WO2023195254A1 - Plasma generation device and air conditioning device - Google Patents

Plasma generation device and air conditioning device Download PDF

Info

Publication number
WO2023195254A1
WO2023195254A1 PCT/JP2023/006268 JP2023006268W WO2023195254A1 WO 2023195254 A1 WO2023195254 A1 WO 2023195254A1 JP 2023006268 W JP2023006268 W JP 2023006268W WO 2023195254 A1 WO2023195254 A1 WO 2023195254A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
plasma generation
generation device
substrate
air
Prior art date
Application number
PCT/JP2023/006268
Other languages
French (fr)
Japanese (ja)
Inventor
英孝 宮▲崎▼
Original Assignee
日本未来科学研究所合同会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本未来科学研究所合同会社 filed Critical 日本未来科学研究所合同会社
Publication of WO2023195254A1 publication Critical patent/WO2023195254A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma

Definitions

  • the present invention relates to a plasma generation device and an air conditioner.
  • Patent Document 1 discloses a discharge unit that includes a discharge device that performs streamer discharge between a discharge electrode and a counter electrode that faces the discharge electrode, and a power supply device that boosts an externally supplied voltage and applies it to both electrodes.
  • An air conditioner having the following is disclosed.
  • the discharge device of Patent Document 1 describes that active species are generated in the air by discharge, and when these active species come into contact with odor components in the air to be treated, the odor components are oxidized and decomposed and removed. ing.
  • Patent Document 1 When applied to an air conditioner, the discharge device described in Patent Document 1 improves space utility by accommodating the power supply device and the discharge device in a case member and eliminating the need to route high-voltage electric wires. .
  • air conditioners become more sophisticated, there is a strong desire for air purification devices to be further miniaturized without sacrificing performance.
  • the present invention has been made in order to solve the above and other problems, and includes a plasma generation device capable of reducing the occupied space as much as possible while having the required air purification processing performance, and an air conditioner using the same.
  • a plasma generation device capable of reducing the occupied space as much as possible while having the required air purification processing performance, and an air conditioner using the same.
  • One purpose is to provide equipment.
  • One aspect of the present invention is to provide a discharge portion formed in a flat elongated strip by making a pair of strip-shaped conductive materials face each other with a layer made of a dielectric material and a gap interposed therebetween;
  • This plasma generation device includes a power supply unit that applies a voltage signal that changes over time between conductive materials.
  • Another aspect of the present invention is an air conditioner including the plasma generating device described above, wherein the discharge section is arranged facing an air passage of the air conditioner.
  • a plasma generation device that can reduce the occupied space as much as possible while having the required air purification processing performance, and an air conditioner using the plasma generation device.
  • FIG. 1 is a schematic cross-sectional view of an air conditioner equipped with a plasma generation device according to an embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing a part of the air conditioner shown in FIG. 1.
  • FIG. 3A is a schematic diagram showing a configuration example of a plasma generation device according to an embodiment of the present invention.
  • FIG. 3B is a cross-sectional view of the discharge section in the plasma generation device of FIG. 3A.
  • FIG. 3C is a partially enlarged view of the discharge section in FIG. 3B.
  • FIG. 4A is a partial plan view of a discharge section in a plasma generation device according to another embodiment of the present invention.
  • FIG. 4B is a cross-sectional view of the discharge section in the plasma generation device of FIG. 4A.
  • FIG. 4C is a partially enlarged view of the discharge section in FIG. 4B.
  • FIG. 5A is a cross-sectional view of a discharge section in a plasma generation device according to another embodiment of the present invention.
  • FIG. 5B is a partial perspective view of the discharge section in the plasma generation device of FIG. 5A.
  • FIG. 1 is a schematic diagram illustrating a cross section of an air conditioner 1 provided with a plasma generation device 100 of this embodiment.
  • the air conditioner 1 illustrated in FIG. 1 is an indoor unit that is connected to an outdoor unit (not shown) to form an air conditioning system.
  • the air conditioner 1 generally includes a blower fan 10, a baffle plate 20, heat exchangers 30A, 30B, drain pans 40A, 40B, and an intake filter 50 housed in a cabinet 60.
  • the blower fan 10 is configured as a cross-flow fan including a plurality of fan blades 12, and has a function of creating an air flow for taking outside air into the cabinet 60 and discharging the air after heat exchange to the outside. .
  • the air guide plate 20 has a guide function that defines an air passage S between the air guide plate 20 and the air blower fan 10 for efficiently discharging the air flow generated by the air blower fan 10 to the outside from the air outlet 62 of the cabinet 60. Or it is formed from a resin molded product.
  • the heat exchangers 30A and 30B are connected to a refrigerant circuit of an outdoor unit (not shown), and have a bent piping structure provided with a large number of fins. The heat exchangers 30A and 30B cool the air taken in from the outside using the heat of vaporization of the refrigerant compressed by the compressor of the outdoor unit.
  • the drain pans 40A, 40B serve as receptacles for condensed water adhering to the heat exchangers 30A, 30B.
  • the intake filter 50 has a function of removing foreign matter such as dust from the air taken into the cabinet 60 of the indoor unit from the outside.
  • the air outlet 62 of the cabinet 60 is provided with a wind direction plate 70 for adjusting the direction of air discharged to the outside.
  • FIG. 2 is a perspective view schematically showing the configuration of the air conditioner 1 around these elements.
  • the plasma generation device 100 has a pair of electrodes formed of a band-shaped conductive material to which a voltage signal that changes over time is supplied from a power supply unit to be described later, and generates atmospheric pressure low-temperature plasma by the discharge that occurs between the electrodes. It has the function of As shown in FIGS. 1 and 2, the plasma generation device 100 of this embodiment is formed as a flat and elongated band-shaped member equipped with the above-mentioned band-shaped conductive material electrode. Face the air passage S (the space between the blower fan 10 and the inner surface of the air guide plate 20) of the air flow inside the cabinet 60 generated by the blower fan 10 so that the longitudinal axis is along the axial direction of the blower fan 10. It is set up like this.
  • the ultraviolet light lamp 200 and the ultrasonic oscillator 300 are mounted so as to face the air passage S via a support frame 22 attached to the upper edge of the baffle plate 20.
  • the mounting location and mounting manner of the ultraviolet light lamp 200 and the ultrasonic oscillator 300 are not limited to the above example as long as they act effectively on the air flowing through the air passage S.
  • the ultraviolet light lamp 200 irradiates the air passage S with light having a wavelength in the ultraviolet region, mainly for the purpose of sterilization.
  • a light emitting device used as a general germicidal lamp can be used.
  • As a light source for example, an ultraviolet LED lamp can be used.
  • the ultraviolet light lamp 200 can remove or inactivate bacteria contained in the air flowing through the air passage S.
  • the ultrasonic oscillator 300 is a device that emits ultrasonic waves with a frequency on the order of several tens of kHz at an appropriate output, and is capable of damaging structures such as bacteria in the air or causing atmospheric pressure low-temperature plasma generated by the plasma generation device 100. It acts to support air purification by promoting the mixing of various active species with circulating air.
  • the surfaces of the fan blades 12 provided on the blower fan 10 and the surface of the air guide plate 20 facing the blower fan 10 may be subjected to surface treatments that increase the reflectance of light, such as mirror finishing. Processing may be performed. In this way, the energy generated from the atmospheric pressure low temperature plasma on the surfaces of the fan blades 12 and the baffle plate 20 is scattered within the air passage S, thereby promoting the generation of various active species.
  • the ozone filter 400 shown in FIG. 1 is provided near the air outlet 62 of the cabinet 60 in order to remove ozone (O 3 ) contained in active species generated by atmospheric pressure low temperature plasma. Thereby, it is possible to prevent the concentration of ozone discharged from the air conditioner 1 from exceeding the regulated value according to related laws and regulations, and to suppress the odor peculiar to ozone.
  • the ozone filter 400 can be suitably constructed using the same material as exhaust filters used in copy machines.
  • the discharge section 100A of the plasma generation device 100 faces the air passage S formed between the blower fan 10 and the baffle plate 20 in the cabinet 60 of the air conditioner 1. It is arranged like this.
  • the plasma generation device 100 includes a discharge section 100A and a power supply section 100B.
  • a first electrode 110 is provided on one surface of an elongated tape-shaped substrate 140 along the longitudinal direction thereof, and a second electrode 120 is provided on the other surface.
  • the substrate 140 is formed into an elongated tape shape using a dielectric material such as various plastic resins.
  • the material of the substrate 140 is selected to be suitable for generating dielectric barrier discharge between the electrodes.
  • the length, width, and thickness of the substrate 140 are determined in consideration of the dimensions of the mounting space within the cabinet 60 and stable dielectric barrier discharge. Note that in order to ensure insulation between the blower fan 10 and the inner surface of the baffle plate 20 to which the discharge section 100A is attached, a required creeping distance is ensured between the two.
  • the first electrode 110 and the second electrode 120 are each formed of an elongated strip-shaped conductive material, and for example, a copper foil tape with a thickness of about 0.1 mm is preferably used, or they are formed by applying a conductive paint. You may.
  • a first electrode 110 is formed on one surface of the substrate 140, and a second electrode 120 is formed on the other surface. Electrode terminals 130A and 130B are formed at one end of each of the first electrode 110 and the second electrode 120.
