WO2023190268A1 - Anti-icing/snow protection laminate - Google Patents

Anti-icing/snow protection laminate Download PDF

Info

Publication number
WO2023190268A1
WO2023190268A1 PCT/JP2023/012059 JP2023012059W WO2023190268A1 WO 2023190268 A1 WO2023190268 A1 WO 2023190268A1 JP 2023012059 W JP2023012059 W JP 2023012059W WO 2023190268 A1 WO2023190268 A1 WO 2023190268A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
filled
snow
resin
laminate
Prior art date
Application number
PCT/JP2023/012059
Other languages
French (fr)
Japanese (ja)
Inventor
浩之 西川
敏雄 中谷
悠也 林
Original Assignee
東洋アルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋アルミニウム株式会社 filed Critical 東洋アルミニウム株式会社
Publication of WO2023190268A1 publication Critical patent/WO2023190268A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents

Definitions

  • the present invention relates to a novel anti-icing/snow laminate. More specifically, the present invention relates to a laminate for preventing snow from accumulating on various articles as well as structures such as buildings and signs.
  • snow and ice build up on various structures or objects may cause various problems.
  • objects For example, if snow falls on traffic lights, road signs, cables, antennas, etc., it may cause traffic problems, communication problems, power outages, etc.
  • traffic lights, road signs, etc. are essential for traffic safety, but when snow accumulates on them, even if it is intermittent, it can be dangerous for drivers, pedestrians, etc. This may make it difficult to see and may cause an accident. For this reason, measures are needed to prevent snow from accumulating, especially in areas with heavy snowfall, in order to ensure the visibility of traffic lights, road signs, etc.
  • the former method includes a method of providing a roof or the like on a structure.
  • the latter method there is a method of modifying structures etc. to be hydrophilic or hydrophobic.
  • compositions for forming an anti-snow coating which contains composite particles in which fine particles are coated with a first polymer and a paint component (Patent Document 1).
  • the main object of the present invention is to provide an anti-icing/snow laminate that can maintain a state substantially free from snow accumulation.
  • a laminate including, in order, a base material, a filler particle-containing layer, and a functional layer, (1)
  • the filled particle-containing layer includes first filled particles having an average particle diameter D50 of 15 to 50 ⁇ m and a matrix containing at least one resin component of a thermoplastic resin and a thermosetting resin.
  • the functional layer includes a three-dimensional network structure containing hydrophobic oxide fine particles with an average primary particle diameter of 3 to 100 nm.
  • An anti-icing/snow laminate characterized by the following. 2. Item 1, wherein the first filled particles include acrylic resin particles with a specific gravity of 1.1 to 1.5 g/cm 3 and the second filled particles include polyethylene particles with a specific gravity of 0.92 to 0.98 g/m 3 Anti-ice/snow laminate. 3. 2.
  • An anti-ice/snow cover comprising the anti-ice/snow laminate according to item 1 above, wherein the laminate is arranged such that the functional layer is on the outermost surface. 5.
  • a method for preventing ice or snow from adhering to an object comprising the step of laminating the laminate on the surface of the object so that the functional layer is on the outermost surface. 6.
  • a method for preventing ice or snow from adhering to an object comprising: (1) In a matrix containing at least one resin component of a thermoplastic resin and a thermosetting resin, (a) first filled particles having an average particle diameter D50 of 15 to 50 ⁇ m; (b) The first filled particles contain 12 to 120 parts by weight based on 100 parts by weight of the resin component, and the second filled particles contain 12 to 80 parts by weight based on 100 parts by weight of the resin component. forming a layer containing filled particles on the surface of the object; (2) forming a functional layer containing a three-dimensional network structure containing hydrophobic oxide fine particles with an average primary particle diameter of 3 to 100 nm on the surface of the filled particle-containing layer; How to include.
  • the present invention it is possible to provide an anti-icing/snow laminate that can maintain a state substantially free from snow accumulation.
  • a layer containing two types of filler particles with different particle sizes is formed as a base for the functional layer, it is difficult for snow or ice to adhere to the layer. That is, it is possible to prevent snow accretion at a temperature slightly higher than 0° C. (so-called wet snow accretion).
  • wet snow accretion for example, depending on the conditions, it is possible to maintain a state with almost no snow for at least 30 minutes or more. In this way, in cases where no snow falls for more than 30 minutes, the phenomenon of melted snow freezing and forming ice can be more effectively prevented.
  • the laminate of the present invention has excellent snow and ice prevention effects, and can be suitably used as a laminate for snow or ice prevention.
  • a laminate having such characteristics can be suitably used for surface coating of various articles, including structures in snowy regions (buildings, signs, etc.). In particular, it can be suitably used to protect the surface of a display unit or a cover of a display device or display member that requires continuous visibility.
  • FIG. 1 is a schematic diagram showing an example of the layer structure of the laminate of the present invention.
  • FIG. 2 is a schematic diagram showing an embodiment of the test of Test Example 1.
  • the anti-icing/snow laminate of the present invention is a laminate including, in this order, a base material, a filler particle-containing layer, and a functional layer, (1)
  • the filled particle-containing layer includes first filled particles having an average particle diameter D50 of 15 to 50 ⁇ m and a matrix containing at least one resin component of a thermoplastic resin and a thermosetting resin.
  • the functional layer includes a three-dimensional network structure containing hydrophobic oxide fine particles with an average primary particle diameter of 3 to 100 nm. It is characterized by
  • FIG. 1 shows an example of the layer structure according to an embodiment of the laminate of the present invention.
  • a base material 11 As a basic structure of the anti-icing/snow laminate 10 shown in FIG. 1, a base material 11, a layer containing filler particles 12, and a functional layer 13 are laminated in this order. In FIG. 1, these layers are stacked so as to be in contact with each other.
  • the functional layer 13 is arranged as the outermost layer (the outermost surface layer).
  • first filled particles 12b 1 and second filled particles 12b 2 are filled in a matrix 12a containing at least one resin component of a thermoplastic resin and a thermosetting resin.
  • the filled particle-containing layer 12 has an uneven surface formed by these filled particles.
  • irregularities are formed on the surface of the functional layer 13 so as to follow the surface irregularities.
  • the functional layer 13 includes, in particular, a three-dimensional network structure formed by agglomeration of hydrophobic oxide fine particles 13a. This makes it difficult for the hydrophobic oxide particles 13a to fall off from the laminate even if the hydrophobic oxide particles 13a come into contact with ice or snow.
  • the hydrophobic oxide fine particles 13a may contain primary particles, but preferably contain many aggregates (secondary particles) thereof. Thereby, a three-dimensional network structure can be reliably formed.
  • the substrate serves as a support member on which the filled particle-containing layer and the functional layer are laminated, and may be in the form of a raw material, a semi-finished product, or a final product. Furthermore, the final product may be either a structure or an article.
  • the base material is a raw material or a semi-finished product
  • a film-like, sheet-like, or plate-like transparent material glass or resin such as acrylic resin
  • the transparent material/filled particle-containing layer/ A snow/ice protection cover (or seal, barrier) including a functional layer can be provided.
  • a snow/ice protection cover By attaching such a snow/ice protection cover to an object to be protected against snow/ice so that the functional layer becomes the outermost surface (the outermost layer exposed to the outside air), the object is protected from snow/icing.
  • the final product includes various products used outdoors or indoors.
  • the laminate of the present invention is formed, the laminate is attached to the surface of an object.
  • the present invention also includes an embodiment (method B) in which the object itself is used as a base material and a filled particle-containing layer and a functional layer are formed on the base material.
  • the final products include, for example, structures such as traffic lights, road signs, antennas, display signs, curved mirrors, street lights, and road lighting, as well as daily necessities (glasses, goggles, rain gear, bags, etc.), and building materials (roofs, wallpaper, flooring materials, etc.).
  • the laminate of the present invention can prevent snow accumulation even in a relatively short period of time, so it can be preferably applied to display surfaces of display devices and members such as traffic lights and road signs. That is, the laminate of the present invention includes a product in which a display portion of a display device/member is used as a base material, and a filler particle-containing layer and a functional layer are sequentially laminated on the base material.
  • the filled particle-containing layer and the functional layer in the present invention are transparent or semitransparent, it is possible to visually recognize the display on the surface of the base material.
  • the base material has transparency, such as window glass, an object formed by sequentially laminating a filled particle-containing layer and a functional layer on the base material can also maintain transparency.
  • the material of the base material is not particularly limited, and may include, for example, at least one of resins, rubbers, metal materials (including alloys), inorganic materials, and composite materials containing these materials. Its form is not limited either, and may be, for example, a sheet, film, molded body, fibers (including woven fabrics, nonwoven fabrics, paper, etc.), powder particles, or the like. Therefore, it can be applied to various materials such as resin films, resin sheets, paper, nonwoven fabrics, synthetic papers, metal foils, metal plates, resin films, metal films, rubber, glass, ceramics, and plastic molded products. Further, it may be transparent, translucent or opaque.
  • first filled particles and second filled particles are contained in a matrix containing at least one resin component of a thermoplastic resin and a thermosetting resin.
  • the first filler particles and the second filler particles are dispersed within the matrix.
  • the matrix is a material that supports (fixes) the first filled particles and the second filled particles, and includes at least one resin component of a thermoplastic resin and a thermosetting resin.
  • the content of the resin component in the matrix varies depending on, for example, the type of thermoplastic resin or thermosetting resin or filler particles used, whether additives are used, etc., but it is usually about 50 to 100% by weight, especially about 70 to 100% by weight. It is preferably 100% by weight, and more preferably 80 to 100% by weight.
  • the thermosetting resin is directly adhered to at least a portion of the functional particles, making it possible to more strongly fix the functional particles, resulting in higher durability. can be done.
  • thermoplastic resins can be used as the thermoplastic resin.
  • a copolymer containing a combination of monomers constituting these, a modified resin, etc. can be used.
  • Known or commercially available ones can be used as these.
  • thermosetting resin is not limited as long as it is thermoset and strongly adheres to the base material layer and functional particles (functional layer), such as phenol resin, urea resin, melamine resin, epoxy resin, and non-limiting resin.
  • functional layer such as phenol resin, urea resin, melamine resin, epoxy resin, and non-limiting resin.
  • saturated polyester resins polyurethane resins, diallyl phthalate resins, silicone resins, alkyd resins, etc.
  • blend resins of these resins, copolymers containing combinations of monomers constituting these resins, modified resins, etc. can be used. These can be used alone or in combination of two or more.
  • urea resins melamine resins
  • epoxy resins unsaturated polyester resins
  • polyurethane resins polyurethane resins
  • alkyd resins Known or commercially available ones can be used as these.
  • the matrix may contain other components within a range that does not impede the effects of the present invention.
  • additives such as dispersants, colorants, antioxidants, fillers (such as talc), and ultraviolet inhibitors.
  • the total content of additives in the matrix is usually up to 50% by weight and can in particular be between 0 and 5% by weight.
  • these additives meet the requirements of the first filled particles or the second filled particles shown below, they are treated as those filled particles.
  • the first filler particles and the second filler particles (together referred to simply as "filler particles") contained in the matrix form irregularities particularly on the surface of the filler particle-containing layer, and ultimately on the surface of the functional layer, thereby preventing snow buildup and It has the function of increasing the anti-icing effect.
  • the filled particles may be composed of either an organic component or an inorganic component, or may be a mixture thereof.
  • Inorganic components include, for example, metals such as aluminum, copper, iron, titanium, silver, and calcium, or alloys or intermetallic compounds containing these, oxides such as silicon oxide, aluminum oxide, zirconium oxide, titanium oxide, and iron oxide, and calcium phosphate.
  • metals such as aluminum, copper, iron, titanium, silver, and calcium
  • alloys or intermetallic compounds containing these oxides such as silicon oxide, aluminum oxide, zirconium oxide, titanium oxide, and iron oxide, and calcium phosphate.
  • oxides such as silicon oxide, aluminum oxide, zirconium oxide, titanium oxide, and iron oxide, and calcium phosphate.
  • inorganic or organic acid salts such as calcium stearate
  • ceramics such as aluminum nitride, boron nitride, silicon carbide, and silicon nitride, carbon (carbon powder), glass, etc. can be suitably used.
  • organic components include acrylic resin, urethane resin, melamine resin, amino resin, epoxy resin, polyethylene, polymethyl methacrylate resin (crosslinked polymethyl methacrylate resin), polystyrene, polypropylene, polyester resin, and cellulose resin. , vinyl chloride resin, polyvinyl alcohol, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, ethylene-ethyl acrylate copolymer, polyacrylonitrile, polyamide, and other organic polymer components (or resin components). It can be suitably used. These can be used alone or in combination of two or more. In the present invention, for example, synthetic resin particles (resin beads) can be suitably used. Known or commercially available ones can be used as these.
  • acrylic resin particles for example, crosslinked polymethyl methacrylate particles
  • polyethylene particles for example, polyethylene particles
  • polyethyleneimine particles for example, polyethyleneimine particles
  • hydrophilic silica particles for example, calcium phosphate particles
  • charcoal powder calcined calcium particles
  • uncalcined calcium particles uncalcined calcium particles
  • calcium stearate particles etc.
  • At least one kind can be suitably used as filler particles.
  • the materials of the first filling particles and the second filling particles used may be the same or different.
  • the shape of the filled particles is not limited, and may be, for example, spherical, spheroidal, irregular, teardrop-shaped, flat, hollow, porous, or the like.
  • the first filled particles have an average particle diameter D50 of 15 to 50 ⁇ m, particularly preferably 15 to 22 ⁇ m.
  • the specific gravity of the first filled particles is preferably, but not limited to, 1.1 to 1.3 g/cm 3 . Therefore, for example, synthetic resin particles (eg, acrylic resin particles) having an average particle diameter D50 of 15 to 22 ⁇ m and a specific gravity of 1.1 to 1.3 g/cm 3 can be suitably used as the first filling particles.
  • the content of the first filled particles is approximately 12 to 120 parts by weight, particularly preferably 15 to 100 parts by weight, based on 100 parts by weight of the resin component.
  • the second filled particles have an average particle diameter D50 of 8 to 12 ⁇ m, particularly preferably 10 to 12 ⁇ m. Furthermore, the specific gravity of the second filled particles is preferably, but not limited to, 0.92 to 0.98 g/m 3 . Therefore, for example, synthetic resin particles (eg, polyethylene particles) having an average particle diameter D50 of 8 to 12 ⁇ m and a specific gravity of 0.92 to 0.98 g/m 3 can be suitably used as the second filler particles.
  • synthetic resin particles eg, polyethylene particles
  • the content of the second filled particles is approximately 12 to 80 parts by weight, particularly preferably 10 to 15 parts by weight, based on 100 parts by weight of the resin component.
  • the average particle diameter D50 of the filled particles a value measured by a laser diffraction particle size distribution analyzer can be used. Therefore, when two or more types of particles having different average particle diameters are used as the first filling particles, the average particle diameter D50 is the result of measuring the average particle diameter of a mixed particle of both particles mixed at a predetermined ratio. Similarly, when two or more types of particles having different average particle diameters are used as the second filling particles, the average particle diameter D50 is the result of measuring the average particle diameter of the mixed particles mixed at a predetermined ratio.
  • the first filled particles and the second filled particles have different specific gravities. Since one of the filled particles has a lighter specific gravity than the other, the filled particles are less likely to aggregate with each other, and the dispersibility of the filled particles in the matrix can be further improved.
  • the specific gravity of the first filled particles is larger than the specific gravity of the second filled particles, and it is particularly preferable that the difference in specific gravity between the two is 0.1 g/cm 3 or more. Most preferably, it is 0.2 g/cm 3 or more.
  • the upper limit of the difference in specific gravity can be, for example, about 0.58 g/cm 3 .
  • the difference in specific gravity is based on the one with the smallest specific gravity when multiple filled particles with different specific gravity are used as the first filled particles, and when multiple filled particles with different specific gravity are used as the second filled particles. If so, calculate based on the largest value.
  • the method of incorporating two types of filler particles into a matrix containing at least one resin component of a thermoplastic resin and a thermosetting resin is not particularly limited. Examples include a method of blending two types of filled particles into a product).
  • the mixing method may be either dry mixing or wet mixing.
  • the main components of the matrix consist of a resin component, a monomer or oligomer constituting it, a solvent, a crosslinking agent if necessary, etc., and filler particles may be added and mixed therewith.
  • the method for forming the filled particle-containing layer is not particularly limited, but it is preferably formed, for example, by a method that includes a step of applying a coating liquid containing a resin component, first filled particles, second filled particles, and a solvent to a base material. be able to.
  • a dispersion liquid in which the above-mentioned resin component, first filled particles, and second filled particles are dispersed can be suitably used. In this case, a portion of these may be dissolved in the solvent as long as the effects of the present invention are not impaired.
