들에 한정되지 않는다.Specific structural or functional descriptions of the embodiments according to the concept of the present invention disclosed in this specification are merely illustrative for the purpose of explaining the embodiments according to the concept of the present invention, and the embodiments according to the concept of the present invention are It may be implemented in various forms and is not limited to the embodiments described herein.
본 발명의 개념에 따른 실시 예들은 다양한 변경들을 가할 수 있고 여러 가지 형태들을 가질 수 있으므로 실시 예들을 도면에 예시하고 본 명세서에서 상세하게 설명하고자 한다. 그러나 이는 본 발명의 개념에 따른 실시 예들을 특정한 개시 형태들에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물, 또는 대체물을 포함한다.Since the embodiments according to the concept of the present invention can make various changes and have various forms, the embodiments will be illustrated in the drawings and described in detail in this specification. However, this is not intended to limit the embodiments according to the concept of the present invention to specific disclosed forms, and includes all changes, equivalents, or substitutes included in the spirit and technical scope of the present invention.
제1 또는 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만, 예컨대 본 발명의 개념에 따른 권리 범위로부터 벗어나지 않은 채, 제1 구성 요소는 제2 구성 요소로 명명될 수 있고 유사하게 제2 구성 요소는 제1 구성 요소로도 명명될 수 있다.Terms such as first or second may be used to describe various components, but the components should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another component, for example, without departing from the scope of rights according to the concept of the present invention, a first component may be named a second component and similarly a second component The component may also be named a first component.
어떤 구성 요소가 다른 구성 요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성 요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성 요소가 다른 구성 요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는 중간에 다른 구성 요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성 요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.When a component is said to be “connected” or “connected” to another component, it is understood that it may be directly connected to or connected to that other component, but that other components may also exist in between. It should be. On the other hand, when it is mentioned that a component is “directly connected” or “directly connected” to another component, it should be understood that there are no other components in between. Other expressions that describe the relationship between components, such as "between" and "immediately between" or "neighboring" and "directly adjacent to" should be interpreted similarly.
본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로서, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 본 명세서에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in this specification are merely used to describe specific embodiments and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this specification, terms such as “comprise” or “have” are intended to designate the presence of features, numbers, steps, operations, components, parts, or combinations thereof described in this specification, but are not intended to indicate the presence of one or more other features. It should be understood that this does not exclude in advance the possibility of the existence or addition of elements, numbers, steps, operations, components, parts, or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by a person of ordinary skill in the technical field to which the present invention pertains. Terms as defined in commonly used dictionaries should be interpreted as having meanings consistent with the meanings they have in the context of the related technology, and unless clearly defined in this specification, should not be interpreted in an idealized or overly formal sense. No.
이하, 본 명세서에 첨부된 도면들을 참조하여 본 발명의 실시 예들을 상세히 설명한다. 그러나 특허출원의 범위가 이러한 실시 예들에 의해 제한되거나 한정되는 것은 아니다. 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings attached to this specification. However, the scope of the patent application is not limited or limited by these examples. The same reference numerals in each drawing indicate the same members.
본 발명의 실시예에 따른 포토레지스트 파티클 제거방법을 설명하기에 앞서 반도체 패턴을 형성하는 과정 중 포토공정에 대해서 살펴본다.Before explaining the method for removing photoresist particles according to an embodiment of the present invention, we will look at the photo process during the process of forming a semiconductor pattern.
반도체 패턴을 형성하는 과정에서 포토공정은 감광액을 웨이퍼 위에 도포하고 패턴형상이 그려진 마스크를 웨이퍼상에 위치시키고 노광을 진행하는 단계를 포함한다. In the process of forming a semiconductor pattern, the photo process includes applying photoresist liquid on a wafer, placing a mask with a pattern shape on the wafer, and performing exposure.
