WO2023194695A1 - Procede biologique de lutte contre les insectes piqueurs - Google Patents

Procede biologique de lutte contre les insectes piqueurs Download PDF

Info

Publication number
WO2023194695A1
WO2023194695A1 PCT/FR2023/050508 FR2023050508W WO2023194695A1 WO 2023194695 A1 WO2023194695 A1 WO 2023194695A1 FR 2023050508 W FR2023050508 W FR 2023050508W WO 2023194695 A1 WO2023194695 A1 WO 2023194695A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
wax
microcapsules
weight
insecticide
Prior art date
Application number
PCT/FR2023/050508
Other languages
English (en)
Inventor
Olivier Guerret
Yannick ESCUDIE
Original Assignee
Melchior Material And Life Science France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Melchior Material And Life Science France filed Critical Melchior Material And Life Science France
Publication of WO2023194695A1 publication Critical patent/WO2023194695A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P7/00Arthropodicides
    • A01P7/04Insecticides
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/26Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests in coated particulate form
    • A01N25/28Microcapsules or nanocapsules
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N27/00Biocides, pest repellants or attractants, or plant growth regulators containing hydrocarbons
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/10Animals; Substances produced thereby or obtained therefrom
    • A01N63/14Insects

Definitions

  • the present invention relates to a method for combating biting insects such as aphids using microcapsules containing one or more attractant substances which have an attractive effect on predators of said biting insects.
  • the microcapsules can be used in combination with an asphyxiating and/or drying insecticide.
  • the present invention therefore also relates to a composition comprising microcapsules containing one or more attractant substances and an asphyxiating and/or drying insecticide, and its preparation process.
  • Aphids are biting insects causing great damage to crops due to injuries inflicted on plants but also to diseases of which they can be vectors. Furthermore, aphids are capable of reproducing by mating and parthenogenesis, which makes them very prolific.
  • the first method of control is to use molecular, synthetic insecticides such as products based on cypermethrin, lambda-cyhalothrin or deltamethrin, or natural such as products based on pyrethrum for example.
  • molecular, synthetic insecticides such as products based on cypermethrin, lambda-cyhalothrin or deltamethrin, or natural such as products based on pyrethrum for example.
  • These molecules act by poisoning aphids according to various biochemical mechanisms. These products are very effective but by acting on a large scale on very large colonies of aphids, a selection of individuals less sensitive or even resistant to these insecticides takes place naturally. The selection of aphids induces a rapid and invasive spread of these resistant strains.
  • a second method of control with insecticides exists and consists of using fatty or surface-active substances such as paraffins, vegetable oils or soaps. These products sprayed on plants attacked by aphids have an asphyxiating (for paraffins) and drying (for soaps or surfactants) effect on the insects they submerge. These products are therefore very effective when aphids are affected by spraying but as many colonies protect themselves by wrapping leaves around them, one passage is never sufficient and the proliferation of aphid populations from hidden foci in the vegetation involves numerous passages, which leads to significant costs. The doses used are also very high (with approximately 15 to 30 g per ha per application), the risk of soil and runoff pollution is significant in the long term. Such products are described in particular in EP3442333.
  • a third method of biological control consisted of releasing aphid predators such as aphidivorous ladybugs, lacewings and hoverflies. These insects in the form of larvae or adults are capable of overcoming aphid colonies but their effect is delayed in relation to the invasion of aphids since enough aphids are needed for their predators to develop sufficiently to have a cleansing effect of a culture. Depending on climatic effects, the release of predators may have to be repeated several times and the farmer cannot know whether the ladybugs or lacewings will stay in his fields or prefer to go to neighboring areas richer in aphids such as wooded areas. .
  • Capsule suspensions suitable for these application methods must have particles less than 20 micrometers.
  • the semiochemical encapsulation methods of the prior art are not satisfactory due to the viscosity of the suspensions and the particle sizes obtained which lead to the clogging of the spraying means. This viscosity is notably linked to the size of the particles for encapsulation. It is therefore necessary to find a solution that is easy to implement, that is to say easily sprayable.
  • the applicant has therefore found a way to use predators present in the ecosystem to effectively combat aphids, while optimizing application costs.
  • This means consists of the use of suspensions of microcapsules containing one or more substances naturally emitted by biting insects, such as aphids, or plants attacked by said biting insects, such as aphids, having an attractive effect on predators of these stinging insects, such as aphidivorous ladybugs, lacewings or hoverflies.
  • These microcapsules therefore have the effect of attracting these predators to the plot to clean the centers of biting insects, such as aphids, and possibly to prevent the arrival of new centers of biting insects, such as aphids.
  • the subject of the present invention is a method of combating biting insects comprising the application to plants to be treated of microcapsules containing one or more attractant substances which have an attractive effect on predators of said biting insects.
  • the method will also include the application to the plants to be treated of an asphyxiating and/or drying insecticide, preferably simultaneously with the application of the microcapsules. More particularly, the method will include the application, in particular spraying, to the plants to be treated of a mixture comprising an asphyxiating and/or drying insecticide and said microcapsules.
  • the present invention therefore also relates to a composition comprising said asphyxiating and/or drying insecticide and said microcapsules.
  • the composition comprises from 1% to 3%, preferably from 2% to 3% by weight of the asphyxiating and/or drying insecticide, and from 0.01 to 0.1%, preferably from 0.02% to 0.05% by weight of the microcapsules, and is useful as a slurry in a method according to the invention.
  • the composition comprises from 30% to 99%, preferably from 60% to 99% by weight of the asphyxiating and/or drying insecticide, and from 0.1% to 4%, preferably of 0.6% to 2% by weight of the microcapsules, and is useful as a concentrated premix intended to be diluted before use to form the slurry useful in a method according to the invention.
  • Such a composition may also comprise a surfactant, an anti-foaming agent, one or more additives, advantageously chosen from anti-microbial agents, anti-oxidant agents and mixtures thereof.
  • the present invention also relates to a process for preparing a composition according to the invention comprising the addition of a suspension of microcapsules to the asphyxiating and/or drying insecticide, optionally mixed with the surfactant, the anti-foaming agent. , and the additives, when present, advantageously at a temperature of 15°C to 30°C, preferably 18°C to 25°C.
  • the present invention therefore relates to a method for combating biting insects comprising the application to plants to be treated of microcapsules containing one or more attractant substances which have an attractive effect on predators of said biting insects.
  • This method can be used to treat plants such as beets; fruit trees such as apple trees, pear trees, peach trees, or plum trees; cereals such as wheat or barley; market garden plants such as beans, artichokes, carrots, potatoes, beans, or peas, etc.
  • biting insect also called biting-sucking insect or sucking insect, we mean, within the meaning of the present invention, an insect which feeds on the sap of plants, by biting these plants, then sucking the sap.
  • biting insect also called biting-sucking insect or sucking insect, we mean, within the meaning of the present invention, an insect which feeds on the sap of plants, by biting these plants, then sucking the sap.
  • Attractant substance is meant, within the meaning of the present invention, one or more substances which have an attractive effect on predators of biting insects, such substances being naturally emitted by biting insects or plants attacked by said biting insects.
  • Predators of biting insects such as aphids, are more particularly aphidiphagous insects such as braconid insects, coccinellids (ladybugs), syrphids, anthocorids, chrysopids or a combination of these.
  • these are ladybugs, especially 7-spotted or 11-spotted, lacewings, hoverflies or a combination of these.
  • the attractant substance(s) will be more particularly p-farnesene (e.g. E-p-farnesene) alone or in mixture with one or more substances chosen from camphene, salicylic esters (in particular alkyl esters having from 1 to 6 carbon atoms) such as methyl salicylate, E-2-hexenal, Z-3-hexenyl acetate, 2-phenyl ethanol, p-ocimene, benzyl alcohol, and a combination thereof, the mixture advantageously containing at least 50% by weight of p-farnesene.
  • These molecules are identified attractants of aphid predators (see Han & al. J. Agric. Food Chem. 2002, 50, 2571).
  • the method according to the invention will also include the application to the plants to be treated of an asphyxiating and/or drying insecticide, preferably simultaneously with the application of the microcapsules. More particularly, the method will include the application, in particular spraying, to the plants to be treated of a mixture comprising an asphyxiating and/or drying insecticide and said microcapsules.
  • the porridge may contain, in relation to the total weight of the porridge, 1% at 3%, preferably from 2% to 3% by weight of the asphyxiating and/or drying insecticide, and from 0.01 to 0.1%, preferably from 0.02% to 0.05% by weight of the microcapsules.
  • microcapsules used in the method according to the invention advantageously have a median diameter D50 ranging from 0.5 pm to 20 pm, preferably from 0.8 pm to 10 pm.
  • median diameter D50 of microcapsules is meant, within the meaning of the present invention, the median diameter of a distribution of microcapsules, that is to say the diameter such that 50% of the microcapsules by volume have a smaller diameter or equal to this value and that 50% of the microcapsules by volume have a diameter greater than this value. It is measured by laser diffraction, in particular using a Mastersizer 3000 device, in particular according to the method described in the experimental part.
  • the microcapsules according to the invention comprise a core containing the attractant substance(s), this core being surrounded by a solid outer envelope.
  • the microcapsules comprise:
  • a core comprising a mixture of wax, vegetable oil and the attractant substance(s).
  • an outer envelope surrounding the core comprising a HASE type copolymer, optionally neutralized, totally or partially, in the form of a sodium, potassium or ammonium salt,
  • microcapsules comprise:
  • a core comprising a mixture of a fatty substance having a melting point ranging from 25°C to 75°C, preferably ranging from 25°C to 70°C, more preferably from 25°C to 65°C (for example from 30°C to 60°C), and the attractant substance(s).
  • an outer envelope surrounding the core comprising a HASE type copolymer, optionally neutralized, totally or partially, in the form of a sodium, potassium or ammonium salt.
  • the core of the microcapsules advantageously represents 99.8% to 95% by weight of the total weight of the microcapsules.
  • the heart comprises the attractive substance(s), advantageously mixed with a wax and an oil.
  • the core comprises, in particular is constituted by, a mixture of wax, oil, the attractant substance(s), and one or more additives, preferably chosen from an anti-UV additive, a antioxidant and a mixture thereof.
  • the heart will advantageously contain, in relation to the weight of the heart:
