WO2023190508A1 - Optical member, material for forming optical member and method for manufacturing same, and method for manufacturing optical member - Google Patents

Optical member, material for forming optical member and method for manufacturing same, and method for manufacturing optical member Download PDF

Info

Publication number
WO2023190508A1
WO2023190508A1 PCT/JP2023/012497 JP2023012497W WO2023190508A1 WO 2023190508 A1 WO2023190508 A1 WO 2023190508A1 JP 2023012497 W JP2023012497 W JP 2023012497W WO 2023190508 A1 WO2023190508 A1 WO 2023190508A1
Authority
WO
WIPO (PCT)
Prior art keywords
integer
optical member
group
compound
same
Prior art date
Application number
PCT/JP2023/012497
Other languages
French (fr)
Japanese (ja)
Inventor
一宏 小倉
正幸 齋藤
Original Assignee
群栄化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2023043570A external-priority patent/JP2023152833A/en
Application filed by 群栄化学工業株式会社 filed Critical 群栄化学工業株式会社
Publication of WO2023190508A1 publication Critical patent/WO2023190508A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/15Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with all hydroxy groups on non-condensed rings, e.g. phenylphenol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics

Definitions

  • the present invention relates to an optical member, an optical member forming material, a method for manufacturing the same, and a method for manufacturing the optical member.
  • High refractive index resins are used for various optical members such as lenses and touch panel films.
  • resins using monomers having a fluorene skeleton are known (for example, Patent Documents 1 and 2).
  • An object of the present invention is to provide a high refractive index optical member having a novel skeleton and a method for manufacturing the same, and an optical member forming material from which a high refractive index optical member having a novel skeleton can be obtained and a manufacturing method for the same. do.
  • An optical member including a structure represented by the following formula (i).
  • R 1 is a hydrogen atom or an aryl group
  • a is an integer from 0 to 5
  • b is an integer from 0 to 4
  • R 2 is a substituent
  • c and d are each independently an integer of 0 to 6
  • R 3 is an alkylene group
  • e and f are each independently an integer of 1 to 5
  • g and h are each independently an integer of 0 to 4
  • (e+g) is 1 to 5
  • (f+h) is 1 to 5.
  • R 4 is a substituent, and when (g+h) is 2 or more, (g+h) R 4 may be the same or different.
  • R 1 is a hydrogen atom or an aryl group
  • a is an integer from 0 to 5
  • b is an integer from 0 to 4
  • R 2 is a substituent
  • c and d are each independently an integer of 0 to 6
  • R 3 is an alkylene group
  • e and f are each independently an integer of 1 to 5
  • g and h are each independently an integer of 0 to 4,
  • e+g) is 1 to 5
  • (f+h) is 1 to 5.
  • R 4 is a substituent, and when (g+h) is 2 or more, (g+h) R 4 may be the same or different.
  • the resin is a resin containing a polyhydric hydroxy compound as a monomer component.
  • the resin is a polycarbonate resin or a polyester resin.
  • R 1 is a hydrogen atom or an aryl group
  • a is an integer from 0 to 5
  • b is an integer from 0 to 4
  • R 2 is a substituent
  • c and d are each independently an integer of 0 to 6
  • R 3 is an alkylene group
  • e and f are each independently an integer of 1 to 5
  • g and h are each independently an integer of 0 to 4,
  • e+g) is 1 to 5
  • (f+h) is 1 to 5.
  • X is a monovalent group containing a polymerizable functional group or a reactive functional group, or a hydrogen atom
  • (e+f) Xs may be the same or different, and at least one of the (e+f) Xs is the monovalent group
  • R 4 is a substituent, and when (g+h) is 2 or more, (g+h) R 4 may be the same or different.
  • R 1 is a hydrogen atom or an aryl group
  • a is an integer from 0 to 5
  • b is an integer from 0 to 4
  • R 2 is a substituent
  • c and d are each independently an integer of 0 to 6
  • R 3 is an alkylene group
  • e and f are each independently an integer of 1 to 5
  • g and h are each independently an integer of 0 to 4,
  • e+g) is 1 to 5
  • (f+h) is 1 to 5.
  • R 4 is a substituent, and when (g+h) is 2 or more, (g+h) R 4 may be the same or different.
  • R 1 is a hydrogen atom or an aryl group
  • a is an integer from 0 to 5
  • b is an integer from 0 to 4
  • R 2 is a substituent
  • c and d are each independently an integer of 0 to 6
  • R 3 is an alkylene group
  • e and f are each independently an integer of 1 to 5
  • g and h are each independently an integer of 0 to 4,
  • e+g) is 1 to 5
  • (f+h) is 1 to 5.
  • a method for producing an optical member forming material comprising a step of producing a compound.
  • a method for producing an optical member comprising molding the optical member forming material according to any one of [6] to [8].
  • a method for producing an optical member which comprises curing the optical member forming material according to [9].
  • the present invention it is possible to provide a high refractive index optical member having a novel skeleton and a method for manufacturing the same, and an optical member forming material from which a high refractive index optical member having a novel skeleton can be obtained and a manufacturing method for the same.
  • the optical member of the present invention includes a structure represented by the following formula (i) (hereinafter also referred to as “structure (i)").
  • R 1 is a hydrogen atom or an aryl group
  • a is an integer from 0 to 5
  • b is an integer from 0 to 4
  • R 2 is a substituent, and when (a + b) is 2 or more, (a + b) R 2 may be the same or different
  • c and d are each independently an integer of 0 to 6
  • R 3 is an alkylene group, and when (c + d) is 2 or more, (c + d) R 3 may be the same or different
  • e and f are each independently an integer of 1 to 5
  • g and h are each independently an integer of 0 to 4, (e+g) is 1 to 5, and (f+h) is 1 to 5.
  • R 4 is a substituent, and when (g+h) is 2 or more, (g+h) R 4 may be the same or different.
  • Examples of the aryl group for R 1 include a phenyl group.
  • a phenyl group is preferable from the viewpoint of increasing the refractive index, and a hydrogen atom is preferable from the viewpoint of ease of reactivity when synthesizing the present compound.
  • a is an integer from 0 to 5, and from the viewpoint of ease of procurement of raw materials, 0 is preferable.
  • b is an integer from 0 to 4, and from the viewpoint of ease of procurement of raw materials, 0 is preferable.
  • the substituent for R 2 include an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, a hydroxyl group, a cyano group, an acetyl group, and a halogen atom.
  • c and d are each independently an integer of 0 to 6. In one preferred embodiment, c and d are 0. Structure (i) is typically derived from compound (1) described below. In compound (1), when c is 0, the terminal OH of HO-(R 3 O) c - becomes a phenolic hydroxyl group by bonding to the benzene ring to which HO-(R 3 O) c - is bonded. , -(OR 3 ) d The same applies to the terminal OH of -OH. In this case, when compound (1) is used as a raw material to produce polycarbonate resins, polyester resins, and other compounds, they tend to have excellent reactivity. In another preferred embodiment, c and d are integers of 1 or more.
  • the alkylene group in R 3 has, for example, 2 to 10 carbon atoms, preferably 2 to 4 carbon atoms.
  • the alkylene group may be linear or branched. Specific examples of the alkylene group include ethylene group, trimethylene group, propylene group, butane-1,2-diyl group, and hexylene group.
  • e and f are each independently an integer of 1 to 5
  • g and h are each independently an integer of 0 to 4
  • (e+g) is 1 to 5
  • (f+h) is 1 to 5.
  • e and f are particularly preferably 1 when the compound (1) is used as a raw material for polycarbonate resin or polyester resin.
  • Compound (1) can be used as it is as a curing agent for epoxy resins, or the hydroxyl group of compound (1) can be replaced with a group containing a polymerizable functional group or a reactive functional group, and it can be incorporated into a curable composition. You can also do that.
  • e and f each independently range from 1 to 4, since the crosslinking density increases when the curable composition is cured, thereby increasing the mechanical strength and heat resistance of the cured product.
  • g and h are each independently preferably an integer of 1 to 2, and 1 is particularly preferred.
  • the substituent for R 4 include an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, a hydroxyl group, an acetyl group, a halogen atom, and -(OR 3 ) k OH.
  • R3 is the same as above.
  • k is an integer from 0 to 6.
  • R 4 is preferably an alkyl group from the viewpoint of ease of raw material procurement.
  • the number of carbon atoms in the alkyl group is, for example, 1 to 10, preferably 1 to 2.
  • the alkyl group may be linear or branched.
  • e and f are 1, g and h are each independently an integer of 1 to 2, and R It is preferred that 4 is an alkyl group.
  • R 1 , a, b, c, d, and R 3 are the same as described above.
  • e and f are each independently an integer of 1 to 4;
  • g and h are each independently an integer of 1 to 2, and
  • R 4 is preferably an alkyl group.
  • optical member (1) One embodiment of the optical member of the present invention is a resin (hereinafter also referred to as "resin A”) having a structural unit based on a compound represented by the following formula (1) (hereinafter also referred to as “compound (1)”). ) (hereinafter also referred to as “optical member (1)”).
  • the structural unit based on compound (1) includes the structure (i) described above.
  • R 1 , a, b, R 2 , c, d, R 3 , e, f, g, h and R 4 are each as described above.
  • Examples of the resin A include resins containing a polyvalent hydroxy compound as a monomer component, in which at least a portion of the polyvalent hydroxy compound is compound (1).
  • a polyhydric hydroxy compound is a compound having two or more hydroxyl groups.
  • polycarbonate resins examples include polycarbonate resins having a structural unit represented by the following formula (a1) (hereinafter also referred to as "constituent unit (a1)").
  • the polycarbonate resin may have one or more types of structural units (a1).
  • the polycarbonate resin may further have other structural units other than the structural unit (a1).
  • Examples of other structural units include structural units based on polyvalent hydroxy compounds other than compound (1) (hereinafter also referred to as "structural units (a2)").
  • the structural unit (a2) is represented by the following formula (a2).
  • R 6 is a residue obtained by removing two hydroxyl groups from another polyhydric hydroxy compound.
  • Other polyhydric hydroxy compounds are typically dihydroxy compounds. There are no particular limitations on the other polyhydric hydroxy compounds, and those known as monomer components of polycarbonate resins can be used. Examples of other polyhydric hydroxy compounds include aromatic polyhydroxy compounds such as aromatic dihydroxy compounds, and aliphatic polyhydroxy compounds such as aliphatic dihydroxy compounds.
  • aromatic dihydroxy compounds include phenolic compounds such as hydroquinone and resorcinol; bisphenol compounds such as bisphenol A, bisphenol F, bisphenol B, bisphenol AP, bisphenol C, bisphenol E, bisphenol S, bisphenol Z, bisphenol CDE, and bisphenol fluorene; Examples include bisnaphtholfluorene and 4,4'-dihydroxybiphenyl.
  • the aliphatic dihydroxy compound include ethylene glycol, 1,3-propanediol, 1,4-butanediol, and 1,4-cyclohexanedimethanol.
  • the polycarbonate resin may have one or more structural units (a2).
  • polyester resin Another example of a resin containing a polyhydric hydroxy compound as a monomer component is a polyester resin.
  • polyester resins using compound (1) as a monomer component include polyester resins having a structural unit represented by the following formula (b1) (hereinafter also referred to as "constituent unit (b1)").
  • R 5 is a residue obtained by removing two carboxyl groups from a dicarboxylic acid.
  • the dicarboxylic acid is not particularly limited, and those known as monomer components of polyester resins can be used.
  • Examples of dicarboxylic acids include terephthalic acid and 2,6-naphthalene dicarboxylic acid.
  • the polyester resin may have one or more types of structural units (b1).
  • the polyester resin may further have other structural units other than the structural unit (b1).
  • Examples of other structural units include a structural unit represented by the following formula (b2) (hereinafter also referred to as "structural unit (b2)").
  • R 6 is a residue obtained by removing two hydroxyl groups from another polyhydric hydroxy compound
  • R 7 is a residue obtained by removing two carboxyl groups from a dicarboxylic acid.
  • examples of other polyhydric hydroxy compounds and dicarboxylic acids include those mentioned above.
  • the polyester resin may have one or more types of structural units (b2).
  • the optical member (1) may further contain other components other than resin A, if necessary, within a range that does not impair the effects of the present invention.
  • other components include colorants, inorganic fillers, organic fillers, antioxidants, and other various additives.
  • one kind may be used alone or two or more kinds may be used in combination.
  • the optical member (1) can be manufactured, for example, by molding an optical member forming material containing resin A (hereinafter also referred to as "optical member forming material (1)").
  • the optical member forming material (1) may further contain other components than the resin A, if necessary, within a range that does not impair the effects of the present invention. Other components include those mentioned above.
  • the method for manufacturing the optical member forming material (1) will be explained in detail later.
  • thermoplastic resins As a molding method for the optical member forming material (1), known methods for molding thermoplastic resins can be used, such as injection molding, transfer molding, extrusion molding, blow molding, vacuum molding, compression molding, etc. Can be mentioned.
  • Optical member forming material (1) can be produced, for example, by producing resin A using compound (1) as at least part of the monomer components, and mixing other components as necessary. Resin A can be manufactured by a known manufacturing method except for using compound (1) as at least a part of the monomer components.
  • compound (1) Before producing resin A, compound (1) may be produced.
  • Compound (1) can be produced, for example, by a production method including Step A below.
  • Step A A biphenyl compound represented by the following formula (1a), a hydroxy compound represented by the following formula (1b), and a hydroxy compound represented by the following formula (1c) are reacted to form the following formula (1- A step of obtaining the compound represented by 1) (hereinafter also referred to as "compound (1-1)"). If necessary, after step A, the following step B is performed.
  • Step B A step of adding one or more oxyalkylene groups to the hydroxyl group of compound (1-1) obtained in Step A.
  • R 1 , a, b, and R 2 are each as described above.
  • the biphenyl compound include 4-biphenylaldehyde, 4-bromo-4'-biphenylaldehyde, 4-benzoylbiphenyl, and 4-bromo-4'-benzoylbiphenyl. These biphenyl compounds may be used alone or in combination of two or more. Among these, 4-biphenylaldehyde is preferred in terms of ease of procurement of raw materials. 4-Bromo-4'-biphenylaldehyde is preferred because the compound (1) produced can exhibit a higher refractive index by having a bromine atom.
  • Hydroxy compound In formulas (1b) and (1c), c, d, e, f, g, h, R 3 and R 4 are each as described above.
  • the hydroxy compound represented by formula (1b) and the hydroxy compound represented by formula (1c) may be the same or different.
  • the hydroxy compound represented by formula (1b) and the hydroxy compound represented by formula (1c) will be collectively referred to as simply "hydroxy compound.”
  • Hydroxy compounds include phenol, o-cresol, m-cresol, p-cresol, p-tert-butylphenol, p-phenylphenol, p-walnutphenol, p-nonylphenol, bisphenol A, bisphenol F, bisphenol B, and bisphenol AP.
  • the molar ratio between the biphenyl compound and the hydroxy compound (biphenyl compound/hydroxy compound) when the biphenyl compound and the hydroxy compound are reacted is preferably 0.01 to 1.00, more preferably 0.05 to 0.50. If the molar ratio of biphenyl compound/hydroxy compound is 1.00 or less, a compound (1-1) in which two molecules of hydroxy compound are added to one molecule of biphenyl compound tends to be produced as a main component. When the biphenyl compound/hydroxy compound molar ratio exceeds 1.00, the biphenyl compound and the hydroxy compound tend to be added alternately, which may result in a low yield of compound (1-1).
  • a biphenyl compound and a hydroxy compound are reacted in the presence of an acid catalyst.
  • an acid catalyst By using an acid catalyst, the reaction between the biphenyl compound and the hydroxy compound proceeds easily.
  • acid catalysts include inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid; organic acids such as oxalic acid, acetic acid, citric acid, tartaric acid, benzoic acid, and paratoluenesulfonic acid; and organic acid salts such as zinc acetate and zinc borate. ;
  • Examples include ion exchange resins having sulfone groups and carboxylic acid groups.
  • oxalic acid, hydrochloric acid, sulfuric acid, and para-toluenesulfonic acid are useful because they suppress the generation of byproducts due to side reactions and at the same time, they can be easily decatalyzed by washing with water after the reaction.
  • These acid catalysts may be used alone or in combination of two or more. The amount of the acid catalyst used is, for example, 0.01 to 100 parts by weight per 100 parts by weight of the biphenyl compound.
  • a co-catalyst When reacting a biphenyl compound and a hydroxy compound, a co-catalyst may be used if necessary.
  • the co-catalyst include mercaptans such as methyl mercaptan, ethyl mercaptan, normal propyl mercaptan, isopropyl mercaptan, tert-butyl mercaptan, stearyl mercaptan, and dodecyl mercaptan. These promoters may be used alone or in combination of two or more.
  • the amount of co-catalyst used is, for example, 0.01 to 100 parts by weight per 100 parts by weight of the biphenyl compound.
  • Step A can be carried out in the same manner as the usual method for producing novolac type phenolic resin.
  • a product containing compound (1-1) can be produced.
  • the solvent include water such as ion-exchanged water; organic solvents such as diethyl ether, cyclopentyl methyl ether, methanol, ethanol, benzene, toluene, and xylene. These may be used alone or in combination of two or more.
  • the reaction temperature is, for example, 10 to 150°C.
  • the reaction time is, for example, 0.5 to 48 hours. After the reaction is completed, treatments such as extraction, water washing, concentration, and recrystallization may be performed as necessary.
  • a method for adding one or more oxyalkylene groups known methods can be used. For example, a method of reacting the compound (1-1) with an alkylene oxide such as ethylene oxide may be mentioned.
  • optical member (2) Another embodiment of the optical member of the present invention is a curable composition (hereinafter referred to as "optical member forming material”) containing a compound represented by the following formula (2) (hereinafter also referred to as “compound (2)”).
  • Examples include optical members (hereinafter also referred to as “optical members (2)”) containing a cured product of (also referred to as “optical members (2)”).
  • the cured product has a structural unit based on compound (2).
  • the structural unit based on compound (2) includes the structure (i) described above.
  • R 1 , a, b, R 2 , c, d, R 3 , e, f, g, h and R 4 are each as described above.
  • X is a monovalent group containing a polymerizable functional group or a reactive functional group (hereinafter also referred to as "group (x)"), or a hydrogen atom, and (e+f) X's may be the same or different. Often, at least one of the (e+f) X's is a group (x). Since compound (2) has one or more polymerizable functional groups or reactive functional groups, it can be cured alone or with a curing agent.
  • the polymerizable functional group in group (x) is not particularly limited as long as it is polymerizable, and examples include (meth)acryloyl groups.
  • a (meth)acryloyl group means an acryloyl group or a methacryloyl group.
  • the reactive functional group in the group (x) include an epoxy group, an acid anhydride group, and an amino group.
  • the number of polymerizable functional groups or reactive functional groups possessed by the group (x) may be one or two or more, but typically it is one.
  • the polymerizable functional group or reactive functional group may be bonded directly to the oxygen atom adjacent to X, or may be bonded via a linking group.
  • Examples of the group (x) include a group represented by -X 2 -X 1 .
  • X 1 is a polymerizable functional group or a reactive functional group
  • X 2 is a single bond or a divalent linking group.
  • the divalent linking group in X 2 is, for example, a divalent hydrocarbon group that may have a substituent, a terminal of a divalent hydrocarbon group that may have a substituent, or/and a carbon
  • Examples include groups containing etheric oxygen atoms between atoms.
  • Examples of the divalent hydrocarbon group include an alkylene group, a cycloalkylene group, an arylene group, and a group consisting of a combination of two or more thereof.
  • Examples of the alkylene group include those similar to the alkylene group for R3 .
  • Examples of the substituent that the alkylene group may have include a hydroxyl group, a cyano group, and a halogen atom.
  • the number of carbon atoms in the cycloalkylene group is, for example, 6 to 8.
  • Examples of the substituent that the cycloalkylene group may have include an alkyl group, a hydroxyl group, a cyano group, and a halogen atom.
  • Examples of the arylene group include phenylene group, naphthylene group, phenanthrylene group, anthrylene group, and 4,4'-biphenyl-diyl group.
  • substituents that the arylene group may have include an alkyl group, a hydroxyl group, a cyano group, and a halogen atom.
  • X 2 is preferably one having a hydroxyl group as a substituent. If X 2 has a hydroxyl group, the cured product using compound (2) tends to have better heat resistance and mechanical strength. This is thought to be because the presence of hydroxyl groups provides intermolecular force due to hydrogen bonds, increasing the cohesive force of molecules. Moreover, this hydrogen bond also contributes to improving the adhesion to inorganic or organic substances (for example, films, lenses, etc.) such as glass and polyester.
  • inorganic or organic substances for example, films, lenses, etc.
  • Ph is a phenylene group
  • Y1 is a glycidyl group
  • R is a hydrogen atom or
  • a 2-hydroxy-3-(meth)acryloyloxypropyl group is preferred since the cured product has excellent heat resistance and mechanical strength and is useful as an optical member.
  • the optical member forming material (2) may further contain other components other than the compound (2), if necessary, within a range that does not impair the effects of the present invention.
  • Other components include, for example, a compound having a polymerizable functional group or a reactive functional group other than compound (2), a curing agent (crosslinking agent, polymerization initiator, etc.), a curing accelerator, a solvent, a coloring agent, an inorganic filler. additives, organic fillers, antioxidants, and other various additives.
  • a curing agent crosslinking agent, polymerization initiator, etc.
  • a curing accelerator curing accelerator
  • solvent solvent
  • coloring agent an inorganic filler
  • additives organic fillers, antioxidants, and other various additives.
  • one kind may be used alone or two or more kinds may be used in combination.
  • the optical member forming material (2) preferably contains a polymerization initiator (photopolymerization initiator, thermal polymerization initiator, etc.).
  • the optical member forming material (2) preferably contains a crosslinking agent having two or more functional groups that can react with the reactive functional group of the group (x).
  • the reactive functional group is an epoxy group
  • examples of the functional group that can react with the epoxy group include an amino group, an acid anhydride group, and a hydroxyl group.
  • examples of the functional group that can react with the acid anhydride group include an amino group and a hydroxyl group.
  • the reactive functional group is an amino group
  • examples of the functional group that can react with the amino group include acid anhydride groups.
  • Examples of the crosslinking agent used when the group (x) has an acid anhydride group include diamine.
  • polyimide is produced by the reaction between compound (2) and diamine.
  • Examples of diamines include 1,3-phenylenediamine, 4,4'-diaminodiphenyl ether, 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane, diamine compounds, diethylene glycol bis(3-aminopropyl) Examples include ether and 9,9'-bis(4-aminophenyl)fluorene.
  • One type of diamine may be used alone or two or more types may be used in combination.
  • the optical member (2) can be manufactured by curing the optical member forming material (2).
  • the optical member forming material (2) may be manufactured before the optical member forming material (2) is cured.
  • the method for manufacturing the optical member forming material (2) will be explained in detail later.
  • the method for curing the optical member forming material (2) is not particularly limited, and known methods can be applied depending on the type of polymerizable functional group or reactive functional group that the group (x) has. For example, when the group (x) has a polymerizable functional group, by applying light or heat to the optical member forming material (2), the compound (2) etc. can be polymerized to form a cured product. When curing the optical member forming material (2), the optical member forming material (2) may be molded into the shape of the desired optical member. After curing the optical member forming material (2), the cured product may be molded into the shape of the desired optical member.
  • Optical member forming material (2) can be manufactured, for example, by manufacturing compound (2) and mixing other components as necessary.
  • Compound (2) can be produced, for example, by a production method including Step C below.
  • Step C A step of adding group (x) to at least a portion of the OH of compound (1), which is a compound in which all OX in formula (2) are OH.
  • Step C can be carried out using a known method depending on the structure of group (x).
  • group (x) is a glycidyl group
  • a method in which the OH of compound (1) is reacted with epihalohydrin (e.g., epichlorohydrin) can be used.
  • epihalohydrin e.g., epichlorohydrin
  • Group (x) is -[Ph-C(CH 3 ) 2 -Ph-O-CH 2 -CH(OH)-CH 2 -O] n -Ph-C(CH 3 ) 2 -Ph-O-Y 1
  • (n+1) mol of bisphenol A type epoxy compound (HO-Ph-C(CH 3 ) 2 -Ph-O-Y 1 ) is reacted with respect to 1 mol of OH.
  • the group (x) is a (meth)acryloyl group
  • a method of reacting the OH of compound (1) with (meth)acrylic acid, (meth)acrylic anhydride or (meth)acrylic acid halide hereinafter referred to as " (also referred to as "Method 2").
  • the group (x) is a 2-(meth)acryloyloxy-2-hydroxyethyl group
  • a compound in which the group (x) is a glycidyl group is obtained by the above method 1, and (meth)acrylic is added to the glycidyl group of this compound.
  • Method 3 A method of reacting an acid, (meth)acrylic anhydride, or (meth)acrylic acid halide (hereinafter also referred to as "Method 3") can be mentioned.
  • the group (x) instead of obtaining a compound in which the group (x) is a glycidyl group, the group (x) is -[Ph-C(CH 3 ) 2 -Ph-O-CH 2 -CH(OH)-CH 2 -O] n -Ph-C(CH 3 ) 2 -Ph-O-Y 1 may be obtained.
  • the molar ratio of epihalohydrin to OH of compound (1) is the same molar ratio as when producing bisphenol A type epoxy resin, which is the most common epoxy resin, from bisphenol A and epichlorohydrin. It may be a ratio.
  • the OH/epichlorohydrin ratio is preferably 0.02 to 0.33, more preferably 0.10 to 0.20.
  • the optical member of the present invention described above has the structure (i), it exhibits a high refractive index (for example, a refractive index of 1.62 to 1.78).
  • a high refractive index for example, a refractive index of 1.62 to 1.78.
  • One way to increase the polarization of the entire molecule is to increase the number of freely movable conjugated ⁇ electrons.
  • the 12 ⁇ electrons present in the two benzene rings resonate over a wide range of the entire biphenyl moiety.
  • optical member of the present invention examples include microlenses for CMOS image sensors, index matching materials for touch panels, black matrices for liquid crystals, optical adhesives, transparent polyimides, transparent electrodes for LEDs, and the like.
  • ⁇ Measuring method ⁇ ⁇ NMR measurement> A 7.7% d-dimethylsulfoxide (DMSO) solution of the sample (compound of each example) was prepared, and 1 H-NMR and 13 C-NMR were measured. Tetramethylsilane was used as an internal standard. Equipment used: JEOL RESONANCE ECZ-500R
  • Example 1 In a 200 mL four-neck flask equipped with a stirrer, thermometer, and Allene condenser, 64.86 g (0.60 mol) of o-cresol, 10.93 g (0.06 mol) of 4-biphenylaldehyde, and ions as a reaction solvent were placed. 10.93 g of exchanged water was charged and stirred. 0.559 g (0.0028 mol) of dodecyl mercaptan was added thereto, and the reaction solution was heated to 55°C. When the temperature reached 55° C., 18.42 g of 35% hydrochloric acid was added over 8 minutes. Upon addition of the catalyst, the color of the reaction solution changed from pale yellow to pale pink.
  • the needle-shaped crystals were suction-filtered, and the crystals on the Nutsche were washed with an appropriate amount of isopropyl alcohol and ion-exchanged water, resulting in a pale orange residue. By air drying this, 13.01 g of pale orange powder was obtained.
  • This powder was found by GPC to be a powder whose main component was o-cresol which had not reacted with the target compound.
  • 13.0 g of isopropyl alcohol and 13.0 g of ion-exchanged water were added to this powder, and the mixture was heated and dissolved to perform recrystallization. When this was allowed to cool to room temperature and left still, pale orange crystals were precipitated.
  • Example 2 The reaction was carried out in the same manner as in Example 1 except that 64.86 g (0.60 mol) of p-cresol was used instead of o-cresol, and the reaction solution was cooled. After cooling to 25° C. or lower, 30% sodium hydroxide solution was added, and the reaction solution changed from pale pink to light brown and became suspended. At this time, the pH of the reaction solution in the flask was 7 to 8. 144.2 g of cyclopentyl methyl ether was added to this reaction solution, and the entire amount was transferred to a 1000 mL separating funnel.
  • This ether layer was washed twice with 173.0 g of ion-exchanged water, and the washed ether solution was subjected to vacuum distillation to remove ether, thereby obtaining 80.61 g of a slurry. 40.3 g of isopropyl alcohol was added to this slurry and refluxed to dissolve the slurry. 40.3 g of ion-exchanged water was added thereto and allowed to cool. The powder precipitated by cooling was separated by suction filtration (filter paper: ADVANTEC5C) using a nutsche and a suction bottle to obtain 52.37 g of a pale yellow powdery crude product.
  • 13C -NMR (500MHz, DMSO-d 6 ): ⁇ 41.2, 102.5, 105.5, 121.3, 126.2, 126.5, 129.0, 129.5, 130.2 , 137.2, 140.3, 145.0, 155.5, 156.4.
  • Comparative example 2 As a compound of Comparative Example 2, commercially available bisphenol A (manufactured by Mitsui Chemicals, Inc.) shown in the following formula (14) was prepared.
  • Example 3 The reaction was carried out in the same manner as in Example 1 except that 64.86 g (0.60 mol) of m-cresol was used instead of o-cresol, and the reaction solution was cooled. After cooling to 25° C. or lower, 30% sodium hydroxide solution was added, and the reaction solution changed from pale pink to light brown and became suspended. At this time, the pH of the reaction solution in the flask was 7 to 8. 144.2 g of cyclopentyl methyl ether was added to this reaction solution, and the entire amount was transferred to a 1000 mL separating funnel.
  • Example 4 The reaction was carried out in the same manner as in Example 3, except that m-cresol was replaced with 64.86 g (0.60 mol) of MP-cresol (a mixture of m-cresol and p-cresol, "M-301" manufactured by Sumitomo Chemical Co., Ltd.). After cooling the reaction solution, it was neutralized with a 30% sodium hydroxide solution, extracted with cyclopentyl methyl ether, and washed with water. When the ether was removed from this water-washed ether solution by concentration under reduced pressure, 77.0 g of a brown concentrated oil remained. This residue was determined by GPC to be a mixture containing the target compound and unreacted MP-cresol.
  • MP-cresol a mixture of m-cresol and p-cresol, "M-301" manufactured by Sumitomo Chemical Co., Ltd.
  • Example 5 The reaction was carried out in the same manner as in Example 1, except that o-cresol was changed to 56.46 g (0.60 mol) of phenol. After cooling the reaction solution, it was neutralized with 30% sodium hydroxide solution and extracted with cyclopentyl methyl ether. , and further washed with water. When the ether was removed from this water-washed ether solution by concentration under reduced pressure, 32.6 g of a reddish-orange concentrated oil remained. This residue was determined by GPC to be a mixture containing the target compound and unreacted phenol. This residue was heated and dissolved by adding 3.2 g of isopropyl alcohol and 3.2 g of ion-exchanged water, and recrystallized.
  • Tables 1 and 2 show the concentration and refractive index of the solutions used to measure the refractive index of the compounds of Examples 1 and 5 and Comparative Examples 1 and 2, the refractive index determined based on them, and the solubility (1 ) and solubility (2) evaluation results are shown.
  • the refractive index is a value rounded to the third decimal place. Values to the fourth decimal place are also written in parentheses.
  • the compound of Comparative Example 1 had a higher refractive index than the compound of Comparative Example 2, which is generally used as a raw material for polycarbonate resin, it was inferior in solvent solubility.
  • the compounds of Examples 1 to 5 had a higher refractive index than the compound of Comparative Example 2, and had excellent solvent solubility.
  • the present invention it is possible to provide a high refractive index optical member having a novel skeleton and a method for manufacturing the same, and an optical member forming material from which a high refractive index optical member having a novel skeleton can be obtained and a manufacturing method for the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

