WO2023198134A1 - 一种基于复合异型翼缘轨道的高速巴士公交*** - Google Patents

一种基于复合异型翼缘轨道的高速巴士公交*** Download PDF

Info

Publication number
WO2023198134A1
WO2023198134A1 PCT/CN2023/087936 CN2023087936W WO2023198134A1 WO 2023198134 A1 WO2023198134 A1 WO 2023198134A1 CN 2023087936 W CN2023087936 W CN 2023087936W WO 2023198134 A1 WO2023198134 A1 WO 2023198134A1
Authority
WO
WIPO (PCT)
Prior art keywords
track
shaped
safety guide
flange
beams
Prior art date
Application number
PCT/CN2023/087936
Other languages
English (en)
French (fr)
Inventor
董亚飞
Original Assignee
山东启和云梭物流科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东启和云梭物流科技有限公司 filed Critical 山东启和云梭物流科技有限公司
Publication of WO2023198134A1 publication Critical patent/WO2023198134A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/10Combination of electric propulsion and magnetic suspension or levitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B15/00Combinations of railway systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C3/00Electric locomotives or railcars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C3/00Electric locomotives or railcars
    • B61C3/02Electric locomotives or railcars with electric accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/50Other details
    • B61F5/52Bogie frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F9/00Rail vehicles characterised by means for preventing derailing, e.g. by use of guide wheels
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B25/00Tracks for special kinds of railways
    • E01B25/30Tracks for magnetic suspension or levitation vehicles
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B25/00Tracks for special kinds of railways
    • E01B25/30Tracks for magnetic suspension or levitation vehicles
    • E01B25/305Rails or supporting constructions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Definitions

