WO2023193388A1 - 一种存储***供电过程中的故障定位方法、装置以及介质 - Google Patents

一种存储***供电过程中的故障定位方法、装置以及介质 Download PDF

Info

Publication number
WO2023193388A1
WO2023193388A1 PCT/CN2022/114188 CN2022114188W WO2023193388A1 WO 2023193388 A1 WO2023193388 A1 WO 2023193388A1 CN 2022114188 W CN2022114188 W CN 2022114188W WO 2023193388 A1 WO2023193388 A1 WO 2023193388A1
Authority
WO
WIPO (PCT)
Prior art keywords
bbu
fault
information
storage system
charging
Prior art date
Application number
PCT/CN2022/114188
Other languages
English (en)
French (fr)
Inventor
华要宇
王瑞杰
崔学涛
王鲁泮
刘仍庆
曹刚强
Original Assignee
苏州浪潮智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州浪潮智能科技有限公司 filed Critical 苏州浪潮智能科技有限公司
Publication of WO2023193388A1 publication Critical patent/WO2023193388A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/28Supervision thereof, e.g. detecting power-supply failure by out of limits supervision
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/30Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to a fault location method, device and medium during the power supply process of a storage system.
  • the backup power module consists of a backup battery unit (Backup Battery Unit, BBU) and a BBU control module.
  • BBU Battery Management System
  • BMS Battery Management System
  • FIG 1 is a schematic structural diagram of a storage system power supply.
  • the backup power module is composed of BBU10 and BBU control module 11, which is used to supply power to the storage system 12.
  • BBU10, BBU control module 11 and storage The systems 12 are connected through charging links and discharging links, and the storage system 12 also includes a system controller.
  • the storage system requires multiple devices to participate in the power supply link.
  • the inventor realized that at present, when the storage system uses the backup power module to provide power and there is a problem, there is no way to locate the location where the problem occurs, and it is impossible to target different locations. Take appropriate measures to deal with the problem. As a result, hidden dangers in the storage system cannot be resolved in time, and the storage system may lose data.
  • a fault locating method, device and medium during the power supply process of a storage system are provided.
  • a fault location method during the power supply process of a storage system including:
  • the information includes at least one of BBU material information, BMS register status, system control signals, system software control information, external discharge information, internal discharge information, and charging information;
  • the location of the fault includes at least one of the BBU, BBU control module, system controller, charging link and discharge link; where the preset rules include each The corresponding relationship between the information and the cause of each fault and the location of each fault.
  • a fault locating device during the power supply process of a storage system including:
  • the acquisition module is used to obtain information about the storage system and the power backup module.
  • the information includes at least one of BBU material information, BMS register status, system control signals, system software control information, external discharge information, internal discharge information, and charging information. ;
  • the positioning module is used to locate the location of the fault corresponding to the cause of the fault according to the preset rules.
  • the location of the fault includes at least one of the BBU, BBU control module, system controller, charging link and discharge link; wherein,
  • the preset rules include the correspondence between each piece of information, the cause of each fault, and the location where each fault occurs.
  • a fault locating device during the power supply process of a storage system including:
  • a processor configured to implement the steps of the fault location method in the power supply process of the storage system in any of the above embodiments when executing computer-readable instructions.
  • a computer-readable storage medium Computer-readable instructions are stored on the computer-readable storage medium. When the computer-readable instructions are executed by a processor, the steps of any of the above fault locating methods in the power supply process of the storage system are implemented.
  • Figure 1 is a schematic structural diagram of a storage system power supply
  • Figure 2 is a schematic flowchart of a fault location method during the power supply process of a storage system provided by one or more embodiments of the present application;
  • Figure 3 is a schematic structural diagram of a fault locating device during the power supply process of the storage system provided by one or more embodiments of the present application;
  • Figure 4 is a schematic structural diagram of a fault locating device during the power supply process of the storage system provided by another or multiple embodiments of the present application;
  • Figure 5 is a schematic structural diagram of a computer-readable storage medium provided by one or more embodiments of the present application.
  • the core of this application is to provide a fault location method, device and medium during the power supply process of the storage system.
  • Figure 2 is a flow chart of a fault location method during the power supply process of a storage system provided by an embodiment of the present application. As shown in Figure 2, the method includes the following steps:
  • S10 Obtain information about the storage system and backup power module.
  • the information includes at least one of the following: BBU material information, BMS register status, system control signal, system software control information, external discharge information, internal discharge information, and charging information.
  • S11 Determine the cause of the failure of the storage system and backup power module corresponding to the information according to the preset rules.
  • S12 Locate the location of the fault corresponding to the cause of the fault according to the preset rules.
  • the location of the fault includes at least one of the following: BBU, BBU control module, system controller, charging link and discharge link; where the preset rules include Correspondence between each information and each fault cause and the location of each fault.
  • the BBU, BBU control module and storage system are connected through charging links and discharge links.
  • the storage system cannot use the power supply for power supply, it will switch to the backup power module for power supply.
  • the BBU, BBU control module, storage system, and the charging link and discharge link used for connection may all fail. Therefore, it is necessary to find these faults and perform fault repairs on the entire system based on the location of the fault.
  • the power backup capability in the backup power module gradually decays.
  • the power supply switching process of the storage system can be simulated at regular intervals to evaluate the power backup capability of the backup power module to find hidden dangers in the system and avoid the need for
  • an evaluation can generally be conducted every three months.
  • the specific evaluation process is to pre-set the corresponding relationship between each information, each fault cause and each fault location, then obtain the information of the storage system and backup power module, and determine the storage system and backup power module corresponding to the information according to the preset rules.
  • the cause of the fault is determined, and finally the location of the fault corresponding to the cause of the fault is located based on the preset rules.
  • the information of the storage system and backup power module includes at least one of the following: BBU material information, BMS register status, system control signal, system software control information, external discharge information, internal discharge information, and charging information;
  • the location of the fault includes the following At least one: BBU, BBU control module, system controller, charging link, discharging link.
  • the storage system will collect BMS black box logs and BBU control module self-diagnosis logs, and the storage system will intelligently analyze and locate the collected logs to determine the location of the fault.
  • the storage system also regularly monitors the system presence signal status bit, discharge MOS (Metal Oxide Semiconductor, metal oxide semiconductor) status bit, and charging MOS status bit of the BMS's 0x0054Operation Status (status register); as well as 0x0053PF Status (permanent protection Status register) for real-time monitoring of the cell imbalance status bit. If an abnormality occurs, the system enters the backup module power supply exception processing mode and begins to collect BMS black box logs for intelligent analysis to accurately locate the location of the fault. In addition, the storage system will read the BBU voltage, cell voltage, BBU current, cell temperature, charge and discharge MOS surface temperature, etc. in real time.
  • MOS Metal Oxide Semiconductor, metal oxide semiconductor
  • the storage system loses data and improves the power supply stability of the storage system.
  • the BBU power supply link detection circuit can be used to monitor the voltage, current, and power values of the power supply link.
  • the TI INA219A intelligent monitoring chip can be used as the control chip of the BBU power supply link detection circuit.
  • the BBU control module reads the voltage, current, and power values of the power supply link through the System Management Bus (SMBUS) port as a basis for analysis and determination.
  • SMBUS System Management Bus
  • the fault location method during the power supply process of the storage system obtains the information of the storage system and the backup power module.
