WO2023193452A1 - 光伏组件的最大功率追踪方法、装置及储能设备 - Google Patents

光伏组件的最大功率追踪方法、装置及储能设备 Download PDF

Info

Publication number
WO2023193452A1
WO2023193452A1 PCT/CN2022/134425 CN2022134425W WO2023193452A1 WO 2023193452 A1 WO2023193452 A1 WO 2023193452A1 CN 2022134425 W CN2022134425 W CN 2022134425W WO 2023193452 A1 WO2023193452 A1 WO 2023193452A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
voltage value
power
photovoltaic module
output
Prior art date
Application number
PCT/CN2022/134425
Other languages
English (en)
French (fr)
Inventor
张宏韬
陈熙
Original Assignee
深圳市正浩创新科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市正浩创新科技股份有限公司 filed Critical 深圳市正浩创新科技股份有限公司
Publication of WO2023193452A1 publication Critical patent/WO2023193452A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • This application belongs to the field of control technology, and in particular relates to a maximum power tracking method, device and energy storage equipment for photovoltaic modules.
  • the photovoltaic modules need to track the maximum power value during operation, so that the output power value of the photovoltaic modules approaches the maximum value.
  • a maximum power tracking method, device and energy storage device for photovoltaic modules are provided.
  • this embodiment provides a method for tracking the maximum power of a photovoltaic module, including: obtaining the first output power value of the photovoltaic module at the current sampling time, and the sampling power of the photovoltaic module at the previous sampling time. value; calculate the first power fluctuation coefficient of the photovoltaic module according to the first output power value and the sampling power value; when the first power fluctuation coefficient is greater than or equal to the first rated fluctuation coefficient, obtain The maximum reference voltage value corresponding to the global maximum power value of the photovoltaic module in the current environment is sent to the photovoltaic module as the operating reference voltage value. The photovoltaic module is used to operate according to the operating reference voltage. Voltage value for maximum power tracking.
  • embodiments of the present application provide a maximum power tracking device for photovoltaic modules, which is used to perform the method in the above first aspect or any possible implementation of the first aspect.
  • the apparatus may include a module for performing the maximum power tracking method of the photovoltaic component in the first aspect or any possible implementation of the first aspect.
  • embodiments of the present application provide an energy storage device, which includes a memory and a processor.
  • the memory is used to store instructions; the processor executes the instructions stored in the memory, so that the energy storage device performs the maximum power tracking method of the photovoltaic component in the first aspect or any possible implementation of the first aspect.
  • a computer-readable storage medium In a fourth aspect, a computer-readable storage medium is provided. Instructions are stored in the computer-readable storage medium. When the instructions are executed on a computer, they cause the computer to execute the first aspect or any possible implementation of the first aspect. Maximum power tracking method for medium-sized photovoltaic modules.
  • a fifth aspect provides a computer program product containing instructions that, when run on a device, cause the device to perform the maximum power tracking method of the photovoltaic component in the first aspect or any possible implementation of the first aspect.
  • embodiments of the present application provide a chip, including a processor, which is coupled to a memory and configured to execute computer programs or instructions stored in the memory to implement the first aspect or any aspect of the first aspect.
  • Figure 1 is a schematic equivalent circuit diagram of a photovoltaic module provided by an embodiment of the present application.
  • Figure 2 (a) is a schematic diagram of the photovoltaic characteristic curve between the output voltage value and the output power value provided by the embodiment of the present application.
  • Figure 2 (b) is a schematic diagram of the photovoltaic characteristic curve between the output voltage value and the output current value provided by the embodiment of the present application.
  • FIG. 3 is a schematic flowchart of the maximum power tracking method of photovoltaic modules provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a maximum power tracking method for photovoltaic modules provided by another embodiment of the present application.
  • FIG. 5 is a schematic flowchart of obtaining the first operating reference voltage value provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram for calculating the predicted output power value provided by the embodiment of the present application.
  • FIG. 7 is a schematic flowchart of obtaining the reference voltage value corresponding to the global maximum power value of the photovoltaic module in the current environment provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the process of obtaining the reference voltage value corresponding to the global maximum power value of the photovoltaic module in the current environment provided by the embodiment of the present application.
  • FIG. 9 is a schematic flowchart of obtaining the reference voltage value corresponding to the global maximum power value of the photovoltaic module in the current environment provided by another embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a maximum power tracking device 1000 for a photovoltaic module provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a device 1100 provided by an embodiment of the present application.
  • Figure 1 shows the equivalent circuit diagram of the photovoltaic module during operation. According to the equivalent circuit, the relationship between the output voltage value and the output current value of the photovoltaic module during operation can be obtained as shown in formula (1):
  • I ph is the photogenerated current value of the photovoltaic module
  • I d is the junction current value of the diode
  • R p is the parallel resistance
  • R s is the series resistance
  • I is the output current value during the operation of the photovoltaic module
  • U is the operation of the photovoltaic module. output voltage value during the process.
  • the output current value of the photovoltaic module under standard irradiance and standard temperature can be expressed by formula (2) express:
  • I sc is the short-circuit current value of the photovoltaic module
  • U oc is the open circuit voltage value
  • C 1 and C 2 are the undetermined coefficients of the photovoltaic module
  • e is the exponential function with e as the base.
  • C 1 and C 2 can be calculated according to formula (3) and formula (4):
  • I m is the peak current value of the photovoltaic module.
  • U m is the peak voltage value of the photovoltaic module
  • ln() is the logarithmic function with e as the base.
  • I' sc is the short-circuit current value of the photovoltaic module in the actual environment
  • I sc is the short-circuit current value of the photovoltaic module in the standard environment
  • S is the irradiance in the standard environment
  • S ref is the irradiation in the actual environment.
  • ⁇ T is the difference between the temperature in the standard environment and the temperature in the actual environment
  • U' oc is the open circuit voltage value of the photovoltaic module in the actual environment
  • U oc is the open circuit voltage value of the photovoltaic module in the standard environment
  • ⁇ S is The difference between the irradiance in the standard environment and the irradiance in the actual environment
  • I' m is the peak current value of the photovoltaic module in the actual environment
  • I m is the peak current value of the photovoltaic module in the standard environment
  • U' m is the peak voltage value of the photovoltaic module in the actual environment
  • U m is the peak voltage value of the photovoltaic module in the standard environment
  • the typical values of ⁇ , ⁇ , and ⁇ are 0.0025, 0.5, and 0.00288 respectively.
  • the external environment in which the photovoltaic modules are located may change at any time.
  • the photovoltaic characteristic curve of the photovoltaic module will also change accordingly.
  • the operating reference voltage value of the photovoltaic module corresponds to the output voltage value U 22 and the maximum output power value P 21 .
  • the photovoltaic characteristic curve a 21 will change to the photovoltaic characteristic curve a 22 .
  • the operating reference voltage value of the photovoltaic module does not change, so the output voltage value is still U 22 , but the corresponding output power value P 22 is no longer the maximum output power value of the photovoltaic module.
  • changes in the environment in which the photovoltaic modules are located will make it impossible for the photovoltaic modules to quickly re-track to the maximum power value, resulting in a reduction in the efficiency of the photovoltaic modules.
  • the method provided by the embodiment of the present application can be executed by a first device or by a chip in the first device (for example, a maximum power tracking device of a photovoltaic module).
  • the first device can be a non-photovoltaic component, such as a server or electronic device. (For example, mobile phones), or photovoltaic modules.
  • the first device can communicate with the photovoltaic component.
  • the first device obtains the first output power value of the photovoltaic module at the current sampling time and the sampling power value of the photovoltaic module at the previous sampling time.
  • the first device can obtain the output current value of the photovoltaic component at the current moment through the output current value sampling device and collect the output voltage value of the photovoltaic component through the output voltage value sampling device. According to the output voltage value of the photovoltaic component at the current moment and The output current value determines the first output power value of the photovoltaic module at the current moment.
  • the first device can acquire the output current value of the photovoltaic module at the previous sampling moment through the output current value sampling device and collect the output voltage value of the photovoltaic module at the previous sampling moment through the output voltage value adopting device, and determine the output voltage value of the photovoltaic module at the previous moment. Sample power value.
  • the structures of the output current value sampling device and the output voltage value sampling device can adopt structures in the prior art, and will not be described again here.
  • the output power value of the photovoltaic module at each sampling time and the sampling power value of the photovoltaic module at the previous sampling time can also be obtained by other devices and then fed back to the first device. This is not done in the embodiment of the present application. limited.
  • the first output power value of the photovoltaic module at the current sampling time and the sampling power value of the photovoltaic module at the previous sampling time can also be obtained by the user input into the first device. This is not limited in the embodiment of the present application. .
  • the first device calculates the first power fluctuation coefficient of the photovoltaic module based on the first output power value and the sampling power value.
  • the first device can calculate the first power fluctuation coefficient of the photovoltaic module according to formula (9).
  • a is the first power fluctuation coefficient
  • P(k) is the first output power value sampled at the current time
  • P(k-1) is the sampling power value sampled at the previous sampling time.
  • the calculated first power fluctuation coefficient can be used to describe the environmental phase of the photovoltaic module at the current moment. Compared with the degree of change of the environment in which the photovoltaic module was at the last sampling moment, in other words, the first power fluctuation coefficient is used to describe the environment in which the photovoltaic module is at the current moment compared with the environment in which the photovoltaic module was at the previous sampling moment. degree of change.
  • the above-mentioned steps 301 and 302 can also be replaced by the following method: the first device obtains a degree of change that reflects the environment in which the photovoltaic module is located at the current moment compared to the environment in which the photovoltaic module is located at the previous sampling moment.
  • the first power fluctuation coefficient of Feedback to the first device can also be replaced by the following method: the first device obtains a degree of change that reflects the environment in which the photovoltaic module is located at the current moment compared to the environment in which the photovoltaic module is located at the previous sampling moment.
  • the first device obtains the maximum reference voltage value corresponding to the global maximum power value of the photovoltaic module in the current environment.
  • the first power fluctuation coefficient is greater than or equal to the first rated fluctuation coefficient, it means that the environment in which the photovoltaic module is located at the current moment has changed significantly compared with the environment in which the photovoltaic module was located at the previous sampling moment. . In this case, the output power value corresponding to the current operating reference voltage value of the photovoltaic module also changes significantly. Therefore, the maximum reference voltage value determined by the first device for the photovoltaic module before the environmental change is likely to have expired, and the output power value of the photovoltaic module may be reduced due to environmental changes. In order to enable the photovoltaic module to quickly track the For the maximum power value, the first device can reacquire the maximum reference voltage value corresponding to the global maximum power value of the photovoltaic module in the current environment (that is, after the environment changes).
  • the first rated fluctuation coefficient may be a preset fluctuation coefficient.
  • the first device uses the maximum reference voltage value as the operating reference voltage value to send to the photovoltaic component, and the photovoltaic component is used to perform maximum power tracking based on the operating reference voltage value.
  • S304 specifically includes: the photovoltaic module operates according to the operating reference voltage value.
  • the maximum power tracking method of photovoltaic modules obtained by the embodiments of this application obtains the first output power value at the current sampling time and the sampling power value at the previous sampling time.
  • the obtained first power fluctuation coefficient can represent the degree of environmental change at the current time. .
  • the output power value of the photovoltaic module will also change, so the first power fluctuation coefficient increases accordingly.
  • the first power fluctuation coefficient is greater than or equal to the first rated fluctuation coefficient, it means that the current environment has changed. There have been noticeable changes. In this case, the maximum power value determined before the environmental change is likely to have expired. Therefore, the environmental change can be quickly determined by re-obtaining the maximum reference voltage value corresponding to the global maximum power value of the photovoltaic module in the current environment.
  • the maximum reference voltage value after.
  • the output power value corresponding to the maximum reference voltage value in the current environment is closer to the maximum power value of the photovoltaic module than the output power value corresponding to the reference voltage value before the environmental change, then the maximum reference voltage can be
  • the value is sent to the photovoltaic module as the operating reference voltage value, so that the photovoltaic module can perform maximum power tracking according to the operating voltage value. Accordingly, the maximum power value can be quickly tracked, which improves the speed at which the photovoltaic module can track the maximum power value when the external environment changes, and improves the working efficiency of the photovoltaic module.
  • the maximum power tracking method of photovoltaic modules provided by this application also includes:
  • the first device obtains the stability coefficient of the photovoltaic module.
  • S305 can be implemented in the following ways:
  • Way 1 can be:
  • the stability coefficient of the photovoltaic module can be calculated based on the first output power value and the sampling power value.
  • the stability coefficient of the photovoltaic module represents the degree of change of the output power value of the photovoltaic module within a certain period of time and is used to determine whether the photovoltaic module has been tracked. reached the maximum power value.
  • the above-mentioned first device can calculate the stability coefficient of the photovoltaic module according to the first output power value and the sampling power value in the following manner: the first device can calculate the stability coefficient of the photovoltaic module according to formula (10).
  • b is the stability coefficient
  • P(k) is the first output power value sampled at the current time
  • P(k-1) is the sampling power value sampled at the previous sampling time.
  • the first device may obtain the stability coefficient of the photovoltaic component from other devices, that is, the stability coefficient is calculated by other devices and then fed back to the first device.
  • Method 2 can be:
  • the first device When the first device performs maximum power tracking in order to control photovoltaic modules, it can directly obtain the stability coefficient from other devices. In other words, the stability coefficient can also be calculated by other devices and then fed back to the first device.
  • the first device obtains the second output power value of the photovoltaic module at a preset time interval.
  • the first device Before updating the operating reference voltage value of the photovoltaic module, in order to prevent environmental changes from preventing the photovoltaic module from correctly tracking the maximum power value, the first device may collect the second output power value of the photovoltaic module at a preset time interval.
  • the operating reference voltage value does not change, and the preset time interval is less than the sampling period, that is, the operating reference voltage value corresponding to the first output power value and the operating reference voltage value corresponding to the second output power value
  • the reference voltage values are the same.
  • the stability coefficient when the stability coefficient is less than the rated stability coefficient, it means that the photovoltaic module has tracked the maximum power value. In order to prevent the output power value of the photovoltaic module from oscillating near the maximum power value, the operating reference voltage value is not changed. value.
  • the stability coefficient in the embodiment of the present application is used to reflect whether the photovoltaic module tracks the maximum power value.