  • the heart may contain 0% to 7% additives.
  • the core comprises, in particular is constituted by, a mixture of a fatty substance, the attractant substance(s), and one or more additives, preferably chosen from an anti- UV, an antioxidant and a mixture thereof, the fatty substance having a melting point ranging from 25°C to 75°C, preferably ranging from 25°C to 70°C, more preferably from 25°C to 65°C °C (for example from 30°C to 60°C).
  • the heart will advantageously contain, in relation to the weight of the heart:
  • the core may contain from 0% to 7% by weight of one or more additives.
  • wax is meant, for the purposes of the present invention, a compound that is lipophilic and solid at room temperature (approximately 25°C) and atmospheric pressure (1013.25 hPa), preferably of natural origin.
  • the wax has a melting temperature above 45°C at atmospheric pressure.
  • the waxes capable of being used in a composition according to the invention can be chosen from waxes of animal origin, waxes of plant origin, mineral waxes, synthetic waxes and their mixtures.
  • wax of animal origin we can cite beeswax, lanolin wax, or even Chinese insect wax.
  • wax of plant origin we can cite rice wax, carnauba wax, candelilla wax, jojoba wax, ouricurry wax, esparto wax, cork fiber wax, sugar cane wax, Japanese wax, or even sumac wax.
  • mineral wax we can cite montan wax, microcrystalline waxes, paraffins, or even ozokerite.
  • waxes As synthetic wax, we can cite polyethylene waxes, waxes obtained by the Fisher-Tropsch synthesis, or even waxy copolymers and their esters.
  • the hydrogenated derivatives of the waxes mentioned above can also be used as wax in the context of the present invention.
  • waxes obtained by transesterification and hydrogenation of oils of vegetable origin such as castor or olive oil, such as the waxes sold under the names Phytowax ricin 16L64®, Phytowax ricin 22L73® and Phytowax Olive 18L57® by the company SOPHIM.
  • the wax is chosen from the group consisting of beeswax, lanolin wax, Chinese insect wax, rice wax, carnauba wax, candelilla wax, jojoba wax, ouricurry wax, esparto wax, cork fiber wax, sugar cane wax, Japanese wax, sumac wax, montan wax, microcrystalline waxes, and mixtures thereof.
  • oil is meant, within the meaning of the present invention, a fatty compound, liquid at room temperature and atmospheric pressure, immiscible with water and non-volatile.
  • the oil according to the invention will be a vegetable oil advantageously chosen from the group consisting of sunflower oil, peanut oil, soybean oil, rapeseed oil, corn oil, olive oil, grape oil, walnut oil, flaxseed oil, palm oil, coconut oil, argan oil, avocado oil, almond oil, hazelnut oil, pistachio oil, rice oil, cottonseed oil, wheat germ oil, sesame oil, and mixtures thereof.
  • the oil of animal origin will advantageously be chosen from the group consisting of cod liver oil, shark oil and their mixtures.
  • Fatty substances having a melting point ranging from 25°C to 75°C, preferably ranging from 25°C to 70°C, more preferably from 25°C to 65°C (for example from 30°C to 60°C C), capable of being used in a composition according to the invention can be chosen from hydrogenated or non-hydrogenated coconut oil, beeswax, lanolin wax, solid paraffin, and mixtures thereof.
  • One or more additives may also be present in the core of the microcapsules, preferably chosen from an anti-UV additive, an antioxidant and a mixture of these.
  • Anti-UV additives or antioxidants well known to those skilled in the art can be added to limit the oxidation reactions caused by oxygen on the surface of the particles such as tert-butylhydroxytoluene (BHT), tert-butylhydroxyanisole (BHA), tocopherol, oxybenzone, octabenzone, derivatives of the benzotriazole family (such as 2-(2 , -hydroxy-3',5 , -tertamylphenyl)benzotriazole, or 2-(2 '-hydroxy-3'-tert-butyl-5'-methyl-phenyl)-5-chlorobenzotriazole), propyl gallate, or derivatives of 4-tetramethyl-piperidine, notably known under the name HALS ("hindered amine light stabilizers” in English, or hindered amine photo-stabilizers) and described in Schaller, C., Rogez, D.
  • HALS hindered amine light stabilizers
  • the outer shell of the microcapsules will advantageously represent 0.2% to 5% by weight of the total weight of the microcapsules.
  • the envelope will advantageously comprise a copolymer of the HASE type, optionally neutralized, totally or partially, in the form of a sodium, potassium or ammonium salt.
  • HASE type copolymer HASE being the abbreviation of “Hydrophobically modified Alkali Swellable Emulsion”, namely an emulsion capable of swelling in an alkaline medium modified in a hydrophobic manner
  • a copolymer of (meth)acrylic acid eg methacrylic acid
  • alkyl acrylate eg ethyl acrylate
  • - m is an integer greater than or equal to 5, in particular between 10 and 40, preferably between 10 and 30, and
  • n H2n+i a hydrocarbon group of formula C n H2n+i in which n is an integer between 9 and 25, preferably between 10 and 22 and even more preferably equal to 12, 16 or 22.
  • the group R is therefore hydrophobic.
  • carboxylic acid functions (COOH) carried by the HASE type copolymer is in salt form, and more particularly in sodium, potassium or ammonium salt form.
  • the HASE type copolymer comprises, in particular consists of, relative to the total weight of the copolymer:
  • ⁇ m is an integer greater than or equal to 5, in particular between 10 and 40, preferably between 10 and 30, and
  • n H2n+i a hydrocarbon group of formula C n H2n+i in which n is an integer between 9 and 25, preferably between 10 and 22 and even more preferably equal to 12.
  • the HASE type copolymer can be prepared for example according to one of the methods described in WO2011/104599, WO201 1/104600 and EP1778797. This may be Pharma 38 or Viscoatex 730LV from the Coatex company.
  • the microcapsules according to the invention may be presented more particularly in the form of a suspension.
  • the suspension of microcapsules may contain from 10% to 50%, preferably from 20% to 40% by weight of microcapsules, relative to the total weight of the suspension.
  • Such a suspension can be prepared according to the procedures described in US2018/0064102.
  • microcapsules can be prepared by a process comprising the following steps:
  • the fatty substance resulting from their mixture or the fatty substance having a melting point ranging from 25°C to 75°C, preferably ranging from 25°C to 70°C, more preferably from 25°C to 65°C (for example from 30°C to 60°C),
  • the fatty phase having a temperature higher than the melting temperature of the wax or the fatty substance
  • the fatty phase is prepared in step (a) so as to obtain a mixture of wax/oil or fatty substance, attractant substance(s), and possibly one or more additives having the composition of the heart described above.
  • the fatty phase is maintained, preferably with stirring, at a temperature higher than the melting temperature of the wax so as to be liquid.
  • the fatty phase is at a temperature of 50°C to 85°C, in particular 60°C to 80°C.
  • the fatty phase is prepared by mixing the oil and the additive(s) which is heated to a temperature higher than the melting temperature of the wax, then adding the wax, then adding the attractant substance(s).
  • the aqueous solution of step (b) may be prepared by basifying an aqueous solution comprising the HASE type copolymer by adding a base, so as to obtain a pH greater than or equal to 7.6 (e.g. 7 .6 to 10), in particular greater than or equal to 8, in particular from 8 to 10.
  • This base will advantageously be chosen from sodium or potassium carbonate, ammonium hydroxide or ammonia in aqueous solution, sodium hydroxide, potassium hydroxide and combinations thereof.
  • the aqueous solution comprises from 0.1% to 10%, in particular from 0.1% to 5%, preferably from 0.1% to 1%, by weight of the HASE type copolymer relative to the weight of the aqueous solution.
  • concentration of HASE type copolymer in the aqueous solution makes it possible to influence the size of the final microcapsules. Indeed, the size of the final microcapsules decreases when the concentration of HASE type copolymer increases.
  • This aqueous solution is then heated to a temperature substantially identical to that of the fatty phase.
  • substantially identical temperature to that of the fatty phase, we advantageously mean a temperature not varying by more than 10°C, in particular by more than 5°C, relative to the temperature of step (a).
  • the temperature of step (b) will be identical to that of step (a).
  • the aqueous solution is advantageously at a temperature of 50°C to 85°C, in particular 60°C to 80°C.
  • step (b) the fatty phase having the temperature of step (a) is added to the aqueous solution having the temperature of step (b).
  • the mixture is then stirred so as to form a dispersion of fatty phase droplets in the aqueous solution.
  • the fatty phase droplets formed in the aqueous solution will form the core of the microcapsules.
  • Acidification makes it possible to precipitate the HASE type copolymer present in the aqueous solution on the droplets which then become microcapsules comprising the core based on the fatty phase surrounded by the solid envelope based on the HASE type copolymer. These particles are dispersed in water and thus form an aqueous suspension of the microcapsules.
  • the acidification is carried out by adding an acid such as hydrochloric acid, phosphoric acid, sulfuric acid, an organic acid of the carboxylic acid type (particularly acetic acid or propionic acid) or a mixture of these, in particular phosphoric acid, until reaching a pH of 6 to 7.5, preferably 6.5 to 7.2.
  • This acid is preferably added in the form of an aqueous solution.
  • the temperature of the aqueous suspension of the microcapsules thus obtained is then advantageously brought to a temperature below the melting point of the wax, in particular at a temperature between 20°C and 30°C.
  • asphyxiating and/or drying insecticide is meant, within the meaning of the present invention, a liquid substance which asphyxiates and/or dries the stinging insect when this substance coats the stinging insect, in particular when the stinging insect is covered by said substance.
  • the asphyxiating and/or drying insecticide may more particularly be a paraffin, a vegetable oil, a silicone oil, a soap, in particular synthetic or natural, or a combination of these, advantageously a paraffin, a soap, in particular synthetic or natural, or a combination thereof, preferably paraffin.
  • the paraffin may more particularly be a liquid paraffin having a pour point lower than -5°C, in particular measured according to the ASTM D97 standard.
  • the vegetable oil may be as defined above.
  • the soap could be black soap.
  • the asphyxiating and/or drying insecticide may be presented more particularly in the form of an emulsion, for example mixed with a surfactant and/or an antifoaming agent.
  • the surfactant will preferably be chosen from nonionic surfactants such as polyalkoxylated fatty acids, fatty acid and sorbitan esters, (poly)alkoxylated fatty acid and sorbitan esters, alkoxylated alkylphenols, alkoxylated fatty alcohols. , esters of fatty acids and glycerol and combinations thereof.
  • the antifoam agent may be chosen from organosiloxanes and their polymeric forms, organosilicones, polyethers and polyesters of glycerides and combinations thereof.
  • composition according to the invention comprises said asphyxiating and/or drying insecticide and said microcapsules comprising the attractant substance(s).
  • the asphyxiating and/or drying insecticide and the microcapsules comprising the attractant substance(s) are in particular as defined above.
  • the composition comprises from 1 to 3 parts, preferably from 2 to 3 parts by weight of the asphyxiating and/or drying insecticide, and from 0.01 to 0.1 parts, preferably from 0.02 to 0. .05 parts by weight of the microcapsules.
  • the composition comprises from 1% to 3%, preferably from 2% to 3% by weight of the asphyxiating and/or drying insecticide, and from 0.01 to 0.1%, preferably from 0.02% to 0.05% by weight of the microcapsules, and is useful as a slurry in a method according to the invention.
  • the composition comprises from 30% to 99%, preferably from 60% to 99% by weight of the asphyxiating and/or drying insecticide, and from 0.1% to 4%, preferably of 0.6% to 2% by weight of the microcapsules, and is useful as a concentrated premix intended to be diluted before use to form the slurry.