  • the information includes at least one of the following: BBU material information, BMS register status, system control signal, and system software control information. , external discharge information, internal discharge information, charging information; determine the fault cause of the storage system and backup module corresponding to the information according to the preset rules; after determining the cause of the fault, locate the location of the fault corresponding to the fault cause according to the preset rules , and then take corresponding measures to deal with problems at different locations, which can promptly solve the hidden dangers of the backup power module and avoid data loss in the storage system.
  • the location where the fault occurs includes at least one of the following: BBU, BBU control module, system controller, charging link, and discharge link; the preset rules include the correspondence between each information, each fault cause, and each fault location.
  • the BBU material information includes at least one of the following: BBU model, BBU supplier information, BBU shelf life, and BBU cell parameters. Determining the failure causes of the storage system and backup module corresponding to the information based on the preset rules includes: judging whether the BBU model is qualified based on the BBU model; judging whether the BBU supplier information is illegal based on the BBU supplier information; judging whether the BBU is illegal based on the BBU shelf life The shelf life has expired; determine whether the BBU battery cell parameters are incorrect based on the BBU battery cell parameters.
  • the location of the fault corresponding to the fault cause according to the preset rules, specifically including: in response to the BBU material information involving at least one of the following fault causes, locating the location of the fault to the BBU; among which, the BBU material information involves
  • the reasons for the failure include: unqualified BBU model, illegal BBU supplier information, BBU exceeding the shelf life, and incorrect BBU cell parameters.
  • the embodiment of this application refines the BBU material information, and explains what kind of fault causes are determined based on what kind of information, and the location of each fault cause is determined. Corresponding measures are taken to deal with the problems at different locations, so that the backup can be solved in a timely manner. Hidden dangers of electrical modules.
  • the BMS register status includes at least one of the following: BBU undervoltage register status, BBU overvoltage register status, BBU cell imbalance register status, BBU temperature abnormality register status, and system on-site control signal register status, BBU charging and discharging MOS register status.
  • the BMS register status includes: BBU undervoltage, BBU overvoltage, BBU cell damage or imbalance; in response to the BMS register status involving at least one of the following fault causes, locate the location of the fault to the system controller; among them, the BMS register status involves
  • the fault causes include: abnormal system heat dissipation control signal and abnormal system in-position control signal; in response to the BMS register status involving the following fault causes, the location of the fault is located as the charging link; among them, the fault causes involved in the BMS register status include: BBU Charging overcurrent; in response to the BMS register status involving at least one of the following fault causes, locate the location of the fault as the discharge link; among them, the fault causes involved in the BMS register status include: BBU discharge
  • the embodiment of this application refines the BMS register status, and explains what kind of information is used to determine the cause of the fault, and determines the location of each fault cause. Corresponding measures are taken to deal with the problems at different locations, so that the backup can be solved in a timely manner. Hidden dangers of electrical modules.
  • the system control signal includes at least one of the following: a level of the system control signal, and signal quality information. Determine the cause of the failure of the storage system and backup module corresponding to the information according to the preset rules, including: Determining whether there are abnormalities in the rising edge ringing and falling edge ringing of the system control signal level based on the level of the system control signal, and judging whether the signal quality information is abnormal based on the signal quality information.
  • the causes of faults involved in the system control signal include: abnormalities in the rising edge ringing and falling edge ringing of the level of the system control signal, and abnormalities in the signal quality information.
  • the typical high-level value of the system control signal is 3.4V, and the minimum value is 2V; the maximum low-level value is 0.8V, and the typical value is 0.2V. If the low level of the system control signal is detected to be greater than 0.7V, or the high level is lower than 2.1V, it is determined that the system control signal is abnormal.
  • the embodiment of this application refines the system control signals, and explains what kind of information is used to determine the cause of the fault, and determines the location of each fault cause. Corresponding measures are taken to deal with the problems at different locations, so that the backup can be solved in a timely manner. Hidden dangers of electrical modules.
  • the system software control information includes at least one of the following: SMBUS (System Management Bus) communication and software setting conditions. Determine the cause of the failure of the storage system and backup module corresponding to the information based on preset rules, including: determining whether there are loopholes in system software control and whether the communication link is abnormal based on SMBUS communication and/or software setting conditions. After determining the cause of the fault, locate the location of the fault corresponding to the fault cause according to the preset rules, which specifically includes: in response to the system software control information involving at least one of the following fault causes, locating the location of the fault to the system controller; where, the system Causes of failures involved in software control information include: vulnerabilities in system software control and abnormal communication links.
  • SMBUS System Management Bus
  • the embodiment of this application refines the system software control information, and explains what kind of information is used to determine the cause of the fault, and determines the location of each fault cause. Corresponding measures are taken to solve the problems in different locations in a timely manner. Hidden dangers of backup power modules.
  • the external discharge information includes at least one of the following: input voltage of the storage system, input current of the storage system, output voltage of the BBU control module, input voltage of the BBU control module, output current of the BBU control module , the discharge enable signal of the BBU control module, and the output voltage of the BBU.
  • Determine the cause of the failure of the storage system and backup module corresponding to the information based on preset rules including at least one of the following: Determine whether the input voltage of the storage system is abnormal based on the input voltage of the storage system; Determine whether the input voltage of the storage system is abnormal based on the input current of the storage system Whether the input current is abnormal; judge whether the output voltage of the BBU control module is abnormal based on the output voltage of the BBU control module; judge whether the input voltage of the BBU control module is abnormal based on the input voltage of the BBU control module; judge whether the BBU control module is abnormal based on the output current of the BBU control module Whether the output current of the BBU control module is abnormal; judge whether the discharge enable signal of the BBU control module is abnormal; judge whether the output voltage of the BBU is abnormal according to the output voltage of the BBU.
  • the location of the fault corresponding to the cause of the fault according to the preset rules, including: responding to the normal input voltage of the storage system and the abnormal input current of the storage system, locating the location of the fault as the discharge link; responding to Since the input voltage of the storage system is abnormal and the output voltage of the BBU control module is normal, the fault location is located in the discharge link between the BBU control module and the storage system; in response to the input voltage of the BBU control module being normal and the BBU control module The output voltage is abnormal, the output current of the BBU control module has no protection record, and the discharge enable signal of the BBU control module is normal.
  • the fault location is the discharge module in the BBU control module; in response to the abnormal input voltage of the BBU control module and the BBU The output voltage is normal, and the location of the fault is located in the discharge link between BBU and BBU control module.
  • the internal discharge information includes at least one of the following: internal discharge input voltage, BBU output voltage, and internal discharge current.
  • the location of the fault corresponding to the cause of the fault according to the preset rules, including: in response to the abnormal internal discharge input voltage and the normal output voltage of the BBU, locate the location of the fault as the discharge inside the BBU control module Link; in response to the abnormal internal discharge current, the location of the fault is located as the discharge module in the BBU control module.
  • the output voltage of the BBU is abnormal, the charging and discharging MOS register status of the BBU can be obtained to find the corresponding fault cause.