  • the first device updates the operating reference voltage value of the photovoltaic module according to the first output power value and the second output power value to obtain a first operating reference voltage value.
  • the first device sends the first operating reference voltage value to the photovoltaic module.
  • S308 specifically includes: the photovoltaic module operates according to the first operating reference voltage value. In this step, after the first device sends the first operating reference voltage value to the photovoltaic module, it returns to step S301.
  • the first device calculates the absolute value of the power change of the photovoltaic module based on the first output power value and the second output power value.
  • the first device calculates the predicted output power value of the photovoltaic module at the next sampling moment based on the first output power value and the second output power value.
  • the first device calculates the absolute value of the power change of the photovoltaic module based on the first output power value and the predicted output power value.
  • the first device may calculate the predicted output power value of the photovoltaic component at the next sampling moment according to formula (11).
  • P'(k+T) is the predicted output power value at the next sampling moment, is the second output power value, P(k) is the first output power value, n is greater than 1, and It is the same as the operating reference voltage value corresponding to P(k).
  • the predicted output power value P'(k+T) of the photovoltaic module at the next sampling time can be calculated according to formula (12). Predict the output power value.
  • the time interval between the current sampling time and the previous sampling time is one cycle, and the preset time interval is half a cycle.
  • the difference between the first output power value of the photovoltaic module at the current sampling time and the second output power value of the photovoltaic module collected at the preset time interval is the change in the output power value of the photovoltaic module within the preset time interval.
  • the first device can operate according to the second output power value and the first output Power value, predict the output power value of the photovoltaic module at the next sampling moment when the operating reference voltage value does not change, that is, the predicted output power value at the next sampling moment.
  • curve a 61 is the photovoltaic characteristic curve of the photovoltaic module at the current sampling moment.
  • the preset time interval as half a sampling period as an example, within the preset time interval, the reference operating voltage value of the photovoltaic module remains unchanged, so the output voltage value of the photovoltaic module is always U 6 , and the first output power value 1 obtained at the current sampling moment is 70 kilowatts. If the environment where the photovoltaic module is located gradually increases the light intensity within the preset time interval, and The speed at which the light intensity increases is uniform.
  • the photovoltaic characteristic curve changes from curve a 61 to curve a 62 , and the second output power value 2 is collected to be 75 kilowatts.
  • the predicted output power value 3 calculated according to formula (12) is 80 kilowatts, where curve a 63 is the predicted photovoltaic characteristic curve of the photovoltaic module at the next sampling moment when the operating reference voltage value of the photovoltaic module does not change. Furthermore, the predicted output power value 3 can be regarded as the output power value of the photovoltaic module at the next sampling moment when the operating reference voltage value of the photovoltaic module does not change.
  • the absolute value of the power change of the photovoltaic module can be calculated according to formula (13).
  • ⁇ P abs is the absolute value of the power change of the photovoltaic module.
  • the first output power value of the photovoltaic module at the current sampling moment and The difference between the second output power values of photovoltaic modules collected at preset time intervals is small, so that the predicted output power value is very close to the first output power value, making the absolute value of the power change of the photovoltaic module small; conversely, If the environment in which the photovoltaic module is located changes within the preset time interval, the difference between the first output power value of the photovoltaic module at the current sampling moment and the second output power value of the photovoltaic module collected according to the preset time interval is greater than is large, so that the difference between the predicted output power value and the first output power value is large, so that the absolute value of the power change of the photovoltaic module is large.
  • the first device compares the absolute value of power change with the absolute value of rated power change, and determines the voltage change value based on the comparison result.
  • the photovoltaic module when the absolute value of the power change is greater than or equal to the absolute value of the rated power change, it means that within the preset time interval, the photovoltaic module was affected by changes in the environment in which the photovoltaic module is located during the process of tracking the maximum power value. This makes the working status of the photovoltaic module unstable; conversely, when the absolute value of the power change is less than the absolute value of the rated power change, it means that within the preset time interval, the photovoltaic module is not affected by the environment of the photovoltaic module during the maximum power tracking process. The influence of changes, and the working status of photovoltaic modules is stable.
  • the change in the environment of the photovoltaic module causes the photovoltaic characteristic curve of the photovoltaic module to change accordingly.
  • the absolute value of the power change can be compared with the absolute value of the rated power change, and the voltage change value can be determined based on the comparison result, so that the photovoltaic module can track the maximum power value more quickly.
  • the first device updates the operating reference voltage value of the photovoltaic module according to the voltage change value to obtain the first operating reference voltage value.
  • the first reference voltage value can be calculated according to formula (14).
  • Uref is the first operating reference voltage value
  • U'ref is the operating reference voltage value before update
  • Ustep is the voltage change value
  • the first device calculates the updated first operating reference voltage value to be 51 volts according to formula (14).
  • the first device calculates the updated first operating reference voltage value as 49 volts according to formula (14).
  • the method provided by the embodiment of the present application further includes before step S3: the first device obtains the first output voltage value of the photovoltaic component at the current sampling moment, and the first output voltage value of the photovoltaic component at the previous sampling moment. sampling voltage value.
  • the first device obtains the first output voltage value of the photovoltaic component at the current sampling moment and the sampling voltage value of the photovoltaic component at the previous sampling moment through the output voltage value sampling device.
  • the first device compares the absolute value of power change with the absolute value of rated power change, and determines the voltage change value based on the comparison result, it can be implemented in method 3 or method 4:
  • Method 3 can be:
  • the first device determines the voltage change value based on the sampled power value, the first output voltage value, the sampled voltage value and the second output power value.
  • the first device can determine the voltage change according to formula (12) and formula (15), or formula (12) and formula (16) value.
  • Ustep is the voltage change value
  • P'(k+T) is the predicted output power value at the next sampling moment
  • P(k-1) is the sampling power value
  • U(k) is the first output voltage value
  • U( k-1) is the sampled voltage value.
  • the absolute value of the power change is greater than or equal to the rated power change value, it means that changes in the environment where the photovoltaic module is located have a certain impact on the output power of the photovoltaic module. Since the first device takes environmental changes into consideration when obtaining the predicted output power value, in order to prevent environmental changes from causing errors in the calculated voltage change value, the first device can use the sampled power value, the first output voltage value, the sampled voltage value and the second The output power value determines the voltage change value so that the determined voltage change value will not cause errors in the calculated voltage change value due to changes in the environment where the photovoltaic module is located.
  • Method 4 can be:
  • the first device determines the voltage change value based on the first output power value, the first output voltage value, the sampled power value and the sampled voltage value.
  • the first device can determine the voltage change value according to formula (17) or formula (18).
  • P(k) is the first output power value
  • P(k-1) is the sampling power value
  • U(k) is the first output voltage value
  • U(k-1) is the sampling voltage value
  • the first device can operate according to the first output power value and the first output voltage. value, sampling power value and sampling voltage value to determine the voltage change value.
  • the embodiment of the present application further includes S309 to S310:
  • the first device obtains the current sampling number of the photovoltaic module.
  • the first power fluctuation coefficient is smaller than the first rated fluctuation coefficient, it means that the change in the current environment of the photovoltaic module is small, and therefore there is no need to re-obtain the maximum reference voltage value corresponding to the global maximum power value of the photovoltaic module in the current environment. In this case, the current sampling number of the photovoltaic module can be obtained.
  • the current sampling times are the sampling times of the output current value acquisition device and the output voltage value acquisition device when the first power fluctuation coefficient of the photovoltaic module is less than the first rated fluctuation coefficient.
  • the first device obtains the open circuit voltage value of the photovoltaic module at the current moment.
  • the output power value of the photovoltaic module is low when the light intensity is low
  • calculating the first fluctuation coefficient of the photovoltaic module can easily lead to the first power fluctuation coefficient being greater than the first rated power fluctuation coefficient. , causing the first device to frequently obtain the maximum reference voltage value corresponding to the global maximum power value of the photovoltaic module in the current environment, resulting in poor stability of the photovoltaic module operation.
  • the current sampling number of the photovoltaic module is greater than or equal to the rated sampling number, and the first output power value is less than the minimum operating power value of the photovoltaic module, it is explained that the current photovoltaic module is in the time period.
  • the environment may have low light intensity, causing the output power value of the photovoltaic module to be low during this period.
  • the photovoltaic module is likely to have a low output voltage value due to low light intensity, thus affecting the normal operation of the photovoltaic module. Therefore, when the current sampling number is greater than or equal to the rated sampling number, and the first output power value is less than the minimum operating power value of the photovoltaic module, the first device can obtain the open circuit voltage value of the photovoltaic module at the current moment to determine whether the photovoltaic module can Do not continue working.
  • the open circuit voltage value of the photovoltaic module is the voltage value obtained directly by the output voltage value acquisition device when the photovoltaic module is exposed to sunlight without being connected to a load.
  • the embodiment of the present application further includes S311, or S312 to S313:
  • the first device When the open circuit voltage value of the photovoltaic module at the current moment is less than or equal to the rated operating voltage value, the first device outputs a stop working signal to the photovoltaic module, and the stop working signal is used to instruct the photovoltaic module to stop working.
  • the first device outputs a stop signal to the photovoltaic module, and the stop signal is used to instruct the photovoltaic module to stop working.
  • the first device when the open circuit voltage of the photovoltaic module at the current moment is less than or equal to 10 volts, the first device outputs a stop signal to the photovoltaic module.
  • the stop signal is used to instruct the photovoltaic module to stop. Work.
  • the first device controls the photovoltaic module to enter the low light protection mode and performs sampling in the low light protection mode.
  • the value and the voltage difference update the operating reference voltage value of the photovoltaic module to obtain the second operating reference voltage value.
  • the open circuit voltage value of the photovoltaic module at the current moment is greater than the rated voltage value, it means that the light intensity of the current environment where the photovoltaic module is located is low, but the photovoltaic module can still work normally, so the first device can control the entry of the photovoltaic module. Go to low light protection mode and perform sampling in low light protection mode.
  • the output power of the photovoltaic module is less than the minimum operating power value, and in the low light protection mode, the maximum power tracking method of the photovoltaic module changes.
  • the first device sends the second operating reference voltage value to the photovoltaic module.
  • the first device may send the second operating reference voltage value to the photovoltaic component, and the photovoltaic component is used to operate according to the second operating reference voltage value.
  • S313 specifically includes: the photovoltaic module operates according to the second operating reference voltage value.
  • the first device in S312 updates the operating reference voltage value of the photovoltaic module based on the power difference and voltage difference of the two samples, which can be implemented in one of methods 5 to 7. :
  • Way 5 can be:
  • the operating reference voltage value of the photovoltaic module is increased by the first preset voltage value.
  • the preset difference value can be 0.
  • the preset difference value is 0, and when the ratio of the power difference and voltage difference between the two samplings is greater than the preset difference value, it means that between the two samplings, The sampled power value increases as the voltage value increases, or, between two samples, the sampled power value decreases as the voltage value decreases. Therefore, according to the photovoltaic characteristic curve in Figure 2 (a), it can be analyzed that the photovoltaic module has not yet tracked the maximum power value, so the operating reference voltage value needs to be increased, so that the output voltage value of the photovoltaic module increases accordingly.
  • the operating reference voltage value of the photovoltaic module can be increased according to formula (19).
  • Uref is the updated operating reference voltage value
  • U’ref is the operating reference voltage value before the update
  • Ustep is the first preset voltage value
  • Ustep in the low light protection mode, in order to reduce the complexity of calculation, Ustep can be determined as 0.1 volt.
  • Way 6 can be:
  • the operating reference voltage value of the photovoltaic module is reduced by the first preset voltage value.
  • the preset difference value may be 0.
  • the preset difference value is 0, and when the ratio of the power difference and the voltage difference between the two samples is less than the preset difference value, it means that between the two samples, The sampled power value decreases as the voltage value increases, or between two samplings, the sampled power value increases as the voltage value decreases. Therefore, according to the photovoltaic characteristic curve in Figure 2 (a), it can be analyzed that the photovoltaic module has not yet tracked the maximum power value, so the operating reference voltage value needs to be reduced, so that the output voltage value of the photovoltaic module decreases accordingly.
  • the operating reference voltage value of the photovoltaic module can be reduced according to formula (20).
  • Uref is the updated operating reference voltage value
  • U’ref is the operating reference voltage value before the update
  • Ustep is the first preset voltage value
  • Way 7 can be:
  • the operating reference voltage value of the photovoltaic module is not updated.
  • the preset difference value can be 0.
  • the preset difference value is 0, if the ratio of the power difference and the voltage difference between the two samples is equal to the preset difference value, it means that between the two samples, the sampled power The value does not change as the voltage value increases, or, between two samplings, the sampled power value does not change as the voltage value decreases. Therefore, the photovoltaic module has tracked the maximum power value, and there is no need to update the operating reference voltage value.
  • the preset difference value can also be 0.1 or other preset values.
  • the present application after updating the operating reference voltage value of the photovoltaic module according to the voltage difference and power difference of the two samples, the present application also includes S314 in Figure 4:
  • the first device obtains the output power value of the photovoltaic module in the low light protection mode.
  • the output power value of the photovoltaic module in the low light protection mode can be directly obtained and sent to the first device, or the output power value of the photovoltaic module in the low light protection mode can be obtained. Multiple sets of output power values in low light protection mode, and their average value is sent to the first device.
  • the embodiment of the present application further includes S315:
  • the first device controls the photovoltaic module to exit the low light protection mode.
  • the output power value of the photovoltaic module in the weak light protection mode is greater than or equal to the rated minimum power value, it means that the light intensity of the environment where the photovoltaic module is currently located has become stronger, so the photovoltaic module does not need to continue to operate in weak light. Work in light protection mode.
  • the rated minimum power value is greater than the minimum operating power value.
  • the minimum power value is set to 5 kilowatts and the rated minimum power value is 7 kilowatts.
