WO2023193704A1 - 一种表面具有微孔结构的金属及其制备方法与应用 - Google Patents

一种表面具有微孔结构的金属及其制备方法与应用 Download PDF

Info

Publication number
WO2023193704A1
WO2023193704A1 PCT/CN2023/086163 CN2023086163W WO2023193704A1 WO 2023193704 A1 WO2023193704 A1 WO 2023193704A1 CN 2023086163 W CN2023086163 W CN 2023086163W WO 2023193704 A1 WO2023193704 A1 WO 2023193704A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
microporous structure
ultrasonic
ultrasonic cavitation
present
Prior art date
Application number
PCT/CN2023/086163
Other languages
English (en)
French (fr)
Inventor
张洪旺
王鑫
王兆基
Original Assignee
燕山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 燕山大学 filed Critical 燕山大学
Publication of WO2023193704A1 publication Critical patent/WO2023193704A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F4/00Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/146Porous materials, e.g. foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores

Definitions

  • the invention relates to the technical fields of mechanical manufacturing and surface processing of medical devices, and in particular to a metal with a microporous structure on its surface and its preparation method and application.
  • metal materials such as titanium, titanium alloys and stainless steel
  • used as medical materials for biological implants such as dental nails, joints and various permanent fixings.
  • biological implants such as dental nails, joints and various permanent fixings.
  • biological tissue will interact directly with the surface of the material (D.A.Puleo, A.Nanci, Biomaterials, 1999, 20: 2311).
  • D.A.Puleo, A.Nanci, Biomaterials, 1999, 20: 2311 For example, long-term observation of the clinical use status of titanium implants found that After titanium alloy is implanted into a living body, it will cause corresponding biological reactions, thus forming a package around the implant.
  • microporous structure of appropriate size on the surface of an implant can improve the attachment and proliferation capabilities of living cells, facilitate cell attachment and the growth of microvascular structures, thereby forming a tight interface structure.
  • Microporous surface preparation is an important issue for metallic materials.
  • the most commonly used mechanical method is Surface shot peening technology and laser surface texturing technology.
  • Surface shot peening technology uses high-hardness shot materials with a diameter of tens to hundreds of microns. The shot materials are used to impact the metal surface at a high speed through a sandblasting machine to form a rough surface.
  • Laser surface texturing technology uses high-energy-density laser beams to scan the surface of the workpiece to process a specific structure with a neat and uniform morphology.
  • the Chinese invention patent with publication number CN200810017825.9 discloses a rough surface of a bone restoration.
  • Micropore treatment method This method first uses a laser engraving machine with an output power of 10 to 25W to etch multiple uniform and continuously distributed micropores on the surface of the bone restoration according to conventional laser etching methods, with a cross-sectional area of 1950 to 200000 ⁇ m. 2 , with a depth of 5 to 500 ⁇ m, and then place the etched bone restoration into an acid solution prepared with HF, HNO 3 and H 2 O or HNO 3 , HF, H 2 O 2 and H 2 O to clean the rough micropores
  • the surface is chemically milled and then cleaned with water to form a uniform and continuous rough microporous structure on the surface of the implant.
  • Chemical laws mainly include micro-arc anodization and alkali heat treatment.
  • the micro-arc anodizing method uses the principle of electrochemical discharge to form a microporous structure on the surface of the metal to be treated, while the alkali heat treatment method is to immerse the implant to be treated in a high-temperature alkaline solution to cause alkali corrosion on the surface.
  • Produce microporous structure The Chinese invention patent application with publication number CN200910112256.0 discloses a surface treatment method for improving the biological properties of titanium metal. This method pretreats the surface of the titanium metal substrate and then treats the titanium metal substrate in a NaOH solution at a temperature of 100 to 150°C.
  • a nano-micron ordered nano-titanate nanofilm layer can be obtained on the surface of the titanium metal substrate, and then the resulting surface can be obtained with a nano-micron ordered titanium titanate nano-film layer.
  • the substrate is calcined at a temperature of 450°C for 2 hours to obtain an anatase TiO 2 film with a specific structure.
  • the present invention provides a metal with a microporous structure on the surface and its preparation method and application.
