WO2023197627A1 - 多层晶体、探测器以及多层晶体键合方法 - Google Patents

多层晶体、探测器以及多层晶体键合方法 Download PDF

Info

Publication number
WO2023197627A1
WO2023197627A1 PCT/CN2022/136855 CN2022136855W WO2023197627A1 WO 2023197627 A1 WO2023197627 A1 WO 2023197627A1 CN 2022136855 W CN2022136855 W CN 2022136855W WO 2023197627 A1 WO2023197627 A1 WO 2023197627A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
layer
crystals
scintillation
multilayer
Prior art date
Application number
PCT/CN2022/136855
Other languages
English (en)
French (fr)
Inventor
郑睿
肖鹏
吕旭东
谢庆国
Original Assignee
苏州瑞派宁科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州瑞派宁科技有限公司 filed Critical 苏州瑞派宁科技有限公司
Publication of WO2023197627A1 publication Critical patent/WO2023197627A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • G01T1/2023Selection of materials

Definitions

  • the present application relates to the field of detectors, specifically, to a multilayer crystal, a detector and a multilayer crystal bonding method.
  • High-energy photons usually refer to photons with an energy of no less than 100eV, including X-rays, ⁇ -rays, ⁇ -particles, ⁇ -particles, and protons.
  • the high-energy photon detector's ability to resolve high-energy photon energy information, time information, and spatial information directly determines the imaging quality of the detection system.
  • the working principle of the high-energy photon detector is as follows: first, the high-energy photons interact with the scintillation crystal to convert the high-energy photons into visible light photons, and the visible light photons are incident on the photoelectric conversion device coupled to the scintillation crystal.
  • the photoelectric conversion device converts incident visible light into electrical signals, and an electronic system matching the photoelectric conversion device is used to output and collect digital signals. Then using software algorithms, the time, energy, position and other information of high-energy photons can be calculated from the digital signal.
  • the Positron Emission Tomography (PET) system uses a scintillation crystal to convert gamma photons into visible light signals, uses a photoelectric conversion device coupled with the scintillation crystal to convert the visible light signals into electrical signals, and then converts the electrical signals Sampling is performed to obtain digital signals for signal processing, thereby obtaining information such as time, energy, and spatial position of gamma photons.
  • PET Positron Emission Tomography
  • DOI Depth of Interaction
  • the DOI effect will cause smearing of the reconstructed image and reduce the spatial resolution of the image, especially at the edge of the field of view, where the impact is more obvious.
  • This application proposes a multi-layer crystal detector to solve the problem that reflection and refraction produced by the scintillation crystal coupling interface affect imaging quality.
  • a multi-layer crystal including: at least two layers of crystal, wherein each layer of the multi-layer crystal is bonded to each other, and at least two layers of the crystal have the same matrix type and are doped differently.
  • each of the coupling interfaces is processed and formed by crystal bonding, so that the two adjacent layers of crystals are bonded.
  • the root mean square roughness value within a range of 10 ⁇ m is less than 1.0 nm.
  • each layer of the scintillation crystal in the multi-layer crystal adopts the same type of matrix, and the matrix includes: LSO, LYSO, LuAG, LuAP or GAGG.
  • the doping of each layer of the crystal in the multi-layer crystal includes: luminescent ions and/or cations.
  • the luminescent ions include Ce, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb.
  • the cations include Sc, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Ca, Li, Mg, Zn, and Cu.
  • the molar percentage of the luminescent ions or the cations and the matrix is between 0.001% and 1%.
  • each coupling interface is coupled with an optical coupling agent with the same refractive index as the crystal, so that each coupling interface does not produce reflection and refraction of photons.
  • each layer of the crystals includes a plurality of scintillation crystals arranged in a matrix, and each scintillation crystal in at least one layer of the crystals uses the same matrix, but at least a part of the crystals in the at least one layer is made of The scintillation crystals are doped differently.
  • each layer of the crystals includes several scintillation crystals arranged in a matrix, and adjacent scintillation crystals in each layer of the crystals are bonded with opaque materials, crystals, or optically coupled with the same refractive index. agent for coupling.
  • a detector includes a multilayer crystal as described above.
  • the detector further includes a photoelectric converter, and the photoelectric converter is coupled to the multilayer crystal.
  • the detector further includes a light guide through which the multilayer crystal and the photoelectric converter are coupled.
  • a multi-layer crystal bonding method which includes the following steps: polishing the contact surfaces of two adjacent scintillation crystals in the multi-layer crystal using polishing liquid; removing the contact surfaces of the scintillation crystals Polishing liquid on the surface; bringing the polished contact surfaces of adjacent scintillation crystals into corresponding contact and heating; applying pressure to the scintillation crystal to strengthen the intermolecular connection of the contact surface of the scintillation crystal; cooling the scintillation crystal crystal.
  • the root mean square roughness value of the polished contact surface of the scintillation crystals within a range of 10 ⁇ m is less than 1.0 nm.
  • the heating temperature is between 1000 degrees and 1800 degrees.
  • the pressure applied to the scintillation crystal is less than 100 MPa.
  • the multi-layer crystal and detector use the same type of crystal materials with different doping, and bonding technology is used between adjacent crystals, This prevents reflection and refraction from occurring at the coupling interface of adjacent crystals, thereby improving the transmission efficiency of visible photons.
  • This helps to use the detected scintillation pulse amplitude, decay time, peak wavelength and other information to determine the deposition location of high-energy rays, thereby achieving the acquisition of depth effect information.
  • adjacent crystals of the multilayer crystal are coupled using an optical coupling agent that has the same refractive index as the crystal material, so that reflection and refraction do not occur at the coupling interface of the adjacent crystals to improve the transmission efficiency of visible photons. .
  • Figure 1a shows a side view of a multilayer crystal according to an example embodiment of the present application.
  • Figure 1b shows a perspective view of a multi-layer crystal according to an example embodiment of the present application.
  • Figure 1c shows a schematic diagram of a coupling interface of a multi-layer crystal according to an example embodiment of the present application.
  • Figure 2a shows a side view of a detector according to an example embodiment of the present application.