  • the invention relates to a high-speed bus system based on a composite special-shaped flange track and belongs to the field of transportation technology.
  • Rail transit such as subways has played an important role in solving urban traffic congestion problems, but investments of 2 to 1.5 billion yuan per kilometer and billions in government transportation subsidies every year have placed a serious financial burden.
  • Urban low-altitude resources are not fully utilized.
  • the actual average operating speed is 20 to 40 kilometers/hour.
  • the object of the present invention is to provide a high-speed bus system based on composite special-shaped flange track in view of the above existing problems and deficiencies, especially a high-speed bus based on the upper and lower composite special-shaped flange track of the H-structure base beam (1)
  • the bus system and the high-speed logistics system share rail operation.
  • high-speed buses run on the upper and lower composite rails at the same time.
  • the 1-hour journey for ground buses on the upper and lower composite rails only takes 10 minutes, providing citizens with an all-seat, high-speed, efficient, environmentally friendly and low-carbon option. , comfortable and high-end travel; logistics vehicles and buses share the track during non-peak hours, making full use of urban low-altitude resources to maximize benefits.
  • the present invention provides one of the high-speed bus system solutions based on composite special-shaped flange track.
  • the invention relates to a high-speed bus public transport system based on a composite special-shaped flange track, in particular to a high-speed bus public transport system based on an H-structure base beam
  • upper and lower composite special-shaped flange track including a composite special-shaped flange track system, a high-speed Buses and buses operate on the central cloud platform.
  • the composite special-shaped flange track system is erected on ground piers (15) or extends along the planned route in mountain tunnels or underground tunnels.
  • Express buses are commanded and managed on the central cloud platform during operation.
  • the lower one runs above the composite special-shaped flange track, and the lower track runs the lower flange special-shaped maglev rail car (2V).
  • the planned route is on the green belts on both sides of urban roads or in the center of the road, or on the side slopes or mid-section belts of highways, or in mountain tunnels, or in underground tunnels, etc.
  • the high-speed bus public transportation system of the composite special-shaped flange track of the present invention has a minimum turning radius of 20 meters, a climbing ability of 100 ⁇ , a speed of 120 to 160 kilometers per hour, which is 2 to 3 times that of the light rail, and the construction cost is 1/1 of the light rail.
  • the line has strong adaptability, takes up less land, requires less demolition, rarely occupies road rights, and has low overall construction cost; during peak traffic times, high-speed passenger buses run on the upper and lower composite tracks at the same time, realizing a composite special-shaped wing for a 1-hour bus journey
  • the Yuan Rail Express Bus only takes 10 minutes, and the maximum one-way transport capacity per hour on the upper and lower rails can reach 43,200 to 57,600 people, providing an all-seat, high-speed, efficient, smooth, comfortable, energy-saving and environmentally friendly urban high-end travel experience; non-traffic peak passenger and logistics vehicles Alternate operation on the same track maximizes the efficiency of urban transportation resources.
  • the invention provides a bogie, which includes a load-bearing base frame (6G) and a safety guide frame (5A).
  • the safety guide frame (5A) is installed below the load-bearing base frame (6G).
  • the load-bearing base frame (6G) includes side longitudinal beams (6H), side beams (6J), and cross beams (6L).
  • the ends of the two side longitudinal beams (6H) and the two sides of the cross beams (6J) are arranged longitudinally and in parallel on the same horizontal plane. ) ends are connected vertically to form a rectangular frame structure; 0 to 3 or more middle longitudinal beams (6K) are installed vertically on the side beams (6H) at equal or unequal intervals in the rectangular frame structure parallel to the side longitudinal beams (6H).
  • cross beams (6L) are installed in the rectangular frame structure parallel to the side beams (6J) at equal or unequal intervals in vertical planes and cross-mounted on the side longitudinal beams (6H) and the middle longitudinal beam (6J). 6K) to form a load-bearing base frame (6G).
  • the safety guide frame (5A) includes a U-shaped safety guide column and a longitudinal safety column (5C);
  • the U-shaped safety guide column is a U-rectangular column structure, consisting of U-shaped column legs (5B) and a U-shaped bottom edge (5E) It is composed of a U-shaped center column (5F); the left and right U-shaped column legs (5B) are parallel to each other, and the U-shaped column legs (5B) and the U-shaped bottom edge (5E) are vertically connected to form a whole;
  • the U-shaped center column (5F) is installed in the middle of the left and right U-shaped column legs (5B) and parallel to the U-shaped bottom edge (5E);
  • one U-shaped safety guide column at the front and rear is vertically mirror-symmetrically arranged under the front and rear ends of the load-bearing base frame (6G).
  • the top ends of the U-shaped column legs (5B) are installed on the outer surfaces of the front and rear side beams (6J) respectively; a longitudinal safety column (5C) on the left and right is installed on the inner ends of the front and rear U-shaped bottom edges (5E) respectively; 0 ⁇
  • the bottom ends of three or more central support columns (5D) are connected to the longitudinal safety columns (5C), and their tops are installed on the cross beams (6L) or side longitudinal beams (6H) or other suitable locations; preferably,
  • the U-shaped safety guide column can be used independently; as shown in Figure 3.
  • the bogie also includes a cab (6A), an equipment room (6B), and a self-contained battery compartment (6C).
  • (6A), the equipment room (6B), and the self-contained battery compartment (6C) are respectively installed at the front, middle and rear positions of the bottom of the load-bearing base frame (6G).
  • the cab (6A) is used to install the unmanned intelligent driving system, brake control system, motor operating mechanism, intelligent auxiliary guidance control system, etc.
  • the equipment room (6B) is used to install the vehicle management system, door control system, vehicle Internet of Things system, satellite positioning system, etc.
  • the self-prepared battery compartment (6C) is used to install self-prepared batteries, inverters and battery management systems, etc.; those skilled in the art can also install the cab (6A), equipment room ( 6B), adjust the equipment installed in the self-provided battery compartment (6C).
  • the bogie also includes a drawbar (6E), one at the front and one at the front, respectively, installed on the outer surface of the front and rear end beams (6J) of the load-bearing base frame (6G).
  • the drawbars (6E) are used to communicate with the front and rear respectively.
  • the connection of vehicles is required to achieve efficient operation of 2 to 15 vehicles or more vehicles; as shown in Figure 6 and Figure 7.
  • the invention provides a safety guide unit, which includes a safety guide wheel (51), a telescopic rod (52), a servo electric cylinder (53), a safety guide wheel (51), a telescopic rod (52), a servo electric cylinder
  • the cylinders (53) are installed in sequence to form an integral structure.
  • the invention provides a safety guide mechanism (50), which includes a safety guide pair.
  • the safety guide pair is installed on the U-shaped safety guide column of the safety guide frame (5A).
  • the safety guide mechanism (50) includes a dual-zone safety guide mechanism and a single-zone safety guide mechanism.
  • One safety guide group is installed on the U-shaped center column (5F) of the U-shaped safety guide column, and the safety guide wheels (51) at its left and right ends correspond to the upper intelligent safety guide wheel track (35) of the track system; the other safety guide The pair is installed on the bottom edge (5E) of the U-shaped column, and the safety guide wheels (51) on its left and right sides correspond to the lower intelligent safety guide wheel track (36) of the track system, and the upper intelligent safety guide wheel track of the track system (35) and the lower intelligent safety guide wheel track (36) are respectively located in two different areas above and below the track system, which are called dual-zone safety guide mechanisms. As shown in Figure 4a, Figure 4b, Figure 4c, Figure 4d.
  • the safety guide mechanism (50) can be arranged in the same area of the corresponding track system, and the upper intelligent safety guide wheel track (35) and/or the lower intelligent safety guide wheel track (36) of the corresponding track system are also set in In the same area of the track system, the positioning signal network (4F) is also set in the same area of the track system, corresponding to the installation position of the positioning speedometer (4G) on the vehicle.
  • a safety guide group is installed on a U-shaped safety guide column, and the safety guide wheels (51) at its left and right ends correspond to the upper intelligent safety guide wheel track (35) or the lower intelligent safety guide wheel track (36) of the track system.
  • a single-zone safety guide mechanism two or more safety guide pairs are installed side by side in an up and down mirror image, and are jointly installed on a U-shaped safety guide column, with corresponding safety guide wheels (51) on the left and right ends.
  • the upper intelligent safety guide wheel track (35) and/or the lower intelligent safety guide wheel track (36) set in the same area on the track system are also called single-zone safety guide mechanisms. As shown in Figures 7e and 7f.
  • the invention provides an intelligent safety guidance system (5) including safety guidance components and an intelligent safety guidance control system;
  • the safety guide component is intelligently controlled by an intelligent safety guide control system, and the safety guide component is selected from a safety guide unit, a safety guide pair or a safety guide mechanism (50).
  • the safety guide wheel (51) at one end of the safety guide unit corresponds to the upper intelligent safety guide wheel track (35) or the lower intelligent safety guide wheel track (36) on the track system, and the other end of the safety guide unit can be installed on the bogie.
  • Any suitable position on the bogie, including the safety guide frame (5A), or the safety guide pair or safety guide mechanism (50) in its combined form is installed at a suitable position on the bogie.
  • the installation position and number of the safety guide units, Or the installation position of the safety guide group or the safety guide mechanism (50) is specifically designed by the professional technicians; the safety guide unit is intelligently controlled by the intelligent safety guide control system; the outstanding feature of the intelligent safety guide system (5) is that it is controlled by the intelligent safety guide
  • the control system intelligently adjusts the distance between the safety guide wheel and the track on the track system to maintain a distance of 0 to 30mm or wider based on the vehicle's operating status, or the magnitude of lateral wind force, or the magnitude of turning centrifugal force, or the magnitude of the vehicle's operating offset. Precisely control the size of the auxiliary guidance force and the size of the balance and stability force, accurately assist in safe operation, and minimize the operating resistance of the driverless vehicle. As shown in Figure 1, Figure 5, Figure 6, and Figure 7.
  • the present invention provides a high-speed bus system based on a composite special-shaped flange track, which is characterized in that the high-speed bus system is based on an H-structure base beam (1) and a composite special-shaped flange track. It consists of a track system and an operation central cloud platform.
  • the composite special-shaped flange track system is erected on the ground piers (15) or extends in a mountain tunnel or an underground tunnel along the planned route; under the command, control and management of the operation central cloud platform, Driven by an unmanned intelligent driving system, the express bus runs safely and on time at high speed along the composite special-shaped flange track system.
  • the high-speed bus includes a bogie, an intelligent safety guidance system, a traveling mechanism, a power system, a safety operation system, and a passenger car box; the intelligent safety guidance system (5), a traveling mechanism, a power system, and a safety operation system are installed under the bogie. Or between the bogie and the passenger compartment or partially in the passenger compartment, and the passenger compartment is installed above the bogie.
  • the express bus also includes a vehicle management system, an unmanned intelligent driving system, and a vehicle Internet of Things system.
  • the vehicle management system, an unmanned intelligent driving system, and the vehicle Internet of Things system are installed in the carriage or other suitable locations.
  • the traveling mechanism (6) is installed below the load-bearing base frame (6G) of the bogie and includes a steering traveling mechanism and a supporting traveling mechanism; the steering traveling mechanism includes a steering wheel (61), a steering shaft (62), and a steering mechanism (65). , Vibration-absorbing suspension mechanism (66), a steering mechanism (65) and a steering wheel (61) are installed at both ends of the steering shaft (62) from the inside to the outside.
  • the steering mechanism (65) is installed on the steering wheel (61), without The human intelligent driving system controls the steering wheel (61) through the steering mechanism (65) to achieve autonomous guidance.
  • the steering shaft (62) is installed at the front under the load-bearing base frame (6G) through the vibration-absorbing suspension mechanism (66); the supporting traveling mechanism includes Support shaft (63) and support wheels (64). 1 to 2 support wheels (64) are installed at both ends of the support shaft (63).
  • the support shaft (63) is installed on the load-bearing base frame through a vibration-absorbing suspension mechanism (66). (6G) Lower rear. As shown in Figure 6
  • the power system includes a permanent magnet synchronous motor (67), a parallel transmission gearbox (68), and a motor controller (69); the motor controller (69) is installed on the shell of the permanent magnet synchronous motor (67).
  • the power axis of the motor (67) is parallel to
  • the power input end of the transmission gearbox (68) is connected so that the permanent magnet synchronous motor (67) and the parallel transmission gearbox (68) are combined into the overall structure of the power system.
  • the power output end of the parallel transmission gearbox (68) becomes the power system.
  • the power output end of the power system; the upper part of a set of power system is installed under the load-bearing base frame (6G), and the lower part is installed on the steering shaft (62) of the traveling mechanism.
  • the power output end of the power system is connected to the steering shaft (62) to drive the steering.
  • the wheel (61) runs; the upper part of another power system is installed below the load-bearing base frame (6G), and the lower part is installed on the support shaft (63).
  • the power output end of the power system is connected to the support shaft (63) to drive the power wheel. (64) operation; as shown in Figure 6b and Figure 7b.
  • the power system also includes a self-contained battery system and a power supply system.
  • the self-prepared battery system includes a self-prepared battery and a battery management system.
  • the self-prepared battery and battery management system are installed in the self-prepared battery compartment (6C).
  • the self-prepared battery compartment (6C) has its own charging system and can be used as an external power supply. After a sudden power outage, under the control of the battery management system, the self-prepared battery automatically supplies power to the entire vehicle.
  • the self-prepared battery has enough power to enable the vehicle to safely reach one of the two stations ahead.
  • the power supply system includes a power receiving mechanism (4) and an upper power supply rail (41); the upper power supply rail (41) is installed outside the upper flange (3) of the track system or other suitable positions, and one end of the power receiving mechanism (4) It is installed on the load-bearing base frame (6G), and the other end is in close contact with the upper power supply rail (41) to maintain normal power supply and provide power for vehicles running on the track system. As shown in Figure 1, Figure 5, Figure 6, and Figure 7.
  • the permanent magnet synchronous motor (67) of the power system can be replaced by a linear motor.
  • the linear motor has a long secondary and short primary structure, including a linear motor secondary (4D), a linear motor primary (4E), and an inverter. device; a linear motor secondary (4D) is installed on the upper surface of the structural end beam (10) and structural center beam (11) of the track system; a linear motor primary (4E) is installed on the bottom of the U-shaped column at the bottom of the bogie On the side (5E), corresponding to the position of the linear motor secondary (4D), the inverter is installed in the self-contained battery compartment (6C) to power the linear motor primary (4E). As shown in Figure 6a and Figure 7a.
  • the power system can be replaced by a hydrogen power system, which includes a power battery, a hydrogen storage bin, a hydrogen battery stack, a hydrogen battery booster and a power control unit;
  • the power battery is installed in a self-contained battery compartment (6C) or other suitable location on the vehicle.
  • the power battery is used to assist the hydrogen battery stack to provide power during acceleration.
  • the power control unit is located in the self-contained battery compartment (6C) or other suitable location on the vehicle to control the charge and discharge of the power battery;
  • the hydrogen storage bin is installed in the equipment room (6B) or other suitable locations on the vehicle; the hydrogen battery stack and hydrogen battery booster are installed in the self-contained battery compartment (6C) or other suitable locations on the vehicle.
  • the hydrogen battery booster The device boosts the electric energy of the hydrogen battery stack and supplies it to the permanent magnet synchronous motor (67); the power battery can replace the self-prepared battery.
  • the safe operation system includes a brake generator, a brake control system, an image radar recognition ranging device (6D), and a position signal speed detector (4G); the brake generator is installed on the steering wheel (61) and the support wheel (64) , the brake generator mechanism performs braking, holding or releasing operations according to the instructions of the unmanned intelligent driving system under the control of the brake control system.
  • the brake control system is installed in the equipment room (6B) or other suitable locations on the vehicle.
  • the electric energy generated by the brake generator when the vehicle is braking is sent to the self-provided battery or power battery; there are one pair of image radar recognition and ranging devices (6D) at the front and rear, respectively installed on the outer surfaces of the front and rear side beams (6J), which are Autonomous driving recognizes the distance and speed of front and rear vehicles, as well as intrusion safety in front of the vehicle Obstacle eyes in the area ensure driving safety; the position signal speedometer (4G) is installed on the outside of the bogie and corresponds to the positioning signal network (4F) on the track system to provide accurate position information for the safe operation of the vehicle. As shown in Figure 5, Figure 6 and Figure 7.
  • the passenger car box includes a rectangular three-dimensional structure of the passenger car box (7), with front and rear windows (71) installed on the front and rear end walls; side windows (72) installed on the left and right side walls, and a door installed on one side wall.
  • the door is composed of an automatic sliding door (73) and a door slide (74).
  • the door slide (74) is installed on the outer wall of the passenger car box (7) corresponding to the upper and lower edges of the automatic sliding door (73).
  • the sliding door (73) automatically opens or closes along the door slide (74) under the control of the door control system.
  • the door control system transmits the door status information to the vehicle management system in real time.
  • the door control system is installed in the equipment room (6B).
  • the bottom of the passenger car box (7) is the passenger car chassis (77), which is the support and safety structure for the entire weight of the passengers in the passenger car chassis.
  • 1 to 12 rows of seats (76) or more are installed on the upper surface of the passenger car chassis. There are multiple rows of seats, each row of seats (76) is provided with 3 to 4 seats or more, and is designed according to needs;
  • the air conditioner (75) is installed on the top of the passenger car to provide cold air for the passenger car in summer and cold air in winter.
  • the bus box provides hot air to provide passengers with a high-end and comfortable riding environment;
  • the bus box (7) is installed on the load-bearing base frame (6G) through the bus chassis.
  • the passenger car box (7) is made of aluminum alloy material or composite fiber material; as shown in Figures 1, 5, 8, and 9.
  • the passenger car box also includes a video surveillance and identification system and a broadcast reminder system.
  • the video surveillance and identification systems are installed on the front and rear ends of the top of the passenger car box, and are used to identify the status of passengers and empty seats in the passenger car box; broadcasting.
  • the reminder system is installed on the front end of the top of the passenger car and automatically announces the arrival of the car at the station and other reminders.
  • the vehicle management system is installed in the equipment room (6B) or other suitable locations on the vehicle, and controls the unmanned intelligent driving system, motor control system, brake control system, door control system, battery management system, safe operation system, brake control system, etc. Monitor and control the operating status of the driving mechanism and vehicle mechanisms, and exchange data and information with the vehicle Internet of Things system and satellite positioning system to detect, control and manage the operating status of high-speed buses and vehicle mechanisms. If the train is full of passengers, the vehicle management system will send the information that the vehicle will start direct operation to the operation central cloud platform and the nearest destination station through the Internet of Things system, and the vehicle management system will issue the direct operation to the unmanned intelligent driving system. Instructions and nearest destination station information.
  • the unmanned intelligent driving system is installed in the automatic driving cab (6A) or other suitable locations on the vehicle. It is the brain of the expressway bus operation control and mainly includes the unmanned driving information system and the unmanned driving operating system; Image radar recognition and ranging device (6D), satellite positioning system, vehicle management system information instructions, track signaling system, composite special-shaped flange track system, door control system, battery management system, motor control system, brake control system, etc. System information and command information from the operating central cloud platform are integrated into operation control data.
  • the unmanned driving system performs data calculation, processing and analysis, and forms driving operation instructions to operate the motor operating mechanism, brake control system, and intelligent auxiliary guidance. Control system, etc., to drive the express bus bus to operate safely. It is specifically designed and manufactured professionally by those skilled in the art.
  • the vehicle Internet of Things system is installed in the equipment room (6B) or other suitable locations on the vehicle. It is the core system for external communication of express buses.
  • the vehicle IoT system will send the vehicle's equipment status, real-time location, operating speed, etc. in real time to the central operating cloud platform and the vehicle IoT system of 3-5 vehicles at the front and rear to achieve safe coordinated operation of 3-5 vehicles at the front and rear. .
  • the invention provides a high-speed bus public transportation system based on a composite special-shaped flange track, which is characterized in that the high-speed bus public transportation system based on the H-structure base beam (1) composite special-shaped flange track includes a composite special-shaped flange track system, a high-speed bus Buses, operation central cloud platform, composite special-shaped flange track system are erected on ground piers (15) or in mountain tunnels, or in underground tunnels extending along planned routes; under the command, control and management of the operation central cloud platform, high-speed The bus, driven by an unmanned intelligent driving system, runs safely at high speed along the composite special-shaped flange track system.
  • the invention provides a composite special-shaped flange track system, which is characterized in that it is based on an H-structure base beam (1), with an upper flange special-shaped L track (30) provided on the upper flange and a lower flange provided on the lower flange.
  • the special-shaped magnetic levitation track (20) is composited up and down to form a composite special-shaped flange track system, including an H structural base beam (1), an upper flange special-shaped L track (30), a lower flange special-shaped maglev track (20), and an installation beam. (12), connecting the center beam (13), pier column (15) and new energy system (1H).
  • Two H structural base beams (1) are arranged longitudinally and parallel in mirror image symmetry on the same horizontal plane.
  • the front and rear installation beams (12) are continuously erected on piers, and one pier is installed on the ground of the planned route every 5 to 120 meters to extend continuously; the ground is preferably green belts on both sides of the road, or greening in the center of the road.
  • the new energy system (1H) (such as photovoltaic power generation) provides auxiliary cleaning for the track lighting system, communication system or power system. energy. As shown in Figure 1 and Figure 2.
  • the H structural base beam (1) includes a vertical flange beam and a structural end beam (10). On the same horizontal plane, one vertical flange beam on the left and right is arranged longitudinally in parallel mirror symmetry. A structural end beam (10) is provided on the corresponding inner surface of the two ends of the two vertical flange beams. Two structural end beams (10) are arranged on the same horizontal plane. 0 to 20 or more structural middle beams (11) are evenly distributed longitudinally between the structural end beams (10) and the structural middle beams (11). The upper and lower surfaces of the structural end beams (10) and the structural middle beams (11) are respectively on two parallel planes.
  • the left and right vertical flange beams are connected as a whole in the middle area to form the H structural base beam (1);
  • the structural end beam (10) and the structural middle beam (11) are both equipped with one or more attenuators Heavy hole (14), the vertical flange beam is a hollow structure or a solid structure, the vertical flange beam and its connection with the structural end beam (10) and the structural middle beam (11) are a hollow structure or according to the structure and strength require the use of a solid structure to optimize and lighten the structure of the H-structure base beam (1);