  • the present invention simplifies the process, reduces the pollution and cost of the process, and shortens the metal processing time.
  • a method for preparing metal with a microporous structure on the surface including the following steps:
  • step 2) Perform ultrasonic cavitation on the metal polished in step 1) to obtain metal with a microporous structure on the surface;
  • the micropore diameter of the metal surface with a microporous structure is 8 to 50 ⁇ m.
  • the metal includes titanium, titanium alloy or stainless steel.
  • step 1) 1000#SiC water-grinding sandpaper is used for polishing for 8-15 minutes; then 2000#SiC water-grinding sandpaper is used for polishing for 8-15min; and 3000#SiC water-grinding sandpaper is used for polishing for 8-15min.
  • the polishing time is 20-60 minutes.
  • the metal is located directly below the ultrasonic cavitation tool head, with a distance of 0.5 to 52 mm.
  • the conditions for ultrasonic cavitation are as follows: the ultrasonic cavitation treatment time is 1 to 240 minutes, the amplitude of the ultrasonic equipment is 1 to 100 ⁇ m, the output power of the ultrasonic equipment is 5 to 200 W, and the ultrasonic frequency is 15000 to 55000 Hz.
  • Another object of the present invention is to provide a metal with a microporous structure on the surface prepared by a method for preparing a metal with a microporous structure on the surface.
  • Another object of the present invention is to provide a metal with a microporous structure on its surface that can be used as a medical material for biological implants.
  • the invention uses the high-frequency current generated by the ultrasonic generator to generate high-frequency longitudinal vibrations with a frequency of up to 15,000-55,000 Hz through the ultrasonic transducer and the ultrasonic horn, inducing a violent cavitation effect in the liquid medium. 1000 times/(s ⁇ cm 2 ) high-pressure shock wave and velocity generated instantly by cavitation collapse Micro jets up to 100m/s impact the material surface, causing cavitation erosion on the material surface, thereby forming a microporous structure surface.
  • the method disclosed in the present invention is low in cost, simple to operate, has no pollution to the surface, and can solve the preparation of micropores on small microsurfaces, and has potential broad application prospects in medical biology and other related fields;
  • the equipment used in the present invention is simple, low in cost, and convenient for large-scale promotion and application; it has no strict requirements on conditions and can be carried out at room temperature;
  • the metal with a microporous structure prepared by the method of the present invention has a pore size of several microns to tens of microns, which can significantly improve the attachment and proliferation capabilities of living cells, and is conducive to the attachment of cells and the growth of microvascular structures, thereby forming a tight Interface structure.
  • Figure 1 is an optical microscope image of the surface of titanium metal after mechanical polishing
  • Figure 2 is a scanning electron microscope image of the surface of titanium metal after ultrasonic cavitation
  • FIG. 3 is a schematic diagram of the ultrasonic cavitation device; among them, 1 is the ultrasonic generator, 2 is the lifting platform, 3 is the ultrasonic transducer, 4 is the ultrasonic horn, 5 is the ultrasonic tool head, 6 is the metal sample, and 7 is the cavitation liquid;
  • Figure 4 is a schematic diagram of the principle of ultrasonic cavitation
  • Figure 5 is a diagram showing the experimental results of the cell growth of metallic pure titanium with a microporous structure on the surface prepared in Example 1 and medical titanium.
  • the left picture corresponds to the medical titanium, and the right picture corresponds to the pure metallic titanium with a microporous structure on the surface prepared in Example 1. titanium.
  • the invention provides a method for preparing metal with a microporous structure on the surface, which includes the following steps:
  • step 2) Perform ultrasonic cavitation on the metal polished in step 1) to obtain metal with a microporous structure on the surface;
  • the micropore diameter of the metal surface with a microporous structure is 8 to 50 ⁇ m.
  • a cleaning step is also involved after polishing.
  • the cleaning step is to sequentially use acetone, ethanol and ultrasonic cleaning to clean the metal.
  • a cleaning step is also included after the ultrasonic cavitation is completed.
  • the purpose is to clean the residue introduced by the ultrasonic cavitation in step 2).
  • the cleaning step is to use acetone, ethanol and ultrasonic cleaning in sequence. Metal is cleaned.
  • the cavitation liquid is preferably deionized water.
  • the metal includes titanium, titanium alloy or stainless steel.