  • the output power value of the photovoltaic module in the low light protection mode is greater than or equal to 7 kilowatts, it means that the light intensity of the environment where the photovoltaic module is located is obvious. Enhance.
  • the first device controls the photovoltaic module to exit the low light protection mode, so that the photovoltaic module will not enter the low light protection mode again due to fluctuations in the output power value.
  • the first device controls the photovoltaic module to exit the low light protection mode, it returns to step S301.
  • the first device if the output power value of the photovoltaic module in the low light protection mode is less than the rated minimum power value, the first device returns to execution S310.
  • the first device can return Execute the step of obtaining the open circuit voltage value of the photovoltaic module at the current moment, so that the photovoltaic module continues to work in the low light protection mode.
  • obtaining the maximum reference voltage value corresponding to the global maximum power value of the photovoltaic module in the current environment in S303 may include S4 to S7 in Figure 7:
  • the first device uses the open circuit voltage value of the photovoltaic module as the search voltage value in the current environment.
  • the A device can use the open circuit voltage value of the photovoltaic module as the search voltage value in the current environment.
  • the first device sequentially reduces the search voltage value according to the second preset voltage value, and obtains the output parameters of the photovoltaic components during the process of sequentially decreasing the search voltage value, and obtains an output parameter set, where the output parameters include output power value, output current value.
  • the search voltage value when obtaining the maximum reference voltage value corresponding to the global maximum power value of the photovoltaic module in the current environment, the search voltage value can be successively reduced according to formula (21), and the search voltage value can be obtained in the process of successive decreases.
  • the output parameters of the photovoltaic module are obtained, and the output parameter set is obtained, where the output parameters include output power value and output current value.
  • Usearch is the search voltage value obtained after reduction
  • U’search is the search voltage value before reduction
  • Ustep2 is the second preset voltage value.
  • the second preset voltage value may be determined to be 0.1 volts.
  • the photovoltaic characteristic curve is curve a 81.
  • the search voltage value is 90 volts.
  • the output voltage value and output current value of the photovoltaic module are shown as point 801 in Figure 4.
  • the corresponding output power value is 0 kilowatts and the output current value is 0A; during the second search, the search voltage value is 89.9 volts.
  • the output voltage value and output current value of the photovoltaic module are shown as point 802 in Figure 8.
  • the corresponding output power value is 5 kilowatts and the output current value is 0.2 amps; during the third search, the search voltage value is 89.8 volts.
  • the output voltage value and output current value of the photovoltaic module are shown as point 803 in Figure 8 , the corresponding output power value is 10 kilowatts, and the output current value is 0.3 amps.
  • the subsequent search process is the same as above, and the output parameters obtained during the search process are determined as the output parameter set.
  • the first device obtains the maximum output power value in the output parameter set.
  • the output voltage value corresponding to the maximum output power value of most photovoltaic modules is 0.78 times the open circuit voltage value. Therefore, in the process of the search voltage value gradually decreasing, if the search voltage value is less than the rated search voltage value, it means that the maximum power value is likely to have been searched, and in order to reduce the amount of calculation, there is no need to continue the search.
  • the rated search voltage value can be determined based on the open circuit voltage value of the photovoltaic module.
  • the rated search voltage value may be 0.2 times the open circuit voltage value of the photovoltaic module.
  • the first device when the search voltage value is less than the rated search voltage value or the output current value is greater than the rated maximum current value, the first device no longer searches, and obtains the output parameter set in the output set based on the output parameter set obtained during the search process. Maximum output power value.
  • the output power values in the output parameter set obtained during the search process are 20 kilowatts, 100 kilowatts, 150 kilowatts, 230 kilowatts, and 250 kilowatts respectively.
  • kilowatt, 210 kilowatt, 170 kilowatt, 120 kilowatt, 90 kilowatt, and 10 kilowatt then the maximum output power value in the output set is 250 kilowatts.
  • the first device obtains the search voltage value corresponding to the maximum output power value, and uses the search voltage value corresponding to the maximum output power value as the maximum reference voltage value of the photovoltaic module in the current environment.
  • the maximum output power value obtained by the first device is 250 kilowatts
  • the corresponding search voltage value when the output power value is 250 kilowatts is 60 volts, then 60 volts is used as the maximum reference voltage of the photovoltaic module in the current environment. value.
  • the method provided by the embodiment of the present application also includes S8 in Figure 7:
  • the first device obtains the output power values of the photovoltaic component for two consecutive times. Calculate the second power fluctuation coefficient.
  • the second power fluctuation coefficient is calculated based on the two consecutive output power values of the photovoltaic module, thereby determining the position of the photovoltaic module in the process of obtaining the output parameters of the photovoltaic module. Whether the environment has undergone drastic changes.
  • step S4 if the second power fluctuation coefficient is greater than the second rated power fluctuation coefficient, the first device returns to step S4.
  • the first device needs to return to the step of using the open circuit voltage value of the photovoltaic module as the search voltage value in the current environment, and search again to obtain the maximum reference voltage value of the photovoltaic module after the environment changes.
  • obtaining the maximum reference voltage value corresponding to the global maximum power value of the photovoltaic module in the current environment in S303 may include S9 to S12 in Figure 9:
  • the first device uses the open circuit voltage value of the photovoltaic module as the search voltage value in the current environment, and initializes the search power value.
  • the A device can use the open circuit voltage value of the photovoltaic module as the search voltage value in the current environment.
  • the search power value when initializing the search power value, may be determined as a preset power value.
  • the preset power value is usually small, for example, the search power value may be determined to be 0 kilowatts.
  • the first device sequentially reduces the search voltage value according to the second preset voltage value, and obtains the output power value and output current value of the photovoltaic module during the process of sequentially decreasing the search voltage value.
  • the first device when the first device sequentially reduces the search voltage value according to the second preset voltage value and obtains the output power and output current of the photovoltaic component during the process of sequentially decreasing the search voltage value, the first device may refer to the above S5 to obtain the output.
  • the parameter method will not be described here for the sake of brevity.
  • the first device updates the search power value according to the output power value of the photovoltaic module so that the search power value is maintained at the maximum value.
  • the output power value of the photovoltaic module is also different if the search voltage value is different. Therefore, the first device can update the search power value according to the output power value of the photovoltaic module while the search voltage value is sequentially decreasing.
  • the search power value is determined as the output Power value; conversely, if the output power value collected by the photovoltaic module during the search voltage value reduction process is less than or equal to the search power value, the search power value remains unchanged.
  • the search power value can be updated according to the output power value of the photovoltaic module, so that the search power value is maintained at the maximum value.
  • the search power value is 0 kilowatts.
  • the search voltage value decreasing process if the search voltage value decreases by 3 volts each time, then when the search voltage value is 70 volts, the output of the photovoltaic module If the power value is 20 kilowatts, update the search power value to 20 kilowatts; continue to reduce the search voltage value to 67 volts. If the output power value of the photovoltaic module is 45 kilowatts, update the search power value to 45 kilowatts; continue to search The voltage value decreases. During the decrease process, if the output power value of the photovoltaic module is greater than the search power value, the output power value will be updated. Otherwise, the output power value will not be updated.
  • the search power value when the search voltage value is reduced to 50 volts, the search power value is 200 kilowatts; when the search voltage value is continued to be reduced to 47 volts, the output power value of the photovoltaic module is 180 kilowatts. The value is less than the search power value, so the search power value is not updated, so that the search power value remains at the maximum value; continue to reduce the search voltage value to determine whether the output power value of the photovoltaic module is greater than the search voltage value when the search voltage value is 44 volts. power value to determine whether the search power value needs to be updated.
  • step S9 if the second power fluctuation coefficient is greater than the second rated power value coefficient, the first device returns to step S9.
  • the second power fluctuation coefficient is greater than the second rated power value coefficient, it means that the environment in which the photovoltaic module is located has changed drastically, and the global maximum power value of the photovoltaic module has changed. Therefore, the first device returns to execute the operation of the photovoltaic module.
  • the open circuit voltage value is used as the search voltage value in the current environment, and the step of searching the power value is initialized to re-obtain the maximum reference voltage value corresponding to the global maximum power value of the photovoltaic module in the current environment.
  • the first device obtains the search voltage value corresponding to the search power value, and uses the search voltage value corresponding to the search power value as the photovoltaic component.
  • the maximum reference voltage value under the current environment.
  • the search voltage value is successively reduced until the search voltage value is less than the rated search voltage value or the output current value is greater than the rated maximum current, and the search voltage value is no longer reduced.
  • the search power The value is the maximum output power value of the photovoltaic module during the process of decreasing the search voltage value. Then the search voltage value corresponding to the search is obtained, and the search voltage value corresponding to the search power value is used as the maximum reference voltage value of the photovoltaic module in the current environment.
  • the method provided in the embodiment of the present application determines the open circuit voltage value as the search voltage value, sequentially reduces the search voltage value, obtains the output parameter set obtained during the search process, and obtains the maximum output set in the output set according to the output parameter set.
  • the technical means of output power value can effectively avoid using one of multiple peaks as the global maximum power value, so that photovoltaic modules can search for the correct global maximum power value.
  • the maximum reference voltage value corresponding to the global maximum power value of the photovoltaic module in the current environment is reacquired, and the obtained maximum reference voltage value is used as The operating reference voltage value is sent to the photovoltaic module, which allows the photovoltaic module to quickly track the maximum power value under environmental changes.
  • Figure 10 is a schematic block diagram of a photovoltaic module maximum power tracking device 1000 provided by an embodiment of the present application, including an acquisition module 1001 and a calculation module 1002.
  • the acquisition module 1001 is used to acquire the first output power value of the photovoltaic component at the current sampling time and the sampling power value of the photovoltaic component at the previous sampling time.
  • the calculation module 1002 is configured to calculate the first power fluctuation coefficient of the photovoltaic module according to the first output power value and the sampled power value.
  • the acquisition module 1001 is also configured to acquire the maximum reference voltage value corresponding to the global maximum power value of the photovoltaic module in the current environment when the first power fluctuation coefficient is greater than or equal to the rated fluctuation coefficient;
  • the communication module 1003 is configured to send the maximum reference voltage value as an operating reference voltage value to the photovoltaic component, and the photovoltaic component is used to perform maximum power tracking according to the operating reference voltage value.
  • the device 1000 in the embodiment of the present application can be implemented by an application-specific integrated circuit (ASIC) or a programmable logic device (PLD).
  • the above PLD can be a complex program logic device. (complex programmable logical device, CPLD), field-programmable gate array (field-programmable gate array, FPGA), general array logic (generic array logic, GAL) or any combination thereof.
  • the maximum power tracking method of the photovoltaic module shown in Figure 3 or Figure 4 can also be implemented through software. When the maximum power tracking method of the photovoltaic module shown in Figure 3 or Figure 4 is implemented through software, the device 1000 and its respective modules Can also be a software module.
  • Figure 11 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • the device 1100 includes a processor 1101, a memory 1102, a communication interface 1103 and a bus 1104.
  • the processor 1101, the memory 1102, and the communication interface 1103 communicate through the bus 1104. Communication can also be achieved through other means such as wireless transmission.
  • the memory 1102 is used to store instructions, and the processor 1101 is used to execute the instructions stored in the memory 1102.
  • the memory 1102 stores program code 11021, and the processor 1101 can call the program code 11021 stored in the memory 1102 to execute the maximum power tracking method of the photovoltaic module shown in FIG. 3 or FIG. 4 .
  • the processor 1101 may be a CPU.
  • the processor 1101 may also be other general-purpose processors, digital signal processors (DSPs), application-specific integrated circuits (ASICs), or field programmable gate arrays (FPGAs). ) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSPs digital signal processors
  • ASICs application-specific integrated circuits
  • FPGAs field programmable gate arrays
  • a general-purpose processor can be a microprocessor or any conventional processor, etc.
  • the memory 1102 may include read-only memory and random access memory and provides instructions and data to the processor 1101 .
  • Memory 1102 may also include non-volatile random access memory.
  • the memory 1102 may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • Double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous link dynamic random access memory direct rambus RAM, DR RAM
  • bus 1104 may also include a power bus, a control bus, a status signal bus, etc. However, for the sake of clarity, the various buses are labeled bus 1104 in FIG. 11 .
  • the device 1100 may correspond to the device 1000 in the embodiment of the present application, and may correspond to the first device in the method shown in FIG. 3 or 4 in the embodiment of the present application.
  • the device 1100 corresponds to In the case of the first device in the method shown in Figure 3 or Figure 4, the above and other operations and/or functions of each module in the device 1100 are respectively intended to implement the method performed by the first device in Figure 3 or Figure 4. The operation steps are not repeated here for the sake of brevity.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the steps in each of the above method embodiments can be implemented.
  • Embodiments of the present application provide a computer program product.
  • the steps in each of the above method embodiments can be implemented when the first device is executed.
  • Embodiments of the present application provide a chip, including a processor, which is coupled to a memory and configured to execute computer programs or instructions stored in the memory to implement the steps in each of the above method embodiments.
  • the embodiment of the present application provides a photovoltaic power supply structure, which includes: a photovoltaic module and a maximum power tracking device of the photovoltaic module.
  • the maximum power tracking device of the photovoltaic module can implement the steps in each of the above method embodiments.
  • Embodiments of the present application provide an energy storage device, including a processor, which is coupled to a memory and configured to execute computer programs or instructions stored in the memory to implement the steps in each of the above method embodiments.
  • the methods and devices/systems disclosed in this application can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of modules or units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be combined or can be integrated into another device, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • Units described as separate components may or may not be physically separate, that is, they may be located in one place, or they may be distributed over multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units. Integrated units may be stored in a computer-readable storage medium if they are implemented in the form of software functional units and sold or used as independent products.
  • the essence of the technical solution of the present application, or the part that contributes to the existing technology, or the part of the technical solution, can be embodied in the form of a computer software product, and the computer software product is stored in a storage
  • the computer software product includes a number of instructions, which are used to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media may include but are not limited to: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