  • Figure 2b shows a perspective view of a detector according to an example embodiment of the present application.
  • Figure 2c shows a schematic diagram of the coupling interface of a multi-layer crystal in a detector according to an example embodiment of the present application.
  • Figure 3 shows a flow chart of a crystal bonding method according to an example embodiment of the present application.
  • Figure 4a shows the X-ray excited emission spectrum of LSO:Ce, Pr doping.
  • Figure 4b shows the X-ray excited emission spectrum of LSO:Ce, Nd doping.
  • Figure 4c shows the X-ray excited emission spectrum of LSO:Ce,Eu doping.
  • Figure 4d shows the X-ray excited emission spectrum of LSO:Ce, Tb doping.
  • Figure 4e shows the X-ray excitation emission spectrum of LSO:Ce,Dy doping.
  • Figure 4f shows the X-ray excited emission spectrum of LSO:Ce, Yb doping.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in various forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concepts of the example embodiments. To those skilled in the art.
  • the same reference numerals in the drawings represent the same or similar parts, and thus their repeated description will be omitted.
  • Figure 1a shows a side view of a multilayer crystal according to an example embodiment of the present application.
  • Figure 1b shows a perspective view of a multi-layer crystal according to an example embodiment of the present application.
  • Figure 1c shows a schematic diagram of a coupling interface of a multi-layer crystal according to an example embodiment of the present application.
  • the multilayer crystal shown in Figures 1a and 1b includes four layers of crystals, and each layer of crystals includes several scintillation crystals coupled in a matrix form.
  • crystal layer 1 and crystal layer 2 are coupled by coupling interface 1
  • crystal layer 2 and crystal layer 3 are coupled by coupling interface 2
  • crystal layer 3 and crystal layer 4 are coupled by coupling interface 3 coupling.
  • the multilayer crystal uses a scintillation crystal to convert high-energy photons into visible light signals, and uses a photoelectric converter coupled with the scintillation crystal to convert visible light signals into electrical signals.
  • the multilayer crystals include the same kind of scintillation crystals with different doping. Because scintillation crystals use the same kind of crystal material, a small amount of doping does not change its refractive index.
  • each layer of crystals in the multi-layer crystal adopts the same type of matrix, wherein the matrix includes lutetium silicate (LSO), lutetium yttrium silicate (LYSO), bismuth silicate (BSO), lutetium aluminum garnet ( LuAG), lutetium aluminum perovskite (LuAP) or gadolinium aluminum gallium garnet (GAGG).
  • LSO lutetium silicate
  • LYSO lutetium yttrium silicate
  • BSO bismuth silicate
  • LuAG lutetium aluminum garnet
  • LuAP lutetium aluminum perovskite
  • GAGG gadolinium aluminum gallium garnet
  • crystal layer 1, crystal layer 2, crystal layer 3 and crystal layer 4 use the same matrix, and the matrix LYSO is selected.
  • each layer of the multi-layer crystal is doped differently.
  • crystal layer 1, crystal layer 2, crystal layer 3 and crystal layer 4 are doped differently, and each layer of crystal adopts a doping scheme including one or more luminescent ions and/or cations.
  • the luminescent ions include cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), terbium (Tb), dysprosium (Dy), holmium ( Ho), erbium (Er), thulium (Tm) and ytterbium (Yb).
  • the cations include scandium (Sc), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), terbium (Tb) ), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm) and ytterbium (Yb), calcium (Ca), lithium (Li), magnesium (Mg), zinc (Zn) and copper (Cu ).
  • the crystal layer 1 selects the matrix LYSO, which includes the doping of one luminescent ion Ce; the crystal layer 2 selects the matrix LYSO, which includes the doping of two luminescent ions Ce and Pr; the crystal layer 3 selects the matrix LYSO, which includes one luminescent ion. Doping of Ce and a cation Sc; crystal layer 4 selects the matrix LYSO, including doping of two cations Sc and La.
  • the crystal layer 1 selects the matrix GAGG, which includes the doping of a luminescent ion Ce; the crystal layer 2 selects the matrix GAGG, which includes the doping of two luminescent ions Nd, Pm and a cation Sc; the crystal layer 3 selects the matrix GAGG. , including the doping of two luminescent ions Sm and Eu and two cations Pr and Nd; the crystal layer 4 selects the matrix GAGG, including the doping of three cations Er, Tm and Yb.
  • a small amount refers to the molar percentage of luminescent ions or cations to the matrix between 0.001% and 1%.
  • the specific value of "a small amount” can be any value within this interval.
  • the first layer of LYSO matrix is doped with 0.1% molar percentage of luminescent ion Ce
  • the second layer of LYSO matrix is doped with 0.1% molar percentage of luminescent ion Ce.
  • the luminescent ion Ce is doped with a molar percentage of 0.2%
  • the luminescent ion Pr is doped with a molar percentage of 0.3%.
  • the third layer of LYSO matrix is doped with a cationic Sc of a molar percentage of 0.3% and a cation La of 0.4%.
  • multi-layer means that the crystal has at least two layers.
  • the four layers in the above embodiments are only examples and not limitations.
  • the specific number of layers can be determined according to high-energy photons. The energy and actual detection resolution requirements are determined comprehensively, and will not be described again here.
  • each scintillation crystal in at least one layer of crystals uses the same type of matrix, but at least a part of the scintillation crystals in the layer of crystals uses different doping.
  • the type of matrix and the type and content of doping can be It is the same as in the above embodiment and will not be described again here.
  • the coupling interface between two adjacent layers of multi-layer crystals is processed and formed by crystal bonding, so that the two adjacent layers of crystals form a bond.
  • the bonding method can be selected as needed between two adjacent scintillation crystals in the same layer.
  • the sides of two adjacent scintillation crystals in the same layer need to be wrapped or coated with opaque materials to prevent visible light. into other crystals; for some special detector applications, the sides of two scintillation crystals in the same layer may also need to adopt a light-transmitting crystal bonding method.
  • the method of bonding two adjacent scintillation crystals can be seen in Figure 2.
  • each layer of crystal uses the same type of crystal material with different doping.
  • the coupling interface of adjacent crystals is Emission and refraction do not occur, which not only improves the transmission efficiency of visible photons, but also enables the control of the scintillation pulse amplitude, decay time and peak wavelength of digital signals used for signal processing.
  • the coupling interface between two adjacent layers of multi-layer crystals is coupled with an optical coupling agent having the same refractive index, so that the two adjacent layers of crystals form a bond.