  • step 1) 1000#SiC water-grinding sandpaper is used for polishing for 8-15 minutes; then 2000#SiC water-grinding sandpaper is used for polishing for 8-15min; and 3000#SiC water-grinding sandpaper is used for polishing for 8-15min; three polishing times
  • the independent preferred time is 10 minutes.
  • the polishing time is 20 to 60 minutes, preferably 30 to 50 minutes, and further preferably 40 minutes.
  • the metal is located directly below the ultrasonic cavitation tool head, and the distance is 0.5 to 50 mm, preferably 10 to 30 mm, and more preferably 20 mm.
  • the conditions for ultrasonic cavitation are as follows: the ultrasonic cavitation treatment time is 1 to 240 min, preferably 1 to 5 min, and more preferably 3 min; the amplitude of the ultrasonic equipment is 1 to 100 ⁇ m, preferably 2 to 50 ⁇ m, and further preferably 5 ⁇ m; the output power of the ultrasonic equipment is 5-200W, preferably 8-100W, and more preferably 10W; the ultrasonic frequency is 15000-55000Hz, preferably 20000-50000Hz, and further preferably 40000Hz.
  • the schematic diagram of the ultrasonic cavitation device of the present invention is shown in Figure 3, which includes an ultrasonic generator 1, a lifting platform 2, an ultrasonic transducer 3, an ultrasonic horn 4, an ultrasonic tool head 5, a metal sample 6, and a cavitation liquid 7;
  • the schematic diagram of the ultrasonic cavitation principle is shown in Figure 4.
  • the invention also provides a method for preparing a metal with a microporous structure on its surface, which is a metal with a microporous structure on its surface.
  • the invention also provides a method for preparing a metal with a microporous structure on the surface.
  • the metal with a microporous structure on the surface prepared by the method or the metal with a microporous structure on the surface can be used as a medical material biological implant.
  • the conditions for ultrasonic cavitation are: the ultrasonic cavitation treatment time is 3 minutes, the amplitude of the ultrasonic equipment is 5 ⁇ m, and the equipment output power is 10W , the ultrasonic frequency is 40KHz. Titanium gold after ultrasonic cavitation The surface scanning electron microscope picture is shown in Figure 2. Comparing Figure 1 and Figure 2, it can be found that the surface of titanium metal has changed significantly, and a large number of 8-50 ⁇ m pores can be observed on the surface of titanium metal.
  • acetone, ethanol, and ultrasonic cleaning are used in sequence to remove the residue introduced by ultrasonic cavitation and obtain a metal with a microporous structure on the surface.
  • Use TC4 titanium alloy
  • the polished metal material is cleaned with acetone, ethanol, and ultrasonic in sequence to remove surface debris, and is left to dry for later use.
  • the conditions for ultrasonic cavitation are: the ultrasonic cavitation treatment time is 240 minutes, the amplitude of the ultrasonic equipment is 100 ⁇ m, and the equipment output power is 200W.
  • the ultrasonic frequency is 15KHz.
  • acetone, ethanol, and ultrasonic cleaning are used in sequence to remove the residue introduced by ultrasonic cavitation and obtain a metal with a microporous structure on the surface.
  • Use 304 stainless steel as the treated metal use 1000#SiC water-sanded sandpaper to polish for 15 minutes; then use 2000#SiC water-sanded sandpaper to polish for 8 minutes; then use 3000#SiC water-sanded sandpaper to polish for 8 minutes. Then use a polishing machine to polish for 20 minutes.
  • the polished metal material is cleaned with acetone, ethanol, and ultrasonic cleaning in sequence. Wash, remove surface debris, dry and set aside.
  • the conditions for ultrasonic cavitation are: the ultrasonic cavitation treatment time is 1 min, the amplitude of the ultrasonic equipment is 1 ⁇ m, and the output power of the equipment is 5W, ultrasonic frequency is 55KHz.
  • acetone, ethanol, and ultrasonic cleaning are used in sequence to remove the residue introduced by ultrasonic cavitation and obtain a metal with a microporous structure on the surface.
  • Example 1 Cell growth tests were conducted using Example 1 to prepare metal pure titanium with microporous structure, and compared with medical Ti used in actual organs of the same material.
  • the experimental results are shown in Figure 5, in which the right picture corresponds to Example 1 of the present invention. .
  • the blue dots in the picture are stained cell nuclei. It can be found that the cell attachment and growth on the Ti surface cavitated by ultrasound are more uniform and dense.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Inorganic Chemistry (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Mechanical Engineering (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Vascular Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Prostheses (AREA)