  • composition according to the invention may also contain a surfactant (to form an emulsion) and/or an anti-foaming agent (to prevent the formation of foam during the preparation of the emulsion).
  • a surfactant to form an emulsion
  • an anti-foaming agent to prevent the formation of foam during the preparation of the emulsion.
  • the surfactant and the antifoaming agent are in particular as defined above.
  • composition could thus include:
  • composition will advantageously comprise, relative to the total weight of the composition:
  • the composition may also include additives making it possible to improve the stability of the mixture from a microbiological point of view or from the point of view of resistance to oxidation stimulated by UV radiation.
  • the composition will advantageously comprise one or more additives, advantageously chosen from antimicrobial agents, antioxidant agents and mixtures thereof, such additives being well known to those skilled in the art. This or these additives may be present in an amount of 0.1 to 2 parts by weight (e.g. in an amount of 0.1% to 2% by weight in the premix).
  • the anti-microbial agent may be chosen from hydrogen peroxide, peracetic acid, perpropionic acid, products from the isothiazole family.
  • the antioxidant agent may be chosen from butyl-hydroxytoluene, tocopherol, and oxybenzone.
  • composition according to the invention is in particular in the form of an inverse emulsion.
  • Such a composition can be prepared by a process comprising the addition of a suspension of the microcapsules to the asphyxiating and/or drying insecticide, optionally mixed with the surfactant, the antifoaming agent, and the additives, when they are present. , advantageously at a temperature of 15°C to 30°C, preferably 18°C to 25°C.
  • the preparation process advantageously comprises: - the mixture of the asphyxiating and/or drying insecticide, the possible surfactant, the possible anti-foaming agent, and the possible additives, preferably at a temperature of 15°C to 30°C, preferably of 18°C to 25°C, then
  • FIG. 1 Image of the microcapsules of example 2 obtained using an optical microscope with a x640 zoom.
  • FIG. 2 Image of the premix of example 4 obtained using an optical microscope with a x640 zoom.
  • E-p-farnesene, other attractants, polyethylene glycol monooleate and antioxidants such as BHT or tocopherol are sourced from Sigma Aldrich.
  • the HASE type copolymer used in the examples is Pharma 38 supplied by the company Coatex.
  • the sunflower oil used in the examples is a commercial Isio 4 sunflower oil.
  • Bleached beeswax is supplied by the Prayon company.
  • the antifoam agent is supplied by DOW (DC62) or BYK (BYK-1630).
  • the viscosities are measured using a Brookfield DV1 viscometer equipped with a chamber.
  • the size of the microcapsules is measured by light diffraction analysis with a Mastersizer 3000 apparatus by diffraction of a laser beam.
  • the measurement protocol is as follows:
  • the samples are first prepared by dispersing 0.5 g of formulation in 100 ml of demineralized water with magnetic stirring for 10 min. Then we proceed to measure the particle sizes, first taking care to align the device and measure the background noise to record the diffraction phenomena generated by the water. The sample is then introduced into the measuring cell and 5 successive measurements are carried out. The particle size is then determined by taking the average of these 5 measurements.
  • the analysis of the contents of attractant substances is carried out by gas chromatography (CPG) with a flame ionization detector on an Agilent - HP series II 5890 device.
  • CPG gas chromatography
  • Example 1 Manufacturing a suspension of E-p-farnesene microcapsules
  • Demineralized water 126g and HASE type copolymer 15g are introduced into a three-necked flask No. 1 fitted with anchor-type mechanical stirring. The mixture is stirred for 5 min (100 rpm) and the pH is adjusted to 11 with a 10% sodium hydroxide solution.
  • a three-necked flask No. 2 the following are stirred at 70°C: vegetable oil (coconut oil) 71.8 g, E-p-farnesene 13.7 g, a-tocopherol 1.3 g, BHT 1.3 g, and oxybenzone 1.3g.
  • the contents of three-necked flask No. 2 are poured onto the contents of three-necked flask No.
  • the suspension of microcapsules obtained has a viscosity of 101,000 cP at 3 rpm and 20° C. (Brookfield DV1 viscometer with LV5 mobile) and a median diameter D50 of 1.9 m.
  • E-p-farnesene The release of E-p-farnesene is studied by placing 2g of the suspension in an oven at 30°C on a plastic support weighing 0.2g and regularly weighing the sample. Under these conditions, the half-life characteristic of the diffusion of E-p-farnesene at 30°C is 13 days.
  • Example 2 Preparation of microcapsules of a mixture of attractant substances for ladybugs and lacewings (50/50 Ep-farnesene/camphene) Into a three-necked flask No. 1 fitted with anchor-type mechanical stirring, 135 g of demineralized water and 8.7 g of HASE-type copolymer are introduced. The mixture is stirred for 5 min (100 rpm) and the pH is adjusted to 10 with a 10% sodium hydroxide solution. In a three-necked flask No.
  • the suspension of microcapsules obtained has a viscosity of 800 cP at 20°C, 6 rpm (Brookfield DV1 viscometer with SC4-16 mobile) and a median diameter D50 of 10.6 pim.
  • the microcapsules were observed under an optical microscope with a x640 zoom. The image obtained is presented in Figure 1.
  • Example 3 Use of microcapsules to attract beneficial insects - demonstration by trapping
  • 0.5 g of a suspension of microcapsules according to example 1 or 2 is deposited on a glued plate type trap measuring 20cmx20cm, yellow in color.
  • the attractant substance begins to release approximately 24 hours after installation, once the water in the composition has evaporated.
  • Example 1 shows that the traps equipped with the microcapsule suspensions of Example 1 or Example 2 attract ladybugs and lacewings more than the control.
  • the appearance of the first black aphids was observed on April 28 on beans and on May 3 on cherry trees.
  • the appearance of green aphids on peach trees and woolly aphids on apple and pear trees was observed on May 18.
  • Example 4 Manufacturing a concentrated premix on a Unimix 15L unit with a constant dose (2%) of microcapsules
  • the reactor is loaded with Isane Biolife 78 paraffin oil (10.00 kg) and polyethylene glycol monooleate (800 g) and the mixture is stirred at a speed of 1200 rpm for 5 min at a temperature of 25 °C.
  • a second phase consists of adding the antifoam agent DC62 (0.03kg) or BYK-1630 (0.04kg). The medium is stirred at a speed of 1000 rpm for 8 min at 25°C.
  • a third phase consists of the addition of the suspension of microcapsules (606g) prepared according to Example 2.
  • the suspension is added via the recirculation pump operating at 1200 rpm and the mixture is left to homogenize for 5 min at 30°C.
  • the product is recovered in the form of a white liquid inverse emulsion with a viscosity of 1200cp at 3 rpm and 20°C (Brookfield DV1 viscometer with LV5 mobile).
  • Example 5 Manufacturing a concentrated premix on a Unimix 15L unit at a constant dose (4%) of capsules
  • Example 4 The operating conditions of Example 4 are reproduced with the following quantities: Isane Biolife 78 paraffin oil (8.00 kg), polyethylene glycol monooleate (640 g), antifoam agent BYK-1630 (0.04 kg), suspension of microcapsules (970g) prepared according to Example 2.
  • the resulting slurry is sprayed onto a support and observed by optical microscopy.
  • Example 7 Preparation of microcapsules of a mixture of aphid repellent and attractants for ladybugs and lacewings (50/50 E-P-farnesene/methyl salicylate)
  • Demineralized water (1075 g) and the acrylic encapsulating agent Pharma38 from the company Arkema (70 g) are introduced into a three-necked flask No. 1, fitted with an anchor-type mechanical stirrer. The mixture is stirred for 5 min (100 rpm), then the pH is adjusted to 10 with a 10% sodium hydroxide solution.
  • a second three-necked flask No. 2 the following are stirred at 70°C: vegetable oil (sunflower oil, 513 g), beeswax (57 g), E- -farnesene (55 g), salicylate methyl (55 g), a-tocopherol (10 g), BHT (10 g) and oxybenzone (10 g).
  • the mixture from three-necked flask No. 2 is poured into three-necked flask No. 1 with vigorous stirring (600 rpm) at a temperature of 70°C. Three-necked flask No. 1 is then left stirring (600 rpm) for 1 hour after the end of the addition.
  • the pH is then adjusted to 7.5 by adding 4% H3PO4.
  • the mixture is cooled to a temperature of 20°C.
  • a quantity of 0.3 g of H2O2 at 35% w/w is then added with stirring (300 rpm) followed by a sufficient quantity of demineralized water of 64 g.
  • Example 8 Preparation of microcapsules of a mixture of attractants for ladybugs and lacewings (50/50 b-farnesene/Methyl Salicylate)
  • Demineralized water (1075 g) and the acrylic encapsulating agent Pharma38 from the company Arkema (70 g) are introduced into a three-necked flask No. 1, fitted with an anchor-type mechanical stirrer. The mixture is stirred for 5 min (100 rpm), then the pH is adjusted to 10 with a 10% sodium hydroxide solution. In a second three-necked flask No.
  • the following are stirred at 70°C: the vegetable oil (sunflower oil, 387 g), the beeswax (43 g), the E-P-farnesene (110 g), the salicylate of methyl (110 g), a-tocopherol (20 g), BHT (20 g) and oxybenzone (20 g).
  • the mixture from three-necked flask No. 2 is poured into three-necked flask No. 1 with vigorous stirring (600 rpm) at a temperature of 70°C. Three-necked flask No. 1 is then left stirring (600 rpm) for 1 hour after the end of the addition.
  • the pH is then adjusted to 7.5 by adding 4% H3PO4.
  • the mixture is cooled to a temperature of 20°C.
  • a quantity of 0.3 g of H2O2 at 35% w/w is then added with stirring (300 rpm) followed by a sufficient quantity of demineralized water of 64 g.
  • the suspension of microcapsules No. 2 thus obtained has a viscosity of 1,260 cP at 20° C., 6 rpm (Brookfield Viscometer, mobile SC4-16) and a median diameter D50 of 13.4 pm.
  • Example 9 Production of a sprayable mixture composed of mineral oil and microcapsules.
  • the mixtures are prepared directly in a portable spray application device (wheelbarrow type) associated with a carbon bar (e.g. ESCARRPULV200Z from Zeppelin).
  • a portable spray application device wheelbarrow type
  • a carbon bar e.g. ESCARRPULV200Z from Zeppelin.
  • the slurries consist of dissolving the different mixtures/products to be tested in water, the total quantity of which is calculated for an application volume of 300 L/ha.
  • Mixture A Self-emulsifying mineral oil (1500 mL) Oviphyt® from the company De Sangosse dissolved with stirring in 28.5 L of water under the conditions provided by the manufacturer.
  • Porridge B (according to i Suspension of microcapsules No. 1 from Example 7 (100 mL) and Oviphyt® self-emulsifying mineral oil (1500 mL) mixed with stirring in 28.4 L of water under the conditions provided by the manufacturer of the self-emulsifying mineral oil From Sangosse.
  • Porridge C (according to i Suspension of microcapsules No. 2 from Example 2 (100 mL) and Oviphyt® self-emulsifying mineral oil (1500 mL) mixed with stirring in 28.4 L of water under the conditions provided by the manufacturer of the mineral oil self-emulsifying Sangosse.
  • Example 10 Use of mixtures A, B and C to control aphids on seed beet plots in comparison with an untreated control (TNT) and an insecticide reference product (Flonicamide (50 WG)) applied at 140g/ Ha.
  • TNT untreated control
  • Flonicamide 50 WG
  • test plots are located in Beauce, France.
  • Each method is applied on a square plot of 100m 2 surrounded by a cultivation strip 25 m wide, to avoid any interaction with the rest of the plot.
  • Each modality is repeated 3 times.
  • the mixtures A, B and C are applied by spraying under the standard conditions of use of mineral oil as provided by the manufacturer, every 9 to 10 days depending on the weather, i.e. at TO, T+10 days , and T+19 d.
  • Flonicamide 50 WG
  • the application of the chemical reference treatment is triggered at the harmfulness threshold (10% of beets with at least one flightless aphid).
  • Aphid counts are carried out on 25 beet plants, pre-selected and identified using markers, just before each application at T0, T+10 d, and T+19 d and at the end of the test at T+27 d .

