WO2023189996A1 - Resin composition for molding, manufacturing method for sealing structure, and sealing structure - Google Patents

Resin composition for molding, manufacturing method for sealing structure, and sealing structure Download PDF

Info

Publication number
WO2023189996A1
WO2023189996A1 PCT/JP2023/011406 JP2023011406W WO2023189996A1 WO 2023189996 A1 WO2023189996 A1 WO 2023189996A1 JP 2023011406 W JP2023011406 W JP 2023011406W WO 2023189996 A1 WO2023189996 A1 WO 2023189996A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
molding resin
molding
mass
measured
Prior art date
Application number
PCT/JP2023/011406
Other languages
French (fr)
Japanese (ja)
Inventor
和彦 嶽出
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to JP2023552516A priority Critical patent/JP7501801B2/en
Publication of WO2023189996A1 publication Critical patent/WO2023189996A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon

Definitions

  • the present invention relates to a molding resin composition, a method for manufacturing a sealing structure, and a sealing structure.
  • thermosetting resin In order to protect electronic components such as semiconductor devices or structures such as stators from the external environment, a method of sealing them using thermosetting resin is widely adopted.
  • the transfer molding method using an epoxy resin as the sealing resin is excellent in economy and productivity, and is suitable for mass production, so it has become the mainstream of resin sealing.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-284277.
  • the document describes a rotating electric machine having a stator in which a plurality of coils are wound at predetermined intervals around a stator core made of a plurality of laminated electromagnetic steel sheets, a rotor that is rotatably held relative to the stator, and a cooling frame that fixes the stator.
  • the present invention was made in view of the above circumstances, and is a molding resin that can be cured at low temperatures and that can improve the adhesion and waterproofness when sealing electronic components or structures such as stators.
  • the purpose is to provide a composition.
  • the following molding resin composition, method for manufacturing a sealing structure, and sealing structure are provided.
  • a stator core fixed on the board having a plurality of slots formed in the circumferential direction, and a plurality of coils housed in the slots.
  • a molding resin composition used Epoxy resin and one or both of a curing agent and a curing catalyst; an inorganic filler;
  • Tg glass transition temperature
  • Method 1 The above molding resin composition was molded into a test piece of 80 mm x 10 mm x 4 mm using a transfer molding machine at a mold temperature of 175°C, an injection pressure of 6.9 MPa, and a curing time of 90 seconds. Post-cure. Furthermore, using a thermomechanical analyzer, the coefficient of thermal expansion of the test piece obtained at a heating rate of 5° C./min is measured.
  • the glass transition temperature (Tg) (° C.) of the cured product is calculated from the inflection point of the coefficient of thermal expansion.
  • Tg glass transition temperature
  • the phenolic resin curing agent contains one or more selected from the group consisting of a phenol novolac resin, a cresol novolak resin, a naphthol novolac resin, and a trisphenolmethane type phenolic resin.
  • Method 3 The above resin composition for molding was placed into a spiral flow measurement mold according to ANSI/ASTM D 3123-72 using a low-pressure transfer molding machine under conditions of 175°C, injection pressure of 6.9 MPa, and pressure holding time of 3 minutes. The flow length is measured, and this is defined as the spiral flow (cm).
  • Method 4 The above resin composition for molding was placed into a spiral flow measurement mold according to ANSI/ASTM D 3123-72 using a low-pressure transfer molding machine under conditions of 175°C, injection pressure of 6.9 MPa, and pressure holding time of 3 minutes. Inject with. The time from the start of injection until the molding resin composition hardens and ceases to flow is measured and is defined as gel time (seconds).
  • gel time Seconds.
  • Method 5 The above molding resin composition is injection molded using a low-pressure transfer molding machine under conditions of a mold temperature of 175° C., an injection pressure of 9.8 MPa, and a curing time of 3 minutes to obtain a molded article of 15 mm x 4 mm x 4 mm. Next, the obtained molded article is post-cured at 175° C. for 4 hours to prepare a test piece. Then, the obtained test piece was measured using a thermomechanical analyzer under the conditions of a measurement temperature range of 0°C to 400°C and a heating rate of 5°C/min, and the average linear expansion coefficient ⁇ 1 at 25-70°C (ppm/°C).
  • Method 6 The above resin composition for molding is injection molded using a transfer molding machine under conditions of a mold temperature of 175° C., an injection pressure of 6.9 MPa, and a curing time of 90 seconds to obtain a molded article of 80 mm x 10 mm x 4 mm. Next, the obtained molded body is post-cured at 175° C. for 2 hours to obtain a test piece. Thermal diffusivity of the obtained test piece is measured using the laser flash method.
  • a mold in a transfer molding machine includes a board on which electronic components are mounted, a stator core fixed on the board having a plurality of slots formed in the circumferential direction, and a plurality of coils accommodated in the slots.
  • a step of arranging In the transfer molding method using the transfer molding machine, the molding resin composition according to any one of [1] to [15] above is used to mold the substrate in the mold, the stator core, and the coil.
  • a step of obtaining a sealed structure by sealing and molding A method for manufacturing a sealed structure, comprising: [17] In the method for manufacturing a sealed structure according to [16] above, A method for manufacturing a sealed structure, wherein in the step of obtaining the sealed structure, sealing molding is performed at a temperature equal to or lower than the Tg of the cured product of the molding resin composition.
  • a method for manufacturing a sealed structure in which a post-curing step is not performed as the step of obtaining the sealed structure.
  • a molding resin composition that can be cured at low temperatures and can improve adhesion and waterproofness when sealing electronic components or structures such as stators.
  • the molding resin composition of this embodiment includes a substrate on which electronic components are mounted, a stator core fixed on the substrate having a plurality of slots formed in the circumferential direction, and a stator core fixed on the substrate having a plurality of slots formed in the circumferential direction.
  • a molding resin composition used for collectively sealing a coil the molding resin composition containing an epoxy resin, a curing catalyst, and an inorganic filler, the molding resin composition being heated at 140°C for 2 minutes.
  • the cured product has a bending elastic modulus (according to JIS K6911:2006) at 25° C. of 0.1 GPa or more and 30 GPa or less.
  • the molding resin composition of this embodiment includes a substrate on which electronic components are mounted, a stator core fixed on the substrate having a plurality of slots formed in the circumferential direction, and a stator core fixed on the substrate having a plurality of slots formed in the circumferential direction. It is used to seal the coil together.
  • the method of using the moldable resin composition of this embodiment as a sealing material will be described in detail below.
  • the molding resin composition of the present embodiment has a flexural modulus of elasticity (according to JIS K6911:2006) at 25°C of 0.1 GPa or more and 30 GPa or less in a cured product obtained by curing the molding resin composition at 140°C for 2 minutes. It is.
  • the molding resin composition of this embodiment has a bending elastic modulus within the above numerical range, so it can be cured at low temperatures, and has excellent adhesion and waterproofing when sealing structures such as electronic parts or stators. can improve sex.
  • the molding resin composition of this embodiment has a lower limit of flexural modulus at 25°C (JIS K6911 compliant: 2006) of 0.1 GPa in a cured product obtained by curing the molding resin composition at 140°C for 2 minutes.
  • the above is preferably 1.0 GPa or more, more preferably 3.0 GPa or more, even more preferably 5.0 GPa or more, even more preferably 8.0 GPa or more, even more preferably 10.0 GPa or more, even more preferably 12.0 GPa. It is more preferably 13.0 GPa or more.
  • the upper limit of the bending elastic modulus is 30 GPa or less, preferably 27.0 GPa or less, more preferably 24.0 GPa or less, even more preferably 21.0 GPa or less.
  • the flexural modulus at 25° C. of the molding resin composition of this embodiment can be measured, for example, by the following method.
  • the resin composition was injection molded under the conditions of a mold temperature of 140°C, an injection pressure of 9.8 MPa, and a curing time of 2 minutes to form a molded product with a length of 80 mm, width of 10 mm, and thickness of 4 mm. Obtained.
  • the obtained molded product was heat-treated at 200° C. for 4 hours as a post-curing test piece, and the flexural modulus of elasticity can be measured at an ambient temperature of 25° C. according to JIS K 6911:2006.
  • the low-pressure transfer molding machine for example, KTS-15 or KTS-30 (manufactured by Kotaki Seiki Co., Ltd.) can be used.
  • epoxy resin examples of the epoxy resin used in the molding resin composition of the present embodiment include novolac type epoxy resins such as phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, etc.
  • Bisphenol type epoxy resin N,N-diglycidylaniline, N,N-diglycidyltoluidine, diaminodiphenylmethane type glycidylamine, aromatic glycidylamine type epoxy resin such as aminophenol type glycidylamine, hydroquinone type epoxy resin, biphenyl type Epoxy resin, stilbene type epoxy resin, trisphenolmethane type epoxy resin, trisphenolpropane type epoxy resin, alkyl-modified trisphenolmethane type epoxy resin, triazine core-containing epoxy resin, dicyclopentadiene-modified phenol type epoxy resin, naphthol type epoxy resin , naphthalene type epoxy resins, phenol aralkyl type epoxy resins having a phenylene and/or biphenylene skeleton, aralkyl type epoxy resins such as naphthol aralkyl type epoxy resins having a phenylene and/or biphenylene skeleton, aromatic epoxy resin
  • the epoxy resin used in the molding resin composition of the present embodiment is one or two selected from the group consisting of phenol novolak epoxy resin, cresol novolac epoxy resin, and trisphenolmethane epoxy resin. It is preferable to include more than one species.
  • the lower limit of the epoxy resin content in the molding resin composition of this embodiment is determined from the viewpoint of further improving the adhesion and waterproofness when sealing structures such as electronic parts or stators.
  • the total solid content of the product is 100% by mass, preferably 3% by mass or more, more preferably 4% by mass or more, still more preferably 5% by mass or more, even more preferably 6% by mass or more, even more preferably 7% by mass. That's all.
  • the upper limit of the content of the epoxy resin is preferably 40% when the entire solid content of the molding resin composition is 100% by mass. The content is at most 30% by mass, more preferably at most 20% by mass, even more preferably at most 15% by mass.
  • the content of the epoxy resin in the molding resin composition of this embodiment is determined from the viewpoint of further improving the adhesion and waterproofness when sealing structures such as electronic parts or stators, and from the viewpoint of further improving the adhesiveness and waterproofness when sealing structures such as electronic parts or stators, and the From the viewpoint of obtaining a structure with excellent strength, when the entire solid content of the molding resin composition is 100% by mass, preferably 3% by mass or more and 40% by mass or less, more preferably 4% by mass or more and 30% by mass or less, More preferably, the content is 5% by mass or more and 20% by mass or less, still more preferably 6% by mass or more and 20% by mass or less, and even more preferably 7% by mass or more and 15% by mass or less.
  • the molding resin composition of this embodiment contains one or both of a curing agent and a curing catalyst.
  • the molding resin composition of this embodiment preferably contains a curing agent in order to three-dimensionally crosslink the epoxy resin, and when it contains a curing agent as an essential component, it more preferably contains a phenolic resin curing agent.
  • phenolic resin curing agent examples include novolak type phenolic resins such as phenol novolac resin, cresol novolac resin, and naphthol novolac resin; polyfunctional phenolic resins such as trisphenolmethane type phenolic resin; terpene-modified phenolic resin, dicyclopentadiene Modified phenol resins such as modified phenol resins; phenol aralkyl resins having a phenylene skeleton and/or biphenylene skeleton; aralkyl type phenol resins such as naphthol aralkyl resins having a phenylene and/or biphenylene skeleton; bisphenol compounds such as bisphenol A, bisphenol F, etc. These may be used alone or in combination of two or more.
  • novolak type phenolic resins such as phenol novolac resin, cresol novolac resin, and naphthol novolac resin
  • polyfunctional phenolic resins such as trisphenolmethane type phenolic
  • the phenolic resin curing agent is one or more selected from the group consisting of phenol novolac resin, cresol novolac resin, naphthol novolac resin, and trisphenolmethane type phenolic resin. including.
  • a phenolic resin curing agent provides a good balance of flame resistance, moisture resistance, electrical properties, curability, storage stability, etc.
  • the hydroxyl equivalent of the phenolic resin curing agent can be set to 90 g/eq or more and 250 g/eq or less.
  • curing agents examples include polyaddition type curing agents, catalyst type curing agents, condensation type curing agents, and the like.
  • polyaddition type curing agents include aliphatic polyamines such as diethylenetriamine (DETA), triethylenetetramine (TETA), and metaxylene diamine (MXDA), diaminodiphenylmethane (DDM), m-phenylenediamine (MPDA), and diaminodiamine.
  • DETA diethylenetriamine
  • TETA triethylenetetramine
  • MXDA metaxylene diamine
  • DDM diaminodiphenylmethane
  • MPDA m-phenylenediamine
  • aromatic polyamines such as diphenyl sulfone (DDS), polyamine compounds including dicyandiamide (DICY) and organic acid dihydrazide; alicyclic acid anhydrides such as hexahydrophthalic anhydride (HHPA) and methyltetrahydrophthalic anhydride (MTHPA) Acid anhydrides, including aromatic acid anhydrides such as trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), and benzophenone tetracarboxylic acid (BTDA); polyphenolic compounds such as novolak-type phenolic resins and phenolic polymers Polymercaptan compounds such as polysulfide, thioester, and thioether; Isocyanate compounds such as isocyanate prepolymers and blocked isocyanates; Organic acids such as carboxylic acid-containing polyester resins.
  • DDS diphenyl sulfone
  • DIY dicyandiamide
  • catalytic curing agents examples include tertiary amine compounds such as benzyldimethylamine (BDMA) and 2,4,6-trisdimethylaminomethylphenol (DMP-30); 2-methylimidazole, 2-ethyl-4 - Imidazole compounds such as methylimidazole (EMI24); Lewis acids such as BF 3 complex, and the like.
  • BDMA benzyldimethylamine
  • DMP-30 2,4,6-trisdimethylaminomethylphenol
  • 2-methylimidazole, 2-ethyl-4 - Imidazole compounds such as methylimidazole (EMI24)
  • Lewis acids such as BF 3 complex, and the like.
  • condensation type curing agent examples include resol resins, urea resins such as methylol group-containing urea resins, and melamine resins such as methylol group-containing melamine resins.
  • the lower limit of the content of the phenolic resin curing agent is preferably 20% by mass or more, more preferably 30% by mass or more, and even more preferably is 50% by mass or more, more preferably 70% by mass or more, even more preferably 90% by mass or more.
  • the content of the phenolic resin curing agent is at least the above lower limit, good fluidity can be developed while maintaining curability at low temperatures.
  • the upper limit of the content of the phenolic resin curing agent is not particularly limited, but is preferably 100% by mass or less based on the total curing agent.
  • the lower limit of the total content of curing agents in the molding resin composition of the present embodiment is not particularly limited, it is preferably when the entire solid content of the molding resin composition is 100% by mass. is 0.8% by mass or more, more preferably 1% by mass or more, even more preferably 1.5% by mass or more, even more preferably 2% by mass or more, even more preferably 3% by mass or more, even more preferably 4% by mass or more. be. Good curability can be obtained when the total content of the curing agents is at least the above lower limit.
  • the upper limit of the total content of curing agents in the molding resin composition is not particularly limited, but is preferably 12% by mass or less, more preferably 12% by mass or less, based on the entire molding resin composition. It is 10% by mass or less, more preferably 8% by mass or less.
  • the phenol resin and epoxy resin used as a curing agent are equivalent to the equivalent ratio (EP)/(OH ) is preferably 0.8 or more and 1.6 or less.
  • the equivalent ratio is within the above range, sufficient curing properties can be obtained when molding the resulting molding resin composition.
  • the equivalent ratio may be adjusted as appropriate.
  • the molding resin composition of this embodiment contains a curing catalyst as an essential component, it is preferable to use an imidazole-based compound as the curing catalyst used in the molding resin composition of this embodiment.
  • imidazole compounds include imidazole, 2-methylimidazole, 2-undecylimidazole, 2-heptadecyl imidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl- 4-Methylimidazole, 1-benzyl-2-phenylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2 - Imidazole compounds such as undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 2-phenyl-4,5
  • the content of the imidazole-based compound is preferably 0.01% by mass or more, more preferably 0.01% by mass or more when the entire solid content of the molding resin composition is 100% by mass.
  • 03% by mass or more more preferably 0.05% by mass or more, even more preferably 0.1% by mass or more, even more preferably 0.3% by mass or more, still more preferably 0.5% by mass or more, even more preferably 1.0% by mass or more. It is 0% by mass or more.
  • the content of the imidazole compound is preferably 2.0% by mass or less, more preferably 1.5% by mass or less, when the entire solid content of the molding resin composition is 100% by mass.
  • curing catalysts include phosphorus atom-containing compounds such as organic phosphines, tetra-substituted phosphonium compounds, phosphobetaine compounds, adducts of phosphine compounds and quinone compounds, and adducts of phosphonium compounds and silane compounds; It can further contain one or more selected from amine curing catalysts other than imidazole compounds such as 1,8-diazabicyclo(5,4,0)undecene.
  • organic phosphine examples include primary phosphines such as ethylphosphine and phenylphosphine; secondary phosphines such as dimethylphosphine and diphenylphosphine; and tertiary phosphines such as trimethylphosphine, triethylphosphine, tributylphosphine and triphenylphosphine.
  • primary phosphines such as ethylphosphine and phenylphosphine
  • secondary phosphines such as dimethylphosphine and diphenylphosphine
  • tertiary phosphines such as trimethylphosphine, triethylphosphine, tributylphosphine and triphenylphosphine.
  • Examples of the tetra-substituted phosphonium compound include compounds represented by the following general formula (4).
  • P represents a phosphorus atom.
  • R 4 , R 5 , R 6 and R 7 represent an aromatic group or an alkyl group.
  • A represents an anion of an aromatic organic acid having at least one functional group selected from a hydroxyl group, a carboxyl group, and a thiol group in its aromatic ring.
  • AH represents an aromatic organic acid having at least one functional group selected from a hydroxyl group, a carboxyl group, and a thiol group in an aromatic ring.
  • x and y are numbers from 1 to 3
  • z is a number from 0 to 3
  • x y.
  • the compound represented by general formula (4) can be obtained, for example, as follows, but is not limited thereto. First, a tetra-substituted phosphonium halide, an aromatic organic acid, and a base are mixed uniformly in an organic solvent, and an aromatic organic acid anion is generated in the solution system. Then, by adding water, the compound represented by general formula (4) can be precipitated.
  • R 4 , R 5 , R 6 and R 7 bonded to the phosphorus atom are phenyl groups
  • AH is a compound having a hydroxyl group in the aromatic ring, that is, a phenol.
  • A is preferably an anion of the phenol.
  • phenols include monocyclic phenols such as phenol, cresol, resorcinol, and catechol; condensed polycyclic phenols such as naphthol, dihydroxynaphthalene, and anthraquinol; and bisphenols such as bisphenol A, bisphenol F, and bisphenol S; Examples include polycyclic phenols such as phenylphenol and biphenol.
  • Examples of the phosphobetaine compound used as a curing catalyst include a compound represented by the following general formula (5).
  • P represents a phosphorus atom.
  • R 8 represents an alkyl group having 1 to 3 carbon atoms, and R 9 represents a hydroxyl group.
  • f is a number from 0 to 5
  • g is a number from 0 to 3.
  • the compound represented by general formula (5) can be obtained, for example, as follows. First, a triaromatic substituted phosphine, which is a tertiary phosphine, is brought into contact with a diazonium salt, and the diazonium group of the triaromatic substituted phosphine and the diazonium salt is substituted. However, it is not limited to this.
  • Examples of the adduct of a phosphine compound and a quinone compound used as a curing catalyst include a compound represented by the following general formula (6).
  • P represents a phosphorus atom.
  • R 10 , R 11 and R 12 represent an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 12 carbon atoms, and may be the same or different from each other.
  • R 13 , R 14 and R 15 represent a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms, and may be the same or different from each other, and R 14 and R 15 are bonded to form a cyclic structure. It's okay.
  • Examples of phosphine compounds used in the adduct of a phosphine compound and a quinone compound include triphenylphosphine, tris(alkylphenyl)phosphine, tris(alkoxyphenyl)phosphine, trinaphthylphosphine, tris(benzyl)phosphine, etc. It is preferable that the substituent is substituted or has a substituent such as an alkyl group or an alkoxyl group, and examples of the substituent such as an alkyl group or an alkoxyl group include those having 1 to 6 carbon atoms. Triphenylphosphine is preferred from the viewpoint of availability.
  • examples of the quinone compound used in the adduct of a phosphine compound and a quinone compound include benzoquinone and anthraquinones, and among them, p-benzoquinone is preferred from the viewpoint of storage stability.
  • the adduct can be obtained by contacting and mixing both the organic tertiary phosphine and the benzoquinone in a solvent that can dissolve them.
  • the solvent is preferably a ketone such as acetone or methyl ethyl ketone, which has low solubility in the adduct.
  • ketone such as acetone or methyl ethyl ketone
  • R 10 , R 11 and R 12 bonded to the phosphorus atom are phenyl groups, and R 13 , R 14 and R 15 are hydrogen atoms, that is, 1,
  • a compound to which 4-benzoquinone and triphenylphosphine are added is preferred in that it lowers the hot elastic modulus of the cured product of the molding resin composition.
  • Examples of the adduct of a phosphonium compound and a silane compound used as a curing catalyst include a compound represented by the following general formula (7).
  • P represents a phosphorus atom
  • Si represents a silicon atom
  • R 16 , R 17 , R 18 and R 19 each represent an organic group having an aromatic ring or a heterocycle, or an aliphatic group, and may be the same or different from each other.
  • R 20 is an organic group bonded to the groups Y 2 and Y 3 .
  • R 21 is an organic group bonded to groups Y 4 and Y 5 .
  • Y 2 and Y 3 represent a group formed by a proton-donating group releasing a proton, and the groups Y 2 and Y 3 in the same molecule bond to a silicon atom to form a chelate structure.
  • Y 4 and Y 5 represent a group formed by a proton-donating group releasing a proton, and the groups Y 4 and Y 5 in the same molecule bond to a silicon atom to form a chelate structure.
  • R 20 and R 21 may be the same or different from each other, and Y 2 , Y 3 , Y 4 and Y 5 may be the same or different from each other.
  • Z 1 is an organic group having an aromatic ring or a heterocycle, or an aliphatic group.
  • R 16 , R 17 , R 18 and R 19 are, for example, phenyl group, methylphenyl group, methoxyphenyl group, hydroxyphenyl group, naphthyl group, hydroxynaphthyl group, benzyl group, methyl group. , ethyl group, n-butyl group, n-octyl group, cyclohexyl group, etc.
  • alkyl groups such as phenyl group, methylphenyl group, methoxyphenyl group, hydroxyphenyl group, hydroxynaphthyl group, and alkoxy groups
  • an aromatic group having a substituent such as a hydroxyl group, or an unsubstituted aromatic group is more preferable.
  • R 20 is an organic group bonded to Y 2 and Y 3 .
  • R 21 is an organic group that is bonded to groups Y 4 and Y 5 .
  • Y 2 and Y 3 are groups formed by a proton-donating group releasing protons, and the groups Y 2 and Y 3 in the same molecule bond to a silicon atom to form a chelate structure.
  • Y 4 and Y 5 are groups formed by a proton-donating group releasing protons, and the groups Y 4 and Y 5 in the same molecule combine with a silicon atom to form a chelate structure.
  • the groups R 20 and R 21 may be the same or different from each other, and the groups Y 2 , Y 3 , Y 4 and Y 5 may be the same or different from each other.
  • the groups represented by -Y 2 -R 20 -Y 3 - and -Y 4 -R 21 -Y 5 - in general formula (7) are such that the proton donor releases two protons.
  • a proton donor an organic acid having at least two carboxyl groups or hydroxyl groups in the molecule is preferable, and furthermore, it is preferable to use an organic acid having at least two carboxyl groups or hydroxyl groups in the molecule.
  • An aromatic compound having at least two hydroxyl groups is preferable, and an aromatic compound having at least two hydroxyl groups on adjacent carbons constituting an aromatic ring is more preferable, such as catechol, pyrogallol, 1,2-dihydroxynaphthalene, 2,3- Dihydroxynaphthalene, 2,2'-biphenol, 1,1'-bi-2-naphthol, salicylic acid, 1-hydroxy-2-naphthoic acid, 3-hydroxy-2-naphthoic acid, chloranilic acid, tannic acid, 2-hydroxy Examples include benzyl alcohol, 1,2-cyclohexanediol, 1,2-propanediol, and glycerin, but among these, catechol, 1,2-dihydroxynaphthalene, and 2,3-dihydroxynaphthalene are more preferred.
  • Z 1 in the general formula (7) represents an organic group or aliphatic group having an aromatic ring or a heterocycle, and specific examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, Aliphatic hydrocarbon groups such as hexyl and octyl groups, aromatic hydrocarbon groups such as phenyl, benzyl, naphthyl and biphenyl groups, and glycidyloxy groups such as glycidyloxypropyl, mercaptopropyl and aminopropyl groups. , a mercapto group, an alkyl group having an amino group, and a vinyl group.