Abstract

本发明属于机械制造和医疗器件表面加工技术领域,具体公开了一种表面具有微孔结构的金属及其制备方法与应用。本发明先对金属顺次进行打磨,抛光,然后进行超声空化,超声空化的条件为(超声空化处理时间为1~240min,超声设备振幅为1~100μm,超声设备输出功率5~200W,超声频率为15000~55000Hz),得到表面具有微孔结构的金属。本发明公开的方法成本低廉,操作简单,对表面无污染,且能解决小微表面的微孔制备,在医学生物及其他相关领域具有潜在的广泛应用前景。

Description

一种表面具有微孔结构的金属及其制备方法与应用 技术领域
本发明涉及机械制造和医疗器件表面加工技术领域,尤其涉及一种表面具有微孔结构的金属及其制备方法与应用。
背景技术
许多金属材料如钛、钛合金和不锈钢等因具有优良的力学性能,比如高强度、高抗弯疲劳强度、与人体骨骼相近的弹性模量、良好的韧性以及优越的生物相容性,被广泛用作医用材料生物植入体,如牙钉、关节及各种永久固定件等。通常,医用材料植入生物体后,生物组织会与材料表面发生直接作用(D.A.Puleo,A.Nanci,Biomaterials,1999,20:2311),比如对钛植入件临床使用状态的长期观察发现,钛合金植入活体后会引起相应的生物反应,从而在植入件周围形成包裹,在显微镜下可以清楚观察到活体骨组织与材料间的界面。研究表明,植入件表面具有适当大小的微孔结构可以改善活体细胞的附着、增生能力,有利于细胞的附着以及微血管结构的长入,从而形成紧密的界面结构。微孔表面制备是金属材料的重要课题。
微孔表面的制备技术主要有机械法和化学法两种。机械法中最常用的是 表面喷丸技术和激光表织构技术,其中表面喷丸技术是采用直径为几十至几百微米的高硬度丸料,通过喷砂机使丸料以较高的速度冲击金属表面形成粗糙表面。激光表织构技术利用高能密度的激光束扫描工件的表面,加工出具有整齐、均一形貌的特定结构,比如公开号为CN200810017825.9的中国申请发明专利公开了一种骨修复体粗糙表面的微孔处理方法,该方法先使用输出功率为10~25W的激光雕刻机按常规激光刻蚀方法在骨修复体表面上刻蚀多个均匀且连续分布的微孔,横截面积为1950~200000μm2,深度为5~500μm,再将经刻蚀的骨修复体放入用HF、HNO3和H2O或HNO3、HF、H2O2和H2O配制酸溶液里对粗糙微孔表面进行化铣,之后用水清洗,从而在植入件表面形成均匀连续粗糙微孔结构。化学法则主要包括微弧阳极氧化法和碱热处理法。微弧阳极氧化法是采用电化学放电原理在待处理金属表面形成微孔结构,而碱热处理法是通过将待处理的植入件浸渍于高温的碱性溶液中,使其表面产生碱腐蚀,产生微孔结构。公开号为CN200910112256.0的中国申请发明专利公开了一种提高金属钛生物性能的表面处理方法,该方法将钛金属基底表面预处理后,对钛金属基底在温度为100~150℃的NaOH溶液中进行时长为2~6h的碱处理,即可在钛金属基底表面获得纳微米有序的钛酸纳膜层,再将所得的表面获得纳-微米有序的钛酸纳膜层的钛金属基底在450℃的温度下煅烧2h,即可获得具有特定结构的锐钛矿型TiO2膜层。
上述方法虽然均可在金属表面制备出微孔结构,但却存在诸多不足之处,比如喷丸法会对表面产生一定程度的污染,对小微复杂表面加工难度大;激光表面织构技术设备昂贵,成本较高,激光刻蚀后还需进行酸洗处理;碱热处理法处理步骤繁杂,时间也更加漫长。
因此,如何提供一种表面具有微孔结构的金属及其制备方法与应用,简化金属表面加工难度,降低污染,降低成本,缩短工艺时间是本领域亟待解决的难题。
发明内容
有鉴于此,本发明提供了一种表面具有微孔结构的金属及其制备方法与应用,本发明简化了工艺,降低了工艺的污染及成本,缩短了金属的处理时间。
为了达到上述目的,本发明采用如下技术方案:
一种表面具有微孔结构的金属的制备方法,包括以下步骤:
1)将金属顺次进行打磨,抛光;
2)将步骤1)抛光后的金属进行超声空化,得到表面具有微孔结构的金属;
其中,表面具有微孔结构的金属表面的微孔孔径为8~50μm。
优选的,所述金属包括钛、钛合金或不锈钢。
优选的,所述步骤1)中打磨采用1000#SiC水磨砂纸打磨8~15min;再采用2000#SiC水磨砂纸打磨8~15min;再采用3000#SiC水磨砂纸打磨8~15min。
优选的,所述抛光的时间为20-60min。
优选的,所述超声空化时,金属位于超声空化工具头的正下方,距离为0.5~52mm。
优选的,超声空化的条件如下:超声空化处理时间为1~240min,超声设备的振幅为1~100μm,超声设备输出功率为5~200W,超声频率为15000~55000Hz。
本发明的另一目的是提供一种表面具有微孔结构的金属的制备方法制备得到的表面具有微孔结构的金属。
本发明的再一目的是提供一种表面具有微孔结构的金属作为医用材料生物植入体的应用。
经由上述的技术方案可知,与现有技术相比,本发明具有以下有益效果:
本发明利用超声波发生器产生的高频电流,通过超声换能器和超声变幅杆,产生频率高达15000-55000Hz高频纵向震动,诱导液体介质内发生剧烈的空化效应。通过空泡溃灭瞬间产生的1000次/(s·cm2)高压冲击波和速度 高达100m/s的微射流冲击材料表面,使材料表面发生空蚀,从而形成微孔结构表面。本发明公开的方法成本低廉,操作简单,对表面无污染,且能解决小微表面的微孔制备,在医学生物及其他相关领域具有潜在的广泛应用前景;
本发明采用的设备简单,造价低,便于大规模推广应用;对条件没有苛刻要求,在室温下即可进行;