  • the H-structure base beam (1) and structural end beams (10) and the structural middle beam (11) are integrally cast from reinforced concrete, or processed from steel, or made from composite materials; preferably, the upper flange ( 3) and the lower flange (2) can be symmetrical rectangular structures, whose outstanding feature is the asymmetric structure, and the upper flange (3) is optimized and thinned to achieve lightweight.
  • the upper flange special-shaped L track (30) includes an H structural base beam (1) and an L structural track. Based on the H structural base beam (1), the upper surfaces of its left and right upper flanges (3) are each There is an L structure track.
  • the L structure track includes an L vertical edge guard plate (31) and an L horizontal edge track surface (32).
  • the L vertical edge guard plate (31) and the L horizontal edge track surface (32) form an included angle of 85-95 degrees.
  • its L vertical side guard plate (31) faces upward, the outer side is on the same vertical plane as the outer side of the upper flange (3), and its L horizontal side track surface (32) is installed horizontally on the upper flange (3) inward.
  • the upper flange special-shaped L track (30) extends longitudinally along the H structural base beam (1); the part of the L horizontal side track surface (32) inward beyond the width of the upper flange (3) is called the L track Out-of-plane expansion board (33); as shown in Figure 1 and Figure 2.
  • the upper flange special-shaped L track (30) also includes an upper intelligent safety guide wheel track (35), a lower intelligent safety guide wheel track (36), and an upper power supply rail (41).
  • the upper intelligent safety guide wheel track (35) is located on the inner side of the left and right L vertical edge guards (31), and the lower intelligent safety guide wheel track (36) is located on the inner side of the left and right upper flanges (3); the upper power supply rail (41) Installed on the outside of the H structure base beam (1) or other suitable installation locations, it supplies power to vehicles running on the flange special-shaped L track (30).
  • the power supply is supplied by the power cable located in the power cable hole (1A).
  • the upper flange special-shaped L track (30) is made of reinforced concrete or fiber-reinforced reinforced concrete cast into an integral structure, or made of steel, or made of composite materials. As shown in Figure 1 and Figure 2.
  • the upper flange special-shaped L track (30) also includes a track signaling system.
  • the track signaling system includes communication cables, a positioning signal network (4F), a satellite positioning system, a communication base station (1F), and an upper flange special-shaped L track signal. system.
  • Communication cables are arranged in the communication cable holes (1B) to achieve double insurance of wired and wireless communications between vehicles, tracks, stations and the central operation cloud platform, as well as mutual verification and confirmation of information;
  • the positioning signal network (4F) is installed on The inner surface of the flange (3) is installed corresponding to the position signal speed sensor (4G) on the rail running vehicle to achieve precise positioning of the unmanned intelligent driving vehicle during operation and precise positioning and parking after arriving at the station; satellite
  • the positioning system is installed in the equipment room (6B) or other suitable locations.
  • the satellite positioning information and the position signal speedometer (4G) are cross-checked with each other.
  • the position signal speedometer (4G) is mainly used to ensure that unmanned intelligent driving is accurate, fast and Safe operation;
  • the communication base station (1F) is installed on the pier, including 5G or 6G and other low-latency and high-speed wireless communication equipment.
  • the vehicle's Internet of Things system communicates with the front and rear vehicles, stations and the central operation cloud through the communication base station (1F).
  • the platform maintains information communication.
  • the upper flange special-shaped L track signaling system includes upper flange special-shaped L track status information, fork status information, station status information, passenger information, vehicle position information and other important information for safe operation of vehicles.
  • the upper flange special-shaped L track (30) can be used as an independent track, and the H structure base beam (1) is replaced by a U-shaped base beam (1G).
  • the U-shaped base beam (1G) includes The vertical flange beams, the structural end beams (10), and the structural middle beams (11) are vertical flange beams arranged longitudinally parallel to each other on the left and right sides of the same horizontal plane, at the bottom of the opposite inner sides of the two vertical flange beams.
  • a structural end beam (10) is provided at each end of the area, and 0 to 20 or more are evenly distributed along the bottom area of the inner side of the two vertical flange beams and between the two structural end beams (10).
  • the structural middle beam (11) connects the left and right vertical flange beams into an overall structure of a U-shaped base beam (1G), and its upper flange is called the upper flange (3).
  • the upper flange special-shaped L track (30) is arranged on the upper flange (3) of the U-shaped base beam (1G), and the rest of the structure is completely consistent with the above-mentioned upper flange special-shaped L track (30). As shown in Figure 10 and Figure 11.
  • the lower flange special-shaped maglev track (20) includes an H structural base beam (1), a U-shaped steel track (21), and a support track (22). It is based on the H structural base beam (1) and has two lower left and right lower rails. There is a support rail (22) on the outside or inside of the flange (2). The left and right support rails (22) are mirror-symmetrically arranged on the same horizontal plane; a U-shaped steel rail (21) on the left and right is installed on the bottom surface of the lower flange (2). On the top, the left and right U-shaped steel rails (21) are arranged in mirror symmetry on the same horizontal plane; the U-shaped steel rails (21) and the support rails (22) both extend continuously along the longitudinal direction of the H structural base beam (1).
  • the U-shaped steel track (21) is made of hot-rolled steel or welded of steel plates.
  • the lower flange special-shaped maglev track (20) also includes a lower power supply rail (42).
  • the lower power supply rail (42) is installed on the lower flange special-shaped maglev track (20) for running on the lower flange special-shaped maglev track (20).
  • the vehicle is powered by a power cable located in the power cable hole (1A).
  • the H-structure base beam (1), lower flange (2), and inner suspension track (21) are all made of reinforced concrete or fiber-reinforced reinforced concrete cast into an integral structure, or made of steel, or Made of composite materials. As shown in Figure 1 and Figure 2.
  • the operation central cloud platform is the brain of the high-speed bus system operation, the information data storage and exchange center, the information data calculation and processing center, and the system operation command and management center. It receives and processes each high-speed bus, bus Internet of Things system, and track system. , rail signaling system, station, power supply system and other independent operating systems operating information and equipment status information. Promptly handle temporary operating conditions, dispatch and issue instructions immediately to ensure the safe and efficient operation of the high-speed bus system.
  • the invention provides an operation method of a high-speed bus system based on a composite special-shaped flange track:
  • Expressway buses are high-end and comfortable buses with all seats. Each door has two rows of comfortable seats facing each other, with 6 to 8 seats.
  • the vehicle driven by the intelligent driving system sets off from the origin station on the composite special-shaped flange track system; the station management system of the origin station sends the number of passengers boarding at the station, the corresponding carriage information and the information about the passengers arriving at the destination station to the vehicle.
  • Networking system, the vehicle Internet of Things system transmits information from internal lines to the vehicle management system.
  • the vehicle management system checks the number of passengers and the number of vacancies in each row through the in-car video surveillance and identification system, and crosses it with the received station management system information. verify; verify
  • the equipment status, real-time location, operating speed, etc. of the express bus running on the composite special-shaped flange track system are sent in real time to the central operating cloud platform and 3 to 5 vehicles at the front and rear through the Internet of Vehicles system. system to achieve safe coordinated operation of 3 to 5 vehicles at the front and rear. For example, if a car needs emergency braking for some reason, the 3 to 5 cars behind it will decelerate synchronously and pass it on to the following vehicles in turn to achieve safe coordinated operation; the number of vacancies in the car and the corresponding door information, passengers' arrival at the destination station Information, status of passengers in the vehicle (to prevent emergencies), etc. are transmitted from the vehicle management system to the vehicle IoT system through internal lines, and the vehicle IoT system sends them to the central operating cloud platform and the front station management system in real time;
  • the train will start running directly to the nearest destination station.
  • the vehicle management system will send the direct operation information of the train to the central operation cloud platform and the nearest destination through the vehicle Internet of Things system.
  • the vehicle management system issues direct operation instructions and nearest destination station information to the unmanned intelligent driving system.
  • the vehicle will go directly to the nearest destination station at a speed of 120 to 160 kilometers per hour, providing passengers with a smooth operation in the context of congested cities.
  • High-speed, efficient, comfortable and high-end transportation services, the self-driving car on the ground is congested for an hour and the express bus will arrive in 10 minutes;
  • the station management system Before the express bus arrives at the station in front, the station management system has displayed the number of empty seats for each door of the arriving bus in the corresponding door waiting area of the station. Passengers check in and click on the prompts to wait for arrival. After entering the name of the destination station, passengers can enter the waiting area at the corresponding door, allowing passengers to board the bus accurately;
  • the operation central cloud platform uses big data calculation and image recognition of passenger flow at each station, and adopts an empty train direct operation mode for stations with large passenger flow to quickly relieve the passenger flow at dense stations, improve the quality of citizens’ travel traffic, and improve urban operation Efficiency and realize smart transportation in smart cities;
  • a high-speed bus system based on a composite special-shaped flange track is characterized by also including a high-speed bus mid-car, which is hung behind the high-speed bus and follows the high-speed bus.
  • the high-speed bus mid-car includes a bogie, intelligent safety guidance system, traveling mechanism, power system, safe operation system, passenger compartment, etc.
  • the difference from the above-mentioned high-speed bus is that it lacks an unmanned intelligent driving system and the Internet of Things.
  • the other components of the system are exactly the same as those of express buses.
  • the starting, accelerating, braking, parking and other operating operations of the highway bus, as well as external information and data exchange and other operational commands are all issued by the highway bus in front or at the head and tail.
  • the highway bus only executes the commands synchronously. . Communication of all information and execution instructions between the expressway bus and the expressway bus All communications are done via internal communication cables to ensure correct information transmission.
  • Each express bus can have 1 to 15 or more express bus mid-cars behind it. Our professional technicians will design it according to the station design size and needs.
  • the vehicle is comfortable, low-carbon and environmentally friendly.
  • the high-speed bus of the invention has all seats, few people (16 to 48 people), light weight (the car body is made of composite fibers such as aluminum-magnesium alloy and carbon fiber), high speed (120 to 160 kilometers/hour), and can be combined up and down during traffic peaks.
  • the track runs buses at the same time, each train has 6 to 15 or more cars, and directs empty buses to congested stations to quickly and efficiently relieve traffic congestion.
  • the hourly one-way passenger volume of the upper and lower composite tracks can reach 40,000 to 70,000. It operates between 1 and 6 knots during non-traffic peak periods, is energy-saving, low-carbon, low-noise, and low in operating costs.
  • the integrated design of rail and highway buses is integrated into a whole and will never derail; the autonomous guidance of the unmanned intelligent driving system is combined with the auxiliary guidance and safety support protection of the intelligent safety guidance system.
  • the intelligent safety guidance system is based on the vehicle operating status, side Automatically adjust the distance between the safety guide wheel and the track from 0 to 30mm according to the wind force, turning centrifugal force or vehicle running offset, accurately control the auxiliary guidance force and the balance and stability force, and minimize the running resistance; high-speed buses
  • the bus has a dual-power drive design for the front and rear wheels.
  • the other power system can still ensure the safe and efficient operation of the express bus or quickly repair and replace the power system when it reaches the next station; a self-contained battery can make the vehicle safe when there is a sudden power outage. Run to one of the next two stations; the new energy photovoltaic power generation system provides environmentally friendly auxiliary energy while also taking into account the function of a safe evacuation channel; if the vehicle suddenly needs emergency braking for any reason, the vehicle Internet of Things system will immediately communicate with the 3 to 5 vehicles behind it.
  • the vehicle-to-vehicle IoT system is linked, and the 3 to 5 vehicles behind will decelerate simultaneously and pass to the vehicles behind in order to achieve safe coordinated operation; the synergy of hardware and software provides multiple security guarantees for the safe operation of vehicles.
  • the composite special-shaped flange track system of the present invention combines the upper and lower composite H-structure base beams with the special-shaped flange track to mutually strengthen and improve the comprehensive structural strength, bending and torsional stiffness, etc., making full use of urban low-altitude transportation resources and achieving the same functions.
  • the structure of the two single-track beams is optimized, the total weight is lightweight, material-saving and energy-saving, and the comprehensive cost-effectiveness is high; the minimum turning radius is 20 meters, and the climbing ability reaches 100 ⁇ . It can be erected on urban road green belts or highway side slopes or in the middle.
  • Non-traffic peak passenger transport and logistics share tracks and are scientifically integrated to maximize the benefits of urban rail transit resources and reduce government financial subsidies to achieve profitability.
  • Figure 1 is a schematic cross-sectional view of the composite special-shaped flange track, express bus and maglev rail car of the present invention.
  • Figure 2 is a schematic cross-sectional perspective view of the composite special-shaped flange track beam of the present invention.
  • Figure 3 is a schematic three-dimensional view of the load-bearing base frame and safety guide frame of the bogie of the present invention.
  • Figure 4 is a schematic diagram of the safety guide unit and safety guide mechanism of the present invention.
  • Figure a the front view of the safety guide unit
  • Figure b the top view of the safety guide unit
  • Figure c the three-dimensional view of the U-shaped safety guide column
  • Figure d the dual-zone safety guide mechanism
  • Figure e the single-zone safety of a safety guide group Guide mechanism
  • Figure f Single-zone safety guide mechanism with two safety guides paired.
  • Figure 5 is a one-side enlarged schematic diagram of the cross section of a high-speed bus with a composite special-shaped flange track and two safety guide mechanisms of the present invention, where a: is a dual-zone safety guide mechanism, b: is a single-zone safety guide mechanism
  • Figure 6 is a schematic side view of the bogie and power traveling mechanism of the present invention.
  • a is a linear motor drive and dual-zone safety guide mechanism
  • b is a motor drive and single-zone safety guide mechanism.
  • Figure 7 is a schematic diagram of the bogie and power traveling mechanism of the present invention, where a: is a bottom view of the linear motor drive and dual-zone safety guide mechanism, and b: is a top view of the motor drive and single-zone safety guide mechanism.
  • Figure 8 is a schematic left side view of the combination of the expressway bus box body and the single-zone safety guide mechanism of the present invention.
  • Figure 9 is a schematic diagram of the seats in the express bus passenger car of the present invention.
  • Figure 10 is a schematic cross-sectional view of the independent use of the flange special-shaped L track on the composite special-shaped flange track of the present invention.
  • Power receiving mechanism 41. Upper power supply rail, 42. Lower power supply rail, 4D, linear motor secondary, 4E, linear motor primary, 4F, positioning Signal network, 4G, position signal speed detector, 5.
  • Intelligent safety guidance system 50.
  • Safety guide mechanism 51.
  • Safety guide wheel 52. Telescopic rod, 53.
  • Servo electric cylinder 5A, safety guide frame, 5B, U-shaped Column legs, 5C, longitudinal safety column, 5D, middle support column, 5E, U-shaped bottom edge, 5F, U-shaped center column, 6.
  • Running mechanism 61.
  • Steering wheel 62. Steering shaft, 63. Support shaft, 64 , Support wheel, 65.
  • Vibration-absorbing suspension mechanism 67. Permanent magnet synchronous motor, 68.
  • Parallel shaft transmission gearbox 69.
  • Motor controller 6A, cab, 6B, equipment room, 6C, automatic Backup battery compartment, 6D, image radar recognition and ranging device, 6E, tow bar, 6G, load-bearing base frame, 6H, side longitudinal beam, 6J, Side beam, 6K, middle longitudinal beam, 6L, cross beam, 7.
  • Passenger car box 71, front and rear windows, 72, side windows, 73, door, 74, door slide, 75, air conditioner, 76, seat, 77, Bus chassis.
  • This embodiment provides a bogie structure.
  • a bogie includes a load-bearing base frame 6G and a safety guide frame 5A.
  • the safety guide frame 5A is installed below the load-bearing base frame 6G.
  • the load-bearing base frame 6G includes side longitudinal beams 6H, side cross beams 6J, middle longitudinal beams 6K, and cross beams 6L.
  • the ends of the two side longitudinal beams 6H and the ends of the two side cross beams 6J are vertically connected on the same horizontal plane. Rectangular frame structure; 3 middle longitudinal beams 6K are parallel to the side longitudinal beams 6H in the rectangular frame structure and vertically installed on the side beams 6J at equal or unequal intervals; 2 cross beams 6L are parallel to the side beams 6J in the rectangular frame structure, etc.
  • Vertical planes with spacing or unequal spacing are installed crosswise on the side longitudinal beams 6H and the middle longitudinal beam 6K to form a load-bearing base frame 6G.
  • the safety guide frame 5A includes a U-shaped safety guide column, a longitudinal safety column 5C, and a middle support column 5D;
  • the U-shaped safety guide column is a U-rectangular column structure, consisting of a U-shaped column leg 5B, a U-shaped bottom edge 5E and a U-shaped It consists of a center column 5F;
  • the left and right U-shaped column legs 5B are parallel to each other, and the U-shaped column legs 5B and the U-shaped bottom edge 5E are vertically connected to form a whole;
  • the U-shaped center column 5F is installed in the middle of the left and right U-shaped column legs 5B, and is parallel to U-shaped bottom edge 5E;
  • one U-shaped safety guide column at the front and rear is arranged vertically and mirror-symmetrically under the front and rear ends of the load-bearing base 6G, and the tops of its U-shaped column legs 5B are respectively installed on the outer surfaces of the front and rear side beams 6J;
  • the bogie also includes a cab 6A, an equipment room 6B, and a self-contained battery compartment 6C.
  • the cab 6A, the equipment room 6B, and the self-contained battery compartment 6C are respectively installed at the front, middle, and rear positions of the bottom surface of the load-bearing base frame 6G.
  • the cab 6A is used to install unmanned intelligent driving systems, brake control systems, motor operating mechanisms, intelligent auxiliary guidance control systems, etc.
  • the equipment room 6B is used to install Install vehicle management system, door control system, car Internet of Things system, satellite positioning system, etc.
  • self-prepared battery compartment 6C is used to install self-prepared batteries, inverters, battery management systems, etc.; skilled personnel in this field can also install driver's self-prepared batteries as needed.
  • Room 6A, equipment room 6B, self-contained battery compartment 6C to adjust the installed equipment.
  • the bogie also includes a drawbar 6E, one at the front and one at the front, which are respectively installed on the outer surface of the front and rear end beams 6J of the load-bearing base frame 6G.
  • the drawbars 6E are respectively used to connect with the front and rear vehicles, as needed to achieve 2 ⁇ The efficient operation of a train of 15 cars or more; as shown in Figure 6 and Figure 7.
  • the bogie includes a load-bearing base frame 6G and a safety guide frame 5A.
  • the safety guide frame 5A is installed below the load-bearing base frame 6G.
  • the load-bearing base frame 6G includes side longitudinal beams 6H, side cross beams 6J, middle longitudinal beams 6K, and cross beams 6L.
  • the ends of the two side longitudinal beams 6H and the ends of the two side cross beams 6J are vertically connected on the same horizontal plane.
  • Rectangular frame structure; five cross beams 6L are installed in the rectangular frame structure parallel to the side beams 6J at equal or unequal intervals in vertical planes and cross-mounted on the side longitudinal beams 6H to form a load-bearing base frame 6G.
  • the safety guide frame 5A includes a U-shaped safety guide column and a longitudinal safety column 5C;
  • the U-shaped safety guide column is a U-rectangular column structure, which is composed of U-shaped column legs 5B, U-shaped bottom edge 5E and U-shaped center column 5F;
  • the left and right U-shaped column legs 5B are parallel to each other, and the U-shaped column legs 5B and the U-shaped bottom edge 5E are vertically connected to form a whole;
  • the U-shaped center column 5F is installed in the middle of the left and right U-shaped column legs 5B and is parallel to the U-shaped bottom edge 5E.
  • One U-shaped safety guide column at the front and rear is arranged vertically and mirror-symmetrically under the front and rear ends of the load-bearing base frame 6G, and the tops of its U-shaped column legs 5B are respectively installed on the outer surfaces of the front and rear side beams 6J; one longitudinal safety guide column on the left and right Columns 5C are respectively installed on the inner sides of both ends of the front and rear U-shaped bottom edges 5E.
  • One middle longitudinal beam 6K is parallel to the side longitudinal beams 6H in the rectangular frame structure and vertically installed on the side beams 6J at equal or unequal intervals; three cross beams 6L are parallel to the side beams 6J in the rectangular frame structure at equal or unequal intervals.
  • the vertical planes of the spacing are cross-mounted on the side longitudinal beams 6H and the middle longitudinal beams 6K to form a load-bearing base frame 6G.
  • the bottom end of one middle support column 5D is connected to the longitudinal safety column 5C.
  • the safety guide unit components include a safety guide unit, a safety guide pair, and a safety guide mechanism 50 .
  • the safety guide unit components include a safety guide unit, a safety guide pair, and a safety guide mechanism 50 .
  • Those skilled in the art can flexibly choose according to actual needs.
  • the safety guide unit includes a safety guide wheel 51, a telescopic rod 52, and a servo electric cylinder 53.
  • the safety guide wheel 51, the telescopic rod 52, and the servo electric cylinder 53 are sequentially installed into an integral structure.
  • safety guide units on the left and right, with the safety guide wheel 51 facing outward and the servo electric cylinder 53 facing inward. They are installed together in mirror image symmetry to form a safety guide pair.
  • the safety guide mechanism 50 includes a safety guide pair, which is installed on the U-shaped safety guide column of the safety guide frame 5A.
  • the safety guide mechanism 50 includes a dual-zone safety guide mechanism and a single-zone safety guide mechanism.
  • One safety guide group pair is installed on the U-shaped center column 5F of the U-shaped safety guide column, and the safety guide wheels 51 at its left and right ends correspond to the upper intelligent safety guide wheel tracks 35 of the track system; the other safety guide group pair is installed on the U-shaped center column 5F.
  • the safety guide wheels 51 on the left and right sides correspond to the lower intelligent safety guide wheel tracks 36 of the track system.
  • the upper intelligent safety guide wheel tracks 35 and the lower intelligent safety guide wheel tracks 36 of the track system are located respectively.
  • the upper and lower areas of the track system are called dual-zone safety guide mechanisms. As shown in Figure 4a, Figure 4b, Figure 4c, Figure 4d.
  • the safety guide mechanism 50 can be arranged in the same area of the corresponding track system, and the upper intelligent safety guide wheel track 35 and/or the lower intelligent safety guide wheel track 36 of the corresponding track system are also arranged in the same area of the track system.
  • the positioning The signal network 4F is also arranged in the same area of the track system, corresponding to the installation position of the positioning speedometer 4G on the vehicle.
  • a safety guide group is installed on a U-shaped safety guide column, and the safety guide wheels 51 at its left and right ends correspond to the upper intelligent safety guide wheel track 35 or the lower intelligent safety guide wheel track 36 of the track system, which is called a single-zone safety guide Mechanism; two or more pairs of safety guide groups are installed side by side in an up-and-down mirror image, and are jointly installed on the U-shaped safety guide column.
  • the safety guide wheels 51 on the left and right ends of the groups are installed in the same area on the corresponding track system.
  • the upper intelligent safety guide wheel track 35 and/or the lower intelligent safety guide wheel track 36 are also called single-zone safety guide mechanisms. As shown in Figures 7e and 7f.
  • This embodiment provides an intelligent safety guidance system 5.
  • the intelligent safety guidance system 5 includes safety guidance components and an intelligent safety guidance control system; the safety guidance components are intelligently controlled by the intelligent safety guidance control system, and the safety guidance components are selected from a safety guidance unit, a safety guidance pair or a safety guidance mechanism 50 .