  • the bonding method can be selected as needed between two adjacent crystals in the same layer.
  • the sides of two adjacent crystals in the same layer need to be wrapped or coated with opaque materials to prevent visible light from entering the other.
  • the sides of two crystals in the same layer may also need to adopt a light-transmitting crystal bonding method.
  • the side surfaces of two crystals in the same layer can also be coupled using optical coupling agents with the same refractive index.
  • each layer of crystals uses the same type of crystal material with different doping, and the coupling interface between adjacent crystals uses an optical coupling agent with the same refractive index for coupling, so that gamma photons are coupled Reflection and refraction will not occur at the interface, which can improve the transmission efficiency of visible photons.
  • Figure 2a shows a side view of a detector according to an example embodiment of the present application.
  • Figure 2b shows a perspective view of a detector according to an example embodiment of the present application.
  • Figure 2c shows a schematic diagram of the coupling interface of a multi-layer crystal in a detector according to an example embodiment of the present application.
  • the multilayer crystal detector shown in Figures 2a and 2b includes the multilayer crystal as described in the embodiment of Figure 1 and a photoelectric converter coupled to the multilayer crystal, the multilayer crystal including four layers of crystal.
  • each layer of crystal can adopt the coupling method as shown in the embodiment of Figure 1.
  • Different coupling methods can also be selected between the crystal layer 4 and the photoelectric converter, such as coupling with coupling agent, coupling with light guide, or bonding. Way.
  • a detector with multi-layer crystals is proposed.
  • the multi-layer crystals in the detector use the same type of scintillation crystal materials with different doping, and the adjacent scintillation crystals are Bonding technology is used or an optical coupling agent with the same refractive index as the scintillation crystal material is used for coupling, so that reflection and refraction do not occur at the coupling interface of adjacent scintillation crystals, thereby improving the transmission efficiency of visible photons.
  • This helps to use the detected scintillation pulse amplitude, decay time, peak wavelength and other information to determine the deposition location of gamma rays, thereby achieving the acquisition of depth effect information.
  • Figure 3 shows a flow chart of a crystal bonding method according to an example embodiment of the present application.
  • a crystal bonding method according to an exemplary embodiment of the present application will be described in detail below with reference to FIG. 3 .
  • step S301 polishing liquid is used to polish the contact surfaces of two adjacent scintillation crystals in the multi-layer crystal, so that the polished contact surfaces of the two scintillation crystals have a root mean square roughness (Root Mean) in the range of 10 ⁇ m.
  • Squre (RMS for short) value is less than 1.0nm.
  • step S303 the polishing liquid on the contact surface of two adjacent scintillation crystals is removed.
  • two adjacent scintillation crystals that have completed the surface treatment in step S301 are placed in deionized water and subjected to ultrasonic cleaning to remove residual polishing liquid on the surface of the scintillation crystals.
  • step S305 the polished contact surfaces of two adjacent scintillation crystals are brought into corresponding contact and heated.
  • the coupling surfaces of the two scintillation crystals processed in step S303 are contacted and heated to a certain temperature according to the designed array shape. For example, it is heated to a temperature of 1300 to 1800 degrees.
  • the heating time can be determined according to the strength of the bond. Different heating times will obtain different coupling strengths. This is easily understood by those skilled in the art based on the inspiration of this application, and will not be described again here.
  • step S307 pressure is applied to two adjacent scintillation crystals to strengthen the intermolecular connection at the contact surface of the scintillation crystals.
  • a pressure of less than 100 MPa is applied to the two scintillation crystals processed in step S305 to strengthen the intermolecular connection at the contact surface of the two scintillation crystals.
  • an optical coupling agent with the same refractive index is first provided on the contact surface of the scintillation crystals on both sides, and then pressure is applied to the two crystals to strengthen the two scintillation crystals. Intermolecular connections at the interface of scintillation crystals.
  • step S309 the scintillation crystal is cooled, and at this point, the bonded scintillation crystal is formed.
  • cooling can be achieved by self-cooling at room temperature, or by technical means such as water cooling or air cooling at room temperature, which will not be described again here.
  • Figures 4a to 4f show X-ray excitation emission spectra of differently doped LYSO scintillation crystals according to embodiments of the present application.
  • LYSO scintillation crystals with different doping include LSO:Dy, LSO:Tb, LSO:Eu, LSO:Pr, LSO:Nd and LSO:Yb.
  • Figure 4a shows the X-ray stimulated emission spectrum of LSO:Ce, Pr doping.
  • Figure 4b shows the X-ray stimulated emission spectrum of LSO:Ce, Nd doped.
  • Figure 4c shows the X-ray stimulated emission spectrum of LSO:Ce, Eu doped.
  • X-ray stimulated emission spectrum Figure 4d shows the X-ray stimulated emission spectrum of LSO:Ce, Tb doping
  • Figure 4e shows the X-ray stimulated emission spectrum of LSO:Ce, Dy doped
  • Figure 4f shows LSO :Ce, Yb doped X-ray excitation emission spectrum.
  • the new emission peaks of LSO:Ce, Pr are 464nm, 509nm, 545nm, 614nm, 738nm and 772nm; LSO: Ce, Nd new emission peaks are 544nm, 608nm and 774nm; LSO: Ce, Eu new emission peaks are 540nm, 608nm and 778nm; LSO: Ce, Tb new The newly added emission peaks are 383nm, 415nm, 435nm, 545nm, 768nm, 827nm and 872nm; the new emission peaks of LSO:Ce, Dy are 481nm, 539nm, 573nm and 782nm; the new emission peaks of LSO:
  • the multi-layer crystal uses scintillation crystal materials of the same type and different doping, and bonding technology is used between adjacent scintillation crystals, so that The coupling interface of adjacent scintillation crystals will not reflect or refract, which improves the transmission efficiency of visible photons.
  • This helps to use the detected scintillation pulse amplitude, decay time, peak wavelength and other information to determine the deposition location of high-energy rays, thereby achieving the acquisition of depth effect information.
  • adjacent scintillation crystals of the multilayer crystal detector are coupled using an optical coupling agent that has the same refractive index as the scintillation crystal material, so that reflection and refraction do not occur at the coupling interface of the adjacent scintillation crystals to improve Visible photon transmission efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