  • the first electrode 110 and the second electrode 120 are connected to the power supply section 100B via electrode terminals 130A and 130B, respectively. Note that the length, width, and thickness of the first electrode 110 and the second electrode 120 can be determined based on the dimensions of the substrate 140, the specifications of the high-frequency voltage applied between the electrodes, and the like.
  • the power supply section 100B is a power supply device that supplies a high frequency voltage signal to generate a dielectric barrier discharge between the first electrode 110 and the second electrode 120.
  • the power supply unit 100B receives, for example, DC 12V power from another power source in the air conditioner 1, and converts it into a voltage signal having a frequency in the microwave band or RF band by boosting and switching.
  • the voltage signal can be, for example, an alternating current sine wave, but is not limited thereto.
  • the voltage can be, for example, about several kVp-p.
  • the power supply unit 100B is configured to also supply power to the ultraviolet light lamp 200 and the ultrasonic oscillator 300, but these devices may be provided with separate power supplies. Further, the power supply section 100B may use an external power source connected to the air conditioner 1, for example, AC 100 V, 50/60 Hz, as input, instead of using the power source of the air conditioner 1.
  • FIG. 3B is a schematic cross-sectional view of the discharge section 100A
  • FIG. 3C is a partially enlarged view thereof.
  • the first electrode 110 and the second electrode 120 provided on both surfaces of the substrate 140 are arranged so that they overlap each other by a width ⁇ when viewed in the width direction of the substrate 140. has been done.
  • the second electrode 120 is molded with a cover layer 140A made of a suitable insulating resin material.
  • the discharge section 100A when a high frequency voltage is applied between the first electrode 110 and the second electrode 120, a dielectric barrier discharge occurs between them via the substrate 140, and approximately Atmospheric pressure low-temperature plasma is generated in a region designated by the symbol PL (hereinafter referred to as "plasma region PL").
  • This atmospheric-pressure low-temperature plasma acts on the surrounding air and water vapor, and generates, for example, singlet oxygen ( 1 O 2 ), ozone (O 3 ), hydroxyl radicals (OH), superoxide anion radicals (O 2 ⁇ ), hydroperoxy radical (HO 2 ), and hydrogen peroxide (H 2 O 2 ).
  • the discharge section 100A as a whole has a tape-like structure formed by laminating extremely thin layers of the first electrode 110, the substrate 140, the second electrode 120, and the cover layer 140A. It can be installed at a position facing the air passage S inside the air conditioner 1 and facing the blower fan 10, which is a cross flow fan, for example.
  • FIG. 4A shows a partial plan view of a discharge section 100A according to a modified example
  • FIG. 4B shows a schematic cross-sectional view thereof
  • FIG. 4C shows a partially enlarged view thereof.
  • the structure in which the first electrode 110 and the second electrode 120 are formed on both surfaces of the elongated substrate 140 is the same. Further, the positional relationship between the first electrode 110 and the second electrode 120 with the substrate 140 in between is also the same.
  • the configuration of the modified example differs in that a groove 112 is provided along the side edge of the portion of the first electrode 110 that overlaps with the second electrode 120.
  • the groove 112 is formed by removing the first electrode 110 so as to reach the dielectric substrate 140 at a short distance from the side edge of the first electrode 110. It is provided. Therefore, when a high frequency voltage is applied between the first electrode 110 and the second electrode 120, the groove portion 112 comes to act as a plasma region PL2 in addition to the plasma region PL1 corresponding to the plasma region PL described above. In the modified example, more active species are generated by the atmospheric pressure low-temperature plasma generated in the plasma regions PL1 and PL2 expanded in this way, so that the cleaning performance for the surrounding air can be improved. Note that the distance between the side edge of the first electrode 110 and the groove 112 may be determined based on the thickness of the substrate 140 and the like.
  • FIG. 5A shows a schematic cross-sectional view of the discharge section 100A of this embodiment
  • FIG. 5B shows a partial perspective view of the discharge section 100A.
  • the same components as in the first embodiment are given the same reference numerals.
  • the discharge section 100A of the second embodiment has an elongated thin plate shape overall. Therefore, as in the case of the first embodiment, there is an advantage that the space within the cabinet 60 of the air conditioner 1 can be effectively utilized for arrangement.
  • the electrode arrangement in the discharge section 100A is different from the first embodiment and its modification.
  • a first electrode 110 and a second electrode 120 made of a flat conductive material are arranged so that their surfaces face each other across a gap ⁇ , and their positional relationship is It is molded with an exterior body 160 made of an insulating material such as a suitable resin material so as to be held.
  • a dielectric layer 150 is formed on the opposing surfaces of the first electrode 110 and the second electrode 120, respectively, using a suitable resin material or the like.
  • the insulating exterior body 160 that constitutes the discharge section 110A in this embodiment by molding the first electrode 110 and the second electrode 120 includes, along the side surface of the discharge section 100A, An opening that communicates the gap ⁇ between the first electrode 110 and the second electrode 120 with the external space is formed as a slit.
  • the dimensions of the substrate 140, the first electrode 110, the second electrode 120, and the dimension of the gap ⁇ between the electrodes are determined by the mounting position of the discharge section 100A, the material of each member, and the voltage applied between the electrodes. It can be determined based on the specifications of the high frequency voltage, etc.
  • the discharge section 100A was configured according to the specifications below, voltage was applied, and it was confirmed that atmospheric pressure low-temperature plasma was stably generated.
  • a polyimide film (thickness: 0.05 mm), which is a material with a high dielectric breakdown voltage and can withstand high temperatures, was used and processed to have a length of 300 mm and a width of 10 mm.
  • the first electrode 110 and the second electrode 120 were made of copper foil sheets with a thickness of 0.05 mm, and had a length of 250 mm and a width of 6 mm.
  • the lap width ⁇ between the electrodes was set to 3 mm.
  • a sine wave of AC 50 Hz and 4 kVp-p was applied to the electrodes from the power supply unit 100B.
  • the groove portion 112 in the modified example had a width of 1 mm and a length of 200 mm.
  • As the first electrode 110 and the second electrode 120 copper foil sheets with a thickness of 0.05 mm were used, and the length was 250 mm and the width was 6 mm.
  • the dielectric layer 150 was formed of glass with a thickness of 2 mm and a length of 300 mm, and the gap ⁇ was 2 mm.
  • a sine wave of AC 50 Hz and 6 kVp-p was applied to the electrodes from the power supply unit 100B.
  • the present invention is not limited to the above examples.
  • a plasma generation device 100 includes a discharge section 100A formed in a flat and elongated strip shape, which is formed by making a pair of strip-shaped conductive materials face each other with a layer made of a dielectric material and a gap interposed therebetween. and a power supply section 100B that applies a voltage signal that changes over time between the pair of strip-shaped conductive materials.
  • the plasma generation device 100 is provided that can reduce the occupied space as much as possible while having the required air purification performance.
  • the discharge section 100A includes a substrate 140 that is a tape-shaped member made of a dielectric material, and a strip-shaped first electrode 110 disposed on one surface of the substrate 140 along the longitudinal direction of the substrate 140.
  • a band-shaped second electrode 120 is provided on the other surface of the substrate 140 along the longitudinal direction of the substrate 140, and is opposite to the side edge of the first electrode 110 in the cross section of the substrate 140. The side edges of the second electrode 120 may overlap by a predetermined distance when viewed in the width direction of the substrate 140.
  • the discharge section 100A reaches the substrate 140 along the side edge of the first electrode 110 on the side adjacent to the second electrode 120 over substantially the entire length of the first electrode 110 at a predetermined distance from the side edge.
  • the groove portion 112 may be provided as shown in FIG.
  • the discharge part 100A is formed by arranging a first electrode 110 formed of a strip-shaped conductive material and a second electrode 120 formed of a strip-shaped conductive material adjacent to each other with a predetermined interval apart, A dielectric layer 150 may be formed on surfaces of the first electrode 110 and the second electrode 120 that face each other.
  • atmospheric pressure low temperature plasma can be stably generated by dielectric barrier discharge.
  • the first electrode 110 and the second electrode 120 are sealed with an insulating material to form a discharge section 110A.
  • a passage ⁇ may be formed to allow communication between the two.
  • An air conditioner 1 includes any of the plasma generating devices 100 described above, and the discharge section 100A is arranged facing the air passage S of the air conditioner 1.
  • the space of the air passage S can be efficiently utilized to arrange the plasma generation device 100 and enjoy its air purifying effect.
  • At least one of an ultraviolet lamp 200 and an ultrasonic oscillator 300 connected to the power supply unit 100B may be provided facing the air passage S.
  • the surface of the fan blade 12 provided on the blower fan 10 and the surface of the air guide plate 20 facing the blower fan 10 may be surface-treated to reflect light.
  • the discharge section 100A of the plasma generation device 100 may be divided into a plurality of parts and disposed in a distributed manner so as to face the air passage S of the air conditioner 1.
  • the plasma generation device 100 is not limited to the air conditioner 1, but can be widely applied to devices for circulating indoor air, such as air cleaners, blowers, hot air heaters, etc.
  • the air conditioner 1 may be applied not only to a separate type having an outdoor unit and an indoor unit as described in the above embodiment, but also to other types of air conditioners such as a window-mounted integrated air conditioner. Can be done.
  • Air conditioner 10 Blow fan 12 Fan blade 20 Air guide plate 22 Support frame 30A, 30B Heat exchanger 40A, 40B Drain pan 50 Intake filter 60 Cabinet 62 Air outlet 70 Wind direction plate 100
  • Plasma generation device 100A Discharge section 100B Power supply section 110 No. 1 electrode 112 groove 120 2nd electrode 130A, 130B electrode terminal 140 substrate 140A cover layer 200 ultraviolet light lamp 300 ultrasonic oscillator 400 ozone filter PL, PL1, PL2 plasma region RS active species

