WO2023195406A1 - Mold organic binder, and molding sand composition and mold obtained using same - Google Patents

Mold organic binder, and molding sand composition and mold obtained using same Download PDF

Info

Publication number
WO2023195406A1
WO2023195406A1 PCT/JP2023/013085 JP2023013085W WO2023195406A1 WO 2023195406 A1 WO2023195406 A1 WO 2023195406A1 JP 2023013085 W JP2023013085 W JP 2023013085W WO 2023195406 A1 WO2023195406 A1 WO 2023195406A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
compound
organic binder
molds
foundry sand
Prior art date
Application number
PCT/JP2023/013085
Other languages
French (fr)
Japanese (ja)
Inventor
靖英 石田
彰伸 深津
Original Assignee
旭有機材株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭有機材株式会社 filed Critical 旭有機材株式会社
Publication of WO2023195406A1 publication Critical patent/WO2023195406A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/02Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives
    • B22C1/10Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives for influencing the hardening tendency of the mould material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/12Treating moulds or cores, e.g. drying, hardening
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/54Polycondensates of aldehydes

Definitions

  • the present invention relates to an organic binder for molds used in the production of phenol urethane-based gas-curing molds or self-hardening molds used in sand mold manufacturing, and to molding sand compositions and molds obtained using the same. .
  • phenol molds have been used as one of the typical organic molds used in sand casting, using phenolic resin and polyisocyanate compounds as binders, and making use of their polyaddition reaction (urethanization reaction).
  • Urethane molds are known.
  • Such phenol urethane molds include mass-produced gas-hardening molds manufactured by the cold box method that do not require heating during molding, and non-mass-produced self-hardening molds manufactured by the room-temperature self-hardening method. widely known.
  • gas-curing molds made by the cold box method are usually made by mixing granular refractory foundry sand with an organic binder for molds consisting of a phenolic resin solution and a polyisocyanate compound solution in an organic solvent using a mixer. After producing a foundry sand composition in which the surface of foundry sand is coated with an organic binder by kneading, the foundry sand composition is blown into a predetermined mold to form a mold. It is manufactured by curing by passing a catalyst gas such as amine gas.
  • the problem to be solved by the present invention is to provide an organic binder for molds that exhibits excellent fast curing properties when cured at room temperature and is capable of shortening molding time.
  • Another object of the present invention is to provide a foundry sand composition and a mold obtained using such an organic binder for molds.
  • the present invention can be suitably implemented in various embodiments as listed below. It is understood that the aspects and technical features of the present invention are not limited to those described below, but can be recognized based on the inventive idea that can be understood from the description of the specification. Should.
  • the compound a contains one or more selected from the group consisting of glycol oligomers, glyceryl ethers of glycol oligomers, fatty acid polycondensates, glyceryl ethers of fatty acid polycondensates, and glyceryl esters of fatty acid polycondensates.
  • Organic binder is polyoxyethylene glyceryl ether, polyoxypropylene glyceryl ether, glyceryl ether of ricinoleic acid polycondensate, or glyceryl ester of ricinoleic acid polycondensate.
  • a polyisocyanate compound and a predetermined compound are reacted together as an isocyanate group-containing compound that reacts with the phenol resin and an organic solvent.
  • the product is an essential component, it exhibits excellent fast curing properties when molding molds according to the cold box method or room temperature self-hardening method, which does not require heating during molding. A reduction in molding time can advantageously be achieved.
  • triethylamine (TEA ) and other amines making it an organic binder for molds that advantageously reduces the burden on the environment.
  • FIG. 2 is an explanatory diagram schematically showing a molding device used when evaluating fast curing properties.
  • the phenolic resin used as one of the main components in the organic binder for molds according to the present invention is not particularly limited, and has conventionally been used when molding phenol urethane molds.
  • Various known phenolic resins can be used as appropriate.
  • phenols and aldehydes are mixed in such a way that the ratio of aldehyde is generally about 0.5 to 3.0 mol per 1 mol of phenol.
  • examples include benzyl ether type phenolic resins, resol type phenolic resins, novolak type phenolic resins, and modified phenolic resins thereof, which are obtained by addition/condensation reactions, and mixtures thereof, which are soluble in organic solvents.
  • orthocresol-modified phenolic resins modified with orthocresol more preferably benzyl ether-type orthocresol-modified phenolic resins, and mixtures thereof are particularly important because of their solubility in organic solvents and their compatibility with polyisocyanates. It is preferably used in the present invention because it not only has excellent compatibility, but also can effectively improve the strength (initial strength) of the mold obtained.
  • the catalyst used in the above addition/condensation reaction between phenols and aldehydes is not particularly limited, and depending on the type of phenol resin desired, known acidic catalysts and bases may be used.
  • various catalysts conventionally used in the production of phenolic resins can be used as appropriate.
  • catalysts include metal salts containing metal elements such as tin, lead, zinc, cobalt, manganese, and nickel; more specifically, lead naphthenate, zinc naphthenate, Examples include lead acetate, zinc chloride, zinc acetate, zinc borate, lead oxide, and combinations of acids and bases that can form such metal salts.
  • the amount used is not particularly limited, but is generally about 0.01 to 5 parts by weight per 100 parts by weight of the phenol. It will be used at the same rate.
  • phenols that provide phenolic resins include alkylphenols such as phenol, cresol, xylenol, p-tert-butylphenol, and nonylphenol, polyhydric phenols such as resorcinol, bisphenol F, and bisphenol A, and mixtures thereof.
  • aldehydes include formaldehyde, formalin, paraformaldehyde, polyoxymethylene, glyoxal, furfural, and mixtures thereof.
  • orthocresol-modified phenolic resin which is one of the phenolic resins that can be advantageously employed in the present invention
  • orthocresol and phenol can be combined in the presence of a reaction catalyst such as a metal salt
  • a reaction catalyst such as a metal salt
  • cocondensation orthocresol modified phenolic resin of orthocresol and phenol (2) mixed orthocresol modified phenolic resin of orthocresol resin and phenol resin, which are obtained by reacting with aldehydes, these ( (3) modified orthocresol modified phenolic resin, which is obtained by modifying the resins of 1) and (2) with a modifier (modifier), and 2 of (1), (2), and (3)
  • modified orthocresol modified phenolic resin which is obtained by modifying the resins of 1) and (2) with a modifier (modifier), and 2 of (1), (2), and (3) Examples include mixtures of more than one species.
  • the co-condensed orthocresol-modified phenolic resin of (1) above is a co-condensed resin obtained by reacting orthocresol and phenol simultaneously or stepwise with aldehydes, Depending on the reaction conditions such as the type of reaction catalyst used, novolac type, resol type, benzyl ether type, and cocondensation type orthocresol modified phenolic resins that are a combination of these types can be obtained.
  • a benzyl ether type cocondensation type orthocresol modified phenol resin is preferably used.
  • the mixed orthocresol-modified phenolic resin (2) above is at least one selected from the group of novolak-type, resol-type, and benzyl ether-type orthocresol resins obtained by reacting orthocresol with aldehydes. Obtained by mixing a seed orthocresol resin with at least one phenolic resin selected from the group of novolac-type, resol-type and benzyl ether-type phenolic resins obtained by reacting phenol and aldehydes. It is something.
  • a benzyl ether type mixed orthocresol modified phenol resin which is a mixture of a benzyl ether type orthocresol resin and a benzyl ether type phenol resin, is preferably used.
  • the orthocresol resin and phenol resin are mixed so that the blending ratio of orthocresol and phenol is within the range mentioned above.
  • they are preferably mixed at a ratio of orthocresol resin/phenol resin (weight ratio) of 5/95 to 95/5, more preferably 20/80 to 80/20.
  • modified orthocresol-modified phenolic resin (3) can be further treated with any optional additive during or after the production of the co-condensed orthocresol-modified phenolic resin, orthocresol resin, or phenolic resin.
  • Modifiers such as alkyd resins, epoxy resins, melamine resins, urea resins, xylene resins, vinyl acetate resins, polyamide resins, urea compounds, melamine compounds, epoxy compounds, furfuryl alcohol, polyvinyl alcohol , urea, amides, linseed oil, cashew nut shell liquid, rosin, starch, monosaccharides, etc., modified by mixing or reacting with them, selected from the group of novolac type, resol type and benzyl ether type resins. At least one type of modified orthocresol modified phenolic resin. Among these, benzyl ether-type modified orthocresol-modified phenol resins are advantageously used in the present invention.
  • the phenolic resin used as one of its main components has the following properties: low viscosity, compatibility with the polyisocyanate solution described below, coating properties on foundry sand, From the viewpoint of mold properties, etc., a solution (hereinafter referred to as "phenolic resin") is generally dissolved in an organic solvent consisting of a combination of a polar organic solvent and a non-polar organic solvent, and the concentration thereof is about 30 to 80% by weight. It is used in the form of a solution (referred to as "solution").
  • a polyisocyanate compound and compound a (a compound having 2 or 3 hydroxyl groups and/or carboxyl groups in the molecule and having a number average molecular weight of 300 to 3000.
  • reaction product with a compound in which the total number of hydroxyl groups and carboxyl groups contained in one molecule is 2 or 3), in which the proportion of compound a in the reaction product is 0.1 to 10.0 mass % (hereinafter also simply referred to as "reaction product") is used and constituted, which is a major technical feature. Since such a predetermined compound is used in place of a conventional polyisocyanate compound, the organic binder for molds according to the present invention can be used in a cold box method or room-temperature self-hardening method that does not require heating during molding. When used in mold manufacturing, it exhibits excellent rapid curing properties and advantageously shortens molding time.
  • a compound with a number average molecular weight that is too large or too small may be used as the compound a of the present invention.
  • a compound having 2 or 3 hydroxyl groups and/or carboxyl groups in the molecule and having a number average molecular weight of 300 to 3000 is used as compound a in the present invention.
  • the proportion of compound a in the reaction product of the polyisocyanate compound and compound a is preferably 0.1 to 12.0% by mass, more preferably 0.5 to 11% by mass. 0% by weight is used, most preferably 1.0-10.5% by weight.