  • the embodiment of this application refines the external discharge information and internal discharge information, and explains what kind of information is used to determine the cause of the fault, and determines the location of each fault cause, and takes corresponding processing measures for the problems at different locations.
  • the hidden dangers of the backup power module can be solved in time.
  • the charging information includes at least one of the following: charging voltage of the BBU, charging current of the BBU, charging input voltage of the BBU, charging input current of the BBU, and charging output voltage of the BBU.
  • the location of the fault corresponding to the fault cause according to the preset rules, specifically including: in response to the charging information involving at least one of the following fault causes, locating the location of the fault as the charging module in the BBU control module; where , the fault causes involved in the charging information include: the charging voltage of the BBU is normal and the charging current of the BBU is abnormal, the charging input voltage of the BBU is abnormal and the charging input current of the BBU is abnormal, the charging input voltage of the BBU is normal and the charging output voltage of the BBU is abnormal; response
  • the charging information involves the following fault causes, and the location of the fault is the charging link in the storage system; among them, the fault causes involved in the charging information include: the charging input module of the storage system is abnormal.
  • the embodiment of this application refines the charging information, and explains what kind of information is used to determine the cause of the fault, and determines the location of each fault cause. Corresponding measures are taken to deal with the problems at different locations, so that the backup power can be solved in a timely manner. Module hidden dangers.
  • the above embodiments do not limit when to obtain the information of the storage system and the backup module.
  • the information may be obtained every preset time.
  • the method further includes: evaluating the performance of the power backup module according to the cause of the fault and the location where the fault occurs.
  • the backup power capability in the backup power module gradually decays. Therefore, the power supply switching process of the storage system can be simulated at regular intervals, that is, the normal power supply switching from the power supply to the backup power module is simulated to realize the backup of the backup power module. Evaluate the power capacity to find out the hidden dangers in the system. Based on the evaluation results, you can judge whether the backup power module has the power supply capability. Generally, it can be set to conduct an evaluation every three months.
  • the solution provided by the embodiment of this application is to regularly obtain information and evaluate the performance of the backup power module, which can avoid the situation that the backup power module fails to provide power when the backup power module is required to provide power.
  • the fault locating method during the power supply process of the storage system is described in detail.
  • This application also provides embodiments corresponding to the fault locating device during the power supply process of the storage system. It should be noted that this application describes the embodiments of the device part from two perspectives, one is based on the perspective of functional modules, and the other is based on the perspective of hardware.
  • FIG. 3 is a structural diagram of the fault locating device during the power supply process of the storage system provided by the embodiment of the present application. As shown in Figure 3, The device includes:
  • the acquisition module 13 is used to obtain information about the storage system and the power backup module.
  • the information includes at least one of the following: BBU material information, BMS register status, system control signal, system software control information, external discharge information, internal discharge information and charging information. ;
  • the determination module 14 is used to determine the cause of the failure of the storage system and backup power module corresponding to the information according to preset rules;
  • the positioning module 15 is used to locate the location of the fault corresponding to the cause of the fault according to the preset rules.
  • the location of the fault includes at least one of the following: BBU, BBU control module, system controller, charging link and discharge link; wherein,
  • the preset rules include the correspondence between each piece of information, the cause of each fault, and the location where each fault occurs.
  • the fault locating device during the power supply process of the storage system provided by this embodiment corresponds to the above method, and therefore has the same beneficial effects as the above method.
  • FIG. 4 is a structural diagram of a fault locating device during the power supply process of the storage system provided by another embodiment of the present application.
  • the fault locating device during the power supply process of the storage system includes a memory 20 and one or more processors 21, where:
  • Memory 20 for storing computer readable instructions
  • the processor 21 is configured to implement the steps of the fault location method in the power supply process of the storage system as mentioned in the above embodiment when executing computer readable instructions.
  • the fault locating device during the power supply process of the storage system may include but is not limited to smart phones, tablet computers, notebook computers or desktop computers.
  • the processor 21 may include one or more processing cores, such as a 4-core processor, an 8-core processor, etc.
  • the processor 21 can adopt at least one hardware form among a digital signal processor (Digital Signal Processor, DSP), a field-programmable gate array (Field-Programmable Gate Array, FPGA), and a programmable logic array (Programmable Logic Array, PLA). to fulfill.
  • DSP Digital Signal Processor
  • FPGA field-programmable gate array
  • PROgrammable Logic Array PLA
  • the processor 21 may also include a main processor and a co-processor.
  • the main processor is a processor used to process data in the wake-up state, also called a central processing unit (Central Processing Unit, CPU); the co-processor is A low-power processor used to process data in standby mode.
  • CPU Central Processing Unit
  • the processor 21 may be integrated with a graphics processor (Graphics Processing Unit, GPU), and the GPU is responsible for rendering and drawing content that needs to be displayed on the display screen.
  • the processor 21 may also include an artificial intelligence (Artificial Intelligence, AI) processor, which is used to process computing operations related to machine learning.
  • AI Artificial Intelligence
  • Memory 20 may include one or more computer-readable storage media, which may be non-transitory.
  • the memory 20 may also include high-speed random access memory, and non-volatile memory, such as one or more magnetic disk storage devices, flash memory storage devices.
  • the memory 20 is at least used to store the following computer-readable instructions 201. After the computer-readable instructions are loaded and executed by the processor 21, the failure in the power supply process of the storage system disclosed in any of the previous embodiments can be realized. Relevant steps of the positioning method.
  • the resources stored in the memory 20 may also include the operating system 202, data 203, etc., and the storage method may be short-term storage or permanent storage.
  • the operating system 202 may include Windows, Unix, Linux, etc.
  • the data 203 may include but is not limited to data related to fault location methods in the power supply process of the storage system, etc.
  • the fault locating device during the power supply process of the storage system may also include a display screen 22 , an input and output interface 23 , a communication interface 24 , a power supply 25 and a communication bus 26 .
  • the structure shown in the figure does not constitute a limitation on the fault locating device during the power supply process of the storage system, and may include more or fewer components than shown in the figure.
  • the fault locating device during the power supply process of the storage system includes a memory and a processor.
  • the processor executes the program stored in the memory, the following method can be implemented: a fault locating method during the power supply process of the storage system.
  • the fault locating device during the power supply process of the storage system provided by this embodiment corresponds to the above method, and therefore has the same beneficial effects as the above method.
  • this application also provides a corresponding embodiment of a computer-readable storage medium.
  • computer-readable instructions 51 are stored on the computer-readable storage medium 50 . When executed by one or more processors, the computer-readable instructions 51 realize the faults in the power supply process of the storage system as recorded in the above embodiments. The steps of the positioning method.
  • the method is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , perform all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .
  • the computer-readable storage medium provided by this embodiment corresponds to the above method, and therefore has the same beneficial effects as the above method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种存储***供电过程中的故障定位方法、装置以及介质。该方法包括:获取存储***与备电模块的信息,信息包括BBU物料信息、BMS寄存器状态、***控制信号、***软件控制信息、外部放电信息、内部放电信息以及充电信息之中的至少一种;根据预设规则确定与信息对应的存储***与备电模块的故障原因;以及根据预设规则定位故障原因对应的故障出现的位置,故障出现的位置包括BBU、BBU控制模块、***控制器、充电链路以及放电链路之中的至少一处;其中,预设规则包括各信息与各故障原因以及各故障出现的位置的对应关系。