  • methyl group, ethyl group, phenyl group, naphthyl group, and biphenyl group are preferable from the viewpoint of thermal stability. , more preferred.
  • a silane compound such as phenyltrimethoxysilane and a proton donor such as 2,3-dihydroxynaphthalene are added to a flask containing methanol, dissolved, and then heated at room temperature.
  • a sodium methoxide-methanol solution is added dropwise while stirring.
  • crystals are precipitated.
  • the precipitated crystals are filtered, washed with water, and dried under vacuum, an adduct of a phosphonium compound and a silane compound is obtained.
  • the content of the curing catalyst in the molding resin composition of this embodiment is preferably 0.1% by mass or more, more preferably 0.3% by mass when the entire solid content of the molding resin composition is 100% by mass. % or more, more preferably 0.5% by mass or more, still more preferably 1.0% by mass or more.
  • the content of the curing catalyst is preferably 2.0% by mass or less, more preferably 1.7% by mass or less, even more preferably 1.0% by mass or less, when the entire solid content of the molding resin composition is 100% by mass. .5% by mass or less.
  • Examples of the inorganic filler used in the molding resin composition of the present embodiment include fused silica such as fused crushed silica and fused spherical silica, crystalline silica, alumina, kaolin, talc, clay, mica, rock wool, and wollast.
  • glass powder, glass flakes, glass beads, glass fiber silicon carbide, silicon nitride, aluminum nitride, carbon black, graphite, titanium dioxide, calcium carbonate, calcium sulfate, barium carbonate, magnesium carbonate, magnesium sulfate, barium sulfate, cellulose , aramid, wood, pulverized powder obtained by pulverizing cured products of phenolic resin molding materials and epoxy resin molding materials.
  • silica such as fused crushed silica, fused spherical silica, and crystalline silica is preferred, and fused spherical silica is more preferred.
  • calcium carbonate and wollastonite are preferable in terms of cost.
  • the inorganic fillers may be used alone or in combination of two or more.
  • the average particle diameter D 50 of the inorganic filler is preferably 0.01 ⁇ m or more and 75 ⁇ m or less, more preferably 0.05 ⁇ m or more and 50 ⁇ m or less.
  • the average particle diameter D 50 was defined as the average particle diameter in terms of volume using a laser diffraction measuring device RODOS SR type (SYMPATEC HEROS & RODOS).
  • the molding resin composition of the present embodiment can contain, as an inorganic filler, spherical silica having two or more different average particle diameters D50 . This can improve fluidity and filling properties during transfer molding.
  • the content of the inorganic filler in the molding resin composition of the present embodiment is preferably 50% by mass or more, more preferably 60% by mass or more, when the entire solid content of the molding resin composition is 100% by mass. More preferably, it is 65% by mass or more, still more preferably 70% by mass or more, even more preferably 75% by mass or more.
  • the content of the inorganic filler is at least the above lower limit, an increase in moisture absorption and a decrease in strength due to curing of the resulting molding resin composition can be reduced.
  • the content of the inorganic filler is preferably 93% by mass or less, more preferably 91% by mass or less, even more preferably 90% by mass or less, when the entire solid content of the molding resin composition is 100% by mass. be.
  • the resulting molding resin composition has good fluidity and good moldability. Therefore, the manufacturing stability of the sealed structure is increased, and a structure with an excellent balance between yield and durability can be obtained.
  • the content of silica is preferably 100% by mass of the entire inorganic filler in the molding resin composition.
  • the content is 40% by mass or more, more preferably 60% by mass or more, even more preferably 75% by mass or more.
  • the molding resin composition has a good balance between curability and fluidity during transfer molding.
  • the upper limit of the silica content at this time is not particularly limited, but is, for example, 100% by mass or less when the entire inorganic filler of the molding resin composition is 100% by mass.
  • an inorganic filler is used together with a metal hydroxide such as aluminum hydroxide or magnesium hydroxide, or an inorganic flame retardant such as zinc borate, zinc molybdate, or antimony trioxide, as described below.
  • a metal hydroxide such as aluminum hydroxide or magnesium hydroxide
  • an inorganic flame retardant such as zinc borate, zinc molybdate, or antimony trioxide
  • the total amount of these inorganic flame retardants and the above-mentioned inorganic filler is desirably within the range of the content of the above-mentioned inorganic filler.
  • the molding resin composition of the present embodiment may further include other components such as adhesion aids, waxes, coupling agents, colorants, flame retardants, mold release agents, and low-stress agents. May include.
  • the molding resin composition of this embodiment preferably contains an adhesion aid in order to improve curability at low temperatures.
  • the adhesion aid used in the molding resin composition of the present embodiment is not particularly limited, and includes, for example, triazole compounds, such as compounds having a 1,2,4-triazole ring, Examples include compounds having a 1,2,3-triazole ring.
  • Specific compounds include, for example, 3-amino-1,2,4-triazole, 4-amino-1,2,3-triazole, 3-amino-1,2,4-triazole-5-carboxylic acid, 3-mercapto-1,2,4-triazole, 4-mercapto-1,2,3-triazole, 3,5-diamino-1,2,4-triazole, 3,5-dimercapto-1,2,4- Triazole, 4,5-dimercapto-1,2,3-triazole, 3-amino-5-mercapto-1,2,4-triazole, 4-amino-5-mercapto-1,2,3-triazole, 3- Examples include hydrazino-4-amino-5-mercapto-1,2,4-triazole and 5-mercapto-1,2,4-triazole-3-methanol, and one or more of these may be used in combination. It can be used as Among these, compounds having at least one mercapto group are preferred.
  • the lower limit of the adhesion aid content in the molding resin composition of the present embodiment is, for example, preferably 0.01% by mass or more when the entire solid content of the molding resin composition is 100% by mass, The content is more preferably 0.05% by mass or more, and even more preferably 0.07% by mass or more. Thereby, the curability at low temperatures can be further improved.
  • the upper limit of the content of the adhesion aid is preferably 10% by mass or less, more preferably 5% by mass or less, and even more preferably is 1% by mass or less, more preferably 0.5% by mass or less, even more preferably 0.3% by mass or less. Thereby, it is possible to improve the adhesion and waterproofness when a structure such as an electronic component or a stator is sealed with the molding resin composition of the present embodiment.
  • the molding resin composition of this embodiment preferably contains a wax having a melting point of 30°C to 90°C.
  • a wax having a melting point of 30°C to 90°C.
  • the molding resin composition has good meltability under the temperature applied in the transfer mold, and thus improves fluidity during sealing and improves filling properties. obtain.
  • Such waxes include natural waxes such as carnauba wax, synthetic waxes such as montan acid ester wax and oxidized polyethylene wax, higher fatty acids such as zinc stearate, and metal salts thereof.
  • the amount of wax blended is, for example, 0.05% by mass or more and 2.0% by mass or less, when the entire solid content of the molding resin composition is 100% by mass.
  • the lower limit of the amount of wax blended is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, when the total solid content of the molding resin composition is 100% by mass.
  • the upper limit of the amount of wax blended is preferably 1.5% by mass or less, more preferably 1.0% by mass or less, when the total solid content of the molding resin composition is 100% by mass.
  • the molding resin composition of this embodiment may contain a coupling agent such as a silane coupling agent in order to improve the adhesion between the epoxy resin and the inorganic filler.
  • a coupling agent such as a silane coupling agent
  • examples of the coupling agent include epoxysilane, aminosilane, ureidosilane, and mercaptosilane.
  • epoxysilane examples include ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, and ⁇ -(3,4epoxycyclohexyl)ethyltrimethoxysilane. etc.
  • aminosilane examples include ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyl Methyldimethoxysilane, N-phenyl ⁇ -aminopropyltriethoxysilane, N-phenyl ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltriethoxysilane, N-6-(aminohexyl)3 -aminopropyltrimethoxysilane, N-(3-(trimethoxysilylpropyl)-1,3-benzenedimethanane), etc.
  • examples of ureidosilane include ⁇ -ureidopropyltriethoxysilane, Examples include methyldisilazane.It may also be used as a latent aminosilane coupling agent in which the primary amino site of aminosilane is protected by reacting with a ketone or aldehyde.Also, as aminosilane, it may be used as a coupling agent that has a secondary amino group and is protected by reacting with a ketone or aldehyde.
  • Examples of mercaptosilane include ⁇ -mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, bis(3-triethoxysilylpropyl)tetrasulfide, bis(3-triethoxysilylpropyl) )
  • Examples include silane coupling agents such as disulfide that exhibit the same function as mercaptosilane coupling agents when thermally decomposed.In addition, these silane coupling agents may be compounded with those that have undergone a hydrolysis reaction in advance. These silane coupling agents may be used alone or in combination of two or more.
  • mercaptosilane is preferred, from the viewpoint of fluidity, aminosilane is preferred, and from the viewpoint of adhesiveness, epoxysilane is preferred.
  • the lower limit of the content of a coupling agent such as a silane coupling agent in the molding resin composition of the present embodiment is preferably 0.01% when the entire solid content of the molding resin composition is 100% by mass.
  • the content is at least 0.05% by mass, more preferably at least 0.1% by mass, even more preferably at least 0.2% by mass. If the content of the coupling agent such as a silane coupling agent is equal to or higher than the above lower limit, the interfacial strength between the epoxy resin and the inorganic filler will not decrease, and structures such as electronic components or stators will be sealed. It can improve the adhesion and waterproofness.
  • the upper limit of the content of a coupling agent such as a silane coupling agent is preferably 1% by mass or less, more preferably 0.8% by mass when the entire solid content of the molding resin composition is 100% by mass. It is not more than 0.6% by mass, more preferably not more than 0.4% by mass. If the content of the coupling agent such as a silane coupling agent is below the above upper limit, the interfacial strength between the epoxy resin and the inorganic filler will not decrease, and structures such as electronic components or stators will be sealed. It can improve the adhesion and waterproofness. Moreover, if the content of a coupling agent such as a silane coupling agent is below the above-mentioned upper limit, the water absorption of the cured product of the molding resin composition will be prevented from increasing.
  • the molding resin composition of the present embodiment has a glass transition temperature (Tg) of preferably 140°C or higher, more preferably 150°C or higher, and even more preferably 155°C, as measured by the following (Method 1).
  • the temperature is more preferably 160°C or higher, and even more preferably 165°C or higher.
  • Tg glass transition temperature
  • the molding resin composition of this embodiment can be cured even at low temperatures, and the heat resistance of the cured product of the molding resin composition of this embodiment is improved. will improve.
  • the upper limit of the glass transition temperature (Tg) is not particularly limited, but is, for example, 300°C or lower, 250°C or lower, and 220°C or lower.
  • Method 1 The molding resin composition was molded into a test piece of 80 mm x 10 mm x 4 mm using a transfer molding machine at a mold temperature of 175°C, an injection pressure of 6.9 MPa, and a curing time of 90 seconds. harden. Furthermore, using a thermomechanical analyzer, the coefficient of thermal expansion of the test piece obtained at a heating rate of 5° C./min is measured. Next, based on the obtained measurement results, the glass transition temperature (Tg) (° C.) of the cured product is calculated from the inflection point of the coefficient of thermal expansion.
  • Tg glass transition temperature
  • the cured product for measuring the glass transition temperature is obtained, for example, by curing the resin composition at 175° C. for 2 hours.
  • the glass transition temperature Tg is, for example, a test piece obtained by injection molding a resin composition using a low-pressure transfer molding machine at a mold temperature of 175°C, an injection pressure of 6.9 MPa, and a curing time of 90 seconds. After post-curing at °C for 2 hours, the test piece was measured using a thermomechanical analyzer under conditions of a measurement temperature range of 0°C to 320°C and a heating rate of 5°C/min. It can be calculated from the results.
  • thermomechanical analyzer for example, TMA/SS6000 (manufactured by Seiko Instruments), TMA7100 (manufactured by Hitachi High-Tech Science, Inc.), etc. can be used.
  • the molding resin composition of this embodiment has a spiral flow measured at a mold temperature of 175°C, an injection pressure of 9.8 MPa, and a curing time of 3 minutes, with S1 , and the molding resin composition is left at 25°C for 48 hours.
  • S 2 when the spiral flow measured at a mold temperature of 175° C., an injection pressure of 9.8 MPa, and a curing time of 3 minutes is defined as S 2 , it is preferable that S 2 ⁇ 0.8 ⁇ S 1 be satisfied.
  • the upper limit of the time required for the torque value to reach 2 N ⁇ m is preferably less than 100 seconds, more preferably less than 70 seconds, and Preferably it is less than 50 seconds, more preferably less than 30 seconds. Since the time required for the torque value to reach 2 N ⁇ m is less than the above upper limit value, the molding resin composition of this embodiment can be molded even at low temperatures. Further, the lower limit of the time for the torque value to reach 2 N ⁇ m is not particularly limited, but may be, for example, 0.1 seconds or more and 1 second or more.
  • Method 2 Using a Curalastometer (registered trademark), the torque value of the molding resin composition is measured over time at a mold temperature of 140° C. and an amplitude angle of ⁇ 0.25 degrees. Based on the measurement results, the time (seconds) from the start of the measurement until the torque value reaches 2 N ⁇ m is calculated.
  • Curelastometer for example, Curelastometer (registered trademark) MODEL 7 (manufactured by A&D Co., Ltd.) can be used.
  • the molding resin composition of the present embodiment has a spiral flow of preferably 70 cm or more, more preferably 80 cm or more, and even more preferably 90 cm or more, as measured by the following (Method 3).
  • the spiral flow is greater than or equal to the lower limit value, it is possible to further improve the adhesion and waterproofness when sealing a structure such as an electronic component or a stator.
  • the spiral flow is preferably 180 cm or less, more preferably 160 cm or less, still more preferably 140 cm or less.
  • the spiral flow is below the above upper limit value, the long-term storage stability of the molding resin composition of this embodiment can be improved.
  • Method 3 Using a low-pressure transfer molding machine, the molding resin composition was placed in a spiral flow measurement mold according to ANSI/ASTM D 3123-72 under conditions of 175°C, injection pressure of 6.9 MPa, and pressure holding time of 3 minutes. Inject and measure the flow length, which is defined as a spiral flow (cm).
  • the low-pressure transfer molding machine for example, the above-mentioned KTS-15 and KTS-30 (manufactured by Kotaki Seiki Co., Ltd.) can be used.
  • the molding resin composition of the present embodiment has a gel time of preferably 30 seconds or more, more preferably 40 seconds or more, and even more preferably 50 seconds or more, as measured by the following (Method 4).
  • the gel time is greater than or equal to the above lower limit, the long-term storage stability of the molding resin composition of this embodiment can be improved.
  • the gel time is preferably 80 seconds or less, more preferably 70 seconds or less, and still more preferably 60 seconds or less.
  • the gel time is below the above upper limit, it is possible to further improve the adhesion and waterproofness when sealing a structure such as an electronic component or a stator.
  • Method 4 Using a low-pressure transfer molding machine, the molding resin composition was placed in a spiral flow measurement mold according to ANSI/ASTM D 3123-72 under conditions of 175°C, injection pressure of 6.9 MPa, and pressure holding time of 3 minutes. inject. The time from the start of injection until the molding resin composition hardens and ceases to flow is measured and is defined as gel time (seconds).
  • the low-pressure transfer molding machine for example, the above-mentioned KTS-15 and KTS-30 (manufactured by Kotaki Seiki Co., Ltd.) can be used.
  • the lower limit value of the linear expansion coefficient ⁇ 1 of the molding resin composition of the present embodiment is not particularly limited, but is measured by the following (Method 5), for example, 0.8 ppm/°C or more, 1.0 ppm/°C or more, It is 1.2 ppm/°C or more.
  • the linear expansion coefficient ⁇ 1 is preferably 10.0 ppm/°C or less, more preferably 5.0 ppm/°C or less, still more preferably 3.0 ppm/°C or less, even more preferably 2.0 ppm/°C or less.
  • the coefficient of linear expansion ⁇ 1 is less than or equal to the above upper limit value, it is possible to further improve the adhesion and waterproofness when sealing a structure such as an electronic component or a stator.
  • Method 5 The molding resin composition is injection molded using a low-pressure transfer molding machine under conditions of a mold temperature of 175° C., an injection pressure of 9.8 MPa, and a curing time of 3 minutes to obtain a molded article of 15 mm x 4 mm x 4 mm. Next, the obtained molded article is post-cured at 175° C. for 4 hours to prepare a test piece. Then, the obtained test piece was measured using a thermomechanical analyzer under the conditions of a measurement temperature range of 0°C to 400°C and a heating rate of 5°C/min, and the average linear expansion coefficient ⁇ 1 at 25-70°C (ppm/°C).
  • the low-pressure transfer molding machine for example, the above-mentioned KTS-15 and KTS-30 (manufactured by Kotaki Seiki Co., Ltd.) can be used.
  • the thermomechanical analyzer for example, the above-mentioned TMA/SS6000 (manufactured by Seiko Instruments) or TMA7100 (manufactured by Hitachi High-Tech Science) can be used.
  • the molding resin composition of the present embodiment has a thermal conductivity measured by the following (Method 6), preferably 0.5 W/m ⁇ K or more, more preferably 0.6 W/m ⁇ K or more, More preferably, it is 0.7 W/m ⁇ K or more, and still more preferably 0.8 W/m ⁇ K or more.
  • Method 6 a thermal conductivity measured by the following (Method 6), preferably 0.5 W/m ⁇ K or more, more preferably 0.6 W/m ⁇ K or more, More preferably, it is 0.7 W/m ⁇ K or more, and still more preferably 0.8 W/m ⁇ K or more.
  • the thermal conductivity is preferably 3.5 W/m ⁇ K or less, more preferably 3.3 W/m ⁇ K or less, even more preferably 3.1 W/m ⁇ K or less, even more preferably 2.9 W/m ⁇ K or less, more preferably 2.8 W/m ⁇ K or less.
  • the thermal conductivity is below the above upper limit value, it is possible to suppress the influence of external heat on the electronic components inside the molded article using the molding resin composition of the present embodiment.
  • the molding resin composition is injection molded using a transfer molding machine under conditions of a mold temperature of 175° C., an injection pressure of 6.9 MPa, and a curing time of 90 seconds to obtain a molded article of 80 mm x 10 mm x 4 mm.
  • the obtained molded body is post-cured at 175° C. for 2 hours to obtain a test piece.
  • Thermal diffusivity of the obtained test piece is measured using the laser flash method.
  • the specific gravity of the test piece used for thermal conductivity measurement is measured using an electronic hydrometer.
  • the specific heat of the test piece used for the thermal conductivity and specific gravity measurement is measured.
  • the thermal conductivity (W/m ⁇ K) of the test piece in the thickness direction is calculated from the measured values of thermal diffusivity, specific gravity, and specific heat.
  • the transfer molding machine for example, the above-mentioned KTS-15 and KTS-30 (manufactured by Kotaki Seiki Co., Ltd.) can be used. Further, for measuring the thermal diffusivity by the laser flash method, for example, a xenon flash analyzer LFA447 (manufactured by NETZSCH) can be used. Further, as the electronic hydrometer, for example, SD-200L (manufactured by Alpha Mirage Co., Ltd.) or the like can be used. Further, as the differential scanning calorimeter, for example, DSC8230 (manufactured by Rigaku Co., Ltd.) or the like can be used.
  • the molding resin composition of this embodiment includes a substrate on which electronic components are mounted, a stator core fixed on the substrate having a plurality of slots formed in the circumferential direction, and a stator core fixed on the substrate having a plurality of slots formed in the circumferential direction. It is used to seal the coil together.
  • a stator provided with the molding resin composition of the present embodiment as a sealing material is applied to, for example, an electric motor (motor) as a rotating electric machine (an electric motor, a generator, or a dual-purpose electric motor/generator).
  • FIG. 1 schematically shows top views of a sealed object 100 and a sealed structure 200 before and after molding.
  • FIG. 2 schematically shows side views of the sealed object 100 and the sealed structure 200 before and after molding.
  • (a) and (c) schematically represent the sealed object 100 before molding
  • (b) and (d) schematically represent the sealed structure 200 after molding.
  • the sealing structure 200 in this embodiment includes a substrate 10 on which an electronic component 11 is mounted, a stator core 20 fixed on one surface of the substrate 10 and having a plurality of slots 21 formed in the circumferential direction, and a stator core 20 having a plurality of slots 21 formed in the circumferential direction.
  • the sealed body 100 sealed with the molding resin composition of the present embodiment is fixed on the substrate 10 on which the electronic component 11 is mounted and on one surface of the substrate 10.
  • the stator core 20 includes a stator core 20 having a plurality of slots 21 formed in the circumferential direction, and a plurality of coils 30 accommodated in the slots 21.
  • the board 10 is, for example, a board on which electronic components 11 are mounted on one or both of one surface and the other surface opposite to the one surface.
  • the substrate 10 has, for example, a flat plate shape.
  • the substrate 10 may have a solder resist layer on one surface on which the electronic component 11 is mounted, for example.
  • the solder resist layer can be formed using a solder resist forming resin composition commonly used in the field of semiconductor devices.
  • a solder resist layer can be provided on one side and the other side of the substrate 10, for example.
  • the solder resist layer provided on one surface or both of the one surface and the other surface of the substrate 10 is formed of, for example, a resin composition containing a silicone compound. Thereby, a solder resist layer with excellent surface smoothness can be realized.
  • the electronic component 11 is mounted, for example, on one surface and the other surface of the substrate 10, as shown in FIG. 1(a). On the other hand, the electronic component 11 may be provided only on one surface of the substrate 10 and may not be provided on the other surface of the substrate 10.
  • Examples of the electronic components 11 include light emitting elements such as LED chips, biometric meters that detect biopotentials such as electroencephalograms and myoelectric potentials, and bioactivity such as blood pressure and pulse, pressure, temperature, position, humidity, light, sound, etc. Examples include general measuring meters that detect environmental information such as acceleration, elements such as portable power supplies such as capacitors, acoustic modules, and communication modules, and wiring that connects the above elements.
  • a lead wire 40 is connected to the substrate 10 and the electronic component 11. Since the lead wire 40 is connected to the substrate 10 and the electronic component 11 before being sealed with the molding resin composition of this embodiment, the lead wire 40, the substrate 10 and the electronic component The connection portion with the component 11 can be sealed all at once, and as a result, the waterproofness of the sealed structure 200 of this embodiment can be improved.
  • the stator core 20 is provided with a plurality of slots 21 formed in the circumferential direction when viewed from the axial end.
  • four slots 21 are provided.
  • the stator core 20 is fixed on one surface of the substrate 10 on which the electronic component 11 is mounted, as shown in FIG. 2(c).
  • the stator core 20 may be provided by laminating a plurality of electromagnetic steel plates in the axial direction and tightly fixing them, or may be provided by molding a resin composition.
  • the coil 30 has a U-shape, for example, a rectangular wire, and is wound so as to be accommodated in two spaced apart slots 21.
  • Coil 30 has a first coil end and a second coil end. The first coil end protrudes to one side of the stator core 20 in the axial direction. The second coil end protrudes toward the other axial side of stator core 20. That is, the coil 30 has a pair of coil ends that respectively protrude on both sides of the stator core 20 in the axial direction.
  • the sealing member 50 is fixed to the substrate 10 on which the electronic component 11 described above is mounted, and is fixed on one surface of the substrate 10 and formed in the circumferential direction.
  • the stator core 20 having a plurality of slots 21 and the plurality of coils 30 housed in the slots 21 are sealed together. That is, the sealing member 50 includes the substrate 10 on which the electronic component 11 is mounted, the stator core 20 fixed on one surface of the substrate 10 and having a plurality of slots 21 formed in the circumferential direction, and the stator core 20 accommodated in the slot 21. It is provided so as to cover part or all of the object to be sealed 100 including the plurality of coils 30 .
  • the material for the sealing member 50 the above-mentioned molding resin composition is used.
  • the connecting portions between the lead wire 40, the substrate 10, and the electronic component 11 be sealed all at once with a sealing member 50.
  • the waterproofness of the sealing structure 200 of this embodiment can be improved.
  • the manufacturing method of the sealing structure of this embodiment includes a mold in a transfer molding machine that includes a substrate on which electronic components are mounted, and a stator core fixed on the substrate having a plurality of slots formed in the circumferential direction. and a plurality of coils accommodated in the slots, and a step of arranging the substrate in the mold with the molding resin composition of the present embodiment by a transfer molding method using the transfer molding machine. , a step of obtaining a sealed structure by sealing and molding the stator core and the coil.
  • the step of obtaining the sealed structure is performed, for example, at a temperature of 80° C. or more and less than 180° C. and a pressure of 1 MPa or more and 15 MPa or less.
  • the above step is performed at a temperature of 120° C. or more and 170° C. or less and a pressure of 3 MPa or more and 12 MPa or less.
  • sealing molding be performed at a temperature equal to or lower than the Tg of the cured resin composition for molding.