  • the solvent contained in the coating liquid is not particularly limited, and in addition to water, for example, alcohol (ethanol, normal propyl alcohol, isopropyl alcohol (IPA), hexyl alcohol), cyclohexane, toluene, acetone, propylene glycol, hexylene glycol, Organic solvents such as butyl diglycol, pentamethylene glycol, normal pentane, normal hexane, butyl acetate, and ethyl acetate can be appropriately selected. These can be used alone or in combination of two or more. At this time, trace amounts of dispersants, colorants, antisettling agents, viscosity modifiers, etc. can also be used in combination.
  • the amount of solid content dispersed in the coating liquid may be set appropriately within the range of usually about 1 to 100 g/L.
  • the method of applying the coating liquid is not limited, and known methods such as roll coating, gravure coating, bar coating, doctor blade coating, brush coating, spraying, powder electrostatic method, etc. can be employed.
  • a drying step can be performed as necessary.
  • drying either natural drying or forced drying (heat drying) may be used, but forced drying is preferred industrially.
  • the drying temperature is not limited as long as it does not adversely affect the filled particle-containing layer, etc., and may be, for example, 100°C or lower, particularly room temperature (for example, 15°C) to about 60°C, but is not limited thereto. .
  • the thickness of the filled particle-containing layer laminated on the base material is not particularly limited, but from the viewpoint of productivity, cost, etc., it is usually preferably about 0.1 ⁇ m to 5 mm, particularly about 0.5 ⁇ m to 2 mm. It is more preferable that
  • the functional layer is laminated on the surface of the filled particle-containing layer, and is arranged as the outermost layer of the laminate of the present invention.
  • the functional layer includes a three-dimensional network structure containing hydrophobic oxide fine particles with an average primary particle diameter of 3 to 100 nm.
  • a three-dimensional network structure formed by aggregation of a plurality of hydrophobic oxide fine particles 13a (particle group) can be suitably employed.
  • Such a three-dimensional network structure is usually porous and can exhibit higher anti-icing and snow-preventing effects.
  • the average primary particle diameter of the hydrophobic oxide fine particles is usually 3 to 100 nm, preferably 5 to 50 nm, and more preferably 5 to 20 nm.
  • the hydrophobic oxide fine particles are in an appropriate agglomerated state, and gases such as air can be retained in the voids in the aggregates. Excellent anti-icing and snow-proofing effects can be obtained. That is, this agglomerated state is maintained even after being laminated on the layer containing filled particles, so that excellent anti-icing and snow-preventing effects can be exhibited.
  • the primary particle average diameter can be measured using a scanning electron microscope (FE-SEM), and if the resolution of the scanning electron microscope is low, other electron microscopes such as a transmission electron microscope may be used. It may also be carried out using a microscope. Specifically, if the particle shape is spherical, the diameter is considered to be the diameter, and if the particle shape is non-spherical, the average value of the longest diameter and the shortest diameter is regarded as the diameter, and 20 particles are arbitrarily selected by observation using a scanning electron microscope etc. Let the average diameter of the particles be the primary particle average diameter.
  • FE-SEM scanning electron microscope
  • the specific surface area (BET method) of the hydrophobic oxide fine particles is not particularly limited, but is usually about 50 to 300 m 2 /g, preferably 100 to 300 m 2 /g.
  • the hydrophobic oxide fine particles are not particularly limited as long as they have hydrophobicity, and they may be made hydrophobic by surface treatment.
  • hydrophilic oxide fine particles whose surface is made hydrophobic by subjecting them to surface treatment with a silane coupling agent or the like.
  • the type of oxide is also not limited as long as it has hydrophobicity.
  • silica silicon dioxide
  • alumina aluminum oxide
  • titania etc.
  • these may be publicly known or commercially available.
  • silica product names "AEROSIL R972”, “AEROSIL R972V”, “AEROSIL R972CF”, “AEROSIL R974", “AEROSIL RX200”, “AEROSIL RY200” (manufactured by Nippon Aerosil Co., Ltd.), “AEROSIL L R202 ”, “AEROSIL R805”, “AEROSIL R812”, “AEROSIL R812S” (all manufactured by Nippon Aerosil Co., Ltd.), and the like.
  • titania include the product name “AEROXIDE TiO 2 T805" (manufactured by Nippon Aerosil Co., Ltd.).
  • alumina include fine particles such as product name "AEROXIDE Alu C” (manufactured by Nippon Aerosil Co., Ltd.), which are treated with a silane coupling agent to make the particle surface hydrophobic.
  • hydrophobic silica fine particles can be preferably used.
  • hydrophobic silica fine particles having trimethylsilyl groups on the surface are preferred in that they provide better non-adhesion properties.
  • Commercial products corresponding to this include, for example, the aforementioned "AEROSIL R812” and “AEROSIL R812S” (both manufactured by Nippon Aerosil Co., Ltd.).
  • the hydrophobic oxide fine particles preferably do not have a resin coating layer (for example, a coating layer containing a polyfluoroalkyl methacrylate resin) on their surfaces.
  • a resin coating layer for example, a coating layer containing a polyfluoroalkyl methacrylate resin
  • Particles with such a resin coating layer can exhibit high hydrophobicity and oleophobicity, but from the standpoint of anti-icing and snow protection, hydrophobic oxide fine particles without a resin coating layer on the surface are preferable. .
  • the amount of hydrophobic oxide fine particles adhered to the functional layer is not limited, but is preferably 0.1 to 20 g/m 2 , particularly 0.2 to 3.0 g/m 2 .
  • the amount is more preferably 0.2 to 2 g/m 2 , and most preferably 0.2 to 2 g/m 2 .
  • the hydrophobic oxide fine particles attached to the filled particle-containing layer form a porous layer having a three-dimensional network structure, and the thickness thereof is preferably about 0.1 to 5 ⁇ m, particularly about 0.2 to 2.5 ⁇ m. is even more preferable.
  • the method for forming the functional layer is not particularly limited, but hydrophobic oxide fine particles may be applied as is (dry method), or a dispersion prepared by dispersing hydrophobic oxide fine particles in a solvent may be applied. It may also be applied by (wet method). In particular, in the present invention, it is preferable to employ the latter wet method from the viewpoint that it is easy to obtain an industrially uniform coating film (functional layer) and also to easily obtain a three-dimensional network structure.
  • the functional layer can be suitably formed by a method including a step of applying a dispersion of hydrophobic oxide fine particles in a solvent to the surface of the filled particle-containing layer.
  • the solvent used in the dispersion liquid is, for example, alcohol (ethanol, normal propyl alcohol, isopropyl alcohol (IPA), hexyl alcohol, etc.), cyclohexane, toluene, butyl acetate, ethyl acetate, acetone, propylene glycol, At least one organic solvent such as hexylene glycol, butyl diglycol, pentamethylene glycol, normal pentane, normal hexane, etc. can be selected as appropriate.
  • alcohol ethanol, normal propyl alcohol, isopropyl alcohol (IPA), hexyl alcohol, etc.
  • cyclohexane toluene
  • butyl acetate ethyl acetate
  • acetone propylene glycol
  • At least one organic solvent such as hexylene glycol, butyl diglycol, pentamethylene glycol, normal pentane, normal hexane, etc.
  • the amount of hydrophobic oxide fine particles dispersed in the solvent is not limited, but is usually about 10 to 300 g/L (liter), preferably about 30 to 100 g/L.
  • the method of applying the dispersion is not particularly limited, and examples include roll coating, gravure coating, bar coating, doctor blade coating, brush coating, spraying, inkjet printing, screen printing, dropping method, powder electrostatic method, etc. A known method can be adopted.
  • a drying step may be performed if necessary. When drying, either natural drying or forced drying (heat drying) may be used, but forced drying is desirable from an industrial perspective.
  • the drying temperature is not limited as long as it does not adversely affect the filled particle-containing layer, etc., and may be, for example, 100°C or lower, particularly room temperature (for example, 15°C) to about 60°C, but is not limited thereto. .
  • the thus obtained laminate of the present invention can be suitably used as a cover (shield) for protecting various objects from snow or ice accumulation.
  • the present invention also includes a method of preventing ice or snow from accumulating on objects. As this method, the above method A or method B can be suitably employed.
  • Method A is a method for preventing ice or snow from adhering to an object, and includes a step of laminating the laminate on the surface of the object so that the functional layer is on the outermost surface. Can be mentioned.
  • Method B is, for example, a method of preventing ice or snow from adhering to objects, (1) In a matrix containing at least one resin component of a thermoplastic resin and a thermosetting resin, (a) first filled particles having an average particle diameter D50 of 15 to 50 ⁇ m; (b) The first filled particles contain 12 to 120 parts by weight based on 100 parts by weight of the resin component, and the second filled particles contain 12 to 80 parts by weight based on 100 parts by weight of the resin component. forming a layer containing filled particles on the surface of the object; (2) forming a functional layer containing a three-dimensional network structure containing hydrophobic oxide fine particles with an average primary particle diameter of 3 to 100 nm on the surface of the filled particle-containing layer; Examples include methods including:
  • the laminate of the present invention itself is used as a snow/ice protection cover and is laminated onto an object.
  • the lamination method is not particularly limited, and may be, for example, a method using an adhesive or a pressure-sensitive adhesive, a method using a fastening member such as a screw, a screw, a bolt/nut, a method using an adhesive tape, or the like.
  • Method A is advantageous in that it is possible to use a laminate that has already been produced, so that so-called retrofitting, replacement, etc. can be easily performed after the object is completed.
  • the laminate itself may be transparent or semi-transparent. It may be designed to be transparent.
  • Method B the formation method of each layer can be carried out according to the contents explained above.
  • the object itself becomes the base material of the laminate of the present invention, so the lamination step as in Method A can be omitted. This results in a configuration of "object/filled particle-containing layer/functional layer".
  • the object base material
  • a filled particle-containing layer and a functional layer are used. It may be designed to be transparent or semi-transparent.
  • the laminate of the present invention is arranged so that the functional layer is exposed to the outside air, and even if snow or ice accumulates on the functional layer arranged as the outermost layer, The phenomenon of ice or snow sticking to the surface can be effectively suppressed.
  • the laminate of the present invention is particularly effective in wet snow accumulation.
  • Acrylic vinyl polyester resin (product name: SK8730BA-H1, manufactured by Sakuramiya Chemical Co., Ltd.) was used as the thermoplastic resin.
  • first filled particles crosslinked polymethyl methacrylate (product name "MBX20", manufactured by Sekisui Plastics Co., Ltd.) having an average particle diameter D50 of 20 ⁇ m and a specific gravity of 1.2 g/cm 3 was used.
  • second packed particles ultra-high molecular weight polyethylene fine particles (product name "PM200”, manufactured by Mitsui Chemicals Fine Co., Ltd.) having an average particle diameter D50 of 10 ⁇ m and a specific gravity of 0.94 g/m 3 were used.
  • thermoplastic resin, the first filled particles, and the second filled particles were blended in a weight ratio of 100/48/32, and a coating solution was prepared using a solvent (butyl acetate). Coat the obtained coating liquid on the surface of the base material (PET film, thickness 38 ⁇ m) using bar coater #10 so that the weight after drying is 4.0 g/m 2 and air dry. A filled particle-containing layer was formed. Next, a functional layer was formed on the filled particle-containing layer.
  • Example 2 A sample of the laminate was produced in the same manner as in Example 1, except that the proportions of the thermoplastic resin, the first filled particles, and the second filled particles were adjusted to a weight ratio of 100/16/24.
  • Example 3 A sample of the laminate was produced in the same manner as in Example 1, except that the proportions of the thermoplastic resin, the first filler particles, and the second filler particles were adjusted to a weight ratio of 100/65/39.
  • Example 4 A sample of the laminate was produced in the same manner as in Example 1, except that the proportions of the thermoplastic resin, the first filled particles, and the second filled particles were adjusted to a weight ratio of 100/81/48.
  • Example 5 A sample of the laminate was produced in the same manner as in Example 1, except that the proportions of the thermoplastic resin, the first filled particles, and the second filled particles were adjusted to a weight ratio of 100/16/16.
  • the first filled particles were cross-linked polymethyl methacrylate (product name MBX12, manufactured by Sekisui Plastics Co., Ltd.) with an average particle diameter D50 of 12 ⁇ m and a specific gravity of 1.2 g/cm 3 and an average particle diameter D50 of 20 ⁇ m and a specific gravity of 1.2 g/cm 3 .
  • MBX12 cross-linked polymethyl methacrylate
  • D50 average particle diameter of 12 ⁇ m and a specific gravity of 1.2 g/cm 3
  • D50 average particle diameter D50 of 20 ⁇ m and a specific gravity of 1.2 g/cm 3
  • thermoplastic resin thermoplastic resin
  • the first filled particles were cross-linked polymethyl methacrylate (product name MBX30, manufactured by Sekisui Plastics Co., Ltd.) with an average particle diameter D50 of 30 ⁇ m and a specific gravity of 1.2 g/cm 3 and an average particle diameter D50 of 20 ⁇ m and a specific gravity of 1.2 g/cm 3 .
  • Example 8 Cross-linked polymethyl methacrylate (product name MBX20, manufactured by Sekisui Plastics Co., Ltd.) with an average particle diameter D50 of 20 ⁇ m and a specific gravity of 1.2 g/cm 3 as the first filled particles, and an average particle diameter D50 of 8 ⁇ m as the second filled particles Example 1 except that commercially available polyethyleneimine fine particles with a specific gravity of 1.04 g/m 3 were used, and the weight ratio of the thermoplastic resin, first filled particles, and second filled particles was adjusted to be 100/48/32, respectively.
  • a sample of a laminate was prepared in the same manner as in Example 1.
  • Example 9 As the first filled particles, crosslinked polymethyl methacrylate (product name MBX20, manufactured by Sekisui Plastics Co., Ltd.) having an average particle diameter D50 of 20 ⁇ m and a specific gravity of 1.2 g/cm 3 was used.
  • the second packed particles include ultra-high molecular weight polyethylene fine particles (product name "PM200", manufactured by Mitsui Chemicals Fine Co., Ltd.) with an average particle diameter D50 of 10 ⁇ m and a specific gravity of 0.94 g/m 3 and an average particle diameter D50 of 20 ⁇ m and a specific gravity of 0.94 g/m 3 .
  • Example 10 A sample of a laminate was produced in the same manner as in Example 1, except that the proportions of the thermoplastic resin, the first filled particles, and the second filled particles were adjusted to a weight ratio of 100/120/80.
  • Example 11 A two-component curable urethane resin (main ingredient polyester polyurethane polyol (LX500) manufactured by DIC Graphics Co., Ltd. as a thermosetting resin and the same company's toluene diisocyanate (KW75) as a curing agent at a weight ratio of 10:1 was used, with a solid content of 32 A cross -linked polymethyl methacrylate (product name: MBX20, (manufactured by Sekisui Plastics Co., Ltd.) and ultra-high molecular weight polyethylene fine particles (product name "PM200", manufactured by Mitsui Chemicals Fine Co., Ltd.) with an average particle diameter D50 of 10 ⁇ m and a specific gravity of 0.94 g/m 3 as the second filling particles.
  • a laminate sample was prepared in the same manner as in Example 1, except that the weight ratio of the thermosetting resin, the first filled particles, and the second filled particles was adjusted to be 100/48/32.
  • the first filled particles include cross-linked polymethyl methacrylate (product name MBX50, manufactured by Sekisui Plastics Co., Ltd.) with an average particle diameter D50 of 50 ⁇ m and a specific gravity of 1.2 g/cm 3 and an average particle diameter D50 of 20 ⁇ m and a specific gravity of 1.2 g.
  • cross-linked polymethyl methacrylate product name MBX50, manufactured by Sekisui Plastics Co., Ltd.
  • an aqueous dispersion solid content concentration: 20% by weight
  • a coating liquid was prepared by adding and mixing 10 g of the above composite particles to 90 g of ethyl alcohol. This coating solution was applied to the surface of the base material (38 ⁇ m thick PET film) using bar coater #6 to a weight of 4.0 g/m 2 after drying, and the sample was dried naturally. was created.
  • Example 3 A sample of the laminate was produced in the same manner as in Example 1, except that the proportions of the thermoplastic resin, the first filled particles, and the second filled particles were adjusted to a weight ratio of 100/10/48.
  • the first filled particles include cross-linked polymethyl methacrylate (product name "MBX12", manufactured by Sekisui Plastics Co., Ltd.) with an average particle diameter D50 of 12 ⁇ m and a specific gravity of 1.2 g/cm 3 and an average particle diameter D50 of 20 ⁇ m and a specific gravity of 1. .2 g/ cm3 of cross-linked polymethyl methacrylate (product name "MBX20", manufactured by Sekisui Plastics Co., Ltd.) was mixed at a weight ratio of about 1:20 to give an average particle diameter D50 of 18.5 ⁇ m.
  • MBX12 cross-linked polymethyl methacrylate
  • MBX20 manufactured by Sekisui Plastics Co., Ltd.
  • the first filled particles include cross-linked polymethyl methacrylate (product name "MBX12", manufactured by Sekisui Plastics Co., Ltd.) with an average particle diameter D50 of 12 ⁇ m and a specific gravity of 1.2 g/cm 3 and an average particle diameter D50 of 20 ⁇ m and a specific gravity of 1. .2 g/ cm3 of cross-linked polymethyl methacrylate (product name MBX20, manufactured by Sekisui Plastics Co., Ltd.) was mixed at a weight ratio of about 1:20 to make a mixture with an average particle diameter D50 of 18.5 ⁇ m.
  • MBX12 cross-linked polymethyl methacrylate
  • thermoplastic resin Using commercially available crosslinked acrylic monomolecular fine particles with an average particle diameter D50 of 15 ⁇ m and a specific gravity of 1.19 g/m 3 as the second filled particles, the thermoplastic resin, the first filled particles, and the second filled particles were added in weight ratios.
  • a laminate sample was produced in the same manner as in Example 1, except that the thickness was adjusted to 100/48/32.
  • Example 1 The samples obtained in the Examples and Comparative Examples were subjected to a wet snow test. Specifically, as shown in FIG. 2, a laminate sample 10 measuring 10 cm long x 10 cm wide was mounted at 90 degrees in the vertical direction. Next, wet snow 22 produced by an artificial snowmaking machine (not shown) is applied to the laminate sample (functional layer surface) at a wind speed of 5 m/s at a temperature of +1 to 2°C via the blower 21 shown in FIG. The sample was sprayed vertically for a certain period of time, and a video was taken of the entire surface. After the test was completed, the time until snow started to snow on the sample (snow-free time) was measured from the video obtained.
  • wet snow 22 produced by an artificial snowmaking machine (not shown) is applied to the laminate sample (functional layer surface) at a wind speed of 5 m/s at a temperature of +1 to 2°C via the blower 21 shown in FIG.
  • the sample was sprayed vertically for a certain period of time, and a video
  • Snow adhering to the sample did not fall but remained on the sample surface and grew, which was defined as "snow accretion.” The longer the snow-free time, the better the sample. If no snow falls for 10 minutes under the present test conditions, this corresponds to no snow falling for 100 minutes in the natural world.
  • the laminates in each example can maintain a state in which snow does not accumulate for at least 30 minutes, and there is no risk that the snow will harden and fall. This shows that it has particularly excellent snow and ice prevention effects and can be suitably used as a laminate for snow or ice prevention.