一种光伏组件的最大功率追踪方法,包括:第一设备获取光伏组件在当前采样时刻的第一输出功率值,及在上一采样时刻的采样功率值(S301);第一设备根据第一输出功率值和采样功率值,计算光伏组件的第一功率波动系数(S302);在第一功率波动系数大于或等于第一额定波动系数的情况下,第一设备获取光伏组件在当前环境下的全局最大功率值对应的最大参考电压值(S303);以最大参考电压值作为运行参考电压值向光伏组件发送,光伏组件用于根据运行参考电压值进行最大功率追踪(S304)。

Description

光伏组件的最大功率追踪方法、装置及储能设备
相关申请的交叉引用
本申请要求于2022年04月07日提交中国专利局、申请号为202210359187.9、发明名称为“光伏组件的最大功率追踪方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于控制技术领域,尤其涉及一种光伏组件的最大功率追踪方法、装置及储能设备。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成示例性技术。
当前,在光伏组件工作的过程中,为了保证光伏组件的工作效率,需要光伏组件在工作时追踪到最大功率值,使得光伏组件的输出功率值趋近于最高值。
当光伏组件所处的外界环境发生变化,例如温度变化或光照强度变化时,由于光伏组件对应的光伏特性曲线会随之发生变化,因此会导致光伏组件无法快速的追踪到最大功率影响光伏组件的工作效率。
发明内容
根据本申请的各种实施例,提供了一种光伏组件的最大功率追踪方法、装置及储能设备。
第一方面,本实施例提供了一种光伏组件的最大功率追踪方法,包括:获取所述光伏组件在当前采样时刻的第一输出功率值,及所述光伏组件在上一采样时刻的采样功率值;根据所述第一输出功率值和所述采样功率值,计算所述光伏组件的第一功率波动系数;在所述第一功率波动系数大于或等于第一额定波动系数的情况下,获取所述光伏组件在当前环境下的全局最大功率值对应的最大参考电压值,以所述最大参考电压值作为运行参考电压值向所述光伏组件发送,所述光伏组件用于根据所述运行参考电压值进行最大功率追踪。
第二方面,本申请实施例提供了一种光伏组件的最大功率追踪装置,该装置用于执行上述第一方面或第一方面的任一可能的实现方式中的方法。具体地,该装置可以包括用于执行第一方面或第一方面地任意可能地实现方式中光伏组件的最大功率追踪方法的模块。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
第三方面,本申请实施例提供了一种储能设备,该储能设备包括存储器与处理器。该存储器用于存储指令;该处理器执行该存储器存储的指令,使得该储能设备执行第一方面或第一方面的任一可能的实现方式中光伏组件的最大功率追踪方法。
第四方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上执行时,使得计算机执行第一方面或第一方面的任一可能的实现方式中光伏组件的最大功率追踪方法。
第五方面,提供一种包含指令的计算机程序产品,当该指令在设备上运行时,使得设备执行第一方面或第一方面的任一可能的实现方式中光伏组件的最大功率追踪方法。
第六方面,本申请实施例提供了一种芯片,包括处理器,该处理器与存储器耦合,用于执行所述存储器中存储的计算机程序或指令,以实现第一方面或第一方面的任一可能的实现方式中光伏组件的最大功率追踪方法。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的光伏组件的等效电路示意图。
图2中的(a)图是本申请实施例提供的输出电压值与输出功率值之间的光伏特性曲线示意图。
图2中的(b)图是本申请实施例提供的输出电压值与输出电流值之间的光伏特性曲线示意图。
图3是本申请实施例提供的光伏组件的最大功率追踪方法的流程示意图。
图4是本申请另一实施例提供的光伏组件的最大功率追踪方法的流程示意图。
图5是本申请实施例提供的得到第一运行参考电压值的流程示意图。
图6是本申请实施例提供的计算预测输出功率值的示意图。
图7是本申请实施例提供的获取光伏组件在当前环境下的全局最大功率值对应的参考电压值的流程示意图。
图8是本申请实施例提供的获取光伏组件在当前环境下的全局最大功率值对应的参考电压值的过程示意图。
图9是本申请另一实施例提供的获取光伏组件在当前环境下的全局最大功率值对应的参考电压值的流程示意图。
图10是本申请实施例提供的光伏组件的最大功率追踪装置1000的结构示意图。
图11是本申请实施例提供的设备1100的结构示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定***结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的***、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
图1示出了光伏组件在工作过程中的等效电路图,根据该等效电路可以得到光伏组件在工作过程中的输出电压值与输出电流值之间的关系如公式(1)所示:
Figure PCTCN2022134425-appb-000001
其中,I ph是光伏组件的光生电流值;I d是二极管的结电流值;R p是并联电阻;R s为串联电阻,I为光伏组件工作过程中的输出电流值,U为光伏组件工作过程中的输出电压值。
由于在实际应用时,开路电压值、短路电流值、峰值电流值、峰值电压值通常是由厂家提供的,因此光伏组件在标准辐照度以及标准温度下的输出电流值可以由公式(2)表示:
Figure PCTCN2022134425-appb-000002
其中,I sc是光伏组件的短路电流值,U oc是开路电压值,C 1、C 2是光伏组件的待定系数,e是以e为底的指数函数。
具体的,C 1、C 2可以按照公式(3)、公式(4)计算得到:
Figure PCTCN2022134425-appb-000003
其中,I m是光伏组件的峰值电流值。
Figure PCTCN2022134425-appb-000004
其中,U m是光伏组件的峰值电压值,ln()是以e为底的对数函数。
然而,光伏组件在实际的应用中,需要考虑实际环境下的温度与标准环境下的温度、实际环境下的辐照度与标准环境下的辐照度之间的差距,因此可以根据公式(5)到公式(8),重新确定光伏组件的短路电流值、开路电压值、峰值电流值、峰值电压值:
Figure PCTCN2022134425-appb-000005
U' oc=U oc(1-γΔT)ln(1+βΔS)   公式(6)
Figure PCTCN2022134425-appb-000006
U' m=U m(1-γΔT)ln(1+βΔS)   公式(8)
其中,I' sc是实际环境下的光伏组件的短路电流值,I sc是标准环境下的光伏组件的短路电流值,S是标准环境下的辐照度,S ref是实际环境下的辐照度,ΔT是标准环境下的温度和实际环境下的温度的差值,U' oc是实际环境下的光伏组件的开路电压值,U oc是标准环境下的光伏组件的开路电压值,ΔS是标准环境下的辐照度和实际环境下的辐照度的差值,I' m是实际环境下的光伏组件的峰值电流值,I m是标准环境下的光伏组件的峰值电流值,U' m是实际环境下的光伏组件的峰值电压值,U m是标准环境下的光伏组件的峰值电压值,α、β、γ的典型值分别为0.0025、0.5以及0.00288。
则根据公式(2)到公式(8),可以对光伏组件在当前环境下的输出电压值与输出功率值之间的关系进行描述,得到图2中的(a)图所示的输出电压值(U)以及输出功率值(P)之间的光伏特性曲线a 21,以及图2中的(b)图所示的输出电压值(U)以及输出电流值(I)之间的光伏特性曲线b 21。由图2中的(a)图可以看到,不同的输出电压值对应不同的输出功率值,由图2中的(b)图可以看到,输出的电流值在电压值较低时通常较大。
因此为了提高光伏组件的工作效率,通常需要在光伏组件工作的过程中,调节光伏组件的运行参考电压值,从而对光伏组件的输出电压值进行调节,使得光伏组件的输出功率值达到光伏特性曲线中的最大功率值。
然而,在光伏组件的实际工作过程中,光伏组件所处的外界环境可能随时会发生变化。例如,当温度或光照强度发生变化的情况下,光伏组件的光伏特性曲线也会随之发生变化。以光照强度忽然增强为例进行说明,如图2中的(a)图所示,在光照强度增强前,光伏组件的运行参考电压值对应输出电压值为U 22,最大输出功率值P 21。当光伏组件所处环境的光照强度忽然增强的情况下,光伏特性曲线a 21会变为光伏特性曲线a 22。在这种情况下,光伏组件的运行参考电压值没有发生变化,因此输出电压值仍是U 22,然而对应的输出功率值P 22不再是光伏组件的最大输出功率值。在这种情况下,光伏组件所处环境的变化会使得光伏组件无法快速地重新追踪到最大功率值,导致光伏组件工作效率的降低。
本申请实施例提供的方法可以由第一设备执行,也可以由第一设备中的芯片执行(比如,光伏组件的最大功率追踪装置),该第一设备可以是非光伏组件,例如服务器,电子设备(比如,手机),也可以是光伏组件。在第一设备为非光伏组件时,该第一设备可以和光伏组件互相通信。
下面结合图3对本申请的实施例提供的光伏组件的最大功率追踪方法进行详细的介绍。
本申请实施例提供的光伏组件的最大功率追踪方法包括:
S301、第一设备获取光伏组件在当前采样时刻的第一输出功率值,及光伏组件在上一采样时刻的采样功率值。
示例性的,第一设备可以通过输出电流值采样装置获取光伏组件在当前时刻的输出电流值以及通过输出电压值采样装置采集光伏组件的输出电压值,根据光伏组件在当前时刻的输出电压值以及输出电流值,确定光伏组件在当前时刻的第一输出功率值。第一设备可以通过输出电流值采样装置获取光伏组件在上一采样时刻的输出电流值以及通过输出电压值采用装置采集光伏组件在上一采样时刻的输出电压值,确定光伏组件在上一时刻的采样功率值。 其中,输出电流值采样装置和输出电压值采样装置的结构可以采用现有技术中的结构,此处不再赘述。
示例性的,光伏组件在各个采样时刻的输出功率值,及光伏组件在上一采样时刻的采样功率值也可以由其他设备获取到,然后反馈给第一设备,本申请实施例对此不做限定。
示例性的,光伏组件在当前采样时刻的第一输出功率值,及光伏组件在上一采样时刻的采样功率值也可以由用户向第一设备中输入得到,本申请实施例对此不做限定。
S302、第一设备根据第一输出功率值和采样功率值,计算光伏组件的第一功率波动系数。
示例性的,第一设备可以按照公式(9),计算光伏组件的第一功率波动系数。
Figure PCTCN2022134425-appb-000007
其中,a是第一功率波动系数,P(k)是当前时刻采样得到的第一输出功率值,P(k-1)是上一采样时刻采样得到的采样功率值。
应理解,当光伏组件所处的环境发生变化时,光伏组件的输出功率值同样会发生变化,因此可以根据计算得到的第一功率波动系数,用来描述光伏组件在当前时刻所处的环境相较于光伏组件在上一采样时刻所处的环境的变化程度,换言之,第一功率波动系数用于描述光伏组件在当前时刻所处的环境相较于光伏组件在上一采样时刻所处的环境的变化程度。
可替代的,上述步骤301和步骤302也可以通过以下方式替代:第一设备获取用于反映光伏组件在当前时刻所处的环境相较于光伏组件在上一采样时刻所处的环境的变化程度的第一功率波动系数,也即第一设备为了控制光伏组件进行最大功率追踪的情况下,可以直接从其他设备处获取第一功率波动系数,换言之,第一波动系数也可以由其他设备计算后反馈给第一设备。
S303、在第一功率波动系数大于或等于第一额定波动系数的情况下,第一设备获取光伏组件在当前环境下的全局最大功率值对应的最大参考电压值。
应理解,当第一功率波动系数大于或等于第一额定波动系数的情况下,说明光伏组件在当前时刻所处的环境相较于光伏组件在上一采样时刻所处的环境发生了明显的变化。在这种情况下,当前光伏组件的运行参考电压值对应的输出功率值同样发生了明显的变化。因此,第一设备在环境变化之前为光伏组件确定的最大参考电压值很有可能已经失效,光伏组件的输出功率值可能因环境变化而降低,则为了能够使得光伏组件快速地追踪到光伏组件的最大功率值,第一设备可以重新获取光伏组件在当前环境下(即,环境变化后)的全局最大功率值对应的最大参考电压值。
可选的,第一额定波动系数可以是预先设定的波动系数。
S304、第一设备以最大参考电压值作为运行参考电压值向光伏组件发送,光伏组件用于根据运行参考电压值进行最大功率追踪。
示例性的,如果第一设备即为光伏组件,则S304具体为:光伏组件按照运行参考电压值进行工作。
本申请实施例提供的光伏组件的最大功率追踪方法,通过获取当前采样时刻的第一输出功率值与上一采样时刻的采样功率值,得到的第一功率波动系数可以表示当前时刻的环境变化程度。当外界环境发生变化的情况下,光伏组件的输出功率值同样会发生变化,因此第一功率波动系数随之增大,当第一功率波动系数大于或等于第一额定波动系数,说明当前环境已经发生了明显的变化。在这种情况下,在环境变化之前确定的最大功率值很有可能已经失效,因此重新通过获取光伏组件在当前环境下的全局最大功率值对应的最大参考电压值,可以快速地确定出环境变化后的最大参考电压值。该最大参考电压值在当前环境下对应的输出功率值相较于环境变化前的参考电压值在当前环境下对应的输出功率值,更加接近光伏组件的最大功率值,则可以将该最大参考电压值作为运行参考电压值向光伏组件发送,使得光伏组件根据运行电压值进行最大功率追踪。据此,可以快速地追踪到最大功率值,提高了光伏组件在外界环境变化的情况下,追踪到最大功率值的速度,提高了光伏组件的工作效率。
在本申请的一个可能的实现方式中,如图4所示,在S302之后,本申请提供的光伏组件的最大功率追踪方法还包括:
S305、在所述第一功率波动系数小于所述第一额定波动系数的情况下,第一设备获取光伏组件的稳定系数。
作为一种示例,S305可以通过下述方式来实现:
方式1可以是:
示例性的,在第一功率波动系数小于第一额定波动系数的情况下,说明光伏组件在当前时刻所处的环境相较于光伏组件在上一采样时刻所处的环境未发生明显的变化,因此可以根据第一输出功率值以及采样功率值,来计算光伏组件的稳定系数,其中光伏组件的稳定系数表示光伏组件的输出功率值在一定时间内的变化程度,用来确定光伏组件是否已经追踪到了最大功率值。
示例性的,上述第一设备根据第一输出功率值和采样功率值,计算光伏组件的稳定系数可以通过以下方式实现:第一设备可以按照公式(10)计算光伏组件的稳定系数。
b=P(k)-P(k-1)     公式(10)
其中,b是稳定系数,P(k)是当前时刻采样得到的第一输出功率值,P(k-1)是上一采样时刻采样得到的采样功率值。
可选的,上述第一设备获取光伏组件的稳定系数可以是第一设备从其他设备处获取光伏组件的稳定系数,也即稳定系数由其他设备计算之后反馈给第一设备。
方式2可以是:
第一设备为了控制光伏组件进行最大功率追踪的情况下,可以直接从其他设备处获取稳定系数,换言之,稳定系数也可以由其他设备计算后反馈给第一设备。
S306、在所述稳定系数大于或等于所述额定稳定系数的情况下,第一设备按照预设时间间隔获取所述光伏组件的第二输出功率值。
应理解,根据图2中的(a)图所示的光伏特性曲线a 21可以看到,当光伏组件追踪到最大功率值的情况下,光伏组件的输出功率值趋于稳定,即两次采样的输出功率差值较小,则光伏组件的稳定系数通常较小。因此,在稳定系数大于或等于额定稳定系数的情况下,说明运行参考电压值对应的输出功率值未追踪到光伏组件的最大功率值,因此需要更新光伏组件的运行参考电压值,使得光伏组件可以以更新后的运行参考电压值追踪到最大功率值。