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Plasma Technology (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

The present invention provides: a plasma generation device that has a required air cleaning process performance while making it possible to reduce the occupied space as much as possible; and an air conditioning device that uses the same. A plasma generation device (100) comprises: a discharge unit (100A) that is obtained by disposing a pair of conductive material bands oppositely from each other, with a gap and a layer constituted by a dielectric material being interposed therebetween, and that is formed in a flat, elongated band shape; and a power supply unit (100B) that applies to the pair of conductive material bands a voltage signal which changes over time. In an air conditioning device (1) comprising the plasma generation device (100), the discharge unit (100A) is disposed so as to face an air passage (S) of the air conditioning device (1).

Description

プラズマ生成装置及び空気調和装置Plasma generator and air conditioner
 本発明は、プラズマ生成装置及び空気調和装置に関する。 The present invention relates to a plasma generation device and an air conditioner.
 世界的な感染症の蔓延、大気汚染問題等により、人々の清浄な空気への関心が高まっている。建物内の冷暖房に使用される空気調和装置においても、空気浄化装置を備えたものが提案されている。例えば特許文献1は、放電電極とそれに対向する対向電極との間でストリーマ放電を行う放電装置と、外部から供給された電圧を昇圧して両電極へ印加する電源装置とを備えた放電ユニットを有する空気調和装置を開示している。特許文献1の放電装置は、放電により空気中で活性種が生成され、この活性種が被処理空気中の臭気成分と接触することで、臭気成分が酸化分解されて除去される旨を記載している。 Due to the worldwide spread of infectious diseases and air pollution issues, people's interest in clean air is increasing. BACKGROUND ART Air conditioning devices used for heating and cooling in buildings have also been proposed that include an air purification device. For example, Patent Document 1 discloses a discharge unit that includes a discharge device that performs streamer discharge between a discharge electrode and a counter electrode that faces the discharge electrode, and a power supply device that boosts an externally supplied voltage and applies it to both electrodes. An air conditioner having the following is disclosed. The discharge device of Patent Document 1 describes that active species are generated in the air by discharge, and when these active species come into contact with odor components in the air to be treated, the odor components are oxidized and decomposed and removed. ing.
特開2014-119186号公報Japanese Patent Application Publication No. 2014-119186
 特許文献1に記載されている放電装置は、空気調和装置に適用する上で、電源装置と放電装置とをケース部材に収容し、高圧電線の引き回しを排除することでスペースユーティリティを向上させている。しかし、空気調和装置の高機能化に伴い、空気浄化のための装置に対しては、性能を犠牲にすることなくさらなる小型化を実現することが切望されている。 When applied to an air conditioner, the discharge device described in Patent Document 1 improves space utility by accommodating the power supply device and the discharge device in a case member and eliminating the need to route high-voltage electric wires. . However, as air conditioners become more sophisticated, there is a strong desire for air purification devices to be further miniaturized without sacrificing performance.
 本発明は、上記の及び他の課題を解決するためになされたもので、所要の空気浄化処理性能を有しながら可及的に占有空間を縮小可能なプラズマ生成装置とそれを用いた空気調和装置を提供することを一つの目的としている。 The present invention has been made in order to solve the above and other problems, and includes a plasma generation device capable of reducing the occupied space as much as possible while having the required air purification processing performance, and an air conditioner using the same. One purpose is to provide equipment.
 本発明の一つの態様は、一対の帯状導電性材料を、誘電体材料からなる層と、空隙とを介して対向させてなり、扁平な細長い帯状に形成された放電部と、前記一対の帯状導電性材料の間に時間的に変化する電圧信号を印加する電源部と、を備えている、プラズマ生成装置である。 One aspect of the present invention is to provide a discharge portion formed in a flat elongated strip by making a pair of strip-shaped conductive materials face each other with a layer made of a dielectric material and a gap interposed therebetween; This plasma generation device includes a power supply unit that applies a voltage signal that changes over time between conductive materials.
 本発明の他の態様は、前記のプラズマ生成装置を備える空気調和装置であって、前記放電部が前記空気調和装置の空気通路に臨ませて配置されている、空気調和装置である。 Another aspect of the present invention is an air conditioner including the plasma generating device described above, wherein the discharge section is arranged facing an air passage of the air conditioner.
 本発明によれば、所要の空気浄化処理性能を有しながら可及的に占有空間を縮小可能なプラズマ生成装置とそれを用いた空気調和装置が提供される。 According to the present invention, there is provided a plasma generation device that can reduce the occupied space as much as possible while having the required air purification processing performance, and an air conditioner using the plasma generation device.
図1は、本発明の一実施形態に係るプラズマ生成装置を備えた空気調和装置の模式的断面図である。FIG. 1 is a schematic cross-sectional view of an air conditioner equipped with a plasma generation device according to an embodiment of the present invention. 図2は、図1の空気調和装置の一部を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing a part of the air conditioner shown in FIG. 1. FIG. 図3Aは、本発明の一実施形態に係るプラズマ生成装置の構成例を示す模式図である。FIG. 3A is a schematic diagram showing a configuration example of a plasma generation device according to an embodiment of the present invention. 図3Bは、図3Aのプラズマ生成装置における放電部の横断面図である。FIG. 3B is a cross-sectional view of the discharge section in the plasma generation device of FIG. 3A. 図3Cは、図3Bの放電部の一部拡大図である。FIG. 3C is a partially enlarged view of the discharge section in FIG. 3B. 図4Aは、本発明の他の実施形態に係るプラズマ生成装置における放電部の部分平面図である。FIG. 4A is a partial plan view of a discharge section in a plasma generation device according to another embodiment of the present invention. 図4Bは、図4Aのプラズマ生成装置における放電部の横断面図である。FIG. 4B is a cross-sectional view of the discharge section in the plasma generation device of FIG. 4A. 図4Cは、図4Bの放電部の一部拡大図である。FIG. 4C is a partially enlarged view of the discharge section in FIG. 4B. 図5Aは、本発明の他の実施形態に係るプラズマ生成装置における放電部の横断面図である。FIG. 5A is a cross-sectional view of a discharge section in a plasma generation device according to another embodiment of the present invention. 図5Bは、図5Aのプラズマ生成装置における放電部の部分斜視図である。FIG. 5B is a partial perspective view of the discharge section in the plasma generation device of FIG. 5A.
 以下、本発明につき、その実施形態に即して図面を用いて説明する。なお、以下の実施の形態により本発明が限定されるものでない。また、以下の説明において参照する各図は、本開示の内容を理解でき得る程度に形状、大きさ、及び位置関係を概略的に示してあるに過ぎない。即ち、本発明は、各図で例示された形状、大きさ、及び位置関係のみに限定されるものでない。 Hereinafter, the present invention will be explained using the drawings according to the embodiments thereof. Note that the present invention is not limited to the following embodiments. Furthermore, the figures referred to in the following description merely schematically illustrate the shape, size, and positional relationship to the extent that the content of the present disclosure can be understood. That is, the present invention is not limited to the shapes, sizes, and positional relationships illustrated in each figure.
<空気調和装置の概要>
 まず、本発明の一実施形態に係るプラズマ生成装置を設けた空気調和装置1について説明する。図1は、本実施形態のプラズマ生成装置100を設けた空気調和装置1の横断面を例示する模式図である。図1に例示する空気調和装置1は、図示を省略する室外機と接続されて空気調和システムを構成する室内機である。
<Overview of air conditioner>
First, an air conditioner 1 provided with a plasma generation device according to an embodiment of the present invention will be described. FIG. 1 is a schematic diagram illustrating a cross section of an air conditioner 1 provided with a plasma generation device 100 of this embodiment. The air conditioner 1 illustrated in FIG. 1 is an indoor unit that is connected to an outdoor unit (not shown) to form an air conditioning system.
 空気調和装置1は、概略、送風ファン10、導風板20、熱交換器30A,30B、ドレンパン40A,40B、及び吸気フィルター50が、キャビネット60に収容されてなる。図1の例では、紙面に向かって右手が、キャビネット60が取り付けられる壁側である。送風ファン10は、複数のファンブレード12を備えるクロスフローファンとして構成されており、キャビネット60内に外気を取り入れて、熱交換後の空気を外部へ放出するための空気の流れを作り出す機能を有する。導風板20は送風ファン10による空気流を効率よくキャビネット60の送風口62から外部へ放出するための空気通路Sを、送風ファン10との間に画定するガイドの機能を有し、金属板又は樹脂成型品により形成されている。熱交換器30A,30Bは、図示を省略している室外機の冷媒回路と接続されており、多数のフィンが設けられた屈曲パイピング構造を有する。熱交換器30A,30Bは、室外機の圧縮機で圧縮された冷媒の気化熱により外部から取り入れた空気を冷却する。ドレンパン40A,40Bは、熱交換器30A,30Bに付着する凝結水の受け皿をなす。吸気フィルター50は、外部から室内機のキャビネット60内に取り入れられる空気からほこり等の異物を除去する機能を有する。キャビネット60の送風口62には、外部へ排出される空気の向きを調整するための風向板70が設けられている。 The air conditioner 1 generally includes a blower fan 10, a baffle plate 20, heat exchangers 30A, 30B, drain pans 40A, 40B, and an intake filter 50 housed in a cabinet 60. In the example of FIG. 1, the right hand side when facing the page is the wall side to which the cabinet 60 is attached. The blower fan 10 is configured as a cross-flow fan including a plurality of fan blades 12, and has a function of creating an air flow for taking outside air into the cabinet 60 and discharging the air after heat exchange to the outside. . The air guide plate 20 has a guide function that defines an air passage S between the air guide plate 20 and the air blower fan 10 for efficiently discharging the air flow generated by the air blower fan 10 to the outside from the air outlet 62 of the cabinet 60. Or it is formed from a resin molded product. The heat exchangers 30A and 30B are connected to a refrigerant circuit of an outdoor unit (not shown), and have a bent piping structure provided with a large number of fins. The heat exchangers 30A and 30B cool the air taken in from the outside using the heat of vaporization of the refrigerant compressed by the compressor of the outdoor unit. The drain pans 40A, 40B serve as receptacles for condensed water adhering to the heat exchangers 30A, 30B. The intake filter 50 has a function of removing foreign matter such as dust from the air taken into the cabinet 60 of the indoor unit from the outside. The air outlet 62 of the cabinet 60 is provided with a wind direction plate 70 for adjusting the direction of air discharged to the outside.
<空気調和装置に設けられる空気清浄化のための構成>
 以上説明した図1の空気調和装置1には、プラズマ生成装置100、紫外光ランプ200、超音波発振器300、及びオゾンフィルター400が設けられている。これらの要素は、空気調和装置1において冷却あるいは昇温の処理がなされる空気に対して、有害成分、臭気成分の分解、除去等の作用をなすものである。図2に、これらの要素の周辺に関する空気調和装置1の構成を模式的に示す斜視図を示している。