  • the safety guide wheel 51 at one end of the safety guide unit corresponds to the upper intelligent safety guide wheel track 35 or the lower intelligent safety guide wheel track 36 on the track system.
  • the other end of the safety guide unit can be installed at any suitable position on the bogie, including the safety guide.
  • the safety guide group or safety guide mechanism 50 in its combined form is installed on the bogie at a suitable position on the bogie 5A, the installation position and number of the safety guide units, or the installation position of the safety guide group or safety guide mechanism 50 , specifically designed by professional technicians; the safety guidance unit is intelligently controlled by the intelligent safety guidance control system. As shown in Figure 1, Figure 5, Figure 6, and Figure 7.
  • This embodiment provides an express bus.
  • the high-speed bus includes the bogie of Embodiments 1-4, the intelligent safety guidance system of Embodiment 6, and also includes a traveling mechanism, a power system, a safety operation system, and a passenger car box; the intelligent safety guidance system 5, a traveling mechanism, and power
  • the system and safety operation system are installed under the bogie or between the bogie and the passenger compartment or partially in the passenger compartment, and the passenger compartment is installed above the bogie.
  • the express bus also includes a vehicle management system, an unmanned intelligent driving system, and a vehicle Internet of Things system. All are installed in the car trunk or other suitable locations.
  • the traveling mechanism 6 is installed below the load-bearing base frame 6G of the bogie and includes a steering traveling mechanism and a supporting traveling mechanism; the steering traveling mechanism includes a steering wheel 61, a steering shaft 62, a steering mechanism 65, a damping suspension mechanism 66, and a steering shaft 62 A steering mechanism 65 and a steering wheel 61 are installed at both ends in sequence from the inside to the outside.
  • the steering mechanism 65 is installed on the steering wheel 61.
  • the unmanned intelligent driving system controls the steering wheel 61 through the steering mechanism 65 to achieve autonomous guidance.
  • the steering shaft 62 uses vibration damping.
  • the suspension mechanism 66 is installed at the front under the load-bearing base frame 6G; the supporting traveling mechanism includes a support shaft 63 and a support wheel 64. 1 to 2 support wheels 64 are installed at both ends of the support shaft 63.
  • the support shaft 63 passes through the vibration-absorbing suspension mechanism.
  • 66 is installed at the rear below the load-bearing base frame 6G. As shown in Figure 6
  • the power system includes a permanent magnet synchronous motor 67, a parallel transmission gearbox 68, and a motor controller 69; the motor controller 69 is installed on the casing of the permanent magnet synchronous motor 67, and the power shaft of the permanent magnet synchronous motor 67 is connected to the parallel transmission gearbox.
  • the power input end of 68 is connected so that the permanent magnet synchronous motor 67 and the parallel transmission gearbox 68 are combined into the overall structure of the power system.
  • the power output end of the parallel transmission gearbox 68 becomes the power output end of the power system; a set of power systems is installed on the upper part
  • the lower part of the load-bearing base frame 6G is installed on the steering shaft 62 of the traveling mechanism.
  • the power output end of the power system is connected to the steering shaft 62 to drive the steering wheel 61.
  • the upper part of the other power system is installed below the load-bearing base frame 6G.
  • the lower part is installed on the support shaft 63, and the power output end of the power system is connected with the support shaft 63 to drive the power wheel 64; as shown in Figure 6b and Figure 7b.
  • the safe operation system includes a brake generator, a brake control system, an image radar recognition ranging device 6D, and a position signal speed detector 4G; the brake generator is installed on the steering wheel 61 and the support wheel 64, and the brake generator is used during braking. Under the control of the control system, the braking, holding or releasing operations are performed according to the instructions of the unmanned intelligent driving system.
  • the braking control system is installed in the equipment room 6B or other suitable locations on the vehicle. The braking generator mechanism operates when the vehicle is braking.
  • the generated electric energy is sent to the self-provided battery or power battery; a pair of image radar recognition and ranging devices 6D are installed on the outside of the front and rear side beams 6J respectively, and are used for automatic driving to identify the distance and speed of the front and rear vehicles, and to perform front intrusion operations. Obstacle eyes in the safety area ensure driving safety; the position signal speedometer 4G is installed on the outside of the bogie and corresponds to the positioning signal network 4F on the track system to provide accurate position information for the safe operation of the vehicle. As shown in Figure 5, Figure 6 and Figure 7.
  • the passenger car box includes a rectangular three-dimensional structure passenger car box 7, with front and rear windows 71 installed on the front and rear end walls; side windows 72 are installed on the left and right side walls, and a door is installed on one side wall, and the door is automatically slid.
  • the door 73 is composed of a door 73 and a door slide 74.
  • the door slide 74 is installed on the outer side wall of the passenger car box 7 corresponding to the upper and lower edges of the automatic sliding door 73.
  • the automatic sliding door 73 automatically opens along the door slide 74 under the control of the door control system. or closed, the door control system transmits the door status information to the vehicle management system in real time.
  • the door control system is installed in the equipment room 6B; the bottom of the bus box 7 is the bus chassis 77, which is the support and support for all the weight of the passengers in the bus box.
  • Safety support structure the upper surface of the bus chassis is equipped with 1 to 12 rows of seats and 76 or more rows of seats. Each row of seats 76 has 3 to 4 seats or more, and is designed according to needs;
  • the air conditioner 75 is installed on the top of the bus box to provide cold air to the bus box in summer and hot air to the bus box in winter, providing a high-end and comfortable riding environment for passengers; the bus box body 7 is installed on the load-bearing base frame 6G through the bus chassis.
  • the passenger car box 7 is made of aluminum alloy material or composite fiber material; as shown in Figures 1, 5, 8, and 9.
  • the passenger car box also includes a video surveillance and identification system and a broadcast reminder system.
  • the video surveillance and identification systems are installed on the front and rear ends of the top of the passenger car box, and are used to identify the status of passengers and empty seats in the passenger car box;
  • the broadcast reminder system is installed On the front end of the top of the passenger car, the arrival of the car at the station and other reminders are automatically announced.
  • the vehicle management system is installed in the equipment room 6B or other suitable locations on the vehicle to monitor and system-manage the operating status of the unmanned intelligent driving system, safety operation system, etc., braking mechanisms and vehicle mechanisms, and communicate with the vehicle.
  • the Internet of Things system and the satellite positioning system exchange data and information.
  • the unmanned intelligent driving system is installed in the automatic cab 6A or other suitable locations on the vehicle. It is the brain of the expressway bus operation control and mainly includes an unmanned driving information system and an unmanned driving operating system; Information from the 6D identification and distance measurement device, vehicle management system, rail signaling system, braking control system and other systems, as well as command information from the operating central cloud platform, are integrated into operation control data, and data calculation, processing and analysis are performed, and the driving data is formed. Operation instructions, drive the express bus bus to run safely. It is specifically designed and manufactured professionally by those skilled in the art.
  • the vehicle Internet of Things system is installed in the equipment room 6B or other suitable locations on the vehicle. It is the core system for external communication of expressway buses. It communicates and exchanges data information with the operating central cloud platform and front and rear expressway buses. The vehicle's equipment status, real-time location, operating speed, etc. are sent in real time to the central operating cloud platform and the vehicle Internet of Things system of 3-5 vehicles at the front and rear to achieve safe coordinated operation of 3-5 vehicles at the front and rear.
  • the power system also includes a self-contained battery system and a power supply system.
  • the self-prepared battery system includes a self-prepared battery and a battery management system.
  • the self-prepared battery and battery management system are installed in the self-prepared battery compartment 6C.
  • the self-prepared battery compartment 6C has its own charging system.
  • the power supply system includes a power receiving mechanism 4 and an upper power supply rail 41; the upper power supply rail 41 is installed outside the upper flange 3 of the track system or at other suitable locations.
  • One end of the power receiving mechanism 4 is installed on the bearing base frame 6G, and the other end Maintain close contact with the upper power supply rail 41 to maintain normal power supply and provide power to vehicles running on the track system. As shown in Figure 1, Figure 5, Figure 6, and Figure 7.
  • the permanent magnet synchronous motor 67 of the power system can be replaced by a linear motor.
  • the linear motor has a long secondary and short primary structure, including a linear motor secondary 4D, a linear motor primary 4E, and an inverter; a linear motor secondary 4D is installed. on track The upper surface of the structural end beam 10 and the structural middle beam 11 of the system; a linear motor primary 4E is installed on the bottom edge 5E of the U-shaped column at the bottom of the bogie, corresponding to the position of the linear motor secondary 4D, and the inverter is installed on The self-contained battery compartment 6C supplies power to the linear motor primary 4E. As shown in Figure 6a and Figure 7a.
  • the power system can be replaced by a hydrogen power system, which includes a power battery, a hydrogen storage bin, a hydrogen battery stack, a hydrogen battery booster and a power control unit; the power battery is installed in the self-contained battery compartment 6C or in other suitable locations on the vehicle. position, the power battery is used to auxiliary hydrogen battery stack power supply during acceleration, the power control unit is located in the self-contained battery compartment 6C or other suitable location on the vehicle, used to control the charge and discharge of the power battery; the hydrogen storage compartment is located in the equipment room 6B or other suitable locations on the vehicle; the hydrogen battery stack and hydrogen battery booster are installed in the self-contained battery compartment 6C or other suitable locations on the vehicle.
  • the hydrogen battery booster boosts the electric energy of the hydrogen battery stack and supplies it. Permanent magnet synchronous motor 67; power battery can replace self-provided battery.
  • This embodiment provides an express bus system based on composite special-shaped flange track.
  • the high-speed bus system based on the composite special-shaped flange track is a high-speed bus system based on the composite special-shaped flange track of the H-structure base beam 1, including the composite special-shaped flange track system, the high-speed buses of Embodiments 8-12,
  • the operation central cloud platform, the composite special-shaped flange track system is erected on the ground piers 15 or in the mountain tunnel, or in the underground tunnel extending along the planned route; under the command, control and management of the operation central cloud platform, the expressway buses operate without Driven by the human intelligent driving system, it operates safely at high speed along the composite special-shaped flange track system.
  • the composite special-shaped flange track system is characterized by being based on the H structural base beam 1, with an upper flange special-shaped L track 30 provided on the upper flange and a lower flange special-shaped maglev track 20 provided on the lower flange. It forms a composite special-shaped flange track system, including H structural base beam 1, upper flange special-shaped L track 30, lower flange special-shaped maglev track 20, installation beam 12, connecting center beam 13, pier column 15 and new energy system 1H .
  • Two H structural base beams 1 are arranged longitudinally and parallel in mirror-image symmetry on the same horizontal plane. Each of the front and rear ends of the corresponding inner side is provided with a mounting beam 12. There are 0 beams 12 evenly distributed longitudinally between the front and rear mounting beams 12.
  • connecting middle beams 13 of rectangular hollow structures connect the left and right H structure base beams 1 into one track beam; the front and rear mounting beams 12 of multiple H structure base composite special-shaped flange track beams are continuously erected on the piers.
  • piers are installed at intervals of 5 to 120 meters and continuously extend on the ground of the planned route;
  • the ground is preferably the green belt on both sides of the road, or the green belt in the center of the road, or the middle strip of the highway, or the highway Slopes on both sides;
  • the new energy system 1H is erected on the upper surface of the installation beam 12, the connecting middle beam 13 and the sides of the left and right H structural base beams 1, and there is a snow removal and rainwater diversion between it and the side of the H structural base beam 1
  • the new energy system 1H (such as photovoltaic power generation) provides auxiliary clean energy for track lighting systems, communication systems or power systems. As shown in Figure 1 and Figure 2.
  • the H structural base beam 1 includes vertical flange beams and structural end beams 10 .
  • One vertical branch on the left and right on the same horizontal plane The flange beams are arranged longitudinally in parallel mirror symmetry.
  • a structural end beam 10 is provided on the corresponding inner surfaces of the two ends of the two vertical flange beams. 0 to 20 or 0 to 20 or more structural end beams are evenly distributed longitudinally between the two structural end beams 10.
  • the upper and lower surfaces of more structural middle beams 11, structural end beams 10 and structural middle beams 11 are respectively on two parallel planes, connecting the left and right vertical flange beams into a whole in the middle area, forming H Structural base beam 1; the structural end beam 10 and the structural middle beam 11 are each provided with one or more weight-reducing holes 14.
  • the vertical flange beam is a hollow structure or a solid structure, a vertical flange beam and its connection with
  • the connection between the structural end beam 10 and the structural middle beam 11 is a hollow structure or a solid structure is selected according to the structure and strength needs to achieve the optimization and lightweight of the H structural base beam 1; the H structural base beam 1 and the structural end beam 10 And the structural middle beam 11 is integrally cast from reinforced concrete, or processed from steel, or made from composite materials; preferably, the upper flange 3 and the lower flange 2 of the H structural base beam 1 can be
  • the prominent feature of the symmetrical rectangular structure is the asymmetric structure, and the upper flange 3 is optimized and thinned to achieve lightweight. As shown in Figure 1 and Figure 2.
  • the upper flange special-shaped L track 30 includes an H structural base beam 1 and an L structural track. Based on the H structural base beam 1, the upper surfaces of the left and right upper flanges 3 are each provided with an L structural track.
  • the L structure track includes an L vertical edge guard 31 and an L horizontal edge track surface 32. The L vertical edge guard 31 and the L horizontal edge track surface 32 form an included angle of 85-95 degrees.
  • the base beam 1 extends longitudinally; the part of the L horizontal edge track surface 32 inward beyond the width of the upper flange 3 is called the L track surface outward expansion plate 33; as shown in Figures 1 and 2.
  • the lower flange special-shaped maglev track 20 includes an H structural base beam 1, a U-shaped steel track 21, and a support track 22. Based on the H structural base beam 1, one of the left and right lower flanges 2 is each provided on the outside or inside. Support rail 22, the left and right support rails 22 are arranged in mirror symmetry on the same horizontal plane; a left and right U-shaped steel rail 21 is installed on the bottom surface of the lower flange 2, and the left and right U-shaped steel rails 21 are arranged in mirror symmetry on the same horizontal plane; the U-shaped steel rails 21.
  • the support rails 22 all extend continuously along the longitudinal direction of the base beam 1 of the H structure.
  • the U-shaped steel track 21 is made of hot-rolled steel or welded of steel plates.
  • the lower flange special-shaped maglev track 20 also includes a lower power supply rail 42.
  • the lower power supply rail 42 is installed on the lower flange special-shaped maglev track 20 to provide power for vehicles running on the lower flange special-shaped maglev track 20. Its power supply is provided by a power cable. Power cable supply in hole 1A.
  • the H structure base beam 1, lower flange 2, and inner suspension track 21 are all made of reinforced concrete or fiber-reinforced reinforced concrete cast into an integral structure, or made of steel, or made of composite materials. . As shown in Figure 1 and Figure 2.
  • the operation central cloud platform is the brain of the high-speed bus system operation, the information data storage and exchange center, the information data calculation and processing center, and the system operation command and management center. It receives and processes each high-speed bus, bus Internet of Things system, and track system. , rail signaling system, station, power supply system and other independent operating systems operating information and equipment status information. Promptly handle temporary operating conditions, dispatch and issue instructions immediately to ensure the safe and efficient operation of the high-speed bus system.
  • Expressway buses are high-end and comfortable buses with all seats. Each door has two rows of comfortable seats facing each other, with 6 to 8 seats.
  • the vehicle driven by the intelligent driving system sets off from the origin station on the composite special-shaped flange track system; the station management system of the origin station sends the number of passengers boarding at the station, the corresponding carriage information and the information about the passengers arriving at the destination station to the vehicle.
  • Networking system, the vehicle Internet of Things system transmits information from internal lines to the vehicle management system.
  • the vehicle management system checks the number of passengers and the number of vacancies in each row through the in-car video surveillance and identification system, and crosses it with the received station management system information. verify; verify
  • the equipment status, real-time location, operating speed, etc. of the express bus running on the composite special-shaped flange track system are sent in real time to the central operating cloud platform and 3 to 5 vehicles at the front and rear through the Internet of Vehicles system. system to achieve safe coordinated operation of 3 to 5 vehicles at the front and rear. For example, if a car needs emergency braking for some reason, the 3 to 5 cars behind it will decelerate synchronously and pass it on to the following vehicles in turn to achieve safe coordinated operation; the number of vacancies in the car and the corresponding door information, passengers' arrival at the destination station Information, status of passengers in the vehicle (to prevent emergencies), etc. are transmitted from the vehicle management system to the vehicle IoT system through internal lines, and the vehicle IoT system sends them to the central operating cloud platform and the front station management system in real time;
  • the train will start running directly to the nearest destination station.
  • the vehicle management system will send the direct operation information of the train to the central operation cloud platform and the nearest destination through the vehicle Internet of Things system.
  • the vehicle management system issues direct operation instructions and nearest destination station information to the unmanned intelligent driving system.
  • the vehicle will go directly to the nearest destination station at a speed of 120 to 160 kilometers per hour, providing passengers with a smooth operation in the context of congested cities.
  • High-speed, efficient, comfortable and high-end transportation services, the self-driving car on the ground is congested for an hour and the express bus will arrive in 10 minutes;
  • the station management system Before the express bus arrives at the station in front, the station management system has displayed the number of empty seats for each door of the arriving bus in the corresponding door waiting area of the station. Passengers check in and click on the prompts to wait for arrival. After entering the name of the destination station, passengers can enter the waiting area at the corresponding door, allowing passengers to board the bus accurately;
  • the operation central cloud platform uses big data calculation and image recognition of passenger flow at each station, and adopts an empty train direct operation mode for stations with large passenger flow to quickly relieve the passenger flow at dense stations, improve the quality of citizens’ travel traffic, and improve urban operation Efficiency and realize smart transportation in smart cities;
  • the upper flange special-shaped L track 30 also includes an upper intelligent safety guide wheel track 35 , a lower intelligent safety guide wheel track 36 , and an upper power supply rail 41 .
  • the upper intelligent safety guide wheel track 35 is located on the inner side of the left and right L vertical edge guard plate 31, and the lower intelligent safety guide wheel track 36 is located on the inner side of the left and right upper flange 3;
  • the upper power supply rail 41 is installed on the outside of the H structure base beam 1 or Other suitable installation positions provide power for vehicles running on the flange special-shaped L track 30, and the power supply is supplied by the power cable provided in the power cable hole 1A.
  • the upper flange special-shaped L track 30 is made of reinforced concrete or fiber-reinforced reinforced concrete cast into an integral structure, or made of steel, or made of composite materials. As shown in Figure 1 and Figure 2.
  • the upper flange special-shaped L track 30 also includes a track signaling system.
  • the orbit signaling system includes communication cables, positioning signal network 4F, satellite positioning system, communication base station 1F, and upper flange special-shaped L orbit signaling system.
  • the communication cable is arranged in the communication cable hole 1B to achieve double insurance of wired and wireless communications between vehicles, tracks, stations and the central operation cloud platform, as well as mutual verification and confirmation of information;
  • the positioning signal network 4F is installed in the upper flange 3 On the side, it is installed corresponding to the position signal speedometer 4G on the rail running vehicle to achieve precise positioning of the unmanned intelligent driving vehicle during operation and precise positioning and parking after arriving at the station;
  • the satellite positioning system is installed in the equipment room 6B or other suitable locations.
  • the satellite positioning information and the position signal speedometer 4G are cross-checked and mutually calibrated.
  • the position signal speedometer 4G is mainly used to ensure the accurate, fast and safe operation of unmanned intelligent driving.
  • the communication base station 1F is installed on the pier, including 5G Or 6G and other low-latency and high-speed wireless communication equipment, the vehicle's Internet of Things system maintains information communication with the front and rear vehicles, stations and the central operation cloud platform through the communication base station 1F.
  • the upper flange special-shaped L track signaling system includes upper flange special-shaped L track status information, fork status information, station status information, passenger information, vehicle position information and other important information for safe operation of vehicles. It is passed through the communication cable hole 1B. The communication cable is transmitted to the control system and operation central cloud platform of each station along the line, and wirelessly transmitted to the express bus through the communication base station 1F to achieve cross-confirmation of information and ensure the accuracy and safety of the information. As shown in Figure 5, Figure 6 and Figure 7.
  • the upper flange special-shaped L track 30 can be used as an independent track, and the H structural base beam 1 is replaced by a U-shaped base beam 1G.
  • the U-shaped base beam 1G includes a vertical flange beam, a structural end beam 10,
  • the structural middle beam 11 has a vertical flange beam arranged longitudinally parallel to the left and right on the same horizontal plane.
  • a structural end beam 10 is provided at both ends of the bottom area of the two vertical flange beams opposite to the inner side.
  • the bottom area of the inner side of the straight flange beam and the two structural end beams 10 are evenly distributed with 0 to 20 or more structural center beams 11 connect the left and right vertical flange beams into an overall structure of U-shaped base beam 1G, and the upper flange is called the upper flange 3.
  • the upper flange special-shaped L track 30 is provided on the upper flange 3 of the U-shaped base beam 1G, and the rest of the structure is completely consistent with the above-mentioned upper flange special-shaped L track 30 . As shown in Figure 10 and Figure 11.
  • a high-speed bus system based on a composite special-shaped flange track also includes a high-speed bus mid-car, which is hung behind the high-speed bus and runs together with the high-speed bus; the high-speed bus mid-car Including bogies, intelligent safety guidance systems, traveling mechanisms, power systems, safe operation systems, passenger compartments, etc.
  • the difference from the above-mentioned high-speed buses is that they lack an unmanned intelligent driving system and a vehicle Internet of Things system.
  • the other components are similar to those of high-speed buses.
  • Bus buses are exactly the same. The starting, accelerating, braking, parking and other operating operations of the highway bus, as well as external information and data exchange and other operational commands are all issued by the highway bus in front or at the head and tail.
  • the highway bus only executes the commands synchronously. . All information and execution instruction communication between the highway bus and the highway bus are completed by internal communication cables to ensure that the information is transmitted without error.
  • Each express bus can have 1 to 15 or more express bus mid-cars behind it. Our professional technicians will design it according to the station design size and needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