  • the step of obtaining the sealed structure includes: (A) A molding process using methods such as transfer molding and compression molding, (B) After the molding step, it may include a post-curing step of heating the molded body.
  • a preferable aspect of this embodiment is to perform only the molding step (A) without performing the post-curing step (B).
  • productivity is improved, and thermal damage due to post-curing, that is, thermal damage to the stator core, coil, and substrate to be sealed, can be suppressed, and a good sealed structure can be obtained.
  • the molding resin composition is configured such that the flexural modulus (according to JIS K6911:2006) at 25°C is 0.1 GPa or more and 30 GPa or less in a cured product cured at 140°C for 2 minutes. Therefore, even if (B) is omitted, a good crosslinked structure can be obtained.
  • the molding temperature in (A) is preferably at most Tg (°C) of the cured product obtained from the molding resin composition, more preferably at most (Tg-10°C). , most preferably (Tg-30°C) or lower. Further, the molding temperature is preferably 160°C or lower, more preferably 140°C or lower, and most preferably 130°C or lower. By molding at such a low temperature, thermal damage to the stator core, coil, and substrate to be sealed can be suppressed, and a good sealed structure can be obtained.
  • the lower limit of the molding temperature is not particularly limited as long as the molding resin composition can be sufficiently cured. For example, it can be set to (Tg - 80°C) or higher, and can be set to 90°C or higher.
  • the post-curing temperature in the case of performing the post-curing (B) above is also preferably in the same range as the molding temperature. That is, the temperature is preferably at most Tg (°C) of the cured product obtained from the molding resin composition, more preferably at most (Tg - 10°C), most preferably at most (Tg - 30°C). be. Further, the molding temperature is preferably 160°C or lower, more preferably 140°C or lower, and most preferably 130°C or lower. By post-curing at such a low temperature, thermal damage to the object to be sealed can be suppressed and a good sealed structure can be obtained. There is no particular restriction on the lower limit of the molding temperature, but it can be, for example, (Tg - 80°C) or higher, or 90°C or higher.
  • the temperature of the above (A) and the above (B) is usually set to a temperature exceeding the Tg (°C) of the cured product obtained from the molding resin composition.
  • the temperature range of the above-mentioned low temperature range is preferable.
  • the molding resin composition is configured such that the flexural modulus at 25°C (based on JIS K6911:2006) of the cured product cured at 140°C for 2 minutes is 0.1 GPa or more and 30 GPa or less. Therefore, a good crosslinked structure can be obtained even if the temperature in (A) or (B) is lowered.
  • Example 1 ⁇ Preparation of resin composition for molding>
  • a molding resin composition was prepared as follows. First, the components shown in Table 1 were mixed using a mixer. Next, the obtained mixture was roll-kneaded, cooled, and pulverized to obtain a molding resin composition in the form of powder.
  • Inorganic filler ⁇ Inorganic filler 1: Fused spherical silica (manufactured by Denka Co., Ltd., product name "FB-950") ⁇ Inorganic filler 2: Fused spherical silica (manufactured by Denka Co., Ltd., product name "FB-105”) ⁇ Inorganic filler 3: Alumina (manufactured by Denka Co., Ltd., product name "DAW-02")
  • Coupled N-phenyl-3-aminopropyltrimethoxysilane (manufactured by Dow Corning Toray Co., Ltd., product name "CF-4083")
  • Epoxy resin (Epoxy resin) ⁇ Epoxy resin 1: Orthocresol novolac type epoxy resin (manufactured by DIC, product name "EPICRON N-670")
  • Curing agent 1 Biphenylene skeleton-containing phenol aralkyl resin (manufactured by Meiwa Kasei Co., Ltd., product name "MEH-7851SS”)
  • Curing agent 2 Trisphenylmethane type phenol novolak resin (manufactured by Meiwa Kasei Co., Ltd., product name "MEH-7500”)
  • Adhesion aid 3-amino-1,2,4-triazole
  • Carbon black manufactured by Mitsubishi Chemical Corporation, product name "Carbon #5"
  • a 23 mm ⁇ x 0.9 mm glass epoxy substrate (a substrate with an IC package and an aluminum electrolytic capacitor mounted on it) was molded at a mold temperature of 140°C using a low-pressure transfer molding machine (manufactured by Kotaki Seiki Co., Ltd., KTS-30).
  • the resin composition was injection molded onto the substrate to a thickness of 2 cm under conditions of an injection pressure of 3 to 5 MPa and a curing time of 2 minutes to obtain a substrate sealed body without post-curing. Thereafter, the substrate sealed body was immersed in a pure water pool with a depth of 15 to 100 cm for 1000 hours. Thereafter, after air drying, continuity of the circuit wiring on the board was confirmed using a tester.
  • linear expansion coefficient ⁇ 1 The linear expansion coefficient of the obtained molding resin composition was measured for each Example and each Comparative Example. Injection molding was performed using a low-pressure transfer molding machine (KTS-30 manufactured by Kotaki Seiki Co., Ltd.) under the conditions of a mold temperature of 175°C, an injection pressure of 9.8 MPa, and a curing time of 3 minutes to form a 15 mm x 4 mm x 4 mm mold. I got the item. Next, the obtained molded article was post-cured at 175° C. for 4 hours to prepare a test piece.
  • KTS-30 low-pressure transfer molding machine
  • test piece was measured using a thermomechanical analyzer (TMA100, manufactured by Seiko Instruments Inc.) under conditions of a measurement temperature range of 0°C to 400°C and a heating rate of 5°C/min.
  • TMA100 thermomechanical analyzer
  • the average linear expansion coefficient ⁇ 1 (ppm/°C) at 25-70°C was measured.
  • Glass transition temperature (Tg) Glass transition temperature of the molding resin composition of each Example and each Comparative Example was measured according to JIS K 6911:2006. That is, the molding resin compositions of each Example and each Comparative Example were cured using a transfer molding machine (manufactured by Kotaki Seiki Co., Ltd., "KTS-15") at a mold temperature of 175° C. and an injection pressure of 6.9 MPa. A test piece of 80 mm x 10 mm x 4 mm was molded in 90 seconds. Then, it was post-cured at 175°C for 2 hours.
  • KTS-15 transfer molding machine
  • thermomechanical analyzer (TMA/SS6000, manufactured by Seiko Instruments)
  • Tg glass transition temperature
  • the molding resin compositions of each Example and each Comparative Example were molded using a transfer molding machine (manufactured by Kotaki Seiki Co., Ltd., "KTS-15") at a mold temperature of 175°C, an injection pressure of 6.9 MPa, and a curing time of 90. Injection molding was performed in seconds to obtain a molded product measuring 80 mm x 10 mm x 4 mm. Next, the obtained molded body was post-cured at 175° C. for 2 hours to obtain a test piece. Thermal diffusivity of the obtained test piece was measured using a laser flash method (Xenon Flash Analyzer LFA447 manufactured by NETZSCH).
  • the specific gravity of the test piece used for thermal conductivity measurement was measured.
  • a differential scanning calorimeter DSC8230 manufactured by Rigaku Co., Ltd. the specific heat of the test piece used for the thermal conductivity and specific gravity measurement was measured.
  • the thermal conductivity (W/m ⁇ K) of the test piece in the thickness direction was calculated from the measured values of thermal diffusivity, specific gravity, and specific heat.
  • room temperature storage Room temperature storage stability was measured for the molding resin compositions of each Example and each Comparative Example.
  • a low-pressure transfer molding machine KTS-30 manufactured by Kotaki Seiki Co., Ltd.
  • the resin composition was injected, the flow length was measured, and the spiral flow at this time was defined as S1 .
  • the flow length was measured under the same conditions as above, and the spiral flow at this time was designated as S2 .
  • the above S 1 and S 2 were evaluated based on the following criteria. A: S 2 ⁇ 0.8 ⁇ S 1 is satisfied. B: Satisfies S 2 ⁇ 0.8 ⁇ S 1 .
  • All of the molding resin compositions of Examples could be cured at low temperatures and had excellent adhesion and waterproof properties when sealing structures such as electronic components or stators.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

This resin composition for molding is for collectively sealing: a substrate equipped with an electronic component; a stator core which is fixed onto the substrate and which has a plurality of slots formed in the circumferential direction; and a plurality of coils accommodated in the slots. The resin composition comprises: an epoxy resin; a curing agent and/or a curing catalyst; and an inorganic filler. A cured product yielded by curing the resin composition for molding at 140°C for two minutes has a bending elastic modulus (according to JIS K6911:2006) at 25°C of 0.1 GPa to 30 GPa.

Description

成形用樹脂組成物、封止構造体の製造方法および封止構造体Molding resin composition, method for manufacturing sealing structure, and sealing structure
 本発明は、成形用樹脂組成物、封止構造体の製造方法および封止構造体に関する。 The present invention relates to a molding resin composition, a method for manufacturing a sealing structure, and a sealing structure.
 半導体素子等に代表される電子部品、またはステータ等の構造体を、外部環境から保護するため、熱硬化性樹脂を用いて封止する方法が広く採用されている。特に封止用樹脂としてエポキシ樹脂を使用したトランスファーモールド法は経済性と生産性に優れており、大量生産に好適であることから、樹脂封止の主流となっている。 In order to protect electronic components such as semiconductor devices or structures such as stators from the external environment, a method of sealing them using thermosetting resin is widely adopted. In particular, the transfer molding method using an epoxy resin as the sealing resin is excellent in economy and productivity, and is suitable for mass production, so it has become the mainstream of resin sealing.
 ステータコアに樹脂材料を用いる技術として、特許文献1(特開2003-284277号公報)に記載にものがある。同文献には、複数の電磁鋼板を積層したステータコアに複数のコイルを所定間隔で巻線したステータと、このステータに対し回転可能に保持されたロータと、ステータを固定する冷却フレームを有する回転電機において、ステータの巻線部分となるスロットを樹脂成分中に異方性構造が存在する熱硬化性樹脂で構成した高熱伝導複合材を配置した回転電機について記載されており、かかる構成により、コイルで発生した熱が伝わりやすく放熱性のよい回転電機が提供されるとされている。 A technique using a resin material for the stator core is described in Patent Document 1 (Japanese Unexamined Patent Publication No. 2003-284277). The document describes a rotating electric machine having a stator in which a plurality of coils are wound at predetermined intervals around a stator core made of a plurality of laminated electromagnetic steel sheets, a rotor that is rotatably held relative to the stator, and a cooling frame that fixes the stator. describes a rotating electric machine in which the slots that serve as the winding portion of the stator are arranged with a highly thermally conductive composite material made of a thermosetting resin in which an anisotropic structure exists in the resin component, and with such a configuration, the coil It is said that a rotating electrical machine with good heat dissipation and easy conduction of generated heat will be provided.
特開2003-284277号公報JP2003-284277A
 しかし、従来技術の樹脂組成物では、硬化のために高温での処理が必要となり、作業性に改善の余地があった。また、従来技術の樹脂組成物を用いた封止構造体では、電子部品やステータ等の構造体との密着性と防水性に改善の余地があり、封止構造体に不具合が生じる場合があった。 However, the resin compositions of the prior art require treatment at high temperatures for curing, and there is room for improvement in workability. In addition, with conventional sealing structures using resin compositions, there is room for improvement in adhesion and waterproofness with structures such as electronic components and stators, and defects may occur in the sealing structures. Ta.
 本発明はかかる事情に鑑みてなされたものであり、低温で硬化が可能であり、電子部品またはステータ等の構造体を封止した際の密着性と防水性を向上させることができる成形用樹脂組成物を提供することを目的とする。 The present invention was made in view of the above circumstances, and is a molding resin that can be cured at low temperatures and that can improve the adhesion and waterproofness when sealing electronic components or structures such as stators. The purpose is to provide a composition.
 本発明者らは、検討の結果、以下に提供される発明を完成させ、上記課題を解決した。 As a result of study, the present inventors completed the invention provided below and solved the above problem.
 本発明によれば、
 以下の成形用樹脂組成物、封止構造体の製造方法および封止構造体が提供される。
According to the invention,
The following molding resin composition, method for manufacturing a sealing structure, and sealing structure are provided.
[1]
 電子部品が搭載された基板と、周方向に形成された複数のスロットを有する上記基板上に固定されたステータコアと、上記スロットに収容された複数個のコイルとを一括して封止するために用いられる成形用樹脂組成物であって、
 エポキシ樹脂と、
 硬化剤および硬化触媒の一方または両方と、
 無機充填材と、を含み、
 当該成形用樹脂組成物を140℃で2分硬化させた硬化物において、25℃における曲げ弾性率(JIS K6911:2006準拠)が0.1GPa以上30GPa以下である、成形用樹脂組成物。
[2]
 上記[1]に記載の成形用樹脂組成物において、
 以下の(方法1)によって測定される、ガラス転移温度(Tg)が140℃以上300℃以下である、成形用樹脂組成物。
(方法1)
 上記成形用樹脂組成物を、トランスファー成形機を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間90秒で、80mm×10mm×4mmの試験片を成形し、175℃2時間で後硬化する。さらに、熱機械分析装置を用いて、5℃/分の昇温速度で得られた試験片の熱膨張率を測定する。次いで、得られた測定結果に基づき、熱膨張率の変曲点から硬化物のガラス転移温度(Tg)(℃)を算出する。
[3]
 上記[1]または[2]に記載の成形用樹脂組成物において、
 上記エポキシ樹脂がフェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂およびトリスフェノールメタン型エポキシ樹脂からなる群より選択される1種または2種以上を含む、成形用樹脂組成物。
[4]
 上記[1]~[3]のいずれか1つに記載の成形用樹脂組成物において、
 上記エポキシ樹脂の含有量が、上記成形用樹脂組成物の固形分全体を100質量%としたとき、3質量%以上40質量%以下である、成形用樹脂組成物。
[5]
 上記[1]~[4]のいずれか1つに記載の成形用樹脂組成物において、
 上記硬化剤を含み、上記硬化剤がフェノール樹脂系硬化剤を含む、成形用樹脂組成物。
[6]
 上記[5]に記載の成形用樹脂組成物において、
 上記フェノール樹脂系硬化剤がフェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールノボラック樹脂およびトリスフェノールメタン型フェノール樹脂からなる群より選択される1種または2種以上を含む、成形用樹脂組成物。
[7]
 上記[5]または[6]に記載の成形用樹脂組成物において、
 上記硬化剤の含有量が、上記成形用樹脂組成物の固形分全体を100質量%としたとき、0.8質量%以上12質量%以下である、成形用樹脂組成物。[8]
 上記[1]~[7]のいずれか1つに記載の成形用樹脂組成物において、
 上記硬化触媒を含み、上記硬化触媒がイミダゾール系化合物を含む、成形用樹脂組成物。
[9]
 上記[8]に記載の成形用樹脂組成物において、
 上記硬化触媒の含有量が、上記成形用樹脂組成物の固形分全体を100質量%としたとき、0.01質量%以上2.0質量%以下である、成形用樹脂組成物。
[10]
 上記[1]~[9]のいずれか1つに記載の成形用樹脂組成物において、
 当該成形用樹脂組成物を金型温度175℃、注入圧力9.8MPa、硬化時間3分で測定したスパイラルフローをSとし、当該成形用樹脂組成物を25℃で48時間放置した後、金型温度175℃、注入圧力9.8MPa、硬化時間3分で測定したスパイラルフローをSとしたとき、S≧0.8×Sを満たす、成形用樹脂組成物。
[11]
 上記[1]~[10]のいずれか1つに記載の成形用樹脂組成物において、
 以下の(方法2)によって測定される、トルク値が2N・mに達する時間が100秒未満である、成形用樹脂組成物。
(方法2)
 キュラストメーター(登録商標)を用い、金型温度140℃、振幅角度±0.25度にて、上記成形用樹脂組成物のトルク値を経時的に測定する。測定結果に基づいて、測定開始から、トルク値が2N・mに達する時間(秒)を算出する。
[12]
 上記[1]~[11]のいずれか1つに記載の成形用樹脂組成物において、
 以下の(方法3)によって測定される、スパイラルフローが70cm以上である、成形用樹脂組成物。
(方法3)
 上記成形用樹脂組成物を、低圧トランスファー成形機を用いて、ANSI/ASTM D 3123-72に準じたスパイラルフロー測定用金型に、175℃、注入圧力6.9MPa、保圧時間3分の条件で注入し、流動長を測定し、これをスパイラルフロー(cm)とする。
[13]
 上記[1]~[12]のいずれか1つに記載の成形用樹脂組成物において、
 以下の(方法4)によって測定される、ゲルタイムが30秒以上である、成形用樹脂組成物。
(方法4)
 上記成形用樹脂組成物を、低圧トランスファー成形機を用いて、ANSI/ASTM D 3123-72に準じたスパイラルフロー測定用金型に、175℃、注入圧力6.9MPa、保圧時間3分の条件で注入する。注入開始から成形用樹脂組成物が硬化し流動しなくなるまでの時間を測定し、ゲルタイム(秒)とする。
[14]
 上記[1]~[13]のいずれか1つに記載の成形用樹脂組成物において、
 以下の(方法5)によって測定される、線膨張係数α1が10.0ppm/℃以下である、成形用樹脂組成物。
(方法5)
 上記成形用樹脂組成物を、低圧トランスファー成形機を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間3分の条件で注入成形し、15mm×4mm×4mmの成形品を得る。次いで、得られた成形品を175℃、4時間で後硬化して試験片を作製する。そして、得られた試験片に対して、熱機械分析装置を用いて、測定温度範囲0℃~400℃、昇温速度5℃/分の条件下で、25-70℃における平均線膨張係数α1(ppm/℃)を測定する。
[15]
 上記[1]~[14]のいずれか1つに記載の成形用樹脂組成物において、
 以下の(方法6)によって測定される、熱伝導率が0.5W/m・K以上である、成形用樹脂組成物。
(方法6)
 上記成形用樹脂組成物を、トランスファー成形機を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間90秒間の条件で注入成形し、80mm×10mm×4mmの成形体を得る。次いで、得られた成形体を175℃、2時間で後硬化し、試験片を得る。得られた試験片について、レーザーフラッシュ法を用いて熱拡散率を測定する。また、電子比重計を用いて、熱伝導率測定に用いた試験片の比重を測定する。さらに、示差走査熱量計を用いて、熱伝導率及び比重測定に用いた試験片の比熱を測定する。測定した熱拡散率、比重および比熱の各測定値から、当該試験片の厚さ方向の熱伝導率(W/m・K)を算出する。
[16]
 トランスファー成形機中の成形型に、電子部品が搭載された基板と、周方向に形成された複数のスロットを有する上記基板上に固定されたステータコアと、上記スロットに収容された複数個のコイルと、を配置する工程と、
 上記トランスファー成形機を用いるトランスファーモールド法にて、上記[1]~[15]のいずれか1つに記載の成形用樹脂組成物で上記成形型内の上記基板と、上記ステータコアと、上記コイルと、を封止成形することにより、封止構造体を得る工程と、
 を含む、封止構造体の製造方法。
[17]
 上記[16]に記載の封止構造体の製造方法において、
 上記封止構造体を得る上記工程において、上記成形用樹脂組成物の硬化体のTg以下の温度で封止成形する、封止構造体の製造方法。
[18]
 上記[16]または[17]に記載の封止構造体の製造方法において、
 上記封止構造体を得る上記工程として、後硬化工程を行わない、封止構造体の製造方法。
[19]
 電子部品が搭載された基板と、
 上記基板の一面上に固定され、周方向に形成された複数のスロットを有するステータコアと、
 上記スロットに収容された複数個のコイルと、
 を含む被封止体と、
 上記被封止体の一部または全部を被覆して設けられる封止部材と、を備え、
 上記封止部材が、上記[1]~[15]のいずれか1つに記載の成形用樹脂組成物の硬化物により構成されている、封止構造体。
[1]
In order to collectively seal a board on which electronic components are mounted, a stator core fixed on the board having a plurality of slots formed in the circumferential direction, and a plurality of coils housed in the slots. A molding resin composition used,
Epoxy resin and
one or both of a curing agent and a curing catalyst;
an inorganic filler;
A molding resin composition, which has a flexural modulus of elasticity (according to JIS K6911:2006) at 25°C of 0.1 GPa or more and 30 GPa or less in a cured product obtained by curing the molding resin composition at 140°C for 2 minutes.
[2]
In the molding resin composition described in [1] above,
A molding resin composition having a glass transition temperature (Tg) of 140°C or more and 300°C or less, as measured by the following (Method 1).
(Method 1)
The above molding resin composition was molded into a test piece of 80 mm x 10 mm x 4 mm using a transfer molding machine at a mold temperature of 175°C, an injection pressure of 6.9 MPa, and a curing time of 90 seconds. Post-cure. Furthermore, using a thermomechanical analyzer, the coefficient of thermal expansion of the test piece obtained at a heating rate of 5° C./min is measured. Next, based on the obtained measurement results, the glass transition temperature (Tg) (° C.) of the cured product is calculated from the inflection point of the coefficient of thermal expansion.
[3]
In the molding resin composition according to [1] or [2] above,
A molding resin composition, wherein the epoxy resin contains one or more selected from the group consisting of a phenol novolak epoxy resin, a cresol novolac epoxy resin, and a trisphenolmethane epoxy resin.
[4]
In the molding resin composition according to any one of [1] to [3] above,
A molding resin composition in which the content of the epoxy resin is 3% by mass or more and 40% by mass or less, when the entire solid content of the molding resin composition is 100% by mass.
[5]
In the molding resin composition according to any one of [1] to [4] above,
A molding resin composition containing the above curing agent, wherein the curing agent contains a phenolic resin curing agent.
[6]
In the molding resin composition described in [5] above,
A molding resin composition, wherein the phenolic resin curing agent contains one or more selected from the group consisting of a phenol novolac resin, a cresol novolak resin, a naphthol novolac resin, and a trisphenolmethane type phenolic resin.
[7]
In the molding resin composition according to [5] or [6] above,
A molding resin composition in which the content of the curing agent is 0.8% by mass or more and 12% by mass or less, when the entire solid content of the molding resin composition is 100% by mass. [8]
In the molding resin composition according to any one of [1] to [7] above,
A molding resin composition containing the above curing catalyst, wherein the curing catalyst contains an imidazole compound.
[9]
In the molding resin composition described in [8] above,
A molding resin composition in which the content of the curing catalyst is 0.01% by mass or more and 2.0% by mass or less, when the entire solid content of the molding resin composition is 100% by mass.
[10]
In the molding resin composition according to any one of [1] to [9] above,
The spiral flow of the molding resin composition was measured at a mold temperature of 175°C, an injection pressure of 9.8 MPa, and a curing time of 3 minutes, and S1 was used. After the molding resin composition was left at 25°C for 48 hours, A molding resin composition that satisfies S 2 ≧0.8×S 1 , where S 2 is a spiral flow measured at a mold temperature of 175° C., an injection pressure of 9.8 MPa, and a curing time of 3 minutes.
[11]
In the molding resin composition according to any one of [1] to [10] above,
A molding resin composition, which takes less than 100 seconds to reach a torque value of 2 N·m, as measured by (Method 2) below.
(Method 2)
Using a Curalastometer (registered trademark), the torque value of the molding resin composition is measured over time at a mold temperature of 140° C. and an amplitude angle of ±0.25 degrees. Based on the measurement results, the time (seconds) from the start of the measurement until the torque value reaches 2 N·m is calculated.
[12]
In the molding resin composition according to any one of [1] to [11] above,
A molding resin composition having a spiral flow of 70 cm or more as measured by the following (Method 3).
(Method 3)
The above resin composition for molding was placed into a spiral flow measurement mold according to ANSI/ASTM D 3123-72 using a low-pressure transfer molding machine under conditions of 175°C, injection pressure of 6.9 MPa, and pressure holding time of 3 minutes. The flow length is measured, and this is defined as the spiral flow (cm).
[13]
In the molding resin composition according to any one of [1] to [12] above,
A molding resin composition having a gel time of 30 seconds or more as measured by the following (Method 4).
(Method 4)
The above resin composition for molding was placed into a spiral flow measurement mold according to ANSI/ASTM D 3123-72 using a low-pressure transfer molding machine under conditions of 175°C, injection pressure of 6.9 MPa, and pressure holding time of 3 minutes. Inject with. The time from the start of injection until the molding resin composition hardens and ceases to flow is measured and is defined as gel time (seconds).
[14]
In the molding resin composition according to any one of [1] to [13] above,
A molding resin composition having a linear expansion coefficient α1 of 10.0 ppm/°C or less, as measured by the following (Method 5).
(Method 5)
The above molding resin composition is injection molded using a low-pressure transfer molding machine under conditions of a mold temperature of 175° C., an injection pressure of 9.8 MPa, and a curing time of 3 minutes to obtain a molded article of 15 mm x 4 mm x 4 mm. Next, the obtained molded article is post-cured at 175° C. for 4 hours to prepare a test piece. Then, the obtained test piece was measured using a thermomechanical analyzer under the conditions of a measurement temperature range of 0°C to 400°C and a heating rate of 5°C/min, and the average linear expansion coefficient α1 at 25-70°C (ppm/°C).