一种多层晶体、探测器以及多层晶体键合方法,多层晶体中至少两层晶体的基质种类相同,掺杂不同;键合方法包括步骤:利用抛光液将相邻的两个闪烁晶体的接触面进行抛光处理;去除闪烁晶体的接触面的抛光液;使相邻闪烁晶体已抛光的接触面对应接触并加热;向闪烁晶体施加压力,以加强闪烁晶体的接触面的分子间的连接;冷却。相邻的晶体层(1,2,3,4)之间采用耦合界面耦合。采用相同种类、不同掺杂的晶体材料制作多层晶体,相邻晶体的耦合界面上不会发生反射和折射,提高了可见光子的传输效率。

Description

多层晶体、探测器以及多层晶体键合方法
本申请要求于2022年04月11日提交的中国专利申请202210372850.9的优先权,其全部内容通过援引加入本文。
技术领域
本申请涉及探测器领域,具体而言,涉及一种多层晶体、探测器以及多层晶体键合方法。
背景技术
高能光子通常是指能量不低于100eV的光子,包括X射线、γ射线、α粒子、β粒子以及质子等。高能光子探测器对高能光子能量信息、时间信息、空间信息的分辨能力直接决定了探测***的成像质量。高能光子探测器的工作原理如下:首先,高能光子与闪烁晶体相互作用将高能光子转换为可见光光子,可见光光子入射到与闪烁晶体耦合的光电转换器件中光电转换器件。光电转换器件将入射可见光转换为电信号,利用与光电转换器件匹配的电子学***输出并采集数字信号。然后利用软件算法,即可从数字信号中计算高能光子的时间、能量、位置等信息。
比如,正电子发射断层成像(Position Emission Tomography,简称PET)***是利用闪烁晶体将伽马光子转换为可见光信号,利用与闪烁晶体耦合的光电转换器件将可见光信号转换为电信号,然后对电信号进行采样以获得用于信号处理的数字信号,从而得到伽马光子的时间、能量、空间位置等信息。
在传统的多层晶体探测器中,各层采用不同种类的晶体材料,层与层之 间采用光学胶水等材料进行耦合。由于不同种类的晶体材料折射率不同,使得闪烁光子在晶体的耦合界面会产生反射和折射现象,降低可见光子的传输效率,影响对入射射线在晶体中的深度信息的探测,引起成像质量的下降,产生深度效应(Depth of Interaction,简称DOI)。
DOI效应会造成重建图像的拖尾,降低图像的空间分辨率,尤其视野的边缘位置,影响更为明显。
背景技术描述的内容仅为了便于了解本领域的相关技术,不视作对现有技术的承认。
发明内容
本申请提出一种多层晶体探测器,以解决闪烁晶体耦合界面产生的反射和折射影响成像质量的问题。
根据本申请的一方面,提出一种多层晶体,包括:至少两层晶体,其中,所述多层晶体中的每层相互键合,至少两层所述晶体的基质种类相同,掺杂不同。
根据一些实施例,相邻两层所述晶体之间具有耦合界面,每个所述耦合界面均采用晶体键合的方式加工形成,使得相邻两层晶体形成键合。
根据一些实施例,相邻两层所述晶体的接触面进行抛光处理后,在10μm的范围内的均方根粗糙度值小于1.0nm。
根据一些实施例,所述多层晶体中的每层所述闪烁晶体采用相同种类的基质,所述基质包括:LSO、LYSO、LuAG、LuAP或GAGG。
根据一些实施例,所述多层晶体中的每层所述晶体的掺杂包括:发光离子 和/或阳离子。
根据一些实施例,所述发光离子包括Ce、Pr、Nd、Pm、Sm、Eu、Tb、Dy、Ho、Er、Tm和Yb。
根据一些实施例,所述阳离子包括Sc、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Ca、Li、Mg、Zn和Cu。
根据一些实施例,所述发光离子或者所述阳离子与所述基质的摩尔百分比介于0.001%~1%之间。
根据一些实施例,相邻两层晶体之间具有耦合界面,每个耦合界面均采用和所述晶体相同折射率的光学耦合剂耦合,使得每个耦合界面不会产生光子的反射和折射。
根据一些实施例,每层所述晶体包括若干个矩阵排列的闪烁晶体,至少一层所述晶体中的每个所述闪烁晶体采用相同基质,但所述至少一层所述晶体中至少一部分所述闪烁晶体的掺杂不同。
根据一些实施例,每层所述晶体包括若干个矩阵排列的闪烁晶体,每层所述晶体中相邻的所述闪烁晶体之间采用不透明材料、晶体键合或者采用具有相同折射率的光学耦合剂进行耦合。
根据本申请的一方面,提出一种探测器,所述探测器包括如上所述的多层晶体,所述探测器还包括光电转换器,所述光电转换器与所述多层晶体耦合。
根据一些实施例,所述探测器还包括光导,所述多层晶体和所述光电转换器通过所述光导耦合。
根据本申请的一方面,提出一种多层晶体键合方法,包括以下步骤:利用抛光液将多层晶体中相邻的两个闪烁晶体的接触面进行抛光处理;去除所述闪 烁晶体的接触面的抛光液;使相邻所述闪烁晶体已抛光的接触面对应接触并加热;向所述闪烁晶体施加压力,以加强所述闪烁晶体的接触面的分子间的连接;冷却所述闪烁晶体。
根据一些实施例,相邻的两个闪烁晶体的接触面进行抛光处理后,所述闪烁晶体已抛光的接触面在10μm的范围内的均方根粗糙度值小于1.0nm。
根据一些实施例,所述加热的温度在1000度~1800度。
根据一些实施例,向所述闪烁晶体施加的压强小于100兆帕。
根据本申请的一些示例实施例,通过提出一种多层晶体、探测器,所述多层晶体和探测器采用相同种类、不同掺杂的晶体材料,且相邻晶体之间采用键合技术,使得相邻晶体的耦合界面不会发生反射和折射,提高了可见光子的传输效率。从而有助于利用探测到的闪烁脉冲幅值、衰减时间和峰值波长等信息,判断高能射线的沉积位置,从而实现深度效应信息的获取。
根据一些实施例,多层晶体的相邻晶体之间采用与晶体材料具有相同折射率的光学耦合剂进行耦合,使得相邻晶体的耦合界面不会发生反射和折射,以提高可见光子的传输效率。
本申请实施例的可选特征和其他效果一部分在下文描述,一部分可通过阅读本文而明白。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1a示出根据本申请示例实施例的一种多层晶体的侧视图。
图1b示出根据本申请示例实施例的一种多层晶体的立体图。
图1c示出根据本申请示例实施例的一种多层晶体的耦合界面示意图。
图2a示出根据本申请示例实施例的一种探测器的侧视图。
图2b示出根据本申请示例实施例的一种探测器的立体图。
图2c示出根据本申请示例实施例的一种探测器中多层晶体的耦合界面示意图。
图3示出根据本申请示例实施例的一种晶体键合方法流程图。