  • the ratio of compound a to the polyisocyanate compound in the reaction product refers to the ratio of compound a to the amount (mass) of the polyisocyanate compound used when the polyisocyanate compound and compound a are reacted. It means the proportion of the amount used (mass).
  • any compound having 2 or 3 hydroxyl groups and/or carboxyl groups in the molecule and having a number average molecular weight of 300 to 3000 may be used as compound a without particular limitation.
  • polyoxyethylene glyceryl ether, polyoxypropylene glyceryl ether, glyceryl ether of ricinoleic acid polycondensate, or glyceryl ester of ricinoleic acid polycondensate which have a number average molecular weight of 300 to 3000, are used as compounds. By using it as a, it becomes possible to enjoy the effects of the present invention more advantageously.
  • aromatic, aliphatic or alicyclic polyisocyanates such as diphenylmethane diisocyanate, polymethylene polyphenylene polyisocyanate (hereinafter referred to as "polymeric MDI"), hexamethylene diisocyanate, 4,4'-dicyclohexylmethane
  • polymeric MDI polymethylene polyphenylene polyisocyanate
  • hexamethylene diisocyanate 4,4'-dicyclohexylmethane
  • various conventionally known polyisocyanate compounds can be mentioned, such as prepolymers having two or more isocyanate groups obtained by reacting these polyisocyanate compounds with polyols, and these can be used alone or in combination of two or more types. may be reacted with the above compound a in combination.
  • any conventionally known method can be used.
  • the polyisocyanate compound, compound a, and the organic solvent are held at room temperature (or while heating) for 12 hours or more, preferably about 24 to 72 hours, with sufficient stirring (or after sufficient stirring). By doing so, it is possible to cause the polyisocyanate compound and compound a to react.
  • the reaction product obtained in this way is generally made of a non-polar organic solvent or a mixed solvent of a non-polar organic solvent and a polar solvent. is used as a solution in which it is dissolved to a concentration of approximately 40 to 90% by weight.
  • the organic solvent for dissolving the above-mentioned phenolic resin and reaction product should be one that is non-reactive with the reaction product and a good solvent for the solute (phenol resin or reaction product) to be dissolved.
  • a polar solvent for dissolving the phenolic resin i) an amount for dissolving the reaction product that does not cause separation of the phenolic resin. It is used in combination with a non-polar solvent.
  • aliphatic carboxylic acid esters for example, aliphatic carboxylic acid esters, and among them, from the viewpoint of environmental safety, dicarboxylic acid methyl ester mixtures (manufactured by DuPont, trade name: DBE, Dicarboxylic acid alkyl esters such as dimethyl glutarate, dimethyl adipate, and dimethyl succinate), vegetable oil methyl esters such as rapeseed oil methyl ester, ethyl oleate, ethyl palmitate, mixtures thereof, fatty acid monoesters, etc.
  • esters examples thereof include ketones such as isophorone, ethers such as isopropyl ether, and furfuryl alcohol.
  • non-polar solvents in ii) above include petroleum-based hydrocarbons such as paraffins, naphthenes, and alkylbenzenes; specific examples include Ipsol 150 (IP150, manufactured by Idemitsu Kosan Co., Ltd., petroleum-based solvent); , Hysol 100 (made by ENEOS Co., Ltd., petroleum-based solvent), AF Solvent No. 4 (AF4, made by ENEOS Co., Ltd., petroleum-based solvent), HAWS (made by Shell Chemicals Japan Co., Ltd.; petroleum-based solvent), etc. I can do it.
  • Ipsol 150 IP150, manufactured by Idemitsu Kosan Co., Ltd., petroleum-based solvent
  • Hysol 100 made by ENEOS Co., Ltd., petroleum-based solvent
  • AF Solvent No. 4 AF4, made by ENEOS Co., Ltd., petroleum-based solvent
  • HAWS made by Shell Chemicals Japan Co., Ltd.; petroleum-based solvent
  • the organic binder for molds according to the present invention is composed of the above-mentioned phenolic resin solution and a solution containing a predetermined reaction product. It is also possible to appropriately select and blend various known additives used in binders. However, it goes without saying that these various additives need to be used in amounts that do not impede the effects that can be enjoyed by the present invention. Examples of additives that can be blended in the present invention include pot life extenders, strength deterioration inhibitors, mold release agents, and drying inhibitors.
  • a pot life extender is a component that has been traditionally used to suppress the urethanization reaction and extend the pot life of foundry sand compositions.
  • various known compounds are appropriately selected and used, such as isophthalic acid chloride, salicylic acid, benzoic acid, phosphoric acid, acidic phosphate ester, phosphorus chloride, boric acid, etc. I can list them.
  • the strength deterioration inhibitor is used to prevent mold strength from deteriorating in a humid environment and to improve the adhesion between the resin component of the organic binder and the foundry sand, and is a suitable agent.
  • examples include amino-based silanes such as N- ⁇ (aminoethyl)- ⁇ -aminopropyltrimethoxysilane and ⁇ -aminopropyltriethoxysilane, and epoxy-based silanes such as ⁇ -glycidoxypropyltrimethoxysilane.
  • Examples include silane coupling agents such as.
  • the amount of the strength deterioration inhibitor used is generally about 0.01 to 5 parts by mass, preferably about 0.05 to 2.5 parts by mass, per 100 parts by mass of the phenolic resin. , will be adopted.
  • the organic binder for molds according to the present invention is composed of the various components as described above, and a phenol urethane gas-curing mold or self-hardening mold is molded using this organic binder. This is what happens.
  • the organic binder for molds according to the present invention is mixed into the foundry sand, so that the surface of the foundry sand is coated with the organic binder for molds.
  • a foundry sand composition (kneaded sand) coated with a binder will be produced. That is, by sufficiently kneading and mixing foundry sand with a phenolic resin solution as an organic binder, a solution containing a predetermined reaction product, and other various additives as necessary.
  • a foundry sand composition is produced by coating the surface of foundry sand with an organic binder for molding.
  • the phenolic resin solution constituting the organic binder and the solution containing the predetermined reaction product are gradually subjected to polyaddition reaction (urethanization) from the stage of mixing them. reaction), they are prepared separately in advance and are usually mixed together when kneading with foundry sand. Further, the kneading/mixing operation is preferably carried out at a temperature of about -10 to 50°C using a conventional continuous or batch mixer.
  • the foundry sand composition obtained as described above is shaped in a mold such as a mold that gives a desired shape, and then a catalyst gas for curing is passed through the molding sand composition.
  • a catalyst gas for curing is passed through the molding sand composition.
  • the catalyst gas include conventionally known tertiary amine gases such as triethylamine, dimethylethylamine, and dimethylisopropylamine, as well as cyclic nitrogen compounds, pyridine, and N-ethylmorpholine. At least one kind is appropriately selected and used in a usual quantitative range.
  • a foundry sand composition is produced by coating the surface of the foundry sand with an organic binder.
  • a curing catalyst is further mixed together with the organic binder at the time of kneading.
  • the curing catalyst include bases, amines, metal ions, etc. that are commonly used in the known Ashland method.
  • the obtained foundry sand composition is cured by the added curing catalyst, and is immediately shaped in a mold that gives the desired shape to produce a self-hardening mold. That's what happens.
  • the blending amounts of the phenol resin solution and the solution containing the predetermined reaction products are as follows: A proportion is preferably adopted in which the blending amount of each product is about 0.01 to 5.0 parts by mass, preferably about 0.1 to 2.0 parts by mass, per 100 parts by mass of foundry sand. be done.
  • the foundry sand used in the present invention is not particularly limited, and may be natural sand or artificial sand as long as it is fire-resistant and has been conventionally used for molds. do not have.
  • silica sand, olivine sand, zircon sand, chromite sand, alumina sand, ferrochrome slag, ferronickel slag, converter slag, mullite artificial particles (for example, the product name available from Itochu Ceratec Corporation) Cerabeads”) and recycled sand thereof, and one or more of these may be used in combination.
  • mullite-based artificial particles which are spherical and have excellent crush resistance, are more preferably employed from the viewpoint of polishing regeneration treatment after mold recovery.
  • the gas-curing molds and self-hardening molds manufactured as described above effectively exhibit rapid curing properties during molding, and thus the molding time can be advantageously shortened.
  • it because it exhibits such excellent fast curing properties, it is possible to reduce the amount of amines used as catalyst gas, especially when manufacturing gas-cured molds using the cold box method, which is environmentally friendly. It is also possible to advantageously enjoy the effect of advantageously reducing the load on the vehicle.
  • phenolic resin solution A having a phenolic resin content of 50.0% by mass was prepared by dissolving using 0 parts by mass.
  • Solution I containing a reaction product of a polyisocyanate compound and a predetermined compound a was prepared according to the following procedure. That is, Polymeric MDI (MDI), which is a polyisocyanate compound, Ipsol 150 (IP150, manufactured by Idemitsu Kosan Co., Ltd., petroleum-based solvent), AF Solvent No. 4 (AF4, manufactured by ENEOS Co., Ltd., petroleum-based solvent), and the following. Compound a listed in Tables 1 to 3 are blended in the proportions shown in Tables 1 to 3 below, stirred thoroughly, and then maintained at a temperature of 25°C for two days (48 hours). Solution I according to each of the Examples and Comparative Examples was prepared. Regarding Solution I according to Comparative Example 1, compound a was not used, MDI, IP150, and AF4 were blended in the proportions shown in Table 3 below, and after thorough stirring, the solution was heated at 25°C for two days ( 48 hours).
  • MDI Polymeric MDI
  • IP150 manufactured by Idemitsu Ko
  • the test mold is immediately removed from the molding equipment, the side of the mold is hit with a rubber hammer, and the molding sand composition (cured and uncured molding sand composition; hereinafter simply referred to as the mixture) is poured out from inside the mold. ).
  • the molding sand composition cured and uncured molding sand composition; hereinafter simply referred to as the mixture
  • the mixture is poured out from inside the mold.
  • the cured product from the knocked-off mixture measure its weight: x (g), and measure the ratio of the weight of the cured product: x (g) to the weight (350 g) of the foundry sand composition accommodated in the mold. is calculated and set as the curing rate (%). It is judged that the larger the value of this curing rate (%), the better the rapid curing property.
  • phenolic resin solution B having a phenolic resin content of 58.0% by mass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