An optical member pertaining to an embodiment of the present invention includes a structure represented by formula (i). In the formula: R1 is a hydrogen atom or an aryl group; a is an integer of 0 to 5; b is an integer of 0 to 4; R2 is a substituent; when (a+b) is 2 or greater, (a+b) R2 groups may be the same or different; c and d are each independently an integer of 0 to 6; R3 is an alkylene group; when (c+d) is 2 or greater, (c+d) R3 groups may be the same or different; e and f are each independently an integer of 1 to 5; g and h are each independently an integer of 0 to 4; (e+g) is 1 to 5; (f+h) is 1 to 5; R4 is a substituent; and when (g+h) is 2 or greater, (g+h) R4 groups may be the same or different.

Description

光学部材、光学部材形成材料、その製造方法および光学部材の製造方法Optical member, optical member forming material, method for manufacturing the same, and method for manufacturing the optical member
 本発明は、光学部材、光学部材形成材料、その製造方法および光学部材の製造方法に関する。
 本願は、2022年3月31日に、日本に出願された特願2022-059596号、および2023年3月17日に、日本に出願された特願2023-043570号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an optical member, an optical member forming material, a method for manufacturing the same, and a method for manufacturing the optical member.
This application claims priority based on Japanese Patent Application No. 2022-059596 filed in Japan on March 31, 2022 and Japanese Patent Application No. 2023-043570 filed in Japan on March 17, 2023. , the contents of which are incorporated herein.
 高屈折率樹脂は、レンズ、タッチパネル用フィルム等の各種の光学部材に用いられる。高屈折率樹脂としては、フルオレン骨格を有するモノマーを用いた樹脂が知られている(例えば特許文献1~2)。 High refractive index resins are used for various optical members such as lenses and touch panel films. As high refractive index resins, resins using monomers having a fluorene skeleton are known (for example, Patent Documents 1 and 2).
日本国特許第5513825号公報Japanese Patent No. 5513825 日本国特許第6016303号公報Japanese Patent No. 6016303
 しかし、上述のフルオレン骨格を有するモノマーは、溶剤溶解性が低い等の実用上の問題がある。そこで、フルオレン骨格以外の新規な骨格を持つ光学部材が求められる。 However, the above-mentioned monomers having a fluorene skeleton have practical problems such as low solvent solubility. Therefore, there is a need for an optical member having a new skeleton other than the fluorene skeleton.
 本発明は、新規な骨格を持つ高屈折率の光学部材およびその製造方法、ならびに新規な骨格を持つ高屈折率の光学部材が得られる光学部材形成材料およびその製造方法を提供することを目的とする。 An object of the present invention is to provide a high refractive index optical member having a novel skeleton and a method for manufacturing the same, and an optical member forming material from which a high refractive index optical member having a novel skeleton can be obtained and a manufacturing method for the same. do.
 本発明は以下の態様を有する。
 [1]下記式(i)で表される構造を含む、光学部材。
Figure JPOXMLDOC01-appb-C000006
 ここで、Rは、水素原子またはアリール基であり、
 aは0~5の整数であり、bは0~4の整数であり、
 Rは置換基であり、(a+b)が2以上である場合、(a+b)個のRは同一でも異なっていてもよく、
 cおよびdは、それぞれ独立に0~6の整数であり、
 Rは、アルキレン基であり、(c+d)が2以上である場合、(c+d)個のRは同一でも異なっていてもよく、
 eおよびfは、それぞれ独立に1~5の整数であり、gおよびhは、それぞれ独立に0~4の整数であり、(e+g)は1~5であり、(f+h)は1~5であり、
 Rは、置換基であり、(g+h)が2以上である場合、(g+h)個のRは同一でも異なっていてもよい。
 [2]下記式(1)で表される化合物に基づく構成単位を有する樹脂を含む、光学部材。
Figure JPOXMLDOC01-appb-C000007
 ここで、Rは、水素原子またはアリール基であり、
 aは0~5の整数であり、bは0~4の整数であり、
 Rは置換基であり、(a+b)が2以上である場合、(a+b)個のRは同一でも異なっていてもよく、
 cおよびdは、それぞれ独立に0~6の整数であり、
 Rは、アルキレン基であり、(c+d)が2以上である場合、(c+d)個のRは同一でも異なっていてもよく、
 eおよびfは、それぞれ独立に1~5の整数であり、gおよびhは、それぞれ独立に0~4の整数であり、(e+g)は1~5であり、(f+h)は1~5であり、
 Rは、置換基であり、(g+h)が2以上である場合、(g+h)個のRは同一でも異なっていてもよい。
 [3]前記樹脂が、多価ヒドロキシ化合物をモノマー成分とする樹脂である[2]に記載の光学部材。
 [4]前記樹脂が、ポリカーボネート樹脂またはポリエステル樹脂である[2]に記載の光学部材。
 [5]下記式(2)で表される化合物を含む硬化性組成物の硬化物を含む、光学部材。
Figure JPOXMLDOC01-appb-C000008
 ここで、Rは、水素原子またはアリール基であり、
 aは0~5の整数であり、bは0~4の整数であり、
 Rは置換基であり、(a+b)が2以上である場合、(a+b)個のRは同一でも異なっていてもよく、
 cおよびdは、それぞれ独立に0~6の整数であり、
 Rは、アルキレン基であり、(c+d)が2以上である場合、(c+d)個のRは同一でも異なっていてもよく、
 eおよびfは、それぞれ独立に1~5の整数であり、gおよびhは、それぞれ独立に0~4の整数であり、(e+g)は1~5であり、(f+h)は1~5であり、
 Xは、重合性官能基もしくは反応性官能基を含む1価基、または水素原子であり、(e+f)個のXは同一でも異なっていてもよく、(e+f)個のXのうち少なくとも1個は前記1価基であり、
 Rは、置換基であり、(g+h)が2以上である場合、(g+h)個のRは同一でも異なっていてもよい。
 [6]下記式(1)で表される化合物に基づく構成単位を有する樹脂を含む、光学部材形成材料。
Figure JPOXMLDOC01-appb-C000009
 ここで、Rは、水素原子またはアリール基であり、
 aは0~5の整数であり、bは0~4の整数であり、
 Rは置換基であり、(a+b)が2以上である場合、(a+b)個のRは同一でも異なっていてもよく、
 cおよびdは、それぞれ独立に0~6の整数であり、
 Rは、アルキレン基であり、(c+d)が2以上である場合、(c+d)個のRは同一でも異なっていてもよく、
 eおよびfは、それぞれ独立に1~5の整数であり、gおよびhは、それぞれ独立に0~4の整数であり、(e+g)は1~5であり、(f+h)は1~5であり、
 Rは、置換基であり、(g+h)が2以上である場合、(g+h)個のRは同一でも異なっていてもよい。
 [7]前記樹脂が、多価ヒドロキシ化合物をモノマー成分とする樹脂である[6]に記載の光学部材形成材料。
 [8]前記樹脂が、ポリカーボネート樹脂またはポリエステル樹脂である[6]に記載の光学部材形成材料。
 [9]下記式(2)で表される化合物を含む硬化性組成物である、光学部材形成材料。
Figure JPOXMLDOC01-appb-C000010
 ここで、Rは、水素原子またはアリール基であり、
 aは0~5の整数であり、bは0~4の整数であり、
 Rは置換基であり、(a+b)が2以上である場合、(a+b)個のRは同一でも異なっていてもよく、
 cおよびdは、それぞれ独立に0~6の整数であり、
 Rは、アルキレン基であり、(c+d)が2以上である場合、(c+d)個のRは同一でも異なっていてもよく、
 eおよびfは、それぞれ独立に1~5の整数であり、gおよびhは、それぞれ独立に0~4の整数であり、(e+g)は1~5であり、(f+h)は1~5であり、
 Xは、重合性官能基もしくは反応性官能基を含む1価基、または水素原子であり、(e+f)個のXは同一でも異なっていてもよく、(e+f)個のXのうち少なくとも1個は前記1価基であり、
 Rは、置換基であり、(g+h)が2以上である場合、(g+h)個のRは同一でも異なっていてもよい。
 [10][6]~[8]のいずれかに記載の光学部材形成材料を製造する方法であって、
 モノマー成分の少なくとも一部に前記式(1)で表される化合物を用いて前記樹脂を製造する工程を有する、光学部材形成材料の製造方法。
 [11][9]に記載の光学部材形成材料を製造する方法であって、
 前記式(2)中のOXが全てOHである化合物の前記OHの少なくとも一部に、重合性官能基または反応性官能基を含む1価基を付加して前記式(2)で表される化合物を製造する工程を有する、光学部材形成材料の製造方法。
 [12][6]~[8]のいずれかに記載の光学部材形成材料を成形する、光学部材の製造方法。
 [13][9]に記載の光学部材形成材料を硬化する、光学部材の製造方法。
The present invention has the following aspects.
[1] An optical member including a structure represented by the following formula (i).
Figure JPOXMLDOC01-appb-C000006
Here, R 1 is a hydrogen atom or an aryl group,
a is an integer from 0 to 5, b is an integer from 0 to 4,
R 2 is a substituent, and when (a + b) is 2 or more, (a + b) R 2 may be the same or different,
c and d are each independently an integer of 0 to 6,
R 3 is an alkylene group, and when (c + d) is 2 or more, (c + d) R 3 may be the same or different,
e and f are each independently an integer of 1 to 5, g and h are each independently an integer of 0 to 4, (e+g) is 1 to 5, and (f+h) is 1 to 5. can be,
R 4 is a substituent, and when (g+h) is 2 or more, (g+h) R 4 may be the same or different.
[2] An optical member containing a resin having a structural unit based on a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000007
Here, R 1 is a hydrogen atom or an aryl group,
a is an integer from 0 to 5, b is an integer from 0 to 4,
R 2 is a substituent, and when (a + b) is 2 or more, (a + b) R 2 may be the same or different,
c and d are each independently an integer of 0 to 6,
R 3 is an alkylene group, and when (c + d) is 2 or more, (c + d) R 3 may be the same or different,
e and f are each independently an integer of 1 to 5, g and h are each independently an integer of 0 to 4, (e+g) is 1 to 5, and (f+h) is 1 to 5. can be,
R 4 is a substituent, and when (g+h) is 2 or more, (g+h) R 4 may be the same or different.
[3] The optical member according to [2], wherein the resin is a resin containing a polyhydric hydroxy compound as a monomer component.
[4] The optical member according to [2], wherein the resin is a polycarbonate resin or a polyester resin.
[5] An optical member containing a cured product of a curable composition containing a compound represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000008
Here, R 1 is a hydrogen atom or an aryl group,
a is an integer from 0 to 5, b is an integer from 0 to 4,
R 2 is a substituent, and when (a + b) is 2 or more, (a + b) R 2 may be the same or different,
c and d are each independently an integer of 0 to 6,
R 3 is an alkylene group, and when (c + d) is 2 or more, (c + d) R 3 may be the same or different,
e and f are each independently an integer of 1 to 5, g and h are each independently an integer of 0 to 4, (e+g) is 1 to 5, and (f+h) is 1 to 5. can be,
X is a monovalent group containing a polymerizable functional group or a reactive functional group, or a hydrogen atom, and (e+f) Xs may be the same or different, and at least one of the (e+f) Xs is the monovalent group,
R 4 is a substituent, and when (g+h) is 2 or more, (g+h) R 4 may be the same or different.
[6] An optical member forming material containing a resin having a structural unit based on a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000009
Here, R 1 is a hydrogen atom or an aryl group,
a is an integer from 0 to 5, b is an integer from 0 to 4,
R 2 is a substituent, and when (a + b) is 2 or more, (a + b) R 2 may be the same or different,
c and d are each independently an integer of 0 to 6,
R 3 is an alkylene group, and when (c + d) is 2 or more, (c + d) R 3 may be the same or different,
e and f are each independently an integer of 1 to 5, g and h are each independently an integer of 0 to 4, (e+g) is 1 to 5, and (f+h) is 1 to 5. can be,
R 4 is a substituent, and when (g+h) is 2 or more, (g+h) R 4 may be the same or different.
[7] The optical member forming material according to [6], wherein the resin is a resin containing a polyhydric hydroxy compound as a monomer component.
[8] The optical member forming material according to [6], wherein the resin is a polycarbonate resin or a polyester resin.
[9] An optical member forming material which is a curable composition containing a compound represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000010
Here, R 1 is a hydrogen atom or an aryl group,
a is an integer from 0 to 5, b is an integer from 0 to 4,
R 2 is a substituent, and when (a + b) is 2 or more, (a + b) R 2 may be the same or different,
c and d are each independently an integer of 0 to 6,
R 3 is an alkylene group, and when (c + d) is 2 or more, (c + d) R 3 may be the same or different,
e and f are each independently an integer of 1 to 5, g and h are each independently an integer of 0 to 4, (e+g) is 1 to 5, and (f+h) is 1 to 5. can be,
X is a monovalent group containing a polymerizable functional group or a reactive functional group, or a hydrogen atom, and (e+f) Xs may be the same or different, and at least one of the (e+f) Xs is the monovalent group,
R 4 is a substituent, and when (g+h) is 2 or more, (g+h) R 4 may be the same or different.
[10] A method for producing the optical member forming material according to any one of [6] to [8], comprising:
A method for producing an optical member forming material, comprising the step of producing the resin using a compound represented by the formula (1) as at least a part of the monomer components.
[11] A method for manufacturing the optical member forming material according to [9], comprising:
A monovalent group containing a polymerizable functional group or a reactive functional group is added to at least a portion of the OH of a compound in which all OX in the formula (2) are OH, and the compound is represented by the formula (2). A method for producing an optical member forming material, comprising a step of producing a compound.
[12] A method for producing an optical member, comprising molding the optical member forming material according to any one of [6] to [8].
[13] A method for producing an optical member, which comprises curing the optical member forming material according to [9].
 本発明によれば、新規な骨格を持つ高屈折率の光学部材およびその製造方法、ならびに新規な骨格を持つ高屈折率の光学部材が得られる光学部材形成材料およびその製造方法を提供できる。 According to the present invention, it is possible to provide a high refractive index optical member having a novel skeleton and a method for manufacturing the same, and an optical member forming material from which a high refractive index optical member having a novel skeleton can be obtained and a manufacturing method for the same.
 本発明の光学部材は、下記式(i)で表される構造(以下、「構造(i)」とも記す。)を含む。 The optical member of the present invention includes a structure represented by the following formula (i) (hereinafter also referred to as "structure (i)").
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 ここで、Rは、水素原子またはアリール基であり、
 aは0~5の整数であり、bは0~4の整数であり、
 Rは置換基であり、(a+b)が2以上である場合、(a+b)個のRは同一でも異なっていてもよく、
 cおよびdは、それぞれ独立に0~6の整数であり、
 Rは、アルキレン基であり、(c+d)が2以上である場合、(c+d)個のRは同一でも異なっていてもよく、
 eおよびfは、それぞれ独立に1~5の整数であり、gおよびhは、それぞれ独立に0~4の整数であり、(e+g)は1~5であり、(f+h)は1~5であり、
 Rは、置換基であり、(g+h)が2以上である場合、(g+h)個のRは同一でも異なっていてもよい。
Here, R 1 is a hydrogen atom or an aryl group,
a is an integer from 0 to 5, b is an integer from 0 to 4,
R 2 is a substituent, and when (a + b) is 2 or more, (a + b) R 2 may be the same or different,
c and d are each independently an integer of 0 to 6,
R 3 is an alkylene group, and when (c + d) is 2 or more, (c + d) R 3 may be the same or different,
e and f are each independently an integer of 1 to 5, g and h are each independently an integer of 0 to 4, (e+g) is 1 to 5, and (f+h) is 1 to 5. can be,
R 4 is a substituent, and when (g+h) is 2 or more, (g+h) R 4 may be the same or different.
 Rにおけるアリール基としては、例えばフェニル基が挙げられる。
 Rとしては、高屈折率化の点からは、フェニル基が好ましく、本化合物を合成する際の反応性の容易さの点からは、水素原子が好ましい。
Examples of the aryl group for R 1 include a phenyl group.
As R 1 , a phenyl group is preferable from the viewpoint of increasing the refractive index, and a hydrogen atom is preferable from the viewpoint of ease of reactivity when synthesizing the present compound.
 aは0~5の整数であり、原料の調達のしやすさの点から、0が好ましい。
 bは0~4の整数であり、原料の調達のしやすさの点から、0が好ましい。
 Rにおける置換基としては、例えば炭素数1~10のアルキル基、炭素数3~12のシクロアルキル基、水酸基、シアノ基、アセチル基、ハロゲン原子が挙げられる。
a is an integer from 0 to 5, and from the viewpoint of ease of procurement of raw materials, 0 is preferable.
b is an integer from 0 to 4, and from the viewpoint of ease of procurement of raw materials, 0 is preferable.
Examples of the substituent for R 2 include an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, a hydroxyl group, a cyano group, an acetyl group, and a halogen atom.
 cおよびdは、それぞれ独立に0~6の整数である。
 好ましい一態様において、cおよびdは0である。構造(i)は、典型的には、後述する化合物(1)に由来する。化合物(1)において、HO-(RO)-の末端のOHは、cが0の場合は、HO-(RO)-が結合したベンゼン環に結合してフェノール性水酸基となり、-(OR-OHの末端のOHも同様である。この場合、化合物(1)を原料にポリカーボネート樹脂やポリエステル樹脂、その他化合物とする際、反応性に優れる傾向がある。
 他の好ましい一態様において、cおよびdは1以上の整数である。化合物(1)において、HO-(RO)-の末端のOHは、cが1以上の整数の場合は、Rに結合してアルコール性水酸基となり、-(OR-OHの末端のOHも同様である。この場合、フェノール性水酸基の酸化により生じるキノン構造の生成が抑制され、構造(i)を含む光学部材に、経時変化による黄変等の変色が発生することや、それら変色が濃くなることを抑制できる。この態様においてcおよびdは、耐熱性の点から、1が好ましい。
c and d are each independently an integer of 0 to 6.
In one preferred embodiment, c and d are 0. Structure (i) is typically derived from compound (1) described below. In compound (1), when c is 0, the terminal OH of HO-(R 3 O) c - becomes a phenolic hydroxyl group by bonding to the benzene ring to which HO-(R 3 O) c - is bonded. , -(OR 3 ) d The same applies to the terminal OH of -OH. In this case, when compound (1) is used as a raw material to produce polycarbonate resins, polyester resins, and other compounds, they tend to have excellent reactivity.
In another preferred embodiment, c and d are integers of 1 or more. In compound (1), when c is an integer of 1 or more, the terminal OH of HO-(R 3 O) c - bonds to R 3 to become an alcoholic hydroxyl group, and -(OR 3 ) d -OH The same applies to the terminal OH. In this case, the formation of a quinone structure caused by the oxidation of the phenolic hydroxyl group is suppressed, and the occurrence of discoloration such as yellowing due to changes over time in the optical member containing structure (i) and the deepening of such discoloration are suppressed. can. In this embodiment, c and d are preferably 1 from the viewpoint of heat resistance.
 Rにおけるアルキレン基の炭素数は、例えば2~10であり、2~4が好ましい。アルキレン基は、直鎖状でも分岐状でもよい。アルキレン基の具体例としては、エチレン基、トリメチレン基、プロピレン基、ブタン-1,2-ジイル基、ヘキシレン基が挙げられる。 The alkylene group in R 3 has, for example, 2 to 10 carbon atoms, preferably 2 to 4 carbon atoms. The alkylene group may be linear or branched. Specific examples of the alkylene group include ethylene group, trimethylene group, propylene group, butane-1,2-diyl group, and hexylene group.
 eおよびfは、それぞれ独立に1~5の整数であり、gおよびhは、それぞれ独立に0~4の整数であり、(e+g)は1~5であり、(f+h)は1~5である。
 eおよびfは、化合物(1)をポリカーボネート樹脂やポリエステル樹脂の原料として用いる場合には、1が特に好ましい。
 化合物(1)は、そのままエポキシ樹脂の硬化剤に用いたり、化合物(1)の水酸基を重合性官能基や反応性官能基を含む基に置換し、硬化性組成物に含有させて用いたりすることもできる。このような場合には、eおよびfは、硬化性組成物を硬化させた際に架橋密度が高くなることにより、その硬化物の機械強度や耐熱性が高まることから、それぞれ独立に1~4の整数であることが好ましい。
 gおよびhは、原料調達のしやすさの点から、それぞれ独立に1~2の整数が好ましく、1が特に好ましい。
 Rにおける置換基としては、例えば炭素数1~10のアルキル基、炭素数3~12のシクロアルキル基、水酸基、アセチル基、ハロゲン原子、-(OROHが挙げられる。Rは前記と同様である。kは0~6の整数である。
 Rとしては、原料調達のしやすさの点から、アルキル基が好ましい。アルキル基の炭素数は、例えば1~10であり、1~2が好ましい。アルキル基は、直鎖状でも分岐状でもよい。
e and f are each independently an integer of 1 to 5, g and h are each independently an integer of 0 to 4, (e+g) is 1 to 5, and (f+h) is 1 to 5. be.
e and f are particularly preferably 1 when the compound (1) is used as a raw material for polycarbonate resin or polyester resin.