一种基于复合异型翼缘轨道的高速巴士公交***,尤其是一种基于H结构基梁(1)上下复合异型翼缘轨道的无人驾驶高速巴士公交***,包括复合异型翼缘轨道***、高速巴士公交车、运行中央云平台,提供一种城市上下立体轨道高速巴士公交和高速智能物流***共用轨道的立体智慧交通解决方案。

Description

一种基于复合异型翼缘轨道的高速巴士公交***
本申请要求于2022年4月13日提交中国专利局、申请号为202210388351.9、发明名称为“一种基于复合异型翼缘轨道的高速巴士公交***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种基于复合异型翼缘轨道的高速巴士公交***,属于交通技术领域。
背景技术
随着经济的高质量发展和人们对生活、交通、城市治理、环保低碳高端需求,对城市交通提出了越来越高的要求。2021年中国汽车保有量达3.02亿辆,年净增2350万辆,私家用车急增,一户2~3辆车的居民也越来越多;多个大城市投入了上千辆共享汽车;2021年中国快递件数超过1000亿件,快递车辆急增为本就拥堵的城市添堵;特大城市和一二类城市的交通拥堵已经在三类城市蔓延,越来越拥堵的城市、停车难、每天上下班2~4小时的宝贵时间浪费在拥堵的路上,市民的幸福感大打折扣。
地铁等轨道交通在解决城市交通拥堵难题中起到了重要作用,但每公里2~15亿元投资和每年几十亿政府交通补贴,令财政负担严重。轻轨、跨坐式单轨、悬挂式空轨交通一条线路上只有一种交通模式,城市低空资源没有得到充分利用,实际平均运营速度20~40公里/小时,为实现大运量,每节车均以100~320人大容量、站立人员60%以上,单车大容量拥挤、低运营速度、每站必停、单一轨道、单一客运功能的公交运营模式,使现代智慧城市的市民缺乏高速高效、舒适高端公共交通出行幸福感的体验,所以自驾车出行仍然占有相当大的比例,因此城市地面交通拥堵、空气污染、碳排放高、停车难、急增的物流快递车又添新堵等问题还没有得到有效的解决。
发明内容
本发明的目的在于:针对上述存在的问题和不足,提供一种基于复合异型翼缘轨道的高速巴士公交***,尤其是一种基于H结构基梁(1)上下复合异型翼缘轨道的高速巴士公交***与高速物流***共享轨道运行,交通高峰时上下复合轨道同时运行高速公交,地面公交1小时的路程上下复合轨道公交仅需10分钟,为市民提供一种全座席、高速高效、环保低碳、舒适高端的出行;非交通高峰时物流车与公交车共享轨道,充分利用城市低空资源实现效益最大化。本发明提供的是其中一种基于复合异型翼缘轨道的高速巴士公交***解决方案。
发明概述
本发明涉及一种基于复合异型翼缘轨道的高速巴士公交***,尤其是一种基于H结构基梁(1)上下复合异型翼缘轨道的高速巴士公交***,包括复合异型翼缘轨道***、高速巴士公交车、运行中央云平台,复合异型翼缘轨道***架设在地面墩柱(15)上或山体隧道内、或地下隧道内沿规划路线延伸,高速巴士公交车在运行中央云平台指挥和管理下在复合异型翼缘轨道上方运行,其下方轨道运行下翼缘异型磁浮轨道车(2V)。所述规划路线是城市道路两侧或路中心的绿化带上、或高速路的边坡或中分带上、或山体隧道内、或地下隧道内等。本发明复合异型翼缘轨道的高速巴士公交***,最小转弯半径20米、爬坡能力达到100‰,速度为120~160公里/小时,是轻轨的2~3倍,工造价是轻轨的1/3~1/2,线路适应能力强、占地少、拆迁少、极少占用路权、综合造价低;交通高峰时,上下复合轨道同时运行高速客运车,实现公交车1小时路程复合异型翼缘轨道高速巴士只需10分钟,上下轨道每小时单向最大运量可达43200~57600人,提供全座席、高速高效、平稳舒适、节能环保的城市高端出行体验;非交通高峰客运和物流车同轨交替运行,实现城市交通资源效益最大化。
发明详述
本发明提供一种转向架,包括承载基架(6G)和安全导向架(5A),安全导向架(5A)安装在承载基架(6G)下方。所述承载基架(6G)包括边纵梁(6H)、边横梁(6J)、横梁(6L),在同一水平面上纵向平行整齐排列的两边纵梁(6H)的端部与两边横梁(6J)的端部垂直连接成矩形框架结构;0~3支或更多支中纵梁(6K)在矩形框架结构内平行于边纵梁(6H)等间距或不等间距垂直安装在边横梁(6J)上;2~5支或更多支横梁(6L)在矩形框架结构内平行于边横梁(6J)等间距或不等间距垂直平面交叉安装在边纵梁(6H)和中纵梁(6K)上,组成承载基架(6G)。
所述安全导向架(5A)包括U型安全导向柱、纵向安全柱(5C);U型安全导向柱为U矩形柱体结构,由U型柱腿(5B)、U型底边(5E)和U型中柱(5F)组成;左右U型柱腿(5B)相互平行,U型柱腿(5B)和U型底边(5E)垂直连接成一个整体;U型中柱(5F)安装于左右U型柱腿(5B)的中部,且平行于U型底边(5E);前后各一支U型安全导向柱竖直镜像对称地设置在承载基架(6G)前后端下方,其U型柱腿(5B)顶端分别安装在前后边横梁(6J)的外侧面上;左右各一支纵向安全柱(5C)分别安装在前后两U型底边(5E)两端内侧;0~3支或更多支中支撑柱(5D)的底端连接在纵向安全柱(5C)上,其顶端安装在横梁(6L)上或边纵梁(6H)上或其它适宜位置;优选的,所述U型安全导向柱可以独立使用;如图3所示。
优选的,所述转向架还包括驾驶室(6A)、设备室(6B)、自备电池仓(6C),驾驶室 (6A)、设备室(6B)、自备电池仓(6C)分别安装在承载基架(6G)底面的前部、中部和后部位置,本领域技术人员可以根据需要进行位置的调整;一般情况下,驾驶室(6A)用于安装无人智能驾驶***、制动控制***、电机操作机构、智能辅助导向控制***等;设备室(6B)用于安装车辆管理***、车门控制***、车物联网***、卫星定位***等;自备电池仓(6C)用于安装自备电池、逆变器和电池管理***等;本领域技术人员也可以根据需要对驾驶室(6A)、设备室(6B)、自备电池仓(6C)所安装的设备进行调整。所述转向架还包括牵引杆(6E),牵引杆(6E)前后各一个,分别安装在承载基架(6G)前后端边横梁(6J)外表面,牵引杆(6E)分别用于与前后车辆的连接,根据需要以实现2~15车或更多车的组列效率运行;如图6、图7所示。
本发明提供一种安全导向单元,所述安全导向单元包括安全导向轮(51)、伸缩杆(52)、伺服电动缸(53),安全导向轮(51)、伸缩杆(52)、伺服电动缸(53)依次安装成一个整体结构。左右各一套安全导向单元,其安全导向轮(51)朝外、伺服电动缸(53)朝内、镜像对称地安装在一起,组成一个安全导向组对。
本发明提供一种安全导向机构(50),包括安全导向组对,安全导向组对安装在安全导向架(5A)的U型安全导向柱上。安全导向机构(50)包括双区安全导向机构和单区安全导向机构。
一安全导向组对安装在U型安全导向柱的U型中柱(5F)上,其左右两端的安全导向轮(51)对应轨道***的上智能安全导向轮轨迹(35);另一安全导向组对安装在U型柱底边(5E)上,其左右两侧的安全导向轮(51)对应轨道***的下智能安全导向轮轨迹(36),所述轨道***的上智能安全导向轮轨迹(35)和下智能安全导向轮轨迹(36),分别位于轨道***的上下两个不同区域,称为双区安全导向机构。如图4a、图4b、图4c、图4d所示。
优选的,所述安全导向机构(50)可以设置在对应轨道***的同一个区域,对应轨道***的上智能安全导向轮轨迹(35)和/或下智能安全导向轮轨迹(36)也设置在轨道***的同一区域,所述定位信号网(4F)同时也设置在轨道***的同一区域,与车辆上的定位测速器(4G)的安装位置相对应。例如:一个安全导向组对安装在U型安全导向柱上,其左右两端的安全导向轮(51)对应轨道***的上智能安全导向轮轨迹(35)或下智能安全导向轮轨迹(36),称为单区安全导向机构;两个或两个以上的安全导向组对呈上下镜像对称地并列安装在一起,共同安装在U型安全导向柱上,其左右两端的安全导向轮(51)对应轨道***上设置在同一个区域的上智能安全导向轮轨迹(35)和/或下智能安全导向轮轨迹(36),亦称为单区安全导向机构。如图7e、7f所示。
本发明提供一种智能安全导向***(5)包括安全导向部件和智能安全导向控制***; 安全导向部件由智能安全导向控制***进行智能控制,所述安全导向部件选自安全导向单元、安全导向组对或安全导向机构(50)。
优选的,安全导向单元一端的安全导向轮(51)对应轨道***上的上智能安全导向轮轨迹(35)或下智能安全导向轮轨迹(36),安全导向单元的另一端可以安装在转向架上任何合适的位置,包括安全导向架(5A)上,或以其组合形式的安全导向组对或安全导向机构(50)安装在转向架上合适的位置,安全导向单元的安装位置和数量、或安全导向组对或安全导向机构(50)的安装位置,由本专业技术人员具体设计;安全导向单元由智能安全导向控制***进行智能控制;智能安全导向***(5)突出特征是由智能安全导向控制***根据车辆运行状态、或侧向风力大小、或转弯离心力大小、或车辆运行偏移量大小,智能调整安全导向轮与轨道***上轨迹之间的距离保持0~30mm或更宽的距离,精准控制辅助导向力的大小和平衡稳定力的大小,精准辅助安全运行,最大限度减少无人驾驶车的运行阻力。如图1、图5、图6、图7所示。
本发明提供一种基于复合异型翼缘轨道的高速巴士公交***,其特征在于,基于H结构基梁(1)复合异型翼缘轨道的高速巴士公交***,由高速巴士公交车、复合异型翼缘轨道***、运行中央云平台组成,复合异型翼缘轨道***架设在地面墩柱(15)上或山体隧道内、或地下隧道内沿规划路线延伸;在运行中央云平台的指挥控制和管理下,高速巴士公交车在无人智能驾驶***驾驶下,沿着复合异型翼缘轨道***高速安全准时运行。
所述高速巴士公交车包括转向架、智能安全导向***、行走机构、动力***、安全运行***、客车箱;智能安全导向***(5)、行走机构、动力***、安全运行***安装在转向架下方或转向架与客车厢之间或部分在客车厢内,客车厢安装在转向架的上方。优选的,所述高速巴士公交车还包括车辆管理***、无人智能驾驶***、车物联网***,车辆管理***、无人智能驾驶***、车物联网***安装在车箱内或其它合适的位置。
所述行走机构(6)安装在转向架的承载基架(6G)下方,包括转向行走机构和支撑行走机构;转向行走机构包括转向轮(61)、转向轴(62)、转向机构(65)、减振悬挂机构(66),转向轴(62)两端由内及外依次安装有转向机构(65)和转向轮(61),转向机构(65)安装在转向轮(61)上,无人智能驾驶***通过转向机构(65)控制转向轮(61)实现自主导向,转向轴(62)通过减振悬挂机构(66)安装在承载基架(6G)下方的前部;支撑行走机构包括支撑轴(63)、支撑轮(64),支撑轴(63)的两端各安装有1~2支撑轮(64),支撑轴(63)通过减振悬挂机构(66)安装在承载基架(6G)下方的后部。如图6、图7所示。
所述动力***包括永磁同步电机(67)、平行传动变速箱(68)、电机控制器(69);电机控制器(69)安装在永磁同步电机(67)的外壳上,永磁同步电机(67)的动力轴与平行 传动变速箱(68)的动力输入端相连使永磁同步电机(67)和平行传动变速箱(68)组合为动力***的整体结构,平行传动变速箱(68)的动力输出端即成为动力***的动力输出端;一套动力***上部安装在承载基架(6G)下方、下部安装在行走机构的转向轴(62)上,动力***的动力输出端与转向轴(62)相连,以驱动转向轮(61)运行;另一套动力***上部安装在承载基架(6G)下方、下部安装在支撑轴(63)上,动力***的动力输出端与支撑轴(63)相连,以驱动动力轮(64)运行;如图6b、图7b所示。
所述动力***还包括自备电池***和供电***。所述自备电池***包括自备电池和电池管理***,自备电池和电池管理***均安装在自备电池仓(6C)内,自备电池仓(6C)自带充电***,当外供电源突然停电后,在电池管理***控制下,自备电池自动向全车供电,自备电池的储电量足够使车辆能安全到达前方二个车站中的一个。所述供电***包括受电机构(4)和上供电轨(41);上供电轨(41)安装在轨道***的上翼缘(3)外侧或其它适宜的位置,受电机构(4)一端安装在承载基架(6G)上,另一端与上供电轨(41)保持紧密接触保持正常供电,为在轨道***上运行的车辆供电。如图1、图5、图6、图7所示。
优选的,所述动力***的永磁同步电机(67)可由直线电机替代,所述直线电机是长次级短初级结构,包括直线电机次级(4D)、直线电机初级(4E)、逆变器;一条直线电机次级(4D)安装在轨道***的结构端梁(10)和结构中梁(11)的上表面;一只直线电机初级(4E)安装在转向架底部的U型柱底边(5E)上,与直线电机次级(4D)位置相对应,逆变器安装在自备电池仓(6C)内,为直线电机初级(4E)供电。如图6a、图7a所示。
优选的,所述动力***可由氢动力***替代,氢动力***包括动力电池、储氢仓、氢电池堆、氢电池升压器和动力控制单元;动力电池安装在自备电池仓(6C)内或车辆上其它适宜的位置,动力电池用于加速时辅助氢电池堆供电,动力控制单元设在自备电池仓(6C)内或车辆上其它适宜的位置,用于控制动力电池的充放电;储氢仓设置于设备室(6B)内或车辆上其它适宜的位置;氢电池堆和氢电池升压器安装在自备电池仓(6C)内或车辆上其它适宜的位置,氢电池升压器将氢电池堆的电能升压后供给永磁同步电机(67);动力电池可替代自备电池。
安全运行***包括制动发电机构、制动控制***、图像雷达识别测距装置(6D)、位置信号测速器(4G);制动发电机构安装在转向轮(61)和支撑轮(64)上,制动发电机构在制动控制***的控制下,根据无人智能驾驶***的指令实施制动、保持或解除操作,制动控制***安装在设备室(6B)内或车辆上其它适宜的位置,制动发电机构在车辆制动时发出的电能送往自备电池或动力电池;图像雷达识别测距装置(6D)前后各一对,分别安装在前后边横梁(6J)外侧面上,是自动驾驶识别前后车距离、速度,以及运行前方侵入运行安全 区域的障碍物眼睛,确保行车安全;位置信号测速器(4G)安装在转向架的外侧,与轨道***上的定位信号网(4F)相对应,为车辆的安全运行提供准确的位置信息。如图5、图6、图7所示。
所述客车箱,包括矩形立体结构的客车箱体(7),其前后端壁上安装有前后窗(71);左右两侧壁上均安装有侧面窗(72),一侧壁上安装车门,所述车门由自动滑动门(73)、车门滑道(74)组成,车门滑道(74)安装在自动滑动门(73)上下边缘对应的客车箱体(7)的外侧壁上,自动滑动门(73)沿车门滑道(74)在车门控制***的控制下自动打开或关闭,车门控制***把车门的状态信息实时传给车辆管理***,车门控制***安装在设备室(6B)内;客车箱体(7)的底部是客车底架(77),是客车箱内乘客全部重量的支撑和安全保障构架,客车底架的上表面安装有1~12排座椅(76)或更多排座椅,每排座椅(76)设3~4个座席或更多个座席,根据需要进行设计;空调(75)安装在客车箱的顶部,为客车箱夏天提供冷空气、冬天为客车箱提供热风,为乘客提供高端舒适的乘座环境;客车箱体(7)通过客车底架安装在承载基架(6G)上。所述客车箱体(7)是由铝合金材料制造而成、或由复合纤维材料制造而成;如图1、图5、图8、图9所示。
优选的,所述客车箱还包括视频监控识别***、广播提醒***,视频监控识别***安装在客车箱内顶部的前后端各一个,用于对客车箱乘客的状况、空座状况进行识别;广播提醒***安装在客车箱内顶部的前端,自动播报车到达车站的情况以及其它事项的提醒。
所述车辆管理***设置在设备室(6B)内或车辆上其它适宜的位置,对无人智能驾驶***、电机控制***、制动控制***、车门控制***、电池管理***、安全运行***、制动机构及车辆各机构的运行状态进行监测、***管控,并与车物联网***和卫星定位***进行数据信息交换,对高速巴士公交车的运行状态以及车辆各机构的状态进行检测控制和管理。若本列车内乘客已满座,车辆管理***通过车物联网***把该辆车将启动直达运行的信息发送给运行中央云平台和最近目的地车站,车辆管理***对无人智能驾驶***下达直达运行指令和最近目的地车站信息。
所述无人智能驾驶***设置在自动驾驶室(6A)内或车辆上其它适宜的位置,是高速巴士公交车运行控制的大脑,主要包括无人驾驶信息***、无人驾驶操作***;把来自图像雷达识别测距装置(6D)、卫星定位***、车辆管理***的信息指令、轨道通号***、复合异型翼缘轨道***、车门控制***、电池管理***、电机控制***、制动控制***等***的信息、以及运行中央云平台的指令信息等融合为运行控制数据,由无人驾驶***进行数据计算、处理分析、并形成驾驶操作指令,操作电机操作机构、制动控制***、智能辅助导向控制***等,来驾驶高速巴士公交车安全运行。具体由本领域技术人员进行专业设计和制造。
所述车物联网***安装在设备室(6B)内或车辆上其它合适的位置,是高速巴士公交车对外通讯的核心***,对外通过轨道***上的通讯基站(1F)与运行中央云平台、前后高速巴士公交车的进行通讯和数据信息交换,对内与车辆管理***信息数据互通。车物联网***将把车的设备状态、实时位置、运行速度等实时发送给运行中央云平台和前后各3-5辆车的车物联网***,以实现前后各3~5辆车安全协同运行。
本发明提供一种基于复合异型翼缘轨道的高速巴士公交***,其特征在于,基于H结构基梁(1)复合异型翼缘轨道的高速巴士公交***,包括复合异型翼缘轨道***、高速巴士公交车、运行中央云平台,复合异型翼缘轨道***架设在地面墩柱(15)上或山体隧道内、或地下隧道内沿规划路线延伸;在运行中央云平台的指挥控制和管理下,高速巴士公交车在无人智能驾驶***驾驶下,沿着复合异型翼缘轨道***高速安全运行。
本发明提供一种复合异型翼缘轨道***,其特征在于以H结构基梁(1)为基础,其上翼缘设有的上翼缘异型L轨道(30)与下翼缘设有下翼缘异型磁浮轨道(20)上下复合组成一种复合异型翼缘轨道***,包括H结构基梁(1)、上翼缘异型L轨道(30)、下翼缘异型磁浮轨道(20)、安装横梁(12)、连接中梁(13)、墩柱(15)和新能源***(1H)。在同一水平面上左右镜像对称纵向平行布置的两榀H结构基梁(1),在其相对应内侧面的前后两端各设有一个安装横梁(12)、在前后安装横梁(12)之间纵向均匀分布设有0~20个或更多个矩形空心结构的连接中梁(13),把左右H结构基梁(1)连结成一榀轨道梁;多榀H结构基复合异型翼缘轨道梁的前后安装横梁(12)分别连续架设在墩柱上,墩柱每间隔5~120米一根安装在规划路线的地面上连续延伸;所述地面优选道路两侧的绿化带、或道路中心绿化带、或高速路中分带、或高速路两侧的边坡;新能源***(1H)架设在安装横梁(12)、连接中梁(13)的上表面及左右H结构基梁(1)的侧面上,并与H结构基梁(1)侧面之间留有除雪和雨水分流缝隙,所述新能源***(1H)(例如光伏发电)为轨道照明***、通讯***或动力***提供辅助清洁能源。如图1和图2所示。