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Wood Science & Technology (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Insects & Arthropods (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

La présente invention concerne une méthode de lutte contre des insectes piqueurs, tels que les pucerons, comprenant l'application sur des plantes à traiter de microcapsules contenant une ou des substances attractantes qui ont un effet attractant sur des prédateurs desdits insectes piqueurs. Les microcapsules peuvent être utilisées en association avec un insecticide asphyxiant et/ou desséchant. La présente invention concerne également une composition comprenant un insecticide asphyxiant et/ou desséchant et des microcapsules contenant une ou des substances attractantes qui ont un effet attractant sur des prédateurs desdits insectes piqueurs, et son procédé de préparation.

Description

DESCRIPTION
Titre : PROCEDE BIOLOGIQUE DE LUTTE CONTRE LES INSECTES PIQUEURS
DOMAINE TECHNIQUE DE L’INVENTION
La présente invention concerne une méthode de lutte contre des insectes piqueurs tels que les pucerons utilisant des microcapsules contenant une ou des substances attractantes qui ont un effet attractant sur des prédateurs desdits insectes piqueurs. Les microcapsules peuvent être utilisées en association avec un insecticide asphyxiant et/ou desséchant. La présente invention concerne donc également une composition comprenant des microcapsules contenant une ou des substances attractantes et un insecticide asphyxiant et/ou desséchant, et son procédé de préparation.
ETAT DE LA TECHNIQUE
Les pucerons sont des insectes piqueurs causant de grands dommages sur les cultures du fait des blessures infligées aux végétaux mais aussi des maladies dont ils peuvent être les vecteurs. Par ailleurs, les pucerons sont capables de se reproduire par accouplement et par parthénogénèse ce qui les rend très prolifiques.
La première méthode de lutte est d’utiliser des insecticides moléculaires, synthétiques tels que des produits à base de cyperméthrine, de lambda-cyhalothrine ou de deltaméthrine, ou naturels tels que des produits à base de pyrèthre par exemple. Ces molécules agissent par empoisonnement des pucerons selon divers mécanismes biochimiques. Ces produits sont très efficaces mais en agissant à grande échelle sur des colonies très importantes de pucerons, une sélection d’individus moins sensibles voire résistants à ces insecticides s’opère naturellement. La sélection des pucerons induit une propagation rapide et invasive de ces souches résistantes. Devant cette adaptabilité des pucerons aux molécules insecticides chimiques, l’homme du métier a dû progressivement augmenter les doses ou la fréquence des traitements appliqués ce qui a eu pour effet d’améliorer encore la sélection des souches résistantes pour in fine aboutir à une situation où l’insecticide devient inopérant. Les pouvoirs publics ont donc réagi en obligeant les utilisateurs a alterné les insecticides pour limiter les effets de sélection mais cette tactique ne fait que retarder le développement de résistance.
Par ailleurs, l’augmentation des doses et l’utilisation de molécules de plus en plus toxiques pour les pucerons ne peut se faire sans conséquences parfois grave pour la biodiversité et parfois même pour l’homme. La difficulté croissante de concilier l’efficacité des insecticides chimiques et le respect de la santé et de l’environnement est clairement décrite dans : Rapport du Centre national d’Expertise sur les Vecteurs, 2014. Utilisation des insecticides et gestion de la résistance.
Une deuxième méthode de lutte avec des insecticides existe et consiste à utiliser des substances grasses ou tensio-actives telles que des paraffines, des huiles végétales ou des savons. Ces produits pulvérisés sur les végétaux attaqués par les pucerons ont un effet asphyxiant (pour les paraffines) et desséchant (pour les savons ou tensioactifs) des insectes qu’ils submergent. Ces produits sont donc très efficaces lorsque les pucerons sont atteints par la pulvérisation mais comme beaucoup de colonies se protègent en enroulant des feuilles autour d’elles un passage n’est jamais suffisant et la prolifération des populations de pucerons à partir des foyers cachés dans la végétation implique de nombreux passages ce qui induit des coûts importants. Les doses utilisées sont aussi très importantes (avec environ 15 à 30 g par ha par application), le risque de pollution des sols et des eaux de ruissellement est non négligeable à long terme. De tels produits sont décrits notamment dans EP3442333.
Une troisième méthode de lutte biologique a consisté à effectuer des lâchers de prédateurs de pucerons comme les coccinelles aphidiphages, les chrysopes, les syrphes. Ces insectes sous forme de larves ou d’adultes sont capables de venir à bout de colonies de puceron mais leur effet est décalé par rapport à l’invasion de pucerons puisqu’il faut assez de pucerons pour que leurs prédateurs se développent suffisamment pour avoir un effet de nettoyage d’une culture. En fonction des effets climatiques, les lâchers de prédateurs peuvent être à refaire plusieurs fois et l’agriculteur ne peut savoir si les coccinelles ou les chrysopes vont rester dans ses champs ou préférer aller dans des zones voisines plus riches en pucerons tels que des zones boisées. Si à long terme la repopulation artificielle d’un espace par des prédateurs de pucerons peut améliorer la situation sanitaire d’une parcelle, les contraintes logistiques pour organiser ces lâchers et la faible certitude de leur efficacité sur le rendement de l’année n’en font pas une solution durable économiquement. Par ailleurs, si à cause d’autres infestations l’agriculteur est contraint d’utiliser un insecticide, il va impacter cette population d’insecte réintroduit et perdre sa protection contre les pucerons. Il existe donc un besoin de trouver des solutions de lutte contre les insectes piqueurs, tels que les pucerons, offrant une meilleure empreinte durable que les insecticides chimiques, une efficacité plus longue que les insecticides asphyxiant et/ou desséchant et une efficacité plus grande que les lâchers artificiels de prédateurs. Par ailleurs, le côté artificiel de ces lâchers oblige à introduire des espèces étrangères dans des écosystèmes, ce qui peut avoir des effets déstabilisants imprévisibles.
Les méthodes de protection des cultures à grande échelle sont principalement mises en œuvre par pulvérisation. Les suspensions de capsules adaptées à ces méthodes d’applications doivent présenter des particules inférieures à 20 micromètres. Les méthodes d’encapsulation de sémiochimiques de l’art antérieur ne sont pas satisfaisantes du fait de la viscosité des suspensions et des tailles de particules obtenues qui entraînent le bouchage des moyens de pulvérisation. Cette viscosité est notamment liée à la taille des particules pour l’encapsulation. Il est donc nécessaire de trouver une solution qui soit facile à mettre en œuvre, c’est-à-dire facilement pulvérisable.
La demanderesse a donc trouvé un moyen d’utiliser des prédateurs présents dans l’écosystème pour lutter efficacement contre les pucerons, en optimisant les coûts d’application.
RESUME DE L’INVENTION
Ce moyen consiste en l’utilisation de suspensions de microcapsules contenant une ou des substances émises naturellement par les insectes piqueurs, tels que les pucerons, ou les plantes attaquées par lesdits insectes piqueurs, tels que les pucerons, ayant un effet attractant sur les prédateurs de ces insectes piqueurs, tels que des coccinelles aphidiphages, des chrysopes ou des syrphes. Ces microcapsules ont donc pour effet d’attirer ces prédateurs sur la parcelle pour nettoyer les foyers d’insectes piqueurs, tels que les pucerons, et éventuellement d’empêcher l’arrivée de nouveaux foyers d’insectes piqueurs, tels que les pucerons.
Ainsi, la présente invention a pour objet une méthode de lutte contre des insectes piqueurs comprenant l’application sur des plantes à traiter de microcapsules contenant une ou des substances attractantes qui ont un effet attractant sur des prédateurs desdits insectes piqueurs. Avantageusement, la méthode comprendra en outre l’application sur les plantes à traiter d’un insecticide asphyxiant et/ou desséchant, de préférence de manière simultanée avec l’application des microcapsules. Plus particulièrement, la méthode comprendra l’application, notamment la pulvérisation, sur les plantes à traiter d’une bouillie comprenant un insecticide asphyxiant et/ou desséchant et lesdites microcapsules.
La présente invention a donc également pour objet une composition comprenant ledit insecticide asphyxiant et/ou desséchant et lesdites microcapsules.
Selon un premier mode de réalisation, la composition comprend de 1 % à 3%, de préférence de 2% à 3% en poids de l’insecticide asphyxiant et/ou desséchant, et de 0,01 à 0,1 %, de préférence de 0,02% à 0,05% en poids des microcapsules, et est utile comme bouillie dans une méthode selon l’invention.
Selon un deuxième mode de réalisation, la composition comprend de 30% à 99%, de préférence de 60% à 99% en poids de l’insecticide asphyxiant et/ou desséchant, et de 0,1 % à 4%, de préférence de 0,6% à 2% en poids des microcapsules, et est utile comme prémélange concentré destiné à être dilué avant utilisation pour former la bouillie utile dans une méthode selon l’invention.
Une telle composition peut comprendre également un tensioactif, un agent antimousse, un ou des additifs, avantageusement choisis parmi les agents anti-microbiens, les agents anti-oxydants et leurs mélanges.
La présente invention a également pour objet un procédé de préparation d’une composition selon l’invention comprenant l’ajout d’une suspension de microcapsules à l’insecticide asphyxiant et/ou desséchant, éventuellement en mélange avec le tensioactif, l’agent antimousse, et les additifs, lorsqu’ils sont présents, avantageusement à une température de 15°C à 30°C, de préférence de 18°C à 25°C.
DESCRIPTION DETAILLEE DE L’INVENTION
Méthode
La présente invention concerne donc une méthode de lutte contre des insectes piqueurs comprenant l’application sur des plantes à traiter de microcapsules contenant une ou des substances attractantes qui ont un effet attractant sur des prédateurs desdits insectes piqueurs.
Cette méthode pourra être mise en œuvre pour traiter des plantes telles que les betteraves ; les arbres à fruits tels que les pommiers, poiriers, pêchers, ou les pruniers ; les céréales telles que le blé ou l’orge ; les plantes maraîchères telles que les fèves, les artichauts, les carottes, les pommes de terre, les haricots, ou les pois, ...
Par « insecte piqueur » encore appelé insecte piqueur-suceur ou insecte suceur, on entend, au sens de la présente invention, un insecte qui se nourrit de la sève de plantes, en piquant ces plantes, puis en aspirant la sève. Il s’agit plus particulièrement de pucerons et/ou de cochenilles, de préférence de pucerons.
Par « substance attractante », on entend, au sens de la présente invention, une ou des substances qui ont un effet attractant sur des prédateurs des insectes piqueurs, de telles substances étant naturellement émises par les insectes piqueurs ou les plantes attaquées par lesdits insectes piqueurs. Les prédateurs d’insecte piqueur, tel que le puceron, sont plus particulièrement des insectes aphidiphages tels que insectes braconidés, coccinellidés (coccinelles), syrphidés, anthocoridés, chrysopidés ou une combinaison de ceux-ci. De préférence, il s’agit de coccinelles, notamment à 7 points ou à 11 points, de chrysopes, de syrphes ou d’une combinaison de ceux-ci.
La ou les substances attractantes seront plus particulièrement le p-farnesène (par ex. le E-p-farnesène) seul ou en mélange avec une ou des substances choisies parmi le camphène, les esters salicyliques (notamment les esters d’alkyle ayant de 1 à 6 atomes de carbone) tels que le salicylate de méthyle, le E-2-hexénal, le Z-3-hexenyl acétate, le 2-phényl éthanol, le p-ocimène, l’alcool benzylique, et une combinaison de ceux-ci, le mélange contenant avantageusement au moins 50% en poids de p-farnesène. Ces molécules sont des attractants identifiés des prédateurs des pucerons (voir Han & al. J. Agric. Food Chem. 2002, 50, 2571 ). Il pourra s’agir notamment du p-farnesène (par ex. le E-p-famesène) seul ou en mélange avec le camphène, le mélange contenant avantageusement au moins 50% en poids de p-farnesène.