<Configuration for air purification installed in air conditioner>
The air conditioner 1 of FIG. 1 described above is provided with a plasma generation device 100, an ultraviolet light lamp 200, an ultrasonic oscillator 300, and an ozone filter 400. These elements act to decompose and remove harmful components and odor components from the air that is cooled or heated in the air conditioner 1. FIG. 2 is a perspective view schematically showing the configuration of the air conditioner 1 around these elements.
 プラズマ生成装置100は、後述する電源部から時間的に変化する電圧信号が供給される一対の帯状導電材料で形成された電極を有し、その電極間で生起する放電によって大気圧低温プラズマを生成する機能を有する。図1、図2に示すように、本実施形態のプラズマ生成装置100は前記の帯状導電性材料電極を備えた扁平な細長い帯状の部材として形成されており、例えば図2に示すように、その長手が送風ファン10の軸方向に沿うように、送風ファン10によって生起されるキャビネット60内の空気流の空気通路S(送風ファン10と導風板20の内面との間の空間)に臨ませるように設けられている。このような構成により、キャビネット60内の空間を有効に利用しながら、後述のようにプラズマ生成装置100の大気圧低温プラズマによって生成される各種の活性種と空気通路S内を流れる空気との混合が促進され、空気の清浄化作用が促進される。プラズマ生成装置100の構成、作用については図面を参照して後述する。 The plasma generation device 100 has a pair of electrodes formed of a band-shaped conductive material to which a voltage signal that changes over time is supplied from a power supply unit to be described later, and generates atmospheric pressure low-temperature plasma by the discharge that occurs between the electrodes. It has the function of As shown in FIGS. 1 and 2, the plasma generation device 100 of this embodiment is formed as a flat and elongated band-shaped member equipped with the above-mentioned band-shaped conductive material electrode. Face the air passage S (the space between the blower fan 10 and the inner surface of the air guide plate 20) of the air flow inside the cabinet 60 generated by the blower fan 10 so that the longitudinal axis is along the axial direction of the blower fan 10. It is set up like this. With such a configuration, while effectively utilizing the space inside the cabinet 60, various active species generated by the atmospheric pressure low-temperature plasma of the plasma generation device 100 can be mixed with the air flowing in the air passage S, as described later. is promoted, and the air purification effect is promoted. The configuration and operation of the plasma generation device 100 will be described later with reference to the drawings.
 紫外光ランプ200と超音波発振器300とは、導風板20の上端縁に付設された支持フレーム22を介して、空気通路Sに臨むように取り付けられている。ただし、紫外光ランプ200と超音波発振器300の取り付け場所、取り付け態様は、空気通路S内を流通する空気に対して有効に作用する限りにおいては上記の例に限定されない。紫外光ランプ200は、主として殺菌作用のために、紫外領域の波長の光を空気通路Sに向けて照射する。紫外光ランプ200としては、一般的な殺菌灯として用いられる発光デバイスを用いることができる。光源としては、例えば紫外線LEDランプを利用することができる。紫外光ランプ200により、空気通路Sを流通する空気に含まれる細菌等を除去し、あるいは不活化することができる。超音波発振器300は、数10kHzオーダーの周波数の超音波を適宜の出力で放出するデバイスであり、空気中の細菌等の構造に損傷を与えたり、プラズマ生成装置100による大気圧低温プラズマで生起される各種の活性種と流通する空気との混合を促進したりして空気の清浄化を支援する作用を果たす。 The ultraviolet light lamp 200 and the ultrasonic oscillator 300 are mounted so as to face the air passage S via a support frame 22 attached to the upper edge of the baffle plate 20. However, the mounting location and mounting manner of the ultraviolet light lamp 200 and the ultrasonic oscillator 300 are not limited to the above example as long as they act effectively on the air flowing through the air passage S. The ultraviolet light lamp 200 irradiates the air passage S with light having a wavelength in the ultraviolet region, mainly for the purpose of sterilization. As the ultraviolet light lamp 200, a light emitting device used as a general germicidal lamp can be used. As a light source, for example, an ultraviolet LED lamp can be used. The ultraviolet light lamp 200 can remove or inactivate bacteria contained in the air flowing through the air passage S. The ultrasonic oscillator 300 is a device that emits ultrasonic waves with a frequency on the order of several tens of kHz at an appropriate output, and is capable of damaging structures such as bacteria in the air or causing atmospheric pressure low-temperature plasma generated by the plasma generation device 100. It acts to support air purification by promoting the mixing of various active species with circulating air.
 なお、上記に関して、送風ファン10に設けられているファンブレード12の表面、及び導風板20の送風ファン10と向かい合う面について、鏡面仕上げとするなど、光の反射率を増大させるような表面加工処理を施してもよい。このようにすると、ファンブレード12の表面、及び導風板20の表面において大気圧低温プラズマから発生するエネルギーが空気通路S内に散乱されるため、各種活性種の生成が促進される。 Regarding the above, the surfaces of the fan blades 12 provided on the blower fan 10 and the surface of the air guide plate 20 facing the blower fan 10 may be subjected to surface treatments that increase the reflectance of light, such as mirror finishing. Processing may be performed. In this way, the energy generated from the atmospheric pressure low temperature plasma on the surfaces of the fan blades 12 and the baffle plate 20 is scattered within the air passage S, thereby promoting the generation of various active species.
 図1に示すオゾンフィルター400は、大気圧低温プラズマによって生成される活性種に含まれるオゾン(O)を除去するために、キャビネット60の送風口62近くに設けられる。これにより、空気調和装置1から排出されるオゾンの濃度を関連法令による規制値を超えないようにするとともに、オゾン特有の臭気を抑制することができる。オゾンフィルター400は、コピー機において利用されている排気フィルターと同等の材料を用いて好適に構成することができる。 The ozone filter 400 shown in FIG. 1 is provided near the air outlet 62 of the cabinet 60 in order to remove ozone (O 3 ) contained in active species generated by atmospheric pressure low temperature plasma. Thereby, it is possible to prevent the concentration of ozone discharged from the air conditioner 1 from exceeding the regulated value according to related laws and regulations, and to suppress the odor peculiar to ozone. The ozone filter 400 can be suitably constructed using the same material as exhaust filters used in copy machines.
<プラズマ生成装置>
<<実施形態1>>
 次に、本実施形態の空気調和装置1に適用されているプラズマ生成装置について説明する。図3A~図3Cに、本実施形態におけるプラズマ生成装置100の構成を模式的に示している。図1,2に関して述べたように、プラズマ生成装置100の放電部100Aは、空気調和装置1のキャビネット60内において、送風ファン10と導風板20との間に形成される空気通路Sに臨むように配置される。図3Aに示すように、プラズマ生成装置100は、放電部100Aと電源部100Bとから構成される。放電部100Aは、細長いテープ状の基板140の長手方向に沿って、その一方の表面に第1電極110が、その他方の表面に第2電極120が設けられている。基板140は、各種プラスティック樹脂等の誘電体材料で細長いテープ状に形成されている。基板140の材料は、電極間で誘電体バリア放電を発生させるのに適したものを選定する。基板140の長さ、幅、厚さは、キャビネット60内の取り付け空間の寸法、及び安定した誘電体バリア放電を考慮して決定される。なお、送風ファン10と放電部100Aが取り付けられる導風板20の内面との絶縁を確保するため、両者間には所要の沿面距離を確保する。
<Plasma generation device>
<<Embodiment 1>>
Next, a plasma generation device applied to the air conditioner 1 of this embodiment will be explained. 3A to 3C schematically show the configuration of the plasma generation apparatus 100 in this embodiment. As described with reference to FIGS. 1 and 2, the discharge section 100A of the plasma generation device 100 faces the air passage S formed between the blower fan 10 and the baffle plate 20 in the cabinet 60 of the air conditioner 1. It is arranged like this. As shown in FIG. 3A, the plasma generation device 100 includes a discharge section 100A and a power supply section 100B. In the discharge section 100A, a first electrode 110 is provided on one surface of an elongated tape-shaped substrate 140 along the longitudinal direction thereof, and a second electrode 120 is provided on the other surface. The substrate 140 is formed into an elongated tape shape using a dielectric material such as various plastic resins. The material of the substrate 140 is selected to be suitable for generating dielectric barrier discharge between the electrodes. The length, width, and thickness of the substrate 140 are determined in consideration of the dimensions of the mounting space within the cabinet 60 and stable dielectric barrier discharge. Note that in order to ensure insulation between the blower fan 10 and the inner surface of the baffle plate 20 to which the discharge section 100A is attached, a required creeping distance is ensured between the two.
 第1電極110と第2電極120は、それぞれ細長い帯状の導電性材料で形成され、例えば厚さが0.1mm程度の銅箔テープが好適に用いられるほか、導電性塗料を塗布することにより形成してもよい。基板140の一方の表面上に第1電極110が、他方の表面上に第2電極120が基板表面に形成される。第1電極110、第2電極120の各一端部には、電極端子130A,130Bが形成される。第1電極110、第2電極120は、それぞれ電極端子130A,130Bを介して電源部100Bに接続される。なお、第1電極110、第2電極120の長さ、幅、厚さは、基板140の寸法、電極間に印加される高周波電圧の仕様等に基づいて決定することができる。 The first electrode 110 and the second electrode 120 are each formed of an elongated strip-shaped conductive material, and for example, a copper foil tape with a thickness of about 0.1 mm is preferably used, or they are formed by applying a conductive paint. You may. A first electrode 110 is formed on one surface of the substrate 140, and a second electrode 120 is formed on the other surface. Electrode terminals 130A and 130B are formed at one end of each of the first electrode 110 and the second electrode 120. The first electrode 110 and the second electrode 120 are connected to the power supply section 100B via electrode terminals 130A and 130B, respectively. Note that the length, width, and thickness of the first electrode 110 and the second electrode 120 can be determined based on the dimensions of the substrate 140, the specifications of the high-frequency voltage applied between the electrodes, and the like.
 電源部100Bは、第1電極110と第2電極120との間に誘電体バリア放電を発生させるための高周波電圧信号を供給する電源装置である。電源部100Bは、空気調和装置1内の他電源から例えばDC12V電源を受けて、昇圧、スイッチングによりマイクロ波帯、あるいはRF帯の周波数を有する電圧信号に変換する。電圧信号は、例えば交流の正弦波とすることができるが、これに限定されない。電圧は、例えば数kVp-p程度とすることができる。図3Aでは、電源部100Bが紫外光ランプ200、超音波発振器300にも電力を供給しているように構成しているが、これらのデバイスは別電源としてもよい。また、電源部100Bは、空気調和装置1の電源を利用するのでなく、空気調和装置1に接続される外部電源、例えばAC100V、50/60Hzをそのまま入力として利用してもよい。 The power supply section 100B is a power supply device that supplies a high frequency voltage signal to generate a dielectric barrier discharge between the first electrode 110 and the second electrode 120. The power supply unit 100B receives, for example, DC 12V power from another power source in the air conditioner 1, and converts it into a voltage signal having a frequency in the microwave band or RF band by boosting and switching. The voltage signal can be, for example, an alternating current sine wave, but is not limited thereto. The voltage can be, for example, about several kVp-p. In FIG. 3A, the power supply unit 100B is configured to also supply power to the ultraviolet light lamp 200 and the ultrasonic oscillator 300, but these devices may be provided with separate power supplies. Further, the power supply section 100B may use an external power source connected to the air conditioner 1, for example, AC 100 V, 50/60 Hz, as input, instead of using the power source of the air conditioner 1.