[15]
In the molding resin composition according to any one of [1] to [14] above,
A molding resin composition having a thermal conductivity of 0.5 W/m·K or more as measured by the following (Method 6).
(Method 6)
The above resin composition for molding is injection molded using a transfer molding machine under conditions of a mold temperature of 175° C., an injection pressure of 6.9 MPa, and a curing time of 90 seconds to obtain a molded article of 80 mm x 10 mm x 4 mm. Next, the obtained molded body is post-cured at 175° C. for 2 hours to obtain a test piece. Thermal diffusivity of the obtained test piece is measured using the laser flash method. In addition, the specific gravity of the test piece used for thermal conductivity measurement is measured using an electronic hydrometer. Furthermore, using a differential scanning calorimeter, the specific heat of the test piece used for the thermal conductivity and specific gravity measurement is measured. The thermal conductivity (W/m·K) of the test piece in the thickness direction is calculated from the measured values of thermal diffusivity, specific gravity, and specific heat.
[16]
A mold in a transfer molding machine includes a board on which electronic components are mounted, a stator core fixed on the board having a plurality of slots formed in the circumferential direction, and a plurality of coils accommodated in the slots. a step of arranging ,
In the transfer molding method using the transfer molding machine, the molding resin composition according to any one of [1] to [15] above is used to mold the substrate in the mold, the stator core, and the coil. a step of obtaining a sealed structure by sealing and molding;
A method for manufacturing a sealed structure, comprising:
[17]
In the method for manufacturing a sealed structure according to [16] above,
A method for manufacturing a sealed structure, wherein in the step of obtaining the sealed structure, sealing molding is performed at a temperature equal to or lower than the Tg of the cured product of the molding resin composition.
[18]
In the method for manufacturing a sealed structure according to [16] or [17] above,
A method for manufacturing a sealed structure, in which a post-curing step is not performed as the step of obtaining the sealed structure.
[19]
A board on which electronic components are mounted,
a stator core fixed on one surface of the substrate and having a plurality of slots formed in the circumferential direction;
a plurality of coils accommodated in the slot;
an encapsulated body containing;
A sealing member provided to cover part or all of the object to be sealed,
A sealing structure, wherein the sealing member is made of a cured product of the molding resin composition according to any one of [1] to [15] above.
 本発明によれば、低温で硬化が可能であり、電子部品またはステータ等の構造体を封止した際の密着性と防水性を向上させることができる成形用樹脂組成物が提供される。 According to the present invention, there is provided a molding resin composition that can be cured at low temperatures and can improve adhesion and waterproofness when sealing electronic components or structures such as stators.
本実施形態の一例における成形前後の被封止体および封止構造体の上面図である。It is a top view of the object to be sealed and the sealed structure before and after molding in an example of the present embodiment. 本実施形態の一例における成形前後の被封止体および封止構造体の側面図である。It is a side view of the object to be sealed and the sealed structure before and after molding in an example of this embodiment.
 以下、本発明の実施の形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
 本明細書中、数値範囲に関する「X~Y」の表記は、特に断らない限り、X以上Y以下を表す。本明細書中、数値範囲に関する上限値および下限値の記載は、特に断りがなければ、記載されている上限値および下限値を任意で組み合わせることができる。
Embodiments of the present invention will be described below with reference to the drawings. Note that in all the drawings, similar components are denoted by the same reference numerals, and descriptions thereof will be omitted as appropriate.
In this specification, the notation "X to Y" regarding a numerical range represents a range from X to Y, unless otherwise specified. In this specification, unless otherwise specified, the upper limit and lower limit of a numerical range can be arbitrarily combined.
<成形用樹脂組成物>
 本実施形態の成形用樹脂組成物は、電子部品が搭載された基板と、周方向に形成された複数のスロットを有する上記基板上に固定されたステータコアと、上記スロットに収容された複数個のコイルとを一括して封止するために用いられる成形用樹脂組成物であって、エポキシ樹脂と、硬化触媒と、無機充填材と、を含み、当該成形用樹脂組成物を140℃で2分硬化させた硬化物において、25℃における曲げ弾性率(JIS K6911:2006準拠)が0.1GPa以上30GPa以下である。
<Molding resin composition>
The molding resin composition of this embodiment includes a substrate on which electronic components are mounted, a stator core fixed on the substrate having a plurality of slots formed in the circumferential direction, and a stator core fixed on the substrate having a plurality of slots formed in the circumferential direction. A molding resin composition used for collectively sealing a coil, the molding resin composition containing an epoxy resin, a curing catalyst, and an inorganic filler, the molding resin composition being heated at 140°C for 2 minutes. The cured product has a bending elastic modulus (according to JIS K6911:2006) at 25° C. of 0.1 GPa or more and 30 GPa or less.
 本実施形態の成形用樹脂組成物は、電子部品が搭載された基板と、周方向に形成された複数のスロットを有する上記基板上に固定されたステータコアと、上記スロットに収容された複数個のコイルとを一括して封止するために用いられる。本実施形態の成形性樹脂組成物の封止材としての使用方法については、以下に詳述する。 The molding resin composition of this embodiment includes a substrate on which electronic components are mounted, a stator core fixed on the substrate having a plurality of slots formed in the circumferential direction, and a stator core fixed on the substrate having a plurality of slots formed in the circumferential direction. It is used to seal the coil together. The method of using the moldable resin composition of this embodiment as a sealing material will be described in detail below.
 本実施形態の成形用樹脂組成物は、当該成形用樹脂組成物を140℃で2分硬化させた硬化物において、25℃における曲げ弾性率(JIS K6911:2006準拠)が0.1GPa以上30GPa以下である。本実施形態の成形用樹脂組成物は、上記数値範囲内の曲げ弾性率を有することにより、低温で硬化が可能であり、電子部品またはステータ等の構造体を封止した際の密着性と防水性を向上させることができる。 The molding resin composition of the present embodiment has a flexural modulus of elasticity (according to JIS K6911:2006) at 25°C of 0.1 GPa or more and 30 GPa or less in a cured product obtained by curing the molding resin composition at 140°C for 2 minutes. It is. The molding resin composition of this embodiment has a bending elastic modulus within the above numerical range, so it can be cured at low temperatures, and has excellent adhesion and waterproofing when sealing structures such as electronic parts or stators. can improve sex.
 このような効果を奏するメカニズムは定かではないが、曲げ弾性率が上記数値範囲内であることによって、本実施形態の成形用樹脂組成物の硬化物に何らかの負荷がかかった際に、上記硬化物における微細なクラックの発生を抑制することができ、結果として電子部品またはステータ等の構造体を封止した際の密着性と防水性を向上させることができるものと考えられる。 Although the mechanism that produces such an effect is not clear, by having a flexural modulus within the above numerical range, when some load is applied to the cured product of the molding resin composition of this embodiment, the cured product It is thought that the occurrence of minute cracks in the structure can be suppressed, and as a result, the adhesion and waterproofness when sealing electronic components or structures such as stators can be improved.
 本実施形態の成形用樹脂組成物は、当該成形用樹脂組成物を140℃で2分硬化させた硬化物において、25℃における曲げ弾性率(JIS K6911準拠:2006)の下限値が0.1GPa以上であるが、好ましくは1.0GPa以上、より好ましくは3.0GPa以上、さらに好ましくは5.0GPa以上、さらに好ましくは8.0GPa以上、さらに好ましくは10.0GPa以上、さらに好ましくは12.0GPa以上、さらに好ましくは13.0GPa以上である。曲げ弾性率を上記下限値以上にすることにより、低温で硬化させた際でも機械強度に優れる構造体を得ることができる。
 また、曲げ弾性率の上限値は30GPa以下であるが、好ましくは27.0GPa以下、より好ましくは24.0GPa以下、さらに好ましくは21.0GPa以下である。曲げ弾性率を上記上限値以下にすることにより、硬化物中に蓄積する応力が十分に小さくなり、反りが低減される。これにより、電子部品またはステータ等の構造体を封止した際の密着性と防水性を向上させることができ、構造体の不具合が生じにくくなる。
The molding resin composition of this embodiment has a lower limit of flexural modulus at 25°C (JIS K6911 compliant: 2006) of 0.1 GPa in a cured product obtained by curing the molding resin composition at 140°C for 2 minutes. The above is preferably 1.0 GPa or more, more preferably 3.0 GPa or more, even more preferably 5.0 GPa or more, even more preferably 8.0 GPa or more, even more preferably 10.0 GPa or more, even more preferably 12.0 GPa. It is more preferably 13.0 GPa or more. By setting the flexural modulus to be equal to or higher than the above lower limit, a structure having excellent mechanical strength even when cured at low temperatures can be obtained.
Further, the upper limit of the bending elastic modulus is 30 GPa or less, preferably 27.0 GPa or less, more preferably 24.0 GPa or less, even more preferably 21.0 GPa or less. By setting the flexural modulus to be less than or equal to the above upper limit, the stress accumulated in the cured product becomes sufficiently small, and warpage is reduced. As a result, it is possible to improve the adhesion and waterproofness when a structure such as an electronic component or a stator is sealed, thereby making it difficult for defects to occur in the structure.
 ここで、本実施形態の成形用樹脂組成物の25℃における曲げ弾性率は例えば以下の方法で測定することができる。
 低圧トランスファー成形機を用いて、金型温度140℃、注入圧力9.8MPa、硬化時間2分の条件で、樹脂組成物を注入成形し、長さ80mm、幅10mm、厚さ4mmの成形物を得た。得られた成形物を、後硬化として200℃で4時間加熱処理したものを試験片とし、曲げ弾性率をJIS K 6911:2006に準じて25℃の雰囲気温度下で測定することができる。低圧トランスファー成形機としては、たとえばKTS-15、KTS-30(コータキ精機社製)を用いることができる。
Here, the flexural modulus at 25° C. of the molding resin composition of this embodiment can be measured, for example, by the following method.
Using a low-pressure transfer molding machine, the resin composition was injection molded under the conditions of a mold temperature of 140°C, an injection pressure of 9.8 MPa, and a curing time of 2 minutes to form a molded product with a length of 80 mm, width of 10 mm, and thickness of 4 mm. Obtained. The obtained molded product was heat-treated at 200° C. for 4 hours as a post-curing test piece, and the flexural modulus of elasticity can be measured at an ambient temperature of 25° C. according to JIS K 6911:2006. As the low-pressure transfer molding machine, for example, KTS-15 or KTS-30 (manufactured by Kotaki Seiki Co., Ltd.) can be used.
 以下、本実施形態の成形用樹脂組成物に用いられる各成分について説明する。 Hereinafter, each component used in the molding resin composition of this embodiment will be explained.
[エポキシ樹脂]
 本実施形態の成形用樹脂組成物に用いられるエポキシ樹脂としては、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂、N,N-ジグリシジルアニリン、N,N-ジグリシジルトルイジン、ジアミノジフェニルメタン型グリシジルアミン、アミノフェノール型グリシジルアミンのような芳香族グリシジルアミン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂、トリスフェノールプロパン型エポキシ樹脂、アルキル変性トリスフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェニレンおよび/またはビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、フェニレンおよび/またはビフェニレン骨格を有するナフトールアラルキル型エポキシ樹脂等のアラルキル型エポキシ樹脂等の芳香族エポキシ樹脂、ビニルシクロヘキセンジオキシド、ジシクロペンタジエンオキシド、アリサイクリックジエポキシ-アジペイド等の脂環式エポキシ等の脂肪族エポキシ樹脂が挙げられる。これらは単独でも2種以上混合して使用しても良い。
 これらの中でも、本実施形態の成形用樹脂組成物に用いられるエポキシ樹脂としては、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂およびトリスフェノールメタン型エポキシ樹脂からなる群より選択される1種または2種以上を含むことが好ましい。
[Epoxy resin]
Examples of the epoxy resin used in the molding resin composition of the present embodiment include novolac type epoxy resins such as phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, etc. Bisphenol type epoxy resin, N,N-diglycidylaniline, N,N-diglycidyltoluidine, diaminodiphenylmethane type glycidylamine, aromatic glycidylamine type epoxy resin such as aminophenol type glycidylamine, hydroquinone type epoxy resin, biphenyl type Epoxy resin, stilbene type epoxy resin, trisphenolmethane type epoxy resin, trisphenolpropane type epoxy resin, alkyl-modified trisphenolmethane type epoxy resin, triazine core-containing epoxy resin, dicyclopentadiene-modified phenol type epoxy resin, naphthol type epoxy resin , naphthalene type epoxy resins, phenol aralkyl type epoxy resins having a phenylene and/or biphenylene skeleton, aralkyl type epoxy resins such as naphthol aralkyl type epoxy resins having a phenylene and/or biphenylene skeleton, aromatic epoxy resins such as vinylcyclohexene dioxide , dicyclopentadiene oxide, and alicyclic epoxy such as alicyclic diepoxy-adipade. These may be used alone or in combination of two or more.
Among these, the epoxy resin used in the molding resin composition of the present embodiment is one or two selected from the group consisting of phenol novolak epoxy resin, cresol novolac epoxy resin, and trisphenolmethane epoxy resin. It is preferable to include more than one species.
 本実施形態の成形用樹脂組成物におけるエポキシ樹脂の含有量の下限値は、電子部品またはステータ等の構造体を封止した際の密着性と防水性をより向上させる観点から、成形用樹脂組成物の固形分全体を100質量%としたとき、好ましくは3質量%以上、より好ましくは4質量%以上、さらに好ましくは5質量%以上、さらに好ましくは6質量%以上、さらに好ましくは7質量%以上である。
 また、エポキシ樹脂の含有量の上限値は、低温で硬化させた際でも機械強度に優れる構造体を得る観点から、成形用樹脂組成物の固形分全体を100質量%としたとき、好ましくは40質量%以下、より好ましくは30質量%以下、さらに好ましくは20質量%以下、さらに好ましくは15質量%以下である。
 本実施形態の成形用樹脂組成物におけるエポキシ樹脂の含有量は、電子部品またはステータ等の構造体を封止した際の密着性と防水性をより向上させる観点および低温で硬化させた際でも機械強度に優れる構造体を得る観点から、成形用樹脂組成物の固形分全体を100質量%としたとき、好ましくは3質量%以上40質量%以下、より好ましくは4質量%以上30質量%以下、さらに好ましくは5質量%以上20質量%以下、さらに好ましくは6質量%以上20質量%以下、さらに好ましくは7質量%以上15質量%以下である。
The lower limit of the epoxy resin content in the molding resin composition of this embodiment is determined from the viewpoint of further improving the adhesion and waterproofness when sealing structures such as electronic parts or stators. When the total solid content of the product is 100% by mass, preferably 3% by mass or more, more preferably 4% by mass or more, still more preferably 5% by mass or more, even more preferably 6% by mass or more, even more preferably 7% by mass. That's all.
In addition, from the viewpoint of obtaining a structure with excellent mechanical strength even when cured at low temperatures, the upper limit of the content of the epoxy resin is preferably 40% when the entire solid content of the molding resin composition is 100% by mass. The content is at most 30% by mass, more preferably at most 20% by mass, even more preferably at most 15% by mass.
The content of the epoxy resin in the molding resin composition of this embodiment is determined from the viewpoint of further improving the adhesion and waterproofness when sealing structures such as electronic parts or stators, and from the viewpoint of further improving the adhesiveness and waterproofness when sealing structures such as electronic parts or stators, and the From the viewpoint of obtaining a structure with excellent strength, when the entire solid content of the molding resin composition is 100% by mass, preferably 3% by mass or more and 40% by mass or less, more preferably 4% by mass or more and 30% by mass or less, More preferably, the content is 5% by mass or more and 20% by mass or less, still more preferably 6% by mass or more and 20% by mass or less, and even more preferably 7% by mass or more and 15% by mass or less.
(硬化剤)
 本実施形態の成形用樹脂組成物は、硬化剤および硬化触媒の一方または両方を含む。本実施形態の成形用樹脂組成物は、エポキシ樹脂を三次元架橋させるために、好ましくは硬化剤を含み、硬化剤を必須成分として含む場合、より好ましくはフェノール樹脂系硬化剤を含む。フェノール樹脂系硬化剤としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールノボラック樹脂等のノボラック型フェノール樹脂;トリスフェノールメタン型フェノール樹脂等の多官能型フェノール樹脂;テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等の変性フェノール樹脂;フェニレン骨格及び/又はビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレン及び/又はビフェニレン骨格を有するナフトールアラルキル樹脂等のアラルキル型フェノール樹脂;ビスフェノールA、ビスフェノールF等のビスフェノール化合物等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。
(hardening agent)
The molding resin composition of this embodiment contains one or both of a curing agent and a curing catalyst. The molding resin composition of this embodiment preferably contains a curing agent in order to three-dimensionally crosslink the epoxy resin, and when it contains a curing agent as an essential component, it more preferably contains a phenolic resin curing agent. Examples of the phenolic resin curing agent include novolak type phenolic resins such as phenol novolac resin, cresol novolac resin, and naphthol novolac resin; polyfunctional phenolic resins such as trisphenolmethane type phenolic resin; terpene-modified phenolic resin, dicyclopentadiene Modified phenol resins such as modified phenol resins; phenol aralkyl resins having a phenylene skeleton and/or biphenylene skeleton; aralkyl type phenol resins such as naphthol aralkyl resins having a phenylene and/or biphenylene skeleton; bisphenol compounds such as bisphenol A, bisphenol F, etc. These may be used alone or in combination of two or more.
 本実施形態の成形用樹脂組成物は、好ましくはフェノール樹脂系硬化剤がフェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールノボラック樹脂およびトリスフェノールメタン型フェノール樹脂からなる群より選択される1種または2種以上を含む。このようなフェノール樹脂系硬化剤により、耐燃性、耐湿性、電気特性、硬化性、保存安定性等のバランスが良好となる。特に、硬化性の点から、たとえばフェノール樹脂系硬化剤の水酸基当量は、90g/eq以上、250g/eq以下とすることができる。 In the molding resin composition of the present embodiment, preferably, the phenolic resin curing agent is one or more selected from the group consisting of phenol novolac resin, cresol novolac resin, naphthol novolac resin, and trisphenolmethane type phenolic resin. including. Such a phenolic resin curing agent provides a good balance of flame resistance, moisture resistance, electrical properties, curability, storage stability, etc. In particular, from the viewpoint of curability, for example, the hydroxyl equivalent of the phenolic resin curing agent can be set to 90 g/eq or more and 250 g/eq or less.
 さらに、併用できる硬化剤としては、例えば重付加型の硬化剤、触媒型の硬化剤、縮合型の硬化剤等を挙げることができる。 Furthermore, examples of curing agents that can be used in combination include polyaddition type curing agents, catalyst type curing agents, condensation type curing agents, and the like.
 重付加型の硬化剤としては、例えば、ジエチレントリアミン(DETA)、トリエチレンテトラミン(TETA)、メタキシレンジアミン(MXDA)などの脂肪族ポリアミン、ジアミノジフェニルメタン(DDM)、m-フェニレンジアミン(MPDA)、ジアミノジフェニルスルホン(DDS)などの芳香族ポリアミンのほか、ジシアンジアミド(DICY)、有機酸ジヒドラジドなどを含むポリアミン化合物;ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)などの脂環族酸無水物、無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)などの芳香族酸無水物などを含む酸無水物;ノボラック型フェノール樹脂、フェノールポリマーなどのポリフェノール化合物;ポリサルファイド、チオエステル、チオエーテルなどのポリメルカプタン化合物;イソシアネートプレポリマー、ブロック化イソシアネートなどのイソシアネート化合物;カルボン酸含有ポリエステル樹脂などの有機酸類などが挙げられる。 Examples of polyaddition type curing agents include aliphatic polyamines such as diethylenetriamine (DETA), triethylenetetramine (TETA), and metaxylene diamine (MXDA), diaminodiphenylmethane (DDM), m-phenylenediamine (MPDA), and diaminodiamine. In addition to aromatic polyamines such as diphenyl sulfone (DDS), polyamine compounds including dicyandiamide (DICY) and organic acid dihydrazide; alicyclic acid anhydrides such as hexahydrophthalic anhydride (HHPA) and methyltetrahydrophthalic anhydride (MTHPA) Acid anhydrides, including aromatic acid anhydrides such as trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), and benzophenone tetracarboxylic acid (BTDA); polyphenolic compounds such as novolak-type phenolic resins and phenolic polymers Polymercaptan compounds such as polysulfide, thioester, and thioether; Isocyanate compounds such as isocyanate prepolymers and blocked isocyanates; Organic acids such as carboxylic acid-containing polyester resins.
 触媒型の硬化剤としては、例えば、ベンジルジメチルアミン(BDMA)、2,4,6-トリスジメチルアミノメチルフェノール(DMP-30)などの3級アミン化合物;2-メチルイミダゾール、2-エチル-4-メチルイミダゾール(EMI24)などのイミダゾール化合物;BF錯体などのルイス酸などが挙げられる。 Examples of catalytic curing agents include tertiary amine compounds such as benzyldimethylamine (BDMA) and 2,4,6-trisdimethylaminomethylphenol (DMP-30); 2-methylimidazole, 2-ethyl-4 - Imidazole compounds such as methylimidazole (EMI24); Lewis acids such as BF 3 complex, and the like.
 縮合型の硬化剤としては、例えば、レゾール樹脂、メチロール基含有尿素樹脂のような尿素樹脂;メチロール基含有メラミン樹脂のようなメラミン樹脂などが挙げられる。 Examples of the condensation type curing agent include resol resins, urea resins such as methylol group-containing urea resins, and melamine resins such as methylol group-containing melamine resins.
 このような他の硬化剤を併用する場合において、フェノール樹脂系硬化剤の含有量の下限値は、全硬化剤に対して、好ましくは20質量%以上、より好ましくは30質量%以上、さらに好ましくは50質量%以上、さらに好ましくは70質量%以上、さらに好ましくは90質量%以上である。フェノール樹脂系硬化剤の含有量が上記下限値以上であると、低温での硬化性を保持しつつ、良好な流動性を発現させることができる。また、フェノール樹脂系硬化剤の含有量の上限値は、特に限定されないが、全硬化剤に対して、100質量%以下であることが好ましい。 When such other curing agents are used together, the lower limit of the content of the phenolic resin curing agent is preferably 20% by mass or more, more preferably 30% by mass or more, and even more preferably is 50% by mass or more, more preferably 70% by mass or more, even more preferably 90% by mass or more. When the content of the phenolic resin curing agent is at least the above lower limit, good fluidity can be developed while maintaining curability at low temperatures. Further, the upper limit of the content of the phenolic resin curing agent is not particularly limited, but is preferably 100% by mass or less based on the total curing agent.
 本実施形態の成形用樹脂組成物における硬化剤の含有量の合計値の下限値は、特に限定されるものではないが、成形用樹脂組成物の固形分全体を100質量%としたとき、好ましくは0.8質量%以上、より好ましくは1質量%以上、さらに好ましくは1.5質量%以上、さらに好ましくは2質量%以上、さらに好ましくは3質量%以上、さらに好ましくは4質量%以上である。硬化剤の含有量の合計値が上記下限値以上であると、良好な硬化性を得ることができる。また、成形用樹脂組成物に対する硬化剤の含有量の合計値の上限値は、特に限定されるものではないが、成形用樹脂組成物全体に対して、好ましくは12質量%以下、より好ましくは10質量%以下、さらに好ましくは8質量%以下である。 Although the lower limit of the total content of curing agents in the molding resin composition of the present embodiment is not particularly limited, it is preferably when the entire solid content of the molding resin composition is 100% by mass. is 0.8% by mass or more, more preferably 1% by mass or more, even more preferably 1.5% by mass or more, even more preferably 2% by mass or more, even more preferably 3% by mass or more, even more preferably 4% by mass or more. be. Good curability can be obtained when the total content of the curing agents is at least the above lower limit. The upper limit of the total content of curing agents in the molding resin composition is not particularly limited, but is preferably 12% by mass or less, more preferably 12% by mass or less, based on the entire molding resin composition. It is 10% by mass or less, more preferably 8% by mass or less.
 なお、硬化剤としてのフェノール樹脂と、エポキシ樹脂とは、成形用樹脂組成物中のエポキシ基数(EP)と、全フェノール樹脂のフェノール性水酸基数(OH)との当量比(EP)/(OH)が、0.8以上、1.6以下となるように配合することが好ましい。当量比が上記範囲内であると、得られる成形用樹脂組成物を成形する際、十分な硬化特性を得ることができる。ただし、エポキシ樹脂と反応し得るフェノール樹脂以外の樹脂を併用する場合は、適宜当量比を調整すればよい。 The phenol resin and epoxy resin used as a curing agent are equivalent to the equivalent ratio (EP)/(OH ) is preferably 0.8 or more and 1.6 or less. When the equivalent ratio is within the above range, sufficient curing properties can be obtained when molding the resulting molding resin composition. However, if a resin other than the phenol resin that can react with the epoxy resin is used in combination, the equivalent ratio may be adjusted as appropriate.