Compound (1) can be used as it is as a curing agent for epoxy resins, or the hydroxyl group of compound (1) can be replaced with a group containing a polymerizable functional group or a reactive functional group, and it can be incorporated into a curable composition. You can also do that. In such a case, e and f each independently range from 1 to 4, since the crosslinking density increases when the curable composition is cured, thereby increasing the mechanical strength and heat resistance of the cured product. is preferably an integer of .
From the viewpoint of ease of raw material procurement, g and h are each independently preferably an integer of 1 to 2, and 1 is particularly preferred.
Examples of the substituent for R 4 include an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, a hydroxyl group, an acetyl group, a halogen atom, and -(OR 3 ) k OH. R3 is the same as above. k is an integer from 0 to 6.
R 4 is preferably an alkyl group from the viewpoint of ease of raw material procurement. The number of carbon atoms in the alkyl group is, for example, 1 to 10, preferably 1 to 2. The alkyl group may be linear or branched.
 化合物(1)をモノマー成分の少なくとも一部に用いてポリカーボネート樹脂またはポリエステル樹脂を製造する場合には、eおよびfが1であり、gおよびhがそれぞれ独立に1~2の整数であり、Rがアルキル基であることが好ましい。このときのR、a、b、c、d、Rそれぞれの好ましい態様は前記と同様である。
 化合物(1)の水酸基に重合性官能基または反応性官能基を含む1価基を付加し、硬化性組成物に含有させる場合には、eおよびfがそれぞれ独立に1~4の整数であり、gおよびhがそれぞれ独立に1~2の整数であり、Rがアルキル基であることが好ましい。この場合、eおよびfの値が大きいほど、硬化性組成物を硬化させた際に架橋密度が高くなることにより、その硬化物の機械強度や耐熱性が高まる傾向がある。このときのR、a、b、c、d、Rそれぞれの好ましい態様は前記と同様である。
When producing a polycarbonate resin or a polyester resin using compound (1) as at least a part of the monomer component, e and f are 1, g and h are each independently an integer of 1 to 2, and R It is preferred that 4 is an alkyl group. At this time, preferred embodiments of each of R 1 , a, b, c, d, and R 3 are the same as described above.
When adding a monovalent group containing a polymerizable functional group or a reactive functional group to the hydroxyl group of compound (1) and incorporating it into the curable composition, e and f are each independently an integer of 1 to 4; , g and h are each independently an integer of 1 to 2, and R 4 is preferably an alkyl group. In this case, the larger the values of e and f, the higher the crosslinking density when the curable composition is cured, which tends to increase the mechanical strength and heat resistance of the cured product. At this time, preferred embodiments of each of R 1 , a, b, c, d, and R 3 are the same as described above.
〔光学部材(1)〕
 本発明の光学部材の一態様として、下記式(1)で表される化合物(以下、「化合物(1)」とも記す。)に基づく構成単位を有する樹脂(以下、「樹脂A」とも記す。)を含む光学部材(以下、「光学部材(1)」とも記す。)が挙げられる。
 化合物(1)に基づく構成単位は、前記した構造(i)を含む。
[Optical member (1)]
One embodiment of the optical member of the present invention is a resin (hereinafter also referred to as "resin A") having a structural unit based on a compound represented by the following formula (1) (hereinafter also referred to as "compound (1)"). ) (hereinafter also referred to as "optical member (1)").
The structural unit based on compound (1) includes the structure (i) described above.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(1)中、R、a、b、R、c、d、R、e、f、g、hおよびRはそれぞれ前記したとおりである。 In formula (1), R 1 , a, b, R 2 , c, d, R 3 , e, f, g, h and R 4 are each as described above.
 樹脂Aとしては、例えば、多価ヒドロキシ化合物をモノマー成分とする樹脂であって、多価ヒドロキシ化合物の少なくとも一部が化合物(1)である樹脂が挙げられる。
 多価ヒドロキシ化合物は、2以上の水酸基を有する化合物である。
Examples of the resin A include resins containing a polyvalent hydroxy compound as a monomer component, in which at least a portion of the polyvalent hydroxy compound is compound (1).
A polyhydric hydroxy compound is a compound having two or more hydroxyl groups.
 多価ヒドロキシ化合物をモノマー成分とする樹脂の一例として、ポリカーボネート樹脂が挙げられる。
 モノマー成分として化合物(1)を用いたポリカーボネート樹脂としては、例えば、下記式(a1)で表される構成単位(以下、「構成単位(a1)」とも記す。)を有するポリカーボネート樹脂が挙げられる。
An example of a resin containing a polyhydric hydroxy compound as a monomer component is a polycarbonate resin.
Examples of polycarbonate resins using compound (1) as a monomer component include polycarbonate resins having a structural unit represented by the following formula (a1) (hereinafter also referred to as "constituent unit (a1)").
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 ポリカーボネート樹脂が有する構成単位(a1)は1種でもよく2種以上でもよい。
 ポリカーボネート樹脂は、構成単位(a1)以外の他の構成単位をさらに有していてもよい。
 他の構成単位としては、例えば、化合物(1)以外の他の多価ヒドロキシ化合物に基づく構成単位(以下、「構成単位(a2)」とも記す。)が挙げられる。
 構成単位(a2)は、下記式(a2)で表される。
The polycarbonate resin may have one or more types of structural units (a1).
The polycarbonate resin may further have other structural units other than the structural unit (a1).
Examples of other structural units include structural units based on polyvalent hydroxy compounds other than compound (1) (hereinafter also referred to as "structural units (a2)").
The structural unit (a2) is represented by the following formula (a2).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 Rは、他の多価ヒドロキシ化合物から2個の水酸基を除いた残基である。他の多価ヒドロキシ化合物は、典型的には、ジヒドロキシ化合物である。
 他の多価ヒドロキシ化合物としては、特に制限はなく、ポリカーボネート樹脂のモノマー成分として公知のものを用いることができる。他の多価ヒドロキシ化合物としては、例えば芳香族ジヒドロキシ化合物等の芳香族多価ヒドロキシ化合物、脂肪族ジヒドロキシ化合物等の脂肪族多価ヒドロキシ化合物が挙げられる。芳香族ジヒドロキシ化合物としては、例えばヒドロキノン、レゾルシン等のフェノール化合物、ビスフェノールA、ビスフェノールF、ビスフェノールB、ビスフェノールAP、ビスフェノールC、ビスフェノールE、ビスフェノールS、ビスフェノールZ、ビスフェノールCDE、ビスフェノールフルオレン等のビスフェノール化合物、ビスナフトールフルオレン、4,4’-ジヒドロキシビフェニル等が挙げられる。脂肪族ジヒドロキシ化合物としては、例えばエチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,4-シクロヘキサンジメタノール等が挙げられる。
 ポリカーボネート樹脂が有する構成単位(a2)は1種でもよく2種以上でもよい。
R 6 is a residue obtained by removing two hydroxyl groups from another polyhydric hydroxy compound. Other polyhydric hydroxy compounds are typically dihydroxy compounds.
There are no particular limitations on the other polyhydric hydroxy compounds, and those known as monomer components of polycarbonate resins can be used. Examples of other polyhydric hydroxy compounds include aromatic polyhydroxy compounds such as aromatic dihydroxy compounds, and aliphatic polyhydroxy compounds such as aliphatic dihydroxy compounds. Examples of aromatic dihydroxy compounds include phenolic compounds such as hydroquinone and resorcinol; bisphenol compounds such as bisphenol A, bisphenol F, bisphenol B, bisphenol AP, bisphenol C, bisphenol E, bisphenol S, bisphenol Z, bisphenol CDE, and bisphenol fluorene; Examples include bisnaphtholfluorene and 4,4'-dihydroxybiphenyl. Examples of the aliphatic dihydroxy compound include ethylene glycol, 1,3-propanediol, 1,4-butanediol, and 1,4-cyclohexanedimethanol.
The polycarbonate resin may have one or more structural units (a2).
 多価ヒドロキシ化合物をモノマー成分とする樹脂の他の一例として、ポリエステル樹脂が挙げられる。
 モノマー成分として化合物(1)を用いたポリエステル樹脂としては、例えば、下記式(b1)で表される構成単位(以下、「構成単位(b1)」とも記す。)を有するポリエステル樹脂が挙げられる。
Another example of a resin containing a polyhydric hydroxy compound as a monomer component is a polyester resin.
Examples of polyester resins using compound (1) as a monomer component include polyester resins having a structural unit represented by the following formula (b1) (hereinafter also referred to as "constituent unit (b1)").
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 Rは、ジカルボン酸から2個のカルボキシ基を除いた残基である。
 ジカルボン酸としては、特に制限はなく、ポリエステル樹脂のモノマー成分として公知のものを用いることができる。ジカルボン酸の例としては、テレフタル酸、2,6-ナフタレンジカルボン酸が挙げられる。
R 5 is a residue obtained by removing two carboxyl groups from a dicarboxylic acid.
The dicarboxylic acid is not particularly limited, and those known as monomer components of polyester resins can be used. Examples of dicarboxylic acids include terephthalic acid and 2,6-naphthalene dicarboxylic acid.
 ポリエステル樹脂が有する構成単位(b1)は1種でもよく2種以上でもよい。
 ポリエステル樹脂は、構成単位(b1)以外の他の構成単位をさらに有していてもよい。
 他の構成単位としては、例えば、下記式(b2)で表される構成単位(以下、「構成単位(b2)」とも記す。)が挙げられる。
The polyester resin may have one or more types of structural units (b1).
The polyester resin may further have other structural units other than the structural unit (b1).
Examples of other structural units include a structural unit represented by the following formula (b2) (hereinafter also referred to as "structural unit (b2)").
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 Rは、他の多価ヒドロキシ化合物から2個の水酸基を除いた残基であり、Rは、ジカルボン酸から2個のカルボキシ基を除いた残基である。
 他の多価ヒドロキシ化合物、ジカルボン酸はそれぞれ前記と同様のものが挙げられる。
 ポリエステル樹脂が有する構成単位(b2)は1種でもよく2種以上でもよい。
R 6 is a residue obtained by removing two hydroxyl groups from another polyhydric hydroxy compound, and R 7 is a residue obtained by removing two carboxyl groups from a dicarboxylic acid.
Examples of other polyhydric hydroxy compounds and dicarboxylic acids include those mentioned above.
The polyester resin may have one or more types of structural units (b2).
 光学部材(1)は、必要に応じて、本発明の効果を損なわない範囲で、樹脂A以外の他の成分をさらに含んでいてもよい。他の成分としては、例えば、着色剤、無機充填剤、有機充填剤、酸化防止剤、その他の各種の添加剤が挙げられる。他の成分は1種を単独で用いてもよく2種以上を併用してもよい。 The optical member (1) may further contain other components other than resin A, if necessary, within a range that does not impair the effects of the present invention. Examples of other components include colorants, inorganic fillers, organic fillers, antioxidants, and other various additives. As for the other components, one kind may be used alone or two or more kinds may be used in combination.
<光学部材(1)の製造方法>
 光学部材(1)は、例えば、樹脂Aを含む光学部材形成材料(以下、「光学部材形成材料(1)」とも記す。)を成形することにより製造できる。
 光学部材形成材料(1)は、必要に応じて、本発明の効果を損なわない範囲で、樹脂A以外の他の成分をさらに含んでいてもよい。他の成分としては、前記と同様のものが挙げられる。光学部材形成材料(1)の製造方法については後で詳しく説明する。
<Method for manufacturing optical member (1)>
The optical member (1) can be manufactured, for example, by molding an optical member forming material containing resin A (hereinafter also referred to as "optical member forming material (1)").
The optical member forming material (1) may further contain other components than the resin A, if necessary, within a range that does not impair the effects of the present invention. Other components include those mentioned above. The method for manufacturing the optical member forming material (1) will be explained in detail later.
 光学部材形成材料(1)の成形方法としては、熱可塑性樹脂の成形方法として公知の方法を用いることができ、例えば、射出成形、トランスファー成形、押出成形、ブロー成形、真空成形、圧縮成形等が挙げられる。 As a molding method for the optical member forming material (1), known methods for molding thermoplastic resins can be used, such as injection molding, transfer molding, extrusion molding, blow molding, vacuum molding, compression molding, etc. Can be mentioned.
<光学部材形成材料(1)の製造方法>
 光学部材形成材料(1)は、例えば、モノマー成分の少なくとも一部に化合物(1)を用いて樹脂Aを製造し、必要に応じて他の成分を混合することにより製造できる。
 樹脂Aは、モノマー成分の少なくとも一部に化合物(1)を用いる以外は、公知の製造方法により製造できる。
<Method for manufacturing optical member forming material (1)>
Optical member forming material (1) can be produced, for example, by producing resin A using compound (1) as at least part of the monomer components, and mixing other components as necessary.
Resin A can be manufactured by a known manufacturing method except for using compound (1) as at least a part of the monomer components.
 樹脂Aを製造する前に、化合物(1)を製造してもよい。
 化合物(1)は、例えば、以下の工程Aを有する製造方法により製造できる。
 工程A:下記式(1a)で表されるビフェニル化合物と、下記式(1b)で表されるヒドロキシ化合物と、下記式(1c)で表されるヒドロキシ化合物とを反応させて下記式(1-1)で表される化合物(以下、「化合物(1-1)」とも記す。)を得る工程。
 必要に応じて、工程Aの後、下記工程Bを行う。
 工程B:工程Aで得られた化合物(1-1)の水酸基に1以上のオキシアルキレン基を付加する工程。
Before producing resin A, compound (1) may be produced.
Compound (1) can be produced, for example, by a production method including Step A below.
Step A: A biphenyl compound represented by the following formula (1a), a hydroxy compound represented by the following formula (1b), and a hydroxy compound represented by the following formula (1c) are reacted to form the following formula (1- A step of obtaining the compound represented by 1) (hereinafter also referred to as "compound (1-1)").
If necessary, after step A, the following step B is performed.
Step B: A step of adding one or more oxyalkylene groups to the hydroxyl group of compound (1-1) obtained in Step A.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 (ビフェニル化合物)
 式(1a)中、R、a、b、Rはそれぞれ前記したとおりである。
 ビフェニル化合物としては、例えば、4-ビフェニルアルデヒド、4-ブロモ-4’-ビフェニルアルデヒド、4-ベンゾイルビフェニル、4-ブロモ-4’-ベンゾイルビフェニルが挙げられる。これらのビフェニル化合物は1種を単独で用いてもよく2種以上を併用してもよい。これらの中でも、原料の調達のしやすさの点では、4-ビフェニルアルデヒドが好ましい。臭素原子を有することで、生成する化合物(1)がより高屈折率を発現できる点では、4-ブロモ-4’-ビフェニルアルデヒドが好ましい。
(Biphenyl compound)
In formula (1a), R 1 , a, b, and R 2 are each as described above.
Examples of the biphenyl compound include 4-biphenylaldehyde, 4-bromo-4'-biphenylaldehyde, 4-benzoylbiphenyl, and 4-bromo-4'-benzoylbiphenyl. These biphenyl compounds may be used alone or in combination of two or more. Among these, 4-biphenylaldehyde is preferred in terms of ease of procurement of raw materials. 4-Bromo-4'-biphenylaldehyde is preferred because the compound (1) produced can exhibit a higher refractive index by having a bromine atom.
 (ヒドロキシ化合物)
 式(1b)、(1c)中、c、d、e、f、g、h、RおよびRはそれぞれ前記したとおりである。
 式(1b)で表されるヒドロキシ化合物と式(1c)で表されるヒドロキシ化合物は同じものであっても異なるものであってもよい。以下、式(1b)で表されるヒドロキシ化合物と式(1c)で表されるヒドロキシ化合物を総称して単に「ヒドロキシ化合物」とも記す。
 ヒドロキシ化合物としては、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、p-tert-ブチルフェノール、p-フェニルフェノール、p-クルミフェノール、p-ノニルフェノール、ビスフェノールA、ビスフェノールF、ビスフェノールB、ビスフェノールAP、ビスフェノールC、ビスフェノールE、ビスフェノールS、ビスフェノールZ、ビスフェノールCDE、ジヒドロキシジフェニルメタン、スチレン化フェノール、炭素数2~9のアルキル基で置換されたアルキルフェノール、精製カシューナッツシェルリキッドの主成分である側鎖不飽和結合を有する長鎖アルキルで置換されたアルキルフェノール、キシレノール、カテコール、レゾルシン、ヒドロキノン、ピロガロール等公知のフェノール誘導体、更に塩素または臭素で置換されたハロゲン化フェノール等が挙げられる。これらのヒドロキシ化合物は1種を単独で用いてもよく2種以上を併用してもよい。これら中でも、原料の調達のしやすさの点から、フェノール、クレゾール、レゾルシンが好ましい。
(Hydroxy compound)
In formulas (1b) and (1c), c, d, e, f, g, h, R 3 and R 4 are each as described above.
The hydroxy compound represented by formula (1b) and the hydroxy compound represented by formula (1c) may be the same or different. Hereinafter, the hydroxy compound represented by formula (1b) and the hydroxy compound represented by formula (1c) will be collectively referred to as simply "hydroxy compound."
Hydroxy compounds include phenol, o-cresol, m-cresol, p-cresol, p-tert-butylphenol, p-phenylphenol, p-walnutphenol, p-nonylphenol, bisphenol A, bisphenol F, bisphenol B, and bisphenol AP. , bisphenol C, bisphenol E, bisphenol S, bisphenol Z, bisphenol CDE, dihydroxydiphenylmethane, styrenated phenol, alkylphenol substituted with an alkyl group having 2 to 9 carbon atoms, unsaturated side chain that is the main component of purified cashew nut shell liquid Known phenol derivatives such as alkylphenols substituted with a long-chain alkyl having a bond, xylenol, catechol, resorcinol, hydroquinone, and pyrogallol, and halogenated phenols substituted with chlorine or bromine may be mentioned. These hydroxy compounds may be used alone or in combination of two or more. Among these, phenol, cresol, and resorcinol are preferred from the viewpoint of easy procurement of raw materials.
 (工程A)
 ビフェニル化合物とヒドロキシ化合物とを反応させる際のビフェニル化合物とヒドロキシ化合物とのモル比(ビフェニル化合物/ヒドロキシ化合物)は、0.01~1.00が好ましく、0.05~0.50がより好ましい。
 ビフェニル化合物/ヒドロキシ化合物のモル比が1.00以下であれば、1分子のビフェニル化合物に2分子のヒドロキシ化合物が付加した化合物(1-1)が主成分として生成される傾向がある。
 ビフェニル化合物/ヒドロキシ化合物のモル比が1.00を超えると、ビフェニル化合物とヒドロキシ化合物が交互に付加しやすくなり、結果として化合物(1-1)の収率が低くなるおそれがある。
(Process A)
The molar ratio between the biphenyl compound and the hydroxy compound (biphenyl compound/hydroxy compound) when the biphenyl compound and the hydroxy compound are reacted is preferably 0.01 to 1.00, more preferably 0.05 to 0.50.
If the molar ratio of biphenyl compound/hydroxy compound is 1.00 or less, a compound (1-1) in which two molecules of hydroxy compound are added to one molecule of biphenyl compound tends to be produced as a main component.
When the biphenyl compound/hydroxy compound molar ratio exceeds 1.00, the biphenyl compound and the hydroxy compound tend to be added alternately, which may result in a low yield of compound (1-1).
 典型的には、酸触媒の存在下でビフェニル化合物とヒドロキシ化合物とを反応させる。酸触媒を用いることで、ビフェニル化合物とヒドロキシ化合物との反応が容易に進行する。
 酸触媒としては、例えば塩酸、硫酸、リン酸等の無機酸;シュウ酸、酢酸、クエン酸、酒石酸、安息香酸、パラトルエンスルホン酸等の有機酸;酢酸亜鉛、ホウ酸亜鉛等の有機酸塩;スルホン基やカルボン酸基を有するイオン交換樹脂等が挙げられる。これらの中でも、副反応による副生物の生成が抑制されると同時に、反応終了後、水洗処理などにより、容易に脱触媒を行うことができる点で、シュウ酸、塩酸、硫酸、パラトルエンスルホン酸が好ましい。これらの酸触媒は1種を単独で用いてもよく2種以上を併用してもよい。
 酸触媒の使用量は、例えば、ビフェニル化合物100質量部に対して0.01~100質量部である。
Typically, a biphenyl compound and a hydroxy compound are reacted in the presence of an acid catalyst. By using an acid catalyst, the reaction between the biphenyl compound and the hydroxy compound proceeds easily.
Examples of acid catalysts include inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid; organic acids such as oxalic acid, acetic acid, citric acid, tartaric acid, benzoic acid, and paratoluenesulfonic acid; and organic acid salts such as zinc acetate and zinc borate. ; Examples include ion exchange resins having sulfone groups and carboxylic acid groups. Among these, oxalic acid, hydrochloric acid, sulfuric acid, and para-toluenesulfonic acid are useful because they suppress the generation of byproducts due to side reactions and at the same time, they can be easily decatalyzed by washing with water after the reaction. is preferred. These acid catalysts may be used alone or in combination of two or more.
The amount of the acid catalyst used is, for example, 0.01 to 100 parts by weight per 100 parts by weight of the biphenyl compound.