 次に、放電部100Aにおける大気圧低温プラズマの生成について説明する。図3Bは放電部100Aの模式的横断面図、図3Cはその部分拡大図である。図3Bに示すように、基板140の両表面にそれぞれ設けられている第1電極110、第2電極120は、基板140の幅方向で見ると、両者が幅αだけ互いにオーバーラップするように配置されている。第2電極120は、適宜の絶縁性樹脂材料で形成されているカバー層140Aによってモールドされている。このような構成により、放電部100Aにおいては、第1電極110と第2電極120との間に高周波電圧を印加すると、両者間で基板140を介した誘電体バリア放電が発生して、概略、符号PLを付した領域(以下「プラズマ領域PL」)に大気圧低温プラズマが生成される。この大気圧低温プラズマにより、周辺の空気、水蒸気に作用して、公知のように、例えば一重項酸素()、オゾン(O)、ヒドロキシラジカル(OH)、スーパーオキシドアニオンラジカル(O )、ヒドロペルオキシラジカル(HO)、過酸化水素(H)のような種々のラジカルを含む活性種(Reactive Species(RS))が生成される。プラズマ領域PLの周囲空気に含まれているウイルス、細菌等の微生物は、プラズマ放電と接触することで、マイクロ秒オーダーのごく短時間で構造が破壊され、また前記活性酸素種を含むマルチプラズマガスと混合されることでウイルスの不活化、微生物の殺菌が行われる。また前記のように、放電部100A全体としては、第1電極110、基板140、第2電極120及びカバー層140Aのそれぞれごく薄い層を積層してなるテープ状の構成を有するものとなるため、空気調和装置1内部の空気通路Sに臨ませて、例えばクロスフローファンである送風ファン10と向かい合う位置に取り付けることができる。 Next, the generation of atmospheric pressure low temperature plasma in the discharge section 100A will be explained. FIG. 3B is a schematic cross-sectional view of the discharge section 100A, and FIG. 3C is a partially enlarged view thereof. As shown in FIG. 3B, the first electrode 110 and the second electrode 120 provided on both surfaces of the substrate 140 are arranged so that they overlap each other by a width α when viewed in the width direction of the substrate 140. has been done. The second electrode 120 is molded with a cover layer 140A made of a suitable insulating resin material. With such a configuration, in the discharge section 100A, when a high frequency voltage is applied between the first electrode 110 and the second electrode 120, a dielectric barrier discharge occurs between them via the substrate 140, and approximately Atmospheric pressure low-temperature plasma is generated in a region designated by the symbol PL (hereinafter referred to as "plasma region PL"). This atmospheric-pressure low-temperature plasma acts on the surrounding air and water vapor, and generates, for example, singlet oxygen ( 1 O 2 ), ozone (O 3 ), hydroxyl radicals (OH), superoxide anion radicals (O 2 ), hydroperoxy radical (HO 2 ), and hydrogen peroxide (H 2 O 2 ). When microorganisms such as viruses and bacteria contained in the air surrounding the plasma region PL come into contact with the plasma discharge, their structures are destroyed in a very short time on the order of microseconds, and the multi-plasma gas containing the active oxygen species is destroyed. Viruses are inactivated and microorganisms are sterilized by mixing with. Furthermore, as described above, the discharge section 100A as a whole has a tape-like structure formed by laminating extremely thin layers of the first electrode 110, the substrate 140, the second electrode 120, and the cover layer 140A. It can be installed at a position facing the air passage S inside the air conditioner 1 and facing the blower fan 10, which is a cross flow fan, for example.
<<実施形態1の変形例>>
 次に、本実施形態の変形例に係るプラズマ生成装置100について説明する。図4Aに変形例に係る放電部100Aの部分平面図を、図4Bにその模式的横断面図を、図4Cにその部分拡大図を示している。変形例においても、細長い基板140の両表面に第1電極110、第2電極120がそれぞれ形成されている構成は同様である。また、基板140を挟んでの第1電極110、第2電極120の位置関係も同様である。変形例において構成が異なるのは、第1電極110の、第2電極120とオーバーラップしている部分の側端部に沿って、溝部112が設けられている点である。特に図4Cに明らかに図示しているように、溝部112は、第1電極110の側縁からわずかの距離を空けて、誘電体である基板140に達するように第1電極110を除去して設けられている。そのため、第1電極110、第2電極120間に高周波電圧を印加すると、先に説明したプラズマ領域PLに相当するプラズマ領域PL1に加えて、溝部112がプラズマ領域PL2として作用するようになる。変形例では、このように拡張されたプラズマ領域PL1,PL2において生成される大気圧低温プラズマによってより多くの活性種が生成されるので、周囲空気に対する清浄化性能を向上させることができる。なお、第1電極110の側縁部と溝部112との間の距離は、基板140の厚さ等に基づいて決定すればよい。
<<Modification of Embodiment 1>>
Next, a plasma generation apparatus 100 according to a modification of this embodiment will be described. FIG. 4A shows a partial plan view of a discharge section 100A according to a modified example, FIG. 4B shows a schematic cross-sectional view thereof, and FIG. 4C shows a partially enlarged view thereof. Even in the modified example, the structure in which the first electrode 110 and the second electrode 120 are formed on both surfaces of the elongated substrate 140 is the same. Further, the positional relationship between the first electrode 110 and the second electrode 120 with the substrate 140 in between is also the same. The configuration of the modified example differs in that a groove 112 is provided along the side edge of the portion of the first electrode 110 that overlaps with the second electrode 120. In particular, as clearly illustrated in FIG. 4C, the groove 112 is formed by removing the first electrode 110 so as to reach the dielectric substrate 140 at a short distance from the side edge of the first electrode 110. It is provided. Therefore, when a high frequency voltage is applied between the first electrode 110 and the second electrode 120, the groove portion 112 comes to act as a plasma region PL2 in addition to the plasma region PL1 corresponding to the plasma region PL described above. In the modified example, more active species are generated by the atmospheric pressure low-temperature plasma generated in the plasma regions PL1 and PL2 expanded in this way, so that the cleaning performance for the surrounding air can be improved. Note that the distance between the side edge of the first electrode 110 and the groove 112 may be determined based on the thickness of the substrate 140 and the like.
<<実施形態2>>
 次に、本発明の他の実施形態としての実施形態2に係るプラズマ生成装置100について説明する。実施形態2のプラズマ生成装置100にあっては、放電部100Aの構成が実施形態1と異なっている。図5Aに本実施形態の放電部100Aの模式的横断面図を、図5Bに放電部100Aの部分斜視図を示している。これらの図において、実施形態1と同等の構成には、同じ符号を付している。
<<Embodiment 2>>
Next, a plasma generation apparatus 100 according to Embodiment 2 as another embodiment of the present invention will be described. In the plasma generation device 100 of the second embodiment, the configuration of the discharge section 100A is different from that of the first embodiment. FIG. 5A shows a schematic cross-sectional view of the discharge section 100A of this embodiment, and FIG. 5B shows a partial perspective view of the discharge section 100A. In these figures, the same components as in the first embodiment are given the same reference numerals.
 実施形態2の放電部100Aは、全体的な形状は細長い薄板状である。そのため、実施形態1の場合と同様に、空気調和装置1のキャビネット60内の空間を有効に利用して配置することができるという利点を有する。実施形態2の場合、放電部100Aにおける電極配置が実施形態1及びその変形例と異なっている。図5Aに例示するように、本実施形態では、平板状導電性材料からなる第1電極110と第2電極120とが、空隙βを隔てて表面同士対向するように配置され、その位置関係が保持されるように、適宜の樹脂材料等の絶縁性材料である外装体160によってモールドされている。対向する第1電極110、第2電極120の面には適宜の樹脂材料等により誘電体層150がそれぞれ形成されている。図5Bを参照すると、第1電極110と第2電極120とをモールドして本実施形態における放電部110Aを構成している絶縁性の外装体160には、放電部100Aの側面に沿って、第1電極110、第2電極120の間の空隙βと外部空間とを連通させる開口部がスリットとして形成されている。 The discharge section 100A of the second embodiment has an elongated thin plate shape overall. Therefore, as in the case of the first embodiment, there is an advantage that the space within the cabinet 60 of the air conditioner 1 can be effectively utilized for arrangement. In the case of the second embodiment, the electrode arrangement in the discharge section 100A is different from the first embodiment and its modification. As illustrated in FIG. 5A, in this embodiment, a first electrode 110 and a second electrode 120 made of a flat conductive material are arranged so that their surfaces face each other across a gap β, and their positional relationship is It is molded with an exterior body 160 made of an insulating material such as a suitable resin material so as to be held. A dielectric layer 150 is formed on the opposing surfaces of the first electrode 110 and the second electrode 120, respectively, using a suitable resin material or the like. Referring to FIG. 5B, the insulating exterior body 160 that constitutes the discharge section 110A in this embodiment by molding the first electrode 110 and the second electrode 120 includes, along the side surface of the discharge section 100A, An opening that communicates the gap β between the first electrode 110 and the second electrode 120 with the external space is formed as a slit.
 実施形態2の放電部100Aの第1電極110、第2電極120の間に電源部100Bから高周波電圧を印加すると、第1電極110、第2電極120の間に、誘電体層150を介して誘電体バリア放電が発生し、両電極間の空隙βにおいて大気圧低温プラズマが生成される。空隙βには、外装体160の側面に設けられた前記の開口部を通じて外部空気が流通するため、実施形態1の場合と同様に、大気圧低温プラズマによる各種活性種の生成と、それによる空気の清浄化作用を享受することができる。なお、本実施形態においても、基板140、第1電極110、第2電極120の寸法、及び電極間の空隙βの寸法は、放電部100Aの取り付け位置、各部材の材質、電極間に印加する高周波電圧の仕様等に基づいて決定することができる。 When a high frequency voltage is applied from the power supply unit 100B between the first electrode 110 and the second electrode 120 of the discharge unit 100A of the second embodiment, a voltage is generated between the first electrode 110 and the second electrode 120 via the dielectric layer 150. A dielectric barrier discharge occurs, and atmospheric pressure low temperature plasma is generated in the gap β between both electrodes. Since external air flows into the gap β through the opening provided on the side surface of the exterior body 160, as in the case of Embodiment 1, various active species are generated by the atmospheric pressure low-temperature plasma and the resulting air You can enjoy the cleaning effect of. Also in this embodiment, the dimensions of the substrate 140, the first electrode 110, the second electrode 120, and the dimension of the gap β between the electrodes are determined by the mounting position of the discharge section 100A, the material of each member, and the voltage applied between the electrodes. It can be determined based on the specifications of the high frequency voltage, etc.