반도체 전 공정 중 포토공정의 공정시간이 가장 오래 걸리는데 노광스텝이 전체 공정의 약 절반정도의 시간을 차지하기 때문이고, 감광막 위에 패턴이 완성되면, 감광되거나 혹은 감광되지 않은 부분을 제거하는 현상스텝(development step)이 진행된다. Among all semiconductor processes, the photo process takes the longest because the exposure step takes up about half of the time of the entire process, and once the pattern on the photoresist film is completed, the development step (which removes the exposed or non-sensitized portion) is performed. development step) is in progress.
즉, 포토공정은 크게 노광스텝과 현상스텝으로 이루어지는데, 노광스텝을 거쳐 노광이 완료된 후에는 웨이퍼를 노광기에서 트랙장비로 옯겨 베이크(PEB, Post Exposure Bake)를 진행한다. PEB는 감광액 속에 있는 PAC를 활성화시켜 감광액의 표면을 평탄화시키고 정재파(standing wave)를 줄이기 위해서이다. In other words, the photo process largely consists of an exposure step and a development step. After exposure is completed through the exposure step, the wafer is transferred from the exposure machine to the track equipment and bake (PEB, Post Exposure Bake) is performed. PEB activates PAC in the photoresist to flatten the surface of the photoresist and reduce standing waves.
현상스텝은 트랙이라는 장비에서 감광막의 일정부분(노광부 혹은 비노광부)을 제거하는 단계인데 현상되지 않고 남아 있는 감광막은 식각시에 식각액과 반응하지 않아서 하단부 layer 박막들을 식각액으로부터 보호하게 된다. 현상액을 웨이퍼 위에 분사하고 현상액이 골고루 퍼지도록 웨이퍼를 회전시킨 후에 어느 정도 화학적 반응시간이 경과하면 감광막이 제거된다. The development step is a step in which a certain portion of the photoresist film (exposed or unexposed area) is removed using a device called a track. The photoresist film that remains undeveloped does not react with the etchant during etching, so it protects the lower layer thin films from the etchant. After spraying the developer onto the wafer and rotating the wafer to spread the developer evenly, the photosensitive film is removed after a certain amount of chemical reaction time has elapsed.
현상된 이후에 생기는 PR파티클은 DI water를 이용하여 회전세척을 하여 린스해주고 이후 웨이퍼를 한번 더 베이크한다. 베이크하는 과정은 린스시의 탈 이온수 DI water를 말리고 동시에 감광막의 고분자구조를 고착시키는 역할을 한다.PR particles generated after development are rinsed by spinning using DI water, and the wafer is then baked once more. The baking process serves to dry the DI water used during rinsing and at the same time fixes the polymer structure of the photoresist film.
본 발명의 실시예에 따른 포토레지스트 파티클 제거방법은 현상 이후에 생기는 PR파티클을 탈이온수 DI water를 이용하여 제거하는데 적용될 수 있는 방법에 관한 것이다.The photoresist particle removal method according to an embodiment of the present invention relates to a method that can be applied to remove PR particles generated after development using deionized DI water.
특히, 본 발명의 실시예에 따른 포토레지스트 파티클 제거방법은 탈이온수 DI water에 메가소닉(mega-sonic)을 도입하고, 제거효율이 가장 높은 공정조건을 조합하여 도출한 것이다.In particular, the photoresist particle removal method according to an embodiment of the present invention is derived by introducing mega-sonic into deionized DI water and combining process conditions with the highest removal efficiency.
도 1은 본 발명의 실시예에 따른 트랙장비 개념도이다.1 is a conceptual diagram of track equipment according to an embodiment of the present invention.
도 1에 도시된 본 발명의 실시예에 따른 반도체 공정에 사용되는 트랙장비는 노광스텝이 완료된 웨이퍼(10), 웨이퍼(10)가 놓이는 웨이퍼 척(20), 웨이퍼 척(20)을 회전시키는 스텝모터(30)로 이루어져 있고, 웨이퍼(10) 상에 현상액을 투입하는 현상액 투입라인(미도시)이 포함된다. 또한, 현상액 투입라인 부근에 PR파티클을 제거하기 위한 DI water를 공급하는 파이프인 DI water라인(100), DI water Quartz노즐(200) 및 DI water노즐 인근에 수 메가의 파장을 생성하여 DI water에 인가하는 메가소닉 트랜스듀서(300)이 부착된다. DI water Quartz노즐(200)은 웨이퍼 중심과 원호방향으로 기 정해진 속도로 움직이도록 제어된다.The track equipment used in the semiconductor process according to the embodiment of the present invention shown in FIG. 1 includes a wafer 10 on which the exposure step has been completed, a wafer chuck 20 on which the wafer 10 is placed, and a step for rotating the wafer chuck 20. It consists of a motor 30 and includes a developer input line (not shown) for injecting the developer onto the wafer 10. In addition, several megawavelengths are generated near the DI water line (100), the DI water quartz nozzle (200), and the DI water nozzle, which are pipes that supply DI water to remove PR particles near the developer input line. A megasonic transducer 300 that applies it is attached. The DI water quartz nozzle 200 is controlled to move at a predetermined speed toward the center of the wafer and in the arc direction.
DI water는 DI water라인(100)에 부착되어 있는 필터(40)를 경유하여 DI water Quartz노즐(200)에 공급된다.DI water is supplied to the DI water Quartz nozzle (200) via the filter (40) attached to the DI water line (100).
이러한 트랙장비는 일반적인 반도체 현상스텝에서 사용되는 트랙장비에 메가소닉 트랜스듀서(300)을 DI water Quartz노즐(200)에 부착하여 구현될 수 있다.This track equipment can be implemented by attaching the megasonic transducer 300 to the DI water quartz nozzle 200 on the track equipment used in a general semiconductor development step.
메가소닉(mega sonic)은 세밀한 DI water입자에 대하여 고주파를 적용하여 웨이퍼 표면에 손상을 입히지 않고, 오염물(PR파티클)을 제거하게 된다.Mega sonic applies high frequency to fine DI water particles to remove contaminants (PR particles) without damaging the wafer surface.