Provided is a mold organic binder that exhibits an excellent fast curing property and can shorten the molding time when a mold is manufactured through ordinary temperature curing. The mold organic binder used to mold a phenolic urethane-based gas-curing mold or a self-curing mold is formed using, as essential components, a phenol resin, an organic solvent, and a reaction product of i) a polyisocyanate compound and ii) a compound a having two or three intramolecular hydroxyl groups and/or carboxyl groups and having a number average molecular weight of 300-3000, the proportion of the compound a in relation to the polyisocyanate compound being 0.1-12.0 mass%.

Description

鋳型用有機粘結剤及びこれを用いて得られる鋳物砂組成物並びに鋳型Organic binder for molds, foundry sand composition obtained using the same, and molds
 本発明は、砂型製造において使用されるフェノールウレタン系のガス硬化鋳型又は自硬性鋳型の造型に用いられる鋳型用有機粘結剤、及びこれを用いて得られる鋳物砂組成物並びに鋳型に関するものである。 The present invention relates to an organic binder for molds used in the production of phenol urethane-based gas-curing molds or self-hardening molds used in sand mold manufacturing, and to molding sand compositions and molds obtained using the same. .
 従来より、砂型鋳造において用いられる代表的な有機系鋳型の一つとして、フェノール樹脂とポリイソシアネート化合物を粘結剤として用い、それらの重付加反応(ウレタン化反応)を利用して造型されるフェノールウレタン系鋳型が、知られている。そのようなフェノールウレタン系鋳型としては、造型時に加熱を必要としない、コールドボックス法により製造される量産型のガス硬化鋳型や、常温自硬性法により製造される非量産型の自硬性鋳型が、広く知られている。 Traditionally, phenol molds have been used as one of the typical organic molds used in sand casting, using phenolic resin and polyisocyanate compounds as binders, and making use of their polyaddition reaction (urethanization reaction). Urethane molds are known. Such phenol urethane molds include mass-produced gas-hardening molds manufactured by the cold box method that do not require heating during molding, and non-mass-produced self-hardening molds manufactured by the room-temperature self-hardening method. widely known.
 具体的に、コールドボックス法によるガス硬化鋳型は、通常、粒状耐火性鋳物砂を、ミキサーを用いて、有機溶剤を溶媒とするフェノール樹脂溶液及びポリイソシアネート化合物溶液からなる鋳型用有機粘結剤と混練することにより、鋳物砂の表面を有機粘結剤で被覆してなる鋳物砂組成物を製造した後、かかる鋳物砂組成物を、所定の成形型内に吹き込んで鋳型を成形し、これに、アミン系ガス等の触媒ガスを通気せしめて硬化を行なうことにより、製造されている。また、常温自硬性法による自硬性鋳型にあっては、粒状耐火性鋳物砂を、有機溶剤を溶媒とするフェノール樹脂溶液及びポリイソシアネート化合物溶液からなる鋳型用有機粘結剤と混練する際に、併せて硬化触媒も混合し、得られた混合物を、直ちに所望とする形状に成形することにより、製造されている。 Specifically, gas-curing molds made by the cold box method are usually made by mixing granular refractory foundry sand with an organic binder for molds consisting of a phenolic resin solution and a polyisocyanate compound solution in an organic solvent using a mixer. After producing a foundry sand composition in which the surface of foundry sand is coated with an organic binder by kneading, the foundry sand composition is blown into a predetermined mold to form a mold. It is manufactured by curing by passing a catalyst gas such as amine gas. In addition, in the case of self-hardening molds made by the room-temperature self-hardening method, when kneading granular refractory foundry sand with an organic binder for molds consisting of a phenolic resin solution and a polyisocyanate compound solution using an organic solvent as the solvent, It is manufactured by also mixing a curing catalyst and immediately molding the resulting mixture into a desired shape.
 ところで、上述した常温硬化鋳型の製造については、近年、造型時間の短縮が求められている。鋳型が十分な強度を発揮するまでの時間を短縮して(換言すれば、鋳型の速硬化性を向上せしめて)、造型時間の短縮化を図ることを目的とする技術としては、例えば特許文献1(米国特許出願公開第2017/0165743号明細書)に、コールドボックス法において、ポリオール及びポリイソシアネートに所定のアミン化合物を触媒として添加することにより、ガス硬化時の速硬化性を向上させる技術が提案されている。 By the way, in recent years, there has been a demand for shortening the molding time in manufacturing the above-mentioned room-temperature hardening molds. Examples of techniques that aim to shorten the molding time by shortening the time it takes for the mold to exhibit sufficient strength (in other words, by improving the quick hardening properties of the mold) include, for example, patent documents. 1 (U.S. Patent Application Publication No. 2017/0165743) discloses a technology for improving fast curing properties during gas curing by adding a predetermined amine compound to polyol and polyisocyanate as a catalyst in the cold box method. Proposed.
米国特許出願公開第2017/0165743号明細書US Patent Application Publication No. 2017/0165743
 そのような状況の下、鋳型の速硬化性を向上せしめる鋳型用有機粘結剤について、本発明者等が鋭意、検討したところ、フェノール樹脂と反応させるイソシアネート基含有化合物として、従来より広く用いられているポリイソシアネート化合物に代えて、ポリイソシアネート化合物と所定の化合物との反応生成物を用いてなる鋳型用有機粘結剤にあっては、鋳型の速硬化性を有利に向上せしめることを見出し、本発明を完成するに至ったのである。 Under such circumstances, the present inventors conducted extensive research into organic binders for molds that improve the quick curing properties of molds, and found that they have been widely used as isocyanate group-containing compounds to react with phenolic resins. We have discovered that an organic binder for molds using a reaction product of a polyisocyanate compound and a predetermined compound instead of a polyisocyanate compound advantageously improves the rapid curing properties of molds, This led to the completion of the present invention.
 すなわち、本発明の解決すべき課題とするところは、常温硬化の際に優れた速硬化性を発揮し、造型時間の短縮化を図ることが可能な鋳型用有機粘結剤を提供することにある。また、本発明は、そのような鋳型用有機粘結剤を用いて得られる鋳物砂組成物、並びに鋳型を提供することも、その解決課題をするものである。 That is, the problem to be solved by the present invention is to provide an organic binder for molds that exhibits excellent fast curing properties when cured at room temperature and is capable of shortening molding time. be. Another object of the present invention is to provide a foundry sand composition and a mold obtained using such an organic binder for molds.
 そして、本発明は、上記した課題を解決するために、以下に列挙せる如き各種の態様において、好適に実施され得るものである。なお、本発明の態様乃至は技術的特徴は、以下に記載のものに何等限定されることなく、明細書の記載から把握され得る発明思想に基づいて認識され得るものであることが、理解されるべきである。 In order to solve the above problems, the present invention can be suitably implemented in various embodiments as listed below. It is understood that the aspects and technical features of the present invention are not limited to those described below, but can be recognized based on the inventive idea that can be understood from the description of the specification. Should.
(1) フェノールウレタン系のガス硬化鋳型又は自硬性鋳型の造型に用いられる有機粘結剤にして、
 フェノール樹脂と、有機溶剤と共に、
 i)ポリイソシアネート化合物と、ii)分子内に2又は3個のヒドロキシル基及び/又はカルボキシル基を有し、数平均分子量が300~3000である化合物aとの反応生成物を、必須の構成成分として含有し、
 前記反応生成物における、前記ポリイソシアネート化合物に対する前記化合物aの割合が0.1~12.0質量%であることを特徴とする鋳型用有機粘結剤。
(2) 前記化合物aが、グリコール系オリゴマー、グリコール系オリゴマーのグリセリルエーテル、脂肪酸重縮合物、脂肪酸重縮合物のグリセリルエーテル、及び脂肪酸重縮合物のグリセリルエステルからなる群より選ばれる一種以上を含むものである前記態様(1)に記載の鋳型用有機粘結剤。
(3) 前記化合物aが、ポリオキシエチレングリセリルエーテル、ポリオキシプロピレングリセリルエーテル、リシノレイン酸重縮合物のグリセリルエーテル、又はリシノレイン酸重縮合物のグリセリルエステルである前記態様(1)に記載の鋳型用有機粘結剤。
(4) 前記態様(1)乃至前記態様(3)の何れか1つに記載の鋳型用有機粘結剤を、鋳物砂に混練せしめてなる鋳物砂組成物。
(5) 前記態様(4)に記載の鋳物砂組成物と触媒ガスとの接触により生ずる硬化物からなるガス硬化鋳型。
(6) 前記態様(1)乃至前記態様(3)の何れか1つに記載の鋳型用有機粘結剤と、鋳物砂と、硬化触媒とを用いた硬化物からなる自硬性鋳型。
(1) An organic binder used in the production of phenol urethane gas-curing molds or self-hardening molds,
Together with phenolic resin and organic solvent,
A reaction product of i) a polyisocyanate compound and ii) a compound a having 2 or 3 hydroxyl groups and/or carboxyl groups and having a number average molecular weight of 300 to 3000 as an essential component. Contains as,
An organic binder for molds, wherein the ratio of the compound a to the polyisocyanate compound in the reaction product is 0.1 to 12.0% by mass.
(2) The compound a contains one or more selected from the group consisting of glycol oligomers, glyceryl ethers of glycol oligomers, fatty acid polycondensates, glyceryl ethers of fatty acid polycondensates, and glyceryl esters of fatty acid polycondensates. The organic binder for molds according to aspect (1) above.
(3) The mold according to aspect (1), wherein the compound a is polyoxyethylene glyceryl ether, polyoxypropylene glyceryl ether, glyceryl ether of ricinoleic acid polycondensate, or glyceryl ester of ricinoleic acid polycondensate. Organic binder.
(4) A foundry sand composition obtained by kneading the organic binder for molds according to any one of aspects (1) to (3) above into foundry sand.
(5) A gas-cured mold comprising a cured product produced by contacting the foundry sand composition according to aspect (4) with a catalyst gas.
(6) A self-hardening mold made of a cured product using the organic binder for molds according to any one of aspects (1) to (3), foundry sand, and a curing catalyst.
 このように、本発明に従う鋳型用有機粘結剤にあっては、フェノール樹脂及び有機溶媒と共に、フェノール樹脂と反応するイソシアネート基含有化合物として、ポリイソシアネート化合物と所定の化合物(化合物a)との反応生成物を、必須の構成成分とするものであるところから、造型時に加熱を必要としないコールドボックス法や常温自硬性法に従って鋳型を造型するに際して、優れた速硬化性を発揮し、以て、造型時間の短縮化が有利に達成され得るのである。また、そのような優れた速硬化性を発揮することから、本発明の鋳型用有機粘結剤を用いてコールドボックス法によりガス硬化鋳型を製造するに際しては、触媒ガスとして使用されるトリエチルアミン(TEA)等のアミン類の使用量を低減させることが出来、環境への負荷を有利に軽減させる鋳型用有機粘結剤となっているのである。 As described above, in the organic binder for molds according to the present invention, a polyisocyanate compound and a predetermined compound (compound a) are reacted together as an isocyanate group-containing compound that reacts with the phenol resin and an organic solvent. Since the product is an essential component, it exhibits excellent fast curing properties when molding molds according to the cold box method or room temperature self-hardening method, which does not require heating during molding. A reduction in molding time can advantageously be achieved. In addition, since it exhibits such excellent fast curing properties, triethylamine (TEA ) and other amines, making it an organic binder for molds that advantageously reduces the burden on the environment.
速硬化性を評価する際に用いた造型装置を模式的に示す説明図である。FIG. 2 is an explanatory diagram schematically showing a molding device used when evaluating fast curing properties.
 ところで、本発明に従う鋳型用有機粘結剤において、その主たる成分の一つとして使用されるフェノール樹脂にあっては、特に限定されるものではなく、従来からフェノールウレタン系の鋳型を造型する際に用いられる、公知の各種のフェノール樹脂が、適宜に用いられ得るものである。具体的には、反応触媒の存在下、フェノール類とアルデヒド類とを、フェノール類の1モルに対して、アルデヒド類が、一般に、0.5~3.0モル程度の割合になるようにして、付加・縮合反応せしめて得られる、有機溶媒に可溶なベンジルエーテル型フェノール樹脂、レゾール型フェノール樹脂、ノボラック型フェノール樹脂、及びこれらの変性フェノール樹脂、並びにこれらの混合物を例示することが出来、これらのうちの一種又は二種以上が、適宜に選択されて用いられるのである。これらの中でも、特に、オルソクレゾールで変性したオルソクレゾール変性フェノール樹脂、更に好ましくは、ベンジルエーテル型のオルソクレゾール変性フェノール樹脂、及び、これら混合物にあっては、有機溶剤への溶解性やポリイソシアネートとの相溶性に優れているのみならず、得られる鋳型の強度(初期強度)等を効果的に向上せしめ得るところから、本発明においては、好適に用いられることとなる。 By the way, the phenolic resin used as one of the main components in the organic binder for molds according to the present invention is not particularly limited, and has conventionally been used when molding phenol urethane molds. Various known phenolic resins can be used as appropriate. Specifically, in the presence of a reaction catalyst, phenols and aldehydes are mixed in such a way that the ratio of aldehyde is generally about 0.5 to 3.0 mol per 1 mol of phenol. Examples include benzyl ether type phenolic resins, resol type phenolic resins, novolak type phenolic resins, and modified phenolic resins thereof, which are obtained by addition/condensation reactions, and mixtures thereof, which are soluble in organic solvents. One or more of these may be appropriately selected and used. Among these, orthocresol-modified phenolic resins modified with orthocresol, more preferably benzyl ether-type orthocresol-modified phenolic resins, and mixtures thereof are particularly important because of their solubility in organic solvents and their compatibility with polyisocyanates. It is preferably used in the present invention because it not only has excellent compatibility, but also can effectively improve the strength (initial strength) of the mold obtained.