Abstract

Provided is an anti-icing/snow protection laminate capable of maintaining a state in which snow is not substantially stuck. The anti-icing/snow protection laminate includes a base material, a filling-particles-containing layer, and a function layer in this order. The laminate is characterized in that (1) the filling-particles-containing layer contains first filling-particles having an average particle diameter D50 of 15 to 50 μm and second filling-particles having an average particle diameter D50 of 8 to 12 μm in a matrix containing at least one type of resin components of a thermoplastic resin and a thermosetting resin, (2) the content of the first filling-particles is 12 to 120 parts by weight relative to 100 parts by weight of a resin, (3) the content of the second filling particles is 12 to 80 parts by weight relative to 100 parts by weight of a resin, and (4) hydrophobic oxide fine particles having an average primary particle diameter of 3 to 100 nm form a three-dimensional net structure in the function layer.

Description

防氷・防雪用積層体Anti-ice/snow laminate
 本発明は、新規な防氷・防雪用積層体に関する。より具体的には、本発明は、例えば建築物、標識等の構造物等のほか、各種の物品への積雪を防ぐための積層体に関する。 The present invention relates to a novel anti-icing/snow laminate. More specifically, the present invention relates to a laminate for preventing snow from accumulating on various articles as well as structures such as buildings and signs.
 降雪時等において、各種の構造物又は物品(以下、特にことわりのない限り、両者をまとめて「物体」ともいう。)に着雪・着氷した場合には種々の問題を引き起こす場合がある。例えば、信号機、道路標識、ケーブル、アンテナ等に着雪した場合には、交通障害、通信障害、停電等を引き起こすおそれがある。これらの中でも、信号機、道路標識等は、交通の安全のために欠かせないものであるが、これらに着雪すると、それがたとえ断続的なものであったとしても、運転者、歩行者等が見づらくなり、事故の原因にもなりかねない。このため、降雪地域を中心として、特に信号機、道路標識等の視認性を確保するために、着雪しにくくするための対策が必要とされている。 During snowfall, snow and ice build up on various structures or objects (hereinafter referred to collectively as "objects" unless otherwise specified) may cause various problems. For example, if snow falls on traffic lights, road signs, cables, antennas, etc., it may cause traffic problems, communication problems, power outages, etc. Among these, traffic lights, road signs, etc. are essential for traffic safety, but when snow accumulates on them, even if it is intermittent, it can be dangerous for drivers, pedestrians, etc. This may make it difficult to see and may cause an accident. For this reason, measures are needed to prevent snow from accumulating, especially in areas with heavy snowfall, in order to ensure the visibility of traffic lights, road signs, etc.
 その対策としては、大きく分けて2つある。1つは、雪が付着しにくい形状・形態に構造物又は物品を変更する方法がある。もう1つは、構造物等の化学的性質を変えることにより雪が付着しにくいようにする方法である。前者の方法では、構造物等に屋根等を設ける方法等がある。後者の方法では、構造物等を親水性又は疎水性に改質する方法がある。 There are two main ways to deal with this. One method is to change the shape or form of a structure or article to make it difficult for snow to adhere to it. The other method is to make it difficult for snow to adhere to structures by changing their chemical properties. The former method includes a method of providing a roof or the like on a structure. In the latter method, there is a method of modifying structures etc. to be hydrophilic or hydrophobic.
 この中でも、後者の化学的性質を改変する方法は、これまで様々な手法が提案されている。その一例として、微粒子が第1の重合体で被覆されてなる複合粒子と、塗料成分とを含有する、着雪防止被膜形成用組成物が提案されている(特許文献1)。 Among these, various methods have been proposed to date to modify the chemical properties of the latter. As an example, a composition for forming an anti-snow coating has been proposed, which contains composite particles in which fine particles are coated with a first polymer and a paint component (Patent Document 1).
特開2021-80452号公報JP 2021-80452 Publication
 しかしながら、上記のような従来の組成物では、ある程度の着雪防止効果は得られるものの、さらなる改善の余地がある。特に、本発明者らが特許文献1の技術を評価したところ、長時間での結果としてはある程度の着雪防止効果が得られるものの、短時間で見れば10~20分ごとに雪が固まって落下する現象が確認されている。こうしたことは、例えば運転中にまとまった雪が車両の窓(フロントガラス)等に落下して危険にさらすおそれを示している。また、雪が落下するまでは、構造物等に積雪するということであり、たとえ10~20分であっても積雪による視認性の阻害という問題もある。 However, although the conventional compositions described above can achieve a certain degree of snow accumulation prevention effect, there is still room for further improvement. In particular, when the present inventors evaluated the technology of Patent Document 1, it was found that although a certain degree of snow accumulation prevention effect can be obtained as a result over a long period of time, in a short period of time, snow hardens and falls every 10 to 20 minutes. This phenomenon has been confirmed. This indicates that, for example, snow that has accumulated during driving may fall onto the windows (windshield) of the vehicle and pose a danger. Furthermore, until the snow falls, it will remain on structures, etc., and there is also the problem that visibility will be obstructed by the snow even if it lasts only 10 to 20 minutes.
 従って、本発明の主な目的は、実質的に着雪されない状態を維持できる防氷・防雪用積層体を提供することにある。 Therefore, the main object of the present invention is to provide an anti-icing/snow laminate that can maintain a state substantially free from snow accumulation.
 本発明者は、従来技術の問題点に鑑みて鋭意研究を重ねた結果、特定の組成・構造を有する積層体が上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of extensive research in view of the problems of the prior art, the present inventor discovered that a laminate having a specific composition and structure can achieve the above object, and has completed the present invention.
 すなわち、本発明は、下記の防氷・防雪用積層体に係る。
1. 基材、充填粒子含有層及び機能層を順に含む積層体であって、
(1)充填粒子含有層は、熱可塑性樹脂及び熱硬化性樹脂の少なくとも1種の樹脂成分を含むマトリックス中に、平均粒子径D50が15~50μmの第1充填粒子と、平均粒子径D50が8~12μmの第2充填粒子とを含有し、
(2)第1充填粒子の含有量は、樹脂成分100重量部に対して12~120重量部であり、
(3)第2充填粒子の含有量は、樹脂成分100重量部に対して12~80重量部であり、
(4)機能層は、平均一次粒子径3~100nmの疎水性酸化物微粒子を含む三次元網目構造体を含む、
ことを特徴とする防氷・防雪用積層体。
2. 第1充填粒子として比重1.1~1.5g/cmのアクリル樹脂粒子を含み、第2充填粒子として比重0.92~0.98g/mのポリエチレン粒子を含む、前記項1に記載の防氷・防雪用積層体。
3. 疎水性酸化物微粒子の積層量が0.1~20g/mである、前記項1記載の防氷・防雪用積層体。
4. 前記項1に記載の防氷・防雪用積層体を含むカバーであって、前記機能層が最表面となるように前記積層体が配置されている防氷・防雪カバー。
5. 物体に氷又は雪が付着することを防止する方法であって、前記物体の表面に前記機能層が最表面となるように前記積層体を物体表面に積層する工程を含む方法。
6. 物体に氷又は雪が付着することを防止する方法であって、
(1)熱可塑性樹脂及び熱硬化性樹脂の少なくとも1種の樹脂成分を含むマトリックス中に(a)平均粒子径D50が15~50μmの第1充填粒子と、平均粒子径D50が8~12μmの第2充填粒子とを含有し、(b)第1充填粒子は樹脂成分100重量部に対して12~120重量部含み、第2充填粒子は樹脂成分100重量部に対して12~80重量部含む充填粒子含有層を物体表面に形成する工程、
(2)前記充填粒子含有層の表面に、平均一次粒子径3~100nmの疎水性酸化物微粒子を含む三次元網目構造体を含む機能層を形成する工程、
含む方法。
That is, the present invention relates to the following anti-icing/snow laminate.
1. A laminate including, in order, a base material, a filler particle-containing layer, and a functional layer,
(1) The filled particle-containing layer includes first filled particles having an average particle diameter D50 of 15 to 50 μm and a matrix containing at least one resin component of a thermoplastic resin and a thermosetting resin. and second filling particles of 8 to 12 μm,
(2) The content of the first filled particles is 12 to 120 parts by weight based on 100 parts by weight of the resin component,
(3) The content of the second filler particles is 12 to 80 parts by weight based on 100 parts by weight of the resin component,
(4) The functional layer includes a three-dimensional network structure containing hydrophobic oxide fine particles with an average primary particle diameter of 3 to 100 nm.
An anti-icing/snow laminate characterized by the following.
2. Item 1, wherein the first filled particles include acrylic resin particles with a specific gravity of 1.1 to 1.5 g/cm 3 and the second filled particles include polyethylene particles with a specific gravity of 0.92 to 0.98 g/m 3 Anti-ice/snow laminate.
3. 2. The anti-icing/snow laminate according to item 1, wherein the laminated amount of the hydrophobic oxide fine particles is 0.1 to 20 g/m 2 .
4. An anti-ice/snow cover comprising the anti-ice/snow laminate according to item 1 above, wherein the laminate is arranged such that the functional layer is on the outermost surface.
5. A method for preventing ice or snow from adhering to an object, the method comprising the step of laminating the laminate on the surface of the object so that the functional layer is on the outermost surface.
6. A method for preventing ice or snow from adhering to an object, the method comprising:
(1) In a matrix containing at least one resin component of a thermoplastic resin and a thermosetting resin, (a) first filled particles having an average particle diameter D50 of 15 to 50 μm; (b) The first filled particles contain 12 to 120 parts by weight based on 100 parts by weight of the resin component, and the second filled particles contain 12 to 80 parts by weight based on 100 parts by weight of the resin component. forming a layer containing filled particles on the surface of the object;
(2) forming a functional layer containing a three-dimensional network structure containing hydrophobic oxide fine particles with an average primary particle diameter of 3 to 100 nm on the surface of the filled particle-containing layer;
How to include.
 本発明によれば、実質的に着雪されない状態を維持できる防氷・防雪用積層体を提供することができる。特に、粒径が異なる2種類の充填粒子を含む層を機能層の下地として形成していることから、雪又は氷が付着しにくくなっている。すなわち、気温で0℃よりもわずかに高い温度下での着雪(いわゆる湿型着雪)も防止することができる。例えば、条件によっては、少なくとも30分以上ほとんど着雪されない状態を維持することも可能である。このように30分以上全く着雪しないような場合等は、溶けた雪が凍り付いて着氷する現象もより効果的に防ぐこともできる。これによって、優れた防氷・防雪性能を発揮することができる。特に、本発明の積層体は、防着雪効果及び防着氷効果に優れており、防着雪用又は防着氷用の積層体としても好適に使用できる。 According to the present invention, it is possible to provide an anti-icing/snow laminate that can maintain a state substantially free from snow accumulation. In particular, since a layer containing two types of filler particles with different particle sizes is formed as a base for the functional layer, it is difficult for snow or ice to adhere to the layer. That is, it is possible to prevent snow accretion at a temperature slightly higher than 0° C. (so-called wet snow accretion). For example, depending on the conditions, it is possible to maintain a state with almost no snow for at least 30 minutes or more. In this way, in cases where no snow falls for more than 30 minutes, the phenomenon of melted snow freezing and forming ice can be more effectively prevented. This makes it possible to exhibit excellent anti-icing and anti-snow performance. In particular, the laminate of the present invention has excellent snow and ice prevention effects, and can be suitably used as a laminate for snow or ice prevention.
 このような機能が発揮される理由は、定かではないが、特に2種の充填粒子を含む充填粒子含有層の表面(疎水性酸化物微粒子が積層される面)がその断面において凹凸状になり、その表面形状に追従して形成された機能層の凹凸表面の凹部に疎水性酸化物微粒子が凝集状態で入り込むことにより、防氷・防雪効果が長期間維持すると考えられる。すなわち、雪が当該積層体に当たっても、凹部に入り込んだ疎水性酸化物微粒子は固定された状態を維持することによって疎水性酸化物微粒子の脱落を効果的に抑制ないしは防止できる結果、優れた防氷・防雪効果を持続的に発揮することができるといえる。換言すれば、良好な防氷・防雪効果を比較的長期にわたり発揮することができる。とりわけ、後記の試験例1にも示すように、長時間にわたって着雪又は着氷しない状態を効果的に維持することが可能となる。 The reason why such a function is exhibited is not clear, but in particular, the surface of the filled particle-containing layer containing two types of filled particles (the surface on which the hydrophobic oxide fine particles are laminated) becomes uneven in its cross section. It is thought that the anti-icing and snow-preventing effects are maintained for a long period of time by the hydrophobic oxide fine particles entering in an aggregated state into the concave portions of the uneven surface of the functional layer formed to follow the surface shape. In other words, even when snow hits the laminate, the hydrophobic oxide particles that have entered the recesses remain fixed, effectively suppressing or preventing the hydrophobic oxide particles from falling off, resulting in excellent anti-icing and It can be said that the snow prevention effect can be demonstrated continuously. In other words, good anti-icing and snow-proofing effects can be exhibited for a relatively long period of time. In particular, as shown in Test Example 1 below, it is possible to effectively maintain a state free of snow or ice for a long period of time.
 このような特徴を有する積層体は、降雪地域の構造物(建築物、標識等)をはじめとして、各種の物品の表面コートに好適に用いることができる。特に、連続的な視認性が要求される表示装置又は表示部材の表示部又はそのカバーの表面保護にも好適に用いることができる。 A laminate having such characteristics can be suitably used for surface coating of various articles, including structures in snowy regions (buildings, signs, etc.). In particular, it can be suitably used to protect the surface of a display unit or a cover of a display device or display member that requires continuous visibility.
本発明の積層体の層構成の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of the layer structure of the laminate of the present invention. 試験例1の試験の実施形態を示す模式図である。FIG. 2 is a schematic diagram showing an embodiment of the test of Test Example 1.
 本発明の防氷・防雪用積層体は、基材、充填粒子含有層及び機能層を順に含む積層体であって、
(1)充填粒子含有層は、熱可塑性樹脂と熱硬化性樹脂の少なくとも1種の樹脂成分を含むマトリックス中に、平均粒子径D50が15~50μmの第1充填粒子と、平均粒子径D50が8~12μmの第2充填粒子とを含有し、
(2)第1充填粒子の含有量は、樹脂成分100重量部に対して12~120重量部であり、
(3)第2充填粒子の含有量は、樹脂成分100重量部に対して12~80重量部であり、
(4)機能層は、平均一次粒子径3~100nmの疎水性酸化物微粒子を含む三次元網目構造体を含む、
ことを特徴とする。
The anti-icing/snow laminate of the present invention is a laminate including, in this order, a base material, a filler particle-containing layer, and a functional layer,
(1) The filled particle-containing layer includes first filled particles having an average particle diameter D50 of 15 to 50 μm and a matrix containing at least one resin component of a thermoplastic resin and a thermosetting resin. and second filling particles of 8 to 12 μm,
(2) The content of the first filled particles is 12 to 120 parts by weight based on 100 parts by weight of the resin component,
(3) The content of the second filler particles is 12 to 80 parts by weight based on 100 parts by weight of the resin component,
(4) The functional layer includes a three-dimensional network structure containing hydrophobic oxide fine particles with an average primary particle diameter of 3 to 100 nm.
It is characterized by
 図1には、本発明の積層体の実施形態に係る層構成例である。図1に示す防氷・防雪用積層体10の基本構成としては、基材11、充填粒子含有層12及び機能層13が順に積層されている。図1では、これらの各層が互いに接するように積層されている。そして、機能層13が、最外層(最表面層)として配置されている。 FIG. 1 shows an example of the layer structure according to an embodiment of the laminate of the present invention. As a basic structure of the anti-icing/snow laminate 10 shown in FIG. 1, a base material 11, a layer containing filler particles 12, and a functional layer 13 are laminated in this order. In FIG. 1, these layers are stacked so as to be in contact with each other. The functional layer 13 is arranged as the outermost layer (the outermost surface layer).