图4a示出LSO:Ce,Pr掺杂的X射线激发发射光谱图。
图4b示出LSO:Ce,Nd掺杂的X射线激发发射光谱图。
图4c示出LSO:Ce,Eu掺杂的X射线激发发射光谱图。
图4d示出LSO:Ce,Tb掺杂的X射线激发发射光谱图。
图4e示出LSO:Ce,Dy掺杂的X射线激发发射光谱图。
图4f示出LSO:Ce,Yb掺杂的X射线激发发射光谱图。
具体实施方式
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的实施例;相反,提供这些实施例使得本申请将全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。
所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本公开的实施例的充分 理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而没有这些特定细节中的一个或更多,或者可以采用其它的方式、组元、材料、装置或操作等。在这些情况下,将不详细示出或描述公知结构、方法、装置、实现、材料或者操作。
附图中所示的流程图仅是示例性说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解,而有的操作/步骤可以合并或部分合并,因此实际执行的顺序有可能根据实际情况改变。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、***、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
下面将参照附图,对根据本申请的具体实施例进行详细说明。
图1a示出根据本申请示例实施例的一种多层晶体的侧视图。图1b示出根据本申请示例实施例的一种多层晶体的立体图。图1c示出根据本申请示例实施例的一种多层晶体的耦合界面示意图。
如图1a和图1b所示的多层晶体包括四层晶体,每层晶体包括若干个矩阵形式耦合的闪烁晶体。其中,如图1c所示,晶体层1和晶体层2之间采用耦合界面1耦合,晶体层2和晶体层3之间采用耦合界面2耦合,晶体层3和晶体层4之间采用耦合界面3耦合。
多层晶体利用闪烁晶体将高能光子转换为可见光信号,利用与闪烁晶体耦合的光电转换器将可见光信号转换为电信号。根据本申请的一些示例实施例,多层晶体包含相同种类、不同掺杂的闪烁晶体。由于闪烁晶体采用相同种类的晶体材料,少量的掺杂并不会改变其折射率。
根据一些实施例,多层晶体中的每层晶体采用相同种类的基质,其中,基质包括硅酸镥(LSO)、硅酸钇镥(LYSO)、硅酸铋(BSO)、镥铝石榴石(LuAG)、镥铝钙钛矿(LuAP)或钆铝镓石榴石(GAGG)。
例如,晶体层1、晶体层2、晶体层3和晶体层4采用同种基质,都选择基质LYSO。
根据本申请的一些示例实施例,多层晶体中的每层晶体采用不同的掺杂。例如,晶体层1、晶体层2、晶体层3和晶体层4采用不同掺杂,每层晶体采用包括一种或多种发光离子和/或阳离子的掺杂方案。
根据一些实施例,发光离子包括铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)和镱(Yb)。
根据一些实施例,阳离子包括钪(Sc)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)和镱(Yb)、钙(Ca)、锂(Li)、镁(Mg)、锌(Zn)和铜(Cu)。
例如,晶体层1选择基质LYSO,包括一种发光离子Ce的掺杂;晶体层2选择基质LYSO,包括两种发光离子Ce,Pr的掺杂;晶体层3选择基质LYSO,包括一种发光离子Ce和一种阳离子Sc的掺杂;晶体层4选择基质LYSO,包括两种阳离子Sc,La的掺杂。
又例如,晶体层1选择基质GAGG,包括一种发光离子Ce的掺杂;晶体层2选择基质GAGG,包括两种发光离子Nd,Pm和一种阳离子Sc的掺杂;晶体层3选择基质GAGG,包括两种发光离子Sm、Eu和两种阳离子Pr、Nd的掺杂;晶体层4选择基质GAGG,包括三种阳离子Er、Tm、Yb的掺杂。
本领域技术人员应当注意的是,在本申请的实施例中,“少量”指的是发光离子或者阳离子与基质的摩尔百分比介于0.001%~1%之间。根据不同的实施例,“少量”的具体取值可以为该区间内的任意值,比如,在第一层LYSO基质中掺杂摩尔百分比为0.1%的发光离子Ce,在第二层LYSO基质中掺杂摩尔百分比为0.2%的发光离子Ce和摩尔百分比为0.3%的发光离子Pr,在第三层LYSO基质中掺杂摩尔百分比为0.3%的阳离子Sc和摩尔百分比为0.4%的阳离子La。
本领域技术人员应当理解的是,在本申请的实施例中,“多层”指晶体至少为两层,上述实施例中的四层仅作为示例而非限制,具体的层数可以根据高能光子的能量以及实际探测分辨率的需求综合确定,在此不再赘述。
根据本申请的一些实施例,至少一层晶体中的每个闪烁晶体采用相同种类的基质,但该层晶体中至少一部分的闪烁晶体采用不同掺杂,基质的种类以及掺杂的类型和含量可与上述实施例中相同,在此不再赘述。
根据本申请的一些示例实施例,多层晶体的相邻两层晶体之间的耦合界面均采用晶体键合的方式加工形成,使得相邻两层晶体形成键合。同一层内相邻的两个闪烁晶体之间可以根据需要选择键合方式,比如对于一些探测器应用,需要在同一层内相邻的两个闪烁晶体的侧面包裹或涂覆不透明材料以防止可见光进入其它晶体内;而对于一些特殊探测器应用,同一层内的两个闪烁晶体的侧面可能也需要采用透光的晶体键合方式。相邻两个闪烁晶体键合的方法可参 见图2所述。
根据本申请的一些示例实施例,各层晶体采用相同种类、不同掺杂的晶体材料,通过对晶体材料进行少量掺杂,且相邻晶体之间采用键合技术,使得相邻晶体的耦合界面不会发生发射和折射,不仅可以提高可见光子的传输效率,而且可以实现对用于信号处理的数字信号的闪烁脉冲幅值、衰减时间和峰值波长的调控。
根据本申请的一些示例实施例,多层晶体的相邻两层晶体之间的耦合界面均采用具有相同折射率的光学耦合剂进行耦合,使得相邻两层晶体形成键合。同一层内相邻的两个晶体之间可以根据需要选择键合方式,比如对于一些探测器应用,需要在同一层内相邻的两个晶体的侧面包裹或涂覆不透明材料以防止可见光进入其它晶体内;而对于一些特殊探测器应用,同一层内的两个晶体的侧面可能也需要采用透光的晶体键合方式。当然,同一层内的两个晶体的侧面也可以采用具有相同折射率的光学耦合剂进行耦合。