[硬化触媒]
 本実施形態の成形用樹脂組成物が硬化触媒を必須成分として含む場合、本実施形態の成形用樹脂組成物に用いられる硬化触媒としては、イミダゾール系化合物を用いることが好ましい。イミダゾール系化合物は、たとえばイミダゾール、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、および2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のイミダゾール化合物、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2'-メチルイミダゾリル(1')]-エチル-s-トリアジン、2,4-ジアミノ-6-[2'-ウンデシルイミダゾリル(1')]-エチル-s-トリアジン、2,4-ジアミノ-6-[2'-エチル-4-メチルイミダゾリル(1')]-エチル-s-トリアジン、2,4-ジアミノ-6-[2'-メチルイミダゾリル(1')]-エチル-s-トリアジンのイソシアヌル酸付加物、2-フェニルイミダゾールのイソシアヌル酸付加物、2-メチルイミダゾールのイソシアヌル酸付加物から選択される一種または二種以上を含むことができる。
[Curing catalyst]
When the molding resin composition of this embodiment contains a curing catalyst as an essential component, it is preferable to use an imidazole-based compound as the curing catalyst used in the molding resin composition of this embodiment. Examples of imidazole compounds include imidazole, 2-methylimidazole, 2-undecylimidazole, 2-heptadecyl imidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl- 4-Methylimidazole, 1-benzyl-2-phenylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2 - Imidazole compounds such as undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, and 2-phenyl-4-methyl-5-hydroxymethylimidazole, 1-cyanoethyl-2 -undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6-[2'-methylimidazolyl(1')]-ethyl-s-triazine, 2, 4-Diamino-6-[2'-undecylimidazolyl(1')]-ethyl-s-triazine, 2,4-diamino-6-[2'-ethyl-4-methylimidazolyl(1')]-ethyl -s-triazine, isocyanuric acid adduct of 2,4-diamino-6-[2'-methylimidazolyl(1')]-ethyl-s-triazine, isocyanuric acid adduct of 2-phenylimidazole, 2-methylimidazole One or more selected from isocyanuric acid adducts.
 硬化触媒としてイミダゾール系化合物が用いられる場合、イミダゾール系化合物の含有量は、成形用樹脂組成物の固形分全体を100質量%としたとき、好ましくは0.01質量%以上、より好ましくは0.03質量%以上、さらに好ましくは0.05質量%以上、さらに好ましくは0.1質量%以上、さらに好ましくは0.3質量%以上、さらに好ましくは0.5質量%以上、さらに好ましくは1.0質量%以上である。イミダゾール系化合物の含有量を上記下限値以上とすることによって、電子部品またはステータ等の構造体を封止した際の密着性と防水性を向上させることができる。また、封止成形時における低温での硬化性を向上させることも可能である。一方で、イミダゾール系化合物の含有量は、成形用樹脂組成物の固形分全体を100質量%としたとき、好ましくは2.0質量%以下、より好ましくは1.5質量%以下である。イミダゾール系化合物の含有量を上記上限値以下とすることにより、トランスファーモールド時における流動性を向上させ、充填性の向上に寄与することができる。 When an imidazole-based compound is used as a curing catalyst, the content of the imidazole-based compound is preferably 0.01% by mass or more, more preferably 0.01% by mass or more when the entire solid content of the molding resin composition is 100% by mass. 03% by mass or more, more preferably 0.05% by mass or more, even more preferably 0.1% by mass or more, even more preferably 0.3% by mass or more, still more preferably 0.5% by mass or more, even more preferably 1.0% by mass or more. It is 0% by mass or more. By setting the content of the imidazole compound to the above lower limit or more, it is possible to improve the adhesion and waterproofness when a structure such as an electronic component or a stator is sealed. Furthermore, it is also possible to improve the curability at low temperatures during sealing molding. On the other hand, the content of the imidazole compound is preferably 2.0% by mass or less, more preferably 1.5% by mass or less, when the entire solid content of the molding resin composition is 100% by mass. By controlling the content of the imidazole compound to be less than or equal to the above upper limit, fluidity during transfer molding can be improved, contributing to improvement in filling properties.
 硬化触媒は、イミダゾール系化合物の他に、たとえば有機ホスフィン、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物等のリン原子含有化合物;1,8-ジアザビシクロ(5,4,0)ウンデセン等のイミダゾール系化合物以外のアミン系硬化触媒から選択される一種または二種以上をさらに含むことができる。 In addition to imidazole compounds, curing catalysts include phosphorus atom-containing compounds such as organic phosphines, tetra-substituted phosphonium compounds, phosphobetaine compounds, adducts of phosphine compounds and quinone compounds, and adducts of phosphonium compounds and silane compounds; It can further contain one or more selected from amine curing catalysts other than imidazole compounds such as 1,8-diazabicyclo(5,4,0)undecene.
 有機ホスフィンとしては、例えばエチルホスフィン、フェニルホスフィン等の第1ホスフィン;ジメチルホスフィン、ジフェニルホスフィン等の第2ホスフィン;トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン等の第3ホスフィンが挙げられる。 Examples of the organic phosphine include primary phosphines such as ethylphosphine and phenylphosphine; secondary phosphines such as dimethylphosphine and diphenylphosphine; and tertiary phosphines such as trimethylphosphine, triethylphosphine, tributylphosphine and triphenylphosphine.
 テトラ置換ホスホニウム化合物としては、例えば下記一般式(4)で表される化合物等が挙げられる。 Examples of the tetra-substituted phosphonium compound include compounds represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記一般式(4)において、Pはリン原子を表す。R、R、RおよびRは芳香族基またはアルキル基を表す。Aはヒドロキシル基、カルボキシル基、チオール基から選ばれる官能基のいずれかを芳香環に少なくとも1つ有する芳香族有機酸のアニオンを表す。AHはヒドロキシル基、カルボキシル基、チオール基から選ばれる官能基のいずれかを芳香環に少なくとも1つ有する芳香族有機酸を表す。x、yは1~3の数、zは0~3の数であり、かつx=yである。 In the above general formula (4), P represents a phosphorus atom. R 4 , R 5 , R 6 and R 7 represent an aromatic group or an alkyl group. A represents an anion of an aromatic organic acid having at least one functional group selected from a hydroxyl group, a carboxyl group, and a thiol group in its aromatic ring. AH represents an aromatic organic acid having at least one functional group selected from a hydroxyl group, a carboxyl group, and a thiol group in an aromatic ring. x and y are numbers from 1 to 3, z is a number from 0 to 3, and x=y.
 一般式(4)で表される化合物は、例えば以下のようにして得られるがこれに限定されるものではない。まず、テトラ置換ホスホニウムハライドと芳香族有機酸と塩基を有機溶剤に混ぜ均一に混合し、その溶液系内に芳香族有機酸アニオンを発生させる。次いで水を加えると、一般式(4)で表される化合物を沈殿させることができる。一般式(4)で表される化合物において、リン原子に結合するR、R、RおよびRがフェニル基であり、かつAHはヒドロキシル基を芳香環に有する化合物、すなわちフェノール類であり、かつAは該フェノール類のアニオンであるのが好ましい。上記フェノール類としては、フェノール、クレゾール、レゾルシン、カテコールなどの単環式フェノール類、ナフトール、ジヒドロキシナフタレン、アントラキノールなどの縮合多環式フェノール類、ビスフェノールA、ビスフェノールF、ビスフェノールSなどのビスフェノール類、フェニルフェノール、ビフェノールなどの多環式フェノール類などが例示される。 The compound represented by general formula (4) can be obtained, for example, as follows, but is not limited thereto. First, a tetra-substituted phosphonium halide, an aromatic organic acid, and a base are mixed uniformly in an organic solvent, and an aromatic organic acid anion is generated in the solution system. Then, by adding water, the compound represented by general formula (4) can be precipitated. In the compound represented by general formula (4), R 4 , R 5 , R 6 and R 7 bonded to the phosphorus atom are phenyl groups, and AH is a compound having a hydroxyl group in the aromatic ring, that is, a phenol. , and A is preferably an anion of the phenol. The above-mentioned phenols include monocyclic phenols such as phenol, cresol, resorcinol, and catechol; condensed polycyclic phenols such as naphthol, dihydroxynaphthalene, and anthraquinol; and bisphenols such as bisphenol A, bisphenol F, and bisphenol S; Examples include polycyclic phenols such as phenylphenol and biphenol.
 硬化触媒として用いられるホスホベタイン化合物としては、例えば、下記一般式(5)で表される化合物等が挙げられる。 Examples of the phosphobetaine compound used as a curing catalyst include a compound represented by the following general formula (5).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記一般式(5)において、Pはリン原子を表す。Rは炭素数1~3のアルキル基、Rはヒドロキシル基を表す。fは0~5の数であり、gは0~3の数である。 In the above general formula (5), P represents a phosphorus atom. R 8 represents an alkyl group having 1 to 3 carbon atoms, and R 9 represents a hydroxyl group. f is a number from 0 to 5, and g is a number from 0 to 3.
 一般式(5)で表される化合物は、例えば以下のようにして得られる。まず、第三ホスフィンであるトリ芳香族置換ホスフィンとジアゾニウム塩とを接触させ、トリ芳香族置換ホスフィンとジアゾニウム塩が有するジアゾニウム基とを置換させる工程を経て得られる。しかしこれに限定されるものではない。 The compound represented by general formula (5) can be obtained, for example, as follows. First, a triaromatic substituted phosphine, which is a tertiary phosphine, is brought into contact with a diazonium salt, and the diazonium group of the triaromatic substituted phosphine and the diazonium salt is substituted. However, it is not limited to this.
 硬化触媒として用いられるホスフィン化合物とキノン化合物との付加物としては、例えば、下記一般式(6)で表される化合物等が挙げられる。 Examples of the adduct of a phosphine compound and a quinone compound used as a curing catalyst include a compound represented by the following general formula (6).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記一般式(6)において、Pはリン原子を表す。R10、R11およびR12は炭素数1~12のアルキル基または炭素数6~12のアリール基を表し、互いに同一であっても異なっていてもよい。R13、R14およびR15は水素原子または炭素数1~12の炭化水素基を表し、互いに同一であっても異なっていてもよく、R14とR15が結合して環状構造となっていてもよい。 In the above general formula (6), P represents a phosphorus atom. R 10 , R 11 and R 12 represent an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 12 carbon atoms, and may be the same or different from each other. R 13 , R 14 and R 15 represent a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms, and may be the same or different from each other, and R 14 and R 15 are bonded to form a cyclic structure. It's okay.
 ホスフィン化合物とキノン化合物との付加物に用いるホスフィン化合物としては、例えばトリフェニルホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリナフチルホスフィン、トリス(ベンジル)ホスフィン等の芳香環に無置換またはアルキル基、アルコキシル基等の置換基が存在するものが好ましく、アルキル基、アルコキシル基等の置換基としては1~6の炭素数を有するものが挙げられる。入手しやすさの観点からはトリフェニルホスフィンが好ましい。 Examples of phosphine compounds used in the adduct of a phosphine compound and a quinone compound include triphenylphosphine, tris(alkylphenyl)phosphine, tris(alkoxyphenyl)phosphine, trinaphthylphosphine, tris(benzyl)phosphine, etc. It is preferable that the substituent is substituted or has a substituent such as an alkyl group or an alkoxyl group, and examples of the substituent such as an alkyl group or an alkoxyl group include those having 1 to 6 carbon atoms. Triphenylphosphine is preferred from the viewpoint of availability.
 また、ホスフィン化合物とキノン化合物との付加物に用いるキノン化合物としては、ベンゾキノン、アントラキノン類が挙げられ、中でもp-ベンゾキノンが保存安定性の点から好ましい。 Further, examples of the quinone compound used in the adduct of a phosphine compound and a quinone compound include benzoquinone and anthraquinones, and among them, p-benzoquinone is preferred from the viewpoint of storage stability.
 ホスフィン化合物とキノン化合物との付加物の製造方法としては、有機第三ホスフィンとベンゾキノン類の両者が溶解することができる溶媒中で接触、混合させることにより付加物を得ることができる。溶媒としてはアセトンやメチルエチルケトン等のケトン類で付加物への溶解性が低いものがよい。しかしこれに限定されるものではない。 As a method for producing an adduct of a phosphine compound and a quinone compound, the adduct can be obtained by contacting and mixing both the organic tertiary phosphine and the benzoquinone in a solvent that can dissolve them. The solvent is preferably a ketone such as acetone or methyl ethyl ketone, which has low solubility in the adduct. However, it is not limited to this.
 一般式(6)で表される化合物において、リン原子に結合するR10、R11およびR12がフェニル基であり、かつR13、R14およびR15が水素原子である化合物、すなわち1,4-ベンゾキノンとトリフェニルホスフィンを付加させた化合物が成形用樹脂組成物の硬化物の熱時弾性率を低下させる点で好ましい。 In the compound represented by general formula (6), R 10 , R 11 and R 12 bonded to the phosphorus atom are phenyl groups, and R 13 , R 14 and R 15 are hydrogen atoms, that is, 1, A compound to which 4-benzoquinone and triphenylphosphine are added is preferred in that it lowers the hot elastic modulus of the cured product of the molding resin composition.
 硬化触媒として使用されるホスホニウム化合物とシラン化合物との付加物としては、例えば下記一般式(7)で表される化合物等が挙げられる。 Examples of the adduct of a phosphonium compound and a silane compound used as a curing catalyst include a compound represented by the following general formula (7).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記一般式(7)において、Pはリン原子を表し、Siは珪素原子を表す。R16、R17、R18およびR19は、それぞれ、芳香環または複素環を有する有機基、あるいは脂肪族基を表し、互いに同一であっても異なっていてもよい。式中R20は、基YおよびYと結合する有機基である。式中R21は、基YおよびYと結合する有機基である。YおよびYは、プロトン供与性基がプロトンを放出してなる基を表し、同一分子内の基YおよびYが珪素原子と結合してキレート構造を形成するものである。YおよびYはプロトン供与性基がプロトンを放出してなる基を表し、同一分子内の基YおよびYが珪素原子と結合してキレート構造を形成するものである。R20、およびR21は互いに同一であっても異なっていてもよく、Y、Y、YおよびYは互いに同一であっても異なっていてもよい。Zは芳香環または複素環を有する有機基、あるいは脂肪族基である。 In the above general formula (7), P represents a phosphorus atom, and Si represents a silicon atom. R 16 , R 17 , R 18 and R 19 each represent an organic group having an aromatic ring or a heterocycle, or an aliphatic group, and may be the same or different from each other. In the formula, R 20 is an organic group bonded to the groups Y 2 and Y 3 . In the formula, R 21 is an organic group bonded to groups Y 4 and Y 5 . Y 2 and Y 3 represent a group formed by a proton-donating group releasing a proton, and the groups Y 2 and Y 3 in the same molecule bond to a silicon atom to form a chelate structure. Y 4 and Y 5 represent a group formed by a proton-donating group releasing a proton, and the groups Y 4 and Y 5 in the same molecule bond to a silicon atom to form a chelate structure. R 20 and R 21 may be the same or different from each other, and Y 2 , Y 3 , Y 4 and Y 5 may be the same or different from each other. Z 1 is an organic group having an aromatic ring or a heterocycle, or an aliphatic group.
 一般式(7)において、R16、R17、R18およびR19としては、例えば、フェニル基、メチルフェニル基、メトキシフェニル基、ヒドロキシフェニル基、ナフチル基、ヒドロキシナフチル基、ベンジル基、メチル基、エチル基、n-ブチル基、n-オクチル基およびシクロヘキシル基等が挙げられ、これらの中でも、フェニル基、メチルフェニル基、メトキシフェニル基、ヒドロキシフェニル基、ヒドロキシナフチル基等のアルキル基、アルコキシ基、水酸基などの置換基を有する芳香族基もしくは無置換の芳香族基がより好ましい。 In general formula (7), R 16 , R 17 , R 18 and R 19 are, for example, phenyl group, methylphenyl group, methoxyphenyl group, hydroxyphenyl group, naphthyl group, hydroxynaphthyl group, benzyl group, methyl group. , ethyl group, n-butyl group, n-octyl group, cyclohexyl group, etc. Among these, alkyl groups such as phenyl group, methylphenyl group, methoxyphenyl group, hydroxyphenyl group, hydroxynaphthyl group, and alkoxy groups , an aromatic group having a substituent such as a hydroxyl group, or an unsubstituted aromatic group is more preferable.
 また、一般式(7)において、R20は、YおよびYと結合する有機基である。同様に、R21は、基YおよびYと結合する有機基である。YおよびYはプロトン供与性基がプロトンを放出してなる基であり、同一分子内の基YおよびYが珪素原子と結合してキレート構造を形成するものである。同様にYおよびYはプロトン供与性基がプロトンを放出してなる基であり、同一分子内の基YおよびYが珪素原子と結合してキレート構造を形成するものである。基R20およびR21は互いに同一であっても異なっていてもよく、基Y、Y、Y、およびYは互いに同一であっても異なっていてもよい。このような一般式(7)中の-Y-R20-Y-、および-Y-R21-Y-で表される基は、プロトン供与体が、プロトンを2個放出してなる基で構成されるものであり、プロトン供与体としては、分子内にカルボキシル基、または水酸基を少なくとも2個有する有機酸が好ましく、さらには芳香環を構成する隣接する炭素にカルボキシル基または水酸基を少なくとも2個有する芳香族化合物が好ましく、芳香環を構成する隣接する炭素に水酸基を少なくとも2個有する芳香族化合物がより好ましく、例えば、カテコール、ピロガロール、1,2-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,2'-ビフェノール、1,1'-ビ-2-ナフトール、サリチル酸、1-ヒドロキシ-2-ナフトエ酸、3-ヒドロキシ-2-ナフトエ酸、クロラニル酸、タンニン酸、2-ヒドロキシベンジルアルコール、1,2-シクロヘキサンジオール、1,2-プロパンジオールおよびグリセリン等が挙げられるが、これらの中でも、カテコール、1,2-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレンがより好ましい。 Moreover, in general formula (7), R 20 is an organic group bonded to Y 2 and Y 3 . Similarly, R 21 is an organic group that is bonded to groups Y 4 and Y 5 . Y 2 and Y 3 are groups formed by a proton-donating group releasing protons, and the groups Y 2 and Y 3 in the same molecule bond to a silicon atom to form a chelate structure. Similarly, Y 4 and Y 5 are groups formed by a proton-donating group releasing protons, and the groups Y 4 and Y 5 in the same molecule combine with a silicon atom to form a chelate structure. The groups R 20 and R 21 may be the same or different from each other, and the groups Y 2 , Y 3 , Y 4 and Y 5 may be the same or different from each other. The groups represented by -Y 2 -R 20 -Y 3 - and -Y 4 -R 21 -Y 5 - in general formula (7) are such that the proton donor releases two protons. As a proton donor, an organic acid having at least two carboxyl groups or hydroxyl groups in the molecule is preferable, and furthermore, it is preferable to use an organic acid having at least two carboxyl groups or hydroxyl groups in the molecule. An aromatic compound having at least two hydroxyl groups is preferable, and an aromatic compound having at least two hydroxyl groups on adjacent carbons constituting an aromatic ring is more preferable, such as catechol, pyrogallol, 1,2-dihydroxynaphthalene, 2,3- Dihydroxynaphthalene, 2,2'-biphenol, 1,1'-bi-2-naphthol, salicylic acid, 1-hydroxy-2-naphthoic acid, 3-hydroxy-2-naphthoic acid, chloranilic acid, tannic acid, 2-hydroxy Examples include benzyl alcohol, 1,2-cyclohexanediol, 1,2-propanediol, and glycerin, but among these, catechol, 1,2-dihydroxynaphthalene, and 2,3-dihydroxynaphthalene are more preferred.
 また、一般式(7)中のZは、芳香環または複素環を有する有機基または脂肪族基を表し、これらの具体的な例としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基およびオクチル基等の脂肪族炭化水素基や、フェニル基、ベンジル基、ナフチル基およびビフェニル基等の芳香族炭化水素基、グリシジルオキシプロピル基、メルカプトプロピル基、アミノプロピル基等のグリシジルオキシ基、メルカプト基、アミノ基を有するアルキル基およびビニル基等の反応性置換基等が挙げられるが、これらの中でも、メチル基、エチル基、フェニル基、ナフチル基およびビフェニル基が熱安定性の面から、より好ましい。 Further, Z 1 in the general formula (7) represents an organic group or aliphatic group having an aromatic ring or a heterocycle, and specific examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, Aliphatic hydrocarbon groups such as hexyl and octyl groups, aromatic hydrocarbon groups such as phenyl, benzyl, naphthyl and biphenyl groups, and glycidyloxy groups such as glycidyloxypropyl, mercaptopropyl and aminopropyl groups. , a mercapto group, an alkyl group having an amino group, and a vinyl group. Among these, methyl group, ethyl group, phenyl group, naphthyl group, and biphenyl group are preferable from the viewpoint of thermal stability. , more preferred.
 ホスホニウム化合物とシラン化合物との付加物の製造方法としては、メタノールを入れたフラスコに、フェニルトリメトキシシラン等のシラン化合物、2,3-ジヒドロキシナフタレン等のプロトン供与体を加えて溶かし、次に室温攪拌下ナトリウムメトキシド-メタノール溶液を滴下する。さらにそこへ予め用意したテトラフェニルホスホニウムブロマイド等のテトラ置換ホスホニウムハライドをメタノールに溶かした溶液を室温攪拌下滴下すると結晶が析出する。析出した結晶を濾過、水洗、真空乾燥すると、ホスホニウム化合物とシラン化合物との付加物が得られる。しかし、これに限定されるものではない。 To produce an adduct of a phosphonium compound and a silane compound, a silane compound such as phenyltrimethoxysilane and a proton donor such as 2,3-dihydroxynaphthalene are added to a flask containing methanol, dissolved, and then heated at room temperature. A sodium methoxide-methanol solution is added dropwise while stirring. Furthermore, when a solution prepared in advance in which a tetra-substituted phosphonium halide such as tetraphenylphosphonium bromide is dissolved in methanol is added dropwise thereto under stirring at room temperature, crystals are precipitated. When the precipitated crystals are filtered, washed with water, and dried under vacuum, an adduct of a phosphonium compound and a silane compound is obtained. However, it is not limited to this.
 本実施形態の成形用樹脂組成物における硬化触媒の含有量は、成形用樹脂組成物の固形分全体を100質量%としたとき、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、さらに好ましくは0.5質量%以上、さらに好ましくは1.0質量%以上である。硬化触媒の含有量を上記下限値以上とすることにより、トランスファーモールド時における成形用樹脂組成物の硬化性を効果的に向上させ、低温での硬化性を向上させることができる。一方で、硬化触媒の含有量は、成形用樹脂組成物の固形分全体を100質量%としたとき、好ましくは2.0質量%以下、より好ましくは1.7質量%以下、さらに好ましくは1.5質量%以下である。硬化触媒の含有量を上記上限値以下とすることにより、封止時における流動性を向上させ、充填性の向上に寄与することができる。 The content of the curing catalyst in the molding resin composition of this embodiment is preferably 0.1% by mass or more, more preferably 0.3% by mass when the entire solid content of the molding resin composition is 100% by mass. % or more, more preferably 0.5% by mass or more, still more preferably 1.0% by mass or more. By setting the content of the curing catalyst to the above lower limit or more, the curability of the molding resin composition during transfer molding can be effectively improved, and the curability at low temperatures can be improved. On the other hand, the content of the curing catalyst is preferably 2.0% by mass or less, more preferably 1.7% by mass or less, even more preferably 1.0% by mass or less, when the entire solid content of the molding resin composition is 100% by mass. .5% by mass or less. By controlling the content of the curing catalyst to be less than or equal to the above upper limit, fluidity during sealing can be improved, contributing to improvement in filling properties.
[無機充填材]
 本実施形態の成形用樹脂組成物に用いられる無機充填材としては、例えば、溶融破砕シリカ及び溶融球状シリカ等の溶融シリカ、結晶シリカ、アルミナ、カオリン、タルク、クレイ、マイカ、ロックウール、ウォラストナイト、ガラスパウダー、ガラスフレーク、ガラスビーズ、ガラスファイバー、炭化ケイ素、窒化ケイ素、窒化アルミ、カーボンブラック、グラファイト、二酸化チタン、炭酸カルシウム、硫酸カルシウム、炭酸バリウム、炭酸マグネシウム、硫酸マグネシウム、硫酸バリウム、セルロース、アラミド、木材、フェノール樹脂成形材料やエポキシ樹脂成形材料の硬化物を粉砕した粉砕粉等が挙げられる。この中でも、溶融破砕シリカ、溶融球状シリカ、結晶シリカ等のシリカが好ましく、溶融球状シリカがより好ましい。また、この中でも、炭酸カルシウム、ウォラストナイトがコストの面で好ましい。無機充填材は、一種で使用しても良いし、または二種以上を併用してもよい。
[Inorganic filler]
Examples of the inorganic filler used in the molding resin composition of the present embodiment include fused silica such as fused crushed silica and fused spherical silica, crystalline silica, alumina, kaolin, talc, clay, mica, rock wool, and wollast. Night, glass powder, glass flakes, glass beads, glass fiber, silicon carbide, silicon nitride, aluminum nitride, carbon black, graphite, titanium dioxide, calcium carbonate, calcium sulfate, barium carbonate, magnesium carbonate, magnesium sulfate, barium sulfate, cellulose , aramid, wood, pulverized powder obtained by pulverizing cured products of phenolic resin molding materials and epoxy resin molding materials. Among these, silica such as fused crushed silica, fused spherical silica, and crystalline silica is preferred, and fused spherical silica is more preferred. Moreover, among these, calcium carbonate and wollastonite are preferable in terms of cost. The inorganic fillers may be used alone or in combination of two or more.