 充填粒子含有層12は、熱可塑性樹脂と熱硬化性樹脂の少なくとも1種の樹脂成分を含むマトリックス12a中に、第1充填粒子12b及び第2充填粒子12bが充填されている。図1に示すように、これらの充填粒子によって、充填粒子含有層12は表面に凹凸が形成されている。そして、その表面凹凸に追従するように機能層13の表面にも凹凸が形成される。図1では、機能層13は、特に疎水性酸化物微粒子13aが凝集することによって形成された三次元網目構造体を含む。これにより、疎水性酸化物微粒子13aが氷又は雪と接触しても、疎水性酸化物微粒子13aが積層体から脱落しにくくなる。図1において、疎水性酸化物微粒子13aは、一次粒子が含まれていても良いが、その凝集体(二次粒子)が多く含まれていることが望ましい。これにより、三次元網目構造体を確実に形成することができる。 In the filled particle-containing layer 12, first filled particles 12b 1 and second filled particles 12b 2 are filled in a matrix 12a containing at least one resin component of a thermoplastic resin and a thermosetting resin. As shown in FIG. 1, the filled particle-containing layer 12 has an uneven surface formed by these filled particles. Then, irregularities are formed on the surface of the functional layer 13 so as to follow the surface irregularities. In FIG. 1, the functional layer 13 includes, in particular, a three-dimensional network structure formed by agglomeration of hydrophobic oxide fine particles 13a. This makes it difficult for the hydrophobic oxide particles 13a to fall off from the laminate even if the hydrophobic oxide particles 13a come into contact with ice or snow. In FIG. 1, the hydrophobic oxide fine particles 13a may contain primary particles, but preferably contain many aggregates (secondary particles) thereof. Thereby, a three-dimensional network structure can be reliably formed.
 このようにして、疎水性酸化物微粒子13a自体が有する撥水特性とともに、機能層13の表面凹凸によって、高い着雪・着氷防止効果を発揮させることができる。以下、各層等について説明する。 In this way, the water-repellent property of the hydrophobic oxide fine particles 13a itself and the surface irregularities of the functional layer 13 can provide a high snow/icing prevention effect. Each layer will be explained below.
a)基材
 基材は、充填粒子含有層及び機能層が積層される支持部材となるものであり、原材料、半製品又は最終製品のいずれの態様であっても良い。また、最終製品としては、構造物、物品等のいずれであっても良い。
a) Substrate The substrate serves as a support member on which the filled particle-containing layer and the functional layer are laminated, and may be in the form of a raw material, a semi-finished product, or a final product. Furthermore, the final product may be either a structure or an article.
 基材が原材料又は半製品である場合、例えば基材としてフィルム状、シート状、プレート状の透明材料(ガラスのほか、アクリル樹脂等の樹脂)を用いることによって、透明材料/充填粒子含有層/機能層を含む防雪・防氷カバー(又はシール、バリア)を提供することができる。このような防雪・防氷カバーの当該機能層が最表面(外気に触れる最外層)になるように、防雪・防氷の対象となる物体に取り付けることによって、前記物体を着雪・着氷から保護することができる(方法A)。 When the base material is a raw material or a semi-finished product, for example, by using a film-like, sheet-like, or plate-like transparent material (glass or resin such as acrylic resin) as the base material, the transparent material/filled particle-containing layer/ A snow/ice protection cover (or seal, barrier) including a functional layer can be provided. By attaching such a snow/ice protection cover to an object to be protected against snow/ice so that the functional layer becomes the outermost surface (the outermost layer exposed to the outside air), the object is protected from snow/icing. (Method A).
 また、最終製品としては、屋外又は屋内で使用される各種の製品が挙げられる。上記では、いったん本発明積層体を形成した後に、その積層体を物体表面に取り付けるものである。これに対し、本発明は、物体自体を基材として用い、その上層に充填粒子含有層及び機能層を形成する態様(方法B)も包含する。最終製品としては、例えば信号機、道路標識、アンテナ、表示看板、カーブミラー、街灯、道路照明等の構造物のほか、日用品(メガネ、ゴーグル、雨具、鞄等)、建材(屋根、壁紙、床材、天井材、タイル、窓ガラス等)、衣料品(帽子、靴、手袋、コート等)、構造物(建築物の壁、橋、塔等)、輸送機器(飛行機、車、バイク、電車、船等のボディ外面、窓等)、玩具、スポーツ用具等の様々な物品がいずれも本発明における基材となり得る。 In addition, the final product includes various products used outdoors or indoors. In the above description, once the laminate of the present invention is formed, the laminate is attached to the surface of an object. On the other hand, the present invention also includes an embodiment (method B) in which the object itself is used as a base material and a filled particle-containing layer and a functional layer are formed on the base material. The final products include, for example, structures such as traffic lights, road signs, antennas, display signs, curved mirrors, street lights, and road lighting, as well as daily necessities (glasses, goggles, rain gear, bags, etc.), and building materials (roofs, wallpaper, flooring materials, etc.). , ceiling materials, tiles, window glass, etc.), clothing (hats, shoes, gloves, coats, etc.), structures (building walls, bridges, towers, etc.), transportation equipment (planes, cars, motorcycles, trains, ships, etc.) Various articles such as external body surfaces, windows, etc.), toys, and sports equipment can all serve as substrates in the present invention.
 特に、本発明の積層体は、比較的短時間の着雪も防止できるので、信号機、道路標識等の表示装置・部材の表示面に好ましく適用することができる。すなわち、表示装置・部材の表示部を基材とし、その基材上に充填粒子含有層及び機能層が順に積層されてなる製品が本発明の積層体として包含される。なお、後記に示すように、本発明における充填粒子含有層及び機能層は、透明ないしは半透明であるので、下地となる基材面の表示を視認することが可能である。また、基材が窓ガラス等のように透明性を有する場合は、その基材上に充填粒子含有層及び機能層が順に積層されてなる物体も透明性を維持することができる。 In particular, the laminate of the present invention can prevent snow accumulation even in a relatively short period of time, so it can be preferably applied to display surfaces of display devices and members such as traffic lights and road signs. That is, the laminate of the present invention includes a product in which a display portion of a display device/member is used as a base material, and a filler particle-containing layer and a functional layer are sequentially laminated on the base material. In addition, as shown later, since the filled particle-containing layer and the functional layer in the present invention are transparent or semitransparent, it is possible to visually recognize the display on the surface of the base material. Furthermore, when the base material has transparency, such as window glass, an object formed by sequentially laminating a filled particle-containing layer and a functional layer on the base material can also maintain transparency.
 また、基材の材質は、特に限定されず、例えば樹脂類、ゴム類、金属材料(合金を含む。)、無機材料及びこれらを含む複合材料の少なくとも1種を挙げることができる。その形態も限定的でなく、例えばシート、フィルム、成形体、繊維類(織物、不織布、紙等を含む。)、粉末粒子等のいずれであっても良い。従って、例えば樹脂フィルム、樹脂シート、紙、不織布、合成紙、金属箔、金属板、樹脂皮膜、金属皮膜、ゴム、ガラス、セラミックス、プラスチックス成形品等の各種の材料にも適用できる。また、透明、半透明又は不透明のいずれであっても良い。 Further, the material of the base material is not particularly limited, and may include, for example, at least one of resins, rubbers, metal materials (including alloys), inorganic materials, and composite materials containing these materials. Its form is not limited either, and may be, for example, a sheet, film, molded body, fibers (including woven fabrics, nonwoven fabrics, paper, etc.), powder particles, or the like. Therefore, it can be applied to various materials such as resin films, resin sheets, paper, nonwoven fabrics, synthetic papers, metal foils, metal plates, resin films, metal films, rubber, glass, ceramics, and plastic molded products. Further, it may be transparent, translucent or opaque.
b)充填粒子含有層
 充填粒子含有層では、熱可塑性樹脂と熱硬化性樹脂の少なくとも1種の樹脂成分を含むマトリックス中に、第1充填粒子及び第2充填粒子が含まれる。好ましくは、第1充填粒子及び第2充填粒子がマトリックス中に分散している。
b) Filled Particle Containing Layer In the filled particle containing layer, first filled particles and second filled particles are contained in a matrix containing at least one resin component of a thermoplastic resin and a thermosetting resin. Preferably, the first filler particles and the second filler particles are dispersed within the matrix.
 マトリックスは、第1充填粒子及び第2充填粒子を支持(固定)する材料であり、熱可塑性樹脂と熱硬化性樹脂の少なくとも1種の樹脂成分を含む。マトリックス中の樹脂成分の含有量は、例えば用いる熱可塑性樹脂又は熱硬化性樹脂又は充填粒子の種類、添加剤の使用の有無等によって異なるが、通常は50~100重量%程度とし、特に70~100重量%とすることが好ましく、さらに80~100重量%とすることがより好ましい。特に、熱硬化性樹脂を用いることにより、熱硬化性樹脂が機能性粒子の少なくとも一部に直接に接着されて、より強力に機能性粒子を固定することができる結果、より高い耐久性を発揮させることができる。 The matrix is a material that supports (fixes) the first filled particles and the second filled particles, and includes at least one resin component of a thermoplastic resin and a thermosetting resin. The content of the resin component in the matrix varies depending on, for example, the type of thermoplastic resin or thermosetting resin or filler particles used, whether additives are used, etc., but it is usually about 50 to 100% by weight, especially about 70 to 100% by weight. It is preferably 100% by weight, and more preferably 80 to 100% by weight. In particular, by using a thermosetting resin, the thermosetting resin is directly adhered to at least a portion of the functional particles, making it possible to more strongly fix the functional particles, resulting in higher durability. can be done.
 熱可塑性樹脂は、各種の熱可塑性樹脂を採用することができる。例えば、アクリル系樹脂、ポリスチレン、ABS樹脂、塩化ビニル系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリアミド系樹脂、ポリカーボネート、ポリアセタール、フッ素系樹脂、シリコーン樹脂、ポリエステル系樹脂等のほか、これらのブレンド樹脂、これらを構成するモノマーの組合せを含む共重合体、変性樹脂等の少なくとも1種を用いることができる。これらは、公知又は市販のものを使用することができる。 Various thermoplastic resins can be used as the thermoplastic resin. For example, acrylic resins, polystyrene, ABS resins, vinyl chloride resins, polyethylene resins, polypropylene resins, polyamide resins, polycarbonates, polyacetals, fluorine resins, silicone resins, polyester resins, and blends of these resins. , a copolymer containing a combination of monomers constituting these, a modified resin, etc. can be used. Known or commercially available ones can be used as these.
 熱硬化性樹脂としては、熱硬化して基材層及び機能性粒子(機能層)と強く接着される樹脂であれば限定的でなく、例えばフェノール樹脂、尿素樹脂、メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、ジアリルフタレート樹脂、シリコーン樹脂、アルキド樹脂等のほか、これらのブレンド樹脂、これらを構成するモノマーの組合せを含む共重合体、変性樹脂等を用いることができる。これらは、1種又は2種以上で用いることができる。特に、本発明では、尿素樹脂、メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂及びアルキド樹脂の少なくとも1種を好適に用いることができる。これらは、公知又は市販のものを使用することができる。 The thermosetting resin is not limited as long as it is thermoset and strongly adheres to the base material layer and functional particles (functional layer), such as phenol resin, urea resin, melamine resin, epoxy resin, and non-limiting resin. In addition to saturated polyester resins, polyurethane resins, diallyl phthalate resins, silicone resins, alkyd resins, etc., blend resins of these resins, copolymers containing combinations of monomers constituting these resins, modified resins, etc. can be used. These can be used alone or in combination of two or more. In particular, in the present invention, at least one of urea resins, melamine resins, epoxy resins, unsaturated polyester resins, polyurethane resins, and alkyd resins can be suitably used. Known or commercially available ones can be used as these.
 マトリックス中には、本発明の効果を妨げない範囲内で他の成分が含まれていても良い。例えば、分散剤、着色剤、酸化防止剤、フィラー(タルク等)、紫外線防止剤等の添加剤が挙げられる。マトリックス中における添加剤の合計含有量は、通常は50重量%以下であり、特に0~5重量%とすることができる。なお、これらの添加剤が、後記に示す第1充填粒子又は第2充填粒子の要件を満たす場合は、それらの充填粒子として取り扱う。 The matrix may contain other components within a range that does not impede the effects of the present invention. Examples include additives such as dispersants, colorants, antioxidants, fillers (such as talc), and ultraviolet inhibitors. The total content of additives in the matrix is usually up to 50% by weight and can in particular be between 0 and 5% by weight. In addition, when these additives meet the requirements of the first filled particles or the second filled particles shown below, they are treated as those filled particles.
 マトリックス中に含まれる第1充填粒子及び第2充填粒子(両者をまとめて単に「充填粒子」ともいう。)は、特に充填粒子含有層表面、ひいては機能層表面に凹凸を形成し、着雪・着氷防止効果を高める機能を有する。 The first filler particles and the second filler particles (together referred to simply as "filler particles") contained in the matrix form irregularities particularly on the surface of the filler particle-containing layer, and ultimately on the surface of the functional layer, thereby preventing snow buildup and It has the function of increasing the anti-icing effect.
 充填粒子は、有機成分及び無機成分のいずれから構成されて良く、これらの混合物であっても良い。 The filled particles may be composed of either an organic component or an inorganic component, or may be a mixture thereof.
 無機成分としては、例えばアルミニウム、銅、鉄、チタン、銀、カルシウム等の金属又はこれらを含む合金又は金属間化合物、酸化珪素、酸化アルミニウム、酸化ジルコニウム、酸化チタン、酸化鉄等の酸化物、リン酸カルシウム、ステアリン酸カルシウム等の無機酸塩又は有機酸塩、窒化アルミニウム、窒化硼素、炭化珪素、窒化珪素等のセラミック等のほか、カーボン(炭粉)、ガラス等を好適に用いることができる。有機成分としては、例えばアクリル樹脂、ウレタン樹脂、メラミン樹脂、アミノ樹脂、エポキシ系樹脂、ポリエチレン、ポリメタクリル酸メチル系樹脂(架橋ポリメタクリル酸メチル樹脂)、ポリスチレン、ポリプロピレン、ポリエステル系樹脂、セルロース系樹脂、塩化ビニル系樹脂、ポリビニルアルコール、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、エチレン-アクリル酸エチル共重合体、ポリアクリロニトリル、ポリアミド等の有機高分子成分(又は樹脂成分)を好適に用いることができる。これらは1種又は2種以上で用いることができる。本発明では、例えば合成樹脂粒子(樹脂ビーズ)等を好適に用いることができる。これらは、公知又は市販のものを使用することができる。 Inorganic components include, for example, metals such as aluminum, copper, iron, titanium, silver, and calcium, or alloys or intermetallic compounds containing these, oxides such as silicon oxide, aluminum oxide, zirconium oxide, titanium oxide, and iron oxide, and calcium phosphate. In addition to inorganic or organic acid salts such as calcium stearate, ceramics such as aluminum nitride, boron nitride, silicon carbide, and silicon nitride, carbon (carbon powder), glass, etc. can be suitably used. Examples of organic components include acrylic resin, urethane resin, melamine resin, amino resin, epoxy resin, polyethylene, polymethyl methacrylate resin (crosslinked polymethyl methacrylate resin), polystyrene, polypropylene, polyester resin, and cellulose resin. , vinyl chloride resin, polyvinyl alcohol, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, ethylene-ethyl acrylate copolymer, polyacrylonitrile, polyamide, and other organic polymer components (or resin components). It can be suitably used. These can be used alone or in combination of two or more. In the present invention, for example, synthetic resin particles (resin beads) can be suitably used. Known or commercially available ones can be used as these.
 これらの中でも、特にアクリル樹脂粒子(例えば架橋ポリメタクリル酸メチル粒子)、ポリエチレン粒子、ポリエチレンイミン粒子、親水性シリカ粒子、リン酸カルシウム粒子、炭粉、焼成カルシウム粒子、未焼成カルシウム粒子、ステアリン酸カルシウム粒子等の少なくとも1種を充填粒子として好適に用いることができる。 Among these, particularly acrylic resin particles (for example, crosslinked polymethyl methacrylate particles), polyethylene particles, polyethyleneimine particles, hydrophilic silica particles, calcium phosphate particles, charcoal powder, calcined calcium particles, uncalcined calcium particles, calcium stearate particles, etc. At least one kind can be suitably used as filler particles.
 本発明では、使用する第1充填粒子と第2充填粒子の材質は、互いに同じであっても良いし、互いに異なっていても良い。 In the present invention, the materials of the first filling particles and the second filling particles used may be the same or different.
 また、充填粒子の形状は限定的でなく、例えば球状、回転楕円体状、不定形状、涙滴状、扁平状、中空状、多孔質状等のいずれであっても良い。 Furthermore, the shape of the filled particles is not limited, and may be, for example, spherical, spheroidal, irregular, teardrop-shaped, flat, hollow, porous, or the like.
 第1充填粒子は、平均粒子径D50が15~50μmであり、特に15~22μmであることがより好ましい。また、第1充填粒子の比重は、限定的ではないが、特に1.1~1.3g/cmであることが好ましい。従って、例えば平均粒子径D50が15~22μmで比重1.1~1.3g/cmの合成樹脂粒子(例えば、アクリル樹脂粒子)を第1充填粒子として好適に用いることができる。 The first filled particles have an average particle diameter D50 of 15 to 50 μm, particularly preferably 15 to 22 μm. Furthermore, the specific gravity of the first filled particles is preferably, but not limited to, 1.1 to 1.3 g/cm 3 . Therefore, for example, synthetic resin particles (eg, acrylic resin particles) having an average particle diameter D50 of 15 to 22 μm and a specific gravity of 1.1 to 1.3 g/cm 3 can be suitably used as the first filling particles.