 なお、上記したフェノール類とアルデヒド類との付加・縮合反応の際に用いられる触媒としては、特に限定されるものではなく、所望とするフェノール樹脂のタイプに応じて、公知の酸性触媒や、塩基性触媒の他、従来からフェノール樹脂の製造に用いられている各種の触媒が、適宜に用いられる。そして、そのような触媒としては、スズ、鉛、亜鉛、コバルト、マンガン、ニッケル等の金属元素を有する金属塩等を例示することが出来、より具体的には、ナフテン酸鉛、ナフテン酸亜鉛、酢酸鉛、塩化亜鉛、酢酸亜鉛、ホウ酸亜鉛、酸化鉛の他、このような金属塩を形成し得る酸と塩基の組合せ等が挙げられる。また、かかる金属塩を反応触媒として採用する場合に、その使用量としては、特に限定されるものではないものの、一般に、フェノール類の100重量部に対して、0.01~5重量部程度となる割合で、使用されることとなる。 The catalyst used in the above addition/condensation reaction between phenols and aldehydes is not particularly limited, and depending on the type of phenol resin desired, known acidic catalysts and bases may be used. In addition to the phenolic catalyst, various catalysts conventionally used in the production of phenolic resins can be used as appropriate. Examples of such catalysts include metal salts containing metal elements such as tin, lead, zinc, cobalt, manganese, and nickel; more specifically, lead naphthenate, zinc naphthenate, Examples include lead acetate, zinc chloride, zinc acetate, zinc borate, lead oxide, and combinations of acids and bases that can form such metal salts. In addition, when such a metal salt is employed as a reaction catalyst, the amount used is not particularly limited, but is generally about 0.01 to 5 parts by weight per 100 parts by weight of the phenol. It will be used at the same rate.
 また、フェノール樹脂を与えるフェノール類としては、例えば、フェノール、クレゾール、キシレノール、p-tert-ブチルフェノール、ノニルフェノール等のアルキルフェノール、レゾルシノール、ビスフェノールF、ビスフェノールA等の多価フェノール、及びこれらの混合物等が挙げられる一方、アルデヒド類としては、例えば、ホルムアルデヒド、ホルマリン、パラホルムアルデヒド、ポリオキシメチレン、グリオキザール、フルフラール、及びこれらの混合物等が挙げられる。 Examples of phenols that provide phenolic resins include alkylphenols such as phenol, cresol, xylenol, p-tert-butylphenol, and nonylphenol, polyhydric phenols such as resorcinol, bisphenol F, and bisphenol A, and mixtures thereof. On the other hand, examples of aldehydes include formaldehyde, formalin, paraformaldehyde, polyoxymethylene, glyoxal, furfural, and mixtures thereof.
 さらに、上述せるように、本発明において有利に採用され得るフェノール樹脂の一つである、オルソクレゾール変性フェノール樹脂としては、例えば、金属塩等の反応触媒の存在下において、オルソクレゾール及びフェノールを、アルデヒド類と反応せしめて得られる、(1)オルソクレゾールとフェノールとの共縮合型オルソクレゾール変性フェノール樹脂、(2)オルソクレゾール樹脂とフェノール樹脂との混合型オルソクレゾール変性フェノール樹脂の他、これら(1)及び(2)の樹脂を変性剤(改質剤)で改質した、(3)改質型オルソクレゾール変性フェノール樹脂、並びに、(1)、(2)及び(3)のうちの2種以上を組み合わせた混合物等を例示することが出来る。 Furthermore, as mentioned above, as orthocresol-modified phenolic resin, which is one of the phenolic resins that can be advantageously employed in the present invention, for example, orthocresol and phenol can be combined in the presence of a reaction catalyst such as a metal salt, In addition to (1) cocondensation orthocresol modified phenolic resin of orthocresol and phenol, (2) mixed orthocresol modified phenolic resin of orthocresol resin and phenol resin, which are obtained by reacting with aldehydes, these ( (3) modified orthocresol modified phenolic resin, which is obtained by modifying the resins of 1) and (2) with a modifier (modifier), and 2 of (1), (2), and (3) Examples include mixtures of more than one species.
 より具体的には、上記した(1)の共縮合型オルソクレゾール変性フェノール樹脂は、オルソクレゾール及びフェノールを、同時的又は段階的に、アルデヒド類と反応させて得られる共縮合樹脂であって、使用する反応触媒の種類等、反応条件によって、ノボラック型、レゾール型、ベンジルエーテル型、及びこれらのタイプを組み合わせた共縮合型オルソクレゾール変性フェノール樹脂が得られるが、本発明においては、上述せるように、ベンジルエーテル型の共縮合型オルソクレゾール変性フェノール樹脂が好ましく用いられる。なお、オルソクレゾールとフェノールとの配合比率としては、鋳型の初期強度の向上等の観点から、好ましくは、オルソクレゾール/フェノール(重量比)=5/95~95/5、より好ましくは、20/80~80/20が望ましい。 More specifically, the co-condensed orthocresol-modified phenolic resin of (1) above is a co-condensed resin obtained by reacting orthocresol and phenol simultaneously or stepwise with aldehydes, Depending on the reaction conditions such as the type of reaction catalyst used, novolac type, resol type, benzyl ether type, and cocondensation type orthocresol modified phenolic resins that are a combination of these types can be obtained. A benzyl ether type cocondensation type orthocresol modified phenol resin is preferably used. Note that the blending ratio of orthocresol and phenol is preferably orthocresol/phenol (weight ratio) = 5/95 to 95/5, more preferably 20/5, from the viewpoint of improving the initial strength of the mold. 80 to 80/20 is desirable.
 また、上記した(2)の混合型オルソクレゾール変性フェノール樹脂は、オルソクレゾールとアルデヒド類とを反応させて得られる、ノボラック型、レゾール型及びベンジルエーテル型のオルソクレゾール樹脂の群から選ばれる少なくとも1種のオルソクレゾール樹脂と、フェノールとアルデヒド類とを反応させて得られる、ノボラック型、レゾール型及びベンジルエーテル型のフェノール樹脂の群から選ばれる少なくとも1種のフェノール樹脂とを、混合して得られるものである。これらの中でも、本発明においては、ベンジルエーテル型オルソクレゾール樹脂とベンジルエーテル型フェノール樹脂とを混合した、ベンジルエーテル型の混合型オルソクレゾール変性フェノール樹脂が好ましく用いられる。なお、かかる混合型オルソクレゾール変性フェノール樹脂にあっても、鋳型の初期強度の向上等の観点から、オルソクレゾールとフェノールとの配合比率が上述せる範囲となるように、オルソクレゾール樹脂とフェノール樹脂とが、好ましくは、オルソクレゾール樹脂/フェノール樹脂(重量比)=5/95~95/5、より好ましくは、20/80~80/20の割合にて混合されることとなる。 The mixed orthocresol-modified phenolic resin (2) above is at least one selected from the group of novolak-type, resol-type, and benzyl ether-type orthocresol resins obtained by reacting orthocresol with aldehydes. Obtained by mixing a seed orthocresol resin with at least one phenolic resin selected from the group of novolac-type, resol-type and benzyl ether-type phenolic resins obtained by reacting phenol and aldehydes. It is something. Among these, in the present invention, a benzyl ether type mixed orthocresol modified phenol resin, which is a mixture of a benzyl ether type orthocresol resin and a benzyl ether type phenol resin, is preferably used. In addition, even in such a mixed type orthocresol-modified phenolic resin, from the viewpoint of improving the initial strength of the mold, the orthocresol resin and phenol resin are mixed so that the blending ratio of orthocresol and phenol is within the range mentioned above. However, they are preferably mixed at a ratio of orthocresol resin/phenol resin (weight ratio) of 5/95 to 95/5, more preferably 20/80 to 80/20.
 加えて、上記した(3)の改質型オルソクレゾール変性フェノール樹脂は、共縮合型オルソクレゾール変性フェノール樹脂、オルソクレゾール樹脂又はフェノール樹脂の製造時乃至は製造後に、それらの樹脂を、更に任意の変性剤(改質剤)、例えば、アルキッド樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、キシレン樹脂、酢酸ビニル樹脂、ポリアミド樹脂、尿素系化合物、メラミン系化合物、エポキシ系化合物、フルフリルアルコール、ポリビニルアルコール、尿素、アミド類、アマニ油、カシューナッツ殻液、ロジン、澱粉類、単糖類等と、混合乃至は反応せしめることによって改質された、ノボラック型、レゾール型及びベンジルエーテル型の樹脂の群から選ばれる少なくとも1種の改質型オルソクレゾール変性フェノール樹脂である。これらの中でも、本発明においては、ベンジルエーテル型の改質型オルソクレゾール変性フェノール樹脂が、有利に用いられる。 In addition, the above-mentioned modified orthocresol-modified phenolic resin (3) can be further treated with any optional additive during or after the production of the co-condensed orthocresol-modified phenolic resin, orthocresol resin, or phenolic resin. Modifiers (modifiers), such as alkyd resins, epoxy resins, melamine resins, urea resins, xylene resins, vinyl acetate resins, polyamide resins, urea compounds, melamine compounds, epoxy compounds, furfuryl alcohol, polyvinyl alcohol , urea, amides, linseed oil, cashew nut shell liquid, rosin, starch, monosaccharides, etc., modified by mixing or reacting with them, selected from the group of novolac type, resol type and benzyl ether type resins. At least one type of modified orthocresol modified phenolic resin. Among these, benzyl ether-type modified orthocresol-modified phenol resins are advantageously used in the present invention.
 而して、本発明の鋳型用有機粘結剤において、その主たる成分の一つとして使用されるフェノール樹脂は、低粘度化、後述するポリイソシアネート溶液との相溶性、鋳物砂へのコーティング性、鋳型物性等の観点から、一般に、極性有機溶剤と非極性有機溶剤とを組み合わせてなる有機溶媒に溶解せしめられ、その濃度が、約30~80重量%程度とされた溶液(以下、「フェノール樹脂溶液」という。)の状態で、用いられることとなる。 In the organic binder for molds of the present invention, the phenolic resin used as one of its main components has the following properties: low viscosity, compatibility with the polyisocyanate solution described below, coating properties on foundry sand, From the viewpoint of mold properties, etc., a solution (hereinafter referred to as "phenolic resin") is generally dissolved in an organic solvent consisting of a combination of a polar organic solvent and a non-polar organic solvent, and the concentration thereof is about 30 to 80% by weight. It is used in the form of a solution (referred to as "solution").
 そして、本発明に従う鋳型用有機粘結剤にあっては、上述の如きフェノール樹脂の活性水素と重付加反応することにより、鋳物砂同士をフェノールウレタンで化学的に結合せしめるイソシアネート基含有化合物として、従来のポリイソシアネート化合物に代えて、ポリイソシアネート化合物と化合物a(分子内に2又は3個のヒドロキシル基及び/又はカルボキシル基を有し、数平均分子量が300~3000である化合物。換言すれば、一分子に含まれるヒドロキシル基及びカルボキシル基の総数が、2又は3個である化合物。)との反応生成物であって、かかる反応生成物における化合物aの割合が0.1~10.0質量%であるもの(以下、単に「反応生成物」ともいう。)が使用され、構成されているところに、大きな技術的特徴が存しているのである。このような所定の化合物が、従来のポリイソシアネート化合物に代えて用いられているところから、本発明に係る鋳型用有機粘結剤を、造型時に加熱を必要としないコールドボックス法や常温自硬性法による鋳型造型の際に用いると、優れた速硬化性を発揮し、造型時間の短縮化が有利に達成されることとなるのである。 In the organic binder for molds according to the present invention, as an isocyanate group-containing compound that chemically bonds foundry sand to each other with phenol urethane through a polyaddition reaction with the active hydrogen of the phenol resin as described above, Instead of the conventional polyisocyanate compound, a polyisocyanate compound and compound a (a compound having 2 or 3 hydroxyl groups and/or carboxyl groups in the molecule and having a number average molecular weight of 300 to 3000. In other words, A reaction product with a compound in which the total number of hydroxyl groups and carboxyl groups contained in one molecule is 2 or 3), in which the proportion of compound a in the reaction product is 0.1 to 10.0 mass % (hereinafter also simply referred to as "reaction product") is used and constituted, which is a major technical feature. Since such a predetermined compound is used in place of a conventional polyisocyanate compound, the organic binder for molds according to the present invention can be used in a cold box method or room-temperature self-hardening method that does not require heating during molding. When used in mold manufacturing, it exhibits excellent rapid curing properties and advantageously shortens molding time.