<実施例>
 各実施形態について、下記の仕様により放電部100Aを構成して電圧を印加し、大気圧低温プラズマが安定して生成されることを確認した。
<<実施形態1対応>>
 基板140として、絶縁破壊電圧が高く高温に耐える材質であるポリイミドフィルム(厚さ0.05mm)を使用し、長さ300mm、幅10mmに加工した。
 第1電極110、第2電極120は、厚さ0.05mmの銅箔シートを用い、長さ250mm、幅6mmとした。電極同士のラップ幅αは3mmとした。
 電源部100Bから電極には、交流50Hz、4kVp-pの正弦波を印加した。
 変形例の溝部112は、幅1mm、長さ200mmとした。
<<実施形態2対応>>
 第1電極110、第2電極120として、厚さ0.05mmの銅箔シートを用い、長さ250mm、幅6mmとした。
 誘電体層150は厚さ2mm、長さ300mmのガラスで形成し、空隙βは2mmとした。
 電源部100Bから電極には、交流50Hz、6kVp-pの正弦波を印加した。
 以上の実施例によって本発明が限定されるものではない。
<Example>
For each embodiment, the discharge section 100A was configured according to the specifications below, voltage was applied, and it was confirmed that atmospheric pressure low-temperature plasma was stably generated.
<<Compatible with Embodiment 1>>
As the substrate 140, a polyimide film (thickness: 0.05 mm), which is a material with a high dielectric breakdown voltage and can withstand high temperatures, was used and processed to have a length of 300 mm and a width of 10 mm.
The first electrode 110 and the second electrode 120 were made of copper foil sheets with a thickness of 0.05 mm, and had a length of 250 mm and a width of 6 mm. The lap width α between the electrodes was set to 3 mm.
A sine wave of AC 50 Hz and 4 kVp-p was applied to the electrodes from the power supply unit 100B.
The groove portion 112 in the modified example had a width of 1 mm and a length of 200 mm.
<<Compatible with Embodiment 2>>
As the first electrode 110 and the second electrode 120, copper foil sheets with a thickness of 0.05 mm were used, and the length was 250 mm and the width was 6 mm.
The dielectric layer 150 was formed of glass with a thickness of 2 mm and a length of 300 mm, and the gap β was 2 mm.
A sine wave of AC 50 Hz and 6 kVp-p was applied to the electrodes from the power supply unit 100B.
The present invention is not limited to the above examples.
 以上説明した実施形態によれば、以下のような効果を奏する。 According to the embodiment described above, the following effects are achieved.
 本発明の一実施形態によるプラズマ生成装置100は、一対の帯状導電性材料を、誘電体材料からなる層と、空隙とを介して対向させてなり、扁平な細長い帯状に形成された放電部100Aと、前記一対の帯状導電性材料の間に時間的に変化する電圧信号を印加する電源部100Bと、を備えている。 A plasma generation device 100 according to an embodiment of the present invention includes a discharge section 100A formed in a flat and elongated strip shape, which is formed by making a pair of strip-shaped conductive materials face each other with a layer made of a dielectric material and a gap interposed therebetween. and a power supply section 100B that applies a voltage signal that changes over time between the pair of strip-shaped conductive materials.
 このようにすれば、所要の空気浄化処理性能を有しながら可及的に占有空間を縮小可能なプラズマ生成装置100が提供される。 In this way, the plasma generation device 100 is provided that can reduce the occupied space as much as possible while having the required air purification performance.
 放電部100Aが、誘電体で形成されたテープ状部材である基板140と、基板140の一方の面上に、基板140の長手方向に沿って配設されている帯状の第1電極110と、基板140の他方の面上に、基板140の長手方向に沿って配設されている帯状の第2電極120と、を備え、基板140の横断面において、第1電極110の側端部と対向する第2電極120の側端部とが、基板140の幅方向で見て所定の距離だけオーバーラップしているとすることができる。 The discharge section 100A includes a substrate 140 that is a tape-shaped member made of a dielectric material, and a strip-shaped first electrode 110 disposed on one surface of the substrate 140 along the longitudinal direction of the substrate 140. A band-shaped second electrode 120 is provided on the other surface of the substrate 140 along the longitudinal direction of the substrate 140, and is opposite to the side edge of the first electrode 110 in the cross section of the substrate 140. The side edges of the second electrode 120 may overlap by a predetermined distance when viewed in the width direction of the substrate 140.
 このようにすれば、第1電極110と第2電極120との間に誘電体バリア放電を生起させ、それにより安定した大気圧低温プラズマを生成することができる。 In this way, a dielectric barrier discharge is generated between the first electrode 110 and the second electrode 120, thereby generating stable atmospheric pressure low temperature plasma.
 放電部100Aが、第1電極110の第2電極120と近接する側の側端部に沿って、前記側端部から所定の間隔を空けて第1電極110の略全長にわたって、基板140に達するように設けられている溝部112を有しているとしてもよい。 The discharge section 100A reaches the substrate 140 along the side edge of the first electrode 110 on the side adjacent to the second electrode 120 over substantially the entire length of the first electrode 110 at a predetermined distance from the side edge. The groove portion 112 may be provided as shown in FIG.
 このようにすれば、第1電極110と第2電極120との間で誘電体バリア放電が生起される領域が拡張され、大気圧低温プラズマによる活性種の生成量が増大する。 In this way, the region where dielectric barrier discharge occurs between the first electrode 110 and the second electrode 120 is expanded, and the amount of active species generated by the atmospheric pressure low-temperature plasma is increased.
 放電部100Aが、帯状の導電性材料で形成された第1電極110と、帯状の導電性材料で形成された第2電極120とを所定の間隔を隔てて隣り合うように配置してなり、第1電極110及び第2電極120の互いに対向する面に誘電体層150が形成されているとしてもよい。 The discharge part 100A is formed by arranging a first electrode 110 formed of a strip-shaped conductive material and a second electrode 120 formed of a strip-shaped conductive material adjacent to each other with a predetermined interval apart, A dielectric layer 150 may be formed on surfaces of the first electrode 110 and the second electrode 120 that face each other.
 このようにすれば、誘電体バリア放電により大気圧低温プラズマを安定して生成させることができる。 In this way, atmospheric pressure low temperature plasma can be stably generated by dielectric barrier discharge.
 第1電極110及び第2電極120が絶縁性材料によって封止されて放電部110Aを形成しており、放電部110Aには、第1電極110と第2電極120との間の空隙βと外部とを連通させる通路γが形成されているとしてもよい。 The first electrode 110 and the second electrode 120 are sealed with an insulating material to form a discharge section 110A. A passage γ may be formed to allow communication between the two.
 本発明の一実施形態による空気調和装置1は、前記いずれかのプラズマ生成装置100を備え、放電部100Aが空気調和装置1の空気通路Sに臨ませて配置されている。 An air conditioner 1 according to an embodiment of the present invention includes any of the plasma generating devices 100 described above, and the discharge section 100A is arranged facing the air passage S of the air conditioner 1.
 このようにすれば、空気通路Sのスペースを効率的に利用してプラズマ生成装置100を配置し、その空気浄化作用を享受することができる。 In this way, the space of the air passage S can be efficiently utilized to arrange the plasma generation device 100 and enjoy its air purifying effect.
 空気調和装置1において、空気通路Sに臨ませて、電源部100Bに接続されている紫外光ランプ200及び超音波発振器300の少なくともいずれかが設けられているとしてもよい。 In the air conditioner 1, at least one of an ultraviolet lamp 200 and an ultrasonic oscillator 300 connected to the power supply unit 100B may be provided facing the air passage S.
 このようにすれば、プラズマ生成装置100による活性種だけでなく、紫外線、超音波による空気浄化作用も得ることができる。 In this way, not only the active species produced by the plasma generation device 100 but also the air purifying effect by ultraviolet rays and ultrasonic waves can be obtained.
 送風ファン10に設けられているファンブレード12の表面と、送風ファン10と対向する導風板20の表面とが、光を反射するように表面処理されているとしてもよい。 The surface of the fan blade 12 provided on the blower fan 10 and the surface of the air guide plate 20 facing the blower fan 10 may be surface-treated to reflect light.
 このようにすれば、大気圧低温プラズマによる活性種生成の効率を高めることができる。 In this way, the efficiency of active species generation by atmospheric pressure low temperature plasma can be increased.
 以上、本発明のいくつかの実施形態について説明したが、これらの実施形態は、例示に過ぎず、本発明の技術的範囲を限定するものではない。本発明はその他の様々な実施形態を取ることが可能であり、上記実施形態と変形例の各構成を組み合わせることも可能である。更に、本発明の要旨を逸脱しない範囲で、省略や置換等種々の変更を行うことができる。これら実施形態やその変形は、本明細書等に記載された発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described above, these embodiments are merely illustrative and do not limit the technical scope of the present invention. The present invention can take various other embodiments, and it is also possible to combine the configurations of the above embodiments and modifications. Furthermore, various changes such as omissions and substitutions can be made without departing from the gist of the present invention. These embodiments and their modifications are included within the scope and gist of the invention described in this specification and the like, as well as within the scope of the invention described in the claims and its equivalents.
 例えば、プラズマ生成装置100の放電部100Aは、複数に分割して、空気調和装置1の空気通路Sに臨ませて分散配置するとしてもよい。 For example, the discharge section 100A of the plasma generation device 100 may be divided into a plurality of parts and disposed in a distributed manner so as to face the air passage S of the air conditioner 1.
 また、プラズマ生成装置100は、空気調和装置1に限定されることなく、空気清浄機、送風機、温風器等の、室内空気を循環流通させるための機器に広く適用することができる。空気調和装置1としては、上記実施形態で説明したような室外機と室内機とを備えるセパレート型だけでなく、窓設置型の一体型エアコン等の他の形式の空気調和装置にも適用することができる。 Further, the plasma generation device 100 is not limited to the air conditioner 1, but can be widely applied to devices for circulating indoor air, such as air cleaners, blowers, hot air heaters, etc. The air conditioner 1 may be applied not only to a separate type having an outdoor unit and an indoor unit as described in the above embodiment, but also to other types of air conditioners such as a window-mounted integrated air conditioner. Can be done.
1 空気調和装置
10 送風ファン
12 ファンブレード
20 導風板
22 支持フレーム
30A,30B 熱交換器
40A,40B ドレンパン
50 吸気フィルター
60 キャビネット
62 送風口
70 風向板
100 プラズマ生成装置
100A 放電部
100B 電源部
110 第1電極
112 溝部
120 第2電極
130A,130B 電極端子
140 基板
140A カバー層
200 紫外光ランプ
300 超音波発振器
400 オゾンフィルター
PL,PL1,PL2 プラズマ領域
RS 活性種
1 Air conditioner 10 Blow fan 12 Fan blade 20 Air guide plate 22 Support frame 30A, 30B Heat exchanger 40A, 40B Drain pan 50 Intake filter 60 Cabinet 62 Air outlet 70 Wind direction plate 100 Plasma generation device 100A Discharge section 100B Power supply section 110 No. 1 electrode 112 groove 120 2nd electrode 130A, 130B electrode terminal 140 substrate 140A cover layer 200 ultraviolet light lamp 300 ultrasonic oscillator 400 ozone filter PL, PL1, PL2 plasma region RS active species