 ビフェニル化合物とヒドロキシ化合物とを反応させる際、必要に応じて、助触媒を用いてもよい。
 助触媒としては、例えばメチルメルカプタン、エチルメルカプタン、ノルマルプロピルメルカプタン、イソプロピルメルカプタン、ターシャリーブチルメルカプタン、ステアリルメルカプタン、ドデシルメルカプタン等のメルカプタン類が挙げられる。これらの助触媒は1種を単独で用いてもよく2種以上を併用してもよい。
 助触媒の使用量は、例えば、ビフェニル化合物100質量部に対して0.01~100質量部である。
When reacting a biphenyl compound and a hydroxy compound, a co-catalyst may be used if necessary.
Examples of the co-catalyst include mercaptans such as methyl mercaptan, ethyl mercaptan, normal propyl mercaptan, isopropyl mercaptan, tert-butyl mercaptan, stearyl mercaptan, and dodecyl mercaptan. These promoters may be used alone or in combination of two or more.
The amount of co-catalyst used is, for example, 0.01 to 100 parts by weight per 100 parts by weight of the biphenyl compound.
 工程Aは、通常のノボラック型フェノール樹脂の製造方法と同様の方法で実施できる。
 例えば、反応容器にビフェニル化合物、ヒドロキシ化合物、酸触媒、溶媒、必要に応じて助触媒を仕込み、任意の反応温度を任意の反応時間保持することで、化合物(1-1)を含む生成物が得られる。
 溶媒としては、例えばイオン交換水等の水;ジエチルエーテル、シクロペンチルメチルエーテル、メタノール、エタノール、ベンゼン、トルエン、キシレン等の有機溶剤が挙げられる。これらは1種を単独で用いてもよく2種以上を併用してもよい。
 反応温度は、例えば10~150℃である。反応時間は、例えば0.5~48時間である。
 反応終了後、必要に応じて、抽出、水洗、濃縮、再結晶等の処理を行ってもよい。
Step A can be carried out in the same manner as the usual method for producing novolac type phenolic resin.
For example, by charging a biphenyl compound, a hydroxy compound, an acid catalyst, a solvent, and, if necessary, a co-catalyst into a reaction vessel and maintaining a desired reaction temperature for a desired reaction time, a product containing compound (1-1) can be produced. can get.
Examples of the solvent include water such as ion-exchanged water; organic solvents such as diethyl ether, cyclopentyl methyl ether, methanol, ethanol, benzene, toluene, and xylene. These may be used alone or in combination of two or more.
The reaction temperature is, for example, 10 to 150°C. The reaction time is, for example, 0.5 to 48 hours.
After the reaction is completed, treatments such as extraction, water washing, concentration, and recrystallization may be performed as necessary.
 (工程B)
 化合物(1-1)の水酸基に1以上のオキシアルキレン基((OR、(OR)を付加することで、前記式(1)中のcおよびdの少なくとも一方が1以上である化合物(以下、「化合物(1-2)」とも記す。)が得られる。
(Process B)
By adding one or more oxyalkylene groups ((OR 3 ) c , (OR 3 ) d ) to the hydroxyl group of compound (1-1), at least one of c and d in the formula (1) is one or more. A compound (hereinafter also referred to as "compound (1-2)") is obtained.
 1以上のオキシアルキレン基の付加方法としては、公知の方法を用いることができる。例えば、化合物(1-1)と、エチレンオキサイド等のアルキレンオキサイドとを反応させる方法が挙げられる。 As a method for adding one or more oxyalkylene groups, known methods can be used. For example, a method of reacting the compound (1-1) with an alkylene oxide such as ethylene oxide may be mentioned.
〔光学部材(2)〕
 本発明の光学部材の他の一態様として、下記式(2)で表される化合物(以下、「化合物(2)」とも記す。)を含む硬化性組成物(以下、「光学部材形成材料(2)」とも記す。)の硬化物を含む光学部材(以下、「光学部材(2)」とも記す。)が挙げられる。
 硬化物は、化合物(2)に基づく構成単位を有する。化合物(2)に基づく構成単位は、前記した構造(i)を含む。
[Optical member (2)]
Another embodiment of the optical member of the present invention is a curable composition (hereinafter referred to as "optical member forming material") containing a compound represented by the following formula (2) (hereinafter also referred to as "compound (2)"). Examples include optical members (hereinafter also referred to as "optical members (2)") containing a cured product of (also referred to as "optical members (2)").
The cured product has a structural unit based on compound (2). The structural unit based on compound (2) includes the structure (i) described above.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 式(2)中、R、a、b、R、c、d、R、e、f、g、hおよびRはそれぞれ前記したとおりである。
 Xは、重合性官能基もしくは反応性官能基を含む1価基(以下、「基(x)」とも記す。)、または水素原子であり、(e+f)個のXは同一でも異なっていてもよく、(e+f)個のXのうち少なくとも1個は基(x)である。
 化合物(2)は、1個以上の重合性官能基または反応性官能基を持つので、単独でまたは硬化剤により硬化させることができる。
In formula (2), R 1 , a, b, R 2 , c, d, R 3 , e, f, g, h and R 4 are each as described above.
X is a monovalent group containing a polymerizable functional group or a reactive functional group (hereinafter also referred to as "group (x)"), or a hydrogen atom, and (e+f) X's may be the same or different. Often, at least one of the (e+f) X's is a group (x).
Since compound (2) has one or more polymerizable functional groups or reactive functional groups, it can be cured alone or with a curing agent.
 基(x)における重合性官能基としては、重合可能なものであれば特に制限はなく、例えば(メタ)アクリロイル基等が挙げられる。(メタ)アクリロイル基はアクリロイル基またはメタクリロイル基を意味する。
 基(x)における反応性官能基としては、例えばエポキシ基、酸無水物基、アミノ基等が挙げられる。
 基(x)が有する重合性官能基または反応性官能基は1個でも2個以上でもよいが、典型的には1個である。
 重合性官能基または反応性官能基は、Xに隣接する酸素原子に直接結合していてもよく、連結基を介して結合していてもよい。
The polymerizable functional group in group (x) is not particularly limited as long as it is polymerizable, and examples include (meth)acryloyl groups. A (meth)acryloyl group means an acryloyl group or a methacryloyl group.
Examples of the reactive functional group in the group (x) include an epoxy group, an acid anhydride group, and an amino group.
The number of polymerizable functional groups or reactive functional groups possessed by the group (x) may be one or two or more, but typically it is one.
The polymerizable functional group or reactive functional group may be bonded directly to the oxygen atom adjacent to X, or may be bonded via a linking group.
 基(x)としては、例えば、-X-Xで表される基が挙げられる。Xは、重合性官能基または反応性官能基であり、Xは、単結合または2価の連結基である。
 Xにおける2価の連結基としては、例えば、置換基を有していてもよい2価の炭化水素基、置換基を有していてもよい2価の炭化水素基の末端または/および炭素原子間にエーテル性酸素原子を含む基等が挙げられる。
 2価の炭化水素基としては、例えばアルキレン基、シクロアルキレン基、アリーレン基およびそれらの2以上の組み合わせからなる基が挙げられる。アルキレン基としては、Rにおけるアルキレン基と同様のものが挙げられる。アルキレン基が有していてもよい置換基としては、例えば水酸基、シアノ基、ハロゲン原子が挙げられる。シクロアルキレン基の炭素数は、例えば6~8である。シクロアルキレン基が有していてもよい置換基としては、例えばアルキル基、水酸基、シアノ基、ハロゲン原子が挙げられる。アリーレン基としては、例えばフェニレン基、ナフチレン基、フェナントリレン基、アントリレン基、4,4’-ビフェニル-ジイル基が挙げられる。アリーレン基が有していてもよい置換基としては、例えばアルキル基、水酸基、シアノ基、ハロゲン原子が挙げられる。
 Xとしては、置換基として水酸基を有するものが好ましい。Xが水酸基を有していれば、化合物(2)を用いた硬化物の耐熱性や機械強度がより優れる傾向がある。これは、水酸基が存在することで、水素結合による分子間力が得られ、分子の凝集力が高まるためと考えられる。また、この水素結合は、ガラスやポリエステル等の無機または有機物(例えばフィルム、レンズ、など)に対する密着性向上にも寄与する。
Examples of the group (x) include a group represented by -X 2 -X 1 . X 1 is a polymerizable functional group or a reactive functional group, and X 2 is a single bond or a divalent linking group.
The divalent linking group in X 2 is, for example, a divalent hydrocarbon group that may have a substituent, a terminal of a divalent hydrocarbon group that may have a substituent, or/and a carbon Examples include groups containing etheric oxygen atoms between atoms.
Examples of the divalent hydrocarbon group include an alkylene group, a cycloalkylene group, an arylene group, and a group consisting of a combination of two or more thereof. Examples of the alkylene group include those similar to the alkylene group for R3 . Examples of the substituent that the alkylene group may have include a hydroxyl group, a cyano group, and a halogen atom. The number of carbon atoms in the cycloalkylene group is, for example, 6 to 8. Examples of the substituent that the cycloalkylene group may have include an alkyl group, a hydroxyl group, a cyano group, and a halogen atom. Examples of the arylene group include phenylene group, naphthylene group, phenanthrylene group, anthrylene group, and 4,4'-biphenyl-diyl group. Examples of substituents that the arylene group may have include an alkyl group, a hydroxyl group, a cyano group, and a halogen atom.
X 2 is preferably one having a hydroxyl group as a substituent. If X 2 has a hydroxyl group, the cured product using compound (2) tends to have better heat resistance and mechanical strength. This is thought to be because the presence of hydroxyl groups provides intermolecular force due to hydrogen bonds, increasing the cohesive force of molecules. Moreover, this hydrogen bond also contributes to improving the adhesion to inorganic or organic substances (for example, films, lenses, etc.) such as glass and polyester.
 基(x)の具体例としては、グリシジル基、-[Ph-C(CH-Ph-O-CH-CH(OH)-CH-O]-Ph-C(CH-Ph-O-Y、(メタ)アクリロイル基、2-ヒドロキシ-3-(メタ)アクリロイルオキシプロピル基(-CH-CH(OH)-CH-O-C(=O)-C(R)=CH)、-[Ph-C(CH-Ph-O-CH-CH(OH)-CH-O]-C(=O)-C(R)=CH、トリメリット酸無水物基(下記式(x-1)で表される基)、アミノ基等が挙げられる。Phはフェニレン基であり、Yはグリシジル基であり、Rは水素原子またはメチル基である。nは特に限定されないが、例えば1~10の整数である。 Specific examples of the group (x) include glycidyl group, -[Ph-C(CH 3 ) 2 -Ph-O-CH 2 -CH(OH)-CH 2 -O] n -Ph-C(CH 3 ) 2 -Ph-O-Y 1 , (meth)acryloyl group, 2-hydroxy-3-(meth)acryloyloxypropyl group (-CH 2 -CH(OH)-CH 2 -O-C(=O)-C (R)=CH 2 ), -[Ph-C(CH 3 ) 2 -Ph-O-CH 2 -CH(OH)-CH 2 -O] n -C(=O)-C(R)=CH 2 , a trimellitic anhydride group (a group represented by the following formula (x-1)), an amino group, and the like. Ph is a phenylene group, Y1 is a glycidyl group, and R is a hydrogen atom or a methyl group. Although n is not particularly limited, it is, for example, an integer from 1 to 10.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 基(x)としては、硬化物が耐熱性や機械強度に優れ、光学部材としての有用性に優れる点で、2-ヒドロキシ-3-(メタ)アクリロイルオキシプロピル基が好ましい。 As the group (x), a 2-hydroxy-3-(meth)acryloyloxypropyl group is preferred since the cured product has excellent heat resistance and mechanical strength and is useful as an optical member.
 光学部材形成材料(2)は、必要に応じて、本発明の効果を損なわない範囲で、化合物(2)以外の他の成分をさらに含んでいてもよい。他の成分としては、例えば、化合物(2)以外の重合性官能基または反応性官能基を持つ化合物、硬化剤(架橋剤、重合開始剤等)、硬化促進剤、溶剤、着色剤、無機充填剤、有機充填剤、酸化防止剤、その他の各種の添加剤が挙げられる。他の成分は1種を単独で用いてもよく2種以上を併用してもよい。 The optical member forming material (2) may further contain other components other than the compound (2), if necessary, within a range that does not impair the effects of the present invention. Other components include, for example, a compound having a polymerizable functional group or a reactive functional group other than compound (2), a curing agent (crosslinking agent, polymerization initiator, etc.), a curing accelerator, a solvent, a coloring agent, an inorganic filler. additives, organic fillers, antioxidants, and other various additives. As for the other components, one kind may be used alone or two or more kinds may be used in combination.
 基(x)が(メタ)アクリロイル基等の重合性官能基を有する場合、光学部材形成材料(2)は、重合開始剤(光重合開始剤、熱重合開始剤等)を含むことが好ましい。 When the group (x) has a polymerizable functional group such as a (meth)acryloyl group, the optical member forming material (2) preferably contains a polymerization initiator (photopolymerization initiator, thermal polymerization initiator, etc.).
 基(x)が反応性官能基を有する場合、光学部材形成材料(2)は、基(x)の反応性官能基と反応し得る官能基を2以上有する架橋剤を含むことが好ましい。反応性官能基がエポキシ基である場合、エポキシ基と反応し得る官能基としては、アミノ基、酸無水物基、水酸基等が挙げられる。反応性官能基が酸無水物基である場合、酸無水物基と反応し得る官能基としては、アミノ基、水酸基等が挙げられる。反応性官能基がアミノ基である場合、アミノ基と反応し得る官能基としては、酸無水物基等が挙げられる。 When the group (x) has a reactive functional group, the optical member forming material (2) preferably contains a crosslinking agent having two or more functional groups that can react with the reactive functional group of the group (x). When the reactive functional group is an epoxy group, examples of the functional group that can react with the epoxy group include an amino group, an acid anhydride group, and a hydroxyl group. When the reactive functional group is an acid anhydride group, examples of the functional group that can react with the acid anhydride group include an amino group and a hydroxyl group. When the reactive functional group is an amino group, examples of the functional group that can react with the amino group include acid anhydride groups.
 基(x)がエポキシ基を有する場合に用いられる架橋剤としては、例えば、アミン類、酸無水物類、フェノール樹脂等のエポキシ硬化剤が挙げられる。必要に応じて、トリフェニルホスフィン類やイミダゾール類等の硬化促進剤を併用してもよい。 Examples of the crosslinking agent used when the group (x) has an epoxy group include epoxy curing agents such as amines, acid anhydrides, and phenolic resins. If necessary, a curing accelerator such as triphenylphosphine or imidazole may be used in combination.
 基(x)が酸無水物基を有する場合に用いられる架橋剤としては、例えば、ジアミンが挙げられる。この場合、化合物(2)とジアミンとの反応さによりポリイミドが生成する。ジアミンとしては、例えば1,3-フェニレンジアミン、4,4’-ジアミノジフェニルエーテル、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ジアミン化合物、ジエチレングリコールビス(3-アミノプロピル)エーテル、9,9’-ビス(4-アミノフェニル)フルオレンが挙げられる。ジアミンは1種を単独で用いてもよく2種以上を併用してもよい。 Examples of the crosslinking agent used when the group (x) has an acid anhydride group include diamine. In this case, polyimide is produced by the reaction between compound (2) and diamine. Examples of diamines include 1,3-phenylenediamine, 4,4'-diaminodiphenyl ether, 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane, diamine compounds, diethylene glycol bis(3-aminopropyl) Examples include ether and 9,9'-bis(4-aminophenyl)fluorene. One type of diamine may be used alone or two or more types may be used in combination.
<光学部材(2)の製造方法>
 光学部材(2)は、光学部材形成材料(2)を硬化することにより製造できる。
 光学部材形成材料(2)を硬化する前に、光学部材形成材料(2)を製造してもよい。光学部材形成材料(2)の製造方法については後で詳しく説明する。
<Method for manufacturing optical member (2)>
The optical member (2) can be manufactured by curing the optical member forming material (2).
The optical member forming material (2) may be manufactured before the optical member forming material (2) is cured. The method for manufacturing the optical member forming material (2) will be explained in detail later.
 光学部材形成材料(2)の硬化方法は特に限定されず、基(x)が有する重合性官能基または反応性官能基の種類に応じて公知の方法を適用できる。例えば基(x)が重合性官能基を有する場合、光学部材形成材料(2)に光や熱を加えることで、化合物(2)等を重合させ、硬化物とすることができる。
 光学部材形成材料(2)を硬化する際に、光学部材形成材料(2)を、目的の光学部材の形状に成形してもよい。光学部材形成材料(2)を硬化した後に、硬化物を、目的の光学部材の形状に成形してもよい。
The method for curing the optical member forming material (2) is not particularly limited, and known methods can be applied depending on the type of polymerizable functional group or reactive functional group that the group (x) has. For example, when the group (x) has a polymerizable functional group, by applying light or heat to the optical member forming material (2), the compound (2) etc. can be polymerized to form a cured product.
When curing the optical member forming material (2), the optical member forming material (2) may be molded into the shape of the desired optical member. After curing the optical member forming material (2), the cured product may be molded into the shape of the desired optical member.
<光学部材形成材料(2)の製造方法>
 光学部材形成材料(2)は、例えば、化合物(2)を製造し、必要に応じて他の成分を混合することにより製造できる。
 化合物(2)は、例えば、以下の工程Cを有する製造方法により製造できる。
 工程C:式(2)中のOXが全てOHである化合物、つまり化合物(1)のOHの少なくとも一部に、基(x)を付加する工程。
<Method for manufacturing optical member forming material (2)>
Optical member forming material (2) can be manufactured, for example, by manufacturing compound (2) and mixing other components as necessary.
Compound (2) can be produced, for example, by a production method including Step C below.
Step C: A step of adding group (x) to at least a portion of the OH of compound (1), which is a compound in which all OX in formula (2) are OH.
 (工程C)
 工程Cは、基(x)の構造に応じて、公知の方法を用いて実施できる。
 例えば、基(x)がグリシジル基の場合、化合物(1)のOHにエピハロヒドリン(例えばエピクロルヒドリン)を反応させる方法(以下、「方法1」とも記す。)が挙げられる。
 基(x)が-[Ph-C(CH-Ph-O-CH-CH(OH)-CH-O]-Ph-C(CH-Ph-O-Yの場合、方法1において、エピハロヒドリンの代わりに、OH1モルに対して(n+1)モルのビスフェノールA型エポキシ化合物(HO-Ph-C(CH-Ph-O-Y)を反応させればよい。
 基(x)が(メタ)アクリロイル基である場合、化合物(1)のOHに(メタ)アクリル酸、(メタ)アクリル酸無水物または(メタ)アクリル酸ハロゲン化物を反応させる方法(以下、「方法2」とも記す。)が挙げられる。
 基(x)が2-(メタ)アクリロイルオキシ-2-ヒドロキシエチル基である場合、上述の方法1によって基(x)がグリシジル基である化合物を得、この化合物のグリシジル基に(メタ)アクリル酸、(メタ)アクリル酸無水物または(メタ)アクリル酸ハロゲン化物を反応させる方法(以下、「方法3」とも記す。)が挙げられる。
 基(x)が-[Ph-C(CH-Ph-O-CH-CH(OH)-CH-O]-C(=O)-C(R)=CHの場合、方法3において、基(x)がグリシジル基である化合物を得る代わりに、基(x)が-[Ph-C(CH-Ph-O-CH-CH(OH)-CH-O]-Ph-C(CH-Ph-O-Yである化合物を得ればよい。
 基(x)がトリメリット酸無水物基である場合、化合物(1)のOHに無水トリメリット酸または無水トリメリット酸ハライドを反応させる方法(以下、「方法4」とも記す。)が挙げられる。
(Process C)
Step C can be carried out using a known method depending on the structure of group (x).
For example, when the group (x) is a glycidyl group, a method (hereinafter also referred to as "method 1") in which the OH of compound (1) is reacted with epihalohydrin (e.g., epichlorohydrin) can be used.
Group (x) is -[Ph-C(CH 3 ) 2 -Ph-O-CH 2 -CH(OH)-CH 2 -O] n -Ph-C(CH 3 ) 2 -Ph-O-Y 1 In this case, in Method 1, instead of epihalohydrin, (n+1) mol of bisphenol A type epoxy compound (HO-Ph-C(CH 3 ) 2 -Ph-O-Y 1 ) is reacted with respect to 1 mol of OH. Bye.
When the group (x) is a (meth)acryloyl group, a method of reacting the OH of compound (1) with (meth)acrylic acid, (meth)acrylic anhydride or (meth)acrylic acid halide (hereinafter referred to as " (also referred to as "Method 2").
When the group (x) is a 2-(meth)acryloyloxy-2-hydroxyethyl group, a compound in which the group (x) is a glycidyl group is obtained by the above method 1, and (meth)acrylic is added to the glycidyl group of this compound. A method of reacting an acid, (meth)acrylic anhydride, or (meth)acrylic acid halide (hereinafter also referred to as "Method 3") can be mentioned.
When the group (x) is -[Ph-C(CH 3 ) 2 -Ph-O-CH 2 -CH(OH)-CH 2 -O] n -C(=O)-C(R)=CH 2 , in method 3, instead of obtaining a compound in which the group (x) is a glycidyl group, the group (x) is -[Ph-C(CH 3 ) 2 -Ph-O-CH 2 -CH(OH)-CH 2 -O] n -Ph-C(CH 3 ) 2 -Ph-O-Y 1 may be obtained.