所述H结构基梁(1),包括竖直翼缘梁、结构端梁(10)。在同一水平面上左右各一支竖直翼缘梁纵向平行镜像对称布置,在两竖直翼缘梁的两端相对应内侧面上各设一个结构端梁(10),两个结构端梁(10)之间纵向均匀分布设有0~20个或更多个的结构中梁(11),结构端梁(10)和结构中梁(11)上表面和下表面分别在两个平行平面上,把左右的竖直翼缘梁在其中部区域连接为一个整体,组成H结构基梁(1);所述结构端梁(10)和结构中梁(11)均设有一个或多个减重孔(14),所述竖直翼缘梁是空心结构或实心结构、竖直翼缘梁及其与结构端梁(10)和结构中梁(11)的连接处是空心结构或根据结构及强度需要选用实心结构,实现H结构基梁(1)结构的优化和轻量化;所述H结构基梁(1)、结构端梁 (10)和结构中梁(11)由钢筋混凝土整体浇铸而成、或由钢材加工而成、或由复合材料制造而成;优选的,所述H结构基梁(1)的上翼缘(3)和下翼缘(2)可以是对称矩形结构,其突出特征是非对称结构,上翼缘(3)优化减薄,实现轻量化。如图1、图2所示。
所述上翼缘异型L轨道(30),包括H结构基梁(1)和L结构轨道,以H结构基梁(1)为基础,其左右两个上翼缘(3)的上表面各设有一条L结构轨道。所述L结构轨道包括L竖边护板(31)和L水平边轨道面(32),L竖边护板(31)和L水平边轨道面(32)之间呈85-95度夹角,其L竖边护板(31)朝上、外侧面与上翼缘(3)的外侧面在同一竖直面上,其L水平边轨道面(32)向内水平安装在上翼缘(3)的上表面,上翼缘异型L轨道(30)沿H结构基梁(1)纵向延伸;L水平边轨道面(32)向内侧超出上翼缘(3)宽度的部分称为L轨道面外展板(33);如图1、图2所示。
优选的,所述上翼缘异型L轨道(30)还包括上智能安全导向轮轨迹(35)、下智能安全导向轮轨迹(36)、上供电轨(41)。上智能安全导向轮轨迹(35)位于左右L竖边护板(31)的内侧面,下智能安全导向轮轨迹(36)位于左右上翼缘(3)内侧面上;上供电轨(41)安装在H结构基梁(1)的外侧或其它适宜安装的位置,为在翼缘异型L轨道(30)上运行的车辆供电,其电源由设在动力电缆孔(1A)内的动力电缆供给。优选的,所述上翼缘异型L轨道(30)由钢筋混凝土或采用纤维增强钢筋混凝土浇铸成一个整体结构,或用钢材制造而成、或采用复合材料制造而成。如图1、图2所示。
所述上翼缘异型L轨道(30)还包括轨道通号***,轨道通号***包括通讯电缆、定位信号网(4F)、卫星定位***、通讯基站(1F)、上翼缘异型L轨道讯号***。通讯电缆布置在通讯电缆孔(1B)内,以实现车辆、轨道、车站和运行中央云平台之间有线和无线通讯的双保险、以及信息的相互验证确认;定位信号网(4F)安装在上翼缘(3)内侧面上,与在轨道运行车辆上的位置信号测速器(4G)相对应安装,以实现无人智能驾驶车运行过程中的精准定位和到达车站后的精准定位停车;卫星定位***安装在设备室(6B)内或其它适宜的位置,卫星定位信息与位置信号测速器(4G)交叉相互校对,以位置信号测速器(4G)为主确保无人智能驾驶准确、快速、安全运行;通讯基站(1F)安装在墩柱上,包括5G或6G等低延时高速度的无线通讯设备,车辆的车物联网***通过通讯基站(1F)与前后车辆、车站和运行中央云平台保持信息通讯。上翼缘异型L轨道讯号***包括上翼缘异型L轨道状态信息、道叉状态信息、车站状态信息、乘客信息、车辆位置信息等车辆安全运行的重要信息,通过布置在通讯电缆孔(1B)内的通讯电缆传送到沿线每个车站控制***和运行中央云平台、并通过通讯基站(1F)无线传送到高速巴士公交车,实现信息交叉确认,确保信息准确、安全。如图5、图6、图7所示。
优选的,所述上翼缘异型L轨道(30)可以做为独立轨道使用,所述H结构基梁(1)由U型基梁(1G)替代,所述U型基梁(1G)包括竖直翼缘梁、结构端梁(10)、结构中梁(11),在同一水平面上左右各一支纵向平行布置的竖直翼缘梁,在两竖直翼缘梁相对内侧面的底部区域的两端各设一个结构端梁(10),沿两竖直翼缘梁内侧面的底部区域、两个结构端梁(10)之间均匀分布设置有0~20个或更多个的结构中梁(11),把左右的竖直翼缘梁连接为U型基梁(1G)的整体结构,其上部的翼缘称为上翼缘(3)。所述上翼缘异型L轨道(30)设置在U型基梁(1G)的上翼缘(3)上,其余结构与上述上翼缘异型L轨道(30)完全一致。如图10、图11所示。
所述下翼缘异型磁浮轨道(20),包括H结构基梁(1)、U型钢轨道(21)、支撑轨道(22),以H结构基梁(1)为基础,其左右两个下翼缘(2)外侧或内侧各设置有一条支撑轨道(22),左右支撑轨道(22)在同一水平面上镜像对称设置;左右各一条U型钢轨道(21)安装在下翼缘(2)的底面上,左右U型钢轨道(21)在同一水平面上镜像对称设置;所述U型钢轨道(21)、支撑轨道(22)均沿着H结构基梁(1)的纵向连续延伸。所述U型钢轨道(21)由钢热轧制而成或由钢板焊接而成。所述下翼缘异型磁浮轨道(20)还包括下供电轨(42),下供电轨(42)安装在下翼缘异型磁浮轨道(20)上,为在下翼缘异型磁浮轨道(20)上运行车辆供电,其电源由设在动力电缆孔(1A)内的动力电缆供给。优选的,所述H结构基梁(1)、下翼缘(2)、内悬挂轨道(21)均由钢筋混凝土或采用纤维增强钢筋混凝土浇铸成一个整体结构,或用钢材制造而成、或采用复合材料制造而成。如图1、图2所示。
所述运行中央云平台是高速公交车***运行的大脑、信息数据存储和交换中心、信息数据计算处理中心、***运行指挥管理中心,接收和处理每一辆高速巴士公交车物联网***以及轨道***、轨道通号***、车站、供电***等每个独立运行***运行信息和设备状况信息。对临时出现的运行状况进行及时处理,立即调度并发出指令,以保证高速公交车***安全和高效运行。
本发明提供一种基于复合异型翼缘轨道的高速巴士公交***的运行方法:
1)高速巴士公交车为全座席高端舒适的公交车,每个车门有相对的两排舒适座椅,6~8个席位,在运行中央云平台、车辆管理***等***协同管理下,无人智能驾驶***驾驶车辆由始发站在复合异型翼缘轨道***上出发;始发站的车站管理***把本站上车乘客数量、对应的车厢信息和乘客到达目的地车站的信息发送给车物联网***,车物联网***把信息由内部线路传送到车辆管理***,车辆管理***通过车内视频监控识别***核对每一排乘客的数量和空位数,并与接收到的车站管理***信息进行交叉核实;
2)在复合异型翼缘轨道***上运行的高速巴士公交车的设备状态、实时位置、运行速度等通过车物联网***实时发送给运行中央云平台和前后各3~5辆车的车物联网***,以实现前后各3~5辆车安全协同运行。例如有一辆车因故需要紧急制动,后面的3~5辆车将同步减速行驶,并依次传递给后面的车辆,实现安全协同运行;车内空位的数量和对应车门信息、乘客到达目的站的信息、车内乘客的状态(预防紧急情况)等由车辆管理***由内部线路传送给车物联网***,车物联网***实时发送给运行中央云平台和前方的车站管理***;
3)若本列车内乘客已满座,该辆车将启动直达最近目的地车站的运行模式,车辆管理***通过车物联网***把该辆车将直达运行的信息发送给运行中央云平台和最近目的地车站,车辆管理***对无人智能驾驶***下达直达运行指令和最近目的地车站信息,该辆车将以120~160公里/小时的速度直达最近目的地车站,为乘客提供了拥堵城市背景下的高速、高效、舒适、高端交通服务,地面自驾车拥堵1小时路程高速巴士公交车将10分钟到达;
4)高速巴士公交车到达前方的车站之前,车站管理***已经将即将到站的该编组车每个车门的空座数量显示在车站对应的车门候车区,乘客打卡并按提示点中自己待到达目的地车站的名字后,乘客即可进入对应的车门候车区,实现乘客精准乘车;
5)高速巴士公交车到达车站后,乘客先下后上,刚刚下车的乘客逐一刷卡走出车门候车区。假若车内有1名乘客到达目的地车站后没有下车,刷卡走出车门候车区的乘客将少1人,待上车的乘客将有1人仍然待在车门候车区无法上车,车站该车门候车区将自动用声音提醒乘客,请乘客耐心等待,下一班车将在1.5或2分钟后到达;
6)刚刚驶离车站的高速巴士公交车,若本列车内乘客已满座,将重复3)的操作;
7)运行中央云平台根据各车站客流量大数据计算和图象识别,对出现客流较大的车站采用空车直达的运行方式,快速疏解密集车站的客流,提高市民出行交通质量,提升城市运行效率,实现智慧城市智慧交通;
8)非交通高峰期,高速客运车将与高速物流车交替通行,实现交通资源效益最大化。
优选的,一种基于复合异型翼缘轨道的高速巴士公交***,其特征在于还包括一种高速巴士中车,所述高速巴士中车是挂在高速巴士公交车后面,跟随高速巴士公交车共同运行;高速巴士中车包括转向架、智能安全导向***、行走机构、动力***、安全运行***、客车箱等,与上述高速巴士公交车不同之处是缺少了无人智能驾驶***和车物联网***,其它构成与高速巴士公交车完全相同。高速巴士中车的启动、加速、制动、停车等运行操作、以及对外信息数据交换等操作命令全部都由其前面的或头尾的高速巴士公交车发出命令,高速巴士中车只是同步执行命令。高速巴士中车与高速巴士公交车之间的所有信息、执行指令的通 讯均由内部通讯电缆来完成,确保信息传输无误。每辆高速巴士公交车后面可以挂1~15辆或更多辆高速巴士中车,本专业技术人员根据车站设计大小和需要进行设计。
以上编号仅为叙述的方便,不代表高速巴士公交***的运行的实际顺序。可以将上述每个编号看做一个运行单元,根据实际需要调整运行单元的顺序和多少。本发明未详述部分均可采用现有技术。
本发明的优点是:
1、车辆舒适低碳环保。本发明高速巴士公交车全座席、人少(16~48人)、自重轻(车体采用铝镁合金和碳纤维等复合纤维制造)、高速度(120~160公里/小时),交通高峰上下复合轨道同时运行公交车、每列6~15节或更多节车运行,对拥堵车站空车直发,快速高效疏解交通拥堵,上下复合轨道小时单向客运量达4-7万人。非交通高峰1~6节运行,节能低碳、噪声低、运行成本低,采用新能源光伏发电、制动发电、氢能源等绿色环保电能驱动,环保无污染,为现代国际化大城市提供了一种舒适、高端的市民出行交通服务方案。交通高峰地面自驾车拥堵1小时路程高速巴士公交车将10分钟到达,为减少城市碳排放、空气污染、倡导市民减少自架车、低碳环保出行,提供了智慧交通高端硬件支撑;
2、精准乘车智能运行快速高效。车辆先进的***运行管理和无人智能驾驶***,使乘客智能精准乘车,满员可直达最近目的地车站,运行效率高、速度快,节能,避免每站必停。
3、运行安全可靠。轨道和高速巴士公交车一体化设计融合为一个整体永远不会脱轨;无人智能驾驶***自主导向与智能安全导向***的辅助导向和安全支撑保护相结合,智能安全导向***根据车辆运行状态、侧向风力大小、转弯离心力大小或车辆运行偏移量大小等自动调整安全导向轮与轨迹之间0~30mm的距离,精准控制辅助导向力大小和平衡稳定力大小,最大限度减少运行阻力;高速巴士公交车前后轮双动力驱动设计,即使其中一个动力***故障,另一个动力***仍能确保高速巴士公交车安全高效运行或到达下一个车站快速维修更换动力***;突然停电自备电池能使车辆安全运行到下二个车站中的一个;新能源光伏发电***提供环保辅助能源的同时兼顾了安全疏散通道的功能;若车辆突然因故需要紧急制动,车物联网***立即与后面3~5辆车的车物联网***联动,后面的3~5辆车将同步减速行驶,并依次往后面的车辆传递,实现安全协同运行;硬件和软件的协同作用,为车辆安全运行提供了多重安全保障。
4、轨道***先进。本发明复合异型翼缘轨道***,上下复合H结构基梁与异型翼缘轨道结合使综合结构强度抗弯抗扭刚度等均相互加强和提升,充分利用了城市低空交通资源,与实现同样功能的两个单轨道梁比结构优化、总重量轻量化、节材节能,综合性价比高;最小转弯半径20米、爬坡能力达到100‰,可架设在城市道路绿化带上或高速路边坡或中分 带上、或山体隧道内、或地下隧道内;选线适应能力强、占地少、拆迁少,综合造价低。非交通高峰客运与物流共享轨道、科学融合,实现城市轨道交通资源效益最大化,减少政府财政补贴实现盈利。
附图说明
图1为本发明复合异型翼缘轨道及高速巴士公交车和磁浮轨道车横截面示意图。
图2为本发明复合异型翼缘轨道梁横截面立体示意图。
图3为本发明转向架的承载基架和安全导向架立体示意图。
图4为本发明安全导向单元和安全导向机构示意图。其中,图a:安全导向单元主视图,图b:安全导向单元俯视图,图c:U型安全导向柱立体图,图d:双区安全导向机构,图e:一安全导向组对的单区安全导向机构,图f:两安全导向组对的单区安全导向机构。
图5为本发明复合异型翼缘轨道及两种安全导向机构高速巴士公交车横截面单侧放大示意图,其中,a:为双区安全导向机构,b:为单区安全导向机构
图6为本发明转向架及动力行走机构侧视示意图。其中,a:为直线电机驱动及双区安全导向机构,b:为电机驱动及单区式安全导向机构。
图7为本发明转向架及动力行走机构示意图,其中,a:为直线电机驱动及双区安全导向机构仰视图,b:为电机驱动及单区安全导向机构俯视示意图。
图8为本发明高速巴士公交车客车箱体及单区安全导向机构组合左视图示意图。
图9为本发明高速巴士公交车客车内座椅示意图。
图10为本发明复合异型翼缘轨道之上翼缘异型L轨道独立使用横截面示意图。
其中:1、H结构基梁,10、结构端梁,11、结构中梁、12、安装横梁,13、连接中梁,14、减重孔,15、墩柱,1A、动力电缆孔,1B、通讯电缆孔,1F、通讯基站,1G、U型基梁,1H、新能源***,2、下翼缘,20、下翼缘异型磁浮轨道,21、U型钢轨道,22、支撑轨道,2V、下翼缘异型磁浮轨道车,3、上翼缘,30、上翼缘异型L轨道,31、L竖边护板,32、L水平边轨道面,33、L轨道面外展板,35、上智能安全导向轮轨迹,36、下智能安全导向轮轨迹,4、受电机构,41、上供电轨,42、下供电轨,4D、直线电机次级,4E、直线电机初级,4F、定位信号网,4G、位置信号测速器,5、智能安全导向***,50、安全导向机构,51、安全导向轮,52、伸缩杆,53、伺服电动缸,5A、安全导向架,5B、U型柱腿,5C、纵向安全柱,5D、中支撑柱,5E、U型底边,5F、U型中柱,6、行走机构,61、转向轮,62、转向轴,63、支撑轴,64、支撑轮,65、转向机构,66、减振悬挂机构,67、永磁同步电机,68、平行轴传动变速箱,69、电机控制器,6A、驾驶室,6B、设备室,6C、自备电池仓,6D、图像雷达识别测距装置,6E、牵引杆,6G、承载基架,6H、边纵梁,6J、 边横梁,6K、中纵梁,6L、横梁,7、客车箱体,71、前后窗,72、侧面窗,73、车门,74、车门滑道,75、空调,76、座椅,77、客车底架。
具体实施方式
采用示意图和具体实施方式是对本发明作进一步说明,但本发明并不局限于此。本发明中使用的方位词,如“前”、“后”、“左”、“右”、“上”、“下”、“顶”、“底”、“纵”、“横”、“竖”、“内侧”、“外侧”等均以示意图为基准,仅为叙述的方便和相对位置,不代表实际方位,术语主要用于区分不同的部件,但不对部件进行具体限制。
实施例1:
本实施例提供转向架的结构。
一种转向架,包括承载基架6G和安全导向架5A,安全导向架5A安装在承载基架6G下方。所述承载基架6G包括边纵梁6H、边横梁6J、中纵梁6K、横梁6L,在同一水平面上纵向平行整齐排列的两边纵梁6H的端部与两边横梁6J的端部垂直连接成矩形框架结构;3支中纵梁6K在矩形框架结构内平行于边纵梁6H等间距或不等间距垂直安装在边横梁6J上;2支横梁6L在矩形框架结构内平行于边横梁6J等间距或不等间距垂直平面交叉安装在边纵梁6H和中纵梁6K上,组成承载基架6G。
所述安全导向架5A包括U型安全导向柱、纵向安全柱5C、中支撑柱5D;U型安全导向柱为U矩形柱体结构,由U型柱腿5B、U型底边5E和U型中柱5F组成;左右U型柱腿5B相互平行,U型柱腿5B和U型底边5E垂直连接成一个整体;U型中柱5F安装于左右U型柱腿5B的中部,且平行于U型底边5E;前后各一支U型安全导向柱竖直镜像对称地设置在承载基架6G前后端下方,其U型柱腿5B顶端分别安装在前后边横梁6J的外侧面上;左右各一支纵向安全柱5C分别安装在前后两U型底边5E两端内侧;2中支撑柱5D的底端连接在纵向安全柱5C上,其顶端安装在横梁6L上或边纵梁6H上或其它适宜位置;优选的,所述U型安全导向柱可以独立使用;如图3所示。
实施例2:
其他同实施例1,不同之处在于:
所述转向架还包括驾驶室6A、设备室6B、自备电池仓6C,驾驶室6A、设备室6B、自备电池仓6C分别安装在承载基架6G底面的前部、中部和后部位置,本领域技术人员可以根据需要进行位置的调整;一般情况下,驾驶室6A用于安装无人智能驾驶***、制动控制***、电机操作机构、智能辅助导向控制***等;设备室6B用于安装车辆管理***、车门控制***、车物联网***、卫星定位***等;自备电池仓6C用于安装自备电池、逆变器和电池管理***等;本领域技术人员也可以根据需要对驾驶室6A、设备室6B、自备电池仓 6C所安装的设备进行调整。所述转向架还包括牵引杆6E,牵引杆6E前后各一个,分别安装在承载基架6G前后端边横梁6J外表面,牵引杆6E分别用于与前后车辆的连接,根据需要以实现2~15车或更多车的组列效率运行;如图6、图7所示。
实施例3:
其他同实施例2,不同之处在于:不含中纵梁6K和中支撑柱5D。
转向架,包括承载基架6G和安全导向架5A,安全导向架5A安装在承载基架6G下方。所述承载基架6G包括边纵梁6H、边横梁6J、中纵梁6K、横梁6L,在同一水平面上纵向平行整齐排列的两边纵梁6H的端部与两边横梁6J的端部垂直连接成矩形框架结构;5支横梁6L在矩形框架结构内平行于边横梁6J等间距或不等间距垂直平面交叉安装在边纵梁6H上,组成承载基架6G。
所述安全导向架5A包括U型安全导向柱、纵向安全柱5C;U型安全导向柱为U矩形柱体结构,由U型柱腿5B、U型底边5E和U型中柱5F组成;左右U型柱腿5B相互平行,U型柱腿5B和U型底边5E垂直连接成一个整体;U型中柱5F安装于左右U型柱腿5B的中部,且平行于U型底边5E;前后各一支U型安全导向柱竖直镜像对称地设置在承载基架6G前后端下方,其U型柱腿5B顶端分别安装在前后边横梁6J的外侧面上;左右各一支纵向安全柱5C分别安装在前后两U型底边5E两端内侧。
实施例4:
其他同实施例2,不同之处在于:
1支中纵梁6K在矩形框架结构内平行于边纵梁6H等间距或不等间距垂直安装在边横梁6J上;3支横梁6L在矩形框架结构内平行于边横梁6J等间距或不等间距垂直平面交叉安装在边纵梁6H和中纵梁6K上,组成承载基架6G。
1支中支撑柱5D的底端连接在纵向安全柱5C上。
实施例5:
本实施例提供安全导向部件。安全导向单元部件包括安全导向单元、安全导向组对、安全导向机构50。本领域技术人员根据实际需要灵活选用。
所述安全导向单元包括安全导向轮51、伸缩杆52、伺服电动缸53,安全导向轮51、伸缩杆52、伺服电动缸53依次安装成一个整体结构。
左右各一套安全导向单元,其安全导向轮51朝外、伺服电动缸53朝内、镜像对称地安装在一起,组成一个安全导向组对。
安全导向机构50,包括安全导向组对,安全导向组对安装在安全导向架5A的U型安全导向柱上。安全导向机构50包括双区安全导向机构和单区安全导向机构。