 無機充填材の平均粒径D50は、好ましくは0.01μm以上75μm以下、より好ましくは0.05μm以上50μm以下である。無機充填材の平均粒径D50を上記範囲内にすることにより、成形時の金型内の充填性が向上する。また、無機充填材の平均粒径D50の上限値を75μm以下とすることにより、さらに充填性が向上する。平均粒径D50は、レーザー回折型測定装置RODOS SR型(SYMPATEC HEROS&RODOS)での体積換算平均粒径とした。 The average particle diameter D 50 of the inorganic filler is preferably 0.01 μm or more and 75 μm or less, more preferably 0.05 μm or more and 50 μm or less. By setting the average particle diameter D 50 of the inorganic filler within the above range, the filling properties within the mold during molding are improved. Further, by setting the upper limit of the average particle diameter D 50 of the inorganic filler to 75 μm or less, the filling property is further improved. The average particle diameter D 50 was defined as the average particle diameter in terms of volume using a laser diffraction measuring device RODOS SR type (SYMPATEC HEROS & RODOS).
 また、本実施形態の成形用樹脂組成物は、無機充填材として、2種以上の異なる平均粒径D50を有する球状シリカを含むことができる。これにより、トランスファーモールドの際の流動性及び充填性が向上し得る。 Further, the molding resin composition of the present embodiment can contain, as an inorganic filler, spherical silica having two or more different average particle diameters D50 . This can improve fluidity and filling properties during transfer molding.
 本実施形態の成形用樹脂組成物における無機充填材の含有量は、成形用樹脂組成物の固形分全体を100質量%としたとき、好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましくは65質量%以上、さらに好ましくは70質量%以上、さらに好ましくは75質量%以上である。無機充填材の含有量が上記下限値以上であると、得られる成形用樹脂組成物の硬化に伴う吸湿量の増加や、強度の低下が低減できる。また、無機充填材の含有量は、成形用樹脂組成物の固形分全体を100質量%としたとき、好ましくは93質量%以下、より好ましくは91質量%以下、さらに好ましくは90質量%以下である。無機充填材の含有量が上記上限値以下であると、得られる成形用樹脂組成物は良好な流動性を有するとともに、良好な成形性を備える。したがって、封止構造体の製造安定性が高まり、歩留まり及び耐久性のバランスに優れた構造体が得られる。 The content of the inorganic filler in the molding resin composition of the present embodiment is preferably 50% by mass or more, more preferably 60% by mass or more, when the entire solid content of the molding resin composition is 100% by mass. More preferably, it is 65% by mass or more, still more preferably 70% by mass or more, even more preferably 75% by mass or more. When the content of the inorganic filler is at least the above lower limit, an increase in moisture absorption and a decrease in strength due to curing of the resulting molding resin composition can be reduced. Further, the content of the inorganic filler is preferably 93% by mass or less, more preferably 91% by mass or less, even more preferably 90% by mass or less, when the entire solid content of the molding resin composition is 100% by mass. be. When the content of the inorganic filler is at most the above upper limit, the resulting molding resin composition has good fluidity and good moldability. Therefore, the manufacturing stability of the sealed structure is increased, and a structure with an excellent balance between yield and durability can be obtained.
 また、無機充填材として、溶融破砕シリカ、溶融球状シリカ、結晶シリカ等のシリカを用いる場合、シリカの含有量が、成形用樹脂組成物の無機充填材全体を100質量%としたとき、好ましくは40質量%以上、より好ましくは60質量%以上、さらに好ましくは75質量%以上である。シリカの含有量が上記下限値以上であると、トランスファーモールド時の成形用樹脂組成物の硬化性と流動性のバランスが良好となる。
 なお、このときのシリカの含有量の上限値は特に限定されるものではないが、成形用樹脂組成物の無機充填材全体を100質量%としたとき、たとえば100質量%以下である。
Further, when using silica such as fused crushed silica, fused spherical silica, crystalline silica, etc. as the inorganic filler, the content of silica is preferably 100% by mass of the entire inorganic filler in the molding resin composition. The content is 40% by mass or more, more preferably 60% by mass or more, even more preferably 75% by mass or more. When the silica content is at least the above lower limit, the molding resin composition has a good balance between curability and fluidity during transfer molding.
Note that the upper limit of the silica content at this time is not particularly limited, but is, for example, 100% by mass or less when the entire inorganic filler of the molding resin composition is 100% by mass.
 また、無機充填材と、後述するような水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物や、硼酸亜鉛、モリブデン酸亜鉛、三酸化アンチモン等の無機系難燃剤とを併用する場合には、これらの無機系難燃剤と上記無機充填材の合計量は、上記無機充填材の含有量の範囲内とすることが望ましい。 In addition, when an inorganic filler is used together with a metal hydroxide such as aluminum hydroxide or magnesium hydroxide, or an inorganic flame retardant such as zinc borate, zinc molybdate, or antimony trioxide, as described below, The total amount of these inorganic flame retardants and the above-mentioned inorganic filler is desirably within the range of the content of the above-mentioned inorganic filler.
[その他の成分]
 本実施形態の成形用樹脂組成物は、上記成分に加え、必要に応じてさらに、密着助剤、ワックス、カップリング剤、着色剤、難燃剤、離型剤、低応力剤等の他の成分を含んでもよい。
[Other ingredients]
In addition to the above-mentioned components, the molding resin composition of the present embodiment may further include other components such as adhesion aids, waxes, coupling agents, colorants, flame retardants, mold release agents, and low-stress agents. May include.
(密着助剤)
 本実施形態の成形用樹脂組成物は、低温での硬化性を向上させるために、好ましくは密着助剤を含む。本実施形態の成形用樹脂組成物に用いられる密着助剤としては、特に限定されず、例えば、トリアゾール化合物等が挙げられ、このトリアゾール化合物としては、1,2,4-トリアゾール環を有する化合物、1,2,3-トリアゾール環を有する化合物が挙げられる。具体的な化合物としては、例えば、3-アミノ-1,2,4-トリアゾール、4-アミノ-1,2,3-トリアゾール、3-アミノ-1,2,4-トリアゾール-5-カルボン酸、3-メルカプト-1,2,4-トリアゾール、4-メルカプト-1,2,3-トリアゾール、3,5-ジアミノ-1,2,4-トリアゾール、3,5-ジメルカプト-1,2,4-トリアゾール、4,5-ジメルカプト-1,2,3-トリアゾール、3-アミノ-5-メルカプト-1,2,4-トリアゾール、4-アミノ-5-メルカプト-1,2,3-トリアゾール、3-ヒドラジノ-4-アミノ-5-メルカプト-1,2,4-トリアゾールおよび5-メルカプト-1,2,4-トリアゾール-3-メタノール等が挙げられ、これらのうちの1種または2種以上を組み合せて用いることができる。これらのうち、少なくとも1つのメルカプト基を有する化合物であることが好ましい。
(Adhesion aid)
The molding resin composition of this embodiment preferably contains an adhesion aid in order to improve curability at low temperatures. The adhesion aid used in the molding resin composition of the present embodiment is not particularly limited, and includes, for example, triazole compounds, such as compounds having a 1,2,4-triazole ring, Examples include compounds having a 1,2,3-triazole ring. Specific compounds include, for example, 3-amino-1,2,4-triazole, 4-amino-1,2,3-triazole, 3-amino-1,2,4-triazole-5-carboxylic acid, 3-mercapto-1,2,4-triazole, 4-mercapto-1,2,3-triazole, 3,5-diamino-1,2,4-triazole, 3,5-dimercapto-1,2,4- Triazole, 4,5-dimercapto-1,2,3-triazole, 3-amino-5-mercapto-1,2,4-triazole, 4-amino-5-mercapto-1,2,3-triazole, 3- Examples include hydrazino-4-amino-5-mercapto-1,2,4-triazole and 5-mercapto-1,2,4-triazole-3-methanol, and one or more of these may be used in combination. It can be used as Among these, compounds having at least one mercapto group are preferred.
 本実施形態の成形用樹脂組成物における密着助剤の含有量の下限値としては、例えば、成形用樹脂組成物の固形分全体を100質量%としたとき、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、さらに好ましくは0.07質量%以上である。これにより、低温での硬化性をより向上できる。
 また、密着助剤の含有量の上限値としては、例えば、成形用樹脂組成物の固形分全体を100質量%としたとき、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは1質量%以下、さらに好ましくは0.5質量%以下、さらに好ましくは0.3質量%以下である。これにより、本実施形態の成形用樹脂組成物で電子部品またはステータ等の構造体を封止した際の密着性と防水性を向上させることができる。
The lower limit of the adhesion aid content in the molding resin composition of the present embodiment is, for example, preferably 0.01% by mass or more when the entire solid content of the molding resin composition is 100% by mass, The content is more preferably 0.05% by mass or more, and even more preferably 0.07% by mass or more. Thereby, the curability at low temperatures can be further improved.
Furthermore, the upper limit of the content of the adhesion aid is preferably 10% by mass or less, more preferably 5% by mass or less, and even more preferably is 1% by mass or less, more preferably 0.5% by mass or less, even more preferably 0.3% by mass or less. Thereby, it is possible to improve the adhesion and waterproofness when a structure such as an electronic component or a stator is sealed with the molding resin composition of the present embodiment.
(ワックス)
 本実施形態の成形用樹脂組成物は、好ましくは融点が30℃から90℃のワックスを含む。このようなワックスを含むことにより、成形用樹脂組成物は、トランスファーモールドで適用される温度下で、溶融性が良好であり、よって封止時における流動性が向上するとともに、充填性が向上し得る。このようなワックスとしては、カルナバワックス等の天然ワックス、モンタン酸エステルワックスや酸化ポリエチレンワックス等の合成ワックス、ステアリン酸亜鉛等の高級脂肪酸およびその金属塩類が挙げられる。
(wax)
The molding resin composition of this embodiment preferably contains a wax having a melting point of 30°C to 90°C. By containing such a wax, the molding resin composition has good meltability under the temperature applied in the transfer mold, and thus improves fluidity during sealing and improves filling properties. obtain. Such waxes include natural waxes such as carnauba wax, synthetic waxes such as montan acid ester wax and oxidized polyethylene wax, higher fatty acids such as zinc stearate, and metal salts thereof.
 ワックスの配合量は、成形用樹脂組成物の固形分全体を100質量%としたとき、例えば、0.05質量%以上2.0質量%以下である。ワックスの配合量の下限値は、成形用樹脂組成物の固形分全体を100質量%としたとき、好ましくは0.1質量%以上、より好ましくは0.2質量%以上である。ワックスの配合量の上限値は、成形用樹脂組成物の固形分全体を100質量%としたとき、好ましくは1.5質量%以下、より好ましくは1.0質量%以下である。上記範囲でワックスを配合することにより、得られる成形用樹脂組成物は、トランスファーモールド時において優れた流動性と、充填性とを有する。 The amount of wax blended is, for example, 0.05% by mass or more and 2.0% by mass or less, when the entire solid content of the molding resin composition is 100% by mass. The lower limit of the amount of wax blended is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, when the total solid content of the molding resin composition is 100% by mass. The upper limit of the amount of wax blended is preferably 1.5% by mass or less, more preferably 1.0% by mass or less, when the total solid content of the molding resin composition is 100% by mass. By blending the wax in the above range, the resulting molding resin composition has excellent fluidity and filling properties during transfer molding.
(カップリング剤)
 本実施形態の成形用樹脂組成物は、エポキシ樹脂と無機充填材との密着性を向上させるため、シランカップリング剤等のカップリング剤を含んでもよい。カップリング剤としては、例えばエポキシシラン、アミノシラン、ウレイドシラン、メルカプトシラン等が挙げられる。
(coupling agent)
The molding resin composition of this embodiment may contain a coupling agent such as a silane coupling agent in order to improve the adhesion between the epoxy resin and the inorganic filler. Examples of the coupling agent include epoxysilane, aminosilane, ureidosilane, and mercaptosilane.
 エポキシシランとしては、例えば、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、β-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン等が挙げられる。また、アミノシランとしては、例えば、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N-フェニルγ-アミノプロピルトリエトキシシラン、N-フェニルγ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、N-6-(アミノヘキシル)3-アミノプロピルトリメトキシシラン、N-(3-(トリメトキシシリルプロピル)-1,3-ベンゼンジメタナン等が挙げられる。また、ウレイドシランとしては、例えば、γ-ウレイドプロピルトリエトキシシラン、ヘキサメチルジシラザン等が挙げられる。アミノシランの1級アミノ部位をケトン又はアルデヒドを反応させて保護した潜在性アミノシランカップリング剤として用いてもよい。また、アミノシランとしては、2級アミノ基を有してもよい。また、メルカプトシランとしては、例えば、γ-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシランのほか、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィドのような熱分解することによってメルカプトシランカップリング剤と同様の機能を発現するシランカップリング剤など、が挙げられる。またこれらのシランカップリング剤は予め加水分解反応させたものを配合してもよい。これらのシランカップリング剤は1種類を単独で用いても2種類以上を併用してもよい。 Examples of the epoxysilane include γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, and β-(3,4epoxycyclohexyl)ethyltrimethoxysilane. etc. In addition, examples of the aminosilane include γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, N-β(aminoethyl)γ-aminopropyltrimethoxysilane, N-β(aminoethyl)γ-aminopropyl Methyldimethoxysilane, N-phenylγ-aminopropyltriethoxysilane, N-phenylγ-aminopropyltrimethoxysilane, N-β(aminoethyl)γ-aminopropyltriethoxysilane, N-6-(aminohexyl)3 -aminopropyltrimethoxysilane, N-(3-(trimethoxysilylpropyl)-1,3-benzenedimethanane), etc. Also, examples of ureidosilane include γ-ureidopropyltriethoxysilane, Examples include methyldisilazane.It may also be used as a latent aminosilane coupling agent in which the primary amino site of aminosilane is protected by reacting with a ketone or aldehyde.Also, as aminosilane, it may be used as a coupling agent that has a secondary amino group and is protected by reacting with a ketone or aldehyde. Examples of mercaptosilane include γ-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, bis(3-triethoxysilylpropyl)tetrasulfide, bis(3-triethoxysilylpropyl) ) Examples include silane coupling agents such as disulfide that exhibit the same function as mercaptosilane coupling agents when thermally decomposed.In addition, these silane coupling agents may be compounded with those that have undergone a hydrolysis reaction in advance. These silane coupling agents may be used alone or in combination of two or more.
 連続成形性という観点では、メルカプトシランが好ましく、流動性の観点では、アミノシランが好ましく、密着性という観点ではエポキシシランが好ましい。 From the viewpoint of continuous moldability, mercaptosilane is preferred, from the viewpoint of fluidity, aminosilane is preferred, and from the viewpoint of adhesiveness, epoxysilane is preferred.
 本実施形態の成形用樹脂組成物におけるシランカップリング剤等のカップリング剤の含有量の下限値としては、成形用樹脂組成物の固形分全体を100質量%としたとき、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、さらに好ましくは0.1質量%以上、さらに好ましくは0.2質量%以上である。シランカップリング剤等のカップリング剤の含有量が上記下限値以上であれば、エポキシ樹脂と無機充填材との界面強度が低下することがなく、電子部品またはステータ等の構造体を封止した際の密着性と防水性を向上させることができる。また、シランカップリング剤等のカップリング剤の含有量の上限値としては、成形用樹脂組成物の固形分全体を100質量%としたとき、好ましくは1質量%以下、より好ましくは0.8質量%以下、さらに好ましくは0.6質量%以下、さらに好ましくは0.4質量%以下である。シランカップリング剤等のカップリング剤の含有量が上記上限値以下であれば、エポキシ樹脂と無機充填材との界面強度が低下することがなく、電子部品またはステータ等の構造体を封止した際の密着性と防水性を向上させることができる。また、シランカップリング剤等のカップリング剤の含有量が上記上限値以下であれば、成形用樹脂組成物の硬化物の吸水性が増大することが防止される。 The lower limit of the content of a coupling agent such as a silane coupling agent in the molding resin composition of the present embodiment is preferably 0.01% when the entire solid content of the molding resin composition is 100% by mass. The content is at least 0.05% by mass, more preferably at least 0.1% by mass, even more preferably at least 0.2% by mass. If the content of the coupling agent such as a silane coupling agent is equal to or higher than the above lower limit, the interfacial strength between the epoxy resin and the inorganic filler will not decrease, and structures such as electronic components or stators will be sealed. It can improve the adhesion and waterproofness. In addition, the upper limit of the content of a coupling agent such as a silane coupling agent is preferably 1% by mass or less, more preferably 0.8% by mass when the entire solid content of the molding resin composition is 100% by mass. It is not more than 0.6% by mass, more preferably not more than 0.4% by mass. If the content of the coupling agent such as a silane coupling agent is below the above upper limit, the interfacial strength between the epoxy resin and the inorganic filler will not decrease, and structures such as electronic components or stators will be sealed. It can improve the adhesion and waterproofness. Moreover, if the content of a coupling agent such as a silane coupling agent is below the above-mentioned upper limit, the water absorption of the cured product of the molding resin composition will be prevented from increasing.
[特性]
 本実施形態の成形用樹脂組成物は、以下の(方法1)によって測定される、ガラス転移温度(Tg)の下限値が好ましくは140℃以上、より好ましくは150℃以上、さらに好ましくは155℃以上、さらに好ましくは160℃以上、さらに好ましくは165℃以上である。ガラス転移温度(Tg)が上記下限値以上であることにより、本実施形態の成形用樹脂組成物が低温でも硬化が可能となるほか、本実施形態の成形用樹脂組成物の硬化物の耐熱性が向上する。
 また、ガラス転移温度(Tg)の上限値は特に限定されないが、たとえば300℃以下であり、250℃以下であり、220℃以下である。
[Characteristic]
The molding resin composition of the present embodiment has a glass transition temperature (Tg) of preferably 140°C or higher, more preferably 150°C or higher, and even more preferably 155°C, as measured by the following (Method 1). The temperature is more preferably 160°C or higher, and even more preferably 165°C or higher. By having a glass transition temperature (Tg) equal to or higher than the above lower limit, the molding resin composition of this embodiment can be cured even at low temperatures, and the heat resistance of the cured product of the molding resin composition of this embodiment is improved. will improve.
Further, the upper limit of the glass transition temperature (Tg) is not particularly limited, but is, for example, 300°C or lower, 250°C or lower, and 220°C or lower.
(方法1)
 成形用樹脂組成物を、トランスファー成形機を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間90秒で、80mm×10mm×4mmの試験片を成形し、175℃2時間で後硬化する。さらに、熱機械分析装置を用いて、5℃/分の昇温速度で得られた試験片の熱膨張率を測定する。次いで、得られた測定結果に基づき、熱膨張率の変曲点から硬化物のガラス転移温度(Tg)(℃)を算出する。
(Method 1)
The molding resin composition was molded into a test piece of 80 mm x 10 mm x 4 mm using a transfer molding machine at a mold temperature of 175°C, an injection pressure of 6.9 MPa, and a curing time of 90 seconds. harden. Furthermore, using a thermomechanical analyzer, the coefficient of thermal expansion of the test piece obtained at a heating rate of 5° C./min is measured. Next, based on the obtained measurement results, the glass transition temperature (Tg) (° C.) of the cured product is calculated from the inflection point of the coefficient of thermal expansion.
 ここで、ガラス転移温度の測定のための硬化物は、たとえば樹脂組成物を175℃で2時間硬化することにより得られる。
 具体的には、ガラス転移温度Tgは、たとえば低圧トランスファー成形機を用いて金型温度175℃、注入圧力6.9MPa、硬化時間90秒で樹脂組成物を注入成形して得た試験片を175℃、2時間で後硬化した後、当該試験片に対して熱機械分析装置を用いて測定温度範囲0℃~320℃、昇温速度5℃/分の条件下で測定を行って得た測定結果から算出することができる。低圧トランスファー成形機としては、たとえばKTS-15およびKTS-30(コータキ精機社製)等を用いることができる。また、熱機械分析装置としては、たとえばTMA/SS6000(セイコーインスツルメンツ社製)やTMA7100(日立ハイテクサイエンス社製)等を用いることができる。
Here, the cured product for measuring the glass transition temperature is obtained, for example, by curing the resin composition at 175° C. for 2 hours.
Specifically, the glass transition temperature Tg is, for example, a test piece obtained by injection molding a resin composition using a low-pressure transfer molding machine at a mold temperature of 175°C, an injection pressure of 6.9 MPa, and a curing time of 90 seconds. After post-curing at ℃ for 2 hours, the test piece was measured using a thermomechanical analyzer under conditions of a measurement temperature range of 0℃ to 320℃ and a heating rate of 5℃/min. It can be calculated from the results. As the low-pressure transfer molding machine, for example, KTS-15 and KTS-30 (manufactured by Kotaki Seiki Co., Ltd.) can be used. Further, as a thermomechanical analyzer, for example, TMA/SS6000 (manufactured by Seiko Instruments), TMA7100 (manufactured by Hitachi High-Tech Science, Inc.), etc. can be used.
 本実施形態の成形用樹脂組成物は、金型温度175℃、注入圧力9.8MPa、硬化時間3分で測定したスパイラルフローをSとし、当該成形用樹脂組成物を25℃で48時間放置した後、金型温度175℃、注入圧力9.8MPa、硬化時間3分で測定したスパイラルフローをSとしたとき、S≧0.8×Sを満たすことが好ましい。このようにすることで、低温で硬化が可能であり、電子部品またはステータ等の構造体を封止した際の密着性と防水性を向上させることができるほか、長期の保存性を向上させることができる。 The molding resin composition of this embodiment has a spiral flow measured at a mold temperature of 175°C, an injection pressure of 9.8 MPa, and a curing time of 3 minutes, with S1 , and the molding resin composition is left at 25°C for 48 hours. After that, when the spiral flow measured at a mold temperature of 175° C., an injection pressure of 9.8 MPa, and a curing time of 3 minutes is defined as S 2 , it is preferable that S 2 ≧0.8×S 1 be satisfied. By doing this, it is possible to cure at low temperatures, and it is possible to improve the adhesion and waterproofness when electronic parts or structures such as stators are sealed, as well as to improve long-term storage stability. I can do it.
 本実施形態の成形用樹脂組成物は、以下の(方法2)によって測定される、トルク値が2N・mに達する時間の上限値が、好ましくは100秒未満、より好ましくは70秒未満、さらに好ましくは50秒未満、さらに好ましくは30秒未満である。トルク値が2N・mに達する時間が上記上限値未満であることにより、低温でも本実施形態の成形用樹脂組成物の成形が可能となる。
 また、トルク値が2N・mに達する時間の下限値は特に限定されないが、たとえば0.1秒以上であり1秒以上であってもよい。
In the molding resin composition of the present embodiment, the upper limit of the time required for the torque value to reach 2 N·m, as measured by the following (Method 2), is preferably less than 100 seconds, more preferably less than 70 seconds, and Preferably it is less than 50 seconds, more preferably less than 30 seconds. Since the time required for the torque value to reach 2 N·m is less than the above upper limit value, the molding resin composition of this embodiment can be molded even at low temperatures.
Further, the lower limit of the time for the torque value to reach 2 N·m is not particularly limited, but may be, for example, 0.1 seconds or more and 1 second or more.
(方法2)
 キュラストメーター(登録商標)を用い、金型温度140℃、振幅角度±0.25度にて、成形用樹脂組成物のトルク値を経時的に測定する。測定結果に基づいて、測定開始から、トルク値が2N・mに達する時間(秒)を算出する。
(Method 2)
Using a Curalastometer (registered trademark), the torque value of the molding resin composition is measured over time at a mold temperature of 140° C. and an amplitude angle of ±0.25 degrees. Based on the measurement results, the time (seconds) from the start of the measurement until the torque value reaches 2 N·m is calculated.
 キュラストメーター(登録商標)としては、たとえばキュラストメーター(登録商標)MODEL7((株)エー・アンド・デイ製)等を用いることができる。 As the Curelastometer (registered trademark), for example, Curelastometer (registered trademark) MODEL 7 (manufactured by A&D Co., Ltd.) can be used.