특히 본 발명의 실시예에 따른 방법에 적용되는 메가소닉은 샤워타입의 DI water 노즐에 적용되며, 정밀한 세척이 가능하도록 설계되어 수십~수백nm크기의 파티클을 제거한다.In particular, Megasonic applied to the method according to an embodiment of the present invention is applied to a shower-type DI water nozzle and is designed to enable precise cleaning, removing particles with a size of tens to hundreds of nm.
본 발명의 실시예에 따른 메가소닉은 입자가속도에 의한 세정으로 웨이퍼에 형성되어 있는 PR패턴에는 영향을 미치지 않도록 캐비테이션 현상이 일어나지 않고 입자의 가속도를 증대시켜 파티클을 박리시켜 세척시키는 원리가 적용된다.Megasonic according to an embodiment of the present invention uses the principle of cleaning by separating particles by increasing the acceleration of particles without causing cavitation so as not to affect the PR pattern formed on the wafer by cleaning by particle acceleration.
PR패턴이 형성된 웨이퍼는 트랙장비를 통해서 세정이 완료되고, 베이크(bake)되면, PR패턴이 고착화됨과 동시에 세정에도 불구하고 남아 있던 PR파티클(defect)도 고착화되어 이온주입과정에서 반도체 소자의 오류를 유발하는 결정적인 요인이 되고 있음에도 불구하고, 지금까지는 PR패턴을 베이크 하기 전까지는 PR패턴이 소프트 패턴으로 쉽게 쓰러지게 되어 PR패턴자체에 메가소닉을 활용한 세척과정을 구현하기 어려웠다.When the wafer on which the PR pattern is formed is cleaned through track equipment and baked, the PR pattern is fixed and at the same time, the PR particles (defects) remaining despite cleaning are also fixed, preventing errors in the semiconductor device during the ion implantation process. Despite being a decisive factor in causing the problem, until now, it has been difficult to implement a cleaning process using megasonics on the PR pattern itself because the PR pattern easily collapses into a soft pattern until the PR pattern is baked.
본 발명의 실시예에 따른 포토레지스트 파티클 제거방법은 Krf Negative PR, I-Line Positive PR 및 I-Line Negative PR로 이루어진 군에서 선택된 어느 하나의 포토레지스트가 사용되는 선폭 200nm 이상의 패턴폭을 갖는 웨이퍼에 적용될 수 있다. 특히 바람직하게는 200nm 내지 800nm 패턴폭을 갖는 경우에 적용될 수 있다.The photoresist particle removal method according to an embodiment of the present invention is applied to a wafer having a pattern width of 200 nm or more using any one photoresist selected from the group consisting of Krf Negative PR, I-Line Positive PR, and I-Line Negative PR. It can be applied. Particularly preferably, it can be applied when the pattern width is 200 nm to 800 nm.
도 2는 본 발명의 실시예에 따른 선폭별 메가소닉 인가전후의 사진이다.Figure 2 is a photograph before and after megasonic application for each line width according to an embodiment of the present invention.
PR패턴이 형성되어 있는 웨이퍼에 메가소닉이 인가된 DI water를 이용하여 세정을 진행할 경우, 패턴어텍(pattern attack)이 일어나는지 다양한 패턴폭을 적용하여 확인하였다. When cleaning a wafer on which a PR pattern was formed using DI water to which megasonics were applied, it was confirmed by applying various pattern widths whether pattern attack occurred.
보다 상세하게는 200mm 웨이퍼상에 KrF Positive PR패턴을 형성하고, 200rpm으로 회전시키면서, 5MHz 메가소닉을 인가한 DI water로 세정을 진행한 후에 PR패턴이 쓰러지는 패턴어텍 발생여부를 살펴보았다.In more detail, a KrF Positive PR pattern was formed on a 200mm wafer, rotated at 200rpm, and cleaned with DI water applied with a 5MHz megasonic. After that, the pattern attack, which causes the PR pattern to collapse, was examined.
도 2에 도시된 바와 같이 415nm, 385nm, 340nm, 315nm, 290nm의 선폭을 갖는 PR패턴에 메가소닉을 인가하더라도 패턴의 쓰러짐(pattern attack)이 발생하지 않았음을 확인할 수 있었다. 단 5MHz를 초과하는 메가소닉을 인가한 경우에는 PR파티클을 제거하지 못하고, 웨이퍼 표면에 아무런 변화를 주지 못하는 것으로 나타났다.As shown in Figure 2, it was confirmed that pattern attack did not occur even when megasonics were applied to PR patterns with line widths of 415 nm, 385 nm, 340 nm, 315 nm, and 290 nm. However, when megasonics exceeding 5 MHz were applied, PR particles were not removed and no changes were found to occur on the wafer surface.
정리하면, 반도체 포토공정에서 사용되는 트랙장비(MARK-7)에 DI water에 의한 세정과정에서 1MHz 내지 5MHz이하의 메가소닉을 인가하는 경우에는 200nm이상의 PR패턴에는 쓰러지는 등의 pattern attack이 발생하지 않는다.In summary, when megasonics of 1 MHz to 5 MHz or less are applied to the track equipment (MARK-7) used in the semiconductor photo process during the cleaning process with DI water, pattern attacks such as collapse do not occur in PR patterns over 200 nm. .
반도체 포토공정, 특히 현상스텝을 지나서 발생하는 PR파티클의 개수에 영향을 줄 수 있는 세정인자를 (1) 메가소닉의 노즐 단위면적당 출력(W/㎟), (2) 웨이퍼의 회전수(rpm), (3) DI water 노즐의 스캔속도, (4) 메가소닉의 가동시간, (5) 전체 현상공정 시간로 선택하였다.The cleaning factors that can affect the number of PR particles generated in the semiconductor photo process, especially after the development step, are (1) Megasonic nozzle output per unit area (W/㎟), (2) wafer rotation speed (rpm) , (3) scan speed of DI water nozzle, (4) operation time of Megasonic, and (5) overall development process time.
그러나 (3) DI water 노즐의 스캔속도는 기존 DI water노즐의 스캔속도와 같이 50mm/s ~ 100mm/s로 세팅되어 있으며, (4) 메가소닉의 가동시간은 공정시간에 직접적인 영향을 줄 수 있는 요인이며, dispense time이 증가하는 경우 DI water 사용량이 증가하여 재료비가 상승하는 역효과가 발생할 수 있고, (5) 전체 현상스텝 시간은 110초(second) 내지 120초(second)로 전체 공정시간을 고정하여 본 발명의 실시예에 따른 메가소닉인가를 통해서 포토레지스트 파티클을 제거하는 방법에서는 공정시간이 늘어나거나, 새로운 스텝이 추가되는 등의 불필요한 추가과정을 배제한다. However, (3) the scan speed of the DI water nozzle is set to 50 mm/s ~ 100 mm/s, like the scan speed of the existing DI water nozzle, and (4) the operation time of Megasonic can directly affect the process time. This is a factor, and if the dispense time increases, the amount of DI water used may increase, which may have the adverse effect of increasing material costs. (5) The overall development step time is fixed at 110 to 120 seconds. Therefore, in the method of removing photoresist particles through megasonic application according to an embodiment of the present invention, unnecessary additional processes such as increasing process time or adding new steps are excluded.