When the group (x) is a trimellitic anhydride group, a method of reacting OH of compound (1) with trimellitic anhydride or trimellitic anhydride halide (hereinafter also referred to as "Method 4") can be mentioned. .
 方法1において、化合物(1)のOHに対するエピハロヒドリンのモル比(OH/エピハロヒドリン比)は、最も一般的なエポキシ樹脂であるビスフェノールA型エポキシ樹脂を、ビスフェノールAとエピクロルヒドリンから製造する際と同様のモル比であってよい。
 OH/エピクロルヒドリン比は、0.02~0.33が好ましく、0.10~0.20がより好ましい。
 化合物(1)のOH1モルに対して多量のエピクロルヒドリンを用いた場合(OH/エピクロルヒドリン比が小さい場合)には、OHがグリシジルエーテル化された化合物が主成分として得られる。このモル比を大きくするに従い、OHに付加したグリシジルエーテル化したエポキシ基が他のOHと反応し、高分子量化されるおそれがある。
In method 1, the molar ratio of epihalohydrin to OH of compound (1) (OH/epihalohydrin ratio) is the same molar ratio as when producing bisphenol A type epoxy resin, which is the most common epoxy resin, from bisphenol A and epichlorohydrin. It may be a ratio.
The OH/epichlorohydrin ratio is preferably 0.02 to 0.33, more preferably 0.10 to 0.20.
When a large amount of epichlorohydrin is used per mole of OH of compound (1) (when the OH/epichlorohydrin ratio is small), a compound in which OH is glycidyl etherified is obtained as a main component. As this molar ratio increases, there is a possibility that the glycidyl etherified epoxy group added to OH will react with other OH and the molecular weight will be increased.
 以上説明した本発明の光学部材は、構造(i)を有することから、高い屈折率(例えば1.62~1.78の屈折率)を示す。
 ここで、一般に、分子全体の分極が大きくなると、高屈折率を発現する傾向がある。分子全体の分極を大きくする手法の一つが、自由に動くことができる共役π電子を多くすることである。
 構造(i)中のビフェニル部位においては、2個のベンゼン環内に存在する12個のπ電子がビフェニル部位全体の広範囲に共鳴している。このビフェニル部位にさらに、すくなくとも2個のベンゼン環が導入されることで、共役π電子の数が増大し、π電子が共鳴する範囲も広くなる。これにより、分子全体がより分極しやすくなり、高屈折率を発現すると考えられる。
Since the optical member of the present invention described above has the structure (i), it exhibits a high refractive index (for example, a refractive index of 1.62 to 1.78).
Here, in general, when the polarization of the entire molecule becomes large, a high refractive index tends to be exhibited. One way to increase the polarization of the entire molecule is to increase the number of freely movable conjugated π electrons.
In the biphenyl moiety in structure (i), the 12 π electrons present in the two benzene rings resonate over a wide range of the entire biphenyl moiety. By further introducing at least two benzene rings into this biphenyl moiety, the number of conjugated π electrons increases and the range in which π electrons resonate also becomes wider. It is thought that this makes the entire molecule more easily polarized and develops a high refractive index.
 また、従来のフルオレン骨格を有するモノマーは、溶剤溶解性が低いという問題がある。溶剤溶解性が低いと、モノマーを溶解可能な溶剤の選択肢が限られる。よって、フルオレン骨格を有するモノマーでは、高品質の光学部材を汎用的な溶剤(例えばN-メチル-2-ピロリドン)で製造できず、実用性に劣る。
 これに対し、本発明において、構造(i)に対応する化合物(1)や化合物(2)は、溶剤溶解性に優れる。これらの化合物の優れた溶剤溶解性は、前記したビフェニル化合物の-C(R)=O由来の炭素原子に結合した2つのヒドロキシ化合物由来の部分が自由回転できるため、溶剤と相互作用しやすいことによるものと推定される。これらの化合物が溶剤溶解性に優れることから、汎用的な溶剤で高品質の光学部材を製造できる。
Further, conventional monomers having a fluorene skeleton have a problem of low solvent solubility. Low solvent solubility limits the choices of solvents that can dissolve the monomer. Therefore, monomers having a fluorene skeleton cannot be used to produce high-quality optical members using general-purpose solvents (eg, N-methyl-2-pyrrolidone), and are therefore less practical.
On the other hand, in the present invention, compound (1) and compound (2) corresponding to structure (i) have excellent solvent solubility. The excellent solvent solubility of these compounds is due to the fact that the two hydroxy compound-derived moieties bonded to the carbon atom derived from -C(R 1 )=O of the biphenyl compound described above can freely rotate, so they easily interact with solvents. It is presumed that this is due to the following. Since these compounds have excellent solvent solubility, high-quality optical members can be manufactured using general-purpose solvents.
 本発明の光学部材の具体例としては、CMOSイメージセンサー用マイクロレンズ、タッチパネル用インデックスマッチング材、液晶用ブラックマトリックス、光学用接着材、透明ポリイミド、LED用透明電極等が挙げられる。 Specific examples of the optical member of the present invention include microlenses for CMOS image sensors, index matching materials for touch panels, black matrices for liquid crystals, optical adhesives, transparent polyimides, transparent electrodes for LEDs, and the like.
 以下、実施例によって本発明を具体的に説明するが、本発明は以下の記載によっては限定されない。以下において「%」は、特に言及がない場合は、「質量%」を示す。 Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited by the following description. In the following, "%" indicates "mass%" unless otherwise mentioned.
〔測定方法〕
<NMR測定>
 試料(各例の化合物)の7.7%d-ジメチルスルホキシド(DMSO)溶液を調製し、H-NMR、13C-NMRを測定した。内部標準としてはテトラメチルシランを用いた。
 使用機器:JEOL RESONANCE社製 ECZ-500R
〔Measuring method〕
<NMR measurement>
A 7.7% d-dimethylsulfoxide (DMSO) solution of the sample (compound of each example) was prepared, and 1 H-NMR and 13 C-NMR were measured. Tetramethylsilane was used as an internal standard.
Equipment used: JEOL RESONANCE ECZ-500R
<FD-MS(電界脱離質量分析)>
 試料の0.2%テトラヒドロフラン(THF)溶液を調製し、イオン源FD+、質量範囲60~1600のもと、FD-MSを測定した。
 使用機器:日本電子社製 JMS-T200GC
<FD-MS (field desorption mass spectrometry)>
A 0.2% tetrahydrofuran (THF) solution of the sample was prepared, and FD-MS was measured using an ion source FD+ in a mass range of 60 to 1600.
Equipment used: JMS-T200GC manufactured by JEOL Ltd.
<GPC(ゲル浸透クロマトグラフィ)>
 試料の1%THF溶液を調製し、GPC測定を行った。
 使用機器:東ソー社製 HLC8320GPC
 カラム:TSKgel G3000HXL+G2000HXL+G2000HXL
<GPC (gel permeation chromatography)>
A 1% THF solution of the sample was prepared and GPC measurement was performed.
Equipment used: Tosoh Corporation HLC8320GPC
Column: TSKgel G3000HXL+G2000HXL+G2000HXL
<屈折率>
 試料について3種の濃度のN-メチル-2-ピロリドン溶液を調製し、各溶液について屈折率計にて、25.0℃におけるD線(波長589nm)の屈折率を測定した。これら3種の濃度を横軸に、それぞれの屈折率を縦軸にプロットし、最小二乗法における近似曲線から、濃度100%における屈折率を算出し、その値を屈折率とした。
 使用機器:京都電子社製 屈折率計DA-645
<Refractive index>
N-methyl-2-pyrrolidone solutions with three different concentrations were prepared for the samples, and the refractive index of each solution at 25.0° C. for the D line (wavelength 589 nm) was measured using a refractometer. The concentrations of these three types were plotted on the horizontal axis and the respective refractive indices were plotted on the vertical axis, and the refractive index at a concentration of 100% was calculated from the approximate curve using the least squares method, and the value was taken as the refractive index.
Equipment used: Refractometer DA-645 manufactured by Kyoto Denshi Co., Ltd.
<溶解性(1)>
 試料に、化合物の最終的な濃度が8%以上となるようにN-メチル-2-ピロリドンを加えた試験管をボルテックスミキサーにて十分に撹拌混合した後、25℃に調整した水槽にて10分間放置したときの試料の溶解性を確認した。
<Solubility (1)>
After adding N-methyl-2-pyrrolidone to the sample so that the final concentration of the compound was 8% or more, the test tube was sufficiently stirred and mixed with a vortex mixer, and then the test tube was heated in a water bath adjusted to 25°C for 10 minutes. The solubility of the sample was confirmed when it was left to stand for a minute.
<溶解性(2)>
 屈折率測定用に調製した3種の濃度のN-メチル-2-ピロリドン溶液について、25℃で一日静置した後に目視で、試料の析出の有無を確認した。
<Solubility (2)>
N-methyl-2-pyrrolidone solutions of three concentrations prepared for refractive index measurement were allowed to stand at 25° C. for one day, and then visually checked for the presence or absence of sample precipitation.
〔実施例1〕
 撹拌機、温度計、アリーン冷却管を付けた200mL四つ口フラスコに、o-クレゾール64.86g(0.60モル)、4-ビフェニルアルデヒド10.93g(0.06モル)、反応溶媒としてイオン交換水10.93gを仕込み撹拌した。そこにドデシルメルカプタン0.559g(0.0028モル)を添加し、加温により反応溶液を55℃まで昇温した。55℃に到達した時点で35%塩酸18.42gを8分間かけて添加した。触媒添加により反応溶液の色相は淡黄色から淡紅色に変化した。その後、内温55℃を保持したまま6時間撹拌を続けた後、反応溶液を冷却した。25℃以下に冷却後、30%水酸化ナトリウム溶液23.60gを添加すると反応溶液が徐々に懸濁し、赤紫色の油状粘調物が水に分散した状態となった。ここにイオン交換水127.0gを添加し撹拌を継続した。この時のフラスコ内の反応溶液のpHは7~8となった。この水と油状粘調物を含む反応溶液にシクロペンチルメチルエーテル288.3gを加えて、全量を1000mL分液ロートへ移液した。これらを混合し、静置すると、薄く濁った淡橙色のエーテル相と無色透明の水相に分離した。水相を除去した後、この分液ロートにてエーテル相にイオン交換水246.0gを添加して水洗を行い、これを3回繰り返した。水洗済みエーテル溶液を500mL三角フラスコにて加熱して減圧濃縮によりエーテル除去を行うことで橙色濃縮物が残留した。この残留物を常温まで放冷し、静置すると、橙色の針状結晶が析出した。この針状結晶を吸引ろ過し、ヌッチェ上の結晶を適量のイソプロピルアルコールとイオン交換水により洗浄すると、淡橙色の残渣となった。これを風乾することにより淡橙色粉末13.01gを得た。この粉末は、GPCにより目的化合物と未反応のo-クレゾールを主成分とする粉末であることが分かった。目的化合物を単離するために、この粉末にイソプロピルアルコール13.0gとイオン交換水13.0gを加えて加熱溶解し再結晶を行った。これを室温まで放冷し静置すると淡橙色の結晶が析出した。この結晶を吸引ろ過し、ヌッチェ上で適量のイソプロピルアルコールとイオン交換水により洗浄した後、風乾すると、白橙色の粉末8.63g(理論収量に対する収率37.9%)を得た。
 この白色粉末についてH-NMR、13C-NMR、FD-MSにより定性したところ、下記式(11)に示す化合物であることを確認した。なお、得られた白橙色の粉末の理化学的性質は以下のとおりであった。また、GPCより純度が96.6%であることを確認した。
 マススペクトル:(m/z)380。
 H-NMR:(500MHz,DMSO-d6):δ 2.06(s,6H),5.31(s,1H),6.72(a pair of s,4H),6.83(s,2H),7.15(d,J=8.3Hz,2H),7.31(t,J=7.3Hz,1H),7.41(t,J=7.7Hz,2H),7.55(d,J=8.30Hz,2H),7.61(dd,J=7.3Hz,1.2Hz,2H),9.2(s,2H)。
 13C-NMR:(500MHz,DMSO-d6):δ 16.2,54.3,114.4,123.5,126.5,126.6,127.1,127.2,131.2,134.5,137.7,140.0,144.5,153.7。
[Example 1]
In a 200 mL four-neck flask equipped with a stirrer, thermometer, and Allene condenser, 64.86 g (0.60 mol) of o-cresol, 10.93 g (0.06 mol) of 4-biphenylaldehyde, and ions as a reaction solvent were placed. 10.93 g of exchanged water was charged and stirred. 0.559 g (0.0028 mol) of dodecyl mercaptan was added thereto, and the reaction solution was heated to 55°C. When the temperature reached 55° C., 18.42 g of 35% hydrochloric acid was added over 8 minutes. Upon addition of the catalyst, the color of the reaction solution changed from pale yellow to pale pink. Thereafter, stirring was continued for 6 hours while maintaining the internal temperature of 55°C, and then the reaction solution was cooled. After cooling to 25° C. or lower, 23.60 g of 30% sodium hydroxide solution was added, and the reaction solution gradually became suspended, forming a reddish-purple oily viscous substance dispersed in water. 127.0 g of ion-exchanged water was added thereto, and stirring was continued. At this time, the pH of the reaction solution in the flask was 7 to 8. 288.3 g of cyclopentyl methyl ether was added to the reaction solution containing water and an oily viscous substance, and the entire amount was transferred to a 1000 mL separating funnel. When these were mixed and allowed to stand, they were separated into a slightly cloudy pale orange ether phase and a colorless and transparent aqueous phase. After removing the aqueous phase, 246.0 g of ion-exchanged water was added to the ether phase in this separatory funnel to perform water washing, and this was repeated three times. The water-washed ether solution was heated in a 500 mL Erlenmeyer flask and the ether was removed by vacuum concentration, leaving an orange concentrate. When this residue was allowed to cool to room temperature and allowed to stand still, orange needle-shaped crystals were precipitated. The needle-shaped crystals were suction-filtered, and the crystals on the Nutsche were washed with an appropriate amount of isopropyl alcohol and ion-exchanged water, resulting in a pale orange residue. By air drying this, 13.01 g of pale orange powder was obtained. This powder was found by GPC to be a powder whose main component was o-cresol which had not reacted with the target compound. In order to isolate the target compound, 13.0 g of isopropyl alcohol and 13.0 g of ion-exchanged water were added to this powder, and the mixture was heated and dissolved to perform recrystallization. When this was allowed to cool to room temperature and left still, pale orange crystals were precipitated. The crystals were suction-filtered, washed on a Nutsche filter with an appropriate amount of isopropyl alcohol and ion-exchanged water, and then air-dried to obtain 8.63 g of white-orange powder (yield 37.9% based on the theoretical yield).
When this white powder was qualitatively characterized by 1 H-NMR, 13 C-NMR, and FD-MS, it was confirmed that it was a compound represented by the following formula (11). The physicochemical properties of the obtained white-orange powder were as follows. Furthermore, the purity was confirmed to be 96.6% by GPC.
Mass spectrum: (m/z) 380.
1 H-NMR: (500 MHz, DMSO-d6): δ 2.06 (s, 6H), 5.31 (s, 1H), 6.72 (a pair of s, 4H), 6.83 (s, 2H), 7.15 (d, J=8.3Hz, 2H), 7.31 (t, J=7.3Hz, 1H), 7.41 (t, J=7.7Hz, 2H), 7. 55 (d, J=8.30Hz, 2H), 7.61 (dd, J=7.3Hz, 1.2Hz, 2H), 9.2 (s, 2H).
13C -NMR: (500MHz, DMSO-d6): δ 16.2, 54.3, 114.4, 123.5, 126.5, 126.6, 127.1, 127.2, 131.2, 134.5, 137.7, 140.0, 144.5, 153.7.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
〔実施例2〕
 o-クレゾールをp-クレゾール64.86g(0.60モル)とした以外は実施例1と同様にして反応を行い、反応溶液を冷却した。25℃以下に冷却後、30%水酸化ナトリウム溶液を添加すると、反応溶液は淡紅色から薄茶色に変化し懸濁した。この時のフラスコ内の反応溶液のpHは7~8であった。この反応溶液にシクロペンチルメチルエーテル144.2gを加えて、全量を1000mL分液ロートへ移液した。ここにイオン交換水127.0gを加えて混合し、静置すると、薄く濁った淡褐色のエーテル相と無色透明の水相に分離した。水相を除去した後、この分液ロートにてエーテル相にイオン交換水246.0gを添加して水洗を行い、これを3回繰り返した。水洗済みエーテル溶液を500mL三角フラスコにて加熱して減圧濃縮によりエーテル除去を行うことで褐色の濃縮物が残留した。この残留物を常温まで放冷し、静置すると、白色の針状結晶が析出した。この針状結晶を吸引ろ過し、ヌッチェ上の結晶を適量のイソプロピルアルコールとイオン交換水により洗浄すると、白色の残渣となった。これを風乾することにより白色粉末8.23g(理論収量に対する収率36.1%)を得た。
 この白色粉末についてH-NMR、13C-NMR、FD-MSにより定性したところ、下記式(12)に示す化合物であることを確認した。なお、得られた白色粉末の理化学的性質は以下のとおりであった。また、GPCより純度96.4%であることを確認した。
 マススペクトル:(m/z)380。
 H-NMR:(500MHz,DMSO-d6):δ 2.08(s,6H),6.06(s,1H),6.55(d,J=2.0Hz,2H),6.71(d,J=8.1Hz,2H),6.83(dd,J=8.2Hz,1.9Hz,2H),7.09(d,J=8.3Hz,2H),7.31(tt,J=7.3Hz,1.1Hz,1H),7.42(t,J=7.8Hz,2H),7.54(d,J=8.4Hz,2H),7.63(dd,J=8.5Hz,1.3Hz,2H),9.07(s,2H)。
 13C-NMR:(500MHz,DMSO-d6):δ 20.6,42.4,114.9,126.3,126.5,126.6,127.2,127.4,128.9,129.7,129.9,130.1,137.4,140.1,143.6,152.6。
[Example 2]
The reaction was carried out in the same manner as in Example 1 except that 64.86 g (0.60 mol) of p-cresol was used instead of o-cresol, and the reaction solution was cooled. After cooling to 25° C. or lower, 30% sodium hydroxide solution was added, and the reaction solution changed from pale pink to light brown and became suspended. At this time, the pH of the reaction solution in the flask was 7 to 8. 144.2 g of cyclopentyl methyl ether was added to this reaction solution, and the entire amount was transferred to a 1000 mL separating funnel. 127.0 g of ion-exchanged water was added and mixed, and when the mixture was allowed to stand, the mixture was separated into a slightly cloudy light brown ether phase and a colorless and transparent aqueous phase. After removing the aqueous phase, 246.0 g of ion-exchanged water was added to the ether phase in this separatory funnel to perform water washing, and this was repeated three times. The water-washed ether solution was heated in a 500 mL Erlenmeyer flask and the ether was removed by vacuum concentration, leaving a brown concentrate. When this residue was allowed to cool to room temperature and allowed to stand still, white needle-like crystals precipitated. The needle-shaped crystals were suction-filtered, and the crystals on the Nutsche were washed with an appropriate amount of isopropyl alcohol and ion-exchanged water, resulting in a white residue. By air-drying this, 8.23 g of white powder (yield 36.1% based on the theoretical yield) was obtained.
When this white powder was qualitatively characterized by 1 H-NMR, 13 C-NMR, and FD-MS, it was confirmed that it was a compound represented by the following formula (12). The physicochemical properties of the obtained white powder were as follows. Furthermore, it was confirmed by GPC that the purity was 96.4%.
Mass spectrum: (m/z) 380.
1H -NMR: (500MHz, DMSO-d6): δ 2.08 (s, 6H), 6.06 (s, 1H), 6.55 (d, J = 2.0Hz, 2H), 6.71 (d, J=8.1Hz, 2H), 6.83 (dd, J=8.2Hz, 1.9Hz, 2H), 7.09 (d, J=8.3Hz, 2H), 7.31 ( tt, J = 7.3Hz, 1.1Hz, 1H), 7.42 (t, J = 7.8Hz, 2H), 7.54 (d, J = 8.4Hz, 2H), 7.63 (dd , J=8.5Hz, 1.3Hz, 2H), 9.07(s, 2H).
13C -NMR: (500MHz, DMSO-d6): δ 20.6, 42.4, 114.9, 126.3, 126.5, 126.6, 127.2, 127.4, 128.9, 129.7, 129.9, 130.1, 137.4, 140.1, 143.6, 152.6.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
〔比較例1〕
 特許第6016303号公報に記載の実施例1に準じ、以下の手順で、下記式(13)に示す化合物を合成した。
 撹拌機、温度計、アリーン冷却管を付した200mL四つ口フラスコに9-フルオレノン14.42g(0.08モル)、レゾルシン88.09g(0.80モル)、反応溶媒としてイオン交換水14.42gを入れ、撹拌を開始した。ここにドデシルメルカプタン7.45g(0.037モル)を入れ、昇温し、反応溶液が55℃となった時点で35%塩酸24.58g(0.24モル)を添加した。これをさらに昇温してゆき、内温116℃で還流が開始した。還流開始後4時間の時点でイオン交換水40.00gを注入した。さらにフラスコを冷却し、反応溶液の温度を25℃とした。この反応溶液を分析ロートに移し、シクロペンチルメチルエーテル144.2gにて2回抽出し、この2回のエーテル層を一括して分液ロートに移液した。このエーテル層をイオン交換水173.0gにて2回水洗し、水洗済みエーテル溶液を減圧蒸留によりエーテル除去を行うことでスラリー状物80.61gを得た。このスラリー状物にイソプロピルアルコール40.3gを加え、還流させることによりスラリーを溶解し、ここにイオン交換水40.3gを入れ、放冷した。冷却により析出した粉末をヌッチェと吸引びんを使用し、吸引ろ過(ろ紙:ADVANTEC5C)により分離し、淡黄色粉末状の粗成物52.37gを得た。この粗成物10.00gを再度イソプロピルアルコール22.00gに溶解し、一旦還流させ、これを室温まで徐冷した。析出物を吸引ろ過(ろ紙:ADVANTEC5C)により単離し、ヌッチェ上でイオン交換水22.00gにて2回水洗し、これを減圧乾燥させることにより白色粉末状の精製物7.34gを得た。
 得られた白色粉末についてH-NMR、13C-NMR、FD-MSにより、下記式(13)に示す化合物(スピロ[フルオレン9,9’-(2’,7’-ジヒドロキシキサンテン)])であることを確認した。なお、得られた白色粉末の理化学的性質は以下のとおりであった。また、GPCより、純度が97.3%であることを確認した。
 マススペクトル:(m/z)364。
 H-NMR:(500MHz,DMSO-d):δ 5.85(s,1H),6.13(dd,J=8.3Hz,2.4Hz,2H),6.30(d,J=2.5Hz,2H),6.49(d,J=8.3Hz,2H),7.05(d,J=8.1Hz,2H),7.30(tt,J=7.4Hz,1.4Hz,1H),7.41(t,J=7.7Hz,2H),7.51(d,J=8.3Hz,2H),7.61(dd,J=8.4Hz,1.2Hz,2H),8.90-9.30(a pair of br s,4H)。