通过本发明方法制备的具有微孔结构的金属,孔洞大小为几微米至几十微米,可以显著改善活体细胞的附着、增生能力,有利于细胞的附着以及微血管结构的长入,从而形成紧密的界面结构。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为机械抛光后钛金属表面光镜图;
图2为超声空化后的钛金属表面扫描电镜图;
图3为超声空化装置示意图;其中,1为超声波发生器、2为升降平台、 3为超声换能器、4为超声变幅杆、5为超声工具头、6为金属样品、7为空化液;
图4为超声空化原理示意图;
图5为实施例1制备得到表面具有微孔结构的金属纯钛与医用钛细胞生长实验结果图,其中,左图对应医用钛,右图对应实施例1制备得到表面具有微孔结构的金属纯钛。
具体实施方式
本发明提供了一种表面具有微孔结构的金属的制备方法,包括以下步骤:
1)将金属顺次进行打磨,抛光;
2)将步骤1)抛光后的金属进行超声空化,得到表面具有微孔结构的金属;
其中,表面具有微孔结构的金属表面的微孔孔径为8~50μm。
在本发明中,抛光后还涉及清洗步骤,清洗步骤为顺次采用丙酮、乙醇和超声清洗对金属进行清洗。
在本发明中,超声空化完成后还包括清洗步骤,目的为将步骤2)超声空化引入的存留物清洗干净,清洗步骤为顺次采用丙酮、乙醇和超声清洗对 金属进行清洗。
在本发明中,空化液优选为去离子水。
在本发明中,所述金属包括钛、钛合金或不锈钢。
在本发明中,所述步骤1)中打磨采用1000#SiC水磨砂纸打磨8~15min;再采用2000#SiC水磨砂纸打磨8~15min;再采用3000#SiC水磨砂纸打磨8~15min;三次打磨时间独立的优选为10min。
在本发明中,所述抛光的时间为20~60min,优选为30~50min,进一步优选为40min。
在本发明中,所述超声空化时,金属位于超声空化工具头的正下方,距离为0.5~50mm,优选为10~30mm,进一步优选为20mm。
在本发明中,超声空化的条件如下:超声空化处理时间为1~240min,优选为1~5min,进一步优选为3min;超声设备振幅为1~100μm,优选为2~50μm,进一步优选为5μm;超声设备输出功率为5~200W,优选为8~100W,进一步优选为10W;超声频率为15000~55000Hz,优选为20000~50000Hz,进一步优选为40000Hz。
本发明的超声空化装置示意图如图3所示,包括超声波发生器1、升降平台2、超声换能器3、超声变幅杆4、超声工具头5、金属样品6、空化液7;超声空化原理示意图如图4所示。
本发明还提供了一种表面具有微孔结构的金属的制备方法制备得到的表面具有微孔结构的金属。
本发明还提供了一种表面具有微孔结构的金属的制备方法制备得到的表面具有微孔结构的金属或表面具有微孔结构的金属作为医用材料生物植入体的应用。
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
采用纯钛作为处理金属,采用1000#SiC水磨砂纸打磨10min;再采用2000#SiC水磨砂纸打磨10min,再采用3000#SiC水磨砂纸打磨10min。然后采用抛光机抛光30min,抛光后的金属材料依次用丙酮、乙醇、超声清洗,去除表面碎屑,晾干备用,抛光后的纯钛表面光镜图如图1所示,从图1可以看到抛光后的钛金属表面光滑平整。
将处理后的金属材料放置于超声空化工具头的正下方20mm处进行超声空化处理,超声空化的条件为:超声空化处理时间为3min,超声设备振幅为5μm,设备输出功率为10W,超声频率为40KHz。超声空化后的钛金 属表面扫描电镜图如图2所示,对比图1和图2,可以发现钛金属表面发生了明显的变化,可以观察到钛金属表面存在大量8-50μm的孔洞。
超声空化完成后依次采用丙酮、乙醇、超声清洗,去除超声空化引入的残留物,得到表面具有微孔结构的金属。
实施例2
采用TC4(钛合金)作为处理金属,采用1000#SiC水磨砂纸打磨8min;再采用2000#SiC水磨砂纸打磨15min,再采用3000#SiC水磨砂纸打磨10min。然后采用抛光机抛光30min,抛光后的金属材料依次用丙酮、乙醇、超声清洗,去除表面碎屑,晾干备用。
将处理后的金属材料放置于超声空化工具头的正下方50mm处进行超声空化处理,超声空化的条件为:超声空化处理时间为240min,超声设备振幅为100μm,设备输出功率200W,超声频率为15KHz。
超声空化完成后依次采用丙酮、乙醇、超声清洗,去除超声空化引入的残留物,得到表面具有微孔结构的金属。
实施例3
采用304不锈钢作为处理金属,采用1000#SiC水磨砂纸打磨15min;再采用2000#SiC水磨砂纸打磨8min;再采用3000#SiC水磨砂纸打磨8min。然后采用抛光机抛光20min,抛光后的金属材料依次用丙酮、乙醇、超声清 洗,去除表面碎屑,晾干备用。
将处理后的金属材料放置于超声空化工具头的正下方0.5mm处进行超声空化处理,超声空化的条件为:超声空化处理时间为1min,超声设备振幅为1μm,设备输出功率为5W,超声频率为55KHz。
超声空化完成后依次采用丙酮、乙醇、超声清洗,去除超声空化引入的残留物,得到表面具有微孔结构的金属。
实验例1
采用实施例1制备具有微孔结构的金属纯钛的进行细胞生长试验,并与同种材料实际器官使用的医用Ti做对比,实验结果如图5所示,其中右图对应本发明实施例1。图中蓝色点状物为染色的细胞核,可以发现,经过超声空化出来的Ti表面的细胞附着生长更加均匀、致密。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (7)