특히, 공정시간 및 공정비용과 관련된 인자는 기존 트랙장비와 일치시키도록 장치를 설정하고, PR파티클을 제거하는 효과가 개선될 수 있도록 (1) 메가소닉의 노즐 단위면적당 출력(W/㎟), (2) 웨이퍼의 회전수(rpm)를 조절하여 세정인자의 최적범위를 도출한다.In particular, the factors related to process time and process cost are set to match the existing track equipment, and to improve the effect of removing PR particles, (1) Megasonic's nozzle output per unit area (W/㎟), (2) Adjust the rotation speed (rpm) of the wafer to derive the optimal range of the cleaning factor.
도 3은 웨이퍼 표면에 발생할 수 있는 PR파티클의 실제사진이다.Figure 3 is an actual photo of PR particles that may occur on the wafer surface.
도 3에 도시된 바와 같이 형성된 패턴과 패턴에 걸쳐 파티클이 놓이게되거나, 패턴사이에 파티클이 파고 들어가서 안착된 형태로 파티클의 사이즈 또는 모양에 따라서 패턴에 악영향을 줄 수 있는 인자가 된다.As shown in FIG. 3, particles are placed across the formed patterns, or particles are dug in and settled between the patterns, which is a factor that can adversely affect the pattern depending on the size or shape of the particles.
특히 이러한 PR파티클은 베이크 과정을 거치면서 고착화되어 ashing공정에 의해서도 떨어지지 않고 남아 있는 경우가 발생할 수 있어, 이온주입시에 방해요소로 작용하게 된다.In particular, these PR particles become fixed during the baking process and may remain in place even during the ashing process, acting as an obstacle during ion injection.
도 4는 본 발명의 실시예에 따른 웨이퍼를 세정하는 방법의 순서도이다.Figure 4 is a flowchart of a method for cleaning a wafer according to an embodiment of the present invention.
도 4에 도시된 바와 같이 본 발명의 실시예에 따른 웨이퍼를 세정하는 방법은 노광이 완료된 반도체 웨이퍼 상에 패턴을 형성하는 현상스텝에서 포토레지스트 파티클을 제거하는 방법으로서, 상기 현상스텝은 제1시간동안 현상액을 웨이퍼상에 분사하는 제1과정(S100) 및 제2시간동안 DI Water를 웨이퍼상에 분사하는 제2과정(S200)을 포함하고, 상기 제2과정은 포토레지스트 패턴이 형성되어 있는 웨이퍼를 소정의 속도로 회전시키면서, 상기 웨이퍼 상에 주파수 1MHz 내지 5MHz의 메가소닉을 인가한 DI Water를 분사하는 과정(S210)을 포함한다.As shown in FIG. 4, the method of cleaning a wafer according to an embodiment of the present invention is a method of removing photoresist particles in a development step for forming a pattern on an exposed semiconductor wafer, and the development step is performed for the first time. It includes a first process (S100) of spraying a developer on the wafer for a period of time and a second process (S200) of spraying DI Water on the wafer for a second time, and the second process includes a wafer on which a photoresist pattern is formed. It includes a process (S210) of spraying DI Water to which megasonic waves with a frequency of 1MHz to 5MHz are applied onto the wafer while rotating at a predetermined speed.
아래 표 1은 트랙장비에 유입된 웨이퍼에 현상스텝이 수행되는 대략적인 공정과정을 나타낸다.Table 1 below shows the approximate process process in which the development step is performed on wafers introduced into the track equipment.
STEPSTEP TIME(s)TIME(s) RPMRPM DispenseDispense Arm speedArm speed PositionPosition
1One 1.01.0 10001000 -- 225mm/s225mm/s beginbegin
22 1.31.3 10001000 developerdeveloper 225mm/s225mm/s centercenter
33 0.50.5 5050 developerdeveloper 100mm/s100mm/s position1position1
44 10.010.0 00 damperdamper 100mm/s100mm/s centercenter
55 0.80.8 200200 developerdeveloper 100mm/s100mm/s position2position2
66 0.60.6 2020 developerdeveloper 225mm/s225mm/s centercenter
77 30.030.0 -- damperdamper -- homehome
88 8.08.0 200200 DI waterDI water 50mm/s50mm/s position2position2
99 8.08.0 200200 DI waterDI water 50mm/s50mm/s position1position1
1010 12.012.0 200200 DI waterDI water 50mm/s50mm/s centercenter
1111 2020 25002500 -- -- homehome
상기 표 1에 의해서 현상스텝의 전과정이 수행되면, 다음 공정을 위해서 웨이퍼가 이송된다.When the entire development step is performed according to Table 1 above, the wafer is transferred for the next process.
현상스텝의 과정을 살펴보면, step 2 내지 step 3에서 현상액이 웨이퍼 위에 뿌려지고, 현상액 노즐은 서로 다른 위치로 arm이 움직이면서 현상액을 웨이퍼상에 뿌린다. 이후 step 4와 같이 damping과정을 거쳐 현상이 진행될 시간을 확보하고, step 5 내지 step 6과 같이 다시 현상액을 웨이퍼 상에 뿌린다. Looking at the process of the development step, in steps 2 to 3, a developer is sprayed on the wafer, and the developer nozzle sprays the developer on the wafer while its arms move to different positions. Afterwards, time is secured for development to proceed through a damping process as in step 4, and the developer is sprinkled on the wafer again as in steps 5 and 6.
step 7과 같이 재차 damping과정을 거친 후에 step 8 내지 step 10과 같은 DI water에 의한 세정과정을 거치는데, 이 과정에서 앞서 설명한 1MHz 내지 5MHz 주파수 메가소닉이 인가된 DI water가 웨이퍼 상에 남아 있는 PR파티클을 제거한다.After going through the damping process again as in step 7, a cleaning process with DI water is performed as in steps 8 to 10. During this process, the DI water to which the 1 MHz to 5 MHz frequency megasonic was applied as described above is applied to the PR remaining on the wafer. Remove particles.