在更新光伏组件的运行参考电压值之前,为了防止环境变化使得光伏组件无法正确地追踪到最大功率值,第一设备可以按照预设时间间隔采集光伏组件的第二输出功率值。
具体的,在预设时间间隔内,运行参考电压值不发生变化,且预设时间间隔小于采样周期,也即,第一输出功率值对应的运行参考电压值与第二输出功率值对应的运行参考电压值相同。
在一些实施例中,在稳定系数小于额定稳定系数的情况下,说明光伏组件已经追踪到最大功率值,为了防止光伏组件的输出功率值在最大功率值附近产生震荡,则不改变运行参考电压值的值。
综上,本申请实施例中的稳定系数用于反映光伏组件是否追踪到最大功率值。
S307、第一设备根据所述第一输出功率值和所述第二输出功率值,更新所述光伏组件的运行参考电压值,得到第一运行参考电压值。
S308、第一设备向光伏组件发送第一运行参考电压值。
如果第一设备即为光伏组件,则S308具体为:光伏组件按照第一运行参考电压值进行工作。在本步骤中,第一设备向光伏组件发送第一运行参考电压值后,返回执行步骤S301。
在本申请的一些实施例中,如图5所示,S307的过程具体为:S1-S3:
S1、第一设备根据第一输出功率值和第二输出功率值,计算光伏组件的功率变化绝对值。
在本申请的一个可能的实现方式中,上述S1可以通过以下方式实现:
首先,第一设备根据第一输出功率值以及第二输出功率值,计算光伏组件在下一个采样时刻的预测输出功率值。
其次,第一设备根据第一输出功率值以及预测输出功率值,计算光伏组件的功率变化绝对值。
示例性的,在计算光伏组件在下一个采样时刻的预测输出功率值时,第一设备可以按照公式(11),计算光伏组件在下一个采样时刻的预测输出功率值。
Figure PCTCN2022134425-appb-000008
其中,P'(k+T)是下一个采样时刻的预测输出功率值,
Figure PCTCN2022134425-appb-000009
是第二输出功率值,P(k)是第一输出功率值,n大于1,且
Figure PCTCN2022134425-appb-000010
与P(k)所对应的运行参考电压值相同。
例如,当n为2的时候,根据公式(12)计算光伏组件在下一个采样时刻的预测输出功率值P'(k+T)时,可以根据公式(12)计算得到光伏组件在下一个采样时刻的预测输出功率值。
Figure PCTCN2022134425-appb-000011
应理解,当n为2的情况下,以当前采样时刻与上一个采样时刻之间的时间间隔为一个周期,则预设时间间隔为半个周期。光伏组件在当前采样时刻的第一输出功率值以及按照预设时间间隔采集光伏组件的第二输出功率值之间的差值即为光伏组件在预设时间间隔内输出功率值的变化量。由于在预设时间间隔内,运行参考电压值没有发生变化,因此假设光伏组件所处的环境在预设时间间隔内的变化是均匀的,第一设备可以根据第二输出功率值以及第一输出功率值,预测得到在运行参考电压值没有发生变化的情况下,光伏组件在下一个采样时刻的输出功率值,即,下一个采样时刻的预测输出功率值。
例如,如图6所示,曲线a 61为光伏组件在当前采样时刻的光伏特性曲线,以预设时间间隔为半个采样周期为例,在预设时间间隔内,光伏组件的参考运行电压值不变,因此光伏组件的输出电压值始终为U 6,在当前采样时刻获取到第一输出功率值1为70千瓦,若光伏组件所处的环境在预设时间间隔内光照强度逐渐增强,且光照强度增强的速度是均匀的,在预设时间间隔之后,光伏特性曲线从曲线a 61变为曲线a 62,采集得到第二输出功率值2为75千瓦。根据公式(12)计算得到的预测输出功率值3为80千瓦,其中曲线a 63为光伏组件在运行参考电压值不发生变化的情况下,预测得到的光伏组件在下一个采样时刻的光伏特征曲线,进一步的,可以将预测输出功率值3看作是光伏组件的运行参考电压值不发生变化的情况下,光伏组件在下一个采样时刻的输出功率值。
示例性的,在得到预测输出功率值之后,可以按照公式(13),计算光伏组件的功率变化绝对值。
ΔP abs=|P'(k+T)-P(k)|    公式(13)
其中,ΔP abs是光伏组件的功率变化绝对值。
应理解,若光伏组件在预设时间间隔内所处的环境未发生变化,则由于在预设时间间隔内运行参考电压值同样没有变化,因此光伏组件在当前采样时刻的第一输出功率值以及按照预设时间间隔采集光伏组件的第二输出功率值之间的差值较小,从而预测输出功率值的值十分接近第一输出功率值,使得光伏组件的功率变化绝对值较小;反之,若光伏组件在预设时间间隔内所处的环境发生变化,则光伏组件在当前采样时刻的第一输出功率值以及按照预设时间间隔采集光伏组件的第二输出功率值之间的差值较大,从而预测输出功率值的值与第一输出功率值之间的差值较大,使得光伏组件的功率变化绝对值较大。
S2、第一设备比较功率变化绝对值与额定功率变化绝对值,根据比较结果确定电压变化值。
示例性的,当功率变化绝对值大于或等于额定功率变化绝对值的情况下,说明在预设时间间隔内,光伏组件在追踪最大功率值的过程中受到了光伏组件所处环境变化的影响,使得 光伏组件的工作状态不稳定;反之,当功率变化绝对值小于额定功率变化绝对值的情况下,说明在预设时间间隔内,光伏组件在最大功率追踪的过程中未受到光伏组件所处环境变化的影响,且光伏组件的工作状态稳定。
综上,当功率变化绝对值大于或等于额定功率变化绝对值的情况下,光伏组件所处环境的变化使得光伏组件的光伏特性曲线随之发生变化,光伏组件所处环境变化后,若仍然按照与光伏组件所处环境变化前的追踪最大功率的方法进行最大功率追踪,会导致光伏组件无法快速的追踪到最大功率值。因此,可以比较功率变化绝对值与额定功率变化绝对值,根据比较的结果确定电压变化值,使得光伏组件可以更加迅速的追踪到最大功率值。
S3、第一设备根据电压变化值更新光伏组件的运行参考电压值,得到第一运行参考电压值。
示例性的,在确定了电压变化值之后,在根据电压变化值更新光伏组件的运行参考电压值时,可以按照公式(14),计算得到第一参考电压值。
Uref=U'ref+Ustep      公式(14)
其中,Uref是第一运行参考电压值,U'ref是更新前的运行参考电压值,Ustep是电压变化值。
例如,以电压变化值为1伏,更新前的运行参考电压值为50伏为例,则第一设备根据公式(14),计算得到更新后的第一运行参考电压值为51伏。
又例如,以电压变化值为-1伏,更新前的运行参考电压值为50伏为例,则第一设备根据公式(14),计算得到更新后的第一运行参考电压值为49伏。
在本申请的一个可能的实施例中,本申请实施例提供的方法在S3步骤之前还包括:第一设备获取光伏组件在当前采样时刻的第一输出电压值,以及光伏组件在上一采样时刻的采样电压值。
示例性的,第一设备通过输出电压值采样装置获取光伏组件在当前采样时刻的第一输出电压值,以及光伏组件在上一采样时刻的采样电压值。
相应的,第一设备比较功率变化绝对值与额定功率变化绝对值,根据比较的结果确定电压变化值时,可以方式3或方式4来实现:
方式3可以是:
在功率变化绝对值大于或等于额定功率变化值的情况下,第一设备根据采样功率值、第一输出电压值、采样电压值和第二输出功率值,确定电压变化值。
示例性的,在功率变化绝对值大于或等于额定功率变化值的情况下,第一设备可以按照公式(12)以及公式(15),或,公式(12)以及公式(16),确定电压变化值。
Figure PCTCN2022134425-appb-000012
Ustep=[P'(k+T)-P(k-1)]×[U(k)-U(k-1)]     公式(16)
其中,Ustep是电压变化值,P'(k+T)是下一个采样时刻的预测输出功率值,P(k-1)是采样功率值,U(k)是第一输出电压值,U(k-1)是采样电压值。
应理解,在功率变化绝对值大于或等于额定功率变化值的情况下,说明光伏组件所处环境变化对光伏组件的输出功率造成了一定的影响。由于第一设备在获取预测输出功率值时考虑到了环境的变化,因此为了防止环境变化导致计算得到的电压变化值出现误差,可以根据采样功率值、第一输出电压值、采样电压值和第二输出功率值,确定电压变化值,使得确定出的电压变化值不会由于光伏组件所处环境变化,导致计算得到的电压变化值出现误差。
方式4可以是:
在功率变化绝对值小于额定功率变化值的情况下,第一设备根据第一输出功率值、第一输出电压值、采样功率值和采样电压值,确定电压变化值。
示例性的,在功率变化绝对值小于额定功率变化值的情况下,第一设备可以按照公式 (17),或,公式(18),确定电压变化值。
Figure PCTCN2022134425-appb-000013
Ustep=[P(k)-P(k-1)]×[U(k)-U(k-1)]     公式(18)
其中,P(k)是第一输出功率值,P(k-1)是采样功率值,U(k)是第一输出电压值,U(k-1)是采样电压值。
应理解,在功率变化绝对值小于额定功率变化值的情况下,说明光伏组件所处环境未对光伏组件的输出功率值造成影响,因此第一设备可以根据第一输出功率值、第一输出电压值、采样功率值和采样电压值,确定电压变化值。
在本申请的一个可能的实施例中,如图4所示,在步骤S305之前,本申请实施例还包括S309至S310:
S309、在第一功率波动系数小于第一额定波动系数的情况下,第一设备获取光伏组件的当前采样次数。
在第一功率波动系数小于第一额定波动系数的情况下,说明光伏组件当前所处环境的变化较小,因此无需重新获取光伏组件在当前环境下的全局最大功率值对应的最大参考电压值。在这种情况下,可以获取光伏组件的当前采样次数。
当前采样次数为输出电流值采集装置以及输出电压值采集装置在光伏组件的第一功率波动系数小于第一额定波动系数期间的采样次数。
S310、在当前采样次数大于或等于额定采样次数,且第一输出功率值小于光伏组件的最小运行功率值的情况下,第一设备获取光伏组件当前时刻的开路电压值。
示例性的,由于光伏组件在光照强度较低的情况下,光伏组件的输出功率值较低,因此在计算光伏组件的第一波动系数很容易导致第一功率波动系数大于第一额定功率波动系数,使得第一设备频繁地获取光伏组件在当前环境下的全局最大功率值对应的最大参考电压值,造成光伏组件工作的稳定性较差。
在一些实现方式中,在光伏组件的当前采样次数大于或等于额定采样次数,且第一输出功率值小于光伏组件的最小运行功率值的情况下,说明当前光伏组件在该时间段内所处的环境可能光照强度较低,使得光伏组件在该时间段内的输出功率值较低。
应理解,在这种情况下,光伏组件很有可能会因为光照强度较低导致光伏组件的输出电压值较低,从而影响到光伏组件的正常工作。因此,在当前采样次数大于或等于额定采样次数,且第一输出功率值小于光伏组件的最小运行功率值的情况下,第一设备可以获取光伏组件当前时刻的开路电压值,以判断光伏组件能否继续工作。
示例性的,光伏组件的开路电压值是光伏组件在阳光照射下,不接负荷直接通过输出电压值采集装置获取到的电压值。
示例性的,在第一设备获取光伏组件当前时刻的开路电压值之后,本申请实施例还包括S311,或,S312至S313:
S311、在光伏组件当前时刻的开路电压值小于或等于额定工作电压值的情况下,第一设备输出停止工作信号给光伏组件,停止工作信号用于指示光伏组件停止工作。
示例性的,由于光伏组件的开路电压值小于或等于额定工作电压值的情况下,会导致光伏组件的工作效率过低,因此在光伏组件当前时刻的开路电压值小于或等于额定工作电压值的情况下,第一设备输出停止工作信号给光伏组件,停止工作信号用于指示光伏组件停止工作。
例如,额定工作电压值为10伏,则当光伏组件在当前时刻的开路电压值小于或等于10伏的情况下,第一设备输出停止工作信号给光伏组件,停止工作信号用于指示光伏组件停止工作。
S312、在光伏组件当前时刻的开路电压值大于额定电压值的情况下,第一设备控制光伏组件进入弱光保护模式,在弱光保护模式下进行采样,第一设备根据两次采样的功率差值和 电压差值更新光伏组件的运行参考电压值,得到第二运行参考电压值。
应理解,在光伏组件当前时刻的开路电压值大于额定电压值的情况下,说明当前光伏组件所处环境的光照强度较低,但光伏组件仍然可以正常工作,因此第一设备可以控制光伏组件进入到弱光保护模式下,在弱光保护模式下进行采样。
应理解,在弱光保护模式下,光伏组件的输出功率小于最小运行功率值,且在弱光保护模式下,光伏组件的最大功率追踪方法发生改变。
S313、第一设备向光伏组件发送第二运行参考电压值。
示例性的,第一设备在得到第二运行参考电压值之后,可以将第二运行参考电压值发送光伏组件,光伏组件用于根据第二运行参考电压值进行工作。
如果第一设备即为光伏组件,则S313具体为:光伏组件按照第二运行参考电压值进行工作。
在本申请的一些实施例中,在S312中的第一设备根据两次采样的功率差值和电压差值更新光伏组件的运行参考电压值可以通过方式5至方式7中的其中一种方式实现:
方式5可以是:
在两次采样的功率差值和电压差值之比大于预设差值的情况下,将光伏组件的运行参考电压值增加第一预设电压值。
具体的,预设差值可以是0,当预设差值是0时,当两次采样的功率差值和电压差值之比大于预设差值的情况下,说明两次采样之间,采样的功率值随着电压值的增大而增大,或,两次采样之间,采样的功率值随着电压值的减小而减小。因此,根据图2的(a)图中的光伏特性曲线可以分析得到,光伏组件还未追踪到最大功率值,因此需要增大运行参考电压值,使得光伏组件的输出电压值随之增大。
应理解,具体的,在增大光伏组件的运行参考电压值时,可以根据公式(19),增大光伏组件的运行参考电压值。
Uref=U’ref+Ustep    公式(19)
其中,Uref是更新后的运行参考电压值,U’ref是更新前的运行参考电压值,Ustep是第一预设电压值。
示例性的,在弱光保护模式下,为了降低计算的复杂程度,可以将Ustep确定为0.1伏。
方式6可以是:
在两次采样的功率差值和电压差值之比小于预设差值的情况下,将光伏组件的运行参考电压值减小第一预设电压值。
具体的,预设差值可以是0,当预设差值是0时,当两次采样的功率差值和电压差值之比小于预设差值的情况下,说明两次采样之间,采样的功率值随着电压值的增大而减小,或,两次采样之间,采样的功率值随着电压值的减小而增大。因此,根据图2的(a)图中的光伏特性曲线可以分析得到,光伏组件还未追踪到最大功率值,因此需要减小运行参考电压值,使得光伏组件的输出电压值随之减小。
具体的,在减小光伏组件的运行参考电压时,可以根据公式(20),减小光伏组件的运行参考电压值。
Uref=U’ref-Ustep     公式(20)
其中,Uref是更新后的运行参考电压值,U’ref是更新前的运行参考电压值,Ustep是第一预设电压值。
方式7可以是:
在两次采样的功率差值和电压差值之比等于预设差值的情况下,不更新光伏组件的运行参考电压值。
具体的,预设差值可以是0,当预设差值是0时,若两次采样的功率差值和电压差值之比等于预设差值,说明两次采样之间,采样的功率值随着电压值的增大未发生变化,或,两 次采样之间,采样的功率值随着电压值的减小未发生变化。因此光伏组件已经追踪到最大功率值,无需再对运行参考电压值进行更新。
值得一提的是,上述仅以预设差值是0为例进行说明,在实际的应用中,预设差值也可以是0.1或其他预设的值。
在本申请的一些实施例中,在根据两次采样的电压差值和功率差值更新光伏组件的运行参考电压值之后,本申请还包括图4中的S314:
S314、第一设备获取光伏组件在弱光保护模式下的输出功率值。
示例性的,在获取光伏组件在弱光保护模式下的输出功率值时,可以直接获取光伏组件在弱光保护模式下的输出功率值,将其发送给第一设备,也可以获取光伏组件在弱光保护模式下的多组输出功率值,并将其平均值发送给第一设备。
在本申请的一些实施例中,在图4中的S314之后,本申请实施例还包括S315:
S315、在光伏组件在弱光保护模式下的输出功率值大于或等于额定最小功率值的情况下,第一设备控制光伏组件退出弱光保护模式。
示例性的,当光伏组件在弱光保护模式下的输出功率值大于或等于额定最小功率值的情况下,说明当前光伏组件所处的环境的光照强度已经变强,所以光伏组件无需继续在弱光保护模式下工作。
应理解,为了避免光伏组件频繁地进入到弱光保护模式,因此额定最小功率值大于最小运行功率值。
例如,最小功率值设置为5千瓦,额定最小功率值为7千瓦,当光伏组件在弱光保护模式下的输出功率值大于或等于7千瓦的情况下,说明光伏组件所处环境的光照强度明显增强。在这种情况下,第一设备控制光伏组件退出弱光保护模式,不会由于输出功率值的波动再次使得光伏组件进入到弱光保护模式中。在本步骤中,第一设备控制光伏组件退出弱光保护模式后,返回执行步骤S301。
示例性的,在本步骤中,在光伏组件在弱光保护模式下的输出功率值小于额定最小功率值的情况下,第一设备返回执行S310。
示例性的,在光伏组件在弱光保护模式下的输出功率值小于额定最小功率值的情况下,说明光伏组件所处环境的光照强度依然较弱,在这种情况下,第一设备可以返回执行获取光伏组件在当前时刻的开路电压值的步骤,使得光伏组件继续工作在弱光保护模式下。
在本申请的一些实施例中,S303中的获取光伏组件在当前环境下的全局最大功率值对应的最大参考电压值,可以包括图7中的S4到S7:
S4、第一设备将光伏组件的开路电压值作为在当前环境下的搜索电压值。
应理解,当光伏组件的参考运行电压值大于开路电压值的情况下,光伏组件的输出功率值几乎为0千瓦,则全局最大功率值所对应的搜索电压值一定小于开路电压值,因此,第一设备可以将光伏组件的开路电压值作为在当前环境下的搜索电压值。
S5、第一设备根据第二预设电压值,依次减小搜索电压值,并获取搜索电压值依次减小过程中光伏组件的输出参数,得到输出参数集合,其中输出参数包括输出功率值、输出电流值。
示例性的,在获取光伏组件在当前环境下的全局最大功率值对应的最大参考电压值的情况下,可以根据公式(21),依次减小搜索电压值,获取搜索电压值依次减小过程中光伏组件的输出参数,并得到输出参数集合,其中输出参数包括输出功率值、输出电流值。
Usearch=U’search-Ustep2     公式(21)
其中,Usearch是减小后得到的搜索电压值,U’search是减小前的搜索电压值,Ustep2是第二预设电压值。
在一种实现方式中,为了避免在减小搜索电压值的过程中,漏掉最大功率值对应的搜索电压值,因此可以将第二预设电压值确定为0.1伏。
下面结合图8,以光伏组件的开路电压值为90伏,第二预设电压值为0.1伏为例,对得到输出参数集合的过程进行说明。
如图8所示,光伏特性曲线为曲线a 81,在第一次搜索时,搜索电压值为90伏,光伏组件的输出电压值以及输出电流值的情况如图4中的点801所示,其对应输出功率值为0千瓦,输出电流值为0A;第二次搜索时,搜索电压值为89.9伏,光伏组件的输出电压值以及输出电流值的情况如图8中的点802所示,其对应输出功率值为5千瓦,输出电流值为0.2安培;第三次搜索时,搜索电压值为89.8伏,光伏组件的输出电压值以及输出电流值的情况如图8中的点803所示,其对应输出功率值为10千瓦,输出电流值为0.3安培,之后的搜索过程与上述相同,将搜索过程中得到的输出参数确定为输出参数集合。
S6、在搜索电压值小于额定搜索电压值或者输出电流值大于额定最大电流值的情况下,第一设备获得输出参数集合中的最大输出功率值。
应理解,由于绝大多数的光伏组件的最大输出功率值对应的输出电压值为开路电压值的0.78倍。因此,在搜索电压值依次减小的过程中,若搜索电压值小于额定搜索电压值,说明最大功率值很有可能已被搜索,则为了减小计算量,无需继续进行搜索。
示例性的,可以根据光伏组件的开路电压值,确定额定搜索电压值。
例如,额定搜索电压值可以是光伏组件的开路电压值的0.2倍。
应理解,当搜索过程中,若电流值过大,可能会导致光伏组件损坏,因此,在搜索电压值依次减小的过程中,若输出电流值大于额定最大电流值,为了保护光伏组件,不再继续进行搜索。
可选的,在搜索电压值小于额定搜索电压值或者输出电流值大于额定最大电流值的情况下,第一设备不再进行搜索,并根据搜索过程中得到的输出参数集合,获得输出集合中的最大输出功率值。
例如,在搜索电压值小于额定搜索电压值或者输出电流值大于额定最大电流值时,搜索过程中得到的输出参数集合中的输出功率值分别是20千瓦、100千瓦、150千瓦、230千瓦、250千瓦、210千瓦、170千瓦、120千瓦、90千瓦、10千瓦,则获得输出集合中的最大输出功率值为250千瓦。
S7、第一设备获取最大输出功率值对应的搜索电压值,以最大输出功率值对应的搜索电压值作为光伏组件在当前环境下的最大参考电压值。
例如,第一设备获取到的最大输出功率值为250千瓦,且输出功率值为250千瓦时的所对应的搜索电压值为60伏,则将60伏作为光伏组件在当前环境下的最大参考电压值。
在本申请的一些实施例中,本申请实施例提供的方法还包括图7中的S8:
S8、在根据第二预设电压值,第一设备依次减小搜索电压值,并获取搜索电压值依次减小过程中光伏组件的输出参数的过程中,根据光伏组件连续两次的输出功率值计算第二功率波动系数。
应理解,第一设备在依次减小搜索电压值,并获取搜索电压值依次减小过程中光伏组件的输出参数的过程中,光伏组件所处环境依然可能会发生剧烈的变化。因此,在第一设备获取光伏组件的输出参数的过程中,根据光伏组件连续两次的输出功率值计算第二功率波动系数,从而判断在获取光伏组件的输出参数的过程中,光伏组件所处环境是否发生剧烈变化。
示例性的,在本步骤中,在第二功率波动系数大于第二额定功率波动系数的情况下,第一设备返回执行步骤S4。
示例性的,在第二波动系数大于第二额定功率波动系数的情况下,说明在依次减小搜索电压值,并获取搜索电压值依次减小过程中光伏组件的输出参数的过程中,光伏组件所处环境发生了剧烈的变化。因此第一设备需要返回执行将光伏组件的开路电压值作为在当前环境下的搜索电压值的步骤,重新进行搜索,以获取光伏组件在环境变化后的最大参考电压值。
在本申请的另一些实施例中,S303中的获取光伏组件在当前环境下的全局最大功率值 对应的最大参考电压值,可以包括图9中的S9至S12:
S9、第一设备将光伏组件的开路电压值作为在当前环境下的搜索电压值,并初始化搜索功率值。
应理解,当光伏组件的参考运行电压值大于开路电压值的情况下,光伏组件的输出功率值几乎为0千瓦,则全局最大功率值所对应的搜索电压值一定小于开路电压值,因此,第一设备可以将光伏组件的开路电压值作为在当前环境下的搜索电压值。
示例性的,在初始化搜索功率值时,可以将搜索功率值确定为一个预设的功率值。
应理解,预设的功率值通常较小,例如,可以将搜索功率值确定为0千瓦。
S10、第一设备根据第二预设电压值,依次减小搜索电压值,并获取搜索电压值依次减小过程中光伏组件的输出功率值和输出电流值。
示例性的,第一设备在根据第二预设电压值,依次减小搜索电压值,并获取搜索电压值依次减小过程中光伏组件的输出功率和输出电流时,可以参考上述S5中获取输出参数的方法,此处为了简洁,不再赘述。
S11、在搜索电压值依次减小过程中,第一设备根据光伏组件的输出功率值更新搜索功率值,使得搜索功率值保持在最大值。
应理解,在搜索电压值减小的过程中,搜索电压值不同,光伏组件的输出功率值也不同。因此第一设备可以在搜索电压值依次减小过程中,根据光伏组件的输出功率值更新搜索功率值。
具体的,在第一设备根据光伏组件的输出功率值更新搜索功率值的若光伏组件在搜索电压值减小过程中采集到的输出功率值大于搜索功率值,则将搜索功率值确定为该输出功率值;反之,若光伏组件在搜索电压值减小过程中采集到的输出功率值小于或等于搜索功率值,则搜索功率值保持不变。由此,可以根据光伏组件的输出功率值更新搜索功率值,使得搜索功率值保持在最大值。
例如,初始化搜索功率值后,搜索功率值为0千瓦,在搜索电压值依次减小过程中,若每次搜索电压值减小3伏,则当搜索电压值为70伏时,光伏组件的输出功率值为20千瓦,则将搜索功率值更新为20千瓦;继续将搜索电压值减小至67伏,光伏组件的输出功率值为45千瓦,则将搜索功率值更新为45千瓦;继续将搜索电压值减小,在减小的过程中,若光伏组件的输出功率值大于搜索功率值,则更新输出功率值,反之,则不更新输出功率值。
例如,搜索电压值减小至50伏时,搜索功率值为200千瓦;继续减小搜索电压值,将搜索电压值减小至47伏时,光伏组件的输出功率值为180千瓦,由于输出功率值小于搜索功率值,因此不更新搜索功率值,使得搜索功率值保持在最大值;继续减小搜索电压值,以判断搜索电压值为44伏的情况下,光伏组件的输出功率值是否大于搜索功率值,从而确定是否需要更新搜索功率值。
示例性的,在本步骤中,在第二功率波动系数大于第二额定功率值系数的情况下,第一设备返回执行步骤S9。
当第二功率波动系数大于第二额定功率值系数的情况下,说明光伏组件所处环境发生了剧烈的变化,光伏组件的全局最大功率值发生了变化,因此第一设备返回执行将光伏组件的开路电压值作为当前环境下的搜索电压值,并初始化搜索功率值的步骤,以重新获取光伏组件在当前环境下的全局最大功率值对应的最大参考电压值。
S12、在搜索电压值小于额定搜索电压值或者输出电流值大于额定最大电流值的情况下,第一设备获得搜索功率值对应的搜索电压值,以搜索功率值对应的搜索电压值作为光伏组件在当前环境下的最大参考电压值。
示例性的,在搜索的过程中,依次减小搜索电压值,直到搜索电压值小于额定搜索电压值或者输出电流值大于额定最大电流时,不再继续减小搜索电压值,此时的搜索功率值为搜索电压值减小的过程中,光伏组件的输出功率值的最大值。则获取搜索对应的搜索电压值, 以搜索功率值对应的搜索电压值作为光伏组件在当前环境下的最大参考电压值。
应理解,当光伏组件所处环境的光照强度发生变化时,例如,当光伏组件部分的光照被遮挡,使得光伏组件被遮挡光照的部分会成为负载发热,使得光伏组件损坏。因此为了防止光伏组件被损坏,通常在光伏组件的输出端并联一个二极管,对光伏组件进行保护。这种方法使得光伏组件的光伏特性曲线出现多峰值的现象,因此在获取光伏组件在当前环境下的全局最大功率值时,容易将多峰值中任意一个峰值当作全局最大功率值。
而本申请实施例中提供的方法,通过将开路电压值确定为搜索电压值,依次减小搜索电压值,获取搜索过程中得到的输出参数集合,并根据输出参数集合,获得输出集合中的最大输出功率值的技术手段,可以有效地避免将多个峰值中的某一个峰值作为全局最大功率值,使得光伏组件可以搜索到正确的全局最大功率值。
在光伏组件工作的过程中,当光伏组件所处环境发生变化的情况下,重新获取光伏组件在当前环境下的全局最大功率值对应的最大参考电压值,并将获取到的最大参考电压值作为运行参考电压值向光伏组件发送,可以使得光伏组件在环境变化的情况下,可以快速地追踪到最大功率值。
图10为本申请实施例提供的光伏组件最大功率追踪装置1000的示意性框图,包括获取模块1001,计算模块1002。
其中获取模块1001,用于获取所述光伏组件在当前采样时刻的第一输出功率值,及所述光伏组件在上一采样时刻的采样功率值。
计算模块1002,用于根据所述第一输出功率值和所述采样功率值,计算所述光伏组件的第一功率波动系数。
获取模块1001,还用于在所述第一功率波动系数大于或等于额定波动系数的情况下,获取所述光伏组件在当前环境下的全局最大功率值对应的最大参考电压值;
通信模块1003,用于将所述最大参考电压值作为运行参考电压值向所述光伏组件发送,所述光伏组件用于根据所述运行参考电压值进行最大功率追踪。
应理解的是,本申请实施例的装置1000可以通过专用集成电路(application-specific integrated circuit,ASIC)实现,或可编程逻辑器件(programmable logic device,PLD)实现,上述PLD可以是复杂程序逻辑器件(complex programmable logical device,CPLD),现场可编程门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。也可以通过软件实现图3或图4所示的光伏组件的最大功率追踪方法,当通过软件实现图3或图4所示的光伏组件的最大功率追踪方法的情况下,装置1000及其各个模块也可以为软件模块。
图11为本申请实施例提供的一种设备的结构示意图。如图11所示,其中设备1100包括处理器1101、存储器1102、通信接口1103和总线1104。其中,处理器1101、存储器1102、通信接口1103通过总线1104进行通信,也可以通过无线传输等其他手段实现通信。该存储器1102用于存储指令,该处理器1101用于执行该存储器1102存储的指令。该存储器1102存储程序代码11021,且处理器1101可以调用存储器1102中存储的程序代码11021执行图3或图4所示的光伏组件的最大功率追踪方法。
应理解,在本申请实施例中,处理器1101可以是CPU,处理器1101还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者是任何常规的处理器等。
该存储器1102可以包括只读存储器和随机存取存储器,并向处理器1101提供指令和数据。存储器1102还可以包括非易失性随机存取存储器。该存储器1102可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、 可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
该总线1104除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图11中将各种总线都标为总线1104。
应理解,根据本申请实施例的设备1100可对应于本申请实施例中的装置1000,并可以对应于本申请实施例图3或图4所示方法中的第一设备,当设备1100对应于图3或图4所示方法中的第一设备的情况下,设备1100中的各个模块的上述和其它操作和/或功能分别为了实现图3或图4中的由第一设备执行的方法的操作步骤,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时可实现上述各个方法实施例中的步骤。
本申请实施例提供了一种计算机程序产品,当计算机程序产品在第一设备上运行的情况下,使得第一设备执行时实现可实现上述各个方法实施例中的步骤。
本申请实施例提供了一种芯片,包括处理器,该处理器与存储器耦合,用于执行所述存储器中存储的计算机程序或指令,以实现上述各个方法实施例中的步骤。
本申请实施例提供了一种光伏电源结构,该结构包括:光伏组件以及光伏组件的最大功率追踪装置,该光伏组件的最大功率追踪装置可实现上述各个方法实施例中的步骤。
本申请实施例提供了一种储能设备,包括处理器,该处理器与存储器耦合,用于执行所述存储器中存储的计算机程序或指令,以实现上述各个方法实施例中的步骤。
应该理解到,本申请所揭露的方法和装置/***,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上,或者说对现有技术做出贡献的部分,或者该技术方案的部分,可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,该计算机软件产品包括若干指令,该指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。前述的存储介质可以包括但不限于:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (11)