 第1充填粒子の含有量は、樹脂成分100重量部に対して12~120重量部程度とし、特に15~100重量部とすることが好ましい。 The content of the first filled particles is approximately 12 to 120 parts by weight, particularly preferably 15 to 100 parts by weight, based on 100 parts by weight of the resin component.
 第2充填粒子は、平均粒子径D50が8~12μmであり、特に10~12μmであることが好ましい。また、第2充填粒子の比重は、限定的ではないが、特に0.92~0.98g/mであることが好ましい。従って、例えば平均粒子径D50が8~12μmで比重0.92~0.98g/mの合成樹脂粒子(例えばポリエチレン粒子)を第2充填粒子として好適に用いることができる。 The second filled particles have an average particle diameter D50 of 8 to 12 μm, particularly preferably 10 to 12 μm. Furthermore, the specific gravity of the second filled particles is preferably, but not limited to, 0.92 to 0.98 g/m 3 . Therefore, for example, synthetic resin particles (eg, polyethylene particles) having an average particle diameter D50 of 8 to 12 μm and a specific gravity of 0.92 to 0.98 g/m 3 can be suitably used as the second filler particles.
 第2充填粒子の含有量は、樹脂成分100重量部に対して12~80重量部程度とし、特に10~15重量部とすることが好ましい。 The content of the second filled particles is approximately 12 to 80 parts by weight, particularly preferably 10 to 15 parts by weight, based on 100 parts by weight of the resin component.
 なお、充填粒子の平均粒子径D50は、レーザー回折式粒度分布計によって計測した値を用いることができる。従って、第1充填粒子として、平均粒子径が異なる2種以上の粒子を用いる場合は、両者の所定の割合で混合した混合粒子の平均粒子径を測定した結果が平均粒子径D50となる。同様に、第2充填粒子として、平均粒子径が異なる2種以上の粒子を用いる場合は、両者の所定の割合で混合した混合粒子の平均粒子径を測定した結果が平均粒子径D50となる。 Note that, as the average particle diameter D50 of the filled particles, a value measured by a laser diffraction particle size distribution analyzer can be used. Therefore, when two or more types of particles having different average particle diameters are used as the first filling particles, the average particle diameter D50 is the result of measuring the average particle diameter of a mixed particle of both particles mixed at a predetermined ratio. Similarly, when two or more types of particles having different average particle diameters are used as the second filling particles, the average particle diameter D50 is the result of measuring the average particle diameter of the mixed particles mixed at a predetermined ratio.
 このように、互いに粒径の異なる2種の充填粒子を特定量含有することで、例えば粒子間距離100μm以下の安定した凹凸界面が形成される結果、疎水性酸化物微粒子の耐久性も向上し、優れた防氷防雪効果を得ることができる。また、第1充填粒子と第2充填粒子とは、互いに比重が異なることが好ましい。一方が、他方よりも比重が軽い充填粒子であることで、充填粒子どうしが凝集しにくくなり、マトリックス中における充填粒子の分散性をより高めることができる。 In this way, by containing a specific amount of two types of filler particles with different particle sizes, a stable uneven interface with an inter-particle distance of 100 μm or less is formed, which improves the durability of the hydrophobic oxide fine particles. , it is possible to obtain excellent anti-icing and snow-preventing effects. Further, it is preferable that the first filled particles and the second filled particles have different specific gravities. Since one of the filled particles has a lighter specific gravity than the other, the filled particles are less likely to aggregate with each other, and the dispersibility of the filled particles in the matrix can be further improved.
 特に、本発明では、第1充填粒子の比重が、第2充填粒子の比重よりも大きいことが好ましく、特に両者の比重の差が0.1g/cm以上であることがより好ましく、その中でも0.2g/cm以上であることが最も好ましい。比重の差の上限は、例えば0.58g/cm程度とすることができる。比重の差は、第1充填粒子として比重が異なる複数の充填粒子が使用されている場合は比重が最も小さいものを基準とし、第2充填粒子として比重が異なる複数の充填粒子が使用されている場合は最も大きいものを基準として算出する。 In particular, in the present invention, it is preferable that the specific gravity of the first filled particles is larger than the specific gravity of the second filled particles, and it is particularly preferable that the difference in specific gravity between the two is 0.1 g/cm 3 or more. Most preferably, it is 0.2 g/cm 3 or more. The upper limit of the difference in specific gravity can be, for example, about 0.58 g/cm 3 . The difference in specific gravity is based on the one with the smallest specific gravity when multiple filled particles with different specific gravity are used as the first filled particles, and when multiple filled particles with different specific gravity are used as the second filled particles. If so, calculate based on the largest value.
 熱可塑性樹脂及び熱硬化性樹脂の少なくとも1種の樹脂成分を含むマトリックス中に2種類の充填粒子を含有させる方法は、特に限定されず、例えばマトリックスを形成するための原料(樹脂成分を含む組成物)に、2種類の充填粒子を配合する方法等が挙げられる。混合する方法は、乾式混合又は湿式混合のいずれであっても良い。一般的にマトリックスの主成分は、樹脂成分又はそれを構成するモノマー又はオリゴマー、溶剤、必要に応じて架橋剤等からなるため、それらに充填粒子を添加混合すれば良い。 The method of incorporating two types of filler particles into a matrix containing at least one resin component of a thermoplastic resin and a thermosetting resin is not particularly limited. Examples include a method of blending two types of filled particles into a product). The mixing method may be either dry mixing or wet mixing. Generally, the main components of the matrix consist of a resin component, a monomer or oligomer constituting it, a solvent, a crosslinking agent if necessary, etc., and filler particles may be added and mixed therewith.
 充填粒子含有層を形成する方法は、特に限定されないが、例えば樹脂成分、第1充填粒子、第2充填粒子及び溶媒を含む塗工液を基材に塗布する工程を含む方法によって好適に形成することができる。 The method for forming the filled particle-containing layer is not particularly limited, but it is preferably formed, for example, by a method that includes a step of applying a coating liquid containing a resin component, first filled particles, second filled particles, and a solvent to a base material. be able to.
 塗工液としては、上記の樹脂成分、第1充填粒子及び第2充填粒子が分散してなる分散液を好適に用いることができる。この場合、本発明の効果を妨げない限りは、これらの一部が溶媒に溶解していても良い。 As the coating liquid, a dispersion liquid in which the above-mentioned resin component, first filled particles, and second filled particles are dispersed can be suitably used. In this case, a portion of these may be dissolved in the solvent as long as the effects of the present invention are not impaired.
 塗工液に含まれる溶媒は、特に限定されず、水のほか、例えばアルコール(エタノール、ノルマルプロピルアルコール、イソプロピルアルコール(IPA)、ヘキシルアルコール)、シクロヘキサン、トルエン、アセトン、プロピレングリコール、ヘキシレングリコール、ブチルジグリコール、ペンタメチレングリコール、ノルマルペンタン、ノルマルヘキサン、酢酸ブチル、酢酸エチル等の有機溶剤を適宜選択することができる。これらは、1種又は2種以上で使用することができる。この際、微量の分散剤、着色剤、沈降防止剤、粘度調整剤等を併用することもできる。塗工液における固形分の分散量は、通常1~100g/L程度の範囲内で適宜設定すれば良い。 The solvent contained in the coating liquid is not particularly limited, and in addition to water, for example, alcohol (ethanol, normal propyl alcohol, isopropyl alcohol (IPA), hexyl alcohol), cyclohexane, toluene, acetone, propylene glycol, hexylene glycol, Organic solvents such as butyl diglycol, pentamethylene glycol, normal pentane, normal hexane, butyl acetate, and ethyl acetate can be appropriately selected. These can be used alone or in combination of two or more. At this time, trace amounts of dispersants, colorants, antisettling agents, viscosity modifiers, etc. can also be used in combination. The amount of solid content dispersed in the coating liquid may be set appropriately within the range of usually about 1 to 100 g/L.
 塗工液を塗布する方法は、限定的でなく、例えばロールコーティング、グラビアコーティング、バーコート、ドクターブレードコーティング、刷毛塗り、スプレー、粉体静電法等の公知の方法を採用することができる。 The method of applying the coating liquid is not limited, and known methods such as roll coating, gravure coating, bar coating, doctor blade coating, brush coating, spraying, powder electrostatic method, etc. can be employed.
 塗工液を塗布した後、必要に応じて乾燥工程を実施することもできる。乾燥する場合は、自然乾燥又は強制乾燥(加熱乾燥)のいずれであっても良いが、工業的には強制乾燥するのが良い。乾燥温度は、充填粒子含有層等に悪影響を与えない範囲であれば制限されず、例えば100℃以下とし、特に室温(例えば15℃)~60℃程度とすることができるが、これに限定されない。 After applying the coating liquid, a drying step can be performed as necessary. When drying, either natural drying or forced drying (heat drying) may be used, but forced drying is preferred industrially. The drying temperature is not limited as long as it does not adversely affect the filled particle-containing layer, etc., and may be, for example, 100°C or lower, particularly room temperature (for example, 15°C) to about 60°C, but is not limited thereto. .
 基材に積層する充填粒子含有層の厚みは、特に限定的ではないが、生産性、コスト等の観点より、通常は0.1μm~5mm程度とすることが好ましく、特に0.5μm~2mm程度とすることがより好ましい。 The thickness of the filled particle-containing layer laminated on the base material is not particularly limited, but from the viewpoint of productivity, cost, etc., it is usually preferably about 0.1 μm to 5 mm, particularly about 0.5 μm to 2 mm. It is more preferable that
c)機能層
 機能層は、充填粒子含有層の表面上に積層されるものであり、本発明の積層体の最表面層として配置される。
c) Functional layer The functional layer is laminated on the surface of the filled particle-containing layer, and is arranged as the outermost layer of the laminate of the present invention.
 機能層は、平均一次粒子径3~100nmの疎水性酸化物微粒子を含む三次元網目構造体を含む。本発明では、例えば、図1に示すように、複数の疎水性酸化物微粒子13a(粒子群)が集合することにより形成された三次元網目構造体を好適に採用することができる。このような三次元網目構造体は、通常は多孔質であり、より高い防氷・防雪効果を発揮することができる。 The functional layer includes a three-dimensional network structure containing hydrophobic oxide fine particles with an average primary particle diameter of 3 to 100 nm. In the present invention, for example, as shown in FIG. 1, a three-dimensional network structure formed by aggregation of a plurality of hydrophobic oxide fine particles 13a (particle group) can be suitably employed. Such a three-dimensional network structure is usually porous and can exhibit higher anti-icing and snow-preventing effects.
 疎水性酸化物微粒子は、一次粒子平均径が通常3~100nmであり、好ましくは5~50nmであり、より好ましくは5~20nmである。疎水性酸化物微粒子の一次粒子平均径を上記範囲とすることにより、疎水性酸化物微粒子が適度な凝集状態となり、その凝集体中にある空隙に空気等の気体を保持することができる結果、優れた防氷・防雪効果を得ることができる。すなわち、この凝集状態は、充填粒子含有層に積層された後も維持されるので、優れた防氷防雪効果を発揮することができる。 The average primary particle diameter of the hydrophobic oxide fine particles is usually 3 to 100 nm, preferably 5 to 50 nm, and more preferably 5 to 20 nm. By setting the primary particle average diameter of the hydrophobic oxide fine particles within the above range, the hydrophobic oxide fine particles are in an appropriate agglomerated state, and gases such as air can be retained in the voids in the aggregates. Excellent anti-icing and snow-proofing effects can be obtained. That is, this agglomerated state is maintained even after being laminated on the layer containing filled particles, so that excellent anti-icing and snow-preventing effects can be exhibited.
 なお、本発明において、一次粒子平均径の測定は、走査型電子顕微鏡(FE-SEM)で実施することができ、走査型電子顕微鏡の分解能が低い場合には透過型電子顕微鏡等の他の電子顕微鏡を併用して実施しても良い。具体的には、粒子形状が球状の場合はその直径、非球状の場合はその最長径と最短径との平均値を直径とみなし、走査型電子顕微鏡等による観察により任意に選んだ20個分の粒子の直径の平均を一次粒子平均径とする。 In the present invention, the primary particle average diameter can be measured using a scanning electron microscope (FE-SEM), and if the resolution of the scanning electron microscope is low, other electron microscopes such as a transmission electron microscope may be used. It may also be carried out using a microscope. Specifically, if the particle shape is spherical, the diameter is considered to be the diameter, and if the particle shape is non-spherical, the average value of the longest diameter and the shortest diameter is regarded as the diameter, and 20 particles are arbitrarily selected by observation using a scanning electron microscope etc. Let the average diameter of the particles be the primary particle average diameter.
 また、疎水性酸化物微粒子の比表面積(BET法)は、特に制限されないが、通常50~300m/g程度とし、特に100~300m/gとすることが好ましい。 Further, the specific surface area (BET method) of the hydrophobic oxide fine particles is not particularly limited, but is usually about 50 to 300 m 2 /g, preferably 100 to 300 m 2 /g.
 疎水性酸化物微粒子としては、疎水性を有するものであれば特に限定されず、表面処理により疎水化されたものであっても良い。例えば、親水性酸化物微粒子をシランカップリング剤等で表面処理を施し、表面状態を疎水性とした微粒子を用いることもできる。酸化物の種類も、疎水性を有するものであれば限定されない。例えばシリカ(二酸化ケイ素)、アルミナ、チタニア等の少なくとも1種を用いることができる。これらは公知又は市販のものを採用することができる。例えば、シリカとしては、製品名「AEROSIL R972」、「AEROSIL R972V」、「AEROSIL R972CF」、「AEROSIL R974」、「AEROSIL RX200」、「AEROSIL RY200」(以上、日本アエロジル株式会社製)、「AEROSIL R202」、「AEROSIL R805」、「AEROSIL R812」、「AEROSIL R812S」、(以上、日本アエロジル社製)等が挙げられる。チタニアとしては、製品名「AEROXIDE TiO T805」(日本アエロジル社製)等が例示できる。 アルミナとしては、製品名「AEROXIDE Alu C」(日本アエロジル社製)等をシランカップリング剤で処理して粒子表面を疎水性とした微粒子が例示できる。 The hydrophobic oxide fine particles are not particularly limited as long as they have hydrophobicity, and they may be made hydrophobic by surface treatment. For example, it is also possible to use hydrophilic oxide fine particles whose surface is made hydrophobic by subjecting them to surface treatment with a silane coupling agent or the like. The type of oxide is also not limited as long as it has hydrophobicity. For example, at least one of silica (silicon dioxide), alumina, titania, etc. can be used. These may be publicly known or commercially available. For example, as for silica, product names "AEROSIL R972", "AEROSIL R972V", "AEROSIL R972CF", "AEROSIL R974", "AEROSIL RX200", "AEROSIL RY200" (manufactured by Nippon Aerosil Co., Ltd.), "AEROSIL L R202 ”, “AEROSIL R805”, “AEROSIL R812”, “AEROSIL R812S” (all manufactured by Nippon Aerosil Co., Ltd.), and the like. Examples of titania include the product name "AEROXIDE TiO 2 T805" (manufactured by Nippon Aerosil Co., Ltd.). Examples of alumina include fine particles such as product name "AEROXIDE Alu C" (manufactured by Nippon Aerosil Co., Ltd.), which are treated with a silane coupling agent to make the particle surface hydrophobic.
 この中でも、疎水性シリカ微粒子を好適に用いることができる。とりわけ、より優れた非付着性が得られるという点において、表面にトリメチルシリル基を有する疎水性シリカ微粒子が好ましい。これに対応する市販品としては、例えば前記「AEROSIL R812」、「AEROSIL R812S」(いずれも日本アエロジル社製)等が挙げられる。 Among these, hydrophobic silica fine particles can be preferably used. In particular, hydrophobic silica fine particles having trimethylsilyl groups on the surface are preferred in that they provide better non-adhesion properties. Commercial products corresponding to this include, for example, the aforementioned "AEROSIL R812" and "AEROSIL R812S" (both manufactured by Nippon Aerosil Co., Ltd.).
 なお、本発明では、疎水性酸化物微粒子は、その表面に樹脂被覆層(例えば、ポリフルオロアルキルメタアクリレート樹脂を含む被覆層)を有しないことが好ましい。このような樹脂被覆層を有する粒子は、高い疎水性・疎油性を発揮することができるが、防氷・防雪という見地からは、表面に樹脂被覆層を有しない疎水性酸化物微粒子のほうが好ましい。 In the present invention, the hydrophobic oxide fine particles preferably do not have a resin coating layer (for example, a coating layer containing a polyfluoroalkyl methacrylate resin) on their surfaces. Particles with such a resin coating layer can exhibit high hydrophobicity and oleophobicity, but from the standpoint of anti-icing and snow protection, hydrophobic oxide fine particles without a resin coating layer on the surface are preferable. .
 機能層における疎水性酸化物微粒子の付着量(乾燥後重量)は、限定的ではないが、0.1~20g/mとするのが好ましく、特に0.2~3.0g/mとするのがより好ましく、その中でも0.2~2g/mとするのが最も好ましい。上記範囲内に設定することによって、より優れた防氷防雪効果が長期にわたって得ることができる上、疎水性酸化物微粒子の脱落抑制、コスト等の点でもいっそう有利となる。 The amount of hydrophobic oxide fine particles adhered to the functional layer (weight after drying) is not limited, but is preferably 0.1 to 20 g/m 2 , particularly 0.2 to 3.0 g/m 2 . The amount is more preferably 0.2 to 2 g/m 2 , and most preferably 0.2 to 2 g/m 2 . By setting it within the above range, not only can better anti-icing and snow-proofing effects be obtained over a long period of time, but it is also more advantageous in terms of suppressing shedding of hydrophobic oxide fine particles and reducing costs.