 ここで、分子内に2又は3個のヒドロキシル基及び/又はカルボキシル基を有する化合物であっても、数平均分子量が大き過ぎたり、或いは小さ過ぎたりするものを本発明の化合物aとして用いても、本発明の効果を有利に享受することが出来ない恐れがある。それ故に、本発明においては、分子内に2又は3個のヒドロキシル基及び/又はカルボキシル基を有する化合物であって、数平均分子量が300~3000であるものが、本発明において化合物aとして用いられる。 Here, even if a compound has 2 or 3 hydroxyl groups and/or carboxyl groups in the molecule, a compound with a number average molecular weight that is too large or too small may be used as the compound a of the present invention. , there is a possibility that the effects of the present invention cannot be advantageously enjoyed. Therefore, in the present invention, a compound having 2 or 3 hydroxyl groups and/or carboxyl groups in the molecule and having a number average molecular weight of 300 to 3000 is used as compound a in the present invention. .
 また、ポリイソシアネート化合物と化合物aとの反応生成物において、化合物aの割合が少な過ぎたり、多過ぎたりしても、本発明の効果を有利に享受することが出来ない。それ故に、本発明で用いられる上記反応生成物は、ポリイソシアネート化合物に対する化合物aの割合が、0.1~12.0質量%のものが有利に用いられ、より有利には0.5~11.0質量%のものが、最も有利には1.0~10.5質量%のものが用いられる。なお、本発明において、『反応生成物における、ポリイソシアネート化合物に対する化合物aの割合』とは、ポリイソシアネート化合物と化合物aとを反応させる際の、ポリイソシアネート化合物の使用量(質量)に対する化合物aの使用量(質量)の割合を、意味するものである。 Furthermore, if the proportion of compound a in the reaction product of the polyisocyanate compound and compound a is too small or too large, the effects of the present invention cannot be advantageously enjoyed. Therefore, in the reaction product used in the present invention, the proportion of compound a to the polyisocyanate compound is preferably 0.1 to 12.0% by mass, more preferably 0.5 to 11% by mass. 0% by weight is used, most preferably 1.0-10.5% by weight. In addition, in the present invention, "the ratio of compound a to the polyisocyanate compound in the reaction product" refers to the ratio of compound a to the amount (mass) of the polyisocyanate compound used when the polyisocyanate compound and compound a are reacted. It means the proportion of the amount used (mass).
 本発明においては、分子内に2又は3個のヒドロキシル基及び/又はカルボキシル基を有し、数平均分子量が300~3000である化合物であれば、特に限定されることなく、化合物aとして用いることが可能であるが、好ましくは、グリコール系オリゴマー、グリコール系オリゴマーのグリセリルエーテル、脂肪酸重縮合物、脂肪酸重縮合物のグリセリルエーテル、及び脂肪酸重縮合物のグリセリルエステルからなる群より選ばれる一種以上を含むものであることが望ましい。それらの中でも、ポリオキシエチレングリセリルエーテル、ポリオキシプロピレングリセリルエーテル、リシノレイン酸重縮合物のグリセリルエーテル、又はリシノレイン酸重縮合物のグリセリルエステルであって、数平均分子量が300~3000であるものを化合物aとして用いることにより、本発明の効果をより有利に享受することが可能となる。 In the present invention, any compound having 2 or 3 hydroxyl groups and/or carboxyl groups in the molecule and having a number average molecular weight of 300 to 3000 may be used as compound a without particular limitation. However, preferably one or more selected from the group consisting of glycol oligomers, glyceryl ethers of glycol oligomers, fatty acid polycondensates, glyceryl ethers of fatty acid polycondensates, and glyceryl esters of fatty acid polycondensates. It is desirable that the Among them, polyoxyethylene glyceryl ether, polyoxypropylene glyceryl ether, glyceryl ether of ricinoleic acid polycondensate, or glyceryl ester of ricinoleic acid polycondensate, which have a number average molecular weight of 300 to 3000, are used as compounds. By using it as a, it becomes possible to enjoy the effects of the present invention more advantageously.
 その一方、本発明の鋳型用有機粘結剤の調製前に、上述の如き化合物aと予め反応せしめられるポリイソシアネート化合物としては、従来より鋳型用有機粘結剤において用いられている各種のものが、特に限定されることなく使用可能である。具体的には、芳香族、脂肪族或いは脂環式のポリイソシアネート、例えば、ジフェニルメタンジイソシアネート、ポリメチレンポリフェニレンポリイソシアネート(以下、「ポリメリックMDI」という。)、ヘキサメチレンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネートの他、これらポリイソシアネート化合物をポリオールと反応させて得られるイソシアネート基を2以上有するプレポリマー等、従来より公知の各種ポリイソシアネート化合物を挙げることが出来、これらは単独で、或いは、2種以上を組み合わせて、上記化合物aと反応させても良い。 On the other hand, as the polyisocyanate compound that is reacted with the above-mentioned compound a before preparing the organic binder for molds of the present invention, various compounds conventionally used in organic binders for molds can be used. , can be used without particular limitation. Specifically, aromatic, aliphatic or alicyclic polyisocyanates, such as diphenylmethane diisocyanate, polymethylene polyphenylene polyisocyanate (hereinafter referred to as "polymeric MDI"), hexamethylene diisocyanate, 4,4'-dicyclohexylmethane In addition to diisocyanates, various conventionally known polyisocyanate compounds can be mentioned, such as prepolymers having two or more isocyanate groups obtained by reacting these polyisocyanate compounds with polyols, and these can be used alone or in combination of two or more types. may be reacted with the above compound a in combination.
 本発明の鋳型用有機粘結剤の調製前に実施される、ポリイソシアネート化合物と化合物aとの反応手法については、従来より公知の手法であれば、何れも用いることが可能である。例えば、ポリイソシアネート化合物、化合物a及び有機溶媒を、十分に撹拌しながら(又は十分に撹拌した後)、常温にて(又は加熱しながら)、12時間以上、好ましくは24~72時間程度、保持することにより、ポリイソシアネート化合物と化合物aとを反応せしめることが可能である。 As for the reaction method between the polyisocyanate compound and compound a, which is carried out before the preparation of the organic binder for molds of the present invention, any conventionally known method can be used. For example, the polyisocyanate compound, compound a, and the organic solvent are held at room temperature (or while heating) for 12 hours or more, preferably about 24 to 72 hours, with sufficient stirring (or after sufficient stirring). By doing so, it is possible to cause the polyisocyanate compound and compound a to react.
 そのようにして得られる反応生成物にあっても、フェノール樹脂と同様に、一般に、非極性有機溶剤、又は非極性有機溶剤と極性溶剤との混合溶剤を溶媒として用い、この有機溶媒に、濃度が、約40~90重量%程度となるように溶解された溶液として用いられることとなる。 Similarly to phenolic resins, the reaction product obtained in this way is generally made of a non-polar organic solvent or a mixed solvent of a non-polar organic solvent and a polar solvent. is used as a solution in which it is dissolved to a concentration of approximately 40 to 90% by weight.
 なお、上述したフェノール樹脂や反応生成物を溶解せしめるための有機溶剤としては、かかる反応生成物には非反応性で、且つ溶解対象である溶質(フェノール樹脂又は反応生成物)に対して良溶媒であれば、特に制限されるものではないものの、一般に、i)フェノール樹脂を溶解するための極性溶剤と、ii)フェノール樹脂の分離が生じない程度の量の、反応生成物を溶解するための非極性溶剤とが組み合わされて用いられる。 The organic solvent for dissolving the above-mentioned phenolic resin and reaction product should be one that is non-reactive with the reaction product and a good solvent for the solute (phenol resin or reaction product) to be dissolved. In general, although there are no particular limitations, i) a polar solvent for dissolving the phenolic resin, and ii) an amount for dissolving the reaction product that does not cause separation of the phenolic resin. It is used in combination with a non-polar solvent.
 より具体的には、上記i)の極性溶剤としては、例えば、脂肪族カルボン酸エステル、その中でも、特に、環境安全性の観点から、ジカルボン酸メチルエステル混合物(デュポン社製、商品名:DBE、グルタル酸ジメチルとアジピン酸ジメチルとコハク酸ジメチルとの混合物)等のジカルボン酸アルキルエステル、菜種油メチルエステル等の植物油のメチルエステル、オレイン酸エチル、パルミチン酸エチル、これらの混合物等、脂肪酸モノエステル等のエステル類の他、例えば、イソホロン等のケトン類、イソプロピルエーテル等のエーテル類、フルフリルアルコール等を挙げることが出来る。また、上記ii)の非極性溶剤としては、例えば、パラフィン類、ナフテン類、アルキルベンゼン類等の石油系炭化水素類、具体例としては、イプゾール150(IP150、出光興産株式会社製、石油系溶剤)、ハイゾール100(ENEOS株式会社製、石油系溶剤)、AFソルベント4号(AF4、ENEOS株式会社製、石油系溶剤)、HAWS(シェル・ケミカルズ・ジャパン株式会社製;石油系溶剤)等を例示することが出来る。 More specifically, as the polar solvent in i) above, for example, aliphatic carboxylic acid esters, and among them, from the viewpoint of environmental safety, dicarboxylic acid methyl ester mixtures (manufactured by DuPont, trade name: DBE, Dicarboxylic acid alkyl esters such as dimethyl glutarate, dimethyl adipate, and dimethyl succinate), vegetable oil methyl esters such as rapeseed oil methyl ester, ethyl oleate, ethyl palmitate, mixtures thereof, fatty acid monoesters, etc. In addition to esters, examples thereof include ketones such as isophorone, ethers such as isopropyl ether, and furfuryl alcohol. Examples of non-polar solvents in ii) above include petroleum-based hydrocarbons such as paraffins, naphthenes, and alkylbenzenes; specific examples include Ipsol 150 (IP150, manufactured by Idemitsu Kosan Co., Ltd., petroleum-based solvent); , Hysol 100 (made by ENEOS Co., Ltd., petroleum-based solvent), AF Solvent No. 4 (AF4, made by ENEOS Co., Ltd., petroleum-based solvent), HAWS (made by Shell Chemicals Japan Co., Ltd.; petroleum-based solvent), etc. I can do it.
 本発明に従う鋳型用有機粘結剤は、上述の如きフェノール樹脂溶液と所定の反応生成物を含む溶液とによって、構成されることとなるが、かかる有機粘結剤には、従来より鋳型用有機粘結剤に使用されている公知の各種の添加剤を適宜に選択して、配合することも可能である。尤も、それら各種の添加剤は、本発明によって享受され得る効果を阻害しない量的範囲において使用される必要があることは、言うまでもないところである。本発明において配合可能な添加剤としては、可使時間延長剤、強度劣化防止剤、離型剤や乾燥防止剤等を、例示することが出来る。 The organic binder for molds according to the present invention is composed of the above-mentioned phenolic resin solution and a solution containing a predetermined reaction product. It is also possible to appropriately select and blend various known additives used in binders. However, it goes without saying that these various additives need to be used in amounts that do not impede the effects that can be enjoyed by the present invention. Examples of additives that can be blended in the present invention include pot life extenders, strength deterioration inhibitors, mold release agents, and drying inhibitors.
 具体的に、可使時間延長剤(硬化遅延剤)とは、従来より、ウレタン化反応を抑制して、鋳物砂組成物の可使時間を延長するための成分として、用いられているものであり、本発明においては、公知の各種の化合物が、適宜に選択されて用いられ、例えば、イソフタル酸クロリド、サリチル酸、安息香酸、リン酸、酸性リン酸エステル、リン系クロライドやホウ酸等を、挙げることが出来る。 Specifically, a pot life extender (hardening retardant) is a component that has been traditionally used to suppress the urethanization reaction and extend the pot life of foundry sand compositions. In the present invention, various known compounds are appropriately selected and used, such as isophthalic acid chloride, salicylic acid, benzoic acid, phosphoric acid, acidic phosphate ester, phosphorus chloride, boric acid, etc. I can list them.
 また、強度劣化防止剤は、多湿環境下における鋳型強度の劣化を防止すると共に、有機粘結剤の樹脂成分と鋳物砂との接着性の向上を図るために用いられるものであって、好適な例としては、例えば、N-β(アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン等のアミノ系シランや、γ-グリシドキシプロピルトリメトキシシラン等のエポキシ系シラン等のシランカップリング剤を挙げることが出来る。なお、かかる強度劣化防止剤の使用量としては、一般に、フェノール樹脂の100質量部に対して、0.01~5質量部程度、好ましくは0.05~2.5質量部程度となる割合が、採用される。 In addition, the strength deterioration inhibitor is used to prevent mold strength from deteriorating in a humid environment and to improve the adhesion between the resin component of the organic binder and the foundry sand, and is a suitable agent. Examples include amino-based silanes such as N-β (aminoethyl)-γ-aminopropyltrimethoxysilane and γ-aminopropyltriethoxysilane, and epoxy-based silanes such as γ-glycidoxypropyltrimethoxysilane. Examples include silane coupling agents such as. The amount of the strength deterioration inhibitor used is generally about 0.01 to 5 parts by mass, preferably about 0.05 to 2.5 parts by mass, per 100 parts by mass of the phenolic resin. , will be adopted.
 かくして、上述せる如き各種成分によって、本発明に従う鋳型用有機粘結剤が構成されることとなり、そして、この有機粘結剤を用いて、フェノールウレタン系のガス硬化鋳型又は自硬性鋳型が造型されることとなるのである。 Thus, the organic binder for molds according to the present invention is composed of the various components as described above, and a phenol urethane gas-curing mold or self-hardening mold is molded using this organic binder. This is what happens.