 本実施形態の成形用樹脂組成物は、以下の(方法3)によって測定される、スパイラルフローは、好ましくは70cm以上、より好ましくは80cm以上、さらに好ましくは90cm以上である。スパイラルフローが上記下限値以上であることにより、電子部品またはステータ等の構造体を封止した際の密着性と防水性をより向上させることができる。
 また、上記スパイラルフローは、好ましくは180cm以下、より好ましくは160cm以下、さらに好ましくは140cm以下である。スパイラルフローが上記上限値以下であることにより、本実施形態の成形用樹脂組成物の長期の保存性を向上させることができる。
The molding resin composition of the present embodiment has a spiral flow of preferably 70 cm or more, more preferably 80 cm or more, and even more preferably 90 cm or more, as measured by the following (Method 3). When the spiral flow is greater than or equal to the lower limit value, it is possible to further improve the adhesion and waterproofness when sealing a structure such as an electronic component or a stator.
Further, the spiral flow is preferably 180 cm or less, more preferably 160 cm or less, still more preferably 140 cm or less. When the spiral flow is below the above upper limit value, the long-term storage stability of the molding resin composition of this embodiment can be improved.
(方法3)
 成形用樹脂組成物を、低圧トランスファー成形機を用いて、ANSI/ASTM D 3123-72に準じたスパイラルフロー測定用金型に、175℃、注入圧力6.9MPa、保圧時間3分の条件で注入し、流動長を測定し、これをスパイラルフロー(cm)とする。
(Method 3)
Using a low-pressure transfer molding machine, the molding resin composition was placed in a spiral flow measurement mold according to ANSI/ASTM D 3123-72 under conditions of 175°C, injection pressure of 6.9 MPa, and pressure holding time of 3 minutes. Inject and measure the flow length, which is defined as a spiral flow (cm).
 低圧トランスファー成形機としては、たとえば上述のKTS-15およびKTS-30(コータキ精機社製)等を用いることができる。 As the low-pressure transfer molding machine, for example, the above-mentioned KTS-15 and KTS-30 (manufactured by Kotaki Seiki Co., Ltd.) can be used.
 本実施形態の成形用樹脂組成物は、以下の(方法4)によって測定される、ゲルタイムは、好ましくは30秒以上、より好ましくは40秒以上、さらに好ましくは50秒以上である。ゲルタイムが上記下限値以上であることにより、本実施形態の成形用樹脂組成物の長期の保存性を向上させることができる。
 また、上記ゲルタイムは、好ましくは80秒以下、より好ましくは70秒以下、さらに好ましくは60秒以下である。ゲルタイムが上記上限値以下であることにより、電子部品またはステータ等の構造体を封止した際の密着性と防水性をより向上させることができる。
The molding resin composition of the present embodiment has a gel time of preferably 30 seconds or more, more preferably 40 seconds or more, and even more preferably 50 seconds or more, as measured by the following (Method 4). When the gel time is greater than or equal to the above lower limit, the long-term storage stability of the molding resin composition of this embodiment can be improved.
Further, the gel time is preferably 80 seconds or less, more preferably 70 seconds or less, and still more preferably 60 seconds or less. When the gel time is below the above upper limit, it is possible to further improve the adhesion and waterproofness when sealing a structure such as an electronic component or a stator.
(方法4)
 成形用樹脂組成物を、低圧トランスファー成形機を用いて、ANSI/ASTM D 3123-72に準じたスパイラルフロー測定用金型に、175℃、注入圧力6.9MPa、保圧時間3分の条件で注入する。注入開始から成形用樹脂組成物が硬化し流動しなくなるまでの時間を測定し、ゲルタイム(秒)とする。
(Method 4)
Using a low-pressure transfer molding machine, the molding resin composition was placed in a spiral flow measurement mold according to ANSI/ASTM D 3123-72 under conditions of 175°C, injection pressure of 6.9 MPa, and pressure holding time of 3 minutes. inject. The time from the start of injection until the molding resin composition hardens and ceases to flow is measured and is defined as gel time (seconds).
 低圧トランスファー成形機としては、たとえば上述のKTS-15およびKTS-30(コータキ精機社製)等を用いることができる。 As the low-pressure transfer molding machine, for example, the above-mentioned KTS-15 and KTS-30 (manufactured by Kotaki Seiki Co., Ltd.) can be used.
 本実施形態の成形用樹脂組成物は、以下の(方法5)によって測定される、線膨張係数α1の下限値は特に限定されないが、例えば0.8ppm/℃以上、1.0ppm/℃以上、1.2ppm/℃以上である。
 また、線膨張係数α1は、好ましくは10.0ppm/℃以下、より好ましくは5.0ppm/℃以下、さらに好ましくは3.0ppm/℃以下、さらに好ましくは2.0ppm/℃以下である。線膨張係数α1が上記上限値以下であることにより、電子部品またはステータ等の構造体を封止した際の密着性と防水性をより向上させることができる。
The lower limit value of the linear expansion coefficient α1 of the molding resin composition of the present embodiment is not particularly limited, but is measured by the following (Method 5), for example, 0.8 ppm/°C or more, 1.0 ppm/°C or more, It is 1.2 ppm/°C or more.
Further, the linear expansion coefficient α1 is preferably 10.0 ppm/°C or less, more preferably 5.0 ppm/°C or less, still more preferably 3.0 ppm/°C or less, even more preferably 2.0 ppm/°C or less. When the coefficient of linear expansion α1 is less than or equal to the above upper limit value, it is possible to further improve the adhesion and waterproofness when sealing a structure such as an electronic component or a stator.
(方法5)
 成形用樹脂組成物を、低圧トランスファー成形機を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間3分の条件で注入成形し、15mm×4mm×4mmの成形品を得る。次いで、得られた成形品を175℃、4時間で後硬化して試験片を作製する。そして、得られた試験片に対して、熱機械分析装置を用いて、測定温度範囲0℃~400℃、昇温速度5℃/分の条件下で、25-70℃における平均線膨張係数α1(ppm/℃)を測定する。
(Method 5)
The molding resin composition is injection molded using a low-pressure transfer molding machine under conditions of a mold temperature of 175° C., an injection pressure of 9.8 MPa, and a curing time of 3 minutes to obtain a molded article of 15 mm x 4 mm x 4 mm. Next, the obtained molded article is post-cured at 175° C. for 4 hours to prepare a test piece. Then, the obtained test piece was measured using a thermomechanical analyzer under the conditions of a measurement temperature range of 0°C to 400°C and a heating rate of 5°C/min, and the average linear expansion coefficient α1 at 25-70°C (ppm/°C).
 低圧トランスファー成形機としては、たとえば上述のKTS-15およびKTS-30(コータキ精機社製)等を用いることができる。また、熱機械分析装置としては、たとえば上述のTMA/SS6000(セイコーインスツルメンツ社製)やTMA7100(日立ハイテクサイエンス社製)等を用いることができる。 As the low-pressure transfer molding machine, for example, the above-mentioned KTS-15 and KTS-30 (manufactured by Kotaki Seiki Co., Ltd.) can be used. Further, as the thermomechanical analyzer, for example, the above-mentioned TMA/SS6000 (manufactured by Seiko Instruments) or TMA7100 (manufactured by Hitachi High-Tech Science) can be used.
 本実施形態の成形用樹脂組成物は、以下の(方法6)によって測定される、熱伝導率は、好ましくは0.5W/m・K以上、より好ましくは0.6W/m・K以上、さらに好ましくは0.7W/m・K以上、さらに好ましくは0.8W/m・K以上である。熱伝導率が上記下限値以上であることにより、本実施形態の成形用樹脂組成物を用いた成形体の内部の電子部品に係る熱を効率的に放出することができる。
 また、熱伝導率は、好ましくは3.5W/m・K以下、より好ましくは3.3W/m・K以下、さらに好ましくは3.1W/m・K以下、さらに好ましくは2.9W/m・K以下、さらに好ましくは2.8W/m・K以下である。熱伝導率が上記上限値以下であることにより、本実施形態の成形用樹脂組成物を用いた成形体の内部の電子部品に対する外部からの熱の影響を抑えることができる。
The molding resin composition of the present embodiment has a thermal conductivity measured by the following (Method 6), preferably 0.5 W/m·K or more, more preferably 0.6 W/m·K or more, More preferably, it is 0.7 W/m·K or more, and still more preferably 0.8 W/m·K or more. When the thermal conductivity is equal to or higher than the above lower limit, heat related to the electronic components inside the molded article using the molding resin composition of the present embodiment can be efficiently released.
Further, the thermal conductivity is preferably 3.5 W/m·K or less, more preferably 3.3 W/m·K or less, even more preferably 3.1 W/m·K or less, even more preferably 2.9 W/m・K or less, more preferably 2.8 W/m·K or less. When the thermal conductivity is below the above upper limit value, it is possible to suppress the influence of external heat on the electronic components inside the molded article using the molding resin composition of the present embodiment.
(方法6)
 成形用樹脂組成物を、トランスファー成形機を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間90秒間の条件で注入成形し、80mm×10mm×4mmの成形体を得る。次いで、得られた成形体を175℃、2時間で後硬化し、試験片を得る。得られた試験片について、レーザーフラッシュ法を用いて熱拡散率を測定する。また、電子比重計を用いて、熱伝導率測定に用いた試験片の比重を測定する。さらに、示差走査熱量計を用いて、熱伝導率及び比重測定に用いた試験片の比熱を測定する。測定した熱拡散率、比重および比熱の各測定値から、当該試験片の厚さ方向の熱伝導率(W/m・K)を算出する。
(Method 6)
The molding resin composition is injection molded using a transfer molding machine under conditions of a mold temperature of 175° C., an injection pressure of 6.9 MPa, and a curing time of 90 seconds to obtain a molded article of 80 mm x 10 mm x 4 mm. Next, the obtained molded body is post-cured at 175° C. for 2 hours to obtain a test piece. Thermal diffusivity of the obtained test piece is measured using the laser flash method. In addition, the specific gravity of the test piece used for thermal conductivity measurement is measured using an electronic hydrometer. Furthermore, using a differential scanning calorimeter, the specific heat of the test piece used for the thermal conductivity and specific gravity measurement is measured. The thermal conductivity (W/m·K) of the test piece in the thickness direction is calculated from the measured values of thermal diffusivity, specific gravity, and specific heat.
 トランスファー成形機としては、たとえば上述のKTS-15およびKTS-30(コータキ精機社製)等を用いることができる。また、レーザーフラッシュ法による熱拡散率の測定には、たとえばキセノンフラッシュアナライザーLFA447(NETZSCH製)等を用いることができる。また、電子比重計としては、たとえばSD-200L(アルファーミラージュ株式会社製)等を用いることができる。また、示差走査熱量計としては、たとえばDSC8230(株式会社リガク製)等を用いることができる。 As the transfer molding machine, for example, the above-mentioned KTS-15 and KTS-30 (manufactured by Kotaki Seiki Co., Ltd.) can be used. Further, for measuring the thermal diffusivity by the laser flash method, for example, a xenon flash analyzer LFA447 (manufactured by NETZSCH) can be used. Further, as the electronic hydrometer, for example, SD-200L (manufactured by Alpha Mirage Co., Ltd.) or the like can be used. Further, as the differential scanning calorimeter, for example, DSC8230 (manufactured by Rigaku Co., Ltd.) or the like can be used.
[用途]
 本実施形態の成形用樹脂組成物は、電子部品が搭載された基板と、周方向に形成された複数のスロットを有する上記基板上に固定されたステータコアと、上記スロットに収容された複数個のコイルとを一括して封止するために用いられる。本実施形態の成形用樹脂組成物を封止材として備えるステータは、例えば、回転電機(電動機、発電機または電動機/発電機の両用機)として電動機(モータ)に適用される。
[Application]
The molding resin composition of this embodiment includes a substrate on which electronic components are mounted, a stator core fixed on the substrate having a plurality of slots formed in the circumferential direction, and a stator core fixed on the substrate having a plurality of slots formed in the circumferential direction. It is used to seal the coil together. A stator provided with the molding resin composition of the present embodiment as a sealing material is applied to, for example, an electric motor (motor) as a rotating electric machine (an electric motor, a generator, or a dual-purpose electric motor/generator).
<封止構造体>
 以下、本実施形態の成形用樹脂組成物を用いた封止構造体200について、図面を用いて説明する。
 図1は成形前後の被封止体100および封止構造体200の上面図を模式的に表している。同様に、図2は成形前後の被封止体100および封止構造体200の側面図を模式的に表している。ここで、(a)、(c)は成形前の被封止体100を、(b)、(d)は成形後の封止構造体200を模式的に表している。
<Sealing structure>
Hereinafter, a sealing structure 200 using the molding resin composition of this embodiment will be explained using the drawings.
FIG. 1 schematically shows top views of a sealed object 100 and a sealed structure 200 before and after molding. Similarly, FIG. 2 schematically shows side views of the sealed object 100 and the sealed structure 200 before and after molding. Here, (a) and (c) schematically represent the sealed object 100 before molding, and (b) and (d) schematically represent the sealed structure 200 after molding.
 本実施形態における封止構造体200は、電子部品11が搭載された基板10と、基板10の一面上に固定され、周方向に形成された複数のスロット21を有するステータコア20と、上記スロット21に収容された複数個のコイル30とを含む被封止体100と、上記被封止体100の一部または全部を被覆して設けられる封止部材50と、を備え、上記封止部材50が、本実施形態の成形用樹脂組成物の硬化物により構成されている。 The sealing structure 200 in this embodiment includes a substrate 10 on which an electronic component 11 is mounted, a stator core 20 fixed on one surface of the substrate 10 and having a plurality of slots 21 formed in the circumferential direction, and a stator core 20 having a plurality of slots 21 formed in the circumferential direction. A sealed body 100 including a plurality of coils 30 housed in a sealed body 100 and a sealing member 50 provided to cover a part or all of the sealed body 100, the sealing member 50 is composed of a cured product of the molding resin composition of this embodiment.
 本実施形態の封止構造体200において、本実施形態の成形用樹脂組成物によって封止される被封止体100は、電子部品11が搭載された基板10と、基板10の一面上に固定され、周方向に形成された複数のスロット21を有するステータコア20と、スロット21に収容された複数個のコイル30とを含む。 In the sealing structure 200 of the present embodiment, the sealed body 100 sealed with the molding resin composition of the present embodiment is fixed on the substrate 10 on which the electronic component 11 is mounted and on one surface of the substrate 10. The stator core 20 includes a stator core 20 having a plurality of slots 21 formed in the circumferential direction, and a plurality of coils 30 accommodated in the slots 21.
 基板10は、図1に示すように、たとえば一面および当該一面とは反対の他面のうちの一方または双方に電子部品11が搭載された基板である。図1に示すように、基板10は、たとえば平板状の形状を有している。 As shown in FIG. 1, the board 10 is, for example, a board on which electronic components 11 are mounted on one or both of one surface and the other surface opposite to the one surface. As shown in FIG. 1, the substrate 10 has, for example, a flat plate shape.
 基板10は、たとえば電子部品11を搭載する一面においてソルダーレジスト層を有していてもよい。上記ソルダーレジスト層は、半導体装置の分野において通常使用されるソルダーレジスト形成用樹脂組成物を用いて形成することができる。本実施形態においては、たとえば基板10の一面および他面にソルダーレジスト層を設けることができる。
 基板10の一面に、または一面および他面の双方に設けられた上記ソルダーレジスト層は、たとえばシリコーン化合物を含む樹脂組成物により形成される。これにより、表面平滑性に優れたソルダーレジスト層を実現することができる。
The substrate 10 may have a solder resist layer on one surface on which the electronic component 11 is mounted, for example. The solder resist layer can be formed using a solder resist forming resin composition commonly used in the field of semiconductor devices. In this embodiment, a solder resist layer can be provided on one side and the other side of the substrate 10, for example.
The solder resist layer provided on one surface or both of the one surface and the other surface of the substrate 10 is formed of, for example, a resin composition containing a silicone compound. Thereby, a solder resist layer with excellent surface smoothness can be realized.
 電子部品11は、図1(a)に示すように、たとえば基板10の一面と他面のそれぞれに搭載される。一方で、電子部品11は、基板10の一面のみに設けられ、基板10の他面には設けられていなくともよい。
 電子部品11としては、例えば、LEDチップなどの発光素子、脳波・筋電位などの生体電位や血圧・脈拍などの生体活動を検知する生体測定計、圧力・温度・位置・湿度・光・音・加速度などの環境情報を検知する一般的な測定計、コンデンサなどのポータブル電源、音響モジュール、通信モジュール等の素子や、上記素子を接続する配線等が挙げられる。
The electronic component 11 is mounted, for example, on one surface and the other surface of the substrate 10, as shown in FIG. 1(a). On the other hand, the electronic component 11 may be provided only on one surface of the substrate 10 and may not be provided on the other surface of the substrate 10.
Examples of the electronic components 11 include light emitting elements such as LED chips, biometric meters that detect biopotentials such as electroencephalograms and myoelectric potentials, and bioactivity such as blood pressure and pulse, pressure, temperature, position, humidity, light, sound, etc. Examples include general measuring meters that detect environmental information such as acceleration, elements such as portable power supplies such as capacitors, acoustic modules, and communication modules, and wiring that connects the above elements.
 ここで、基板10および電子部品11には、リード線40が接続されていることが好ましい。本実施形態の成形用樹脂組成物によって封止される前に、リード線40が基板10および電子部品11と接続されていることによって、後述する封止部材50によってリード線40と基板10および電子部品11との接続部を一括して封止することができるようになり、結果として本実施形態の封止構造体200の防水性を向上させることができる。 Here, it is preferable that a lead wire 40 is connected to the substrate 10 and the electronic component 11. Since the lead wire 40 is connected to the substrate 10 and the electronic component 11 before being sealed with the molding resin composition of this embodiment, the lead wire 40, the substrate 10 and the electronic component The connection portion with the component 11 can be sealed all at once, and as a result, the waterproofness of the sealed structure 200 of this embodiment can be improved.
 ステータコア20は、図1(a)に示すように軸方向端部から見たときに、周方向に形成された複数のスロット21が設けられている。ここでは、図1(a)に示すように、4個のスロット21が設けられている。そして、ステータコア20は、図2(c)に示すように、電子部品11が搭載された基板10の一面上に固定されている。
 ステータコア20は、複数の電磁鋼板を軸方向に積層し密着固定して設けられていてもよく、樹脂組成物を成形することによって設けられていてもよい。
As shown in FIG. 1(a), the stator core 20 is provided with a plurality of slots 21 formed in the circumferential direction when viewed from the axial end. Here, as shown in FIG. 1(a), four slots 21 are provided. The stator core 20 is fixed on one surface of the substrate 10 on which the electronic component 11 is mounted, as shown in FIG. 2(c).
The stator core 20 may be provided by laminating a plurality of electromagnetic steel plates in the axial direction and tightly fixing them, or may be provided by molding a resin composition.
 コイル30は、たとえば平角線U字形状であって、離間した二つのスロット21に収容されるようにして巻かれている。コイル30は、第1のコイルエンドと、第2のコイルエンドとを有する。第1のコイルエンドは、ステータコア20の軸方向一方側に突出する。第2のコイルエンドは、ステータコア20の軸方向他方側に突出する。すなわち、コイル30は、ステータコア20の軸方向両側にそれぞれ突出する一対のコイルエンドを有する。 The coil 30 has a U-shape, for example, a rectangular wire, and is wound so as to be accommodated in two spaced apart slots 21. Coil 30 has a first coil end and a second coil end. The first coil end protrudes to one side of the stator core 20 in the axial direction. The second coil end protrudes toward the other axial side of stator core 20. That is, the coil 30 has a pair of coil ends that respectively protrude on both sides of the stator core 20 in the axial direction.
 封止部材50は、図1(b)および図2(d)に示すように、上述した電子部品11が搭載された基板10と、基板10の一面上に固定され、周方向に形成された複数のスロット21を有するステータコア20と、上記スロット21に収容された複数個のコイル30とを一括して封止するものである。つまり、封止部材50は、電子部品11が搭載された基板10と、基板10の一面上に固定され、周方向に形成された複数のスロット21を有するステータコア20と、スロット21に収容された複数個のコイル30とを含む被封止体100の一部または全部を被覆して設けられる。
 封止部材50の材料としては、上述した成形用樹脂組成物が用いられる。
As shown in FIG. 1(b) and FIG. 2(d), the sealing member 50 is fixed to the substrate 10 on which the electronic component 11 described above is mounted, and is fixed on one surface of the substrate 10 and formed in the circumferential direction. The stator core 20 having a plurality of slots 21 and the plurality of coils 30 housed in the slots 21 are sealed together. That is, the sealing member 50 includes the substrate 10 on which the electronic component 11 is mounted, the stator core 20 fixed on one surface of the substrate 10 and having a plurality of slots 21 formed in the circumferential direction, and the stator core 20 accommodated in the slot 21. It is provided so as to cover part or all of the object to be sealed 100 including the plurality of coils 30 .
As the material for the sealing member 50, the above-mentioned molding resin composition is used.
 このとき、図1(b)および図2(d)に示すように、リード線40と基板10および電子部品11との接続部が封止部材50によって一括して封止されていることが好ましい。このようにすることで、本実施形態の封止構造体200の防水性を向上させることができる。 At this time, as shown in FIG. 1(b) and FIG. 2(d), it is preferable that the connecting portions between the lead wire 40, the substrate 10, and the electronic component 11 be sealed all at once with a sealing member 50. . By doing so, the waterproofness of the sealing structure 200 of this embodiment can be improved.
<封止構造体の製造方法>
 以下、本実施形態の成形用樹脂組成物を用いた封止構造体の製造方法について説明する。
 本実施形態の封止構造体の製造方法は、トランスファー成形機中の成形型に、電子部品が搭載された基板と、周方向に形成された複数のスロットを有する上記基板上に固定されたステータコアと、上記スロットに収容された複数個のコイルと、を配置する工程と、上記トランスファー成形機を用いるトランスファーモールド法にて、本実施形態の成形用樹脂組成物で上記成形型内の上記基板と、上記ステータコアと、上記コイルと、を封止成形することにより、封止構造体を得る工程と、を含む。
<Method for manufacturing sealing structure>
Hereinafter, a method for manufacturing a sealed structure using the molding resin composition of this embodiment will be described.
The manufacturing method of the sealing structure of this embodiment includes a mold in a transfer molding machine that includes a substrate on which electronic components are mounted, and a stator core fixed on the substrate having a plurality of slots formed in the circumferential direction. and a plurality of coils accommodated in the slots, and a step of arranging the substrate in the mold with the molding resin composition of the present embodiment by a transfer molding method using the transfer molding machine. , a step of obtaining a sealed structure by sealing and molding the stator core and the coil.
 上記封止構造体を得る上記工程は、例えば、80℃以上180℃未満の温度、1MPa以上15MPa以下の圧力で実施される。好ましくは、上記工程は、120℃以上170℃以下の温度、3MPa以上12MPa以下の圧力で実施される。これにより、密着性と防水性に優れた封止構造体を得ることができる。
 このとき、上記封止構造体を得る上記工程は、上記成形用樹脂組成物硬化体のTg以下の温度で封止成形することが好ましい。
The step of obtaining the sealed structure is performed, for example, at a temperature of 80° C. or more and less than 180° C. and a pressure of 1 MPa or more and 15 MPa or less. Preferably, the above step is performed at a temperature of 120° C. or more and 170° C. or less and a pressure of 3 MPa or more and 12 MPa or less. Thereby, a sealed structure with excellent adhesion and waterproofness can be obtained.
At this time, in the step of obtaining the sealed structure, it is preferable that sealing molding be performed at a temperature equal to or lower than the Tg of the cured resin composition for molding.
 上記封止構造体を得る上記工程は、
(A)トランスファー成形、圧縮成形などの手法による成形工程と、
(B)成形工程の後、成形体を加熱する後硬化工程
とを含んでも良い。
The step of obtaining the sealed structure includes:
(A) A molding process using methods such as transfer molding and compression molding,
(B) After the molding step, it may include a post-curing step of heating the molded body.
 通常の封止工程においては、上記(A)の後、エポキシ樹脂の硬化を進め、良好な架橋構造を得る目的で上記(B)を行う。
 これに対して、本実施形態における好ましい態様は、上記(B)の後硬化工程を行わず、上記(A)の成形工程のみを行うことである。こうすることにより、生産性が向上する上、後硬化による熱損傷、すなわち、封止対象である、ステータコア、コイルおよび基板に対する熱損傷を抑制でき、良好な封止構造体を得ることができる。
 本実施形態においては、140℃で2分硬化させた硬化物において、25℃における曲げ弾性率(JIS K6911:2006準拠)が0.1GPa以上30GPa以下となるように成形用樹脂組成物を構成しているため、(B)を省略しても、良好な架橋構造が得られる。
In a normal sealing process, after the above (A), the above (B) is performed in order to advance the curing of the epoxy resin and obtain a good crosslinked structure.
In contrast, a preferable aspect of this embodiment is to perform only the molding step (A) without performing the post-curing step (B). By doing so, productivity is improved, and thermal damage due to post-curing, that is, thermal damage to the stator core, coil, and substrate to be sealed, can be suppressed, and a good sealed structure can be obtained.