Avantageusement, la méthode selon l’invention comprendra en outre l’application sur les plantes à traiter d’un insecticide asphyxiant et/ou desséchant, de préférence de manière simultanée avec l’application des microcapsules. Plus particulièrement, la méthode comprendra l’application, notamment la pulvérisation, sur les plantes à traiter d’une bouillie comprenant un insecticide asphyxiant et/ou desséchant et lesdites microcapsules. La bouillie pourra contenir, par rapport au poids total de la bouillie, de 1 % à 3%, de préférence de 2% à 3% en poids de l’insecticide asphyxiant et/ou desséchant, et de 0,01 à 0,1 %, de préférence de 0,02% à 0,05% en poids des microcapsules.
Microcapsules
Les microcapsules utilisées dans la méthode selon l’invention ont avantageusement un diamètre médian D50 allant de 0,5 pm à 20 pm, de préférence de 0,8 pm à 10 pm.
Par « diamètre médian D50 » de microcapsules, on entend, au sens de la présente invention, le diamètre médian d’une distribution de microcapsules, c’est-à-dire le diamètre tel que 50% des microcapsules en volume ont un diamètre inférieur ou égal à cette valeur et que 50% des microcapsules en volume ont un diamètre supérieur à cette valeur. Il est mesuré par diffraction laser, notamment à l’aide d’un appareil Mastersizer 3000, en particulier selon la méthode décrite dans la partie expérimentale.
De préférence, les microcapsules selon l’invention comprennent un cœur contenant la ou les substances attractantes, ce cœur étant entouré d’une enveloppe extérieure solide. Avantageusement, les microcapsules comprennent :
- un cœur comprenant un mélange de cire, d’huile végétale et de la ou des substances attractantes.
- une enveloppe extérieure entourant le cœur comprenant un copolymère de type HASE, éventuellement neutralisé, totalement ou partiellement, sous forme d’un sel de sodium, de potassium ou d’ammonium,
Selon un autre mode de réalisation, les microcapsules comprennent :
- un cœur comprenant un mélange d’un corps gras ayant un point de fusion allant de 25 °C à 75 °C, de préférence allant de 25 °C à 70 °C, plus préférentiellement de 25 °C à 65°C (par exemple de 30 °C à 60°C), et de la ou des substances attractantes.
- une enveloppe extérieure entourant le cœur comprenant un copolymère de type HASE, éventuellement neutralisé, totalement ou partiellement, sous forme d’un sel de sodium, de potassium ou d’ammonium.
Cœur des microcapsules
Le cœur des microcapsules représente avantageusement de 99,8% à 95% en poids du poids total des microcapsules. Le cœur comprend la ou les substances attractantes, avantageusement en mélange avec une cire et une huile.
De préférence, le cœur comprend, notamment est constitué par, un mélange de cire, d’huile, de la ou des substances attractantes, et d’un ou plusieurs additifs, de préférence choisi(s) parmi un additif anti-UV, un antioxydant et un mélange de ceux-ci.
Le cœur contiendra avantageusement, par rapport au poids du cœur :
— de 5% à 30% en poids de cire,
— de 60% à 90% en poids d’huile végétale, et
— de 1 % à 20% en poids de la ou des substances attractantes.
En outre, le cœur pourra contenir de 0% à 7% d’additifs.
Selon un mode de réalisation alternatif, le cœur comprend, notamment est constitué par, un mélange d’un corps gras, de la ou des substances attractantes, et d’un ou plusieurs additifs, de préférence choisi(s) parmi un additif anti-UV, un antioxydant et un mélange de ceux-ci, le corps gras ayant un point de fusion allant de 25 °C à 75 °C, de préférence allant de 25 °C à 70 °C, plus préférentiellement de 25 °C à 65°C (par exemple de 30 °C à 60°C).
Selon ce même mode de réalisation, le cœur contiendra avantageusement, par rapport au poids du cœur :
— de 60% à 90% en poids d’un corps gras ayant un point de fusion allant de 25 °C à 75 °C, de préférence allant de 25 °C à 70 °C, plus préférentiellement de 25 °C à 65 °C (par exemple de 30 °C à 60 °C), et
— de 1 % à 20% en poids de la ou des substances attractantes.
En outre, le cœur pourra contenir de 0% à 7% en poids d’un ou plusieurs additifs.
Par « cire », on entend, au sens de la présente invention, un composé lipophile et solide à température ambiante (environ 25 °C) et pression atmosphérique (1013,25 hPa), de préférence d’origine naturelle. De préférence, la cire à une température de fusion supérieure à 45 °C à pression atmosphérique.
Les cires susceptibles d’être utilisées dans une composition selon l’invention peuvent être choisies parmi les cires d’origine animale, les cires d’origine végétale, les cires minérales, les cires de synthèse et leurs mélanges. A titre de cire d’origine animale, on peut citer la cire d’abeille, la cire de lanoline, ou encore la cire d’insectes de Chine. A titre de cire d’origine végétale, on peut citer la cire de riz, la cire de carnauba, la cire de candelilla, la cire de jojoba, la cire d’ouricurry, la cire d’alfa, la cire de fibres de liège, la cire de canne à sucre, la cire du Japon, ou encore la cire de sumac. A titre de cire minérale, on peut citer la cire de montan, les cires microcristallines, les paraffines, ou encore l’ozokérite. A titre de cire de synthèse, on peut citer les cires de polyéthylène, les cires obtenues par la synthèse de Fisher-Tropsch, ou encore des copolymères cireux et leurs esters. Les dérivés hydrogénés des cires citées précédemment peuvent également être utilisées comme cire dans le cadre de la présente invention. On peut aussi citer les cires obtenues par hydrogénation catalytique d’huiles d’origine animale ou végétale ayant des chaînes grasses insaturées, linéaires ou ramifiées, en C8-C32. Parmi celles-ci, on peut notamment citer l’huile de jojoba hydrogénée, l’huile de tournesol hydrogénée, l’huile de ricin hydrogénée, l’huile de coprah hydrogénée, ou encore l’huile de lanoline hydrogénée, ainsi que le tétrastéarate de di-(triméthylol-1 ,1 ,1 -propane). On peut également utiliser des cires obtenues par transesterification et hydrogénation d’huiles d’origine végétale, telles que l’huile de ricin ou d’olive, comme les cires vendues sous les dénominations de Phytowax ricin 16L64®, Phytowax ricin 22L73® et Phytowax Olive 18L57® par la société SOPHIM.
Avantageusement, la cire est choisie dans le groupe constitué par la cire d’abeille, la cire de lanoline, la cire d’insectes de Chine, la cire de riz, la cire de carnauba, la cire de candelilla, la cire de jojoba, la cire d’ouricurry, la cire d’alfa, la cire de fibres de liège, la cire de canne à sucre, la cire du Japon, la cire de sumac, la cire de montan, les cires microcristallines, et leurs mélanges.
Par « huile », on entend, au sens de la présente invention, un composé gras, liquide à température ambiante et pression atmosphérique, non miscible à l'eau et non volatil.
L’huile selon l’invention sera une huile végétale avantageusement choisie dans le groupe constitué par l’huile de tournesol, l’huile d’arachide, l’huile de soja, l’huile de colza, l’huile de maïs, l’huile d’olive, l’huile de raisin, l’huile de noix, l’huile de lin, l’huile de palme, l’huile de coco, l’huile d’argan, l’huile d’avocat, l’huile d’amande, l’huile de noisette, l’huile de pistache, l’huile de riz, l’huile de coton, l’huile de germes de blé, l’huile de sésame, et leurs mélanges. L’huile d’origine animale sera avantageusement choisie dans le groupe constitué par l’huile de foie de morue, l’huile de requin et leurs mélanges. Les corps gras ayant un point de fusion allant de 25 °C à 75 °C, de préférence allant de 25 °C à 70 °C, plus préférentiellement de 25 °C à 65°C (par exemple de 30 °C à 60°C), susceptibles d’être utilisés dans une composition selon l’invention peuvent être choisis parmi l’huile de coprah hydrogénée ou non, la cire d’abeille, la cire de lanoline, la paraffine solide, et leurs mélanges.
Un ou plusieurs additifs peuvent également être présents dans le cœur des microcapsules, de préférence choisi(s) parmi un additif anti-UV, un antioxydant et un mélange de ceux-ci.
Des additifs anti-UV ou des antioxydants bien connus de l’homme du métier peuvent être ajoutés pour limiter les réactions d’oxydation provoquées par l’oxygène à la surface des particules tels que le tert-butylhydroxytoluène (BHT), le tert-butylhydroxyanisole (BHA), le tocophérol, l’oxybenzone, l’octabenzone, les dérivés de la famille des benzotriazoles (tels que le 2-(2,-hydroxy-3',5,-tertamylphényl)benzotriazole, ou le 2-(2'-hydroxy-3'-tert- butyl-5'-méthyl-phényl)-5-chlorobenzotriazole), le gallate de propyle, ou les dérivés de la 4-tétraméthyl-pipéridine, notamment connus sous le nom de HALS (« hindered amine light stabilizers » en anglais, soit photo-stabilisants à amine encombrée) et décrits dans Schaller, C., Rogez, D. & Braig, A. « Hindered amine light stabilizers in pigmented coatings. » J Coat Technol Res 6, 81-88 (2009), et ses nitroxydes (obtenus par oxydation des HALS comme indiqué dans FR2788272).
Figure imgf000010_0001
L’enveloppe extérieure des microcapsules représentera avantageusement de 0,2% à 5% en poids du poids total des microcapsules.
L’enveloppe comprendra avantageusement un copolymère de type HASE, éventuellement neutralisé, totalement ou partiellement, sous forme d’un sel de sodium, de potassium ou d’ammonium.
Par « copolymère de type HASE » (HASE étant l’abréviation de « Hydrophobically modified Alkali Swellable Emulsion », à savoir émulsion pouvant gonfler en milieu alcalin modifiée de manière hydrophobe), on entend, au sens de la présente invention, un copolymère d’acide (méth)acrylique (e.g. acide méthacrylique), d’acrylate d’alkyle, (e.g. acrylate d’éthyle) et d’un ou plusieurs macromonomères hydrophobes de formule Chem. I suivante : [Chem. I]
Figure imgf000011_0001
dans laquelle :
- m est un entier supérieur ou égale à 5, notamment compris entre 10 et 40, de préférence compris entre 10 et 30, et
- R un groupement hydrocarboné de formule CnH2n+i dans lequel n est un entier compris entre 9 et 25, de préférence entre 10 et 22 et encore préférentiellement égal à 12, 16 ou 22. Le groupe R est donc hydrophobe.
Par « neutralisé, totalement ou partiellement », on entend, au sens de la présente invention, que l’ensemble ou une partie des fonctions acides carboxyliques (COOH) portées par le copolymère de type HASE est sous forme de sel, et plus particulièrement sous forme de sel de sodium, de potassium ou d’ammonium.
Avantageusement, le copolymère de type HASE comprend, notamment est constitué de, par rapport au poids total du copolymère :
- entre 30% et 40% en poids d’unités de répétition issues d’acide méthacrylique,
- entre 45% et 60% en poids d’unités de répétition issues d’acrylate d’éthyle, et
- entre 5% et 20% en poids d’unités de répétition issues d’un macromonomère de formule Chem. I suivante :
[Chem. I]
Figure imgf000011_0002
dans laquelle :
■ m est un entier supérieur ou égale à 5, notamment compris entre 10 et 40, de préférence compris entre 10 et 30, et
■ R un groupement hydrocarboné de formule CnH2n+i dans lequel n est un entier compris entre 9 et 25, de préférence entre 10 et 22 et encore préférentiellement égal à 12.
Le copolymère de type HASE peut être préparé par exemple selon l’une des méthodes décrites dans WO2011/104599, WO201 1/104600 et EP1778797. Il peut s’agir du Pharma 38 ou du Viscoatex 730LV de la société Coatex. Les microcapsules selon l’invention pourront se présenter plus particulièrement sous la forme d’une suspension. La suspension de microcapsules peut contenir de 10% à 50%, de préférence de 20% à 40% en poids de microcapsules, par rapport au poids total de la suspension.
Une telle suspension peut être préparée conformément aux procédures décrites dans US2018/0064102.
Ainsi, les microcapsules peuvent être préparées par un procédé comprenant les étapes suivantes :
(a) la préparation d’une phase grasse comprenant :
- la cire et l’huile végétale ou le corps gras résultant de leur mélange, ou le corps gras ayant un point de fusion allant de 25 °C à 75 °C, de préférence allant de 25 °C à 70 °C, plus préférentiellement de 25 °C à 65 °C (par exemple de 30 °C à 60 °C),
- la ou les substances attractantes, et