 具体的には、コールドボックス法によるガス硬化鋳型を造型するに際しては、先ず、鋳物砂に対して、本発明に従う鋳型用有機粘結剤を混練せしめることにより、かかる鋳物砂表面を鋳型用有機粘結剤で被覆してなる鋳物砂組成物(混練砂)が、製造されることとなる。即ち、鋳物砂に対して、有機粘結剤として、フェノール樹脂溶液と、所定の反応生成物を含む溶液と、更に必要に応じてその他の各種添加剤とを、十分に混練、混合することによって、鋳物砂表面に鋳型用有機粘結剤をコーティングして、鋳物砂組成物が製造されるのである。 Specifically, when molding a gas-cured mold using the cold box method, first, the organic binder for molds according to the present invention is mixed into the foundry sand, so that the surface of the foundry sand is coated with the organic binder for molds. A foundry sand composition (kneaded sand) coated with a binder will be produced. That is, by sufficiently kneading and mixing foundry sand with a phenolic resin solution as an organic binder, a solution containing a predetermined reaction product, and other various additives as necessary. A foundry sand composition is produced by coating the surface of foundry sand with an organic binder for molding.
 また、この鋳物砂組成物を製造する際に、有機粘結剤を構成するフェノール樹脂溶液、及び所定の反応生成物を含む溶液は、それらを混合した段階から、徐々に重付加反応(ウレタン化反応)が進行するところから、予め、別々に調製されて準備され、通常、鋳物砂との混練時に混合されることとなる。更に、混練・混合操作は、従来と同様な連続式乃至はバッチ式ミキサーを用いて、好適には、-10~50℃程度の範囲で行われることが望ましい。 In addition, when manufacturing this foundry sand composition, the phenolic resin solution constituting the organic binder and the solution containing the predetermined reaction product are gradually subjected to polyaddition reaction (urethanization) from the stage of mixing them. reaction), they are prepared separately in advance and are usually mixed together when kneading with foundry sand. Further, the kneading/mixing operation is preferably carried out at a temperature of about -10 to 50°C using a conventional continuous or batch mixer.
 次いで、上述せる如くして得られた鋳物砂組成物を、所望とする形状を与える金型の如き成形型内で賦形した後、これに対して、硬化のための触媒ガスを通気することにより、鋳物砂組成物の硬化が促進せしめられて、ガス硬化鋳型が製造されることとなるのである。なお、触媒ガスとしては、トリエチルアミン、ジメチルエチルアミン、ジメチルイソプロピルアミン等の、従来から公知の第三級アミンガスのほか、環状窒素化合物、ピリジン、N-エチルモルホリンを例示することが出来、それらのうちの少なくとも1種が適宜に選択されて、通常の量的範囲で用いられる。 Next, the foundry sand composition obtained as described above is shaped in a mold such as a mold that gives a desired shape, and then a catalyst gas for curing is passed through the molding sand composition. As a result, the curing of the foundry sand composition is accelerated and a gas-cured mold is manufactured. Examples of the catalyst gas include conventionally known tertiary amine gases such as triethylamine, dimethylethylamine, and dimethylisopropylamine, as well as cyclic nitrogen compounds, pyridine, and N-ethylmorpholine. At least one kind is appropriately selected and used in a usual quantitative range.
 一方、常温自硬性法により自硬性鋳型を造型するに際しても、上記ガス硬化鋳型の場合と同様に、先ず、鋳物砂表面を有機粘結剤で被覆してなる鋳物砂組成物が製造されることとなるのであるが、この常温自硬性法に用いる鋳物砂組成物には、混練時に、上記有機粘結剤と共に、更に、硬化触媒が混入せしめられることとなる。この硬化触媒としては、公知のアシュランド法において通常使用される塩基、アミン、金属イオン等を挙げることが出来る。 On the other hand, when producing a self-hardening mold using the room temperature self-hardening method, as in the case of the gas-hardening mold described above, first a foundry sand composition is produced by coating the surface of the foundry sand with an organic binder. However, in the foundry sand composition used in this room-temperature self-hardening method, a curing catalyst is further mixed together with the organic binder at the time of kneading. Examples of the curing catalyst include bases, amines, metal ions, etc. that are commonly used in the known Ashland method.
 そして、得られた鋳物砂組成物は、添加された硬化触媒によって、硬化が進行するところから、直ちに、所望とする形状を与える成形金型内で賦形されて、自硬性鋳型が製造されることとなるのである。 Then, the obtained foundry sand composition is cured by the added curing catalyst, and is immediately shaped in a mold that gives the desired shape to produce a self-hardening mold. That's what happens.
 なお、上記したガス硬化鋳型や自硬性鋳型を与える鋳物砂組成物の調製において、フェノール樹脂溶液や、所定の反応生成物を含む溶液の配合量としては、それぞれ、有効成分であるフェノール樹脂及び反応生成物の配合量が、鋳物砂の100質量部に対して、それぞれ、0.01~5.0質量部程度、好ましくは0.1~2.0質量部程度となる割合が、好適に採用される。また、フェノール樹脂と所定の反応生成物の配合比率としては、特に限定されるものではないものの、一般に、質量基準で、フェノール樹脂:反応生成物=80:20~20:80となるように組み合わされて、用いられる。 In addition, in the preparation of the foundry sand composition that provides the above-mentioned gas-hardening molds and self-hardening molds, the blending amounts of the phenol resin solution and the solution containing the predetermined reaction products are as follows: A proportion is preferably adopted in which the blending amount of each product is about 0.01 to 5.0 parts by mass, preferably about 0.1 to 2.0 parts by mass, per 100 parts by mass of foundry sand. be done. In addition, the blending ratio of the phenol resin and the predetermined reaction product is not particularly limited, but in general, the combination is such that the ratio of phenol resin: reaction product = 80:20 to 20:80 on a mass basis. and used.
 また、本発明において用いられる鋳物砂としては、従来より鋳型用として用いられている耐火性のものであれば、天然砂であっても、人工砂であってもよく、特に限定されるものではない。例えば、ケイ砂、オリビンサンド、ジルコンサンド、クロマイトサンド、アルミナサンド、フェロクロム系スラグ、フェロニッケル系スラグ、転炉スラグ、ムライト系人工粒子(例えば、伊藤忠セラテック株式会社から入手することの出来る商品名「セラビーズ」)、及び、これらの再生砂等が挙げられ、これらのうちの1種、或いは、2種以上が組み合わされて用いられ得るのである。なお、これらの中でも、鋳型回収後の研磨再生処理の観点から、球状で耐破砕性に優れるムライト系人工粒子が、より一層好適に採用されることとなる。 Furthermore, the foundry sand used in the present invention is not particularly limited, and may be natural sand or artificial sand as long as it is fire-resistant and has been conventionally used for molds. do not have. For example, silica sand, olivine sand, zircon sand, chromite sand, alumina sand, ferrochrome slag, ferronickel slag, converter slag, mullite artificial particles (for example, the product name available from Itochu Ceratec Corporation) Cerabeads") and recycled sand thereof, and one or more of these may be used in combination. Among these, mullite-based artificial particles, which are spherical and have excellent crush resistance, are more preferably employed from the viewpoint of polishing regeneration treatment after mold recovery.
 そして、上述せる如くして製造されたガス硬化鋳型や自硬性鋳型は、その造型に際して速硬化性が効果的に発現し、以て、造型時間の短縮化が有利に達成され得ることとなる。また、そのような優れた速硬化性を発揮することから、特にコールドボックス法によりガス硬化鋳型を製造するに際しては、触媒ガスとして使用されるアミン類の使用量を低減させることが出来、環境への負荷を有利に軽減させるという効果をも、有利に享受することが可能となるのである。 The gas-curing molds and self-hardening molds manufactured as described above effectively exhibit rapid curing properties during molding, and thus the molding time can be advantageously shortened. In addition, because it exhibits such excellent fast curing properties, it is possible to reduce the amount of amines used as catalyst gas, especially when manufacturing gas-cured molds using the cold box method, which is environmentally friendly. It is also possible to advantageously enjoy the effect of advantageously reducing the load on the vehicle.
 以下に、本発明の実施例を幾つか示し、本発明を更に具体的に明らかにすることとするが、本発明が、そのような実施例の記載によって、何等の制約をも受けるものでないことは、言うまでもないところである。また、本発明には、以下の実施例の他にも、更には上記した具体的記述以外にも、本発明の趣旨を逸脱しない限りにおいて、当業者の知識に基づいて種々なる変更、修正、改良等が加えられ得るものであることが、理解されるべきである。 Below, some examples of the present invention will be shown to clarify the present invention more specifically, but the present invention is not limited in any way by the description of such examples. It goes without saying that. In addition to the following examples and the above-described specific description, the present invention includes various changes, modifications, and changes based on the knowledge of those skilled in the art, as long as they do not depart from the spirit of the present invention. It should be understood that improvements and the like may be added.
 なお、以下の実施例及び比較例において用いた各種成分は、以下の通りである。
・ポリエチレングリコール
 (数平均分子量:400、日油株式会社製、製品名:PEG#400)
・ポリエチレングリコール
 (数平均分子量:1000、日油株式会社製、製品名:PEG#1000)
・ポリエチレングリコール
 (数平均分子量:4000、日油株式会社製、製品名:PEG#4000)
・ポリプロピレングリコール
 (数平均分子量:700、日油株式会社製、製品名:ユニオール D-700)
・ポリプロピレングリコール
 (数平均分子量:1000、日油株式会社製、製品名:ユニオール D-1000)
・ポリブチレングリコール
 (数平均分子量:700、日油株式会社製、製品名:ユニオール PB-700)
・ポリオキシエチレングリセリルエーテル
 (数平均分子量:1233、青木油脂工業株式会社製、
  製品名:ブラウノン GL-26)
・ポリオキシプロピレングリセリルエーテル
 (数平均分子量:330、日油株式会社製、製品名:ユニオール TG-330)
・ポリオキシプロピレングリセリルエーテル
 (数平均分子量:1000、日油株式会社製、
  製品名:ユニオール TG-1000)
・リシノレイン酸重縮合物
 (数平均分子量:1700、小倉化学工業株式会社製、
  製品名:K-PON 406S)
・リシノレイン酸重縮合物のグリセリルエステル
 (数平均分子量:2400、小倉化学工業株式会社製、
  製品名:K-PON 406G)
・エチレングリコール
 (数平均分子量:62、富士フイルム和光純薬株式会社製、和光一級)
・プロピレングリコール
 (数平均分子量:76、富士フイルム和光純薬株式会社製、和光一級)
・リシノレイン酸
 (数平均分子量:298、東京化成工業株式会社製、純度:80.0%以上)
・グリセリン
 (数平均分子量:92、富士フイルム和光純薬株式会社製、和光一級)
・エタノール
 (数平均分子量:46、富士フイルム和光純薬株式会社製、和光一級)
The various components used in the following Examples and Comparative Examples are as follows.
・Polyethylene glycol (number average molecular weight: 400, manufactured by NOF Corporation, product name: PEG #400)
・Polyethylene glycol (number average molecular weight: 1000, manufactured by NOF Corporation, product name: PEG #1000)
・Polyethylene glycol (number average molecular weight: 4000, manufactured by NOF Corporation, product name: PEG #4000)
・Polypropylene glycol (number average molecular weight: 700, manufactured by NOF Corporation, product name: Uniol D-700)
・Polypropylene glycol (number average molecular weight: 1000, manufactured by NOF Corporation, product name: Uniol D-1000)
・Polybutylene glycol (number average molecular weight: 700, manufactured by NOF Corporation, product name: Uniol PB-700)
・Polyoxyethylene glyceryl ether (number average molecular weight: 1233, manufactured by Aoki Yushi Kogyo Co., Ltd.,
Product name: Brownon GL-26)
・Polyoxypropylene glyceryl ether (number average molecular weight: 330, manufactured by NOF Corporation, product name: Uniol TG-330)
・Polyoxypropylene glyceryl ether (number average molecular weight: 1000, manufactured by NOF Corporation,
Product name: Unior TG-1000)
・Ricinoleic acid polycondensate (number average molecular weight: 1700, manufactured by Ogura Chemical Co., Ltd.,
Product name: K-PON 406S)
・Glyceryl ester of ricinoleic acid polycondensate (number average molecular weight: 2400, manufactured by Kokura Chemical Industry Co., Ltd.,
Product name: K-PON 406G)
・Ethylene glycol (number average molecular weight: 62, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., Wako 1st grade)
・Propylene glycol (number average molecular weight: 76, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., Wako Grade 1)
・Ricinoleic acid (number average molecular weight: 298, manufactured by Tokyo Chemical Industry Co., Ltd., purity: 80.0% or more)
・Glycerin (number average molecular weight: 92, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., Wako 1st grade)
・Ethanol (number average molecular weight: 46, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., Wako 1st grade)
-実施例1~実施例19、比較例1~比較例10-
 本発明の鋳型用有機粘結剤を用いて得られた鋳物砂組成物の速硬化性を、以下の手法に従って評価した。
-Example 1 to Example 19, Comparative Example 1 to Comparative Example 10-
The fast curing properties of the foundry sand composition obtained using the organic binder for molds of the present invention were evaluated according to the following method.
(1-1)フェノール樹脂溶液Aの調製
 還流器、温度計及び撹拌機を備えた三つ口反応フラスコ内に、フェノールの100質量部、92質量%パラホルムアルデヒドの55.5質量部、及び二価金属塩としてナフテン酸亜鉛の0.2質量部を仕込み、還流温度で90分間、反応させた後、加熱濃縮することにより、水分含有率が1%以下のベンジルエーテル型のフェノール樹脂を得た。次いで、その得られたフェノール樹脂の50.0質量部を、DBE(米国デュポン社製、石油系溶剤)の20.0質量部、及びハイゾール100(ENEOS株式会社製、石油系溶剤)の30.0質量部を用いて溶解せしめて、フェノール樹脂分が50.0質量%のフェノール樹脂溶液Aを調製した。