根据本申请的一些示例实施例,各层晶体采用相同种类、不同掺杂的晶体材料,且相邻晶体之间的耦合界面采用具有相同折射率的光学耦合剂进行耦合,使得伽马光子在耦合界面处不会发生反射和折射,可以提高可见光子的传输效率。
图2a示出根据本申请示例实施例的一种探测器的侧视图。图2b示出根据本申请示例实施例的一种探测器的立体图。图2c示出根据本申请示例实施例的一种探测器中多层晶体的耦合界面示意图。
如图2a和图2b所示的多层晶体探测器包括如图1实施例中所述的多层晶体以及与多层晶体耦合的光电转换器,多层晶体包括四层晶体。其中,每层晶 体可采用如图1实施例中所述的耦合方式,晶体层4和光电转换器之间也可以选择不同耦合方式,比如采用耦合剂耦合,或者采用光导耦合,或者采用键合方式。
根据图2a~2c所示的实施例,通过提出一种具有多层晶体的探测器,所述探测器中的多层晶体采用相同种类、不同掺杂的闪烁晶体材料,且相邻闪烁晶体之间采用键合技术或采用与闪烁晶体材料具有相同折射率的光学耦合剂进行耦合,使得相邻闪烁晶体的耦合界面不会发生反射和折射,提高了可见光子的传输效率。从而有助于利用探测到的闪烁脉冲幅值、衰减时间和峰值波长等信息,判断伽马射线的沉积位置,从而实现深度效应信息的获取。
图3示出根据本申请示例实施例的一种晶体键合方法流程图。下面参照图3,对根据本申请示例实施例的一种晶体键合方法进行详细说明。
在步骤S301,利用抛光液将多层晶体中相邻的两个闪烁晶体的接触面进行抛光处理,使得两个闪烁晶体已抛光的接触面在10μm的范围内的均方根粗糙度(Root Mean Squre,简称RMS)值小于1.0nm。
在步骤S303,去除相邻两个闪烁晶体的接触面的抛光液。
根据一些实施例,将完成步骤S301表面处理的相邻两个闪烁晶体放于去离子水中进行超声波清洗以去除闪烁晶体表面残留的抛光液。
在步骤S305,使相邻两个闪烁晶体已抛光的接触面对应接触并加热。
根据一些实施例,将经过步骤S303处理后的两个闪烁晶体的耦合面根据设计的阵列形状对应接触并加热到一定温度。例如,加热到温度为1300度~1800度。
根据一些实施例,加热时间可以根据键合的强度确定,不同的加热时间会 获得不同的耦合强度,这属于本领域技术人员根据本申请的启示所容易领会的,在此不再赘述。
在步骤S307,向相邻的两个闪烁晶体施加压力,以加强闪烁晶体的接触面的分子间的连接。
根据一些实施例,向经过步骤S305处理后的两个闪烁晶体施加小于100兆帕的压强,以加强两个闪烁晶体的接触面的分子间的连接。
根据一些实施例,在步骤S307向两个闪烁晶体施加压力之前,先在两侧闪烁晶体的接触面上设置具有相同折射率的光学耦合剂,然后再向两个晶体施加压力,以加强两个闪烁晶体的接触面的分子间的连接。
在步骤S309,冷却闪烁晶体,至此,形成键合的闪烁晶体。
根据一些实施例,冷却可以通过室温下的自行冷却,也可以通过常温下的水冷或风冷等技术手段实现,在此不再赘述。
图4a~图4f示出了根据本申请实施例的不同掺杂的LYSO闪烁晶体的X射线激发发射光谱图。其中,不同掺杂的LYSO闪烁晶体包括LSO:Dy、LSO:Tb、LSO:Eu、LSO:Pr、LSO:Nd和LSO:Yb。
以LSO:Yb为例,表示闪烁晶体基质采用LSO,并采用Yb一种掺杂,其它掺杂方案采用相同表示,在此不再赘述。
经紫外线照射后,不同的掺杂方案显示的颜色深浅不一,按LSO:Dy、LSO:Tb、LSO:Eu、LSO:Pr、LSO:Nd和LSO:Yb顺序依次加深。可见,不同的掺杂方案会对闪烁晶体的峰值波长、光输出或者衰减时间等性能产生影响,从而为多层晶体的响应深度的获取提供更多维度的前端测量信息。
图4a示出LSO:Ce,Pr掺杂的X射线激发发射光谱图,图4b示出LSO:Ce, Nd掺杂的X射线激发发射光谱图,图4c示出LSO:Ce,Eu掺杂的X射线激发发射光谱图,图4d示出LSO:Ce,Tb掺杂的X射线激发发射光谱图,图4e示出LSO:Ce,Dy掺杂的X射线激发发射光谱图,图4f示出LSO:Ce,Yb掺杂的X射线激发发射光谱图。
以LSO:Ce,Pr为例,表示闪烁晶体基质采用LSO,并采用Ce和Pr两种掺杂,其它掺杂方案采用相同表示,在此不再赘述。
由图4a~图4f所示,由于闪烁晶体掺杂了其它发光离子和/或阳离子,使得闪烁晶体闪烁发光的波长信息变得更加丰富,其中LSO:Ce,Pr新增的发射峰为464nm、509nm、545nm、614nm、738nm和772nm;LSO:Ce,Nd新增的发射峰为544nm、608nm和774nm;LSO:Ce,Eu新增的发射峰为540nm、608nm和778nm;LSO:Ce,Tb新增的发射峰为383nm、415nm、435nm、545nm、768nm、827nm和872nm;LSO:Ce,Dy新增的发射峰为481nm、539nm、573nm和782nm;LSO:Ce,Yb新增的发射峰为536nm、606nm和776nm。新增的这些峰值波长特征信息可作为判断DOI信息的依据。
虽然本申请提供了如上述实施例或流程图所述的方法操作步骤,但基于常规或者无需创造性的劳动在所述方法中可以包括更多或者更少的操作步骤。在逻辑性上不存在必要因果关系的步骤中,这些步骤的执行顺序不限于本申请实施例提供的执行顺序。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其它实施例的不同之处。
根据本申请的一些示例实施例,通过提出一种多层晶体、探测器,所述多层晶体采用相同种类、不同掺杂的闪烁晶体材料,且相邻闪烁晶体之间采用 键合技术,使得相邻闪烁晶体的耦合界面不会发生反射和折射,提高了可见光子的传输效率。从而有助于利用探测到的闪烁脉冲幅值、衰减时间和峰值波长等信息,判断高能射线的沉积位置,从而实现深度效应信息的获取。
根据一些实施例,多层晶体探测器的相邻闪烁晶体之间采用与闪烁晶体材料具有相同折射率的光学耦合剂进行耦合,使得相邻闪烁晶体的耦合界面不会发生反射和折射,以提高可见光子的传输效率。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明仅用于帮助理解本申请的方法及其核心思想。同时,本领域技术人员依据本申请的思想,基于本申请的具体实施方式及应用范围上做出的改变或变形之处,都属于本申请保护的范围。综上所述,本说明书内容不应理解为对本申请的限制。