전체 현상스텝은 웨이퍼의 사이즈, 패턴선폭 등 다양한 요인에 의해서 최적화된 공정으로 수행될 수 있으며, 반드시 이에 제한되는 것은 아니다.The entire development step can be performed as an optimized process depending on various factors such as wafer size and pattern line width, but is not necessarily limited thereto.
특히, 웨이퍼의 회전속도는 50rpm 내지 1500rpm이며, 표 1에서는 200rpm으로 웨이퍼의 DI water세정을 수행하였다.In particular, the rotation speed of the wafer was 50 rpm to 1500 rpm, and in Table 1, DI water cleaning of the wafer was performed at 200 rpm.
또한, DI water에 적용되는 메가소닉의 출력은 단위면적(㎟)당 출력으로 0.79W/㎟ 내지 11.94W/㎟이다. 트랙장비에 적용되는 DI water노즐은 지름이 4mm를 갖는 원형노즐 또는 6mm를 갖는 원형노즐일 수 있으나, 다양한 형태의 노즐이 적용될 수 있음은 자명하다. In addition, the output of Megasonic applied to DI water is 0.79W/㎟ to 11.94W/㎟ per unit area (㎟). The DI water nozzle applied to track equipment may be a circular nozzle with a diameter of 4 mm or a circular nozzle with a diameter of 6 mm, but it is obvious that various types of nozzles can be applied.
이상 본 발명의 실시예에 따른 포토레지스트 파티클 제거방법의 공정순서에 대해서 살펴보았다. 이하, 구체적인 실시예를 통해서 포토레지스트 파티클 제거 효과에 대해서 상세히 살펴본다.The process sequence of the photoresist particle removal method according to an embodiment of the present invention has been looked at above. Hereinafter, the photoresist particle removal effect will be examined in detail through specific examples.
<실시예><Example>
지름이 200mm웨이퍼를 사용하고, 웨이퍼 표면에 200nm내지 800nm 패턴이 형성되어 있다. A wafer with a diameter of 200 mm is used, and a 200 nm to 800 nm pattern is formed on the wafer surface.
DI water에 적용되는 메가소닉 주파수는 3.0MHz이며, DI water노즐은 Quartz Nozzle로 지름이 4mm인 원형 노즐을 사용한다.The megasonic frequency applied to DI water is 3.0MHz, and the DI water nozzle is a quartz nozzle and uses a circular nozzle with a diameter of 4mm.
현상액(TMAH)은 1400cc/min의 압력으로 분사되고, 메가소닉이 적용되는 DI water노즐의 웨이퍼 스캔 속도는 50mm/sec이며, 현상스텝 전반에서 메가소닉이 적용되는 시간은 15초 내지 20초, 현상스텝의 전체 프로세싱 타임은 115초 내지 120초로 세팅하고 메가소닉의 단위면적당 출력값을 변화시키고, 웨이퍼의 회전속도를 변화시켜, 현상스텝이 완료된 웨이퍼 표면에 형성되는 PR파티클의 개수를 카운팅하여 메가소닉에 의한 파티클 제거 성능을 검토하였다.The developer (TMAH) is sprayed at a pressure of 1400 cc/min, the wafer scan speed of the DI water nozzle to which Megasonic is applied is 50mm/sec, and the time for which Megasonic is applied throughout the development step is 15 to 20 seconds. The total processing time of the step is set to 115 to 120 seconds, the output value per unit area of Megasonic is changed, the rotation speed of the wafer is changed, and the number of PR particles formed on the surface of the wafer where the development step is completed is counted to Megasonic. The particle removal performance was reviewed.
특히, 하나의 배치(batch)에 있는 웨이퍼를 사용하여 초기조건을 동일하게 부여한 상태에서 PR파티클의 제거과정을 수행하였다.In particular, the PR particle removal process was performed using wafers in one batch and providing the same initial conditions.
Test No.Test No. 회전수number of revolutions 단위면적당 출력Output per unit area Pattern attackPattern attack 파티클 개수Number of particles
basebase 200200 0W/㎟0W/㎟ 없음doesn't exist 10ea10ea
test 1test 1 200200 0.079W/㎟0.079W/㎟ 없음doesn't exist 1ea1ea
test 2test 2 200200 0.238W/㎟0.238W/㎟ 없음doesn't exist 1ea1ea
test 3test 3 200200 0.395W/㎟0.395W/㎟ 없음doesn't exist 6ea6ea
test 4test 4 200200 0.553W/㎟0.553W/㎟ 없음doesn't exist 4ea4ea
test 5test 5 200200 0.711W/㎟0.711W/㎟ 없음doesn't exist 4ea4ea
test 6test 6 200200 0.869W/㎟0.869W/㎟ 없음doesn't exist 8ea8ea
test 7test 7 500500 0.395W/㎟0.395W/㎟ 없음doesn't exist 8ea8ea
test 8test 8 10001000 0.395W/㎟0.395W/㎟ 없음doesn't exist 6ea6ea
test 9test 9 15001500 0.395W/㎟0.395W/㎟ 없음doesn't exist 9ea9ea
표 2는 각 테스트 당(base 포함) 하나의 배치(batch)안에 있던 3개의 웨이퍼를 이용하여 테스트를 진행하였으며, test 1 내지 test 6은 회전수를 200rpm으로 고정시키고 단위면적당 출력을 조절하였으며, test 7 내지 test 9는 단위면적당 출력을 0.395W/㎟로 고정시킨 상태에서 웨이퍼 회전수를 500, 1000, 1500으로 조절하여 PR파티클의 개수를 카운팅하였다.base는 웨이퍼를 회전수 200rpm으로 회전시키면서 DI water를 PR패턴이 형성된 웨이퍼에 뿌려서 세척하는 경우를 테스트하였으며, DI water에 메가소닉을 인가하지 않은 상태의 테스트이다.Table 2 shows that tests were conducted using three wafers in one batch for each test (including base). For tests 1 to 6, the rotation speed was fixed at 200 rpm and the output per unit area was adjusted, and the test In tests 7 to 9, the number of PR particles was counted by adjusting the wafer rotation speed to 500, 1000, and 1500 with the output per unit area fixed at 0.395 W/㎟. The base was rotated at a rotation speed of 200 rpm while the wafer was rotated with DI water. The test was conducted by spraying and cleaning the wafer on which the PR pattern was formed, and the test was conducted without applying megasonic to DI water.
base의 경우 3개의 웨이퍼에 동일한 조건의 DI water세정을 수행하여, 세척을 진행한 후에 웨이퍼 상에 남아 있는 PR파티클 개수를 평균한 값에 소수점 이하 올림값으로 전체 10개의 PR파티클이 남아 있는 것으로 평가되었다.In the case of the base, DI water cleaning was performed on three wafers under the same conditions, and after cleaning, the average number of PR particles remaining on the wafer was rounded to the nearest decimal point, and a total of 10 PR particles were evaluated to remain. It has been done.