(1-1) Preparation of phenolic resin solution A In a three-necked reaction flask equipped with a reflux device, a thermometer, and a stirrer, 100 parts by mass of phenol, 55.5 parts by mass of 92% by mass paraformaldehyde, and 0.2 parts by mass of zinc naphthenate was charged as a valence metal salt, reacted at reflux temperature for 90 minutes, and then heated and concentrated to obtain a benzyl ether type phenol resin with a water content of 1% or less. . Next, 50.0 parts by mass of the obtained phenolic resin was mixed with 20.0 parts by mass of DBE (manufactured by DuPont, USA, petroleum-based solvent) and 30.0 parts by mass of Hysol 100 (manufactured by ENEOS Corporation, petroleum-based solvent). A phenolic resin solution A having a phenolic resin content of 50.0% by mass was prepared by dissolving using 0 parts by mass.
(1-2)溶液Iの調製
 ポリイソシアネート化合物と所定の化合物aとの反応生成物を含む溶液Iを、以下の手順に従って調製した。即ち、ポリイソシアネート化合物であるポリメリックMDI(MDI)と、イプゾール150(IP150、出光興産株式会社製、石油系溶剤)と、AFソルベント4号(AF4、ENEOS株式会社製、石油系溶剤)と、下記表1乃至表3に記載の化合物aとを、各々、下記表1乃至表3に示す割合にて配合し、十分に撹拌した後、25℃の温度で二日間(48時間)、保持することにより、実施例及び比較例の各々に係る溶液Iを調整した。なお、比較例1に係る溶液Iについては、化合物aを使用せず、MDI、IP150及びAF4を下記表3に示す割合にて配合し、十分に撹拌した後、25℃の温度で二日間(48時間)、保持することにより調製した。
(1-2) Preparation of Solution I Solution I containing a reaction product of a polyisocyanate compound and a predetermined compound a was prepared according to the following procedure. That is, Polymeric MDI (MDI), which is a polyisocyanate compound, Ipsol 150 (IP150, manufactured by Idemitsu Kosan Co., Ltd., petroleum-based solvent), AF Solvent No. 4 (AF4, manufactured by ENEOS Co., Ltd., petroleum-based solvent), and the following. Compound a listed in Tables 1 to 3 are blended in the proportions shown in Tables 1 to 3 below, stirred thoroughly, and then maintained at a temperature of 25°C for two days (48 hours). Solution I according to each of the Examples and Comparative Examples was prepared. Regarding Solution I according to Comparative Example 1, compound a was not used, MDI, IP150, and AF4 were blended in the proportions shown in Table 3 below, and after thorough stirring, the solution was heated at 25°C for two days ( 48 hours).
(1-3)鋳物砂組成物の調製及びその速硬化性の評価
 ダルトン株式会社製品川式卓上ミキサー内に、予め、温度:20℃×相対湿度:60%の雰囲気下で24時間放置されたフラタリー珪砂の1000質量部と、先に調製されたフェノール樹脂溶液Aの10質量部と、ポリイソシアネート化合物(MDI)と所定の化合物aとの反応生成物を含む溶液Iの10質量部とを投入した後、40秒間、攪拌、混練して、所定の有機粘結剤にて被覆された鋳物砂(鋳物砂組成物)を29種類、調製した(実施例1~実施例19、比較例1~比較例10)。得られた29種類の鋳物砂組成物を用いて、以下に示す手法に従って速硬化性試験を実施し、硬化率(%)を算出した。その結果を、下記表1乃至表3に示す。
(1-3) Preparation of foundry sand composition and evaluation of its rapid curing properties The molding sand composition was left for 24 hours in an atmosphere of temperature: 20°C x relative humidity: 60% in a river-type table mixer manufactured by Dalton Co., Ltd. Inject 1000 parts by mass of flattery silica sand, 10 parts by mass of the previously prepared phenolic resin solution A, and 10 parts by mass of solution I containing the reaction product of polyisocyanate compound (MDI) and predetermined compound a. After that, they were stirred and kneaded for 40 seconds to prepare 29 types of foundry sand (foundry sand composition) coated with a predetermined organic binder (Example 1 to Example 19, Comparative Example 1 to Comparative Example 10). Using the 29 types of foundry sand compositions obtained, a rapid curing test was conducted according to the method shown below, and the curing rate (%) was calculated. The results are shown in Tables 1 to 3 below.
(1-4)速硬化性試験(硬化率の算出)
 図1に示される試験金型(φ50mm×h150mm)に、調製した鋳物砂組成物の350gを収容する。試験金型内の鋳物砂組成物を、ランマーを用いて上部から3回、突き固めた後、金型を図1の造型装置に組み付け、所定量の硬化触媒(トリエチルアミン)を、ガス通気経路に設けた注入口からマイクロシリンジにて注入する。そして、ゲージ圧:0.1MPaで20秒間、エアパージを行う。エアパージ終了後、造型装置より試験金型を直ちに取り外し、金型側面をゴムハンマーで叩いて、金型内より鋳物砂組成物(鋳物砂組成物の硬化物及び未硬化物。以下、単に混合物という。)を叩き落とす。叩き落とされた混合物の中から硬化物を取り出し、その重量:x(g)を測定し、鋳型内に収容した鋳物砂組成物の重量(350g)に対する硬化物の重量:x(g)の割合を算出して、硬化率(%)とする。この硬化率(%)の数値が大きければ大きいほど、速硬化性に優れていると判断する。
(1-4) Rapid curing test (calculation of curing rate)
350 g of the prepared foundry sand composition was placed in a test mold (50 mm in diameter x 150 mm in height) shown in FIG. After tamping the foundry sand composition in the test mold from the top three times using a rammer, the mold was assembled into the molding device shown in Figure 1, and a predetermined amount of curing catalyst (triethylamine) was poured into the gas ventilation path. Inject with a microsyringe through the injection port provided. Then, air purge is performed for 20 seconds at a gauge pressure of 0.1 MPa. After the air purge is completed, the test mold is immediately removed from the molding equipment, the side of the mold is hit with a rubber hammer, and the molding sand composition (cured and uncured molding sand composition; hereinafter simply referred to as the mixture) is poured out from inside the mold. ). Take out the cured product from the knocked-off mixture, measure its weight: x (g), and measure the ratio of the weight of the cured product: x (g) to the weight (350 g) of the foundry sand composition accommodated in the mold. is calculated and set as the curing rate (%). It is judged that the larger the value of this curing rate (%), the better the rapid curing property.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 かかる表1乃至表3の結果からも明らかなように、本発明の如く、ポリイソシアネート化合物と所定の化合物(化合物a)との反応生成物を含む鋳型用有機粘結剤(実施例1~実施例19)にあっては、ポリイソシアネート化合物を含む鋳型用有機粘結剤(比較例1)と比較して、硬化率の数値が大きく、速硬化性に優れていることが認められる。また、化合物aとして、ポリオキシエチレングリセリルエーテル、ポリオキシプロピレングリセリルエーテル又はリシノレイン酸重縮合物のグリセリルエステルを用いてなる粘結剤については、より優れた速硬化性を発揮することが認められる(実施例3、実施例7、実施例9)。 As is clear from the results in Tables 1 to 3, organic binders for molds (Examples 1 to 3) containing the reaction product of a polyisocyanate compound and a predetermined compound (compound a), as in the present invention, In Example 19), the curing rate was higher than that of the organic binder for molds containing a polyisocyanate compound (Comparative Example 1), and it was recognized that the curing rate was excellent in fast curing properties. Furthermore, it is recognized that binders using polyoxyethylene glyceryl ether, polyoxypropylene glyceryl ether, or glyceryl ester of ricinoleic acid polycondensate as compound a exhibit better rapid curing properties ( Example 3, Example 7, Example 9).
-実施例20~実施例22、比較例11-
 本発明に従う鋳型用有機粘結剤を用いて、常温自硬性法により自硬性鋳型を製造した際の、造型完了から所定時間経過後に抜型された鋳型の抗圧強度を確認すべく、以下の実験を行った。
-Example 20 to Example 22, Comparative Example 11-
In order to confirm the pressure resistance strength of the mold that is removed after a predetermined time has elapsed from the completion of molding when a self-hardening mold is manufactured by the room-temperature self-hardening method using the organic binder for molds according to the present invention, the following experiment was conducted. I did it.
(2-1)フェノール樹脂溶液Bの調製
 還流器、温度計及び撹拌機を備えた三つ口反応フラスコ内に、フェノールの100質量部、92質量%パラホルムアルデヒドの55.5質量部、及び二価金属塩としてナフテン酸亜鉛の0.2質量部を仕込み、還流温度で90分間、反応させた後、加熱濃縮することにより、水分含有率が1%以下のベンジルエーテル型のフェノール樹脂を得た。次いで、その得られたフェノール樹脂の58.0質量部を、DBE(米国デュポン社製、石油系溶剤)の10.0質量部、PGMAC(大伸化学株式会社製:プロピレングリコールモノメチルエーテルアセテート)の10.0質量部、及びハイゾール100(ENEOS株式会社製、石油系溶剤)の22.0質量部を用いて溶解せしめて、フェノール樹脂分が58.0質量%のフェノール樹脂溶液Bを調製した。
(2-1) Preparation of phenolic resin solution B In a three-necked reaction flask equipped with a reflux device, a thermometer, and a stirrer, 100 parts by mass of phenol, 55.5 parts by mass of 92% by mass paraformaldehyde, and 0.2 parts by mass of zinc naphthenate was charged as a valence metal salt, reacted at reflux temperature for 90 minutes, and then heated and concentrated to obtain a benzyl ether type phenol resin with a water content of 1% or less. . Next, 58.0 parts by mass of the obtained phenolic resin was mixed with 10.0 parts by mass of DBE (manufactured by DuPont, USA, petroleum-based solvent) and PGMAC (manufactured by Taishin Chemical Co., Ltd.: propylene glycol monomethyl ether acetate). 10.0 parts by mass and 22.0 parts by mass of Hysol 100 (manufactured by ENEOS Corporation, petroleum solvent) were used to prepare a phenolic resin solution B having a phenolic resin content of 58.0% by mass.
(2-2)溶液IIの調製
 ポリイソシアネート化合物であるポリメリックMDI(MDI)と、イプゾール150(IP150、出光興産株式会社製、石油系溶剤)と、下記表4に記載の化合物aとを、各々、下記表4に示す割合にて配合し、十分に撹拌した後、25℃の温度で二日間(48時間)、保持することにより、実施例及び比較例の各々に係る溶液IIを調整した。なお、比較例11に係る溶液IIについては、化合物aを使用せず、MDIとIP150とを下記表4に示す割合にて配合し、十分に撹拌した後、25℃の温度で二日間(48時間)、保持することにより調製した。
(2-2) Preparation of solution II Polymeric MDI (MDI), which is a polyisocyanate compound, Ipsol 150 (IP150, manufactured by Idemitsu Kosan Co., Ltd., petroleum solvent), and compound a listed in Table 4 below were each added. , were blended in the proportions shown in Table 4 below, sufficiently stirred, and then held at a temperature of 25° C. for two days (48 hours) to prepare solutions II according to each of the examples and comparative examples. Regarding solution II according to Comparative Example 11, compound a was not used, MDI and IP150 were blended in the ratio shown in Table 4 below, and after thorough stirring, the solution was heated at 25°C for two days (48°C). prepared by holding for an hour).
(2-3)自硬性鋳型の製造及び抗圧強度の測定
 ダルトン株式会社製品川式卓上ミキサー内に、予め、温度:20℃×相対湿度:60%の雰囲気下で24時間放置されたフラタリー珪砂の1000質量部と、先に調製されたフェノール樹脂溶液Bの10質量部と、ポリイソシアネート化合物(MDI)と所定の化合物aとの反応生成物を含む溶液IIの10質量部と、硬化触媒としてのN-エチルモルホリンの0.1質量部とを投入し、60秒間、混練した。かかる混練によって得られた混練砂(鋳物砂組成物)を、直ちに直径:50mm×高さ:50mmのテストピース木型に充填し、型への充填(造型完了)から所定時間(10分又は20分)、放置した。その後、抜型して、得られた鋳型の抗圧強度(N/cm2 )を抗圧力試験機:H3000D(製品名、高千穂精機社製)にて測定した。その結果を、下記表4に示す。
(2-3) Manufacture of self-hardening mold and measurement of compressive strength Flattery silica sand was left in advance for 24 hours in an atmosphere of temperature: 20°C x relative humidity: 60% in a river-type table mixer produced by Dalton Co., Ltd. as a curing catalyst; and 0.1 part by mass of N-ethylmorpholine were added thereto and kneaded for 60 seconds. The kneaded sand (foundry sand composition) obtained by such kneading is immediately filled into a test piece wooden mold with a diameter of 50 mm and a height of 50 mm, and is left for a predetermined time (10 minutes or 20 minutes) after filling the mold (molding completion). minutes) and left it alone. Thereafter, the mold was cut out, and the resistive strength (N/cm 2 ) of the obtained mold was measured using a resistive pressure tester: H3000D (product name, manufactured by Takachiho Seiki Co., Ltd.). The results are shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 かかる表4の結果からも明らかなように、本発明の鋳型用有機粘結剤を用いて自硬性鋳型を製造した場合にあっても、製造された鋳型が、造型完了から短時間で高い強度を発現することが確認され、本発明に従う鋳型用有機粘結剤が、優れた速硬化性を発揮するものであることが認められるのである。
                                                                                