一安全导向组对安装在U型安全导向柱的U型中柱5F上,其左右两端的安全导向轮51对应轨道***的上智能安全导向轮轨迹35;另一安全导向组对安装在U型柱底边5E上,其左右两侧的安全导向轮51对应轨道***的下智能安全导向轮轨迹36,所述轨道***的上智能安全导向轮轨迹35和下智能安全导向轮轨迹36,分别位于轨道***的上下两个不同区域,称为双区安全导向机构。如图4a、图4b、图4c、图4d所示。
所述安全导向机构50可以设置在对应轨道***的同一个区域,对应轨道***的上智能安全导向轮轨迹35和/或下智能安全导向轮轨迹36也设置在轨道***的同一区域,所述定位信号网4F同时也设置在轨道***的同一区域,与车辆上的定位测速器4G的安装位置相对应。例如:一个安全导向组对安装在U型安全导向柱上,其左右两端的安全导向轮51对应轨道***的上智能安全导向轮轨迹35或下智能安全导向轮轨迹36,称为单区安全导向机构;两个或两个以上的安全导向组对呈上下镜像对称地并列安装在一起,共同安装在U型安全导向柱上,其左右两端的安全导向轮51对应轨道***上设置在同一个区域的上智能安全导向轮轨迹35和/或下智能安全导向轮轨迹36,亦称为单区安全导向机构。如图7e、7f所示。
实施例6:
本实施例提供智能安全导向***5。
智能安全导向***5包括安全导向部件和智能安全导向控制***;安全导向部件由智能安全导向控制***进行智能控制,所述安全导向部件选自安全导向单元、安全导向组对或安全导向机构50。
安全导向单元一端的安全导向轮51对应轨道***上的上智能安全导向轮轨迹35或下智能安全导向轮轨迹36,安全导向单元的另一端可以安装在转向架上任何合适的位置,包括安全导向架5A上,或以其组合形式的安全导向组对或安全导向机构50安装在转向架上合适的位置,安全导向单元的安装位置和数量、或安全导向组对或安全导向机构50的安装位置,由本专业技术人员具体设计;安全导向单元由智能安全导向控制***进行智能控制。如图1、图5、图6、图7所示。
实施例7:
本实施例提供高速巴士公交车。
所述高速巴士公交车包括实施例1-4的转向架、实施例6的智能安全导向***,还包括行走机构、动力***、安全运行***、客车箱;智能安全导向***5、行走机构、动力***、安全运行***安装在转向架下方或转向架与客车厢之间或部分在客车厢内,客车厢安装在转向架的上方。所述高速巴士公交车还包括车辆管理***、无人智能驾驶***、车物联网***, 均安装在车箱内或其它合适的位置。
所述行走机构6安装在转向架的承载基架6G下方,包括转向行走机构和支撑行走机构;转向行走机构包括转向轮61、转向轴62、转向机构65、减振悬挂机构66,转向轴62两端由内及外依次安装有转向机构65和转向轮61,转向机构65安装在转向轮61上,无人智能驾驶***通过转向机构65控制转向轮61实现自主导向,转向轴62通过减振悬挂机构66安装在承载基架6G下方的前部;支撑行走机构包括支撑轴63、支撑轮64,支撑轴63的两端各安装有1~2支撑轮64,支撑轴63通过减振悬挂机构66安装在承载基架6G下方的后部。如图6、图7所示。
所述动力***包括永磁同步电机67、平行传动变速箱68、电机控制器69;电机控制器69安装在永磁同步电机67的外壳上,永磁同步电机67的动力轴与平行传动变速箱68的动力输入端相连使永磁同步电机67和平行传动变速箱68组合为动力***的整体结构,平行传动变速箱68的动力输出端即成为动力***的动力输出端;一套动力***上部安装在承载基架6G下方、下部安装在行走机构的转向轴62上,动力***的动力输出端与转向轴62相连,以驱动转向轮61运行;另一套动力***上部安装在承载基架6G下方、下部安装在支撑轴63上,动力***的动力输出端与支撑轴63相连,以驱动动力轮64运行;如图6b、图7b所示。
安全运行***包括制动发电机构、制动控制***、图像雷达识别测距装置6D、位置信号测速器4G;制动发电机构安装在转向轮61和支撑轮64上,制动发电机构在制动控制***的控制下,根据无人智能驾驶***的指令实施制动、保持或解除操作,制动控制***安装在设备室6B内或车辆上其它适宜的位置,制动发电机构在车辆制动时发出的电能送往自备电池或动力电池;图像雷达识别测距装置6D前后各一对,分别安装在前后边横梁6J外侧面上,是自动驾驶识别前后车距离、速度,以及运行前方侵入运行安全区域的障碍物眼睛,确保行车安全;位置信号测速器4G安装在转向架的外侧,与轨道***上的定位信号网4F相对应,为车辆的安全运行提供准确的位置信息。如图5、图6、图7所示。
所述客车箱,包括矩形立体结构客车箱体7,其前后端壁上安装有前后窗71;左右两侧壁上均安装有侧面窗72,一侧壁上安装车门,所述车门由自动滑动门73、车门滑道74组成,车门滑道74安装在自动滑动门73上下边缘对应的客车箱体7的外侧壁上,自动滑动门73沿车门滑道74在车门控制***的控制下自动打开或关闭,车门控制***把车门的状态信息实时传给车辆管理***,车门控制***安装在设备室6B内;客车箱体7的底部是客车底架77,是客车箱内乘客全部重量的支撑和安全保障构架,客车底架的上表面安装有1~12排座椅76或更多排座椅,每排座椅76设3~4个座席或更多个座席,根据需要进行设计; 空调75安装在客车箱的顶部,为客车箱夏天提供冷空气、冬天为客车箱提供热风,为乘客提供高端舒适的乘座环境;客车箱体7通过客车底架安装在承载基架6G上。所述客车箱体7是由铝合金材料制造而成、或由复合纤维材料制造而成;如图1、图5、图8、图9所示。
所述客车箱还包括视频监控识别***、广播提醒***,视频监控识别***安装在客车箱内顶部的前后端各一个,用于对客车箱乘客的状况、空座状况进行识别;广播提醒***安装在客车箱内顶部的前端,自动播报车到达车站的情况以及其它事项的提醒。
所述车辆管理***设置在设备室6B内或车辆上其它适宜的位置,对无人智能驾驶***、安全运行***等、制动机构及车辆各机构的运行状态进行监测、***管控,并与车物联网***和卫星定位***进行数据信息交换。
所述无人智能驾驶***设置在自动驾驶室6A内或车辆上其它适宜的位置,是高速巴士公交车运行控制的大脑,主要包括无人驾驶信息***、无人驾驶操作***;把来自图像雷达识别测距装置6D、车辆管理***、轨道通号***、制动控制***等***的信息、以及运行中央云平台的指令信息等融合为运行控制数据,、进行数据计算、处理分析、并形成驾驶操作指令,驾驶高速巴士公交车安全运行。具体由本领域技术人员进行专业设计和制造。
所述车物联网***安装在设备室6B内或车辆上其它合适的位置,是高速巴士公交车对外通讯的核心***,与运行中央云平台、前后高速巴士公交车的进行通讯和数据信息交换,把车的设备状态、实时位置、运行速度等实时发送给运行中央云平台和前后各3-5辆车的车物联网***,以实现前后各3~5辆车安全协同运行。
实施例8:
其他同实施例7,不同之处在于,
所述动力***还包括自备电池***和供电***。所述自备电池***包括自备电池和电池管理***,自备电池和电池管理***均安装在自备电池仓6C内,自备电池仓6C自带充电***,当外供电源突然停电后,在电池管理***控制下,自备电池自动向全车供电,自备电池的储电量足够使车辆能安全到达前方二个车站中的一个。所述供电***包括受电机构4和上供电轨41;上供电轨41安装在轨道***的上翼缘3外侧或其它适宜的位置,受电机构4一端安装在承载基架6G上,另一端与上供电轨41保持紧密接触保持正常供电,为在轨道***上运行的车辆供电。如图1、图5、图6、图7所示。
实施例9:
其他同实施例8,不同之处在于,
所述动力***的永磁同步电机67可由直线电机替代,所述直线电机是长次级短初级结构,包括直线电机次级4D、直线电机初级4E、逆变器;一条直线电机次级4D安装在轨道 ***的结构端梁10和结构中梁11的上表面;一只直线电机初级4E安装在转向架底部的U型柱底边5E上,与直线电机次级4D位置相对应,逆变器安装在自备电池仓6C内,为直线电机初级4E供电。如图6a、图7a所示。
实施例10:
其他同实施例8,不同之处在于,
所述动力***可由氢动力***替代,氢动力***包括动力电池、储氢仓、氢电池堆、氢电池升压器和动力控制单元;动力电池安装在自备电池仓6C内或车辆上其它适宜的位置,动力电池用于加速时辅助氢电池堆供电,动力控制单元设在自备电池仓6C内或车辆上其它适宜的位置,用于控制动力电池的充放电;储氢仓设置于设备室6B内或车辆上其它适宜的位置;氢电池堆和氢电池升压器安装在自备电池仓6C内或车辆上其它适宜的位置,氢电池升压器将氢电池堆的电能升压后供给永磁同步电机67;动力电池可替代自备电池。
实施例11:
本实施例提供基于复合异型翼缘轨道的高速巴士公交***。
基于复合异型翼缘轨道的高速巴士公交***,是基于H结构基梁1的复合异型翼缘轨道的高速巴士公交***,包括复合异型翼缘轨道***、实施例8-12的高速巴士公交车、运行中央云平台,复合异型翼缘轨道***架设在地面墩柱15上或山体隧道内、或地下隧道内沿规划路线延伸;在运行中央云平台的指挥控制和管理下,高速巴士公交车在无人智能驾驶***驾驶下,沿着复合异型翼缘轨道***高速安全运行。
所述复合异型翼缘轨道***,其特征在于以H结构基梁1为基础,其上翼缘设有的上翼缘异型L轨道30与下翼缘设有下翼缘异型磁浮轨道20上下复合组成一种复合异型翼缘轨道***,包括H结构基梁1、上翼缘异型L轨道30、下翼缘异型磁浮轨道20、安装横梁12、连接中梁13、墩柱15和新能源***1H。在同一水平面上左右镜像对称纵向平行布置的两榀H结构基梁1,在其相对应内侧面的前后两端各设有一个安装横梁12、在前后安装横梁12之间纵向均匀分布设有0~20个或更多个矩形空心结构的连接中梁13,把左右H结构基梁1连结成一榀轨道梁;多榀H结构基复合异型翼缘轨道梁的前后安装横梁12分别连续架设在墩柱上,墩柱每间隔5~120米一根安装在规划路线的地面上连续延伸;所述地面优选道路两侧的绿化带、或道路中心绿化带、或高速路中分带、或高速路两侧的边坡;新能源***1H架设在安装横梁12、连接中梁13的上表面及左右H结构基梁1的侧面上,并与H结构基梁1侧面之间留有除雪和雨水分流缝隙,所述新能源***1H(例如光伏发电)为轨道照明***、通讯***或动力***提供辅助清洁能源。如图1和图2所示。
所述H结构基梁1,包括竖直翼缘梁、结构端梁10。在同一水平面上左右各一支竖直 翼缘梁纵向平行镜像对称布置,在两竖直翼缘梁的两端相对应内侧面上各设一个结构端梁10,两个结构端梁10之间纵向均匀分布设有0~20个或更多个的结构中梁11,结构端梁10和结构中梁11上表面和下表面分别在两个平行平面上,把左右的竖直翼缘梁在其中部区域连接为一个整体,组成H结构基梁1;所述结构端梁10和结构中梁11均设有一个或多个减重孔14,所述竖直翼缘梁是空心结构或实心结构、竖直翼缘梁及其与结构端梁10和结构中梁11的连接处是空心结构或根据结构及强度需要选用实心结构,实现H结构基梁1结构的优化和轻量化;所述H结构基梁1、结构端梁10和结构中梁11由钢筋混凝土整体浇铸而成、或由钢材加工而成、或由复合材料制造而成;优选的,所述H结构基梁1的上翼缘3和下翼缘2可以是对称矩形结构,其突出特征是非对称结构,上翼缘3优化减薄,实现轻量化。如图1、图2所示。
所述上翼缘异型L轨道30,包括H结构基梁1和L结构轨道,以H结构基梁1为基础,其左右两个上翼缘3的上表面各设有一条L结构轨道。所述L结构轨道包括L竖边护板31和L水平边轨道面32,L竖边护板31和L水平边轨道面32之间呈85-95度夹角,其L竖边护板31朝上、外侧面与上翼缘3的外侧面在同一竖直面上,其L水平边轨道面32向内水平安装在上翼缘3的上表面,上翼缘异型L轨道30沿H结构基梁1纵向延伸;L水平边轨道面32向内侧超出上翼缘3宽度的部分称为L轨道面外展板33;如图1、图2所示。
所述下翼缘异型磁浮轨道20,包括H结构基梁1、U型钢轨道21、支撑轨道22,以H结构基梁1为基础,其左右两个下翼缘2外侧或内侧各设置有一条支撑轨道22,左右支撑轨道22在同一水平面上镜像对称设置;左右各一条U型钢轨道21安装在下翼缘2的底面上,左右U型钢轨道21在同一水平面上镜像对称设置;所述U型钢轨道21、支撑轨道22均沿着H结构基梁1的纵向连续延伸。所述U型钢轨道21由钢热轧制而成或由钢板焊接而成。所述下翼缘异型磁浮轨道20还包括下供电轨42,下供电轨42安装在下翼缘异型磁浮轨道20上,为在下翼缘异型磁浮轨道20上运行车辆供电,其电源由设在动力电缆孔1A内的动力电缆供给。优选的,所述H结构基梁1、下翼缘2、内悬挂轨道21均由钢筋混凝土或采用纤维增强钢筋混凝土浇铸成一个整体结构,或用钢材制造而成、或采用复合材料制造而成。如图1、图2所示。
所述运行中央云平台是高速公交车***运行的大脑、信息数据存储和交换中心、信息数据计算处理中心、***运行指挥管理中心,接收和处理每一辆高速巴士公交车物联网***以及轨道***、轨道通号***、车站、供电***等每个独立运行***运行信息和设备状况信息。对临时出现的运行状况进行及时处理,立即调度并发出指令,以保证高速公交车***安全和高效运行。
基于复合异型翼缘轨道的高速巴士公交***的运行方法:
1)高速巴士公交车为全座席高端舒适的公交车,每个车门有相对的两排舒适座椅,6~8个席位,在运行中央云平台、车辆管理***等***协同管理下,无人智能驾驶***驾驶车辆由始发站在复合异型翼缘轨道***上出发;始发站的车站管理***把本站上车乘客数量、对应的车厢信息和乘客到达目的地车站的信息发送给车物联网***,车物联网***把信息由内部线路传送到车辆管理***,车辆管理***通过车内视频监控识别***核对每一排乘客的数量和空位数,并与接收到的车站管理***信息进行交叉核实;
2)在复合异型翼缘轨道***上运行的高速巴士公交车的设备状态、实时位置、运行速度等通过车物联网***实时发送给运行中央云平台和前后各3~5辆车的车物联网***,以实现前后各3~5辆车安全协同运行。例如有一辆车因故需要紧急制动,后面的3~5辆车将同步减速行驶,并依次传递给后面的车辆,实现安全协同运行;车内空位的数量和对应车门信息、乘客到达目的站的信息、车内乘客的状态(预防紧急情况)等由车辆管理***由内部线路传送给车物联网***,车物联网***实时发送给运行中央云平台和前方的车站管理***;
3)若本列车内乘客已满座,该辆车将启动直达最近目的地车站的运行模式,车辆管理***通过车物联网***把该辆车将直达运行的信息发送给运行中央云平台和最近目的地车站,车辆管理***对无人智能驾驶***下达直达运行指令和最近目的地车站信息,该辆车将以120~160公里/小时的速度直达最近目的地车站,为乘客提供了拥堵城市背景下的高速、高效、舒适、高端交通服务,地面自驾车拥堵1小时路程高速巴士公交车将10分钟到达;
4)高速巴士公交车到达前方的车站之前,车站管理***已经将即将到站的该编组车每个车门的空座数量显示在车站对应的车门候车区,乘客打卡并按提示点中自己待到达目的地车站的名字后,乘客即可进入对应的车门候车区,实现乘客精准乘车;
5)高速巴士公交车到达车站后,乘客先下后上,刚刚下车的乘客逐一刷卡走出车门候车区。假若车内有1名乘客到达目的地车站后没有下车,刷卡走出车门候车区的乘客将少1人,待上车的乘客将有1人仍然待在车门候车区无法上车,车站该车门候车区将自动用声音提醒乘客,请乘客耐心等待,下一班车将在1.5或2分钟后到达;
6)刚刚驶离车站的高速巴士公交车,若本列车内乘客已满座,将重复3)的操作;
7)运行中央云平台根据各车站客流量大数据计算和图象识别,对出现客流较大的车站采用空车直达的运行方式,快速疏解密集车站的客流,提高市民出行交通质量,提升城市运行效率,实现智慧城市智慧交通;
8)非交通高峰期,高速客运车将与高速物流车交替通行,实现交通资源效益最大化。
实施例12:
其他同实施例11,不同之处在于,
所述上翼缘异型L轨道30还包括上智能安全导向轮轨迹35、下智能安全导向轮轨迹36、上供电轨41。上智能安全导向轮轨迹35位于左右L竖边护板31的内侧面,下智能安全导向轮轨迹36位于左右上翼缘3内侧面上;上供电轨41安装在H结构基梁1的外侧或其它适宜安装的位置,为在翼缘异型L轨道30上运行的车辆供电,其电源由设在动力电缆孔1A内的动力电缆供给。所述上翼缘异型L轨道30由钢筋混凝土或采用纤维增强钢筋混凝土浇铸成一个整体结构,或用钢材制造而成、或采用复合材料制造而成。如图1、图2所示。
实施例13:
其他同实施例12,不同之处在于,
所述上翼缘异型L轨道30还包括轨道通号***。
轨道通号***包括通讯电缆、定位信号网4F、卫星定位***、通讯基站1F、上翼缘异型L轨道讯号***。通讯电缆布置在通讯电缆孔1B内,以实现车辆、轨道、车站和运行中央云平台之间有线和无线通讯的双保险、以及信息的相互验证确认;定位信号网4F安装在上翼缘3内侧面上,与在轨道运行车辆上的位置信号测速器4G相对应安装,以实现无人智能驾驶车运行过程中的精准定位和到达车站后的精准定位停车;卫星定位***安装在设备室6B内或其它适宜的位置,卫星定位信息与位置信号测速器4G交叉相互校对,以位置信号测速器4G为主确保无人智能驾驶准确、快速、安全运行;通讯基站1F安装在墩柱上,包括5G或6G等低延时高速度的无线通讯设备,车辆的车物联网***通过通讯基站1F与前后车辆、车站和运行中央云平台保持信息通讯。
上翼缘异型L轨道讯号***包括上翼缘异型L轨道状态信息、道叉状态信息、车站状态信息、乘客信息、车辆位置信息等车辆安全运行的重要信息,通过布置在通讯电缆孔1B内的通讯电缆传送到沿线每个车站控制***和运行中央云平台、并通过通讯基站1F无线传送到高速巴士公交车,实现信息交叉确认,确保信息准确、安全。如图5、图6、图7所示。
实施例14:
其他同实施例12或13,不同之处在于:
所述上翼缘异型L轨道30可以做为独立轨道使用,所述H结构基梁1由U型基梁1G替代,所述U型基梁1G包括竖直翼缘梁、结构端梁10、结构中梁11,在同一水平面上左右各一支纵向平行布置的竖直翼缘梁,在两竖直翼缘梁相对内侧面的底部区域的两端各设一个结构端梁10,沿两竖直翼缘梁内侧面的底部区域、两个结构端梁10之间均匀分布设置有 0~20个或更多个的结构中梁11,把左右的竖直翼缘梁连接为U型基梁1G的整体结构,其上部的翼缘称为上翼缘3。所述上翼缘异型L轨道30设置在U型基梁1G的上翼缘3上,其余结构与上述上翼缘异型L轨道30完全一致。如图10、图11所示。
实施例15:
其他同实施例11-14,不同之处在于:
一种基于复合异型翼缘轨道的高速巴士公交***,还包括一种高速巴士中车,所述高速巴士中车是挂在高速巴士公交车后面,跟随高速巴士公交车共同运行;高速巴士中车包括转向架、智能安全导向***、行走机构、动力***、安全运行***、客车箱等,与上述高速巴士公交车不同之处是缺少了无人智能驾驶***和车物联网***,其它构成与高速巴士公交车完全相同。高速巴士中车的启动、加速、制动、停车等运行操作、以及对外信息数据交换等操作命令全部都由其前面的或头尾的高速巴士公交车发出命令,高速巴士中车只是同步执行命令。高速巴士中车与高速巴士公交车之间的所有信息、执行指令的通讯均由内部通讯电缆来完成,确保信息传输无误。每辆高速巴士公交车后面可以挂1~15辆或更多辆高速巴士中车,本专业技术人员根据车站设计大小和需要进行设计。