Claims (17)

  1. 一种多层晶体,其特征在于,
    所述多层晶体中的每层相互键合,至少两层所述晶体的基质种类相同,掺杂不同。
  2. 根据权利要求1所述的多层晶体,其特征在于,相邻两层所述晶体之间具有耦合界面,每个所述耦合界面均采用晶体键合的方式加工形成,使得相邻两层晶体形成键合。
  3. 根据权利要求2所述的多层晶体,其特征在于,相邻的两层所述晶体的接触面进行抛光处理后,在10μm的范围内的均方根粗糙度值小于1.0nm。
  4. 根据权利要求1所述的多层晶体,其特征在于,所述多层晶体中的每层所述晶体采用相同种类的基质,所述基质包括:LSO、LYSO、LuAG、LuAP或GAGG。
  5. 根据权利要求1所述的多层晶体,其特征在于,所述多层晶体中的每层所述晶体的掺杂包括:发光离子和/或阳离子。
  6. 根据权利要求5所述的多层晶体,其特征在于,所述发光离子包括Ce、Pr、Nd、Pm、Sm、Eu、Tb、Dy、Ho、Er、Tm和Yb。
  7. 根据权利要求5所述的多层晶体,其特征在于,所述阳离子包括Sc、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Ca、Li、Mg、Zn和Cu。
  8. 根据权利要求5所述的多层晶体,其特征在于,所述发光离子或者所述阳离子与所述基质的摩尔百分比介于0.001%~1%之间。
  9. 根据权利要求1所述的多层晶体,其特征在于,相邻两层晶体之间具有耦合界面,每个耦合界面均采用和所述晶体相同折射率的光学耦合剂耦合,使得每个耦合界面不会产生光子的反射和折射。
  10. 根据权利要求1所述的多层晶体,其特征在于,每层所述晶体包括若干个矩阵排列的闪烁晶体,至少一层所述晶体中的每个所述闪烁晶体采用相同基质,但所述至少一层所述晶体中至少一部分所述闪烁晶体的掺杂不同。
  11. 根据权利要求1所述的多层晶体,其特征在于,每层所述晶体包括若干个矩阵排列的闪烁晶体,每层所述晶体中相邻的所述闪烁晶体之间采用不透明材料、晶体键合或者采用具有相同折射率的光学耦合剂进行耦合。
  12. 一种探测器,其特征在于,所述探测器包括如权利要求1-11中任一项所述的多层晶体,所述探测器还包括光电转换器,所述光电转换器与所述多层晶体耦合。
  13. 根据权利要求12所述的探测器,其特征在于,所述探测器还包括光导,所述多层晶体和所述光电转换器通过所述光导耦合。
  14. 一种多层晶体键合方法,其特征在于,包括以下步骤:
    利用抛光液将多层晶体中相邻的两个闪烁晶体的接触面进行抛光处理;
    去除所述闪烁晶体的接触面的抛光液;
    使相邻所述闪烁晶体已抛光的接触面对应接触并加热;
    向所述闪烁晶体施加压力,以加强所述闪烁晶体的接触面的分子间的连接;
    冷却所述闪烁晶体。
  15. 根据权利要求14所述的多层晶体键合方法,其特征在于,相邻的两个闪烁晶体的接触面进行抛光处理后,所述闪烁晶体已抛光的接触面在10μm的 范围内的均方根粗糙度值小于1.0nm。
  16. 根据权利要求14所述的多层晶体键合方法,其特征在于,所述加热的温度在1000度至1800度的范围内。
  17. 根据权利要求14所述的多层晶体键合方法,其特征在于,向所述闪烁晶体施加的压强小于100兆帕。
PCT/CN2022/136855 2022-04-11 2022-12-06 多层晶体、探测器以及多层晶体键合方法 WO2023197627A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210372850.9A CN114910945A (zh) 2022-04-11 2022-04-11 多层晶体、探测器以及多层晶体键合方法
CN202210372850.9 2022-04-11