  1. 一种光伏组件的最大功率追踪方法,包括:
    获取所述光伏组件在当前采样时刻的第一输出功率值,及所述光伏组件在上一采样时刻的采样功率值;
    根据所述第一输出功率值和所述采样功率值,计算所述光伏组件的第一功率波动系数;
    在所述第一功率波动系数大于或等于第一额定波动系数的情况下,获取所述光伏组件在当前环境下的全局最大功率值对应的最大参考电压值;
    以所述最大参考电压值作为运行参考电压值向所述光伏组件发送,所述光伏组件被配置为根据所述运行参考电压值进行最大功率追踪。
  2. 如权利要求1所述的最大功率追踪方法,其特征在于,所述最大功率追踪方法还包括:
    在所述第一功率波动系数小于所述第一额定波动系数的情况下,根据所述第一输出功率值和所述采样功率值,计算所述光伏组件的稳定系数;
    在所述稳定系数大于或等于额定稳定系数的情况下,按照预设时间间隔获取所述光伏组件的第二输出功率值;
    根据所述第一输出功率值和所述第二输出功率值,计算所述光伏组件的功率变化绝对值;
    比较所述功率变化绝对值与额定功率变化值,根据比较的结果确定电压变化值;
    根据所述电压变化值更新所述光伏组件的所述运行参考电压值,得到第一运行参考电压值;
    向所述光伏组件发送所述第一运行参考电压值。
  3. 如权利要求2所述的最大功率追踪方法,其特征在于,所述最大功率追踪方法还包括:
    获取所述光伏组件在当前采样时刻的第一输出电压值,及所述光伏组件在上一采样时刻的采样电压值;
    则所述比较所述功率变化绝对值与额定功率变化值,根据比较的结果确定电压变化值,包括:
    在所述功率变化绝对值大于或等于所述额定功率变化值的情况下,根据所述采样功率值、所述第一输出电压值、所述采样电压值和所述第二输出功率值,确定所述电压变化值;
    在所述功率变化绝对值小于所述额定功率变化值的情况下,根据所述第一输出功率值、所述第一输出电压值、所述采样功率值和所述采样电压值,确定所述电压变化值。
  4. 如权利要求1至3中任一项所述的最大功率追踪方法,其特征在于,所述最大功率追踪方法还包括:
    在所述功率波动系数小于所述额定波动系数的情况下,获取所述光伏组件的当前采样次数;
    在所述当前采样次数大于或等于额定采样次数,且所述第一输出功率值小于所述光伏组件的最小运行功率值的情况下,获取所述光伏组件当前时刻的开路电压值;
    在所述光伏组件当前时刻的开路电压值小于或等于额定工作电压值的情况下,输出停止工作信号给所述光伏组件,所述停止工作信号被配置为指示光伏组件停止工作;
    在所述光伏组件当前时刻的开路电压值大于所述额定工作电压值的情况下,控制所述光伏组件进入弱光保护模式,在所述光伏组件处于所述弱光保护模式下进行采样,根据两次采样的功率差值和电压差值更新所述光伏组件的运行参考电压值,得到第二运行参考电压值;
    向所述光伏组件发送所述第二运行参考电压值。
  5. 如权利要求4所述的最大功率追踪方法,其特征在于,所述根据两次采样的电压差值和功率差值更新所述光伏组件的运行参考电压值之后,所述最大功率追踪方法还包括:
    获取所述光伏组件在所述弱光保护模式下的输出功率值;
    在所述光伏组件在所述弱光保护模式下的输出功率值大于或等于额定最小功率值的情 况下,控制所述光伏组件退出所述弱光保护模式;
    在所述光伏组件在所述弱光保护模式下的输出功率值小于所述额定最小功率值的情况下,返回执行所述获取所述光伏组件当前时刻的开路电压值的步骤。
  6. 如权利要求4所述的最大功率追踪方法,其特征在于,所述根据两次采样的功率差值和电压差值更新所述光伏组件的运行参考电压值包括:
    在所述两次采样的功率差值和电压差值之比大于预设差值的情况下,将所述光伏组件的运行参考电压值增加第一预设电压值;或,
    在所述两次采样的功率差值和电压差值之比小于所述预设差值的情况下,将所述光伏组件的运行参考电压值减小第一预设电压值;或,
    在所述两次采样的功率差值和电压差值之比等于所述预设差值的情况下,不更新所述光伏组件的运行参考电压值。
  7. 如权利要求1至3中任一项所述的最大功率追踪方法,其特征在于,其特征在于,所述获取所述光伏组件在当前环境下的全局最大功率值对应的最大参考电压值,包括:
    将所述光伏组件的开路电压值作为在当前环境下的搜索电压值;
    根据第二预设电压值,依次减小所述搜索电压值,并获取所述搜索电压值依次减小过程中所述光伏组件的输出参数,得到输出参数集合,所述输出参数包括输出功率值、输出电流值;
    在所述搜索电压值小于额定搜索电压值或者所述输出电流值大于额定最大电流值的情况下,获得所述输出参数集合中的最大输出功率值;
    获取所述最大输出功率值对应的搜索电压值,以所述最大输出功率值对应的搜索电压值作为所述光伏组件在当前环境下的最大参考电压值。
  8. 如权利要求7所述的最大功率追踪方法,其特征在于,所述最大功率追踪方法还包括:
    在根据第二预设电压值,依次减小所述搜索电压值,并获取所述搜索电压值依次减小过程中所述光伏组件的输出参数的过程中,根据所述光伏组件连续两次的输出功率值计算第二功率波动系数;
    在所述第二功率波动系数大于第二额定功率系数的情况下,返回执行将所述光伏组件的开路电压值作为在当前环境下的搜索电压值的步骤。
  9. 如权利要求1至3中任一项所述的最大功率追踪方法,其特征在于,所述获取所述光伏组件在当前环境下的全局最大功率值对应的最大参考电压值,包括:
    将所述光伏组件的开路电压值作为在当前环境下的搜索电压值,并初始化搜索功率值;
    根据第二预设电压值,依次减小所述搜索电压值,并获取所述搜索电压值依次减小过程中所述光伏组件的输出功率值和输出电流值;
    在所述搜索电压值依次减小过程中,根据所述光伏组件的输出功率值更新所述搜索功率值,使得所述搜索功率值保持在最大值;
    在所述搜索电压值小于额定搜索电压值或者所述输出电流值大于额定最大电流值的情况下,获得所述搜索功率值对应的搜索电压值,以所述搜索功率值对应的搜索电压值作为所述光伏组件在当前环境下的最大参考电压值;
    其中,在根据第二预设电压值,依次减小所述搜索电压值,并获取所述搜索电压值依次减小过程中所述光伏组件的输出功率值和输出电流值的过程中,根据所述光伏组件连续两次的输出功率值计算第二功率波动系数;
    在所述第二功率波动系数大于第二额定功率系数的情况下,返回执行将所述光伏组件的开路电压值作为在当前环境下的搜索电压值,并初始化搜索功率值的步骤。
  10. 一种光伏组件的最大功率追踪装置,包括:
    获取模块,被配置为获取所述光伏组件在当前采样时刻的第一输出功率值,及所述光伏组件在上一采样时刻的采样功率值;
    计算模块,被配置为根据所述第一输出功率值和所述采样功率值,计算所述光伏组件 的第一功率波动系数;
    所述获取模块,还被配置为在所述第一功率波动系数大于或等于额定波动系数的情况下,获取所述光伏组件在当前环境下的全局最大功率值对应的最大参考电压值;
    通信模块,被配置为以所述最大参考电压值作为运行参考电压值向所述光伏组件发送,所述光伏组件被配置为根据所述运行参考电压进行最大功率追踪。
  11. 一种储能设备,包括处理器,该处理器与存储器耦合,用于执行所述存储器中存储的计算机程序或指令,以实现上述权利要求1至9任一项所述的最大功率追踪方法中的步骤。
PCT/CN2022/134425 2022-04-07 2022-11-25 光伏组件的最大功率追踪方法、装置及储能设备 WO2023193452A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210359187.9 2022-04-07
CN202210359187.9A CN114860021A (zh) 2022-04-07 2022-04-07 光伏组件的最大功率追踪方法及装置