  1. 一种表面具有微孔结构的金属的制备方法,其特征在于,包括以下步骤:
    1)将金属顺次进行打磨,抛光;
    2)将步骤1)抛光后的金属进行超声空化,得到表面具有微孔结构的金属;
    其中,表面具有微孔结构的金属表面的微孔孔径为8~50μm;
    超声空化的条件如下:超声空化处理时间为1~240min,超声设备的振幅为1~100μm,超声设备输出功率为5~200W,超声频率为15000~55000Hz。
  2. 根据权利要求1所述的一种表面具有微孔结构的金属的制备方法,其特征在于,所述金属包括钛、钛合金或不锈钢。
  3. 根据权利要求2所述的一种表面具有微孔结构的金属的制备方法,其特征在于,所述步骤1)中打磨采用1000#SiC水磨砂纸打磨8~15min;再采用2000#SiC水磨砂纸打磨8~15min;再采用3000#SiC水磨砂纸打磨8~15min。
  4. 根据权利要求3所述的一种表面具有微孔结构的金属的制备方法,其特征在于,所述抛光的时间为20~60min。
  5. 根据权利要求1~4任一项所述的一种表面具有微孔结构的金属的制备方法,其特征在于,所述超声空化时,金属位于超声空化工具头的正下方,距离为0.5~50mm。
  6. 权利要求1~5任一项所述的一种表面具有微孔结构的金属的制备方法制备得到的表面具有微孔结构的金属。
  7. 权利要求6所述的表面具有微孔结构的金属作为医用材料生物植入体的应用。
PCT/CN2023/086163 2022-04-07 2023-04-04 一种表面具有微孔结构的金属及其制备方法与应用 WO2023193704A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210360096.7 2022-04-07
CN202210360096.7A CN114606499B (zh) 2022-04-07 2022-04-07 一种表面具有微孔结构的金属及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2023193704A1 true WO2023193704A1 (zh) 2023-10-12