 13C-NMR:(500MHz,DMSO-d):δ 41.2,102.5,105.5,121.3,126.2,126.5,129.0,129.5,130.2,137.2,140.3,145.0,155.5,156.4。
[Comparative example 1]
According to Example 1 described in Japanese Patent No. 6016303, a compound represented by the following formula (13) was synthesized according to the following procedure.
In a 200 mL four-necked flask equipped with a stirrer, a thermometer, and an Allene condenser, were placed 14.42 g (0.08 mol) of 9-fluorenone, 88.09 g (0.80 mol) of resorcinol, and 14.0 g (0.80 mol) of ion-exchanged water as a reaction solvent. 42g was added and stirring was started. 7.45 g (0.037 mol) of dodecyl mercaptan was added thereto, the temperature was raised, and when the reaction solution reached 55° C., 24.58 g (0.24 mol) of 35% hydrochloric acid was added. The temperature was further increased, and reflux started at an internal temperature of 116°C. Four hours after the start of reflux, 40.00 g of ion-exchanged water was injected. The flask was further cooled to bring the temperature of the reaction solution to 25°C. This reaction solution was transferred to an analytical funnel and extracted twice with 144.2 g of cyclopentyl methyl ether, and the two ether layers were transferred all at once to a separating funnel. This ether layer was washed twice with 173.0 g of ion-exchanged water, and the washed ether solution was subjected to vacuum distillation to remove ether, thereby obtaining 80.61 g of a slurry. 40.3 g of isopropyl alcohol was added to this slurry and refluxed to dissolve the slurry. 40.3 g of ion-exchanged water was added thereto and allowed to cool. The powder precipitated by cooling was separated by suction filtration (filter paper: ADVANTEC5C) using a nutsche and a suction bottle to obtain 52.37 g of a pale yellow powdery crude product. 10.00 g of this crude product was again dissolved in 22.00 g of isopropyl alcohol, once refluxed, and then slowly cooled to room temperature. The precipitate was isolated by suction filtration (filter paper: ADVANTEC5C), washed twice with 22.00 g of ion-exchanged water on a Nutsche filter, and dried under reduced pressure to obtain 7.34 g of a white powdery purified product.
The obtained white powder was analyzed by 1 H-NMR, 13 C-NMR, and FD-MS to detect a compound represented by the following formula (13) (spiro[fluorene 9,9'-(2',7'-dihydroxyxanthene)]). It was confirmed that The physicochemical properties of the obtained white powder were as follows. Furthermore, it was confirmed by GPC that the purity was 97.3%.
Mass spectrum: (m/z)364.
1H -NMR: (500MHz, DMSO-d 6 ): δ 5.85 (s, 1H), 6.13 (dd, J = 8.3Hz, 2.4Hz, 2H), 6.30 (d, J =2.5Hz, 2H), 6.49 (d, J = 8.3Hz, 2H), 7.05 (d, J = 8.1Hz, 2H), 7.30 (tt, J = 7.4Hz, 1.4Hz, 1H), 7.41 (t, J = 7.7Hz, 2H), 7.51 (d, J = 8.3Hz, 2H), 7.61 (dd, J = 8.4Hz, 1 .2Hz, 2H), 8.90-9.30 (a pair of br s, 4H).
13C -NMR: (500MHz, DMSO-d 6 ): δ 41.2, 102.5, 105.5, 121.3, 126.2, 126.5, 129.0, 129.5, 130.2 , 137.2, 140.3, 145.0, 155.5, 156.4.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
〔比較例2〕
 比較例2の化合物として、下記式(14)に示す市販のビスフェノールA(三井化学株式会社製)を用意した。
[Comparative example 2]
As a compound of Comparative Example 2, commercially available bisphenol A (manufactured by Mitsui Chemicals, Inc.) shown in the following formula (14) was prepared.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
〔実施例3〕
 o-クレゾールをm-クレゾール64.86g(0.60モル)とした以外は実施例1と同様にして反応を行い、反応溶液を冷却した。25℃以下に冷却後、30%水酸化ナトリウム溶液を添加すると、反応溶液は淡紅色から薄茶色に変化し懸濁した。この時のフラスコ内の反応溶液のpHは7~8であった。この反応溶液にシクロペンチルメチルエーテル144.2gを加えて、全量を1000mL分液ロートへ移液した。ここにイオン交換水127.0gを加えて混合し、静置すると、薄く濁った淡褐色のエーテル相と無色透明の水相に分離した。水相を除去した後、この分液ロートにてエーテル相にイオン交換水246.0gを添加して水洗を行い、これを3回繰り返した。水洗済みエーテル溶液を500mL三角フラスコにて加熱し、減圧濃縮によりエーテルを除去したところ、褐色の濃縮油状物70.4gが残留した。この残留物はGPCより、目的化合物と未反応のm-クレゾールを含む混合物であった。この残留物を適量のイソプロピルアルコールとイオン交換水により溶解し、減圧下にて常温から175℃まで昇温して濃縮を行った後、常温まで冷却したところ、褐色の固形物残渣が得られた。これを風乾し、粗砕することにより白褐色の粉末19.70g(理論収量に対する収率86.4%)を得た。
 この白褐色粉末についてH-NMR、13C-NMR、FD-MSにより定性したところ、下記式(15)に示す化合物(異性体あり)であることを確認した。なお、得られた白褐色粉末の理化学的性質は以下のとおりであった。また、GPCより純度79.7%であることを確認した。
 マススペクトル:(m/z)380。
 H-NMR:(500MHz,DMSO-d6):δ 2.06-2.20(overlapped s,6H),5.53,5.80 and 6.00(s,1H),6.48-7.64(overlapped,15H),9.13-9.27(overlapped s,2H)。
 13C-NMR:(500MHz,DMSO-d6):δ 19.4,19.4,20.8,21.1,41.9,44.6,47.9,112.1,112.3,112.4,115.7,115.9,117.2,117.3,119.2,119.4,119.6,126.3,126.4,126.5,126.6,127.0,127.1,127.2,127.3,128.9,129.2,129.5,129.9,132.5,132.8,136.1,136.3,137.1,137.4,137.6,137.8,138.7,139.9,140.1,140.2,143.0,143.5,144.0,154.2,154.6,155.4,155.5,157.3。
 なお、H-NMRにおいて、「overlapped s,6H」は、6つのシングレットピークが重なり合っていたことを示す。同様に、「overlapped s,2H」は、2つのシングレットピークが重なり合っていたことを示す。「5.53,5.80 and 6.00(s,1H)」は、これら3ピークがいずれもシングレットで、3ピーク合わせて1H相当であったことを示す。また、13C-NMRにおいて、δ 19.4に2本のピークが重なり合っていたため、同じ値を併記した。後述する実施例4においても同様である。
[Example 3]
The reaction was carried out in the same manner as in Example 1 except that 64.86 g (0.60 mol) of m-cresol was used instead of o-cresol, and the reaction solution was cooled. After cooling to 25° C. or lower, 30% sodium hydroxide solution was added, and the reaction solution changed from pale pink to light brown and became suspended. At this time, the pH of the reaction solution in the flask was 7 to 8. 144.2 g of cyclopentyl methyl ether was added to this reaction solution, and the entire amount was transferred to a 1000 mL separating funnel. 127.0 g of ion-exchanged water was added and mixed, and when the mixture was allowed to stand, the mixture was separated into a slightly cloudy light brown ether phase and a colorless and transparent aqueous phase. After removing the aqueous phase, 246.0 g of ion-exchanged water was added to the ether phase in this separatory funnel to perform water washing, and this was repeated three times. When the water-washed ether solution was heated in a 500 mL Erlenmeyer flask and the ether was removed by vacuum concentration, 70.4 g of a brown concentrated oil remained. This residue was determined by GPC to be a mixture containing the target compound and unreacted m-cresol. This residue was dissolved in an appropriate amount of isopropyl alcohol and ion-exchanged water, concentrated under reduced pressure by raising the temperature from room temperature to 175°C, and then cooled to room temperature to obtain a brown solid residue. . This was air-dried and coarsely crushed to obtain 19.70 g of white-brown powder (yield 86.4% based on the theoretical yield).
When this whitish brown powder was qualitatively characterized by 1 H-NMR, 13 C-NMR, and FD-MS, it was confirmed that it was a compound (including isomers) shown in the following formula (15). The physicochemical properties of the obtained white-brown powder were as follows. Furthermore, it was confirmed by GPC that the purity was 79.7%.
Mass spectrum: (m/z) 380.
1 H-NMR: (500MHz, DMSO-d6): δ 2.06-2.20 (overlapped s, 6H), 5.53, 5.80 and 6.00 (s, 1H), 6.48-7 .64 (overlapped, 15H), 9.13-9.27 (overlapped s, 2H).
13C -NMR: (500MHz, DMSO-d6): δ 19.4, 19.4, 20.8, 21.1, 41.9, 44.6, 47.9, 112.1, 112.3, 112.4, 115.7, 115.9, 117.2, 117.3, 119.2, 119.4, 119.6, 126.3, 126.4, 126.5, 126.6, 127. 0,127.1,127.2,127.3,128.9,129.2,129.5,129.9,132.5,132.8,136.1,136.3,137.1, 137.4, 137.6, 137.8, 138.7, 139.9, 140.1, 140.2, 143.0, 143.5, 144.0, 154.2, 154.6, 155. 4,155.5,157.3.
Note that in 1 H-NMR, "overlapped s, 6H" indicates that six singlet peaks overlapped. Similarly, "overlapped s, 2H" indicates that two singlet peaks were overlapped. "5.53, 5.80 and 6.00 (s, 1H)" indicates that these three peaks were all singlets, and the three peaks combined were equivalent to 1H. In addition, in 13 C-NMR, two peaks at δ 19.4 overlapped, so the same values were written together. The same applies to Example 4, which will be described later.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
〔実施例4〕
 m-クレゾールをMP-クレゾール(m-クレゾールとp-クレゾールとの混合物、住友化学社製「M-301」)64.86g(0.60モル)とした以外は実施例3と同様にして反応を行い、反応溶液を冷却後、30%水酸化ナトリウム溶液による中和、シクロペンチルメチルエーテルによる抽出、更に水洗を行った。この水洗済みエーテル溶液について減圧濃縮によりエーテルを除去したところ、褐色の濃縮油状物77.0gが残留した。この残留物はGPCより、目的化合物と未反応のMP-クレゾールを含む混合物であった。この残留物を適量のイソプロピルアルコールとイオン交換水により溶解し、減圧下にて常温から175℃まで昇温して濃縮を行った後、常温まで冷却したところ、褐色の固形物残渣が得られた。これを風乾し、粗砕することにより白褐色の粉末18.80g(理論収量に対する収率82.5%)を得た。
 この白褐色粉末についてH-NMR、13C-NMR、FD-MSにより定性したところ、前記式(12)に示す化合物と、前記式(15)に示す化合物(異性体あり)と、下記式(16)に示す化合物(異性体あり)との混合物であることを確認した。なお、得られた白褐色粉末の理化学的性質は以下のとおりであった。また、GPCより純度79.7%であることを確認した。
 マススペクトル:(m/z)380。
 H-NMR:(500MHz,DMSO-d6):δ 2.00-2.20(overlapped s,6H),5.53,5.80 and 6.00(s,1H),6.48-7.64(overlapped,15H),9.00-9.27(overlapped s,2H)。
 13C-NMR:(500MHz,DMSO-d6):δ 19.4,19.4,20.1,20.8,21.1,41.9,44.6,47.9,112.1,112.3,112.4,115.1,115.7,115.9,117.2,117.3,119.2,119.4,119.6,126.1,126.3,126.4,126.5,126.6,127.2,127.2,127.3,128.8,128.9,129.2,129.5,129.7,129.9,132.5,132.8,136.1,136.3,137.1,137.4,137.6,137.8,138.7,139.9,140.0,140.1,140.2,143.0,143.5,144.0,154.5,154.6,155.0,155.4,155.5,157.3。
[Example 4]
The reaction was carried out in the same manner as in Example 3, except that m-cresol was replaced with 64.86 g (0.60 mol) of MP-cresol (a mixture of m-cresol and p-cresol, "M-301" manufactured by Sumitomo Chemical Co., Ltd.). After cooling the reaction solution, it was neutralized with a 30% sodium hydroxide solution, extracted with cyclopentyl methyl ether, and washed with water. When the ether was removed from this water-washed ether solution by concentration under reduced pressure, 77.0 g of a brown concentrated oil remained. This residue was determined by GPC to be a mixture containing the target compound and unreacted MP-cresol. This residue was dissolved in an appropriate amount of isopropyl alcohol and ion-exchanged water, concentrated under reduced pressure by raising the temperature from room temperature to 175°C, and then cooled to room temperature to obtain a brown solid residue. . This was air-dried and coarsely crushed to obtain 18.80 g of a whitish brown powder (yield: 82.5% based on the theoretical yield).
When this whitish brown powder was qualitatively characterized by 1 H-NMR, 13 C-NMR, and FD-MS, it was found that the compound represented by the above formula (12), the compound shown by the above formula (15) (with isomers), and the following formula It was confirmed that it was a mixture with the compound shown in (16) (including isomers). The physicochemical properties of the obtained white-brown powder were as follows. Furthermore, it was confirmed by GPC that the purity was 79.7%.
Mass spectrum: (m/z) 380.
1 H-NMR: (500MHz, DMSO-d6): δ 2.00-2.20 (overlapped s, 6H), 5.53, 5.80 and 6.00 (s, 1H), 6.48-7 .64 (overlapped, 15H), 9.00-9.27 (overlapped s, 2H).
13C -NMR: (500MHz, DMSO-d6): δ 19.4, 19.4, 20.1, 20.8, 21.1, 41.9, 44.6, 47.9, 112.1, 112.3, 112.4, 115.1, 115.7, 115.9, 117.2, 117.3, 119.2, 119.4, 119.6, 126.1, 126.3, 126. 4,126.5,126.6,127.2,127.2,127.3,128.8,128.9,129.2,129.5,129.7,129.9,132.5, 132.8, 136.1, 136.3, 137.1, 137.4, 137.6, 137.8, 138.7, 139.9, 140.0, 140.1, 140.2, 143. 0,143.5,144.0,154.5,154.6,155.0,155.4,155.5,157.3.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
〔実施例5〕
 o-クレゾールをフェノール56.46g(0.60モル)とした以外は実施例1と同様にして反応を行い、反応溶液を冷却後、30%水酸化ナトリウム溶液による中和、シクロペンチルメチルエーテルによる抽出、更に水洗を行った。この水洗済みエーテル溶液について減圧濃縮によりエーテルを除去したところ、赤橙色の濃縮油状物32.6gが残留した。この残留物はGPCより、目的化合物と未反応のフェノールを含む混合物であった。この残留物を、イソプロピルアルコール3.2gとイオン交換水3.2gを加えて加熱溶解し、再結晶を行った。これを室温まで放冷し静置すると白橙色の結晶が析出し、この結晶を吸引ろ過した。この結晶には未反応のフェノールがまだ含まれていたため、更にこの結晶をイソプロピルアルコールとイオン交換水に加熱溶解し、再結晶を行った結果、白色の結晶が析出した。この結晶を吸引ろ過し、ヌッチェ上で適量のイソプロピルアルコールとイオン交換水により洗浄した後、風乾すると、白色の粉末6.15g(理論収量に対する収率29.1%)を得た。
 この白色粉末についてH-NMR、13C-NMR、FD-MSにより定性したところ、下記式(17)に示す化合物であることを確認した。なお、得られた白色粉末の理化学的性質は以下のとおりであった。また、GPCより純度が95.7%であることを確認した。
 マススペクトル:(m/z)352。
 H-NMR:(500MHz,DMSO-d6):δ 5.39(s,1H),6.71(dt,J=8.7Hz,2.5Hz,4H),6.92(dt,J=8.6Hz,2.4Hz,4H),7.15(d,J=8.2Hz,2H),7.31(tt,J=7.4Hz,1.4Hz,1H),7.42(t,J=7.7Hz,2H),7.56(dt,J=8.4Hz,1.8Hz,2H),7.61(dt,J=7.2Hz,1.4Hz,2H),9.30(s,1H)。
 13C-NMR:(500MHz,DMSO-d6):δ 54.1,115.1,126.5,126.6,127.3,128.9,129.5,129.9,134.6,137.8,140.0,144.4,155.6。
[Example 5]
The reaction was carried out in the same manner as in Example 1, except that o-cresol was changed to 56.46 g (0.60 mol) of phenol. After cooling the reaction solution, it was neutralized with 30% sodium hydroxide solution and extracted with cyclopentyl methyl ether. , and further washed with water. When the ether was removed from this water-washed ether solution by concentration under reduced pressure, 32.6 g of a reddish-orange concentrated oil remained. This residue was determined by GPC to be a mixture containing the target compound and unreacted phenol. This residue was heated and dissolved by adding 3.2 g of isopropyl alcohol and 3.2 g of ion-exchanged water, and recrystallized. When this was allowed to cool to room temperature and left still, white-orange crystals were precipitated, and these crystals were filtered under suction. Since this crystal still contained unreacted phenol, this crystal was further heated and dissolved in isopropyl alcohol and ion-exchanged water to perform recrystallization, resulting in the precipitation of white crystals. The crystals were suction-filtered, washed on a Nutsche filter with an appropriate amount of isopropyl alcohol and ion-exchanged water, and then air-dried to obtain 6.15 g of white powder (yield 29.1% based on the theoretical yield).
When this white powder was qualitatively characterized by 1 H-NMR, 13 C-NMR, and FD-MS, it was confirmed that it was a compound represented by the following formula (17). The physicochemical properties of the obtained white powder were as follows. Further, the purity was confirmed to be 95.7% by GPC.
Mass spectrum: (m/z) 352.
1 H-NMR: (500MHz, DMSO-d6): δ 5.39 (s, 1H), 6.71 (dt, J = 8.7Hz, 2.5Hz, 4H), 6.92 (dt, J = 8.6Hz, 2.4Hz, 4H), 7.15 (d, J = 8.2Hz, 2H), 7.31 (tt, J = 7.4Hz, 1.4Hz, 1H), 7.42 (t , J=7.7Hz, 2H), 7.56 (dt, J=8.4Hz, 1.8Hz, 2H), 7.61 (dt, J=7.2Hz, 1.4Hz, 2H), 9. 30 (s, 1H).
13C -NMR: (500MHz, DMSO-d6): δ 54.1, 115.1, 126.5, 126.6, 127.3, 128.9, 129.5, 129.9, 134.6, 137.8, 140.0, 144.4, 155.6.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 表1~2に、実施例1~5および比較例1~2の各例の化合物の屈折率の測定に用いた溶液の濃度と屈折率、それらに基づいて求めた屈折率、溶解性(1)および溶解性(2)の評価結果を示す。
 屈折率については、小数点第3位を四捨五入した値を示した。( )内に、小数点第4位までの値を併記した。
Tables 1 and 2 show the concentration and refractive index of the solutions used to measure the refractive index of the compounds of Examples 1 and 5 and Comparative Examples 1 and 2, the refractive index determined based on them, and the solubility (1 ) and solubility (2) evaluation results are shown.
The refractive index is a value rounded to the third decimal place. Values to the fourth decimal place are also written in parentheses.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 なお、実施例1~5、比較例1~2それぞれの溶解性(1)の評価において設定した「化合物の最終的な濃度」と「溶解可否」の結果は以下のとおりであった。○は溶解可であったことを示し、×は溶解不可であったことを示す。
 [実施例1]
 濃度9.13%:○、濃度16.60%:○、濃度23.36%:○
 [実施例2]
 濃度8.98%:○、濃度16.66%:○
 [比較例1]
 濃度7.30%:○、濃度8.05%:×
 [比較例2]
 濃度8.14%:○、濃度10.72%:○
 [実施例3]
 濃度9.07%:○、濃度16.77%:○
 [実施例4]
 濃度9.06%:○、濃度16.78%:○
 [実施例5]
 濃度8.50%:○、濃度16.60%:○
The results of the "final concentration of the compound" and "solubility" set in the evaluation of solubility (1) for Examples 1 to 5 and Comparative Examples 1 to 2 were as follows. ○ indicates that it was soluble, and × indicates that it was not soluble.
[Example 1]
Concentration 9.13%:○, Concentration 16.60%:○, Concentration 23.36%:○
[Example 2]
Concentration 8.98%:○, Concentration 16.66%:○
[Comparative example 1]
Concentration 7.30%: ○, concentration 8.05%: ×
[Comparative example 2]
Concentration 8.14%:○, Concentration 10.72%:○
[Example 3]
Concentration 9.07%: ○, Concentration 16.77%: ○
[Example 4]
Concentration 9.06%:○, Concentration 16.78%:○
[Example 5]
Concentration 8.50%:○, Concentration 16.60%:○
 比較例1の化合物は、ポリカーボネート樹脂の原料等として一般的な比較例2の化合物に比べ、高屈折率であるものの、溶剤溶解性に劣っていた。
 これに対し、実施例1~5の化合物は、比較例2の化合物よりも高屈折率であり、しかも溶剤溶解性に優れていた。
Although the compound of Comparative Example 1 had a higher refractive index than the compound of Comparative Example 2, which is generally used as a raw material for polycarbonate resin, it was inferior in solvent solubility.
On the other hand, the compounds of Examples 1 to 5 had a higher refractive index than the compound of Comparative Example 2, and had excellent solvent solubility.
 本発明によれば、新規な骨格を持つ高屈折率の光学部材およびその製造方法、ならびに新規な骨格を持つ高屈折率の光学部材が得られる光学部材形成材料およびその製造方法を提供できる。 According to the present invention, it is possible to provide a high refractive index optical member having a novel skeleton and a method for manufacturing the same, and an optical member forming material from which a high refractive index optical member having a novel skeleton can be obtained and a manufacturing method for the same.