 充填粒子含有層に付着した疎水性酸化物微粒子は、三次元網目構造を有する多孔質層を形成しており、その厚みは0.1~5μm程度が好ましく、特に0.2~2.5μm程度がさらに好ましい。このようなポーラスな層状態で付着することにより、機能層中に空気を多く含むことができるので、より優れた非付着性を発揮することができる。 The hydrophobic oxide fine particles attached to the filled particle-containing layer form a porous layer having a three-dimensional network structure, and the thickness thereof is preferably about 0.1 to 5 μm, particularly about 0.2 to 2.5 μm. is even more preferable. By adhering in such a porous layer state, a large amount of air can be contained in the functional layer, so that superior non-adhesion properties can be exhibited.
 機能層の形成方法は、特に限定されないが、疎水性酸化物微粒子をそのまま付与しても良いし(乾式方法)、あるいは疎水性酸化物微粒子を溶媒に分散してなる分散液を塗工することにより付与しても良い(湿式方法)。特に、本発明では、工業的に均一な塗膜(機能層)が得られやすく、しかも三次元網目状構造が得られやすいという見地より、後者の湿式方法を採用することが好ましい。 The method for forming the functional layer is not particularly limited, but hydrophobic oxide fine particles may be applied as is (dry method), or a dispersion prepared by dispersing hydrophobic oxide fine particles in a solvent may be applied. It may also be applied by (wet method). In particular, in the present invention, it is preferable to employ the latter wet method from the viewpoint that it is easy to obtain an industrially uniform coating film (functional layer) and also to easily obtain a three-dimensional network structure.
 すなわち、本発明では、疎水性酸化物微粒子を溶媒に分散してなる分散液を充填粒子含有層の表面に塗布する工程を含む方法によって機能層を好適に形成することができる。 That is, in the present invention, the functional layer can be suitably formed by a method including a step of applying a dispersion of hydrophobic oxide fine particles in a solvent to the surface of the filled particle-containing layer.
 上記の分散液を用いる場合、分散液に用いる溶媒は、例えばアルコール(エタノール、ノルマルプロピルアルコール、イソプロピルアルコール(IPA)、ヘキシルアルコール等)、シクロヘキサン、トルエン、酢酸ブチル、酢酸エチル、アセトン、プロピレングリコール、ヘキシレングリコール、ブチルジグリコール、ペンタメチレングリコール、ノルマルペンタン、ノルマルヘキサン等の少なくとも1種の有機溶剤を適宜選択することができる。 When using the above dispersion liquid, the solvent used in the dispersion liquid is, for example, alcohol (ethanol, normal propyl alcohol, isopropyl alcohol (IPA), hexyl alcohol, etc.), cyclohexane, toluene, butyl acetate, ethyl acetate, acetone, propylene glycol, At least one organic solvent such as hexylene glycol, butyl diglycol, pentamethylene glycol, normal pentane, normal hexane, etc. can be selected as appropriate.
 この際、本発明の効果を妨げない範囲内において、微量の分散剤、着色剤、沈降防止剤、粘度調整剤等を併用することもできる。溶媒に対する疎水性酸化物微粒子の分散量は、限定的ではないが、通常は10~300g/L(リットル)程度とし、好ましくは30~100g/L程度とすれば良い。 At this time, trace amounts of dispersants, colorants, antisedimentation agents, viscosity modifiers, etc. may also be used in combination within a range that does not impede the effects of the present invention. The amount of hydrophobic oxide fine particles dispersed in the solvent is not limited, but is usually about 10 to 300 g/L (liter), preferably about 30 to 100 g/L.
 分散液を塗工する方法も、特に制限されず、例えば、ロールコーティング、グラビアコーティング、バーコート、ドクターブレードコーティング、刷毛塗り、スプレー、インクジェット印刷、スクリーン印刷、滴下法、粉体静電法等の公知の方法を採用することができる。塗布後は、必要応じて、乾燥工程を実施しても良い。乾燥する場合は、自然乾燥又は強制乾燥(加熱乾燥)のいずれであっても良いが、工業的には強制乾燥することが望ましい。乾燥温度は、充填粒子含有層等に悪影響を与えない範囲であれば制限されず、例えば100℃以下とし、特に室温(例えば15℃)~60℃程度とすることができるが、これに限定されない。 The method of applying the dispersion is not particularly limited, and examples include roll coating, gravure coating, bar coating, doctor blade coating, brush coating, spraying, inkjet printing, screen printing, dropping method, powder electrostatic method, etc. A known method can be adopted. After coating, a drying step may be performed if necessary. When drying, either natural drying or forced drying (heat drying) may be used, but forced drying is desirable from an industrial perspective. The drying temperature is not limited as long as it does not adversely affect the filled particle-containing layer, etc., and may be, for example, 100°C or lower, particularly room temperature (for example, 15°C) to about 60°C, but is not limited thereto. .
 このようにして得られた本発明積層体は、さまざまな物体を着雪又は着氷から保護するためのカバー(シールド)として好適に用いることができる。本発明は、物体に氷又は雪が付着することを防止する方法も包含する。この方法としては、前記の方法A又は方法Bを好適に採用することができる。 The thus obtained laminate of the present invention can be suitably used as a cover (shield) for protecting various objects from snow or ice accumulation. The present invention also includes a method of preventing ice or snow from accumulating on objects. As this method, the above method A or method B can be suitably employed.
 方法Aとしては、物体に氷又は雪が付着することを防止する方法であって、前記物体の表面に前記機能層が最表面となるように前記積層体を物体表面に積層する工程を含む方法が挙げられる。 Method A is a method for preventing ice or snow from adhering to an object, and includes a step of laminating the laminate on the surface of the object so that the functional layer is on the outermost surface. Can be mentioned.
 方法Bとしては、例えば、物体に氷又は雪が付着することを防止する方法であって、
(1)熱可塑性樹脂及び熱硬化性樹脂の少なくとも1種の樹脂成分を含むマトリックス中に(a)平均粒子径D50が15~50μmの第1充填粒子と、平均粒子径D50が8~12μmの第2充填粒子とを含有し、(b)第1充填粒子は樹脂成分100重量部に対して12~120重量部含み、第2充填粒子は樹脂成分100重量部に対して12~80重量部含む充填粒子含有層を物体表面に形成する工程、
(2)前記充填粒子含有層の表面に、平均一次粒子径3~100nmの疎水性酸化物微粒子を含む三次元網目構造体を含む機能層を形成する工程、
含む方法が挙げられる。
Method B is, for example, a method of preventing ice or snow from adhering to objects,
(1) In a matrix containing at least one resin component of a thermoplastic resin and a thermosetting resin, (a) first filled particles having an average particle diameter D50 of 15 to 50 μm; (b) The first filled particles contain 12 to 120 parts by weight based on 100 parts by weight of the resin component, and the second filled particles contain 12 to 80 parts by weight based on 100 parts by weight of the resin component. forming a layer containing filled particles on the surface of the object;
(2) forming a functional layer containing a three-dimensional network structure containing hydrophobic oxide fine particles with an average primary particle diameter of 3 to 100 nm on the surface of the filled particle-containing layer;
Examples include methods including:
 方法Aの場合は、本発明積層体自体を防雪・防氷カバーとして用い、これを物体に積層する方法である。これにより、物体/基材/充填粒子含有層/機能層という構成となる。積層方法は、特に限定されず、例えば接着剤、粘着剤等による方法、ねじ、ビス、ボルト・ナット等の締結部材による方法、粘着テープ等による方法等のいずれであっても良い。方法Aでは、既に作製された積層体を使用することができるので、物体が完成した後にいわゆる後付け、交換等を容易に行える点で有利である。また、方法Aにおいて、物体を外から視認できるようする必要がある場合(例えば表示装置)、物体に透明性が要求される場合(例えば窓ガラス)等は、本発明積層体自体を透明又は半透明となるように設計すれば良い。 In the case of method A, the laminate of the present invention itself is used as a snow/ice protection cover and is laminated onto an object. This results in a structure of object/substrate/filled particle-containing layer/functional layer. The lamination method is not particularly limited, and may be, for example, a method using an adhesive or a pressure-sensitive adhesive, a method using a fastening member such as a screw, a screw, a bolt/nut, a method using an adhesive tape, or the like. Method A is advantageous in that it is possible to use a laminate that has already been produced, so that so-called retrofitting, replacement, etc. can be easily performed after the object is completed. In addition, in method A, if the object needs to be visible from the outside (for example, a display device) or if the object is required to be transparent (for example, window glass), the laminate itself may be transparent or semi-transparent. It may be designed to be transparent.
 方法Bの場合は、各層の形成方法は前記で説明した内容に従って実施することができる。方法Bでは、物体自体が本発明積層体の基材となるので、方法Aのような積層工程を省略することができる。これにより、「物体/充填粒子含有層/機能層」という構成となる。方法Bにおいて、物体(基材)を外から視認できるようする必要がある場合(例えば表示装置)、物体に透明性が要求される場合(例えば窓ガラス)等は、充填粒子含有層及び機能層を透明又は半透明となるように設計すれば良い。 In the case of method B, the formation method of each layer can be carried out according to the contents explained above. In Method B, the object itself becomes the base material of the laminate of the present invention, so the lamination step as in Method A can be omitted. This results in a configuration of "object/filled particle-containing layer/functional layer". In method B, if the object (base material) needs to be visible from the outside (for example, a display device), or if the object requires transparency (for example, window glass), a filled particle-containing layer and a functional layer are used. It may be designed to be transparent or semi-transparent.
 方法A及び方法Bのいずれの場合も、機能層が外気に露出するように本発明積層体が配置されており、その最表面層として配置された機能層に着雪・着氷したとしても、氷又は雪が表面に固着する現象を効果的に抑制することができる。特に、湿型着雪等において本発明積層体は有効である。 In both methods A and B, the laminate of the present invention is arranged so that the functional layer is exposed to the outside air, and even if snow or ice accumulates on the functional layer arranged as the outermost layer, The phenomenon of ice or snow sticking to the surface can be effectively suppressed. The laminate of the present invention is particularly effective in wet snow accumulation.
 以下に実施例及び比較例を示し、本発明の特徴をより具体的に説明する。ただし、本発明の範囲は、実施例に限定されない。 Examples and comparative examples are shown below to explain the features of the present invention more specifically. However, the scope of the present invention is not limited to the examples.
[実施例1]
 熱可塑性樹脂として、アクリルビニルポリエステル樹脂(製品名「SK8730BA-H1」桜宮化学株式会社製)を用いた。第1充填粒子として、平均粒子径D50が20μmで比重1.2g/cmの架橋ポリメタクリル酸メチル(製品名「MBX20」、積水化成品工業株式会社製)を用いた。第2充填粒子として、平均粒子径D50が10μmで比重0.94g/mの超高分子量ポリエチレン微粒子(製品名「PM200」、三井化学ファイン株式会社製)を用いた。
 前記の熱可塑性樹脂、第1充填粒子及び第2充填粒子をそれぞれ重量比で100/48/32になるように配合し、溶媒(酢酸ブチル)を用いて塗工液を調製した。得られた塗工液をバーコーター#10を用いて乾燥後重量で4.0g/mとなるように、基材(PETフィルム、厚み38μm)の表面に塗工し、自然乾燥を行うことで充填粒子含有層を形成した。
 次いで、前記充填粒子含有層上に機能層を形成した。BET値が200m/gの疎水性シリカ微粒子13.3g(日本アエロジル社製、「AEROSIL812S」、平均粒子径D50=7nm)をエタノール86.7gに分散させた塗工液を調製した。これを充填粒子含有層の面上にバーコーター#6を用いて塗工し、自然乾燥を行うことで機能層を形成した。このようにして、基材/充填粒子含有層/機能層を順に備える積層体のサンプルを得た。なお、疎水性シリカ微粒子の目標積層量は乾燥後重量として2.0g/mとした。
[Example 1]
Acrylic vinyl polyester resin (product name: SK8730BA-H1, manufactured by Sakuramiya Chemical Co., Ltd.) was used as the thermoplastic resin. As the first filled particles, crosslinked polymethyl methacrylate (product name "MBX20", manufactured by Sekisui Plastics Co., Ltd.) having an average particle diameter D50 of 20 μm and a specific gravity of 1.2 g/cm 3 was used. As the second packed particles, ultra-high molecular weight polyethylene fine particles (product name "PM200", manufactured by Mitsui Chemicals Fine Co., Ltd.) having an average particle diameter D50 of 10 μm and a specific gravity of 0.94 g/m 3 were used.
The thermoplastic resin, the first filled particles, and the second filled particles were blended in a weight ratio of 100/48/32, and a coating solution was prepared using a solvent (butyl acetate). Coat the obtained coating liquid on the surface of the base material (PET film, thickness 38 μm) using bar coater #10 so that the weight after drying is 4.0 g/m 2 and air dry. A filled particle-containing layer was formed.
Next, a functional layer was formed on the filled particle-containing layer. A coating liquid was prepared by dispersing 13.3 g of hydrophobic silica fine particles having a BET value of 200 m 2 /g (manufactured by Nippon Aerosil Co., Ltd., "AEROSIL 812S", average particle diameter D50 = 7 nm) in 86.7 g of ethanol. This was coated on the surface of the filled particle-containing layer using bar coater #6 and air-dried to form a functional layer. In this way, a sample of a laminate including the base material/filler particle-containing layer/functional layer in this order was obtained. Note that the target stacking amount of the hydrophobic silica fine particles was set to 2.0 g/m 2 as a weight after drying.
[実施例2]
 熱可塑性樹脂、第1充填粒子及び第2充填粒子の割合を重量比で100/16/24になるよう調整したほかは、実施例1と同様にして積層体のサンプルを作製した。
[Example 2]
A sample of the laminate was produced in the same manner as in Example 1, except that the proportions of the thermoplastic resin, the first filled particles, and the second filled particles were adjusted to a weight ratio of 100/16/24.
[実施例3]
 熱可塑性樹脂、第1充填粒子及び第2充填粒子の割合を重量比で100/65/39になるよう調整した以外は、実施例1と同様にして積層体のサンプルを作製した。
[Example 3]
A sample of the laminate was produced in the same manner as in Example 1, except that the proportions of the thermoplastic resin, the first filler particles, and the second filler particles were adjusted to a weight ratio of 100/65/39.
[実施例4]
 熱可塑性樹脂、第1充填粒子及び第2充填粒子の割合を重量比で100/81/48になるよう調整した以外は、実施例1と同様にして積層体のサンプルを作製した。
[Example 4]
A sample of the laminate was produced in the same manner as in Example 1, except that the proportions of the thermoplastic resin, the first filled particles, and the second filled particles were adjusted to a weight ratio of 100/81/48.
[実施例5]
 熱可塑性樹脂、第1充填粒子及び第2充填粒子の割合を重量比で100/16/16になるよう調整した以外は、実施例1と同様にして積層体のサンプルを作製した。
[Example 5]
A sample of the laminate was produced in the same manner as in Example 1, except that the proportions of the thermoplastic resin, the first filled particles, and the second filled particles were adjusted to a weight ratio of 100/16/16.
[実施例6]
 第1充填粒子として、平均粒子径D50が12μmで比重1.2g/cmの架橋ポリメタクリル酸メチル(製品名MBX12、積水化成品工業株式会社製)と平均粒子径D50が20μmで比重1.2g/cmの架橋ポリメタクリル酸メチル(製品名MBX20、積水化成品工業株式会社製)とを重量比で約2:3で混合したものを用い、熱可塑性樹脂、第1充填粒子及び第2充填粒子をそれぞれ重量比で100/48/32になるよう調整した以外は、実施例1と同様にして積層体のサンプルを作製した。
[Example 6]
The first filled particles were cross-linked polymethyl methacrylate (product name MBX12, manufactured by Sekisui Plastics Co., Ltd.) with an average particle diameter D50 of 12 μm and a specific gravity of 1.2 g/cm 3 and an average particle diameter D50 of 20 μm and a specific gravity of 1.2 g/cm 3 . Using a mixture of 2 g/cm 3 of cross-linked polymethyl methacrylate (product name MBX20, manufactured by Sekisui Plastics Co., Ltd.) at a weight ratio of about 2:3, thermoplastic resin, first filled particles and second filler particles were mixed. A laminate sample was prepared in the same manner as in Example 1, except that the weight ratio of the filled particles was adjusted to be 100/48/32.
[実施例7]
 第1充填粒子として、平均粒子径D50が30μmで比重1.2g/cmの架橋ポリメタクリル酸メチル(製品名MBX30、積水化成品工業株式会社製)と平均粒子径D50が20μmで比重1.2g/cmの架橋ポリメタクリル酸メチル(製品名MBX20、積水化成品工業株式会社製)とを重量比で約3:2で混合して、平均粒子径を22.3μmとし、熱可塑性樹脂、第1充填粒子及び第2充填粒子を、それぞれ重量比で100/48/32になるよう調整した以外は、実施例1と同様にして積層体のサンプルを作製した。
[Example 7]
The first filled particles were cross-linked polymethyl methacrylate (product name MBX30, manufactured by Sekisui Plastics Co., Ltd.) with an average particle diameter D50 of 30 μm and a specific gravity of 1.2 g/cm 3 and an average particle diameter D50 of 20 μm and a specific gravity of 1.2 g/cm 3 . 2 g/cm 3 of cross-linked polymethyl methacrylate (product name MBX20, manufactured by Sekisui Plastics Co., Ltd.) at a weight ratio of about 3:2 to give an average particle size of 22.3 μm, and a thermoplastic resin, A laminate sample was produced in the same manner as in Example 1, except that the weight ratio of the first filled particles and the second filled particles was adjusted to be 100/48/32, respectively.