- éventuellement un ou plusieurs additifs, la phase grasse ayant une température supérieure à la température de fusion de la cire ou du corps gras,
(b) la préparation d’une solution aqueuse comprenant le copolymère de type HASE, la solution aqueuse ayant un pH supérieur ou égal à 7,6, notamment supérieur ou égal à 8, en particulier de 8 à 10, et une température substantiellement identique à celle de la phase grasse,
(c) l’ajout de la phase grasse à la solution aqueuse comprenant le copolymère de type HASE, et agitation de sorte à former une dispersion de gouttelettes de phase grasse dans la solution aqueuse, et
(d) l’acidification à un pH de 6 à 7,5, de préférence de 6,5 à 7,2.
Etape (a)
La phase grasse est préparée à l’étape (a) de sorte à obtenir un mélange de cire/huile ou corps gras, de substance(s) attractante(s), et éventuellement d’un ou plusieurs additifs ayant la composition du cœur décrit ci-avant.
La phase grasse est maintenue, de préférence sous agitation, à une température supérieure à la température de fusion de la cire de sorte à être liquide. Dans un mode de réalisation particulier, la phase grasse est à une température de 50°C à 85°C, notamment de 60°C à 80°C. Avantageusement, la phase grasse est préparée par mélange de l’huile et du ou des additifs qui est chauffée à une température supérieure à la température de fusion de la cire, puis ajout de la cire, puis ajout de la ou des substances attractantes.
Etape (b)
La solution aqueuse de l’étape (b) pourra être préparée en basifiant une solution aqueuse comprenant le copolymère de type HASE par ajout d’une base, de sorte à obtenir un pH supérieur ou égal à 7,6 (par ex. de 7,6 à 10), notamment supérieur ou égal à 8, en particulier de 8 à 10. Cette base sera avantageusement choisie parmi le carbonate de sodium ou de potassium, l’hydroxyde d’ammonium ou l’ammoniac en solution aqueuse, l’hydroxyde de sodium, l’hydroxyde de potassium et leurs combinaisons.
Avantageusement, la solution aqueuse comprend de 0,1 % à 10%, en particulier de 0,1 % à 5%, de préférence de 0,1 % à 1 %, en poids du copolymère de type HASE par rapport au poids de la solution aqueuse. La concentration en copolymère de type HASE dans la solution aqueuse permet d’influer sur la taille des microcapsules finales. En effet, la taille des microcapsules finales diminue lorsque la concentration en copolymère de type HASE augmente.
Cette solution aqueuse est ensuite chauffée à une température substantiellement identique à celle de la phase grasse.
Par « température substantiellement identique » à celle de la phase grasse, on entend avantageusement une température ne variant pas de plus de 10°C, notamment de plus de 5°C, par rapport à la température de l’étape (a). De préférence, la température de l’étape (b) sera identique à celle de l’étape (a).
Ainsi, la solution aqueuse est avantageusement à une température de 50°C à 85°C, notamment de 60°C à 80°C.
Etape (c)
Dans cette étape, la phase grasse ayant la température de l’étape (a) est ajoutée à la solution aqueuse ayant la température de l’étape (b).
Le mélange est ensuite agité de sorte à former une dispersion de gouttelettes de phase grasse dans la solution aqueuse. Les gouttelettes de phase grasse formées dans la solution aqueuse formeront le cœur des microcapsules. L’acidification permet de faire précipiter le copolymère de type HASE présent dans la solution aqueuse sur les gouttelettes qui deviennent alors des microcapsules comprenant le cœur à base de la phase grasse entouré de l’enveloppe solide à base du copolymère de type HASE. Ces particules sont dispersées dans l’eau et forment ainsi une suspension aqueuse des microcapsules.
Dans un mode de réalisation particulier, l’acidification est réalisée par ajout d’un acide tel que l’acide chlorhydrique, l’acide phosphorique, l’acide sulfurique, un acide organique de type acide carboxylique (particulièrement l’acide acétique ou l’acide propionique) ou un mélange de ceux-ci, notamment de l’acide phosphorique, jusqu’à atteindre un pH de 6 à 7,5, de préférence de 6,5 à 7,2. Cet acide est de préférence ajouté sous forme d’une solution aqueuse.
La température de la suspension aqueuse des microcapsules ainsi obtenue est ensuite avantageusement amenée à une température inférieure au point de fusion de la cire, notamment à une température comprise entre 20°C et 30°C.
Insecticide asphyxiant et/ou desséchant
Par « insecticide asphyxiant et/ou desséchant », on entend, au sens de la présente invention, une substance liquide qui asphyxie et/ou dessèche l’insecte piqueur lorsque cette substance nappe l’insecte piqueur, en particulier lorsque l’insecte piqueur est recouvert par ladite substance.
L’insecticide asphyxiant et/ou desséchant pourra être plus particulièrement une paraffine, une huile végétale, une huile de silicone, un savon, notamment synthétique ou naturel, ou une combinaison de ceux-ci, avantageusement une paraffine, un savon, notamment synthétique ou naturel, ou une combinaison de ceux-ci, de préférence une paraffine.
La paraffine pourra être plus particulièrement une paraffine liquide ayant un point d’écoulement inférieur à -5°C, notamment mesuré selon la norme ASTM D97.
L’huile végétale pourra être telle que définie ci-dessus.
Le savon pourra être du savon noir.
L’insecticide asphyxiant et/ou desséchant pourra se présenter plus particulièrement sous la forme d’une émulsion, par exemple en mélange avec un tensioactif et/ou un agent antimousse. Le tensioactif sera de préférence choisi parmi des tensioactifs non ioniques tels que les acides gras polyalcoxylés, les esters d’acide gras et de sorbitan, les esters d’acides gras et de sorbitan (poly)alcoxylés, les alkylphénols alcoxylés, les alcools gras alcoxylés, les esters d’acides gras et de glycérol et leurs combinaisons.
L’agent antimousse pourra être choisi parmi les organosiloxanes et leurs formes polymériques, les organosilicones, les polyéthers et polyesters de glycérides et les combinaisons de ceux-ci.
Composition
La composition selon l’invention comprend ledit insecticide asphyxiant et/ou desséchant et lesdites microcapsules comprenant la ou les substances attractantes.
L’insecticide asphyxiant et/ou desséchant et les microcapsules comprenant la ou les substances attractantes sont notamment tels que définis ci-dessus.
De préférence, la composition comprend de 1 à 3 parties, de préférence de 2 à 3 parties en poids de l’insecticide asphyxiant et/ou desséchant, et de 0,01 à 0,1 parties, de préférence de 0,02 à 0,05 parties en poids des microcapsules.
Selon un premier mode de réalisation, la composition comprend de 1 % à 3%, de préférence de 2% à 3% en poids de l’insecticide asphyxiant et/ou desséchant, et de 0,01 à 0,1 %, de préférence de 0,02% à 0,05% en poids des microcapsules, et est utile comme bouillie dans une méthode selon l’invention.
Selon un deuxième mode de réalisation, la composition comprend de 30% à 99%, de préférence de 60% à 99% en poids de l’insecticide asphyxiant et/ou desséchant, et de 0,1 % à 4%, de préférence de 0,6% à 2% en poids des microcapsules, et est utile comme prémélange concentré destiné à être dilué avant utilisation pour former la bouillie.
La composition selon l’invention pourra contenir également un tensioactif (pour former une émulsion) et/ou un agent antimousse (pour éviter la formation de mousse lors de la préparation de l’émulsion). Le tensioactif et l’agent antimousse sont notamment tels que définis ci-dessus.
La composition pourra ainsi comprendre :
- de 30 à 99 parties, de préférence de 60 à 99 parties en poids de l’insecticide asphyxiant et/ou desséchant,
- de 0 à 30 parties, de préférence de 5 à 20 parties en poids d’un tensioactif, - de 0,1 à 4 parties, de préférence de 0,6 à 2 parties en poids des microcapsules contenant la ou les substances attractantes, et
- de 0 à 1 parties, de préférence de 0,1 à 1 parties en poids d’un agent antimousse. Lorsqu’elle est sous forme d’un prémélange concentré, la composition comprendra avantageusement, par rapport au poids total de la composition :
- de 30% à 99%, de préférence de 60% à 99%en poids de l’insecticide asphyxiant et/ou desséchant,
- de 0% à 30%, de préférence de 5% à 20% en poids d’un tensioactif,
- de 0,4% à 4%, de préférence de 0,6% à 2% en poids des microcapsules contenant la ou les substances attractantes, et
- de 0% à 1 %, de préférence de 0,1 % à 1 % en poids d’un agent antimousse.
La composition pourra comprendre également des additifs permettant d’améliorer la stabilité du mélange d’un point de vue microbiologique ou du point de vue de la résistance à l’oxydation stimulée par les rayonnements UV. Ainsi, la composition comprendra avantageusement un ou des additifs, avantageusement choisis parmi les agents antimicrobiens, les agents anti-oxydants et leurs mélanges, de tels additifs étant bien connus de l’homme du métier. Ce ou ces additifs pourront être présents à hauteur de 0,1 à 2 parties en poids (par ex. à hauteur de 0,1 % à 2% en poids dans le prémélange).
L’agent anti-microbien pourra être choisi parmi l’eau oxygénée, l’acide peracétique, l’acide perpropionique, les produits de la famille des isothiazoles.
L’agent anti-oxydant pourra être choisi parmi le butyl-hydroxytoluène, le tocophérol, et l’oxybenzone.
La composition selon l’invention est notamment sous forme d’une émulsion inverse.
Une telle composition peut être préparée par un procédé comprenant l’ajout d’une suspension des microcapsules à l’insecticide asphyxiant et/ou desséchant, éventuellement en mélange avec le tensioactif, l’agent antimousse, et les additifs, lorsqu’ils sont présents, avantageusement à une température de 15°C à 30°C, de préférence de 18°C à 25°C.
Ainsi, lorsque la composition comprend un tensioactif, un agent antimousse, et/ou un ou des additifs, le procédé de préparation comprend avantageusement : - le mélange de l’insecticide asphyxiant et/ou desséchant, l’éventuel tensioactif, l’éventuel agent antimousse, et les éventuels additifs, de préférence à une température de 15°C à 30°C, de préférence de 18°C à 25°C, puis
- l’ajout d’une suspension des microcapsules.
FIGURES
[Fig. 1] : Image des microcapsules de l’exemple 2 obtenue au microscope optique avec un zoom x640.
[Fig. 2] : Image du prémélange de l’exemple 4 obtenue au microscope optique avec un zoom x640.
EXEMPLES
Le E-p-farnesène, les autres substances attractantes, le polyéthylèneglycol monooléate et les antioxydants comme le BHT ou le tocophérol sont sourcés chez Sigma Aldrich.
Le copolymère de type HASE utilisé dans les exemples est le Pharma 38 fourni par la société Coatex.
L’huile de tournesol utilisées dans les exemples est une huile de tournesol commerciale Isio 4.
La cire d’abeille blanchie est fournie par la société Prayon.
L’agent antimousse est fourni par la société DOW (DC62) ou BYK (BYK-1630).
Les viscosités sont mesurées à l’aide d’un viscosimètre Brookfield DV1 munie d’une chambre.
La taille des microcapsules est mesurée par analyse par diffraction de la lumière avec un appareil Mastersizer 3000 par diffraction d’un rayon laser. Le protocole de mesure est le suivant :
On prépare tout d’abord les échantillons en dispersant 0,5g de formulation dans 100ml d’eau déminéralisée sous agitation magnétique pendant 10 min. Puis on procède à la mesure des tailles de particules en prenant soin tout d’abord d’aligner l’appareil et de mesurer le bruit de fond pour enregistrer les phénomènes de diffraction engendrés par l’eau. L’échantillon est ensuite introduit dans la cellule de mesure et 5 mesures successives sont effectuées. La taille des particules est alors déterminée en prenant la moyenne de ces 5 mesures. L’analyse des teneurs en substances attractantes est réalisée par chromatographie en phase gazeuse (CPG) avec un détecteur à ionisation de flamme sur un appareil Agilent - HP séries II 5890.
Les études de relargage des substances attractantes sont réalisées dans des étuves ventilées sans hublot de manière à ne pas subir de rayonnement lumineux. Ces études sont réalisées selon deux méthodes, soit par suivi de perte de poids des échantillons, soit par suivi de la concentration résiduelle de la phéromone dans l’échantillon par CPG. La microscopie optique est réalisée sur un microscope AXIO PLAN 2 de marque ZEISS. Les observations des échantillons sont réalisées en transmission avec un objectif 40x plan et 20x plan. Une caméra AxioCam ICC3 de marque ZEISS permet de visualiser les images sur un écran d’ordinateur.