Claims (13)

  1.  下記式(i)で表される構造を含む、光学部材。
    Figure JPOXMLDOC01-appb-C000001
     ここで、Rは、水素原子またはアリール基であり、
     aは0~5の整数であり、bは0~4の整数であり、
     Rは置換基であり、(a+b)が2以上である場合、(a+b)個のRは同一でも異なっていてもよく、
     cおよびdは、それぞれ独立に0~6の整数であり、
     Rは、アルキレン基であり、(c+d)が2以上である場合、(c+d)個のRは同一でも異なっていてもよく、
     eおよびfは、それぞれ独立に1~5の整数であり、gおよびhは、それぞれ独立に0~4の整数であり、(e+g)は1~5であり、(f+h)は1~5であり、
     Rは、置換基であり、(g+h)が2以上である場合、(g+h)個のRは同一でも異なっていてもよい。
    An optical member including a structure represented by the following formula (i).
    Figure JPOXMLDOC01-appb-C000001
    Here, R 1 is a hydrogen atom or an aryl group,
    a is an integer from 0 to 5, b is an integer from 0 to 4,
    R 2 is a substituent, and when (a + b) is 2 or more, (a + b) R 2 may be the same or different,
    c and d are each independently an integer of 0 to 6,
    R 3 is an alkylene group, and when (c + d) is 2 or more, (c + d) R 3 may be the same or different,
    e and f are each independently an integer of 1 to 5, g and h are each independently an integer of 0 to 4, (e+g) is 1 to 5, and (f+h) is 1 to 5. can be,
    R 4 is a substituent, and when (g+h) is 2 or more, (g+h) R 4 may be the same or different.
  2.  下記式(1)で表される化合物に基づく構成単位を有する樹脂を含む、光学部材。
    Figure JPOXMLDOC01-appb-C000002
     ここで、Rは、水素原子またはアリール基であり、
     aは0~5の整数であり、bは0~4の整数であり、
     Rは置換基であり、(a+b)が2以上である場合、(a+b)個のRは同一でも異なっていてもよく、
     cおよびdは、それぞれ独立に0~6の整数であり、
     Rは、アルキレン基であり、(c+d)が2以上である場合、(c+d)個のRは同一でも異なっていてもよく、
     eおよびfは、それぞれ独立に1~5の整数であり、gおよびhは、それぞれ独立に0~4の整数であり、(e+g)は1~5であり、(f+h)は1~5であり、
     Rは、置換基であり、(g+h)が2以上である場合、(g+h)個のRは同一でも異なっていてもよい。
    An optical member comprising a resin having a structural unit based on a compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000002
    Here, R 1 is a hydrogen atom or an aryl group,
    a is an integer from 0 to 5, b is an integer from 0 to 4,
    R 2 is a substituent, and when (a + b) is 2 or more, (a + b) R 2 may be the same or different,
    c and d are each independently an integer of 0 to 6,
    R 3 is an alkylene group, and when (c + d) is 2 or more, (c + d) R 3 may be the same or different,
    e and f are each independently an integer of 1 to 5, g and h are each independently an integer of 0 to 4, (e+g) is 1 to 5, and (f+h) is 1 to 5. can be,
    R 4 is a substituent, and when (g+h) is 2 or more, (g+h) R 4 may be the same or different.
  3.  前記樹脂が、多価ヒドロキシ化合物をモノマー成分とする樹脂である請求項2に記載の光学部材。 The optical member according to claim 2, wherein the resin is a resin containing a polyhydric hydroxy compound as a monomer component.
  4.  前記樹脂が、ポリカーボネート樹脂またはポリエステル樹脂である請求項2に記載の光学部材。 The optical member according to claim 2, wherein the resin is a polycarbonate resin or a polyester resin.
  5.  下記式(2)で表される化合物を含む硬化性組成物の硬化物を含む、光学部材。
    Figure JPOXMLDOC01-appb-C000003
     ここで、Rは、水素原子またはアリール基であり、
     aは0~5の整数であり、bは0~4の整数であり、
     Rは置換基であり、(a+b)が2以上である場合、(a+b)個のRは同一でも異なっていてもよく、
     cおよびdは、それぞれ独立に0~6の整数であり、
     Rは、アルキレン基であり、(c+d)が2以上である場合、(c+d)個のRは同一でも異なっていてもよく、
     eおよびfは、それぞれ独立に1~5の整数であり、gおよびhは、それぞれ独立に0~4の整数であり、(e+g)は1~5であり、(f+h)は1~5であり、
     Xは、重合性官能基もしくは反応性官能基を含む1価基、または水素原子であり、(e+f)個のXは同一でも異なっていてもよく、(e+f)個のXのうち少なくとも1個は前記1価基であり、
     Rは、置換基であり、(g+h)が2以上である場合、(g+h)個のRは同一でも異なっていてもよい。
    An optical member comprising a cured product of a curable composition containing a compound represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000003
    Here, R 1 is a hydrogen atom or an aryl group,
    a is an integer from 0 to 5, b is an integer from 0 to 4,
    R 2 is a substituent, and when (a + b) is 2 or more, (a + b) R 2 may be the same or different,
    c and d are each independently an integer of 0 to 6,
    R 3 is an alkylene group, and when (c + d) is 2 or more, (c + d) R 3 may be the same or different,
    e and f are each independently an integer of 1 to 5, g and h are each independently an integer of 0 to 4, (e+g) is 1 to 5, and (f+h) is 1 to 5. can be,
    X is a monovalent group containing a polymerizable functional group or a reactive functional group, or a hydrogen atom, and (e+f) Xs may be the same or different, and at least one of the (e+f) Xs is the monovalent group,
    R 4 is a substituent, and when (g+h) is 2 or more, (g+h) R 4 may be the same or different.
  6.  下記式(1)で表される化合物に基づく構成単位を有する樹脂を含む、光学部材形成材料。
    Figure JPOXMLDOC01-appb-C000004
     ここで、Rは、水素原子またはアリール基であり、
     aは0~5の整数であり、bは0~4の整数であり、
     Rは置換基であり、(a+b)が2以上である場合、(a+b)個のRは同一でも異なっていてもよく、
     cおよびdは、それぞれ独立に0~6の整数であり、
     Rは、アルキレン基であり、(c+d)が2以上である場合、(c+d)個のRは同一でも異なっていてもよく、
     eおよびfは、それぞれ独立に1~5の整数であり、gおよびhは、それぞれ独立に0~4の整数であり、(e+g)は1~5であり、(f+h)は1~5であり、
     Rは、置換基であり、(g+h)が2以上である場合、(g+h)個のRは同一でも異なっていてもよい。
    An optical member forming material containing a resin having a structural unit based on a compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000004
    Here, R 1 is a hydrogen atom or an aryl group,
    a is an integer from 0 to 5, b is an integer from 0 to 4,
    R 2 is a substituent, and when (a + b) is 2 or more, (a + b) R 2 may be the same or different,
    c and d are each independently an integer of 0 to 6,
    R 3 is an alkylene group, and when (c + d) is 2 or more, (c + d) R 3 may be the same or different,
    e and f are each independently an integer of 1 to 5, g and h are each independently an integer of 0 to 4, (e+g) is 1 to 5, and (f+h) is 1 to 5. can be,
    R 4 is a substituent, and when (g+h) is 2 or more, (g+h) R 4 may be the same or different.
  7.  前記樹脂が、多価ヒドロキシ化合物をモノマー成分とする樹脂である請求項6に記載の光学部材形成材料。 The optical member forming material according to claim 6, wherein the resin is a resin containing a polyhydric hydroxy compound as a monomer component.
  8.  前記樹脂が、ポリカーボネート樹脂またはポリエステル樹脂である請求項6に記載の光学部材形成材料。 The optical member forming material according to claim 6, wherein the resin is a polycarbonate resin or a polyester resin.
  9.  下記式(2)で表される化合物を含む硬化性組成物である、光学部材形成材料。
    Figure JPOXMLDOC01-appb-C000005
     ここで、Rは、水素原子またはアリール基であり、
     aは0~5の整数であり、bは0~4の整数であり、
     Rは置換基であり、(a+b)が2以上である場合、(a+b)個のRは同一でも異なっていてもよく、
     cおよびdは、それぞれ独立に0~6の整数であり、
     Rは、アルキレン基であり、(c+d)が2以上である場合、(c+d)個のRは同一でも異なっていてもよく、
     eおよびfは、それぞれ独立に1~5の整数であり、gおよびhは、それぞれ独立に0~4の整数であり、(e+g)は1~5であり、(f+h)は1~5であり、
     Xは、重合性官能基もしくは反応性官能基を含む1価基、または水素原子であり、(e+f)個のXは同一でも異なっていてもよく、(e+f)個のXのうち少なくとも1個は前記1価基であり、
     Rは、置換基であり、(g+h)が2以上である場合、(g+h)個のRは同一でも異なっていてもよい。
    An optical member forming material which is a curable composition containing a compound represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000005
    Here, R 1 is a hydrogen atom or an aryl group,
    a is an integer from 0 to 5, b is an integer from 0 to 4,
    R 2 is a substituent, and when (a + b) is 2 or more, (a + b) R 2 may be the same or different,
    c and d are each independently an integer of 0 to 6,
    R 3 is an alkylene group, and when (c + d) is 2 or more, (c + d) R 3 may be the same or different,
    e and f are each independently an integer of 1 to 5, g and h are each independently an integer of 0 to 4, (e+g) is 1 to 5, and (f+h) is 1 to 5. can be,
    X is a monovalent group containing a polymerizable functional group or a reactive functional group, or a hydrogen atom, and (e+f) Xs may be the same or different, and at least one of the (e+f) Xs is the monovalent group,
    R 4 is a substituent, and when (g+h) is 2 or more, (g+h) R 4 may be the same or different.
  10.  請求項6~8のいずれか1項に記載の光学部材形成材料を製造する方法であって、
     モノマー成分の少なくとも一部に前記式(1)で表される化合物を用いて前記樹脂を製造する工程を有する、光学部材形成材料の製造方法。
    A method for manufacturing the optical member forming material according to any one of claims 6 to 8, comprising:
    A method for producing an optical member forming material, comprising the step of producing the resin using a compound represented by the formula (1) as at least a part of the monomer components.
  11.  請求項9に記載の光学部材形成材料を製造する方法であって、
     前記式(2)中のOXが全てOHである化合物の前記OHの少なくとも一部に、重合性官能基または反応性官能基を含む1価基を付加して前記式(2)で表される化合物を製造する工程を有する、光学部材形成材料の製造方法。
    A method for manufacturing the optical member forming material according to claim 9, comprising:
    A monovalent group containing a polymerizable functional group or a reactive functional group is added to at least a portion of the OH of a compound in which all OX in the formula (2) are OH, and the compound is represented by the formula (2). A method for producing an optical member forming material, comprising a step of producing a compound.
  12.  請求項6~8のいずれか1項に記載の光学部材形成材料を成形する、光学部材の製造方法。 A method for manufacturing an optical member, comprising molding the optical member forming material according to any one of claims 6 to 8.
  13.  請求項9に記載の光学部材形成材料を硬化する、光学部材の製造方法。 A method for manufacturing an optical member, which comprises curing the optical member forming material according to claim 9.
PCT/JP2023/012497 2022-03-31 2023-03-28 Optical member, material for forming optical member and method for manufacturing same, and method for manufacturing optical member WO2023190508A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-059596 2022-03-31
JP2022059596 2022-03-31
JP2023043570A JP2023152833A (en) 2022-03-31 2023-03-17 Optical member, optical member forming material, manufacturing method thereof, and manufacturing method of optical member
JP2023-043570 2023-03-17