Claims (8)

  1.  一対の帯状導電性材料を、誘電体材料からなる層と、空隙とを介して対向させてなり、扁平な細長い帯状に形成された放電部と、
     前記一対の帯状導電性材料の間に時間的に変化する電圧信号を印加する電源部と、
    を備えている、プラズマ生成装置。
    A discharge part formed in a flat and elongated band shape by making a pair of band-shaped conductive materials face each other with a layer made of a dielectric material and a gap interposed therebetween;
    a power supply section that applies a voltage signal that changes over time between the pair of strip-shaped conductive materials;
    A plasma generation device equipped with
  2.  前記放電部が、
     誘電体で形成された細長いテープ状部材である基板と、
     前記基板の一方の面上に、前記基板の長手方向に沿って配設されている帯状の第1電極と、
     前記基板の他方の面上に、前記基板の長手方向に沿って配設されている帯状の第2電極と、を備え、
     前記基板の横断面において、前記第1電極の側端部と対向する前記第2電極の側端部とが、前記基板の幅方向で見て所定の距離だけオーバーラップしている、
    請求項1に記載のプラズマ生成装置。
    The discharge section is
    a substrate that is a long and narrow tape-like member made of dielectric;
    a strip-shaped first electrode disposed on one surface of the substrate along the longitudinal direction of the substrate;
    a band-shaped second electrode disposed on the other surface of the substrate along the longitudinal direction of the substrate,
    In a cross section of the substrate, a side end of the first electrode and a side end of the opposing second electrode overlap by a predetermined distance when viewed in the width direction of the substrate;
    The plasma generation device according to claim 1.
  3.  前記第1電極の前記第2電極と近接する側の側端部に沿って、前記側端部から所定の間隔を空けて前記第1電極の略全長にわたって、前記基板に達するように設けられている溝部を有している、
    請求項2に記載のプラズマ生成装置。
    along the side edge of the first electrode adjacent to the second electrode, extending substantially the entire length of the first electrode at a predetermined distance from the side edge so as to reach the substrate. It has a groove where
    The plasma generation device according to claim 2.
  4.  前記放電部が、
     帯状の導電性材料で形成された第1電極と、帯状の導電性材料で形成された第2電極とを所定の間隔を隔てて隣り合うように配置してなり、前記第1電極及び前記第2電極の互いに対向する面に誘電体層が形成されている、
     請求項1に記載のプラズマ生成装置。
    The discharge section is
    A first electrode formed of a strip-shaped conductive material and a second electrode formed of a strip-shaped conductive material are arranged adjacent to each other at a predetermined interval, and the first electrode and the second electrode are arranged adjacently with a predetermined interval apart. A dielectric layer is formed on mutually opposing surfaces of the two electrodes,
    The plasma generation device according to claim 1.
  5.  前記第1電極及び前記第2電極が絶縁性材料によってモールドされて前記放電部を形成しており、前記放電部には、前記第1電極と前記第2電極との間の空隙と外部とを連通させる通路が形成されている、請求項4に記載のプラズマ生成装置。 The first electrode and the second electrode are molded with an insulating material to form the discharge section, and the discharge section includes a gap between the first electrode and the second electrode and the outside. The plasma generation device according to claim 4, wherein a passage for communication is formed.
  6.  請求項1~請求項5のいずれか一項に記載のプラズマ生成装置を備える空気調和装置であって、前記放電部が前記空気調和装置の空気通路に臨ませて配置されている、空気調和装置。 An air conditioner comprising the plasma generation device according to any one of claims 1 to 5, wherein the discharge section is arranged facing an air passage of the air conditioner. .
  7.  前記空気通路に臨ませて、前記電源部に接続されている紫外光照射デバイス及び超音波発振デバイスの少なくともいずれかが設けられている、請求項6に記載の空気調和装置。 The air conditioner according to claim 6, wherein at least one of an ultraviolet light irradiation device and an ultrasonic oscillation device connected to the power supply unit is provided facing the air passage.
  8.  前記送風ファンに設けられているブレードの表面と、前記送風ファンと対向する導風板表面とが、光を反射するように表面処理されている、請求項6に記載の空気調和装置。 The air conditioner according to claim 6, wherein a surface of a blade provided on the blower fan and a surface of a baffle plate facing the blower fan are surface-treated to reflect light.
PCT/JP2023/006268 2022-04-08 2023-02-21 Plasma generation device and air conditioning device WO2023195254A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-064300 2022-04-08
JP2022064300A JP2023154751A (en) 2022-04-08 2022-04-08 Plasma generation device and air conditioner