[実施例8]
 第1充填粒子として平均粒子径D50が20μmで比重1.2g/cmの架橋ポリメタクリル酸メチル(製品名MBX20、積水化成品工業株式会社製)、第2充填粒子として平均粒子径D50が8μmで比重1.04g/mの市販のポリエチレンイミン微粒子を用い、熱可塑性樹脂、第1充填粒子及び第2充填粒子をそれぞれ重量比で100/48/32になるよう調整した以外は、実施例1と同様にして積層体のサンプルを作製した。
[Example 8]
Cross-linked polymethyl methacrylate (product name MBX20, manufactured by Sekisui Plastics Co., Ltd.) with an average particle diameter D50 of 20 μm and a specific gravity of 1.2 g/cm 3 as the first filled particles, and an average particle diameter D50 of 8 μm as the second filled particles Example 1 except that commercially available polyethyleneimine fine particles with a specific gravity of 1.04 g/m 3 were used, and the weight ratio of the thermoplastic resin, first filled particles, and second filled particles was adjusted to be 100/48/32, respectively. A sample of a laminate was prepared in the same manner as in Example 1.
[実施例9]
 第1充填粒子として、平均粒子径D50が20μmで比重1.2g/cmの架橋ポリメタクリル酸メチル(製品名MBX20、積水化成品工業株式会社製)を用いた。第2充填粒子として平均粒子径D50が10μmで比重0.94g/mの超高分子量ポリエチレン微粒子(製品名「PM200」、三井化学ファイン株式会社製)と平均粒子径D50が20μmで比重0.94g/mの超高分子量ポリエチレン微粒子(製品名「XM220」、三井化学ファイン株式会社製)とを重量比で約1:2で混合して、平均粒子径D50を12μmとしたものを用いた。そのうえで、熱可塑性樹脂、第1充填粒子及び第2充填粒子をそれぞれ重量比で100/48/32になるよう調整した以外は、実施例1と同様にして積層体のサンプルを作製した。
[Example 9]
As the first filled particles, crosslinked polymethyl methacrylate (product name MBX20, manufactured by Sekisui Plastics Co., Ltd.) having an average particle diameter D50 of 20 μm and a specific gravity of 1.2 g/cm 3 was used. The second packed particles include ultra-high molecular weight polyethylene fine particles (product name "PM200", manufactured by Mitsui Chemicals Fine Co., Ltd.) with an average particle diameter D50 of 10 μm and a specific gravity of 0.94 g/m 3 and an average particle diameter D50 of 20 μm and a specific gravity of 0.94 g/m 3 . 94 g/m 3 ultra-high molecular weight polyethylene fine particles (product name "XM220", manufactured by Mitsui Chemicals Fine Co., Ltd.) were mixed at a weight ratio of approximately 1:2, and the average particle diameter D50 was set to 12 μm. . Then, a laminate sample was produced in the same manner as in Example 1, except that the weight ratio of the thermoplastic resin, the first filled particles, and the second filled particles was adjusted to be 100/48/32.
[実施例10]
 熱可塑性樹脂、第1充填粒子及び第2充填粒子の割合を重量比で100/120/80になるよう調整した以外は、実施例1と同様にして積層体のサンプルを作製した。
[Example 10]
A sample of a laminate was produced in the same manner as in Example 1, except that the proportions of the thermoplastic resin, the first filled particles, and the second filled particles were adjusted to a weight ratio of 100/120/80.
[実施例11]
 熱硬化性樹脂として2液硬化型ウレタン樹脂(DICグラフィクス製の主剤ポリエステルポリウレタンポリオール(LX500)、硬化剤として同社トルエンジイソシアネート(KW75)とを、重量比率10:1で配合したものを、固形分量32質量%として溶剤である酢酸エチルに溶解したもの)を21重量部に対し、第1充填粒子として平均粒子径D50が20μmで比重1.2g/cmの架橋ポリメタクリル酸メチル(製品名MBX20、積水化成品工業株式会社製)と、第2充填粒子として平均粒子径D50が10μmで比重0.94g/mの超高分子量ポリエチレン微粒子(製品名「PM200」、三井化学ファイン株式会社製)を用い、熱硬化性樹脂、第1充填粒子及び第2充填粒子をそれぞれ重量比で100/48/32になるよう調整した以外は、実施例1と同様にして積層体のサンプルを作製した。
[Example 11]
A two-component curable urethane resin (main ingredient polyester polyurethane polyol (LX500) manufactured by DIC Graphics Co., Ltd. as a thermosetting resin and the same company's toluene diisocyanate (KW75) as a curing agent at a weight ratio of 10:1 was used, with a solid content of 32 A cross -linked polymethyl methacrylate (product name: MBX20, (manufactured by Sekisui Plastics Co., Ltd.) and ultra-high molecular weight polyethylene fine particles (product name "PM200", manufactured by Mitsui Chemicals Fine Co., Ltd.) with an average particle diameter D50 of 10 μm and a specific gravity of 0.94 g/m 3 as the second filling particles. A laminate sample was prepared in the same manner as in Example 1, except that the weight ratio of the thermosetting resin, the first filled particles, and the second filled particles was adjusted to be 100/48/32.
[実施例12]
 第1充填粒子として平均粒子径D50が50μmで比重1.2g/cmの架橋ポリメタクリル酸メチル(製品名MBX50、積水化成品工業株式会社製)と平均粒子径D50が20μmで比重1.2g/cmの架橋ポリメタクリル酸メチル(製品名MBX20、積水化成品工業株式会社製)とを重量比で約3:2で混合して、平均粒子径を21.8μmとしたものを用い、熱可塑性樹脂、第1充填粒子及び第2充填粒子を、それぞれ重量比で100/48/32になるよう調整した以外は、実施例1と同様にして積層体のサンプルを作製した。
[Example 12]
The first filled particles include cross-linked polymethyl methacrylate (product name MBX50, manufactured by Sekisui Plastics Co., Ltd.) with an average particle diameter D50 of 50 μm and a specific gravity of 1.2 g/cm 3 and an average particle diameter D50 of 20 μm and a specific gravity of 1.2 g. / cm3 of cross-linked polymethyl methacrylate (product name MBX20, manufactured by Sekisui Plastics Co., Ltd.) in a weight ratio of about 3:2 to give an average particle size of 21.8 μm, and heat A laminate sample was produced in the same manner as in Example 1, except that the plastic resin, the first filled particles, and the second filled particles were adjusted to have a weight ratio of 100/48/32, respectively.
[比較例1]
 平均一次粒子径12nmの市販の気相法シリカ粉末100gを反応槽に入れ、窒素ガス雰囲気下で攪拌しながら市販の表面処理剤500gをスプレーし、次いで200℃で30分間攪拌した後、冷却した。このようにして表面改質シリカ微粒子(複合粒子)からなる粉末を得た。上記の表面処理剤として、ポリフルオロオクチルメタクリレート、2-N,N-ジエチルアミノエチルメタクリレート、2-ヒドロキシエチルメタクリレート及び2,2’-エチレンジオキシジエチルジメタクリレートのコポリマーの水分散液(固形分濃度:20重量%)を用いた。上記の複合粒子10gをエチルアルコール90gに添加混合することにより塗工液を調製した。この塗工液をバーコーター#6を用いて乾燥後重量で4.0g/mとなるように、基材(厚み38μmのPETフィルム)の表面に塗工し、自然乾燥を行うことでサンプルを作製した。
[Comparative example 1]
100 g of commercially available vapor-phase silica powder with an average primary particle size of 12 nm was placed in a reaction tank, and 500 g of a commercially available surface treatment agent was sprayed on it while stirring in a nitrogen gas atmosphere. After stirring at 200° C. for 30 minutes, it was cooled. . In this way, a powder consisting of surface-modified silica fine particles (composite particles) was obtained. As the above surface treatment agent, an aqueous dispersion (solid content concentration: 20% by weight) was used. A coating liquid was prepared by adding and mixing 10 g of the above composite particles to 90 g of ethyl alcohol. This coating solution was applied to the surface of the base material (38 μm thick PET film) using bar coater #6 to a weight of 4.0 g/m 2 after drying, and the sample was dried naturally. was created.
[比較例2]
 熱可塑性樹脂、第1充填粒子及び第2充填粒子の割合を重量比で100/81/10になるよう調整した以外は、実施例1と同様にして積層体のサンプルを作製した。
[Comparative example 2]
A laminate sample was produced in the same manner as in Example 1, except that the proportions of the thermoplastic resin, first filled particles, and second filled particles were adjusted to a weight ratio of 100/81/10.
[比較例3]
 熱可塑性樹脂、第1充填粒子及び第2充填粒子の割合を重量比で100/10/48になるよう調整した以外は、実施例1と同様にして積層体のサンプルを作製した。
[Comparative example 3]
A sample of the laminate was produced in the same manner as in Example 1, except that the proportions of the thermoplastic resin, the first filled particles, and the second filled particles were adjusted to a weight ratio of 100/10/48.
[比較例4]
 熱可塑性樹脂、第1充填粒子及び第2充填粒子の割合を重量比で100/150/32になるよう調整した以外は、実施例1と同様にして積層体のサンプルを作製した。
[Comparative example 4]
A laminate sample was produced in the same manner as in Example 1, except that the proportions of the thermoplastic resin, the first filled particles, and the second filled particles were adjusted to a weight ratio of 100/150/32.
[比較例5]
 熱可塑性樹脂、第1充填粒子及び第2充填粒子の割合を重量比で100/48/100になるよう調整した以外は、実施例1と同様にして積層体のサンプルを作製した。
[Comparative example 5]
A laminate sample was produced in the same manner as in Example 1, except that the proportions of the thermoplastic resin, the first filled particles, and the second filled particles were adjusted to a weight ratio of 100/48/100.
[比較例6]
 第1充填粒子として平均粒子径D50が12μmで比重1.2g/cmの架橋ポリメタクリル酸メチル(製品名「MBX12」、積水化成品工業株式会社製)を用い、第2充填粒子として平均粒子径D50が8μmで比重1.04g/mの市販のポリエチレンイミン微粒子を用い、熱可塑性樹脂、第1充填粒子及び第2充填粒子をそれぞれ重量比で100/48/32になるよう調整したほかは、実施例1と同様にして積層体のサンプルを作製した。
[Comparative example 6]
Cross-linked polymethyl methacrylate (product name "MBX12", manufactured by Sekisui Plastics Co., Ltd.) with an average particle diameter D50 of 12 μm and a specific gravity of 1.2 g/cm 3 was used as the first filled particles, and average particles were used as the second filled particles. Using commercially available polyethyleneimine fine particles with a diameter D50 of 8 μm and a specific gravity of 1.04 g/m 3 , the thermoplastic resin, first filled particles, and second filled particles were adjusted to have a weight ratio of 100/48/32, respectively. A laminate sample was prepared in the same manner as in Example 1.
[比較例7]
 第1充填粒子を平均粒子径D50が100μmで比重1.2g/cmの架橋ポリメタクリル酸メチル(製品名「MBX100」、積水化成品工業株式会社製)を用い、第2充填粒子として平均粒子径D50が8μmで比重1.04g/mの市販のポリエチレンイミン微粒子を用い、熱可塑性樹脂、第1充填粒子及び第2充填粒子をそれぞれ重量比で100/48/32になるよう調整した以外は、実施例1と同様にして積層体のサンプルを作製した。
[Comparative Example 7]
Cross-linked polymethyl methacrylate (product name "MBX100", manufactured by Sekisui Plastics Co., Ltd.) with an average particle diameter D50 of 100 μm and a specific gravity of 1.2 g/cm 3 was used as the first filled particles, and the average particles were used as the second filled particles. Commercially available polyethyleneimine fine particles with a diameter D50 of 8 μm and a specific gravity of 1.04 g/m 3 were used, and the weight ratio of the thermoplastic resin, first filled particles, and second filled particles was adjusted to be 100/48/32, respectively. A laminate sample was prepared in the same manner as in Example 1.
[比較例8]
 第1充填粒子として平均粒子径D50が12μmで比重1.2g/cmの架橋ポリメタクリル酸メチル(製品名「MBX12」、積水化成品工業株式会社製)と平均粒子径D50が20μmで比重1.2g/cmの架橋ポリメタクリル酸メチル(製品名「MBX20」、積水化成品工業株式会社製)とを重量比で約1:20で混合して、平均粒子径D50を18.5μmとした混合物を用い、第2充填粒子として平均粒子径D50が5μmで比重0.92g/mの市販の低密度ポリエチレン微粒子を用い、熱可塑性樹脂、第1充填粒子及び第2充填粒子をそれぞれ重量比で100/48/32になるよう調整した以外は、実施例1と同様にして積層体のサンプルを作製した。
[Comparative example 8]
The first filled particles include cross-linked polymethyl methacrylate (product name "MBX12", manufactured by Sekisui Plastics Co., Ltd.) with an average particle diameter D50 of 12 μm and a specific gravity of 1.2 g/cm 3 and an average particle diameter D50 of 20 μm and a specific gravity of 1. .2 g/ cm3 of cross-linked polymethyl methacrylate (product name "MBX20", manufactured by Sekisui Plastics Co., Ltd.) was mixed at a weight ratio of about 1:20 to give an average particle diameter D50 of 18.5 μm. Using a mixture, commercially available low-density polyethylene fine particles with an average particle diameter D50 of 5 μm and a specific gravity of 0.92 g/m 3 were used as the second filling particles, and the weight ratios of the thermoplastic resin, the first filling particles, and the second filling particles were adjusted, respectively. A sample of the laminate was produced in the same manner as in Example 1, except that the ratio was adjusted to 100/48/32.
[比較例9]
 第1充填粒子として平均粒子径D50が12μmで比重1.2g/cmの架橋ポリメタクリル酸メチル(製品名「MBX12」、積水化成品工業株式会社製)と平均粒子径D50が20μmで比重1.2g/cmの架橋ポリメタクリル酸メチル(製品名MBX20、積水化成品工業株式会社製)とを重量比で約1:20で混合して、平均粒子径D50を18.5μmとした混合物を用い、第2充填粒子として平均粒子径D50が15μmで比重1.19g/mの市販の架橋アクリル単分子微粒子を用い、熱可塑性樹脂、第1充填粒子及び第2充填粒子をそれぞれ重量比で100/48/32になるよう調整した以外は、実施例1と同様にして積層体のサンプルを作製した。
[Comparative Example 9]
The first filled particles include cross-linked polymethyl methacrylate (product name "MBX12", manufactured by Sekisui Plastics Co., Ltd.) with an average particle diameter D50 of 12 μm and a specific gravity of 1.2 g/cm 3 and an average particle diameter D50 of 20 μm and a specific gravity of 1. .2 g/ cm3 of cross-linked polymethyl methacrylate (product name MBX20, manufactured by Sekisui Plastics Co., Ltd.) was mixed at a weight ratio of about 1:20 to make a mixture with an average particle diameter D50 of 18.5 μm. Using commercially available crosslinked acrylic monomolecular fine particles with an average particle diameter D50 of 15 μm and a specific gravity of 1.19 g/m 3 as the second filled particles, the thermoplastic resin, the first filled particles, and the second filled particles were added in weight ratios. A laminate sample was produced in the same manner as in Example 1, except that the thickness was adjusted to 100/48/32.
[比較例10]
 第1充填粒子を平均粒子径D50が60μmで比重1.2g/cmの架橋ポリメタクリル酸メチル(製品名「MBX60」、積水化成品工業株式会社製)を用い、第2充填粒子として平均粒子径D50が8μmで比重1.04g/mの市販のポリエチレンイミン微粒子を用い、熱可塑性樹脂、第1充填粒子及び第2充填粒子をそれぞれ重量比で100/48/32になるよう調整した以外は、実施例1と同様にして積層体のサンプルを作製した。
[Comparative Example 10]
Cross-linked polymethyl methacrylate (product name "MBX60", manufactured by Sekisui Plastics Co., Ltd.) with an average particle diameter D50 of 60 μm and a specific gravity of 1.2 g/cm 3 was used as the first filled particle, and the average particle was used as the second filled particle. Commercially available polyethyleneimine fine particles with a diameter D50 of 8 μm and a specific gravity of 1.04 g/m 3 were used, and the weight ratio of the thermoplastic resin, first filled particles, and second filled particles was adjusted to be 100/48/32, respectively. A laminate sample was prepared in the same manner as in Example 1.
[試験例1]
 実施例及び比較例で得られたサンプルについて、湿着雪試験で行った。具体的には、図2に示すように、縦10cm×横10cmの積層体サンプル10を90度の鉛直方向に取り付けた。
 次いで、人工降雪機(図示せず)で製造された湿雪22を図2に示す送風機21を介して気温+1~2℃の環境下で風速5m/sで積層体サンプル(機能層面)に90度の鉛直方向で一定時間吹き付け、全面を動画撮影して、試験終了後に得られた映像から、サンプルに着雪するまでの時間(無着雪時間)を計測した。サンプルに付着した雪が落下せずにそのままサンプル面上にとどまり成長した場合を「着雪」とした。無着雪時間が長いほどサンプルが優れていることを示している。本試験条件で10分間着雪しなければ、自然界で100分間着雪しないことに相当する。
[Test Example 1]
The samples obtained in the Examples and Comparative Examples were subjected to a wet snow test. Specifically, as shown in FIG. 2, a laminate sample 10 measuring 10 cm long x 10 cm wide was mounted at 90 degrees in the vertical direction.
Next, wet snow 22 produced by an artificial snowmaking machine (not shown) is applied to the laminate sample (functional layer surface) at a wind speed of 5 m/s at a temperature of +1 to 2°C via the blower 21 shown in FIG. The sample was sprayed vertically for a certain period of time, and a video was taken of the entire surface. After the test was completed, the time until snow started to snow on the sample (snow-free time) was measured from the video obtained. Snow adhering to the sample did not fall but remained on the sample surface and grew, which was defined as "snow accretion." The longer the snow-free time, the better the sample. If no snow falls for 10 minutes under the present test conditions, this corresponds to no snow falling for 100 minutes in the natural world.
 表1の結果からも明らかなように、各実施例における積層体は、少なくとも30分以上着雪しない状態を維持することができ、雪が固まって落下するおそれがないことがわかる。これにより、特に、防着雪効果及び防着氷効果に優れており、防着雪用又は防着氷用の積層体として好適に使用できることがわかる。