Publications (1)

Publication Number Publication Date
WO2023193452A1 true WO2023193452A1 (zh) 2023-10-12

Family

ID=82630121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134425 WO2023193452A1 (zh) 2022-04-07 2022-11-25 光伏组件的最大功率追踪方法、装置及储能设备

Country Status (2)

Country Link
CN (1) CN114860021A (zh)
WO (1) WO2023193452A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114860021A (zh) * 2022-04-07 2022-08-05 深圳市正浩创新科技股份有限公司 光伏组件的最大功率追踪方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014182A1 (en) * 2010-07-30 2012-02-02 Bitron S.P.A. Method and device for maximizing the electrical power produced by a generator, particularly a generator based on a renewable power source
CN102722212A (zh) * 2012-07-02 2012-10-10 中国矿业大学 不均匀光照下光伏发电***最大功率点跟踪方法
CN103823504A (zh) * 2014-03-20 2014-05-28 常州工学院 一种基于最小二乘支持向量机的最大功率跟踪控制方法
CN106774610A (zh) * 2017-01-06 2017-05-31 青岛天盈华智科技有限公司 一种mppt控制方法及其装置
CN107704012A (zh) * 2017-10-31 2018-02-16 中国科学院广州能源研究所 一种非均匀辐照下光伏逆变器最大功率跟踪方法
CN109062315A (zh) * 2018-10-15 2018-12-21 华北水利水电大学 一种光伏并网发电***的最大功率点跟踪方法
CN114860021A (zh) * 2022-04-07 2022-08-05 深圳市正浩创新科技股份有限公司 光伏组件的最大功率追踪方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014182A1 (en) * 2010-07-30 2012-02-02 Bitron S.P.A. Method and device for maximizing the electrical power produced by a generator, particularly a generator based on a renewable power source
CN102722212A (zh) * 2012-07-02 2012-10-10 中国矿业大学 不均匀光照下光伏发电***最大功率点跟踪方法
CN103823504A (zh) * 2014-03-20 2014-05-28 常州工学院 一种基于最小二乘支持向量机的最大功率跟踪控制方法
CN106774610A (zh) * 2017-01-06 2017-05-31 青岛天盈华智科技有限公司 一种mppt控制方法及其装置
CN107704012A (zh) * 2017-10-31 2018-02-16 中国科学院广州能源研究所 一种非均匀辐照下光伏逆变器最大功率跟踪方法
CN109062315A (zh) * 2018-10-15 2018-12-21 华北水利水电大学 一种光伏并网发电***的最大功率点跟踪方法
CN114860021A (zh) * 2022-04-07 2022-08-05 深圳市正浩创新科技股份有限公司 光伏组件的最大功率追踪方法及装置

Also Published As

Publication number Publication date
CN114860021A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
WO2023193452A1 (zh) 光伏组件的最大功率追踪方法、装置及储能设备
US8461820B2 (en) Perturb voltage as a decreasing non-linear function of converter power
US7739530B2 (en) Method and program for generating execution code for performing parallel processing
JP2022523238A (ja) 最適化器、太陽光発電システム、及び太陽電池モジュールのためのiv曲線スキャニング方法
CN111262299B (zh) 充电器输出电压调节方法、装置、智能终端及介质
CN111596718A (zh) 光伏发电控制方法、装置、计算机设备和存储介质
US10326293B2 (en) Control of output power of a battery charger for charging a battery of an electronic device from an energy source
Ghani et al. The characterisation of crystalline silicon photovoltaic devices using the manufacturer supplied data
Hali et al. Fast and efficient way of PV parameters estimation based on combined analytical and numerical approaches
WO2023207062A1 (zh) 最大功率跟踪控制方法、光伏***及储能设备
CN110275564B (zh) 光伏最大功率跟踪优化控制方法、***、介质及设备
CN117193500A (zh) 基于lstm的服务器动态管理方法、***、终端及存储介质
JP6919417B2 (ja) 太陽電池のi−vカーブの計測機能を有するパワーコンディショナ
US20120235665A1 (en) Method for obtaining information enabling the determination of a characteristic of a power source
CN105446413A (zh) 一种光伏逆变器及其最大功率点跟踪方法和装置
CN105049007A (zh) 高精度抗干扰比较器及方法和应用该比较器的存储结构
JPWO2021057075A5 (zh)
CN114860022A (zh) 光伏组件的最大功率追踪方法、装置与设备
CN104133517A (zh) 一种防止mppt误判的控制方法及装置
Kou et al. Fast variable step-size maximum power point tracking method for photovoltaic systems
Sezen et al. Visual Re-Initialization Model Development Methodology for Solving Problems Regarding Metaheuristic Algorithm-Based MPPT Applications
CN114779871A (zh) 最大功率点跟踪方法、光伏控制器及光伏***
Dong et al. A model-specific end-to-end design methodology for resource-constrained TinyML hardware
KR101508334B1 (ko) 태양전지 어레이의 부분 음영 판단에 따른 태양광 발전 시스템의 최대전력점 추적방법
Zhu et al. High-Performance Global Maximum Power Point Tracking for Partial Shaded Photovoltaic Systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936378

Country of ref document: EP

Kind code of ref document: A1