test 1, test 2의 경우는 메가소닉의 출력을 1W(=0.079W/㎟, 4Φ크기의 노즐), 3W(0.238W/㎟)으로 설정했을 때 웨이퍼 표면에 남아 있는 PR파티클의 개수가 1개인 것으로 조사되었다. 특히, 각 테스트별로 3개의 웨이퍼에 대해서 test 1, test 2를 거쳤을 때 PR파티클이 남지 않은 웨이퍼도 있음을 확인하였다.In the case of test 1 and test 2, when the Megasonic output was set to 1W (=0.079W/㎟, 4Φ-sized nozzle) and 3W (0.238W/㎟), the number of PR particles remaining on the wafer surface was 1. It was found that In particular, it was confirmed that there were wafers with no PR particles remaining when tests 1 and 2 were performed on three wafers for each test.
이하 test 3, test 4, test 5, test 6의 경우 점차 메가소닉 출력을 높인 테스트 결과로서 PR파티클의 개수는 test 1, test 2보다 많은 개수가 관찰되었다.Hereinafter, in the case of test 3, test 4, test 5, and test 6, as a result of tests in which the megasonic output was gradually increased, the number of PR particles was observed to be greater than that of test 1 and test 2.
다음으로 메가소닉 출력을 5W(=0.395W/㎟)로 고정시키고 웨이퍼의 회전수를 점차 500, 1000, 1500으로 증가시킨 경우에도 base의 경우보다는 개선되었으나, test 3의 결과와 같이 200rpm의 6개의 PR파티클이 남아 있는 것과 함께 대비하더라도 상관관계가 인정되지 않았다.Next, even when the megasonic output was fixed at 5W (=0.395W/㎟) and the rotation speed of the wafer was gradually increased to 500, 1000, and 1500, it was improved compared to the base case, but as in the results of test 3, 6 wafers at 200rpm Even when compared with the remaining PR particles, no correlation was recognized.
아래 표 3은 웨이퍼의 회전수를 200rpm이하로 조정하고, 메가소닉의 단위면적당 출력값을 0.079W/㎟ 또는 0.238W/㎟으로 한정하여 추가실험을 실시한 결과이다.Table 3 below shows the results of an additional experiment conducted by adjusting the rotation speed of the wafer to 200 rpm or less and limiting the output value per unit area of Megasonic to 0.079W/㎟ or 0.238W/㎟.
Test No.Test No. 회전수number of revolutions 단위면적당 출력Output per unit area Pattern attackPattern attack 파티클 개수Number of particles
basebase 200200 0W/㎟0W/㎟ 없음doesn't exist 10ea 10ea
test 10test 10 100100 0.079W/㎟0.079W/㎟ 없음doesn't exist 14ea14ea
test 11test 11 100100 0.238W/㎟0.238W/㎟ 없음doesn't exist 7ea7ea
test 12test 12 150150 0.079W/㎟0.079W/㎟ 없음doesn't exist 10ea10ea
test 13test 13 150150 0.238W/㎟0.238W/㎟ 없음doesn't exist 7ea7ea
표 3의 테스트 결과도 앞서와 마찬가지로 같은 배치(batch)에 있는 웨이퍼를 사용하여 각 테스트 별로 3장의 웨이퍼로 테스트한 결과, 남아 있던 파티클의 개수를 평균한 값으로 측정하였다.test 10은 웨이퍼의 회전수를 100rpm으로 조정한 상태에서 1W(노즐의 단위면적당 출력 0.079W/㎟)의 메가소닉 출력을 갖는 경우 파티클의 개수를 카운팅한 값인데, base값보다 더 증가한 14개의 파티클이 관측되었다.As before, the test results in Table 3 were measured as the average of the number of remaining particles as a result of testing with three wafers for each test using wafers in the same batch. Test 10 was the rotation of the wafer. When the number is adjusted to 100rpm and the megasonic output is 1W (output per unit area of the nozzle is 0.079W/㎟), this is a count of the number of particles, and 14 particles, which are more than the base value, were observed.
메가소닉 출력을 3W(=0.238W/㎟)으로 세팅한 test 11의 경우에도 7개로 줄어들기는 했으나 test 1, test 2 보다 못미치는 결과값이 도출되었다.In the case of test 11, where the megasonic output was set to 3W (=0.238W/㎟), the number was reduced to 7, but the result was lower than test 1 and test 2.
test 12, test 13의 경우에도 test 1, test 2의 결과값을 밑돌았다.In the case of test 12 and test 13, the results were also below the results of test 1 and test 2.
결국 실시예에 따른 전체 테스트 결과를 종합해보면, 메가소닉의 단위면적당 출력을 0.079W/㎟으로 설정하고, 웨이퍼를 200rpm으로 회전시키는 경우(test 1) PR파티클의 개선효과 뿐만 아니라 웨이퍼 PR파티클 제거를 위한 이상적인 개선효과가 있음을 알 수 있으며, 메가소닉의 단위면적당 출력을 0.238W/㎟으로 설정하고, 웨이퍼를 200rpm으로 회전시키는 경우(test 2)에도 PR파티클의 개선효과 뿐만 아니라 이상적인 효과가 있음을 알 수 있다.In the end, summarizing the overall test results according to the embodiment, when the output per unit area of Megasonic is set to 0.079W/㎟ and the wafer is rotated at 200rpm (test 1), not only the improvement effect of PR particles but also the removal of wafer PR particles is achieved. It can be seen that there is an ideal improvement effect, and even when the output per unit area of Megasonic is set to 0.238W/㎟ and the wafer is rotated at 200rpm (test 2), there is not only an improvement effect of PR particles, but also an ideal effect. Able to know.
본 발명의 실시예에 따른 포토레지스트 파티클 제거방법에 의하면, KrF Positive PR, Krf Negative PR, I-Line Positive PR 및 I-Line Negative PR로 이루어진 군에서 선택된 어느 하나의 포토레지스트에 의해서 형성된 200nm 내지 800nm 선폭을 갖는 PR패턴이 형성된 200mm웨이퍼상에 메가소닉을 인가한 DI water를 통해 세척함으로서 PR파티클이 효과적으로 제거될 수 있는 공정이 수행된다.According to the photoresist particle removal method according to an embodiment of the present invention, 200nm to 800nm formed by any one photoresist selected from the group consisting of KrF Positive PR, Krf Negative PR, I-Line Positive PR, and I-Line Negative PR. A process in which PR particles can be effectively removed is performed by washing a 200mm wafer on which a PR pattern with a line width is formed using DI water to which megasonic waves are applied.