Description

一种存储***供电过程中的故障定位方法、装置以及介质
相关申请的交叉引用
本申请要求于2022年04月08日提交中国专利局,申请号为202210362929.3,申请名称为“一种存储***供电过程中的故障定位方法、装置以及介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种存储***供电过程中的故障定位方法、装置以及介质。
背景技术
在大数据时代,对存储***的可靠性、智能化控制提出了更高要求,尤其是存储***的供电稳定性,正常情况下存储***由供电电源进行供电,供电电源无法供电时,会切换至备电模块进行供电,因此,保证备电模块能正常运行是十分重要的。备电模块由备份电池单元(Backup Battery Unit,BBU)和BBU控制模块组成。通常情况下,为了对备电模块进行管理,会为备电模块的BBU配备电池管理***(Battery Management System,BMS),其主要功能是智能化管理及维护备电模块的各个电池单元,防止电池出现过充电和过放电,延长电池的使用寿命,监控电池的状态。图1为一种存储***供电的结构示意图,如图1所示,该结构中:备电模块由BBU10和BBU控制模块11组成,用于给存储***12供电,BBU10、BBU控制模块11以及存储***12之间通过充电链路、放电链路连接,存储***12中还包括***控制器。
如上文提到的存储***在供电环节需要多个设备参与,然而,发明人意识到,目前,存储***使用备电模块供电出现问题时,没有定位问题出现的位置,也就无法针对不同位置的问题采取相应的处理措施。导致存储***的隐患无法及时解决,存储***存在丢失数据的可能。
由此可见,如何定位存储***出现故障的位置,是本领域技术人员亟待解决的问题。
发明内容
根据本申请公开的各种实施例,提供一种存储***供电过程中的故障定位方法、装 置以及介质。
一种存储***供电过程中的故障定位方法,包括:
获取存储***与备电模块的信息,信息包括BBU物料信息、BMS寄存器状态、***控制信号、***软件控制信息、外部放电信息、内部放电信息以及充电信息之中的至少一种;
根据预设规则确定与信息对应的存储***与备电模块的故障原因;以及
根据预设规则定位故障原因对应的故障出现的位置,故障出现的位置包括BBU、BBU控制模块、***控制器、充电链路以及放电链路之中的至少一处;其中,预设规则包括各信息与各故障原因以及各故障出现的位置的对应关系。
一种存储***供电过程中的故障定位装置,包括:
获取模块,用于获取存储***与备电模块的信息,信息包括BBU物料信息、BMS寄存器状态、***控制信号、***软件控制信息、外部放电信息、内部放电信息以及充电信息之中的至少一种;
确定模块,用于根据预设规则确定与信息对应的存储***与备电模块的故障原因;以及
定位模块,用于根据预设规则定位故障原因对应的故障出现的位置,故障出现的位置包括BBU、BBU控制模块、***控制器、充电链路以及放电链路之中的至少一处;其中,预设规则包括各信息与各故障原因以及各故障出现的位置的对应关系。
一种存储***供电过程中的故障定位装置,包括:
存储器,用于存储计算机可读指令;以及
处理器,用于执行计算机可读指令时实现上述任一实施例的存储***供电过程中的故障定位方法的步骤。
一种计算机可读存储介质,计算机可读存储介质上存储有计算机可读指令,计算机可读指令被处理器执行时实现上述任一项的存储***供电过程中的故障定位方法的步骤。
本申请的一个或多个实施例的细节在下面的附图和描述中提出,本申请的其它特征和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例,下面将对实施例中所需要使用的附图做简单的介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一种存储***供电的结构示意图;
图2为本申请一个或多个实施例提供的存储***供电过程中的故障定位方法的流程示意图;
图3为本申请一个或多个实施例提供的存储***供电过程中的故障定位装置的结构示意图;
图4为本申请另一个或多个实施例提供的存储***供电过程中的故障定位装置的结构示意图;
图5为本申请一个或多个实施例提供的计算机可读存储介质的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下,所获得的所有其他实施例,都属于本申请保护范围。
本申请的核心是提供一种存储***供电过程中的故障定位方法、装置以及介质。
为了使本技术领域的人员更好地理解本申请方案,下面结合附图和具体实施方式对本申请作进一步的详细说明。
图2为本申请实施例提供的一种存储***供电过程中的故障定位方法的流程图,如图2所示,该方法包括如下步骤:
S10:获取存储***与备电模块的信息,信息包括以下至少之一:BBU物料信息、BMS寄存器状态、***控制信号、***软件控制信息、外部放电信息、内部放电信息和充电信息。
S11:根据预设规则确定与信息对应的存储***与备电模块的故障原因。
S12:根据预设规则定位故障原因对应的故障出现的位置,故障出现的位置包括以下至少之一:BBU、BBU控制模块、***控制器、充电链路和放电链路;其中,预设规则包括各信息与各故障原因以及各故障出现的位置的对应关系。
如图1所示的结构中,BBU、BBU控制模块以及存储***之间通过充电链路、放电链路连接,在存储***无法使用供电电源进行供电时,会切换至备电模块进行供电,但BBU、BBU控制模块、存储***、以及用于连接的充电链路、放电链路都可能出现故障,因此,需要查找出这些故障并根据故障出现的位置对整个***进行故障维修。备电模块中的备电能力是逐渐衰减的,因此,可以每隔一段时间模拟存储***供电切换流程,对 备电模块的备电能力进行评估,以查找出***中存在的隐患,从而避免需要备电模块供电时,备电模块出现故障无法供电的情况发生,一般可以每三个月进行一次评估。具体评估过程是预先设置好各信息与各故障原因以及各故障出现的位置的对应关系,然后获取存储***与备电模块的信息,根据预设规则确定与信息对应的存储***与备电模块的故障原因,最后根据预设规则定位故障原因对应的故障出现的位置。其中,存储***与备电模块的信息包括以下至少之一:BBU物料信息、BMS寄存器状态、***控制信号、***软件控制信息、外部放电信息、内部放电信息、充电信息;故障出现的位置包括以下至少之一:BBU、BBU控制模块、***控制器、充电链路、放电链路。在实际应用时,存储***会收集BMS黑盒日志、BBU控制模块自诊断日志,存储***对收集的日志进行智能分析定位,以确定故障出现的位置。存储***还会定期监控BMS的0x0054Operation Status(状态寄存器)的***在位信号状态位、放电MOS(Metal Oxide Semiconductor,金属氧化物半导体)状态位、充电MOS状态位;以及对0x0053PF Status(永久性保护状态寄存器)的电芯不平衡状态位进行实时监控,若出现异常,则进入备电模块供电异常处理模式,开始收集BMS黑盒日志,智能分析以准确定位故障出现的位置。另外,存储***会实时读取BBU电压、电芯电压、BBU电流、电芯温度、充放电MOS表面温度等,当这些值接近BMS的报警阈值时,进行报警处理,提前找到BBU的隐患,避免存储***丢失数据,提高存储***的供电稳定性。可使用BBU供电链路侦测电路监测供电链路电压、电流、功率值,可选用TI INA219A智能监测芯片作为BBU供电链路侦测电路的控制芯片。BBU控制模块通过***管理总线(System Management Bus,SMBUS)口读取供电链路的电压、电流、功率值,以作为分析判定依据。