Publications (1)

Publication Number Publication Date
WO2023190508A1 true WO2023190508A1 (en) 2023-10-05

Family

ID=88202553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012497 WO2023190508A1 (en) 2022-03-31 2023-03-28 Optical member, material for forming optical member and method for manufacturing same, and method for manufacturing optical member

Country Status (1)

Country Link
WO (1) WO2023190508A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160663A (en) * 2004-12-07 2006-06-22 Honshu Chem Ind Co Ltd Method for producing 1,1'-bis(2-hydroxynaphthyl)
JP2007199653A (en) * 2005-12-27 2007-08-09 Shin Etsu Chem Co Ltd Photoresist underlayer film forming material and pattern forming method
US20140128494A1 (en) * 2010-07-07 2014-05-08 California Institute Of Technology On-demand photoinitiated polymerization
WO2018016615A1 (en) * 2016-07-21 2018-01-25 三菱瓦斯化学株式会社 Compound, resin, composition, resist pattern formation method, and circuit pattern formation method
WO2018016648A1 (en) * 2016-07-21 2018-01-25 三菱瓦斯化学株式会社 Compound, resin, composition, and pattern formation method
WO2019082541A1 (en) * 2017-10-25 2019-05-02 田岡化学工業株式会社 Bisaryl alcohol having naphthalene skeleton and method for producing same
JP2021513535A (en) * 2018-02-09 2021-05-27 三菱瓦斯化学株式会社 Triarylmethane compound

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160663A (en) * 2004-12-07 2006-06-22 Honshu Chem Ind Co Ltd Method for producing 1,1'-bis(2-hydroxynaphthyl)
JP2007199653A (en) * 2005-12-27 2007-08-09 Shin Etsu Chem Co Ltd Photoresist underlayer film forming material and pattern forming method
US20140128494A1 (en) * 2010-07-07 2014-05-08 California Institute Of Technology On-demand photoinitiated polymerization
WO2018016615A1 (en) * 2016-07-21 2018-01-25 三菱瓦斯化学株式会社 Compound, resin, composition, resist pattern formation method, and circuit pattern formation method
WO2018016648A1 (en) * 2016-07-21 2018-01-25 三菱瓦斯化学株式会社 Compound, resin, composition, and pattern formation method
WO2019082541A1 (en) * 2017-10-25 2019-05-02 田岡化学工業株式会社 Bisaryl alcohol having naphthalene skeleton and method for producing same
JP2021513535A (en) * 2018-02-09 2021-05-27 三菱瓦斯化学株式会社 Triarylmethane compound

Similar Documents

Publication Publication Date Title
US10689318B2 (en) Bisphenol having fluorene skeleton, method for producing same, polyarylate resin, (meth)acrylate compound and epoxy resin which are derived from the bisphenol
JP5581180B2 (en) Epoxy resin composition having fluorene skeleton and cured product thereof
US20100145002A1 (en) Tetracarboxylic acid or polyesterimide thereof, and process for production of the same
US7507450B2 (en) Varnish for forming liquid crystal alignment layer and liquid crystal display element using the same
JP2008231327A (en) Polyimide having high transparency and its manufacturing method
TWI526752B (en) Method for producing liquid crystal display element, polymer composition and liquid crystal display element
TWI583668B (en) A composition containing a phenolic hydroxyl group, a resin containing a (meth) acryloyl group, a hardened composition, a hardened product and a
JPH06263676A (en) New cyclohexyl group-containing glycidyl ether
WO2019130839A1 (en) Array antenna, method for producing same, and liquid crystal aligning agent for array antennas
US7087799B2 (en) Amino group containing phenol derivative
US11767287B2 (en) Compound and method for producing the same, resin composition, resin sheet, multilayer printed wiring board, and semiconductor device
Lin et al. An approach of modifying poly (aryl ether ketone) to phenol-containing poly (aryl ether) and its application in preparing high-performance epoxy thermosets
JP6087738B2 (en) Fluorene compound having phenolic hydroxyl group and epoxy compound thereof
KR20190038859A (en) New phosphonium compounds
JP5862453B2 (en) Fluorine-containing polymerizable monomer and polymer compound using the same
WO2023190508A1 (en) Optical member, material for forming optical member and method for manufacturing same, and method for manufacturing optical member
JP2023152833A (en) Optical member, optical member forming material, manufacturing method thereof, and manufacturing method of optical member
TWI708769B (en) Novel tetracarboxylic dianhydride, polyimide derived from the same and compact constructed by the polyimide
WO2023058524A1 (en) Compound, resin, curable composition, cured product, and optical member
JP2023054758A (en) Compound, resin, curable composition, cured material and optical member
TW201522434A (en) Method for producing phenolic resin, phenolic resin, epoxy resin, and epoxy resin composition
JP5811753B2 (en) Method for producing norbornane skeleton-containing polyamide
WO2019022251A1 (en) Novel (poly)amine compound, resin, and cured product
WO2006121030A1 (en) Epoxy resin, method for producing same and use thereof
JP7298798B2 (en) Resin composition, resin sheet, multilayer printed wiring board, and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780517

Country of ref document: EP

Kind code of ref document: A1