Claims (6)

  1. 노광이 완료된 반도체 웨이퍼 상에 패턴을 형성하는 현상스텝에서 포토레지스트 파티클을 제거하는 방법으로서, A method of removing photoresist particles in the development step of forming a pattern on an exposed semiconductor wafer,
    상기 현상스텝은 제1시간동안 현상액을 웨이퍼상에 분사하는 제1과정; 및 The development step includes a first process of spraying a developer onto the wafer for a first time; and
    제2시간동안 DI Water를 웨이퍼상에 분사하는 제2과정을 포함하고, It includes a second process of spraying DI Water on the wafer for a second time,
    상기 제2과정은 포토레지스트 패턴이 형성되어 있는 웨이퍼를 소정의 속도로 회전시키면서, 상기 웨이퍼 상에 주파수 1MHz 내지 5MHz의 메가소닉을 인가한 DI Water를 분사하는 과정을 포함하는 것을 특징으로 하는 포토레지스트 파티클 제거 방법.The second process includes rotating the wafer on which the photoresist pattern is formed at a predetermined speed while spraying DI Water to which megasonics with a frequency of 1 MHz to 5 MHz are applied onto the wafer. How to remove particles.
  2. 제1항에 있어서,According to paragraph 1,
    상기 포토레지스트는 KrF Positive PR, Krf Negative PR, I-Line Positive PR 및 I-Line Negative PR로 이루어진 군에서 선택된 어느 하나의 포토레지스트인 것을 특징으로 하는 포토레지스트 파티클 제거 방법.A photoresist particle removal method, characterized in that the photoresist is any one photoresist selected from the group consisting of KrF Positive PR, Krf Negative PR, I-Line Positive PR, and I-Line Negative PR.
  3. 제1항에 있어서,According to paragraph 1,
    상기 웨이퍼의 회전속도는 50RPM 내지 2000RPM인 것을 특징으로 하는 포토레지스트 파티클 제거 방법.A photoresist particle removal method, characterized in that the rotation speed of the wafer is 50 RPM to 2000 RPM.
  4. 제1항에 있어서,According to paragraph 1,
    상기 메가소닉의 단위면적당 출력은 0.079W/㎟ 내지 1.194W/㎟인 것을 특징으로 하는 포토레지스트 파티클 제거방법.A photoresist particle removal method, characterized in that the output per unit area of the Megasonic is 0.079W/㎟ to 1.194W/㎟.
  5. 제1항에 있어서,According to paragraph 1,
    상기 웨이퍼의 상부면에 200nm 내지 800nm 선폭의 패턴이 형성되어 있는 것을 특징으로 하는 포토레지스트 파티클 제거방법.A photoresist particle removal method, characterized in that a pattern with a line width of 200 nm to 800 nm is formed on the upper surface of the wafer.
  6. 제1항에 있어서,According to paragraph 1,
    상기 웨이퍼의 회전수는 200rpm이며, DI water에 가해지는 메가소닉의 단위면적당 출력은 0.079W/㎟ 내지 0.238W/㎟인 것을 특징으로 하는 포토레지스트 파티클 제거방법.The rotation speed of the wafer is 200 rpm, and the power per unit area of the megasonic applied to DI water is 0.079 W/㎟ to 0.238 W/㎟.
PCT/KR2022/005420 2022-04-14 2022-04-14 Method for removing photoresist particles WO2023200027A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0046113 2022-04-14
KR1020220046113A KR20230147295A (en) 2022-04-14 2022-04-14 Method for cleaning photo-resist particle on wafer