本申请实施例所提供的存储***供电过程中的故障定位方法,获取存储***与备电模块的信息,信息包括以下至少之一:BBU物料信息、BMS寄存器状态、***控制信号、***软件控制信息、外部放电信息、内部放电信息、充电信息;根据预设规则确定与信息对应的存储***与备电模块的故障原因;确定出故障原因之后,根据预设规则定位故障原因对应的故障出现的位置,然后针对不同位置的问题采取相应的处理措施,可及时解决备电模块的隐患,避免存储***丢失数据。其中,故障出现的位置包括以下至少之一:BBU、BBU控制模块、***控制器、充电链路、放电链路;预设规则包括各信息与各故障原因以及各故障出现的位置的对应关系。
在一个或多个实施例中,BBU物料信息包括以下至少之一:BBU型号、BBU供货商信息、BBU保质期、BBU电芯参数。根据预设规则确定与信息对应的存储***与备电模块的故障原因包括:根据BBU型号判断BBU型号是否合格;根据BBU供货商信息判断 BBU供货商信息是否非法;根据BBU保质期判断BBU是否超过保质期;根据BBU电芯参数判断BBU电芯参数是否错误。确定出故障原因之后,根据预设规则定位故障原因对应的故障出现的位置,具体包括:响应于BBU物料信息涉及以下至少一项故障原因,定位故障出现的位置为BBU;其中,BBU物料信息涉及的故障原因包括:BBU型号不合格、BBU供货商信息非法、BBU超过保质期、BBU电芯参数错误。
本申请实施例将BBU物料信息进行细化,并说明根据何种信息确定何种故障原因,以及确定出导致每种故障原因的位置,针对不同位置的问题采取相应的处理措施,可及时解决备电模块的隐患。
在一个或多个实施例中,BMS寄存器状态包括以下至少之一:BBU欠压寄存器状态、BBU过压寄存器状态、BBU电芯不平衡寄存器状态、BBU温度异常寄存器状态、***在位控制信号寄存器状态、BBU充放电MOS寄存器状态。根据预设规则确定与信息对应的存储***与备电模块的故障原因,包括以下至少之一:根据BBU欠压寄存器状态判断BBU是否欠压;根据BBU过压寄存器状态判断BBU是否过压;根据BBU电芯不平衡寄存器状态判断BBU电芯是否损坏或不平衡;根据BBU温度异常寄存器状态判断***散热控制信号是否异常;根据***在位控制信号寄存器状态判断***在位控制信号是否异常;根据BBU充放电MOS寄存器状态判断BBU是否欠压、BBU是否过压、BBU电芯是否损坏或不平衡、BBU是否充电过流、BBU是否放电过流或存储***的负载是否短路。确定出故障原因之后,根据预设规则定位故障原因对应的故障出现的位置,具体包括:响应于BMS寄存器状态涉及以下至少一项故障原因,定位故障出现的位置为BBU;其中,BMS寄存器状态涉及的故障原因包括:BBU欠压、BBU过压、BBU电芯损坏或不平衡;响应于BMS寄存器状态涉及以下至少一项故障原因,定位故障出现的位置为***控制器;其中,BMS寄存器状态涉及的故障原因包括:***散热控制信号异常、***在位控制信号异常;响应于BMS寄存器状态涉及以下故障原因,定位故障出现的位置为充电链路;其中,BMS寄存器状态涉及的故障原因包括:BBU充电过流;响应于BMS寄存器状态涉及以下至少一项故障原因,定位故障出现的位置为放电链路;其中,BMS寄存器状态涉及的故障原因包括:BBU放电过流、存储***的负载短路。
本申请实施例将BMS寄存器状态进行细化,并说明根据何种信息确定何种故障原因,以及确定出导致每种故障原因的位置,针对不同位置的问题采取相应的处理措施,可及时解决备电模块的隐患。
在一个或多个实施例中,***控制信号包括以下至少之一:***控制信号的电平、信号质量信息。根据预设规则确定与信息对应的存储***与备电模块的故障原因,包括: 根据***控制信号的电平判断***控制信号的电平的上升沿振铃和下降沿振铃中是否有异常,以及根据信号质量信息判断信号质量信息是否有异常。确定出故障原因之后,根据预设规则定位故障原因对应的故障出现的位置,具体包括:响应于***控制信号涉及以下故障原因,定位故障出现的位置为充电链路、放电链路、***控制器中的任意一项或多项;其中,***控制信号涉及的故障原因,包括:***控制信号的电平的上升沿振铃和下降沿振铃中有异常、信号质量信息有异常。另外,在一般情况下,***控制信号的高电平典型值为3.4V,最小值为2V;低电平最大值为0.8V,典型值为0.2V。如监测到***控制信号的低电平大于0.7V,或者高电平低于2.1V,则判定***控制信号异常。
本申请实施例将***控制信号进行细化,并说明根据何种信息确定何种故障原因,以及确定出导致每种故障原因的位置,针对不同位置的问题采取相应的处理措施,可及时解决备电模块的隐患。
在一个或多个实施例中,***软件控制信息包括以下至少之一:SMBUS(System Management Bus,***管理总线)通讯、软件设定条件。根据预设规则确定与信息对应的存储***与备电模块的故障原因,包括:根据SMBUS通讯和/或软件设定条件判断***软件控制是否存在漏洞、通讯链路是否异常。确定出故障原因之后,根据预设规则定位故障原因对应的故障出现的位置,具体包括:响应于***软件控制信息涉及以下至少一项故障原因,定位故障出现的位置为***控制器;其中,***软件控制信息涉及的故障原因包括:***软件控制存在漏洞、通讯链路异常。
本申请实施例将***软件控制信息进行细化,并说明根据何种信息确定何种故障原因,以及确定出导致每种故障原因的位置,针对不同位置的问题采取相应的处理措施,可及时解决备电模块的隐患。
在一个或多个实施例中,外部放电信息包括以下至少之一:存储***的输入电压、存储***的输入电流、BBU控制模块的输出电压、BBU控制模块的输入电压、BBU控制模块的输出电流、BBU控制模块的放电使能信号、BBU的输出电压。根据预设规则确定与信息对应的存储***与备电模块的故障原因,包括以下至少之一:根据存储***的输入电压判断存储***的输入电压是否异常;根据存储***的输入电流判断存储***的输入电流是否异常;根据BBU控制模块的输出电压判断BBU控制模块的输出电压是否异常;根据BBU控制模块的输入电压判断BBU控制模块的输入电压是否异常;根据BBU控制模块的输出电流判断BBU控制模块的输出电流是否异常;根据BBU控制模块的放电使能信号判断BBU控制模块的放电使能信号是否异常;根据BBU的输出电压判断BBU的输出电压是否异常。确定出故障原因之后,根据预设规则定位故障原因对应的故 障出现的位置,具体包括:响应于存储***的输入电压正常且存储***的输入电流异常,定位故障出现的位置为放电链路;响应于存储***的输入电压异常且BBU控制模块的输出电压正常,定位出故障出现的位置为BBU控制模块至存储***之间的放电链路;响应于BBU控制模块的输入电压正常、BBU控制模块的输出电压异常、BBU控制模块的输出电流无保护记录、以及BBU控制模块的放电使能信号正常,定位故障出现的位置为BBU控制模块中的放电模块;响应于BBU控制模块的输入电压异常且BBU的输出电压正常,定位出故障出现的位置为BBU至BBU控制模块之间的放电链路。
在一个或多个实施例中,内部放电信息包括以下至少之一:内部放电输入电压、BBU的输出电压、内部放电电流。根据预设规则确定与信息对应的存储***与备电模块的故障原因,包括以下至少之一:根据内部放电输入电压判断内部放电输入电压是否异常;根据BBU的输出电压判断BBU的输出电压是否异常;根据内部放电电流判断内部放电电流是否异常。确定出故障原因之后,根据预设规则定位故障原因对应的故障出现的位置,具体包括:响应于内部放电输入电压异常且BBU的输出电压正常,定位出故障出现的位置为BBU控制模块内部的放电链路;响应于内部放电电流异常,定位出故障出现的位置为BBU控制模块中的放电模块。另外,当BBU的输出电压异常时,可获取BBU的充放电MOS寄存器状态,以查找相应的故障原因。