Family

ID=81868621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/086163 WO2023193704A1 (zh) 2022-04-07 2023-04-04 一种表面具有微孔结构的金属及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN114606499B (zh)
WO (1) WO2023193704A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117503427A (zh) * 2023-12-08 2024-02-06 广州曼翔医药有限公司 耐疲劳听小骨假体及其加工方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114606499B (zh) * 2022-04-07 2023-06-06 燕山大学 一种表面具有微孔结构的金属及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104191156A (zh) * 2014-09-12 2014-12-10 哈尔滨工业大学 一种利用超声波空蚀加工平板表面微坑的方法
CN109405610A (zh) * 2018-11-27 2019-03-01 华南理工大学 一种毛细芯结构及其制备方法
CN110158020A (zh) * 2019-04-09 2019-08-23 山东大学 一种超声辅助感应加热制备纳米结构氧化膜的方法
CN113527749A (zh) * 2021-07-15 2021-10-22 山东大学 一种在聚醚醚酮表面制备多尺度多孔结构的方法
CN114606499A (zh) * 2022-04-07 2022-06-10 燕山大学 一种表面具有微孔结构的金属及其制备方法与应用

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4041365A1 (de) * 1990-12-20 1992-07-02 Bandelin Electronic Gmbh & Co Sonotrode mit kavitationsschutzschicht
US7896539B2 (en) * 2005-08-16 2011-03-01 Bacoustics, Llc Ultrasound apparatus and methods for mixing liquids and coating stents
CN100516328C (zh) * 2006-12-28 2009-07-22 上海交通大学 活性炭纤维的超声改性方法
CA2692311A1 (en) * 2007-06-27 2008-12-31 Roland Dricot Structure for forming bone
KR101916883B1 (ko) * 2011-12-28 2018-11-09 코웨이 주식회사 초음파와 광촉매를 이용한 살균모듈
CN102586786B (zh) * 2012-03-19 2014-03-19 上海交通大学医学院附属第九人民医院 一种钛表面形成分级多孔形貌的方法
CN104772972A (zh) * 2014-01-14 2015-07-15 佛山市华品通信技术开发有限公司 钛合金与工程塑料一体化无胶结合的方法
IL250881A0 (en) * 2017-03-01 2017-06-29 Pali Nazir A process of instant creation of artificial bone tissue
EP3662518A4 (en) * 2017-07-31 2021-04-28 Yale University NANOPOREOUS MICRO-LED DEVICES AND THEIR MANUFACTURING PROCESSES
PL240082B1 (pl) * 2018-10-26 2022-02-14 Inst Wysokich Cisnien Polskiej Akademii Nauk Biologiczna membrana separacyjna
CN110724803B (zh) * 2019-10-25 2021-06-22 中国科学院宁波材料技术与工程研究所 超声波空化喷丸方法及其使用装置
CN112063888A (zh) * 2020-09-23 2020-12-11 上海交通大学 一种超亲水多孔表面的钛合金的制备工艺
CN113321845B (zh) * 2021-06-22 2022-05-31 上海电机学院 一种生物医用材料制备装置及方法
CN113663140B (zh) * 2021-07-20 2022-08-09 南方医科大学珠江医院 一种植入物及其制备方法和应用
CN113736967A (zh) * 2021-09-07 2021-12-03 燕山大学 一种超声辅助滚压进行管件内表面强化处理方法
CN114012109A (zh) * 2021-12-17 2022-02-08 中国科学技术大学 一种具有多孔结构的抗菌合金制备工艺及设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104191156A (zh) * 2014-09-12 2014-12-10 哈尔滨工业大学 一种利用超声波空蚀加工平板表面微坑的方法
CN109405610A (zh) * 2018-11-27 2019-03-01 华南理工大学 一种毛细芯结构及其制备方法
CN110158020A (zh) * 2019-04-09 2019-08-23 山东大学 一种超声辅助感应加热制备纳米结构氧化膜的方法
CN113527749A (zh) * 2021-07-15 2021-10-22 山东大学 一种在聚醚醚酮表面制备多尺度多孔结构的方法
CN114606499A (zh) * 2022-04-07 2022-06-10 燕山大学 一种表面具有微孔结构的金属及其制备方法与应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117503427A (zh) * 2023-12-08 2024-02-06 广州曼翔医药有限公司 耐疲劳听小骨假体及其加工方法
CN117503427B (zh) * 2023-12-08 2024-05-28 广州曼翔医药有限公司 耐疲劳听小骨假体及其加工方法