Claims (20)

  1. 一种转向架,其特征在于,包括承载基架(6G)和安全导向架(5A),安全导向架(5A)安装在承载基架(6G)下方;
    所述承载基架(6G)包括边纵梁(6H)、边横梁(6J)、横梁(6L),在同一水平面上纵向平行整齐排列的两边纵梁(6H)的端部与两边横梁(6J)的端部垂直连接成矩形框架结构;
    中纵梁(6K)在矩形框架结构内平行于边纵梁(6H)等间距或不等间距垂直安装在边横梁(6J)上;横梁(6L)在矩形框架结构内平行于边横梁(6J)等间距或不等间距平面交叉垂直安装在边纵梁(6H)和中纵梁(6K)上,组成承载基架(6G);
    所述安全导向架(5A)包括U型安全导向柱、纵向安全柱(5C);U型安全导向柱为U矩形柱体结构,由U型柱腿(5B)、U型底边(5E)和U型中柱(5F)组成;
    左右U型柱腿(5B)相互平行,U型柱腿(5B)和U型底边(5E)垂直连接成一个整体;U型中柱(5F)安装于左右U型柱腿(5B)的中部,且平行于U型底边(5E);
    前后各一支U型安全导向柱竖直镜像对称地设置在承载基架(6G)前后端下方,其U型柱腿(5B)顶端分别安装在前后边横梁(6J)的外侧面上;左右各一支纵向安全柱(5C)分别安装在前后两U型底边(5E)两端内侧;
    中支撑柱(5D)的底端连接在纵向安全柱(5C)上,其顶端安装在横梁(6L)上或边纵梁(6H)上。
  2. 如权利要求1所述的转向架,其特征在于,
    中纵梁(6K)为0~3支;横梁(6L)为2~5支;中支撑柱(5D)为0~3支。
  3. 如权利要求1所述的转向架,其特征在于,
    所述转向架还包括驾驶室(6A)、设备室(6B)、自备电池仓(6C),驾驶室(6A)、设备室(6B)、自备电池仓(6C)分别安装在承载基架(6G)底面的前部、中部和后部位置,
    所述转向架还包括牵引杆(6E),牵引杆(6E)前后各一个,分别安装在承载基架(6G)前后端边横梁(6J)外表面,牵引杆(6E)分别用于与前后车辆的连接。
  4. 一种智能安全导向***(5),其特征在于,包括安全导向部件和智能安全导向控制***;安全导向部件由智能安全导向控制***进行智能控制,所述安全导向部件选自安全导向单元、安全导向组对或安全导向机构(50)。
  5. 如权利要求4所述的智能安全导向***(5),其特征在于,
    所述安全导向单元包括安全导向轮(51)、伸缩杆(52)、伺服电动缸(53),安全导向轮(51)、伸缩杆(52)、伺服电动缸(53)依次安装成一个整体结构;
    所述安全导向组对为,左右各一套安全导向单元,其安全导向轮(51)朝外、伺服电动缸(53)朝内、镜像对称地安装在一起,组成一个安全导向组对;
    所述安全导向机构(50),包括安全导向组对,安全导向组对安装在安全导向架(5A)的U型安全导向柱上;安全导向机构(50)包括双区安全导向机构和单区安全导向机构。
  6. 如权利要求5所述的智能安全导向***(5),其特征在于,
    所述双区安全导向机构为,一安全导向组对安装在U型安全导向柱的U型中柱(5F)上,其左右两端的安全导向轮(51)对应轨道***的上智能安全导向轮轨迹(35);另一安全导向组对安装在U型柱底边(5E)上,其左右两侧的安全导向轮(51)对应轨道***的下智能安全导向轮轨迹(36),所述轨道***的上智能安全导向轮轨迹(35)和下智能安全导向轮轨迹(36),分别位于轨道***的上下两个不同区域,称为双区安全导向机构;
    所述单区安全导向机构为,所述安全导向机构(50)设置在对应轨道***的同一个区域,对应轨道***的上智能安全导向轮轨迹(35)和/或下智能安全导向轮轨迹(36)也设置在轨道***的同一区域,所述定位信号网(4F)同时也设置在轨道***的同一区域,与车辆上的定位测速器(4G)的安装位置相对应。
  7. 如权利要求5所述的智能安全导向***(5),其特征在于,
    所述单区安全导向机构选择下列设置的一种:
    一个安全导向组对安装在U型安全导向柱上,其左右两端的安全导向轮(51)对应轨道***的上智能安全导向轮轨迹(35)或下智能安全导向轮轨迹(36);
    两个或两个以上的安全导向组对呈上下镜像对称地并列安装在一起,共同安装在U型安全导向柱上,其左右两端的安全导向轮(51)对应轨道***上设置在同一个区域的上智能安全导向轮轨迹(35)和/或下智能安全导向轮轨迹(36)。
  8. 如权利要求4-7任一项所述的智能安全导向***(5),其特征在于,
    安全导向单元一端的安全导向轮(51)对应轨道***上的上智能安全导向轮轨迹(35)或下智能安全导向轮轨迹(36),安全导向单元的另一端可以安装在转向架上。
  9. 一种高速巴士公交车,其特征在于,包括权利要求1-3任一项所述的转向架、权利要求4-8任一项所述的智能安全导向***、行走机构、动力***、安全运行***、客车箱;客车厢安装在转向架的上方,智能安全导向***(5)、行走机构、动力***、安全运行***安装在转向架下方或转向架与客车厢之间或部分在客车厢内。
  10. 如权利要求9所述的高速巴士公交车,其特征在于,所述高速巴士公交车还包括车辆管理***、无人智能驾驶***、车物联网***,车辆管理***、无人智能驾驶***、车物联网***安装在车箱内。
  11. 如权利要求9或10所述的高速巴士公交车,其特征在于,
    所述行走机构(6)安装在转向架的承载基架(6G)下方,包括转向行走机构和支撑行走机构;转向行走机构包括转向轮(61)、转向轴(62)、转向机构(65)、减振悬挂机构(66),转向轴(62)两端由内及外依次安装有转向机构(65)和转向轮(61),转向机构(65)安装在转向轮(61)上,无人智能驾驶***通过转向机构(65)控制转向轮(61)实现自主导向,转向轴(62)通过减振悬挂机构(66)安装在承载基架(6G)下方的前部;支撑行走机构包括支撑轴(63)、支撑轮(64),支撑轴(63)的两端各安装有1~2支撑轮(64),支撑轴(63)通过减振悬挂机构(66)安装在承载基架(6G)下方的后部;
    所述动力***选自下列之一:
    a)所述动力***包括永磁同步电机(67)、平行传动变速箱(68)、电机控制器(69);电机控制器(69)安装在永磁同步电机(67)的外壳上,永磁同步电机(67)的动力轴与平行传动变速箱(68)的动力输入端相连使永磁同步电机(67)和平行传动变速箱(68)组合为动力***的整体结构,平行传动变速箱(68)的动力输出端即成为动力***的动力输出端;一套动力***上部安装在承载基架(6G)下方、下部安装在行走机构的转向轴(62)上,动力***的动力输出端与转向轴(62)相连,以驱动转向轮(61)运行;另一套动力***上部安装在承载基架(6G)下方、下部安装在支撑轴(63)上,动力***的动力输出端与支撑轴(63)相连,以驱动动力轮(64)运行;
    b)所述动力***的永磁同步电机(67)由直线电机替代,所述直线电机是长次级短初级结构,包括直线电机次级(4D)、直线电机初级(4E)、逆变器;一条直线电机次级(4D)安装在轨道***的结构端梁(10)和结构中梁(11)的上表面;一只直线电机初级(4E)安装在转向架底部的U型柱底边(5E)上,与直线电机次级(4D)位置相对应,逆变器安装在自备电池仓(6C)内,为直线电机初级(4E)供电;
    安全运行***包括制动发电机构、制动控制***、图像雷达识别测距装置(6D)、位置信号测速器(4G);制动发电机构安装在转向轮(61)和支撑轮(64)上,制动发电机构在制动控制***的控制下,根据无人智能驾驶***的指令实施制动、保持或解除操作,制动控制***安装在设备室(6B)内或车辆上其它适宜的位置,制动发电机构在车辆制动时发出的电能送往自备电池或动力电池;图像雷达识别测距装置(6D)前后各一对,分别安装在前后边横梁(6J)外侧面上;位置信号测速器(4G)安装在转向架的外侧,与轨道***上的定位信号网(4F)相对应;
    所述客车箱,包括矩形立体结构的客车箱体(7),其前后端壁上安装有前后窗(71);左右两侧壁上均安装有侧面窗(72)、一侧安装有车门,车门控制***安装在设备室(6B) 内;客车箱体(7)的底部是客车底架(77),并通过客车底架安装在承载基架(6G)上;
    所述客车箱还包括视频监控识别***、广播提醒***,视频监控识别***安装在客车箱内顶部的前后端各一个;广播提醒***安装在客车箱内顶部的前端。
  12. 如权利要求11所述的高速巴士公交车,其特征在于,
    所述动力***还包括自备电池***和供电***;
    所述自备电池***包括自备电池和电池管理***,自备电池和电池管理***均安装在自备电池仓(6C)内,
    所述供电***包括受电机构(4)和上供电轨(41);上供电轨(41)安装在轨道***的上翼缘(3)外侧或其它适宜的位置,受电机构(4)一端安装在承载基架(6G)上,另一端与上供电轨(41)保持紧密接触保持正常供电,为在轨道***上运行的车辆供电;
    或者,所述动力***由氢动力***替代,氢动力***包括动力电池、储氢仓、氢电池堆、氢电池升压器和动力控制单元;动力电池安装在自备电池仓(6C)内或车辆上其它适宜的位置,动力电池用于加速时辅助氢电池堆供电,动力控制单元设在自备电池仓(6C)内;储氢仓设置于设备室(6B)内或车辆上;氢电池堆和氢电池升压器安装在自备电池仓(6C)内或车辆上,氢电池升压器将氢电池堆的电能升压后供给永磁同步电机(67);动力电池可替代自备电池;
    所述车辆管理***、无人智能驾驶***、车物联网***设置在设备室(6B)内或车辆上。
  13. 一种基于复合异型翼缘轨道的高速巴士公交***,其特征在于,包括复合异型翼缘轨道***、权利要求9-12任一项所述的高速巴士公交车、运行中央云平台,复合异型翼缘轨道***架设在地面墩柱(15)上或山体隧道内、或地下隧道内沿规划路线延伸;在运行中央云平台的指挥控制和管理下,高速巴士公交车在无人智能驾驶***驾驶下,沿着复合异型翼缘轨道***运行。
  14. 如权利要求13所述的高速巴士公交***,其特征在于,
    所述复合异型翼缘轨道***,以H结构基梁(1)为基础,包括H结构基梁(1)、上翼缘异型L轨道(30)、下翼缘异型磁浮轨道(20)、安装横梁(12)、连接中梁(13)、墩柱(15)和新能源***(1H);H结构基梁(1)的上翼缘设有上翼缘异型L轨道(30),H结构基梁(1)的下翼缘设有下翼缘异型磁浮轨道(20);上翼缘异型L轨道(30)和下翼缘异型磁浮轨道(20)上下复合组成一种复合异型翼缘轨道***,
    在同一水平面上左右镜像对称纵向平行布置的两榀H结构基梁(1),在其相对应内侧面的前后两端各设有一个安装横梁(12)、在前后安装横梁(12)之间纵向均匀分布设有0~ 20个矩形空心结构的连接中梁(13),把左右H结构基梁(1)连结成一榀轨道梁;多榀H结构基复合异型翼缘轨道梁的前后安装横梁(12)分别连续架设在墩柱上,墩柱安装在规划路线的地面上连续延伸;新能源***(1H)架设在安装横梁(12)、连接中梁(13)的上表面及左右H结构基梁(1)的侧面上。
  15. 如权利要求14所述的高速巴士公交***,其特征在于,
    所述H结构基梁(1),包括竖直翼缘梁、结构端梁(10);在同一水平面上左右各一支竖直翼缘梁纵向平行镜像对称布置,在两竖直翼缘梁的两端相对应内侧面上各设一个结构端梁(10),两个结构端梁(10)之间纵向均匀分布设有0~20个结构中梁(11),结构端梁(10)和结构中梁(11)上表面和下表面分别在两个平行平面上,把左右的竖直翼缘梁在其中部区域连接为一个整体,组成H结构基梁(1);所述结构端梁(10)和结构中梁(11)均设有一个或多个减重孔(14),所述竖直翼缘梁是空心结构或实心结构;
    所述上翼缘异型L轨道(30),包括H结构基梁(1)和L结构轨道,以H结构基梁(1)为基础,其左右两个上翼缘(3)的上表面各设有一条L结构轨道;所述L结构轨道包括L竖边护板(31)和L水平边轨道面(32),L竖边护板(31)和L水平边轨道面(32)之间呈85-95度夹角,其L竖边护板(31)朝上、外侧面与上翼缘(3)的外侧面在同一竖直面上,其L水平边轨道面(32)向内水平安装在上翼缘(3)的上表面,上翼缘异型L轨道(30)沿H结构基梁(1)纵向延伸;L水平边轨道面(32)向内侧超出上翼缘(3)宽度的部分称为L轨道面外展板(33);
    所述下翼缘异型磁浮轨道(20),包括H结构基梁(1)、U型钢轨道(21)、支撑轨道(22),以H结构基梁(1)为基础,其左右两个下翼缘(2)外侧或内侧各设置有一条支撑轨道(22),左右支撑轨道(22)在同一水平面上镜像对称设置;左右各一条U型钢轨道(21)安装在下翼缘(2)的底面上,左右U型钢轨道(21)在同一水平面上镜像对称设置;所述U型钢轨道(21)、支撑轨道(22)均沿着H结构基梁(1)的纵向连续延伸;
    所述运行中央云平台接收和处理每一辆高速巴士公交车物联网***以及轨道***、轨道通号***、车站、供电***等每个独立运行***运行信息和设备状况信息。
  16. 如权利要求15所述的高速巴士公交***,其特征在于,
    所述上翼缘异型L轨道(30)还包括上智能安全导向轮轨迹(35)、下智能安全导向轮轨迹(36)、上供电轨(41);上智能安全导向轮轨迹(35)位于左右L竖边护板(31)的内侧面,下智能安全导向轮轨迹(36)位于左右上翼缘(3)内侧面上;上供电轨(41)安装在H结构基梁(1)的外侧,其电源由设在动力电缆孔(1A)内的动力电缆供给;
    所述下翼缘异型磁浮轨道(20)还包括下供电轨(42),下供电轨(42)安装在下翼缘 异型磁浮轨道(20)上,为在下翼缘异型磁浮轨道(20)上运行车辆供电。
  17. 如权利要求16所述的高速巴士公交***,其特征在于,
    所述上翼缘异型L轨道(30)还包括轨道通号***,轨道通号***包括通讯电缆、定位信号网(4F)、卫星定位***、通讯基站(1F)、上翼缘异型L轨道讯号***;通讯电缆布置在通讯电缆孔(1B)内;定位信号网(4F)安装在上翼缘(3)内侧面上,与在轨道运行车辆上的位置信号测速器(4G)相对应安装;卫星定位***安装在设备室(6B)内;通讯基站(1F)安装在墩柱上。
  18. 如权利要求15-17任一项所述的高速巴士公交***,其特征在于,
    所述上翼缘异型L轨道(30)做为独立轨道使用,所述H结构基梁(1)由U型基梁(1G)替代,所述U型基梁(1G)包括竖直翼缘梁、结构端梁(10)、结构中梁(11),在同一水平面上左右各一支纵向平行布置的竖直翼缘梁,在两竖直翼缘梁相对内侧面的底部区域的两端各设一个结构端梁(10),沿两竖直翼缘梁内侧面的底部区域、两个结构端梁(10)之间均匀分布设置有0~20个结构中梁(11),把左右的竖直翼缘梁连接为U型基梁(1G)的整体结构,其上部的翼缘称为上翼缘(3);所述上翼缘异型L轨道(30)设置在U型基梁(1G)的上翼缘(3)上,其余结构与权利要求15-17任一项所述上翼缘异型L轨道(30)完全一致。
  19. 如权利要求13-17任一项所述的高速巴士公交***,其特征在于,
    还包括一种高速巴士中车,所述高速巴士中车是挂在高速巴士公交车后面,跟随高速巴士公交车共同运行;高速巴士中车包括转向架、智能安全导向***、行走机构、动力***、安全运行***、客车箱等,与上述高速巴士公交车不同之处是缺少了无人智能驾驶***和车物联网***,其它构成与高速巴士公交车完全相同;高速巴士中车的启动、加速、制动、停车等运行操作、以及对外信息数据交换等操作命令全部都由其前面的或头尾的高速巴士公交车发出命令,高速巴士中车只是同步执行命令;高速巴士中车与高速巴士公交车之间的所有信息、执行指令的通讯均由内部通讯电缆来完成,确保信息传输无误;每辆高速巴士公交车后面可以挂1~15辆或更多辆高速巴士中车,本专业技术人员根据车站设计大小和需要进行设计。
  20. 一种基于复合异型翼缘轨道的高速巴士公交***的运行方法:
    1)高速巴士公交车在运行中央云平台、车辆管理***等***协同管理下,无人智能驾驶***驾驶车辆由始发站在复合异型翼缘轨道***上出发;始发站的车站管理***把本站上车乘客数量、对应的车厢信息和乘客到达目的地车站的信息发送给车物联网***,车物联网***把信息由内部线路传送到车辆管理***,车辆管理***通过车内视频监控识别***核对 每一排乘客的数量和空位数,并与接收到的车站管理***信息进行交叉核实;
    2)在复合异型翼缘轨道***上运行的高速巴士公交车的设备状态、实时位置、运行速度等通过车物联网***实时发送给运行中央云平台和前后各3~5辆车的车物联网***,以实现前后各3~5辆车安全协同运行;车内空位的数量和对应车门信息、乘客到达目的站的信息、车内乘客的状态(预防紧急情况)等由车辆管理***由内部线路传送给车物联网***,车物联网***实时发送给运行中央云平台和前方的车站管理***;
    3)若本列车内乘客已满座,该辆车将启动直达最近目的地车站的运行模式,车辆管理***通过车物联网***把该辆车将直达运行的信息发送给运行中央云平台和最近目的地车站,车辆管理***对无人智能驾驶***下达直达运行指令和最近目的地车站信息,该辆车将直达最近目的地车站;
    4)高速巴士公交车到达前方的车站之前,车站管理***已经将即将到站的该编组车每个车门的空座数量显示在车站对应的车门候车区,乘客打卡并按提示点中自己待到达目的地车站的名字后,乘客即可进入对应的车门候车区,实现乘客精准乘车;
    5)高速巴士公交车到达车站后,乘客先下后上,刚刚下车的乘客逐一刷卡走出车门候车区;假若车内有1名乘客到达目的地车站后没有下车,刷卡走出车门候车区的乘客将少1人,待上车的乘客将有1人仍然待在车门候车区无法上车,车站该车门候车区将自动用声音提醒乘客;
    6)刚刚驶离车站的高速巴士公交车,若本列车内乘客已满座,将重复3)的操作;
    7)运行中央云平台根据各车站客流量大数据计算和图象识别,对出现客流较大的车站采用空车直达的运行方式;
    8)非交通高峰期,高速客运车将与高速物流车交替通行,实现交通资源效益最大化。
PCT/CN2023/087936 2022-04-13 2023-04-12 一种基于复合异型翼缘轨道的高速巴士公交*** WO2023198134A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210388351.9 2022-04-13
CN202210388351.9A CN114872747B (zh) 2022-04-13 2022-04-13 一种基于复合异型翼缘轨道的高速巴士公交***

Publications (1)

Publication Number Publication Date
WO2023198134A1 true WO2023198134A1 (zh) 2023-10-19

Family

ID=82669056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/087936 WO2023198134A1 (zh) 2022-04-13 2023-04-12 一种基于复合异型翼缘轨道的高速巴士公交***

Country Status (2)

Country Link
CN (1) CN114872747B (zh)
WO (1) WO2023198134A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114872747B (zh) * 2022-04-13 2024-03-22 山东启和云梭物流科技有限公司 一种基于复合异型翼缘轨道的高速巴士公交***
CN114932921B (zh) * 2022-04-13 2024-03-22 山东启和云梭物流科技有限公司 一种基于复合异型翼缘轨道的高速智能物流***

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101905702A (zh) * 2010-06-02 2010-12-08 魏敏吉 无线网络控制的轨道交通***
CN201842102U (zh) * 2010-10-26 2011-05-25 长春轨道客车股份有限公司 100%低地板轻轨车独立轮动力转向架
CN102736624A (zh) * 2011-04-12 2012-10-17 中国科学院沈阳自动化研究所 一种变电站轨道式智能巡检机器人
KR20180025371A (ko) * 2016-08-30 2018-03-09 한국철도기술연구원 화물 철도차량용 3축 대차장치
CN210337918U (zh) * 2019-07-18 2020-04-17 通号轨道车辆有限公司 一种窄轨车辆转向架及其构架
CN111127936A (zh) * 2019-12-25 2020-05-08 大连理工大学 一种共享巴士的动态车辆调度和线路规划方法
CN215752398U (zh) * 2021-08-26 2022-02-08 比亚迪股份有限公司 转向架、轨道车辆及轨道交通***
CN114872747A (zh) * 2022-04-13 2022-08-09 山东启和云梭物流科技有限公司 一种基于复合异型翼缘轨道的高速巴士公交***
CN114872748A (zh) * 2022-04-13 2022-08-09 山东启和云梭物流科技有限公司 一种基于复合异型翼缘轨道的磁浮高速巴士公交***
CN114889655A (zh) * 2022-04-13 2022-08-12 山东启和云梭物流科技有限公司 一种基于复合异型翼缘轨道的高速智能物流***
CN114889663A (zh) * 2022-04-13 2022-08-12 山东启和云梭物流科技有限公司 一种基于复合异型翼缘轨道的高速智能公交***
CN114932921A (zh) * 2022-04-13 2022-08-23 山东启和云梭物流科技有限公司 一种基于复合异型翼缘轨道的高速智能物流***

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4486695B1 (ja) * 2009-02-20 2010-06-23 三菱重工業株式会社 ガイドレール式車両用台車
CN103213583A (zh) * 2012-01-18 2013-07-24 张佳伟 双层运行城市轨道交通***
CN103287440B (zh) * 2013-06-21 2017-02-08 南京林业大学 复合式单轨公共交通***
CN106274916A (zh) * 2015-06-08 2017-01-04 戴长虹 快速空中轨道运输***
CN106494437B (zh) * 2016-09-21 2018-04-20 比亚迪股份有限公司 轨道交通***
CN112498380B (zh) * 2019-09-16 2021-12-28 山东启和云梭物流科技有限公司 一种无人驾驶多式联运车及运输***
CN112498400B (zh) * 2019-09-16 2021-12-28 山东启和云梭物流科技有限公司 一种无人驾驶多式联运钢轨车及多式联运复合轨道***
CN112960008B (zh) * 2021-02-07 2022-08-02 江西理工大学 永磁磁浮轨道交通转向架及轨道机械结构

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101905702A (zh) * 2010-06-02 2010-12-08 魏敏吉 无线网络控制的轨道交通***
CN201842102U (zh) * 2010-10-26 2011-05-25 长春轨道客车股份有限公司 100%低地板轻轨车独立轮动力转向架
CN102736624A (zh) * 2011-04-12 2012-10-17 中国科学院沈阳自动化研究所 一种变电站轨道式智能巡检机器人
KR20180025371A (ko) * 2016-08-30 2018-03-09 한국철도기술연구원 화물 철도차량용 3축 대차장치
CN210337918U (zh) * 2019-07-18 2020-04-17 通号轨道车辆有限公司 一种窄轨车辆转向架及其构架
CN111127936A (zh) * 2019-12-25 2020-05-08 大连理工大学 一种共享巴士的动态车辆调度和线路规划方法
CN215752398U (zh) * 2021-08-26 2022-02-08 比亚迪股份有限公司 转向架、轨道车辆及轨道交通***
CN114872747A (zh) * 2022-04-13 2022-08-09 山东启和云梭物流科技有限公司 一种基于复合异型翼缘轨道的高速巴士公交***
CN114872748A (zh) * 2022-04-13 2022-08-09 山东启和云梭物流科技有限公司 一种基于复合异型翼缘轨道的磁浮高速巴士公交***
CN114889655A (zh) * 2022-04-13 2022-08-12 山东启和云梭物流科技有限公司 一种基于复合异型翼缘轨道的高速智能物流***
CN114889663A (zh) * 2022-04-13 2022-08-12 山东启和云梭物流科技有限公司 一种基于复合异型翼缘轨道的高速智能公交***
CN114932921A (zh) * 2022-04-13 2022-08-23 山东启和云梭物流科技有限公司 一种基于复合异型翼缘轨道的高速智能物流***

Also Published As

Publication number Publication date
CN114872747A (zh) 2022-08-09
CN114872747B (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
WO2023198134A1 (zh) 一种基于复合异型翼缘轨道的高速巴士公交***
CN106864464B (zh) 个人悬挂式双轨道双动力自动控制轻型轨道交通***
CN107554534A (zh) 一种新能源空地两用共享空中轨道交通***及运行方法
CN101905702B (zh) 无线网络控制的轨道交通***
CN107839696B (zh) 一种永磁轴式直驱空地共享立体快速轨道交通***
CN110576752B (zh) 个人自动控制轻型可变轨磁悬浮轨道交通***
US20090299563A1 (en) Method of mass transfortation of people or cargo, especially within city areas and a transport infrastructure for the implementation of this method
CN201186654Y (zh) 一种城市轨道交通***
CN201951460U (zh) 悬挂式轨道公交***
WO2004018276A2 (en) Transit system
CN102114861A (zh) 区域无线网络传递信息的智能化轨道交通***
CN114872748A (zh) 一种基于复合异型翼缘轨道的磁浮高速巴士公交***
WO2023198136A1 (zh) 一种复合异型翼缘轨道***
WO2023198130A1 (zh) 一种基于复合异型翼缘轨道的磁浮高速物流***
CN101786460A (zh) 一种具有区段分路运行模式的轨道交通***
CN114889663A (zh) 一种基于复合异型翼缘轨道的高速智能公交***
CN114932921B (zh) 一种基于复合异型翼缘轨道的高速智能物流***
RU125947U1 (ru) Транспортная система
Najafi et al. Comparison of high-speed rail and maglev systems
CN114889655A (zh) 一种基于复合异型翼缘轨道的高速智能物流***
CN212529626U (zh) 一种轨道式电驱车辆***
CN108277710A (zh) 一种现代城市公交***
CN112498421B (zh) 一种智能发车***及多式联运复合轨道运输***
Raney et al. Morgantown people mover: updated description.
CN110304077A (zh) 小型智能化立体交通轨道

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787777

Country of ref document: EP

Kind code of ref document: A1