本申请实施例将外部放电信息以及内部放电信息进行细化,并说明根据何种信息确定何种故障原因,以及确定出导致每种故障原因的位置,针对不同位置的问题采取相应的处理措施,可及时解决备电模块的隐患。
在一个或多个实施例中,充电信息包括以下至少之一:BBU的充电电压、BBU的充电电流、BBU的充电输入电压、BBU的充电输入电流、BBU的充电输出电压。根据预设规则确定与信息对应的存储***与备电模块的故障原因,包括以下至少之一:根据BBU的充电电压判断BBU的充电电压是否异常;根据BBU的充电电流判断BBU的充电电流是否异常;根据BBU的充电输入电压判断BBU的充电输入电压是否异常;根据BBU的充电输入电流判断BBU的充电输入电流是否异常;根据BBU的充电输出电压判断存储***的充电输入模块是否异常。确定出故障原因之后,根据预设规则定位故障原因对应的故障出现的位置,具体包括:响应于充电信息涉及以下至少一项故障原因,定位故障出现的位置为BBU控制模块中的充电模块;其中,充电信息涉及的故障原因包括:BBU的充电电压正常且BBU的充电电流异常、BBU的充电输入电压异常且BBU的充电输入电流异常、BBU的充电输入电压正常且BBU的充电输出电压异常;响应于充电信息涉及以下故障原因,定位故障出现的位置为存储***中的充电链路;其中,充电信息涉及的 故障原因包括:存储***的充电输入模块异常。
本申请实施例将充电信息进行细化,并说明根据何种信息确定何种故障原因,以及确定出导致每种故障原因的位置,针对不同位置的问题采取相应的处理措施,可及时解决备电模块的隐患。
上述实施例中并未限定何时获取存储***与备电模块的信息,在一个或多个实施例中,可以是每隔预设时间获取信息。
在一个或多个实施例中,该方法还包括:根据故障原因以及故障出现的位置对备电模块的性能进行评估。备电模块中的备电能力是逐渐衰减的,因此,可以每隔一段时间模拟存储***供电切换流程,即模拟从供电电源正常供电切换至备电模块进行供电,以实现对备电模块的备电能力进行评估,以查找出***中存在的隐患,根据评估结果可以判断备电模块是否具备供电能力,一般可以设置成每三个月进行一次评估。本申请实施例提供的方案,设置定期获取信息以及对备电模块的性能进行评估,可以避免需要备电模块供电时,备电模块出现故障无法供电的情况发生。
在上述实施例中,对于存储***供电过程中的故障定位方法进行了详细描述,本申请还提供存储***供电过程中的故障定位装置对应的实施例。需要说明的是,本申请从两个角度对装置部分的实施例进行描述,一种是基于功能模块的角度,另一种是基于硬件的角度。
基于功能模块的角度,本实施例提供一种存储***供电过程中的故障定位装置,图3为本申请实施例提供的存储***供电过程中的故障定位装置的结构图,如图3所示,该装置包括:
获取模块13,用于获取存储***与备电模块的信息,信息包括以下至少之一:BBU物料信息、BMS寄存器状态、***控制信号、***软件控制信息、外部放电信息、内部放电信息和充电信息;
确定模块14,用于根据预设规则确定与信息对应的存储***与备电模块的故障原因;以及
定位模块15,用于根据预设规则定位故障原因对应的故障出现的位置,故障出现的位置包括以下至少之一:BBU、BBU控制模块、***控制器、充电链路和放电链路;其中,预设规则包括各信息与各故障原因以及各故障出现的位置的对应关系。
由于装置部分的实施例与方法部分的实施例相互对应,因此装置部分的实施例请参见方法部分的实施例的描述,这里暂不赘述。
本实施例提供的存储***供电过程中的故障定位装置,与上述方法对应,故具有与 上述方法相同的有益效果。
基于硬件的角度,本实施例提供了另一种存储***供电过程中的故障定位装置,图4为本申请另一实施例提供的存储***供电过程中的故障定位装置的结构图,如图4所示,存储***供电过程中的故障定位装置包括存储器20以及一个或多个处理器21,其中:
存储器20,用于存储计算机可读指令;以及
处理器21,用于执行计算机可读指令时实现如上述实施例中所提到的存储***供电过程中的故障定位方法的步骤。
本实施例提供的存储***供电过程中的故障定位装置可以包括但不限于智能手机、平板电脑、笔记本电脑或台式电脑等。
其中,处理器21可以包括一个或多个处理核心,比如4核心处理器、8核心处理器等。处理器21可以采用数字信号处理器(Digital Signal Processor,DSP)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、可编程逻辑阵列(Programmable Logic Array,PLA)中的至少一种硬件形式来实现。处理器21也可以包括主处理器和协处理器,主处理器是用于对在唤醒状态下的数据进行处理的处理器,也称中央处理器(Central Processing Unit,CPU);协处理器是用于对在待机状态下的数据进行处理的低功耗处理器。在一些实施例中,处理器21可以集成有图像处理器(Graphics Processing Unit,GPU),GPU用于负责显示屏所需要显示的内容的渲染和绘制。一些实施例中,处理器21还可以包括人工智能(Artificial Intelligence,AI)处理器,该AI处理器用于处理有关机器学习的计算操作。
存储器20可以包括一个或多个计算机可读存储介质,该计算机可读存储介质可以是非暂态的。存储器20还可包括高速随机存取存储器,以及非易失性存储器,比如一个或多个磁盘存储设备、闪存存储设备。本实施例中,存储器20至少用于存储以下计算机可读指令201,其中,该计算机可读指令被处理器21加载并执行之后,能够实现前述任一实施例公开的存储***供电过程中的故障定位方法的相关步骤。另外,存储器20所存储的资源还可以包括操作***202和数据203等,存储方式可以是短暂存储或者永久存储。其中,操作***202可以包括Windows、Unix、Linux等。数据203可以包括但不限于存储***供电过程中的故障定位方法涉及到的数据等。
在一些实施例中,存储***供电过程中的故障定位装置还可包括有显示屏22、输入输出接口23、通信接口24、电源25以及通信总线26。
本领域技术人员可以理解,图中示出的结构并不构成对存储***供电过程中的故障定位装置的限定,可以包括比图示更多或更少的组件。
本申请实施例提供的存储***供电过程中的故障定位装置,包括存储器和处理器,处理器在执行存储器存储的程序时,能够实现如下方法:存储***供电过程中的故障定位方法。
本实施例提供的存储***供电过程中的故障定位装置,与上述方法对应,故具有与上述方法相同的有益效果。
最后,本申请还提供一种计算机可读存储介质对应的实施例。参考图5所示,计算机可读存储介质50上存储有计算机可读指令51,计算机可读指令51被一个或多个处理器执行时实现如上述实施例中记载的存储***供电过程中的故障定位方法的步骤。
可以理解的是,如果在一个或多个实施例中,方法以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,执行本申请各个实施例描述的方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本实施例提供的计算机可读存储介质,与上述方法对应,故具有与上述方法相同的有益效果。
以上对本申请所提供的一种存储***供电过程中的故障定位方法、装置以及介质进行了详细介绍。说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的保护范围内。
还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括上述要素的过程、方法、物品或者设备中还存在另外的相 同要素。