Publications (1)

Publication Number Publication Date
WO2023195254A1 true WO2023195254A1 (en) 2023-10-12

Family

ID=88242849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006268 WO2023195254A1 (en) 2022-04-08 2023-02-21 Plasma generation device and air conditioning device

Country Status (2)

Country Link
JP (1) JP2023154751A (en)
WO (1) WO2023195254A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005161023A (en) * 2003-03-04 2005-06-23 Daikin Ind Ltd Air cleaning member and air cleaning unit
JP2007258090A (en) * 2006-03-24 2007-10-04 Ngk Insulators Ltd Plasma generation electrode, plasma reactor, and exhaust gas clarification device
JP2008140584A (en) * 2006-11-30 2008-06-19 National Institute Of Advanced Industrial & Technology Flexible electrode for high temperature field
JP2018141595A (en) * 2017-02-28 2018-09-13 株式会社富士通ゼネラル Air conditioner
JP2018193876A (en) * 2017-05-12 2018-12-06 三星電子株式会社Samsung Electronics Co.,Ltd. Blower and air conditioner
JP2020205215A (en) * 2019-06-19 2020-12-24 国立大学法人東京農工大学 Plasma actuator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005161023A (en) * 2003-03-04 2005-06-23 Daikin Ind Ltd Air cleaning member and air cleaning unit
JP2007258090A (en) * 2006-03-24 2007-10-04 Ngk Insulators Ltd Plasma generation electrode, plasma reactor, and exhaust gas clarification device
JP2008140584A (en) * 2006-11-30 2008-06-19 National Institute Of Advanced Industrial & Technology Flexible electrode for high temperature field
JP2018141595A (en) * 2017-02-28 2018-09-13 株式会社富士通ゼネラル Air conditioner
JP2018193876A (en) * 2017-05-12 2018-12-06 三星電子株式会社Samsung Electronics Co.,Ltd. Blower and air conditioner
JP2020205215A (en) * 2019-06-19 2020-12-24 国立大学法人東京農工大学 Plasma actuator

Also Published As

Publication number Publication date
JP2023154751A (en) 2023-10-20

Similar Documents

Publication Publication Date Title
US7294176B2 (en) Surface discharge type air cleaning device
KR101632158B1 (en) Sterilizer for vehicle or room with plasma
US7453682B2 (en) Discharge device and air conditioner having said device
US7507275B2 (en) Discharge device and air conditioner having said discharge device
JP2008289801A (en) Gas purification device
KR20050019692A (en) Cleanness unit for air sterilization setting in the air conditioning line
EP1635123B1 (en) Surface discharge type air cleaning device
US20010046459A1 (en) High efficiency ozone generator
JP2020163232A (en) Air cleaner with plasma
WO2023195254A1 (en) Plasma generation device and air conditioning device
JP4163540B2 (en) Ventilator and building using the same
JP2008014527A (en) Air conditioner
KR20220099702A (en) Air cleaning device using atmospheric-pressure plasma
CN215138471U (en) Discharge structure and sterilization device
CN211503081U (en) Ion purifier
CN111735147A (en) Disinfection subassembly based on ultraviolet UVC
JP2000279492A (en) Gas cracking structure and gas cracking device and air conditioner using the same
WO2024006627A1 (en) Methods and apparatus for generating atmospheric pressure, low temperature plasma usable for affecting fluid flow
RU212357U1 (en) BACTERICIDAL AIR RECIRCULATION IRRADITOR
KR102603263B1 (en) Air purifier comprising rotating plasma electrode
CN218096450U (en) Sterilization and purification device and household appliance
CN117006572A (en) Filter screen sterilizing equipment and air purifier
CN210949188U (en) Air purification fan, elevator and air curtain door
JP2020171777A (en) Air cleaning device using plasma
KR20060024659A (en) Surface discharge type air cleaning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784547

Country of ref document: EP

Kind code of ref document: A1