 
As is clear from the results in Table 1, the laminates in each example can maintain a state in which snow does not accumulate for at least 30 minutes, and there is no risk that the snow will harden and fall. This shows that it has particularly excellent snow and ice prevention effects and can be suitably used as a laminate for snow or ice prevention.

Claims (6)

  1. 基材、充填粒子含有層及び機能層を順に含む積層体であって、
    (1)充填粒子含有層は、熱可塑性樹脂及び熱硬化性樹脂の少なくとも1種の樹脂成分を含むマトリックス中に、平均粒子径D50が15~50μmの第1充填粒子と、平均粒子径D50が8~12μmの第2充填粒子とを含有し、
    (2)第1充填粒子の含有量は、樹脂成分100重量部に対して12~120重量部であり、
    (3)第2充填粒子の含有量は、樹脂成分100重量部に対して12~80重量部であり、
    (4)機能層は、平均一次粒子径3~100nmの疎水性酸化物微粒子を含む三次元網目構造体を含む、
    ことを特徴とする防氷・防雪用積層体。
    A laminate including, in order, a base material, a filler particle-containing layer, and a functional layer,
    (1) The filled particle-containing layer includes first filled particles having an average particle diameter D50 of 15 to 50 μm and a matrix containing at least one resin component of a thermoplastic resin and a thermosetting resin. and second filling particles of 8 to 12 μm,
    (2) The content of the first filled particles is 12 to 120 parts by weight based on 100 parts by weight of the resin component,
    (3) The content of the second filler particles is 12 to 80 parts by weight based on 100 parts by weight of the resin component,
    (4) The functional layer includes a three-dimensional network structure containing hydrophobic oxide fine particles with an average primary particle diameter of 3 to 100 nm.
    An anti-icing/snow laminate characterized by the following.
  2. 第1充填粒子として比重1.1~1.3g/cmのアクリル樹脂粒子を含み、第2充填粒子として比重0.92~0.98g/mのポリエチレン粒子を含む、請求項1に記載の防氷・防雪用積層体。 According to claim 1, the first filled particles include acrylic resin particles with a specific gravity of 1.1 to 1.3 g/cm 3 and the second filled particles include polyethylene particles with a specific gravity of 0.92 to 0.98 g/m 3. Anti-ice/snow laminate.
  3. 疎水性酸化物微粒子の積層量が0.1~20g/mである、請求項1に記載の防氷・防雪用積層体。 The anti-icing/snow laminate according to claim 1, wherein the laminated amount of the hydrophobic oxide fine particles is 0.1 to 20 g/m 2 .
  4. 請求項1に記載の防氷・防雪用積層体を含む防氷・防雪カバー。 An anti-ice/snow cover comprising the anti-ice/snow laminate according to claim 1.
  5. 物体に氷又は雪が付着することを防止する方法であって、前記物品の表面に前記機能層が最表面となるように前記積層体を物体表面に積層する工程を含む方法。 A method for preventing ice or snow from adhering to an object, the method comprising the step of laminating the laminate on the surface of the object so that the functional layer is on the outermost surface.
  6. 物体に氷又は雪が付着することを防止する方法であって、
    (1)熱可塑性樹脂及び熱硬化性樹脂の少なくとも1種の樹脂成分を含むマトリックス中に(a)平均粒子径D50が15~50μmの第1充填粒子と、平均粒子径D50が8~12μmの第2充填粒子とを含有し、(b)第1充填粒子は樹脂成分100重量部に対して12~120重量部含み、第2充填粒子は樹脂成分100重量部に対して12~80重量部含む充填粒子含有層を物体表面に形成する工程、
    (2)前記充填粒子含有層の表面に、平均一次粒子径3~100nmの疎水性酸化物微粒子を含む三次元網目構造体を含む機能層を形成する工程、
    含む方法。

     
    A method for preventing ice or snow from adhering to an object, the method comprising:
    (1) In a matrix containing at least one resin component of a thermoplastic resin and a thermosetting resin, (a) first filled particles having an average particle diameter D50 of 15 to 50 μm; (b) The first filled particles contain 12 to 120 parts by weight based on 100 parts by weight of the resin component, and the second filled particles contain 12 to 80 parts by weight based on 100 parts by weight of the resin component. forming a layer containing filled particles on the surface of the object;
    (2) forming a functional layer containing a three-dimensional network structure containing hydrophobic oxide fine particles with an average primary particle diameter of 3 to 100 nm on the surface of the filled particle-containing layer;
    How to include.

PCT/JP2023/012059 2022-03-28 2023-03-25 Anti-icing/snow protection laminate WO2023190268A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-051833 2022-03-28
JP2022051833 2022-03-28

Publications (1)

Publication Number Publication Date
WO2023190268A1 true WO2023190268A1 (en) 2023-10-05

Family

ID=88201599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012059 WO2023190268A1 (en) 2022-03-28 2023-03-25 Anti-icing/snow protection laminate

Country Status (1)

Country Link
WO (1) WO2023190268A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000167955A (en) * 1998-12-04 2000-06-20 Nippon Carbide Ind Co Inc Water super-repellent adhesive film
CN101474896A (en) * 2009-01-21 2009-07-08 重庆大学 Ultra-hydrophobic film of compound structure
JP2012106420A (en) * 2010-11-17 2012-06-07 Japan Fine Ceramics Center Composite material having water-repellent surface
JP2013075715A (en) * 2011-09-30 2013-04-25 Toyo Aluminium Kk Packaging material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000167955A (en) * 1998-12-04 2000-06-20 Nippon Carbide Ind Co Inc Water super-repellent adhesive film
CN101474896A (en) * 2009-01-21 2009-07-08 重庆大学 Ultra-hydrophobic film of compound structure
JP2012106420A (en) * 2010-11-17 2012-06-07 Japan Fine Ceramics Center Composite material having water-repellent surface
JP2013075715A (en) * 2011-09-30 2013-04-25 Toyo Aluminium Kk Packaging material

Similar Documents

Publication Publication Date Title
CN104797641B (en) The nano silicon dioxide coating component of durability with enhancing
JP6483822B2 (en) Coating
CN104185658B (en) Alkaline compositions, coating substrate, product and method comprising inorganic oxide nanoparticles and organic base
US20130123389A1 (en) Compositions and processes for producing durable hydrophobic and/or olephobic surfaces
US20030134086A1 (en) Diffuse-reflection surfaces and process for their production
CN104769023B (en) For the nanometer titanium dioxide silicon coating for hindering dewdrop to be formed
US10040953B2 (en) Poly(vinyl alcohol) and silica nanoparticle multilayer coatings and methods
JP2016525963A (en) Cross-linked poly (vinyl alcohol) and silica nanoparticle multilayer coating and method
KR102183668B1 (en) infrared and heat reflective water-soluble pigments composition for road comprising hydrophobic silica aerogel
KR101176043B1 (en) Liquid paint composition containing the mixed beads for traffic lane
WO2023190268A1 (en) Anti-icing/snow protection laminate
KR20060129169A (en) Method for producing an antistatically coated molded body
CA2665229A1 (en) Coating compositions
CN210122554U (en) Self-cleaning antifogging hardening film
CN107148405B (en) Surface property improvement of glass beads for use as retroreflective material in pavement markings by natural clay coating
WO2019181216A1 (en) Snow slip film or sheet
TW202328504A (en) Laminated body
WO2021157449A1 (en) Water-repellent structure, manufacturing method therefor, and water-repellent coating agent employed in same
JP6835067B2 (en) Infrared absorbing material, infrared absorbing material dispersion, infrared absorbing material dispersion, infrared absorbing material dispersion combined transparent base material, infrared absorbing transparent base material
KR101236779B1 (en) Free environment coating material to prevent sleeping for safety working
KR20120043351A (en) Method of preparing photoluminescent retroreflective bead for road sign in the rain
WO2004007189A1 (en) Antistatic molded article and antistatic paint
JP3187135U (en) Adhesive sheet that prevents scattering of the base material and imparts antifouling properties to the base material
US20030082408A1 (en) Sheet having a hydrophilic surface
Wypych Encyclopedia of Polymer and Rubber Additives

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780278

Country of ref document: EP

Kind code of ref document: A1