Also Published As

Publication number Publication date
CN114606499B (zh) 2023-06-06
CN114606499A (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
WO2023193704A1 (zh) 一种表面具有微孔结构的金属及其制备方法与应用
KR101724039B1 (ko) 나노패터닝 요홈 표면을 갖는 임플란트 및 그 제조방법
CN102921037B (zh) 一种钛种植体表面制备多级微米结构的方法
CN101919741B (zh) 具有微米--纳米多级微表面结构的牙种植体及制备方法
RU2010114171A (ru) Способ получения поверхности металлического имплантата на основе титана для вставления в костную ткань
CN104127911A (zh) 一种以钛合金为种植体的生物复合材料制备方法
CN103006339A (zh) 一种医用纯钛种植体表面多级微孔结构的制备方法
CN103361703A (zh) 钛表面多级孔结构制备方法
RU2009149207A (ru) Новая поверхность металлических имплантатов на основе титана, предназначенных для введения в костную ткань
CN109234735A (zh) 一种ebm成型钛植入体及其制备方法和应用
EP2893942B1 (en) Method for the preparation of surfaces of devices made of titanium or titanium alloys, zirconium, zirconia, alumina or zirconia/alumina compounds, stainless steels for medical use and cobalt-base superalloys for medical use implantable in the human or animal body, having as a result nanometer roughness, formation of self-induced surface oxide, high anti-metalosis cleaning and possible preparation of parts with surface antimicrobial treatment.
CN102586786A (zh) 一种钛表面形成分级多孔形貌的方法
CN111455389A (zh) 一种纯钛或钛合金医用材料的表面改性方法
CN110158020B (zh) 一种超声辅助感应加热制备纳米结构氧化膜的方法
CN111632195A (zh) 一种改善细胞成骨性能的医疗植入物及其制备方法
CN111041490A (zh) 一种能够促进接触成骨的纯钛表面处理方法
JPH08257110A (ja) 骨内インプラント及びその製造方法
CN1237945C (zh) 改良的牙种植体表面的喷砂处理方法
CN108754577A (zh) 一种钛材表面微纳复合结构的制备方法
CN102691087A (zh) 一种提高医用β型钛合金表面生物活性的表面处理方法
CN104027839B (zh) 一种在纯钛表面制备具有生物活性纳米结构的方法
US10857575B2 (en) Shelf-life-improved nanostructured implant systems and methods
CN109482995B (zh) 一种具有球面特征阵列微结构的金属基体及其构建方法
CN112301399A (zh) 一种牙科种植体的表面处理方法
KR20180078620A (ko) 친수성 표면을 갖는 임플란트의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784267

Country of ref document: EP

Kind code of ref document: A1