As is clear from the results in Table 4, even when a self-hardening mold is manufactured using the organic binder for molds of the present invention, the manufactured mold has high strength in a short period of time after molding is completed. It has been confirmed that the organic binder for molds according to the present invention exhibits excellent rapid curing properties.

Claims (6)

  1.  フェノールウレタン系のガス硬化鋳型又は自硬性鋳型の造型に用いられる有機粘結剤にして、
     フェノール樹脂と、有機溶剤と共に、
     i)ポリイソシアネート化合物と、ii)分子内に2又は3個のヒドロキシル基及び/又はカルボキシル基を有し、数平均分子量が300~3000である化合物aとの反応生成物を、必須の構成成分として含有し、
     前記反応生成物における、前記ポリイソシアネート化合物に対する前記化合物aの割合が0.1~12.0質量%であることを特徴とする鋳型用有機粘結剤。
    An organic binder used in the production of phenol urethane gas-curing molds or self-hardening molds,
    Together with phenolic resin and organic solvent,
    A reaction product of i) a polyisocyanate compound and ii) a compound a having 2 or 3 hydroxyl groups and/or carboxyl groups and having a number average molecular weight of 300 to 3000 as an essential component. Contains as,
    An organic binder for molds, wherein the ratio of the compound a to the polyisocyanate compound in the reaction product is 0.1 to 12.0% by mass.
  2.  前記化合物aが、グリコール系オリゴマー、グリコール系オリゴマーのグリセリルエーテル、脂肪酸重縮合物、脂肪酸重縮合物のグリセリルエーテル、及び脂肪酸重縮合物のグリセリルエステルからなる群より選ばれる一種以上を含むものである請求項1に記載の鋳型用有機粘結剤。 A claim in which the compound a contains one or more selected from the group consisting of glycol oligomers, glyceryl ethers of glycol oligomers, fatty acid polycondensates, glyceryl ethers of fatty acid polycondensates, and glyceryl esters of fatty acid polycondensates. 1. The organic binder for molds according to 1.
  3.  前記化合物aが、ポリオキシエチレングリセリルエーテル、ポリオキシプロピレングリセリルエーテル、リシノレイン酸重縮合物のグリセリルエーテル、又はリシノレイン酸重縮合物のグリセリルエステルである請求項1に記載の鋳型用有機粘結剤。 The organic binder for molds according to claim 1, wherein the compound a is polyoxyethylene glyceryl ether, polyoxypropylene glyceryl ether, glyceryl ether of ricinoleic acid polycondensate, or glyceryl ester of ricinoleic acid polycondensate.
  4.  請求項1乃至請求項3の何れか1項に記載の鋳型用有機粘結剤を、鋳物砂に混練せしめてなる鋳物砂組成物。 A foundry sand composition obtained by kneading the organic binder for molds according to any one of claims 1 to 3 with foundry sand.
  5.  請求項4に記載の鋳物砂組成物と触媒ガスとの接触により生ずる硬化物からなるガス硬化鋳型。 A gas-cured mold comprising a cured product produced by contacting the foundry sand composition according to claim 4 with a catalyst gas.
  6.  請求項1乃至請求項3の何れか1項に記載の鋳型用有機粘結剤と、鋳物砂と、硬化触媒とを用いた硬化物からなる自硬性鋳型。
                                                                                    
    A self-hardening mold comprising a cured product using the organic binder for molds according to any one of claims 1 to 3, foundry sand, and a curing catalyst.
PCT/JP2023/013085 2022-04-04 2023-03-30 Mold organic binder, and molding sand composition and mold obtained using same WO2023195406A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-062360 2022-04-04
JP2022062360 2022-04-04

Publications (1)

Publication Number Publication Date
WO2023195406A1 true WO2023195406A1 (en) 2023-10-12

Family

ID=88242971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013085 WO2023195406A1 (en) 2022-04-04 2023-03-30 Mold organic binder, and molding sand composition and mold obtained using same

Country Status (1)

Country Link
WO (1) WO2023195406A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4946876A (en) * 1988-10-31 1990-08-07 Ashland Oil, Inc. Polyurethane-forming foundry binders containing a polyester polyol
JP2006272366A (en) * 2005-03-28 2006-10-12 Asahi Organic Chem Ind Co Ltd Organic bonding agent for casting mold, and casting sand composition and casting mold achieved using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4946876A (en) * 1988-10-31 1990-08-07 Ashland Oil, Inc. Polyurethane-forming foundry binders containing a polyester polyol
JP2006272366A (en) * 2005-03-28 2006-10-12 Asahi Organic Chem Ind Co Ltd Organic bonding agent for casting mold, and casting sand composition and casting mold achieved using the same

Similar Documents

Publication Publication Date Title
US4436881A (en) Polyurethane binder compositions
JPS61502387A (en) binder composition
JP6035324B2 (en) Urethane curable organic binder for mold, foundry sand composition and mold obtained using the same
CN107073559A (en) Bicomponent binder system for polyurethane cold core box process
JP5694024B2 (en) Urethane curable organic binder for mold, foundry sand composition and mold obtained using the same
US4852629A (en) Cold-box process for forming foundry shapes which utilizes certain carboxylic acids as bench life extenders
US4760101A (en) Polyurethane-forming binder compositions containing certain carboxylic acids as bench life extenders
WO2023195406A1 (en) Mold organic binder, and molding sand composition and mold obtained using same
CN110461498B (en) Polyurethane-curable organic binder for casting molds, and molding sand composition and casting mold obtained using same
JP6887286B2 (en) Urethane-curable organic binder for molds and casting sand compositions and molds obtained using the same
JP4421484B2 (en) Organic binder for mold, foundry sand composition obtained using the same, and mold
JP4398299B2 (en) Organic binder for mold, foundry sand composition obtained using the same, and mold
JP7101692B2 (en) Urethane-curable organic binder for molds, and cast sand compositions and molds obtained using the same.
JP4980034B2 (en) Organic binder for mold, foundry sand composition obtained using the same, and mold
JP5036362B2 (en) Urethane curable organic binder for mold, foundry sand composition and mold obtained using the same
JP6887287B2 (en) Urethane-curable organic binder for molds and casting sand compositions and molds obtained using the same
JP4615346B2 (en) Organic binder for mold, foundry sand composition obtained using the same, and mold
CA2270611A1 (en) Foundry binder systems which contain alcohol modified polyisocyanates
JP4323223B2 (en) Organic binder for mold, foundry sand composition obtained using the same, and mold
US6883587B2 (en) Polyisocyanate compositions and their use
JP5048715B2 (en) Synthetic mullite sand and mold
JP4481839B2 (en) Organic binder for mold, foundry sand composition obtained using the same, and mold
JP6173130B2 (en) Urethane curable organic binder for mold, foundry sand composition and mold obtained using the same
JP2005081372A (en) Treatment method for synthetic mullite sand and synthetic mullite sand, and mold

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784693

Country of ref document: EP

Kind code of ref document: A1