Claims (20)

  1. 一种存储***供电过程中的故障定位方法,其特征在于,包括:
    获取所述存储***与备电模块的信息,所述信息包括BBU物料信息、BMS寄存器状态、***控制信号、***软件控制信息、外部放电信息、内部放电信息以及充电信息之中的至少一种;
    根据预设规则确定与所述信息对应的所述存储***与所述备电模块的故障原因;以及
    根据所述预设规则定位所述故障原因对应的故障出现的位置,故障出现的位置包括BBU、BBU控制模块、***控制器、充电链路以及放电链路之中的至少一处;其中,所述预设规则包括各所述信息与各所述故障原因以及各故障出现的位置的对应关系。
  2. 根据权利要求1所述的方法,其特征在于,所述BBU物料信息包括BBU型号、BBU供货商信息、BBU保质期以及BBU电芯参数之中的至少一种,所述根据预设规则确定与所述信息对应的所述存储***与所述备电模块的故障原因,包括:
    根据所述BBU型号判断所述BBU型号是否合格;和/或
    根据所述BBU供货商信息判断所述BBU供货商信息是否非法;和/或
    根据所述BBU保质期判断所述BBU是否超过保质期;和/或
    根据所述BBU电芯参数判断所述BBU电芯参数是否错误。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述预设规则定位所述故障原因对应的故障出现的位置,包括:
    响应于所述BBU物料信息涉及所述BBU型号不合格、所述BBU供货商信息非法、所述BBU超过保质期以及所述BBU电芯参数错误之中的至少一项所述故障原因,定位故障出现的位置为所述BBU。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述BMS寄存器状态包括BBU欠压寄存器状态、BBU过压寄存器状态、BBU电芯不平衡寄存器状态、BBU温度异常寄存器状态、***在位控制信号寄存器状态以及BBU充放电MOS寄存器状态之中的至少一种,所述根据预设规则确定与所述信息对应的所述存储***与所述备电模块的故障原因,包括:
    根据所述BBU欠压寄存器状态判断所述BBU是否欠压;和/或
    根据所述BBU过压寄存器状态判断所述BBU是否过压;和/或
    根据所述BBU电芯不平衡寄存器状态判断所述BBU电芯是否损坏或不平衡;和/或
    根据所述BBU温度异常寄存器状态判断***散热控制信号是否异常;和/或
    根据所述***在位控制信号寄存器状态判断***在位控制信号是否异常;和/或
    根据所述BBU充放电MOS寄存器状态判断所述BBU是否欠压、所述BBU是否过压、所述BBU电芯是否损坏或不平衡、所述BBU是否充电过流、所述BBU是否放电过流或所述存储***的负载是否短路。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述预设规则定位所述故障原因对应的故障出现的位置,包括:
    响应于所述BMS寄存器状态涉及所述BBU欠压、所述BBU过压以及所述BBU电芯损坏或不平衡之中的至少一项所述故障原因,定位故障出现的位置为所述BBU;和/或
    响应于所述BMS寄存器状态涉及***散热控制信号异常以及***在位控制信号异常之中的至少一项所述故障原因,定位故障出现的位置为所述***控制器;和/或
    响应于所述BMS寄存器状态涉及的所述故障原因为所述BBU充电过流,定位故障出现的位置为所述充电链路;和/或
    响应于所述BMS寄存器状态涉及所述BBU放电过流以及所述存储***的负载短路之中的至少一项所述故障原因,定位故障出现的位置为所述放电链路。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述***控制信号包括***控制信号的电平和信号质量信息之中的至少一种,所述根据预设规则确定与所述信息对应的所述存储***与所述备电模块的故障原因,包括:
    根据所述***控制信号的电平判断所述***控制信号的电平的上升沿振铃和下降沿振铃中是否有异常,以及根据所述信号质量信息判断所述信号质量信息是否有异常。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述预设规则定位所述故障原因对应的故障出现的位置,包括:
    响应于所述***控制信号涉及所述***控制信号的电平的上升沿振铃和下降沿振铃中有异常以及所述信号质量信息有异常之中的至少一项所述故障原因,定位故障出现的位置为所述充电链路、所述放电链路、所述***控制器中的任意一项或多项。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述***软件控制信息包括SMBUS通讯以及软件设定条件之中的至少一种,所述根据预设规则确定与所述信息对应的所述存储***与所述备电模块的故障原因,包括:
    根据所述SMBUS通讯和/或所述软件设定条件判断所述***软件控制是否存在漏洞和/或通讯链路是否异常。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述预设规则定位所述故障原因对应的故障出现的位置,包括:
    响应于所述***软件控制信息涉及***软件控制存在漏洞以及通讯链路异常之中的至少一项所述故障原因,定位故障出现的位置为所述***控制器。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,所述外部放电信息包括所述存储***的输入电压、所述存储***的输入电流、所述BBU控制模块的输出电压、所述BBU控制模块的输入电压、所述BBU控制模块的输出电流、所述BBU控制模块的放电使能信号和所述BBU的输出电压之中的至少一种,所述根据预设规则确定与所述信息对应的所述存储***与所述备电模块的故障原因,包括:
    根据所述存储***的输入电压判断所述存储***的输入电压是否异常;和/或
    根据所述存储***的输入电流判断所述存储***的输入电流是否异常;和/或
    根据所述BBU控制模块的输出电压判断所述BBU控制模块的输出电压是否异常;和/或
    根据所述BBU控制模块的输入电压判断所述BBU控制模块的输入电压是否异常;和/或
    根据所述BBU控制模块的输出电流判断所述BBU控制模块的输出电流是否异常;和/或
    根据所述BBU控制模块的放电使能信号判断所述BBU控制模块的放电使能信号是否异常;和/或
    根据所述BBU的输出电压判断所述BBU的输出电压是否异常。
  11. 根据权利要求10所述的方法,其特征在于,所述根据所述预设规则定位所述故障原因对应的故障出现的位置,包括:
    响应于所述存储***的输入电压正常且所述存储***的输入电流异常,定位故障出现的位置为所述放电链路;和/或
    响应于所述存储***的输入电压异常且所述BBU控制模块的输出电压正常,定位故障出现的位置为所述BBU控制模块至所述存储***之间的所述放电链路;和/或
    响应于所述BBU控制模块的输入电压正常、所述BBU控制模块的输出电压异常、所述BBU控制模块的输出电流无保护记录以及所述BBU控制模块的放电使能信号正常,定位故障出现的位置为所述BBU控制模块中的放电模块;和/或
    响应于所述BBU控制模块的输入电压异常且所述BBU的输出电压正常,定位故障出现的位置为所述BBU至所述BBU控制模块之间的所述放电链路。
  12. 根据权利要求1至11任一项所述的方法,其特征在于,所述内部放电信息包括内部放电输入电压、所述BBU的输出电压以及内部放电电流之中的至少一种,所述根据 预设规则确定与所述信息对应的所述存储***与所述备电模块的故障原因,包括:
    根据所述内部放电输入电压判断所述内部放电输入电压是否异常;和/或
    根据所述BBU的输出电压判断所述BBU的输出电压是否异常;和/或
    根据所述内部放电电流判断所述内部放电电流是否异常。
  13. 根据权利要求12所述的方法,其特征在于,所述根据所述预设规则定位所述故障原因对应的故障出现的位置,包括:
    响应于所述内部放电输入电压异常且所述BBU的输出电压正常,定位故障出现的位置为所述BBU控制模块内部的所述放电链路;和/或
    响应于所述内部放电电流异常,定位故障出现的位置为所述BBU控制模块中的放电模块。
  14. 根据权利要求1至13任一项所述的方法,其特征在于,所述充电信息包括所述BBU的充电电压、所述BBU的充电电流、所述BBU的充电输入电压、所述BBU的充电输入电流以及所述BBU的充电输出电压之中的至少一种,所述根据预设规则确定与所述信息对应的所述存储***与所述备电模块的故障原因,包括:
    根据所述BBU的充电电压判断所述BBU的充电电压是否异常;和/或
    根据所述BBU的充电电流判断所述BBU的充电电流是否异常;和/或
    根据所述BBU的充电输入电压判断所述BBU的充电输入电压是否异常;和/或
    根据所述BBU的充电输入电流判断所述BBU的充电输入电流是否异常;和/或
    根据所述BBU的充电输出电压判断所述存储***的充电输入模块是否异常。
  15. 根据权利要求14所述的方法,其特征在于,所述根据所述预设规则定位所述故障原因对应的故障出现的位置,包括:
    响应于所述充电信息涉及所述BBU的充电电压正常且所述BBU的充电电流异常、所述BBU的充电输入电压异常且所述BBU的充电输入电流异常、以及所述BBU的充电输入电压正常且所述BBU的充电输出电压异常之中的至少一项所述故障原因,定位故障出现的位置为所述BBU控制模块中的充电模块;和/或
    响应于所述充电信息涉及的所述故障原因为所述存储***的充电输入模块异常,定位故障出现的位置为所述存储***中的所述充电链路。
  16. 根据权利要求1至15任一项所述的方法,其特征在于,所述获取所述存储***与备电模块的信息,包括:
    每隔预设时间获取所述信息。
  17. 根据权利要求1至16任一项所述的方法,其特征在于,所述方法还包括:
    根据所述故障原因以及故障出现的位置对所述备电模块的性能进行评估;以及
    根据评估结果判断所述备电模块是否具备供电能力。
  18. 一种存储***供电过程中的故障定位装置,其特征在于,包括:
    获取模块,用于获取所述存储***与备电模块的信息,所述信息包括BBU物料信息、BMS寄存器状态、***控制信号、***软件控制信息、外部放电信息、内部放电信息以及充电信息之中的至少一种;
    确定模块,用于根据预设规则确定与所述信息对应的所述存储***与所述备电模块的故障原因;以及
    定位模块,用于根据所述预设规则定位所述故障原因对应的故障出现的位置,故障出现的位置包括BBU、BBU控制模块、***控制器、充电链路以及放电链路之中的至少一处;其中,所述预设规则包括各所述信息与各所述故障原因以及各故障出现的位置的对应关系。
  19. 一种存储***供电过程中的故障定位装置,其特征在于,包括:
    存储器,用于存储计算机可读指令;以及
    处理器,用于执行所述计算机可读指令时实现如权利要求1至17任一项所述的存储***供电过程中的故障定位方法的步骤。
  20. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机可读指令,所述计算机可读指令被处理器执行时实现如权利要求1至17任一项所述的存储***供电过程中的故障定位方法的步骤。
PCT/CN2022/114188 2022-04-08 2022-08-23 一种存储***供电过程中的故障定位方法、装置以及介质 WO2023193388A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210362929.3 2022-04-08
CN202210362929.3A CN114441964B (zh) 2022-04-08 2022-04-08 一种存储***供电过程中的故障定位方法、装置以及介质