Publications (1)

Publication Number Publication Date
WO2023197627A1 true WO2023197627A1 (zh) 2023-10-19

Family

ID=82763501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136855 WO2023197627A1 (zh) 2022-04-11 2022-12-06 多层晶体、探测器以及多层晶体键合方法

Country Status (2)

Country Link
CN (1) CN114910945A (zh)
WO (1) WO2023197627A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114910945A (zh) * 2022-04-11 2022-08-16 苏州瑞派宁科技有限公司 多层晶体、探测器以及多层晶体键合方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616924A (en) * 1995-10-16 1997-04-01 Picker International, Inc. Optical enhancements to scintillating systems using dynamically controlled materials
CN102064229A (zh) * 2010-09-14 2011-05-18 中国科学院苏州纳米技术与纳米仿生研究所 一种高阻GaN室温核探测器及其制备方法
US20140084170A1 (en) * 2011-05-12 2014-03-27 Koninklijke Philips N.V. Optimized scintilator crystals for pet
CN107076864A (zh) * 2014-12-11 2017-08-18 西门子保健有限责任公司 包含钙钛矿晶体的探测层
CN209400708U (zh) * 2018-12-17 2019-09-17 苏州瑞派宁科技有限公司 复合探测装置和***
CN114236592A (zh) * 2021-11-11 2022-03-25 东软医疗***股份有限公司 组合式成像探测器模块及其制备方法和成像设备
CN114910945A (zh) * 2022-04-11 2022-08-16 苏州瑞派宁科技有限公司 多层晶体、探测器以及多层晶体键合方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616924A (en) * 1995-10-16 1997-04-01 Picker International, Inc. Optical enhancements to scintillating systems using dynamically controlled materials
CN102064229A (zh) * 2010-09-14 2011-05-18 中国科学院苏州纳米技术与纳米仿生研究所 一种高阻GaN室温核探测器及其制备方法
US20140084170A1 (en) * 2011-05-12 2014-03-27 Koninklijke Philips N.V. Optimized scintilator crystals for pet
CN108279433A (zh) * 2011-05-12 2018-07-13 皇家飞利浦有限公司 用于pet的优化闪烁体晶体
CN107076864A (zh) * 2014-12-11 2017-08-18 西门子保健有限责任公司 包含钙钛矿晶体的探测层
CN209400708U (zh) * 2018-12-17 2019-09-17 苏州瑞派宁科技有限公司 复合探测装置和***
CN114236592A (zh) * 2021-11-11 2022-03-25 东软医疗***股份有限公司 组合式成像探测器模块及其制备方法和成像设备
CN114910945A (zh) * 2022-04-11 2022-08-16 苏州瑞派宁科技有限公司 多层晶体、探测器以及多层晶体键合方法

Also Published As

Publication number Publication date
CN114910945A (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
WO2023197627A1 (zh) 多层晶体、探测器以及多层晶体键合方法
US5952665A (en) Composite nanophosphor screen for detecting radiation
CN101806912A (zh) 高能射线叠层式晶体模块探测器
CN103592671B (zh) 闪烁晶体阵列探测器及采用该探测器的pet-mr***
WO2004072680A2 (en) Scintillator assembly with pre-formed reflector
CN101839991B (zh) 一种复合光敏器件斜排列式高能射线探测器
US20160170043A1 (en) Laser Etched Scintillation Detector Blocks With Internally Created Reflectors
US10393888B2 (en) Laminated scintillator panel
CN110308475A (zh) 一种x射线探测器及其制备方法
JP6262419B2 (ja) 放射線画像検出器及び放射線画像検出器の製造方法
EP3261092B1 (en) Laminated scintillator panel
JP6687102B2 (ja) 積層型シンチレータパネルの製造方法
US20180284298A1 (en) Radiation conversion panel and talbot imaging device
JP2019124574A (ja) シンチレータパネル
JP2019190870A (ja) シンチレータパネル
JP2884350B2 (ja) 放射線画像変換パネル
CN113126138B (zh) 一种多层耦合结构高分辨闪烁屏制造方法及其闪烁屏
CN111081728B (zh) X射线平板探测器及制备方法
US11958785B2 (en) Bonding scintillator material to produce large panels or other shapes
CN217278960U (zh) 一种高分辨x射线平板探测器
CN217305554U (zh) 一种线阵列x射线探测器
CN108258102A (zh) 非晶硅光电二极管模组
BE1007781A3 (nl) Werkwijze voor het met elkaar verbinden van twee optische oppervlakken, aldus gevormd optisch samenstel en deeltjes-optisch toestel met zo'n samenstel.
JP2007298464A (ja) 放射線像変換パネルおよび放射線像変換パネルの製造方法
JP7163651B2 (ja) シンチレータパネルおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937259

Country of ref document: EP

Kind code of ref document: A1