Exemple 1 : Fabrication d’une suspension de microcapsules de E-p-farnesène
Dans un ballon tricol N°1 muni d’une agitation mécanique de type ancre sont introduits l’eau déminéralisé 126g, et le copolymère de type HASE 15g. Le mélange est agité 5 min (100 rpm) et le pH est ajusté à 11 avec une solution de soude à 10%. Dans un ballon tricol N°2 sont agités à 70°C : l’huile végétale (huile de coprah) 71 ,8 g, le E-p-farnesène 13,7g, le a-tocophérol 1 ,3g, le BHT 1 ,3g, et l’oxybenzone 1 ,3g. Le contenu du ballon tricol N°2 est coulé sur le contenu du ballon tricol N°1 sous agitation (600 rpm) à la température de 70°C. Le ballon tricol N°1 est alors laissé sous agitation (600 rpm) 1 h après la fin de l’addition. Le pH est ensuite ajusté à 7,5 par addition de H3PO4 à 4%. Le mélange est refroidi à la température de 20°C. 0,2g d’H2O2 à 35% sont alors additionné sous agitation (300 rpm) suivi d’une quantité suffisante d’eau déminéralisé de 5g.
La suspension de microcapsules obtenue présente une viscosité de 101000 cP à 3 rpm et 20°C (viscosimètre Brookfield DV1 avec mobile LV5) et un diamètre médian D50 de 1 ,9 m.
Le relargage du E-p-farnesène est étudié en mettant 2g de la suspension en étuve à 30°C sur un support plastique pesant 0,2g et en pesant régulièrement l’échantillon. Dans ces conditions, le temps de demi-vie caractéristique de la diffusion du E-p-farnesène à 30°C est de 13 jours.
Exemple 2 : Préparation de microcapsules d’un mélange de substances attractantes pour coccinelles et chrysopes (50/50 E-p-farnesène/camphène) Dans un ballon tricol N°1 muni d’une agitation mécanique de type ancre sont introduits l’eau déminéralisé 135g, et le copolymère de type HASE 8,7g. Le mélange est agité 5 min (100 rpm) et le pH est ajusté à 10 avec une solution de soude à 10%. Dans un ballon tricol N°2 sont agité à 70°C : l’huile végétale (huile de tournesol) 64g, la cire d’abeille 7,13g, le E-p-farnesène 6,8g, le camphène 6,8g, le a-tocophérol 0,5g, le BHT 0,5g, et l’oxybenzone 0,5g. Le contenu du ballon tricol N°2 est coulé sur le contenu du ballon tricol N°1 sous vive agitation (600 rpm) à la température de 70°C. Le ballon tricol N°1 est alors laissé sous agitation (600 rpm) 1 h après la fin de l’addition. Le pH est ensuite ajusté à 7,5 par addition de H3PO4 à 4%. Le mélange est refroidi à la température de 20°C. 0,2g d’H2O2 à 35% sont alors additionné sous agitation (300 rpm) suivi d’une quantité suffisante d’eau déminéralisé de 12g.
La suspension de microcapsules obtenue présente une viscosité de 800 cP à 20°C, 6rpm (viscosimètre Brookfield DV1 avec mobile SC4-16) et un diamètre médian D50 de 10,6 pim. Les microcapsules ont été observées au microscope optique avec un zoom x640. L’image obtenue est présentée en Figure 1.
Exemple 3 : Utilisation des microcapsules pour attirer des insectes bénéfiques - démonstration par piégeage
0,5 g d’une suspension de microcapsules selon l’exemple 1 ou 2 est déposé sur un piège de type plaque engluée de dimensions 20cmx20cm de couleur jaune. La substance attractante commence à se libérer environ 24h après la pose, une fois l’eau de la composition évaporée.
On dispose dans un jardin mixte verger (pommiers, pêchers, pruniers, cerisiers) et potager (fèves, pommes de terre, artichauts) situé sur la commune de Pern dans le Lot (France), de dimensions 30mx30m, sur des supports situés à 1 m à 1 ,5m du sol, 5 plaques engluées de dimensions 20cmx20cm avec la suspension de microcapsules de l’exemple 1 , 5 laques avec la suspension de microcapsules de l’exemple 2 et 5 plaques qui sont vierges et serviront de population témoin. Les plaques engluées sont réparties de telle sorte qu’elles sont espacées de 5 m entre elles en prenant soin d’être au moins à 5 m du bord du jardin. Chaque semaine on effectue un relevé des pièges et on compte le nombre d’insectes piégés en identifiant leurs natures. On rapporte le nombre de coccinelles, de chrysopes et le reste des insectes piégés (mouches, hyménoptères, lépidoptères ...) est regroupé dans un seul décompte. La période d’expérience est du 1 mai au 31 mai. Les résultats obtenus sont présentés dans le Tableau 1 ci-dessous.
[Tableau 1]
Figure imgf000020_0001
Cet exemple montre que les pièges équipés des suspensions de microcapsules de l’exemple 1 ou de l’exemple 2 attirent plus les coccinelles et les chrysopes que le témoin. L’apparition des premiers pucerons noirs a été observée le 28 avril sur fèves et le 3 mai sur cerisiers. L’apparition de pucerons verts sur pêchers et de pucerons lanigères sur pommiers et poiriers a été observée le 18 mai.
Exemple 4 : Fabrication d’un prémélange concentré sur unité Unimix 15L à dose constante (2%) de microcapsules
Dans une première phase, le réacteur est chargé avec l’huile de paraffine Isane Biolife 78 (10,00kg) et le polyéthylèneglycol monooléate (800 g) et le mélange est agité à une vitesse de 1200 rpm pendant 5 min à la température de 25°C.
Une deuxième phase consiste à ajouter l’agent antimousse DC62 (0,03kg) ou BYK-1630 (0,04kg). Le milieu est agité à une vitesse de 1000 rpm pendant 8 min à 25°C.
Une troisième phase consiste en l’ajout de la suspension de microcapsules (606g) préparée selon l’exemple 2. La suspension est additionnée via la pompe de recirculation fonctionnant à 1200 rpm et le mélange est laissé à homogénéiser 5 min à 30°C.
Récupération : le produit est récupéré sous la forme d’une émulsion inverse blanche liquide de viscosité de 1200cp à 3 rpm et 20°C (viscosimètre Brookfield DV1 avec mobile LV5).
L’émulsion est analysée par microscopie optique avec un zoom de x640 qui démontre l’intégrité des capsules. L’image obtenue est présentée en Figure 2. Exemple 5 : Fabrication d’un prémélange concentré sur unité Unimix 15L à dose constante (4%) de capsules
On reproduit les conditions opératoires de l’exemple 4 avec les quantités suivantes : l’huile de paraffine Isane Biolife 78 (8,00kg), le polyéthylèneglycol monooléate (640 g), agent antimousse BYK-1630 (0,04kg), suspension de microcapsules (970g) préparée selon l’exemple 2.
Récupération : le produit est récupéré sous la forme d’une émulsion inverse blanche liquide de viscosité de 1500cp à 3 rpm et 20°C (viscosimètre Brookfield DV1 avec mobile LV5).
Exemple 6 : Préparation d’une bouillie de pulvérisation
On vise des dilutions de 20L/ha soit 20L dans 1000L d’eau (volume pulvérisé sur 1 ha). Dans un mélangeur de 15L on ajoute 8,5L d’eau et on verse sous agitation 0,15L u prémélange de l’exemple 4. On obtient une émulsion de paraffine avec des microparticules en suspension.
On pulvérise la bouillie obtenue sur un support et on l’observe par microscopie optique.
Exemple 7 : Préparation de microcapsules d’un mélange de répulsif pour pucerons et d’attractants pour coccinelles et chrysopes (50/50 E-P-farnésène/salicylate de méthyle)
Dans un ballon tricol N°1 , muni d’une agitation mécanique de type ancre, sont introduits l’eau déminéralisée (1075 g) et l'agent d'encapsulation acrylique Pharma38 de la société Arkema (70 g). Le mélange est agité durant 5 min (100 rpm), puis le pH est ajusté à 10 avec une solution de soude à 10%. Dans un second ballon tricol N°2 sont agités à 70°C : l’huile végétale (huile de tournesol, 513 g), la cire d’abeille (57 g), le E- -farnésène (55 g), le salicylate de méthyle (55 g), l’a-tocophérol (10 g), le BHT (10 g) et l’oxybenzone (10 g). Le mélange du ballon tricol N°2 est coulé dans le ballon tricol N°1 sous vive agitation (600 rpm) à la température de 70°C. Le ballon tricol N°1 est alors laissé sous agitation (600rpm) pendant 1 heure après la fin de l’addition. Le pH est ensuite ajusté à 7,5 par addition de H3PO4 à 4%. Le mélange est refroidi à la température de 20°C. Une quantité de 0,3 g d’H2O2 à 35% p/p est alors additionnée sous agitation (300 rpm) suivi d’une quantité suffisante d’eau déminéralisée de 64 g. La suspension de microcapsules n°1 ainsi obtenue présente une viscosité de 1 800 cP à 20°C, 6 rpm (Viscosimètre Brookfield, mobile SC4-16) et diamètre médian de D50s = 14,5 pm.
Exemple 8 : Préparation de microcapsules d’un mélange d’attractants pour coccinelles et chrysopes (50/50 b-farnesene/Methyl Salicylate)
Dans un ballon tricol N°1 , muni d’une agitation mécanique de type ancre, sont introduits l’eau déminéralisée (1075 g) et l’agent d’encapsulation acrylique Pharma38 de la société Arkema (70 g). Le mélange est agité durant 5 min (100 rpm), puis le pH est ajusté à 10 avec une solution de soude à 10%. Dans un second ballon tricol N°2 sont agités à 70°C : l’huile végétale (huile de tournesol, 387 g), la cire d’abeille (43 g), le E-P-farnésène (110 g), le salicylate de méthyle (110 g), le a-tocophérol (20 g), le BHT (20 g) et l’oxybenzone (20 g). Le mélange du ballon tricol N°2 est coulé dans le ballon tricol N°1 sous vive agitation (600 rpm) à la température de 70°C. Le ballon tricol N°1 est alors laissé sous agitation (600rpm) pendant 1 heure après la fin de l’addition. Le pH est ensuite ajusté à 7,5 par addition de H3PO4 à 4%. Le mélange est refroidi à la température de 20°C. Une quantité de 0,3 g d’H2O2 à 35% p/p est alors additionnée sous agitation (300 rpm) suivi d’une quantité suffisante d’eau déminéralisée de 64 g.
La suspension de microcapsules n°2 ainsi obtenue présente une viscosité de 1 260 cP à 20°C, 6 rpm (Viscosimètre Brookfield, mobile SC4-16) et un diamètre médian D50 de 13,4 pm.
Exemple 9 : Fabrication d’une bouillie pulvérisable composée d’huile minérale et de microcapsules.
Les bouillies sont préparées directement dans un dispositif d’application portatif de pulvérisation (de type brouette) associé à une barre carbone (ex : ESCARRPULV200Z de Zeppelin).
Les bouillies consistent en la mise en solution des différents mélanges / produits à tester dans de l’eau, dont la quantité totale est calculée pour un volume d’application de 300 L/ha. Bouillie A : Huile minérale auto-émulsifiante (1500 mL) Oviphyt® de la société De Sangosse dissoute sous agitation dans 28,5 L d’eau dans les conditions prévues par le fabricant.
Bouillie B (selon l'i
Figure imgf000023_0001
Suspension de microcapsules n°1 issue de 'exemple 7 (100 mL) et huile minérale auto-émulsifiante Oviphyt® (1500mL) mélangées sous agitation dans 28,4 L d’eau dans les conditions prévues par le fabricant de l’huile minérale autoémulsifiante De Sangosse.
Bouillie C (selon l'i
Figure imgf000023_0002
Suspension de microcapsules n°2 issue de 'exemple 2 (100 mL) et huile minérale auto-émulsifiante Oviphyt® (1500 mL) mélangées sous agitation dans 28,4 L d’eau dans les conditions prévues par le fabricant de l’huile minérale autoémulsifiante De Sangosse.
Exemple 10 : Utilisation des bouillies A, B et C pour contrôler les pucerons sur des parcelles de betterave porte-graines en comparaison avec un témoin non traité (TNT) et un produit de référence insecticide (Flonicamide (50 WG)) appliqué à 140g/ha.
Les parcelles d’essais sont situées dans la Beauce, en France.
Chaque modalité est appliquée sur une parcelle carrée de 100m2 entourée d’une bande de culture de 25 m de largeur, pour éviter toute interaction avec le reste de la parcelle. Chaque modalité est répétée 3 fois.
Les bouillies A, B et C sont appliquées par pulvérisation dans les conditions classiques d'utilisation de l'huile minérale telles que prévues par le fabricant, tous les 9 à 10 jours en fonction de la météo, soit à TO, T+10 j, et T+19 j .
Le flonicamide (50 WG) est utilisé tel que recommandé par le fabricant et autorisé par son homologation. L’application du traitement de référence chimique est déclenchée au seuil de nuisibilité (10% de betteraves avec au moins un puceron aptère).
Les comptages de pucerons sont effectués sur 25 pieds de betteraves, présélectionnés et identifiés à l’aide de jalons, juste avant chaque application à T0, T+10 j, et T+19 j et en fin d’essai à T+27 j.
Les résultats sont exprimés en nombre de pucerons verts (Myzus persicae) aptères par plante (Tableau 1 ) ou en nombre de plantes infestées sur 100 (Tableau 2). Tableau 1 :
Figure imgf000024_0001
Tableau 2 :
Figure imgf000024_0002
Ces exemples montrent que l'effet des bouillies B et C selon l'invention est meilleur que la bouillie A et se rapproche de celui d'un insecticide chimique de référence.