Publications (1)

Publication Number Publication Date
WO2023193388A1 true WO2023193388A1 (zh) 2023-10-12

Family

ID=81359715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114188 WO2023193388A1 (zh) 2022-04-08 2022-08-23 一种存储***供电过程中的故障定位方法、装置以及介质

Country Status (2)

Country Link
CN (1) CN114441964B (zh)
WO (1) WO2023193388A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117290150A (zh) * 2023-11-27 2023-12-26 宁德时代新能源科技股份有限公司 故障原因确定方法、装置、设备、***和介质
CN117526544A (zh) * 2024-01-03 2024-02-06 深圳市英威腾电源有限公司 一种ups模块的控制方法、***、电子设备及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114441964B (zh) * 2022-04-08 2022-07-08 苏州浪潮智能科技有限公司 一种存储***供电过程中的故障定位方法、装置以及介质
CN117289144B (zh) * 2023-11-27 2024-04-19 宁德时代新能源科技股份有限公司 一种故障定位方法、装置、设备、***和介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120102371A1 (en) * 2009-05-15 2012-04-26 Toshio Tonouchi Fault cause estimating system, fault cause estimating method, and fault cause estimating program
CN107608813A (zh) * 2017-09-14 2018-01-19 郑州云海信息技术有限公司 一种基于linux操作***信息自动分析故障的方法
CN109582116A (zh) * 2018-12-03 2019-04-05 郑州云海信息技术有限公司 远程监控方法以及远程监控设备
CN111061584A (zh) * 2019-11-21 2020-04-24 浪潮电子信息产业股份有限公司 一种故障诊断方法、装置、设备及可读存储介质
CN111312325A (zh) * 2020-02-14 2020-06-19 苏州浪潮智能科技有限公司 一种bbu故障诊断方法、装置、电子设备及存储介质
CN114441964A (zh) * 2022-04-08 2022-05-06 苏州浪潮智能科技有限公司 一种存储***供电过程中的故障定位方法、装置以及介质

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8201009B2 (en) * 2009-07-14 2012-06-12 T-Win Systems, Inc. Computer management and power backup system and device
US9153990B2 (en) * 2012-11-30 2015-10-06 Tesla Motors, Inc. Steady state detection of an exceptional charge event in a series connected battery element
CN109388221A (zh) * 2018-10-09 2019-02-26 郑州云海信息技术有限公司 一种存储***及其备电管理方法、装置和设备
CN110399029A (zh) * 2019-07-19 2019-11-01 广东浪潮大数据研究有限公司 一种供电故障类型的定位方法、设备、介质及装置
CN110806794A (zh) * 2019-10-10 2020-02-18 浙江大华技术股份有限公司 存储***的掉电保护方法、***、计算机设备以及介质
CN111338456B (zh) * 2020-03-04 2021-07-27 苏州浪潮智能科技有限公司 一种bbu掉电保护实现方法及***
CN112286709B (zh) * 2020-10-29 2022-07-08 苏州浪潮智能科技有限公司 一种服务器硬件故障的诊断方法、诊断装置及诊断设备
CN112579400B (zh) * 2020-12-30 2022-12-20 苏州浪潮智能科技有限公司 一种设备故障定位方法、装置、设备及存储介质
CN113918375B (zh) * 2021-12-13 2022-04-22 苏州浪潮智能科技有限公司 一种故障处理方法、装置及电子设备和存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120102371A1 (en) * 2009-05-15 2012-04-26 Toshio Tonouchi Fault cause estimating system, fault cause estimating method, and fault cause estimating program
CN107608813A (zh) * 2017-09-14 2018-01-19 郑州云海信息技术有限公司 一种基于linux操作***信息自动分析故障的方法
CN109582116A (zh) * 2018-12-03 2019-04-05 郑州云海信息技术有限公司 远程监控方法以及远程监控设备
CN111061584A (zh) * 2019-11-21 2020-04-24 浪潮电子信息产业股份有限公司 一种故障诊断方法、装置、设备及可读存储介质
CN111312325A (zh) * 2020-02-14 2020-06-19 苏州浪潮智能科技有限公司 一种bbu故障诊断方法、装置、电子设备及存储介质
CN114441964A (zh) * 2022-04-08 2022-05-06 苏州浪潮智能科技有限公司 一种存储***供电过程中的故障定位方法、装置以及介质

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117290150A (zh) * 2023-11-27 2023-12-26 宁德时代新能源科技股份有限公司 故障原因确定方法、装置、设备、***和介质
CN117290150B (zh) * 2023-11-27 2024-04-19 宁德时代新能源科技股份有限公司 故障原因确定方法、装置、设备、***和介质
CN117526544A (zh) * 2024-01-03 2024-02-06 深圳市英威腾电源有限公司 一种ups模块的控制方法、***、电子设备及存储介质
CN117526544B (zh) * 2024-01-03 2024-05-17 深圳市英威腾电源有限公司 一种ups模块的控制方法、***、电子设备及存储介质

Also Published As

Publication number Publication date
CN114441964A (zh) 2022-05-06
CN114441964B (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
WO2023193388A1 (zh) 一种存储***供电过程中的故障定位方法、装置以及介质
US10496509B2 (en) Systems and methods for event tracking and health assessment of battery-powered information handling systems
US7211987B2 (en) Electric device with intelligent battery system therein
CA2787867C (en) Short detection in battery cells
US8648568B2 (en) Backup power system management
CN112286709B (zh) 一种服务器硬件故障的诊断方法、诊断装置及诊断设备
US20030054229A1 (en) Electrical apparatus, computer system, intelligent battery, battery diagnosis method, batter-state display method, and program
JP2002345159A (ja) 電源供給システム、コンピュータ装置、電池、異常充電の保護方法、およびプログラム
CN107145410A (zh) 一种***异常掉电后自动上电开机的方法、***及设备
US20240014459A1 (en) Energy storage system, battery monitoring method, and energy storage device
CN103529380A (zh) Sram型fpga单粒子功能性中断的监测***及方法
JP3785377B2 (ja) 電気機器、コンピュータ装置、インテリジェント電池、およびacアダプタの確認方法
CN103730951A (zh) 一种电源管理***及其方法
CN109900990B (zh) 一种可穿戴设备整机电流测试方法
WO2024041427A1 (zh) 电池计量***、电子设备及控制方法
US20040059527A1 (en) Electric appliance, computer apparatus, intelligent battery, battery diagnosis method, program, and storage medium
CN211478544U (zh) Bms保护板测试***
CN106776169A (zh) 一种测试服务器的psu的方法及装置
CN112098920B (zh) 智能电能表剩余电流监测功能的测试装置、方法及***
Sheng et al. Design of lithium battery pack fault diagnosis system based on two levels state machine
CN209659326U (zh) 一种用于网络通讯运维管理设备
CN109491872B (zh) 一种内存监管方法、装置和计算机可读存储介质
CN114884021B (zh) 一种供电电路的供电控制方法及相关组件
CN109459706B (zh) 电池检测方法和装置
Brenier et al. A new approach to the qualification of lithium-based battery systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936317

Country of ref document: EP

Kind code of ref document: A1