Publications (1)

Publication Number Publication Date
WO2023200027A1 true WO2023200027A1 (en) 2023-10-19

Family

ID=88329665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/005420 WO2023200027A1 (en) 2022-04-14 2022-04-14 Method for removing photoresist particles

Country Status (2)

Country Link
KR (1) KR20230147295A (en)
WO (1) WO2023200027A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066799A (en) * 2004-08-30 2006-03-09 Tokyo Electron Ltd Processing device and processing method
KR20060042274A (en) * 2004-11-09 2006-05-12 동부일렉트로닉스 주식회사 Spinner for fabricating semiconductor device and developing method using the same
US20100227069A1 (en) * 2009-03-05 2010-09-09 Nanya Technology Corp. Apparatus for reducing cost of developer and the method thereof
JP2013016857A (en) * 2012-09-27 2013-01-24 Tokyo Electron Ltd Ultrasonic development processing method and ultrasonic development processing device
JP2020203234A (en) * 2019-06-14 2020-12-24 凸版印刷株式会社 Development processing device, and manufacturing method using display device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6411246B2 (en) 2015-03-09 2018-10-24 東京エレクトロン株式会社 Plasma etching method and plasma etching apparatus
US10494715B2 (en) 2017-04-28 2019-12-03 Lam Research Corporation Atomic layer clean for removal of photoresist patterning scum

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066799A (en) * 2004-08-30 2006-03-09 Tokyo Electron Ltd Processing device and processing method
KR20060042274A (en) * 2004-11-09 2006-05-12 동부일렉트로닉스 주식회사 Spinner for fabricating semiconductor device and developing method using the same
US20100227069A1 (en) * 2009-03-05 2010-09-09 Nanya Technology Corp. Apparatus for reducing cost of developer and the method thereof
JP2013016857A (en) * 2012-09-27 2013-01-24 Tokyo Electron Ltd Ultrasonic development processing method and ultrasonic development processing device
JP2020203234A (en) * 2019-06-14 2020-12-24 凸版印刷株式会社 Development processing device, and manufacturing method using display device

Also Published As

Publication number Publication date
KR20230147295A (en) 2023-10-23

Similar Documents

Publication Publication Date Title
CN101303970B (en) Operation of photolithography process
CN101281379A (en) Method for removing photoresist as well as method for reworking of photoetching technology
JP4817579B2 (en) Defect reduction method
US6432622B1 (en) Photoresist stripper composition and method for stripping photoresist using the same
JP2007095888A (en) Rinse treating method, development processing method and developing device
KR20030076242A (en) Development defect preventing process and material
CN101458462A (en) Photolithography developing method for reducing photoresist developing defect in semiconductor process
WO2023200027A1 (en) Method for removing photoresist particles
JP2004014646A (en) Substrate processing equipment, substrate processing method, and nozzle
US20060088784A1 (en) Effective photoresist stripping process for high dosage and high energy ion implantation
US20060000109A1 (en) Method and apparatus for reducing spin-induced wafer charging
WO2017191929A1 (en) Method and composition for improving lwr in patterning step using negative tone photoresist
US6340395B1 (en) Salsa clean process
JPH08264418A (en) Manufacture of semiconductor integrated circuit device
JPH03215867A (en) Developing processing method for positive resist
KR100622294B1 (en) Cleaning composition for a positive or negative photoresist
JPH07321027A (en) Method and apparatus for removing resist layer
CN113721430B (en) Photoresist removing method and photoresist removing system
KR0161449B1 (en) Cleaning apparatus for semiconductor process
KR100585049B1 (en) Improved Method and Apparatus for Develop Process in Fabricating Semiconductor
CN118244584A (en) Method for improving photoresist residue in edge washing process
TW446856B (en) A cleaning method of removing exposed photo-resists on a semiconductor wafer
KR20000042115A (en) Method for developing photo masking and apparatus thereof
JPH08330211A (en) Photoresist developing device, device for manufacturing semiconductor integrated circuit device using it, and development treatment method
KR100227826B1 (en) Apparatus for fabricating semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937540

Country of ref document: EP

Kind code of ref document: A1