Claims

REVENDICATIONS
1 . Méthode de lutte contre des insectes piqueurs comprenant l’application sur des plantes à traiter de microcapsules contenant une ou des substances attractantes qui ont un effet attractant sur des prédateurs desdits insectes piqueurs, les microcapsules ayant un diamètre médian D50 compris entre 0,5 pm et 20 pm, de préférence entre 0,8 pm et 10 pm.
2. Méthode selon la revendication 1 , caractérisée en ce que les insectes piqueurs sont des pucerons et/ou des cochenilles, de préférence des pucerons.
3. Méthode selon la revendication 1 ou 2, caractérisée en ce que la plante à traiter est choisie parmi les betteraves ; les arbres à fruits tels que les pommiers, poiriers, pêchers, ou les pruniers ; les céréales telles que le blé, ou l’orge ; ou encore les plantes maraîchères telles que les fèves, les artichauts, les carottes, les pommes de terre, les haricots, ou les pois.
4. Méthode selon l’une quelconque des revendications 1 à 3, caractérisée en ce qu’elle comprend en outre l’application sur les plantes à traiter d’un insecticide asphyxiant et/ou desséchant.
5. Méthode selon la revendication 4, caractérisée en ce qu’elle comprend l’application, notamment la pulvérisation, sur les plantes à traiter d’une bouillie comprenant un insecticide asphyxiant et/ou desséchant et lesdites microcapsules.
6. Méthode selon la revendication 5, caractérisée en ce que la bouillie contient, par rapport au poids total de la bouillie, de 1 % à 3%, de préférence de 2% à 3% en poids de l’insecticide asphyxiant et/ou desséchant, de 0,01 à 0,1 %, de préférence de 0,02% à 0,05% en poids des microcapsules.
7. Méthode selon l’une quelconque des revendications 1 à 6, caractérisée en ce que les prédateurs des insectes piqueurs sont des insectes aphidiphages, et en particulier des insectes braconidés, coccinellidés, syrphidés, anthocoridés, chrysopidés ou une combinaison de ceux-ci, de préférence des coccinelles, notamment à 7 points ou à 11 points, des chrysopes, des syrphes ou une combinaison de ceux-ci.
8. Méthode selon l’une quelconque des revendications 1 à 7, caractérisée en ce que la ou les substances attractantes sont le p-farnesène seul ou en mélange avec une ou des substances choisies parmi le camphène, les esters salicyliques tels que le salicylate de méthyle, le E-2-hexénal, le Z-3-hexenyl acétate, le 2-phényl éthanol, le p-ocimène, l’alcool benzylique, et une combinaison de ceux-ci, le mélange contenant avantageusement au moins 50% en poids de p-farnesène.
9. Méthode selon l’une quelconque des revendications 1 à 8, caractérisée en ce que l’insecticide asphyxiant et/ou desséchant est choisi parmi une paraffine, une huile végétale, une huile de silicone, un savon, notamment synthétique ou naturel, ou une combinaison de ceux-ci.
10. Composition comprenant un insecticide asphyxiant et/ou desséchant et des microcapsules contenant une ou des substances attractantes qui ont un effet attractant sur des prédateurs desdits insectes piqueurs, les microcapsules ayant un diamètre médian D50 compris entre 0,5 pm et 20 pm, de préférence entre 0,8 pm et 10 pm.
11 . Composition selon la revendication 10 comprenant :
- de 30 à 99 parties, de préférence de 30 à 99 parties en poids d’un insecticide asphyxiant et/ou desséchant,
- de 0 à 30 parties, de préférence de 5 à 20 parties en poids d’un tensioactif, de préférence choisi parmi des tensioactifs non ioniques tels que les acides gras polyalcoxylés, les esters d’acide gras et de sorbitan, les esters d’acides gras et de sorbitan (poly)alcoxylés, les alkylphénols alcoxylés, les alcools gras alcoxylés, les esters d’acides gras et de glycérol et leurs combinaisons,
- de 0,1 à 4 parties, de préférence de 0,6 à 2 parties en poids de microcapsules contenant une ou des substances attractantes, et
- de 0 à 1 parties, de préférence de 0,1 à 1 parties en poids d’un agent antimousse tels que les organosiloxanes et leurs formes polymériques, les organosilicones, les polyéthers et polyesters de glycérides et les combinaisons de ceux-ci.
12. Composition selon la revendication 10 ou 11 , caractérisée en ce que la ou les substances attractantes sont le p-farnesène seul ou en mélange avec une ou des substances choisies parmi le camphène, les esters salicyliques tels que le salicylate de méthyle, le E-2-hexénal, le Z-3-hexenyl acétate, le 2-phényl éthanol, le [3- ocimène, l’alcool benzylique, et une combinaison de ceux-ci, le mélange contenant avantageusement au moins 50% en poids de p-farnesène, et en ce que l’insecticide asphyxiant et/ou desséchant est une paraffine, une huile végétale, une huile de silicone, un savon, notamment synthétique ou naturel, ou une combinaison de ceux-ci. Composition selon l’une quelconque des revendications 10 à 12, caractérisée en ce que les microcapsules comprennent :
- un cœur comprenant de la ou des substances attractantes, et
- une enveloppe extérieure entourant le cœur comprenant un copolymère de type HASE, éventuellement neutralisé, totalement ou partiellement, sous forme d’un sel de sodium, de potassium ou d’ammonium, le cœur comprenant en outre un mélange de cire et d’huile végétale ou un corps gras ayant un point de fusion allant de 25 °C à 75 °C, de préférence allant de 25 °C à 70 °C, plus préférentiellement de 25 °C à 65°C, le cœur représentant avantageusement de 99,8% à 95% en poids du poids total des microcapsules, et l’enveloppe extérieure représentant avantageusement de 0,2% à 5% en poids du poids total des microcapsules. Composition selon la revendication 13, caractérisée en ce que le copolymère de type HASE est un copolymère d’acide (méth)acrylique tel que l’acide méthacrylique, d’acrylate d’alkyle tel que l’acrylate d’éthyle et d’un ou plusieurs macromonomères hydrophobes de formule Chem. I suivante :
[Chem. I]
Figure imgf000027_0001
dans laquelle :
- m est un entier supérieur ou égal à 5, notamment compris entre 10 et 40, de préférence compris entre 10 et 30, et
- R un groupement hydrocarboné de formule CnH2n+i dans lequel n est un entier compris entre 9 et 25, de préférence entre 10 et 22, et encore préférentiellement égal à 12, 16 ou 22. Composition selon la revendication 13 ou 14, caractérisée en ce que le cœur comprend, par rapport au poids total du cœur, de 1 à 20% en poids de la ou des substances attractantes et :
- de 5% à 30% en poids de cire et de 60% à 90% en poids d’huile végétale, ou Tl
- de 60% à 90% d’un corps gras ayant un point de fusion allant de 25 °C à 75 °C, de préférence allant de 25 °C à 70 °C, plus préférentiellement de 25 °C à 65°C. Composition selon l’une quelconque des revendications 13 à 15, caractérisée en ce que l’huile végétale est choisie dans le groupe constitué par l’huile de tournesol, l’huile d’arachide, l’huile de soja, l’huile de colza, l’huile de maïs, l’huile d’olive, l’huile de raisin, l’huile de noix, l’huile de lin, l’huile de palme, l’huile de coco, l’huile d’argan, l’huile d’avocat, l’huile d’amande, l’huile de noisette, l’huile de pistache, l’huile de riz, l’huile de coton, l’huile de germes de blé, l’huile de sésame, et leurs mélanges, en ce que la cire est choisie parmi les cires d’origine animale, les cires d’origine végétale, les cires minérales et leurs mélanges, de préférence parmi la cire d’abeille, la cire de lanoline, la cire d’insectes de Chine, la cire de riz, la cire de carnauba, la cire de candelilla, la cire de jojoba, la cire d’ouricurry, la cire d’alfa, la cire de fibres de liège, la cire de canne à sucre, la cire du Japon la cire de sumac, la cire de montan, les cires microcristallines, et leurs mélanges, et en ce que le corps gras ayant un point de fusion allant de 25 °C à 75 °C, de préférence allant de 25 °C à 70 °C, plus préférentiellement de 25 °C à 65°C, est choisi parmi l’huile de coprah hydrogénée ou non, la cire d’abeille, la cire de lanoline, la paraffine solide, et leurs mélanges. Procédé de préparation d’une composition selon l’une quelconque des revendications 10 à 16 comprenant l’ajout d’une suspension des microcapsules telles que définies dans l’une quelconque des revendications 10 à 16 à l’insecticide asphyxiant et/ou desséchant, éventuellement en mélange avec le tensioactif, et l’agent antimousse, avantageusement à une température de 15°C à 30°C, de préférence de 18°C à 25°C.
PCT/FR2023/050508 2022-04-07 2023-04-07 Procede biologique de lutte contre les insectes piqueurs WO2023194695A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2203206 2022-04-07
FR2203206A FR3134285A1 (fr) 2022-04-07 2022-04-07 Procede biologique de lutte contre les insectes piqueurs

Publications (1)

Publication Number Publication Date
WO2023194695A1 true WO2023194695A1 (fr) 2023-10-12

Family

ID=81851272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2023/050508 WO2023194695A1 (fr) 2022-04-07 2023-04-07 Procede biologique de lutte contre les insectes piqueurs

Country Status (2)

Country Link
FR (1) FR3134285A1 (fr)
WO (1) WO2023194695A1 (fr)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5308613A (en) * 1991-03-14 1994-05-03 Consep Membranes, Inc. Indirect aphid control with low concentration of EBF
WO2000019820A1 (fr) * 1998-10-05 2000-04-13 The United States Of America, As Represented By The Secretary Of Agriculture Aliment attirant et stimulant pour le controle des noctuides et/ou autres lepidopteres
FR2788272A1 (fr) 1999-01-08 2000-07-13 Atochem Elf Sa Procede de preparation de nitroxydes
US20010043937A1 (en) * 1999-04-21 2001-11-22 Baker Thomas C. Attractants of beneficial insects
US20030124167A1 (en) * 1999-02-19 2003-07-03 Curt Thies Pest controlling
US20050249769A1 (en) * 2004-05-06 2005-11-10 Mstrs Technologies, Inc. Method for soybean aphid population suppression and monitoring using aphid-and host-plant-associated semiochemical compositions
EP1778797A1 (fr) 2004-07-08 2007-05-02 Coatex S.A.S. Utilisation de copolymeres acryliques hydrosolubles dans des formulations aqueuses eventuellement pigmentees et formulations obtenues
WO2011104600A1 (fr) 2010-02-26 2011-09-01 Coatex S.A.S. Emulsion acrylique associative contenant un monomere a base d'alcool oxo, son procede de fabrication et procede d'epaississement d'une formulation aqueuse a partir de cette emulsion
WO2011104599A1 (fr) 2010-02-26 2011-09-01 Coatex S.A.S. Monomere associatif a base d'alcools oxo, polymere acrylique contenant ce monomere, utilisation dudit polymere comme epaississant dans une formulation aqueuse, formulation obtenue
US20180064102A1 (en) 2015-02-18 2018-03-08 Melchior Material And Life Science France Particles containing pheromones and production process
EP3442333A1 (fr) 2016-04-15 2019-02-20 Total Marketing Services Composition d'huile phytosanitaire paraffinique
CN113907088A (zh) * 2021-10-29 2022-01-11 中国农业大学 水杨酸香叶酯化合物在引诱蚜虫天敌食蚜蝇和瓢虫中的应用

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5308613A (en) * 1991-03-14 1994-05-03 Consep Membranes, Inc. Indirect aphid control with low concentration of EBF
WO2000019820A1 (fr) * 1998-10-05 2000-04-13 The United States Of America, As Represented By The Secretary Of Agriculture Aliment attirant et stimulant pour le controle des noctuides et/ou autres lepidopteres
FR2788272A1 (fr) 1999-01-08 2000-07-13 Atochem Elf Sa Procede de preparation de nitroxydes
US20030124167A1 (en) * 1999-02-19 2003-07-03 Curt Thies Pest controlling
US20010043937A1 (en) * 1999-04-21 2001-11-22 Baker Thomas C. Attractants of beneficial insects
US20050249769A1 (en) * 2004-05-06 2005-11-10 Mstrs Technologies, Inc. Method for soybean aphid population suppression and monitoring using aphid-and host-plant-associated semiochemical compositions
EP1778797A1 (fr) 2004-07-08 2007-05-02 Coatex S.A.S. Utilisation de copolymeres acryliques hydrosolubles dans des formulations aqueuses eventuellement pigmentees et formulations obtenues
WO2011104600A1 (fr) 2010-02-26 2011-09-01 Coatex S.A.S. Emulsion acrylique associative contenant un monomere a base d'alcool oxo, son procede de fabrication et procede d'epaississement d'une formulation aqueuse a partir de cette emulsion
WO2011104599A1 (fr) 2010-02-26 2011-09-01 Coatex S.A.S. Monomere associatif a base d'alcools oxo, polymere acrylique contenant ce monomere, utilisation dudit polymere comme epaississant dans une formulation aqueuse, formulation obtenue
US20180064102A1 (en) 2015-02-18 2018-03-08 Melchior Material And Life Science France Particles containing pheromones and production process
EP3442333A1 (fr) 2016-04-15 2019-02-20 Total Marketing Services Composition d'huile phytosanitaire paraffinique
CN113907088A (zh) * 2021-10-29 2022-01-11 中国农业大学 水杨酸香叶酯化合物在引诱蚜虫天敌食蚜蝇和瓢虫中的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SCHALLER, CROGEZ, DBRAIG, A: "Hindered amine light stabilizers in pigmented coatings", J COAT TECHNOL RES, vol. 6, 2009, pages 81 - 88
VOIR HAN, J. AGRIC. FOOD CHEM., vol. 50, 2002, pages 2571

Also Published As

Publication number Publication date
FR3134285A1 (fr) 2023-10-13

Similar Documents

Publication Publication Date Title
CA2977169C (fr) Particules contenant des pheromones et procede de fabrication
WO2011098723A1 (fr) Utilisation de saponines de gleditsia pour la lutte contre les mollusques nuisibles
BE1023957B1 (fr) Le limonene: formulation et utilisation insecticide
EP3429346B1 (fr) Composition comprenant un mel, un ester methylique d'acide gras et un tensioactif non-ionique de hlb superieur ou egal a 12
EP2470006B1 (fr) Utilisation d'une microemulsion pour lutter contre les poux
EP3550970A1 (fr) Kit d'attractifs pour attirer le scolyte du cafe
WO2023194695A1 (fr) Procede biologique de lutte contre les insectes piqueurs
FR2971399A1 (fr) Emulsion huile dans eau ou eau dans l'huile a base d'huiles vegetales en tant qu'adjuvant phytopharmaceutique.
FR3063872A1 (fr) Composition au pyrethre vegetal pour le controle des arthropodes nuisibles
FR2552627A1 (fr) Compositions pesticides huileuses a base de virus entomopathogenes
EP3791723A1 (fr) Composition répulsive et procédé associé
FR2906441A1 (fr) Repulsif insectes a base de molecules naturelles.
WO2023175279A1 (fr) Formulations de pheromones encapsulees resistantes aux rayonnements lumineux
FR3133522A1 (fr) Formulations de pheromones encapsulees resistantes aux rayonnements lumineux
WO2023118751A1 (fr) Composition agrochimique pour enrobage de graines
WO2017032945A1 (fr) Composition comprenant une fraction germe-cotylédon de fenugrec de degré de pureté élevé et application phytosanitaire
EP4027789A1 (fr) Composition repulsive et utilisations
WO2024003267A1 (fr) Microcapsules contrôlant la diffusion d'un composé organique actif
WO2021089967A1 (fr) Preparation combinee et procede pour la lutte contre les fourmis champignonnistes
FR3018424A1 (fr) Emulsions doubles stables comprenant une entite biologique et leurs utilisations, notamment dans le domaine phytosanitaire
WO2020058385A1 (fr) Suspension huileuse de particules submicroniques minérales pour lutter contre les poux
EP4268809A1 (fr) Composition huileuse anti-poux à base d'alcanes liquides et ses utilisations
WO2024033576A1 (fr) Produit de biocontrole a partir de coproduit de poireau
FR2760941A1 (fr) Composition phytopharmaceutique et procede pour la protection des plantes, plantules et semences contre les champignons phytopathogenes
FR2885768A1 (fr) Composition pour repousser les insectes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23722617

Country of ref document: EP

Kind code of ref document: A1