In the present embodiment, the molding resin composition is configured such that the flexural modulus (according to JIS K6911:2006) at 25°C is 0.1 GPa or more and 30 GPa or less in a cured product cured at 140°C for 2 minutes. Therefore, even if (B) is omitted, a good crosslinked structure can be obtained.
 また、本実施形態では、(A)における成形温度は、成形用樹脂組成物から得られる硬化体のTg(℃)以下の温度とすることが好ましく、より好ましくは、(Tg-10℃)以下、最も好ましくは、(Tg-30℃)以下である。また、成形温度は、好ましくは160℃以下、より好ましくは140℃以下、最も好ましくは130℃以下である。
 このような低温で成形することにより、封止対象である、ステータコア、コイルおよび基板への熱損傷を抑制でき、良好な封止構造体を得ることができる。
 成形温度の下限については、成形用樹脂組成物を充分に硬化させることができる限り、特に限定されない。たとえば、(Tg-80℃)以上とすることができ、90℃以上とすることができる。
Furthermore, in the present embodiment, the molding temperature in (A) is preferably at most Tg (°C) of the cured product obtained from the molding resin composition, more preferably at most (Tg-10°C). , most preferably (Tg-30°C) or lower. Further, the molding temperature is preferably 160°C or lower, more preferably 140°C or lower, and most preferably 130°C or lower.
By molding at such a low temperature, thermal damage to the stator core, coil, and substrate to be sealed can be suppressed, and a good sealed structure can be obtained.
The lower limit of the molding temperature is not particularly limited as long as the molding resin composition can be sufficiently cured. For example, it can be set to (Tg - 80°C) or higher, and can be set to 90°C or higher.
 上記(B)の後硬化を行う場合における後硬化温度も、上記成形温度と同様の範囲が好ましい。すなわち、成形用樹脂組成物から得られる硬化体のTg(℃)以下の温度とすることが好ましく、より好ましくは、(Tg-10℃)以下、最も好ましくは、(Tg-30℃)以下である。また、成形温度は、好ましくは160℃以下、より好ましくは140℃以下、最も好ましくは130℃以下である。このような低温で後硬化することにより、封止対象への熱損傷を抑制でき、良好な封止構造体を得ることができる。成形温度の下限については特に制限がないが、たとえば、(Tg-80℃)以上とすることができ、90℃以上とすることができる。 The post-curing temperature in the case of performing the post-curing (B) above is also preferably in the same range as the molding temperature. That is, the temperature is preferably at most Tg (°C) of the cured product obtained from the molding resin composition, more preferably at most (Tg - 10°C), most preferably at most (Tg - 30°C). be. Further, the molding temperature is preferably 160°C or lower, more preferably 140°C or lower, and most preferably 130°C or lower. By post-curing at such a low temperature, thermal damage to the object to be sealed can be suppressed and a good sealed structure can be obtained. There is no particular restriction on the lower limit of the molding temperature, but it can be, for example, (Tg - 80°C) or higher, or 90°C or higher.
 通常の封止工程においては、上記(A)や上記(B)の温度は、通常、成形用樹脂組成物から得られる硬化体のTg(℃)を超える温度とされる。これに対して、本実施形態においては上記した低温域の温度範囲が好ましい。本実施形態においては、140℃で2分硬化させた硬化物において、25℃における曲げ弾性率(JIS K6911:2006準拠)が0.1GPa以上30GPa以下となるように成形用樹脂組成物を構成しているため、上記(A)や上記(B)の温度を低温にしても、良好な架橋構造が得られる。 In a normal sealing process, the temperature of the above (A) and the above (B) is usually set to a temperature exceeding the Tg (°C) of the cured product obtained from the molding resin composition. On the other hand, in this embodiment, the temperature range of the above-mentioned low temperature range is preferable. In this embodiment, the molding resin composition is configured such that the flexural modulus at 25°C (based on JIS K6911:2006) of the cured product cured at 140°C for 2 minutes is 0.1 GPa or more and 30 GPa or less. Therefore, a good crosslinked structure can be obtained even if the temperature in (A) or (B) is lowered.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 Although the embodiments of the present invention have been described above, these are merely examples of the present invention, and various configurations other than those described above can also be adopted.
 以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。 The present invention will be explained below with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
(実施例1~4、比較例1~2)
<成形用樹脂組成物の調製>
 各実施例、および各比較例のそれぞれについて、以下のように成形用樹脂組成物を調製した。
 まず、表1に示す各成分をミキサーにより混合した。次いで、得られた混合物を、ロール混練した後、冷却、粉砕して粉粒体である成形用樹脂組成物を得た。
(Examples 1-4, Comparative Examples 1-2)
<Preparation of resin composition for molding>
For each Example and each Comparative Example, a molding resin composition was prepared as follows.
First, the components shown in Table 1 were mixed using a mixer. Next, the obtained mixture was roll-kneaded, cooled, and pulverized to obtain a molding resin composition in the form of powder.
 表1中の各成分の詳細は下記のとおりである。また、表1中に示す処方は、樹脂組成物全体に対する各成分の含有量(質量%)を示している。 Details of each component in Table 1 are as follows. Further, the formulations shown in Table 1 indicate the content (% by mass) of each component with respect to the entire resin composition.
(無機充填材)
・無機充填材1:溶融球状シリカ(デンカ株式会社製、製品名「FB-950」)
・無機充填材2:溶融球状シリカ(デンカ株式会社製、製品名「FB-105」)
・無機充填材3:アルミナ(デンカ株式会社製、製品名「DAW-02」)
(Inorganic filler)
・Inorganic filler 1: Fused spherical silica (manufactured by Denka Co., Ltd., product name "FB-950")
・Inorganic filler 2: Fused spherical silica (manufactured by Denka Co., Ltd., product name "FB-105")
・Inorganic filler 3: Alumina (manufactured by Denka Co., Ltd., product name "DAW-02")
(カップリング剤)
・カップリング剤1:N-フェニル-3-アミノプロピルトリメトキシシラン(東レ・ダウコーニング株式会社製、製品名「CF-4083」)
(coupling agent)
・Coupling agent 1: N-phenyl-3-aminopropyltrimethoxysilane (manufactured by Dow Corning Toray Co., Ltd., product name "CF-4083")
(エポキシ樹脂)
・エポキシ樹脂1:オルソクレゾールノボラック型エポキシ樹脂(DIC社製、製品名「EPICRON N-670」)
(Epoxy resin)
・Epoxy resin 1: Orthocresol novolac type epoxy resin (manufactured by DIC, product name "EPICRON N-670")
(硬化剤)
・硬化剤1:ビフェニレン骨格含有フェノールアラルキル型樹脂(明和化成株式会社製、製品名「MEH-7851SS」)
・硬化剤2:トリスフェニルメタン型フェノールノボラック樹脂(明和化成株式会社製、製品名「MEH-7500」)
(hardening agent)
・Curing agent 1: Biphenylene skeleton-containing phenol aralkyl resin (manufactured by Meiwa Kasei Co., Ltd., product name "MEH-7851SS")
・Curing agent 2: Trisphenylmethane type phenol novolak resin (manufactured by Meiwa Kasei Co., Ltd., product name "MEH-7500")
(密着助剤)
・密着助剤1:3-アミノ-1,2,4-トリアゾール
(Adhesion aid)
・Adhesion aid 1: 3-amino-1,2,4-triazole
(硬化触媒)
・硬化触媒1:2-フェニルイミダゾール
・硬化触媒2:2-フェニル-4,5-ジヒドロキシメチルイミダゾール
(curing catalyst)
・Curing catalyst 1: 2-phenylimidazole ・Curing catalyst 2: 2-phenyl-4,5-dihydroxymethylimidazole
(着色材)
・着色材1:カーボンブラック(三菱ケミカル株式会社製、製品名「カーボン#5」)
(Coloring material)
・Coloring material 1: Carbon black (manufactured by Mitsubishi Chemical Corporation, product name "Carbon #5")
<成形用樹脂組成物の性能評価>
 得られた成形用樹脂組成物を、以下の項目について評価した。評価結果を以下の表1に示す。
<Performance evaluation of resin composition for molding>
The obtained molding resin composition was evaluated on the following items. The evaluation results are shown in Table 1 below.
(曲げ弾性率)
 低圧トランスファー成形機(コータキ精機株式会社製、KTS-30)を用いて、金型温度140℃、注入圧力9.8MPa、硬化時間2分の条件で、樹脂組成物を注入成形し、長さ80mm、幅10mm、厚さ4mmの成形物を得た。得られた成形物を、後硬化として200℃で4時間加熱処理したものを試験片とし、曲げ弾性率(GPa)をJIS K 6911:2006に準じて25℃の雰囲気温度下で測定した。
(bending modulus)
Using a low-pressure transfer molding machine (manufactured by Kotaki Seiki Co., Ltd., KTS-30), the resin composition was injection molded under conditions of a mold temperature of 140°C, an injection pressure of 9.8 MPa, and a curing time of 2 minutes, to a length of 80 mm. A molded article with a width of 10 mm and a thickness of 4 mm was obtained. The obtained molded product was heat-treated at 200° C. for 4 hours as a post-curing test piece, and its flexural modulus (GPa) was measured at an ambient temperature of 25° C. according to JIS K 6911:2006.
(低温成形性)
 キュラストメーター(登録商標)((株)エー・アンド・デイ製、キュラストメーター(登録商標)MODEL7)を用い、金型温度140℃、振幅角度±0.25度にて、得られた成形用樹脂組成物のトルク値を経時的に測定した。測定結果に基づいて、測定開始から、トルク値が2N・mに達する時間(秒)を算出した。トルク値が2N・mに達する時間(秒)から、以下の基準で低温成形性を評価した。
 A:トルク値が2N・mに達する時間が30秒未満(実施例はこちら)
 B:トルク値が2N・mに達する時間が30秒以上100秒未満
 C:トルク値が2N・mに達する時間が100秒以上
(Low temperature formability)
Molding obtained using Curalastometer (registered trademark) (manufactured by A&D Co., Ltd., Curalastometer (registered trademark) MODEL 7) at a mold temperature of 140°C and an amplitude angle of ±0.25 degrees. The torque value of the resin composition was measured over time. Based on the measurement results, the time (seconds) for the torque value to reach 2 N·m from the start of the measurement was calculated. Low-temperature formability was evaluated based on the following criteria based on the time (seconds) required for the torque value to reach 2 N·m.
A: Time to reach torque value of 2N・m is less than 30 seconds (Click here for examples)
B: The time it takes for the torque value to reach 2N・m is 30 seconds or more and less than 100 seconds C: The time it takes for the torque value to reach 2N・m is 100 seconds or more
(密着性・防水性)
 23mmφ×0.9mmのガラスエポキシ基板(ICパッケージ及びアルミ電解コンデンサを実装した基板)に対して、低圧トランスファー成形機(コータキ精機株式会社製、KTS-30)を用いて、金型温度140℃、注入圧力3~5MPa、硬化時間2分の条件で、樹脂組成物を基板上2cm厚となるように注入成形し、ポストキュアなしで、基板封止体を得た。
 その後、上記基板封止体を深さ15~100cmの純水プールに1000時間浸漬させた。その後、自然乾燥した後、テスターを用いて基板上の回路配線の導通を確認した。
 A:導通不良なし
 B:導通不良あり(ショート、抵抗増加など)
(Adhesion/Waterproof)
A 23 mmφ x 0.9 mm glass epoxy substrate (a substrate with an IC package and an aluminum electrolytic capacitor mounted on it) was molded at a mold temperature of 140°C using a low-pressure transfer molding machine (manufactured by Kotaki Seiki Co., Ltd., KTS-30). The resin composition was injection molded onto the substrate to a thickness of 2 cm under conditions of an injection pressure of 3 to 5 MPa and a curing time of 2 minutes to obtain a substrate sealed body without post-curing.
Thereafter, the substrate sealed body was immersed in a pure water pool with a depth of 15 to 100 cm for 1000 hours. Thereafter, after air drying, continuity of the circuit wiring on the board was confirmed using a tester.
A: No continuity defect B: Continuity defect (short circuit, increased resistance, etc.)
(スパイラルフロー・ゲルタイム)
 低圧トランスファー成形機(コータキ精機株式会社製、「KTS-15」)を用いて、ANSI/ASTM D 3123-72に準じたスパイラルフロー測定用金型に、175℃、注入圧力6.9MPa、保圧時間3分の条件で、各実施例および各比較例の成形用樹脂組成物を注入し、流動長を測定し、これをスパイラルフロー(cm)とした。また、注入開始から成形用樹脂組成物が硬化し流動しなくなるまでの時間を測定し、ゲルタイム(秒)とした。
 なお、スパイラルフローは、流動性のパラメータであり、数値が大きい方が、流動性が良好である。
(Spiral flow gel time)
Using a low-pressure transfer molding machine (manufactured by Kotaki Seiki Co., Ltd., "KTS-15"), a mold for spiral flow measurement according to ANSI/ASTM D 3123-72 was heated at 175°C, injection pressure 6.9 MPa, and holding pressure. The molding resin compositions of each Example and each Comparative Example were injected under conditions of a time of 3 minutes, the flow length was measured, and this was defined as a spiral flow (cm). In addition, the time from the start of injection until the resin composition for molding hardens and ceases to flow was measured, and the time was defined as gel time (seconds).
Note that the spiral flow is a fluidity parameter, and the larger the value, the better the fluidity.
(線膨張係数α1)
 各実施例および各比較例について、得られた成形用樹脂組成物の線膨張係数を測定した。低圧トランスファー成形機(コータキ精機株式会社製「KTS-30」)を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間3分の条件で注入成形し、15mm×4mm×4mmの成形品を得た。次いで、得られた成形品を175℃、4時間で後硬化して試験片を作製した。そして、得られた試験片に対して、熱機械分析装置(セイコーインスツル株式会社製、TMA100)を用いて、測定温度範囲0℃~400℃、昇温速度5℃/分の条件下で、25-70℃における平均線膨張係数α1(ppm/℃)を測定した。
(linear expansion coefficient α1)
The linear expansion coefficient of the obtained molding resin composition was measured for each Example and each Comparative Example. Injection molding was performed using a low-pressure transfer molding machine (KTS-30 manufactured by Kotaki Seiki Co., Ltd.) under the conditions of a mold temperature of 175°C, an injection pressure of 9.8 MPa, and a curing time of 3 minutes to form a 15 mm x 4 mm x 4 mm mold. I got the item. Next, the obtained molded article was post-cured at 175° C. for 4 hours to prepare a test piece. Then, the obtained test piece was measured using a thermomechanical analyzer (TMA100, manufactured by Seiko Instruments Inc.) under conditions of a measurement temperature range of 0°C to 400°C and a heating rate of 5°C/min. The average linear expansion coefficient α1 (ppm/°C) at 25-70°C was measured.
(ガラス転移温度(Tg))
 各実施例および各比較例の成形用樹脂組成物のガラス転移温度は、JIS K 6911:2006に準じて測定した。すなわち、各実施例および各比較例の成形用樹脂組成物について、トランスファー成形機(コータキ精機株式会社製、「KTS-15」)を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間90秒で、80mm×10mm×4mmの試験片を成形した。そして、175℃2時間で後硬化した。さらに、熱機械分析装置(セイコーインスツルメンツ社製、TMA/SS6000)を用いて、5℃/分の昇温速度で得られた試験片の熱膨張率を測定した。次いで、得られた測定結果に基づき、熱膨張率の変曲点から硬化物のガラス転移温度(Tg)(℃)を算出した。
(Glass transition temperature (Tg))
The glass transition temperature of the molding resin composition of each Example and each Comparative Example was measured according to JIS K 6911:2006. That is, the molding resin compositions of each Example and each Comparative Example were cured using a transfer molding machine (manufactured by Kotaki Seiki Co., Ltd., "KTS-15") at a mold temperature of 175° C. and an injection pressure of 6.9 MPa. A test piece of 80 mm x 10 mm x 4 mm was molded in 90 seconds. Then, it was post-cured at 175°C for 2 hours. Furthermore, using a thermomechanical analyzer (TMA/SS6000, manufactured by Seiko Instruments), the coefficient of thermal expansion of the test piece obtained was measured at a heating rate of 5° C./min. Next, based on the obtained measurement results, the glass transition temperature (Tg) (° C.) of the cured product was calculated from the inflection point of the coefficient of thermal expansion.
(熱伝導率)
 各実施例および各比較例の成形用樹脂組成物について、トランスファー成形機(コータキ精機株式会社製、「KTS-15」)を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間90秒間で注入成形し、80mm×10mm×4mmの成形体を得た。次いで、得られた成形体を175℃、2時間で後硬化し、試験片を得た。得られた試験片について、レーザーフラッシュ法(NETZSCH製のキセノンフラッシュアナライザーLFA447)を用いて熱拡散率を測定した。また、アルファーミラージュ株式会社製の電子比重計SD-200Lを用いて、熱伝導率測定に用いた試験片の比重を測定した。さらに、株式会社リガク製の示差走査熱量計DSC8230を用いて、熱伝導率及び比重測定に用いた試験片の比熱を測定した。測定した熱拡散率、比重および比熱の各測定値から、当該試験片の厚さ方向の熱伝導率(W/m・K)を算出した。
(Thermal conductivity)
The molding resin compositions of each Example and each Comparative Example were molded using a transfer molding machine (manufactured by Kotaki Seiki Co., Ltd., "KTS-15") at a mold temperature of 175°C, an injection pressure of 6.9 MPa, and a curing time of 90. Injection molding was performed in seconds to obtain a molded product measuring 80 mm x 10 mm x 4 mm. Next, the obtained molded body was post-cured at 175° C. for 2 hours to obtain a test piece. Thermal diffusivity of the obtained test piece was measured using a laser flash method (Xenon Flash Analyzer LFA447 manufactured by NETZSCH). Further, using an electronic hydrometer SD-200L manufactured by Alpha Mirage Co., Ltd., the specific gravity of the test piece used for thermal conductivity measurement was measured. Further, using a differential scanning calorimeter DSC8230 manufactured by Rigaku Co., Ltd., the specific heat of the test piece used for the thermal conductivity and specific gravity measurement was measured. The thermal conductivity (W/m·K) of the test piece in the thickness direction was calculated from the measured values of thermal diffusivity, specific gravity, and specific heat.
(室温保存性)
 各実施例および各比較例の成形用樹脂組成物について、室温保存性を測定した。低圧トランスファー成形機(コータキ精機株式会社製「KTS-30」)を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間3分の条件で、各実施例および各比較例の成形用樹脂組成物を注入し、流動長を測定し、このときのスパイラルフローをSとした。
 また、各実施例および各比較例の成形用樹脂組成物を25℃で48時間放置した後、上記同様の条件で流動長を測定し、このときのスパイラルフローをSとした。
 上記SおよびSについて、以下の基準で評価を行った。
   A:S≧0.8×Sを満たす。
   B:S<0.8×Sを満たす。
(room temperature storage)
Room temperature storage stability was measured for the molding resin compositions of each Example and each Comparative Example. For molding of each example and each comparative example using a low-pressure transfer molding machine (KTS-30 manufactured by Kotaki Seiki Co., Ltd.) under the conditions of a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 3 minutes. The resin composition was injected, the flow length was measured, and the spiral flow at this time was defined as S1 .
Further, after the molding resin compositions of each Example and each Comparative Example were left at 25° C. for 48 hours, the flow length was measured under the same conditions as above, and the spiral flow at this time was designated as S2 .
The above S 1 and S 2 were evaluated based on the following criteria.
A: S 2 ≧0.8×S 1 is satisfied.
B: Satisfies S 2 <0.8×S 1 .
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例の成形用樹脂組成物はいずれも、低温で硬化が可能であり、電子部品またはステータ等の構造体を封止した際の優れた密着性と防水性を有していた。 All of the molding resin compositions of Examples could be cured at low temperatures and had excellent adhesion and waterproof properties when sealing structures such as electronic components or stators.
 この出願は、2022年3月31日に出願された日本出願特願2022-058500号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2022-058500 filed on March 31, 2022, and the entire disclosure thereof is incorporated herein.
10  基板
11  電子部品
20  ステータコア
21  スロット
30  コイル
40  リード線
50  封止部材
100 被封止体
200 封止構造体
10 Substrate 11 Electronic component 20 Stator core 21 Slot 30 Coil 40 Lead wire 50 Sealing member 100 Sealed object 200 Sealing structure

Claims (19)

  1.  電子部品が搭載された基板と、周方向に形成された複数のスロットを有する前記基板上に固定されたステータコアと、前記スロットに収容された複数個のコイルとを一括して封止するために用いられる成形用樹脂組成物であって、
     エポキシ樹脂と、
     硬化剤および硬化触媒の一方または両方と、
     無機充填材と、を含み、
     当該成形用樹脂組成物を140℃で2分硬化させた硬化物において、25℃における曲げ弾性率(JIS K6911:2006準拠)が0.1GPa以上30GPa以下である、成形用樹脂組成物。
    In order to collectively seal a substrate on which electronic components are mounted, a stator core fixed on the substrate having a plurality of slots formed in the circumferential direction, and a plurality of coils accommodated in the slots. A molding resin composition used,
    Epoxy resin and
    one or both of a curing agent and a curing catalyst;
    an inorganic filler;
    A molding resin composition, which has a flexural modulus of elasticity (according to JIS K6911:2006) at 25°C of 0.1 GPa or more and 30 GPa or less in a cured product obtained by curing the molding resin composition at 140°C for 2 minutes.
  2.  請求項1に記載の成形用樹脂組成物において、
     以下の(方法1)によって測定される、ガラス転移温度(Tg)が140℃以上300℃以下である、成形用樹脂組成物。
    (方法1)
     前記成形用樹脂組成物を、トランスファー成形機を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間90秒で、80mm×10mm×4mmの試験片を成形し、175℃2時間で後硬化する。さらに、熱機械分析装置を用いて、5℃/分の昇温速度で得られた試験片の熱膨張率を測定する。次いで、得られた測定結果に基づき、熱膨張率の変曲点から硬化物のガラス転移温度(Tg)(℃)を算出する。
    The molding resin composition according to claim 1,
    A molding resin composition having a glass transition temperature (Tg) of 140°C or more and 300°C or less, as measured by the following (Method 1).
    (Method 1)
    The molding resin composition was molded into a test piece of 80 mm x 10 mm x 4 mm using a transfer molding machine at a mold temperature of 175°C, an injection pressure of 6.9 MPa, and a curing time of 90 seconds. Post-cure. Furthermore, using a thermomechanical analyzer, the coefficient of thermal expansion of the test piece obtained at a heating rate of 5° C./min is measured. Next, based on the obtained measurement results, the glass transition temperature (Tg) (° C.) of the cured product is calculated from the inflection point of the coefficient of thermal expansion.
  3.  請求項1または2に記載の成形用樹脂組成物において、
     前記エポキシ樹脂がフェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂およびトリスフェノールメタン型エポキシ樹脂からなる群より選択される1種または2種以上を含む、成形用樹脂組成物。
    The molding resin composition according to claim 1 or 2,
    A molding resin composition, wherein the epoxy resin contains one or more selected from the group consisting of a phenol novolac type epoxy resin, a cresol novolac type epoxy resin, and a trisphenolmethane type epoxy resin.
  4.  請求項1~3のいずれか1項に記載の成形用樹脂組成物において、
     前記エポキシ樹脂の含有量が、前記成形用樹脂組成物の固形分全体を100質量%としたとき、3質量%以上40質量%以下である、成形用樹脂組成物。
    In the molding resin composition according to any one of claims 1 to 3,
    A molding resin composition in which the content of the epoxy resin is 3% by mass or more and 40% by mass or less, when the entire solid content of the molding resin composition is 100% by mass.
  5.  請求項1~4のいずれか1項に記載の成形用樹脂組成物において、
     前記硬化剤を含み、前記硬化剤がフェノール樹脂系硬化剤を含む、成形用樹脂組成物。
    In the molding resin composition according to any one of claims 1 to 4,
    A molding resin composition comprising the curing agent, wherein the curing agent includes a phenolic resin curing agent.
  6.  請求項5に記載の成形用樹脂組成物において、
     前記フェノール樹脂系硬化剤がフェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールノボラック樹脂およびトリスフェノールメタン型フェノール樹脂からなる群より選択される1種または2種以上を含む、成形用樹脂組成物。
    In the molding resin composition according to claim 5,
    A molding resin composition, wherein the phenolic resin curing agent contains one or more selected from the group consisting of a phenol novolac resin, a cresol novolak resin, a naphthol novolac resin, and a trisphenolmethane type phenolic resin.
  7.  請求項5または6に記載の成形用樹脂組成物において、
     前記硬化剤の含有量が、前記成形用樹脂組成物の固形分全体を100質量%としたとき、0.8質量%以上12質量%以下である、成形用樹脂組成物。
    The molding resin composition according to claim 5 or 6,
    A molding resin composition in which the content of the curing agent is 0.8% by mass or more and 12% by mass or less, when the entire solid content of the molding resin composition is 100% by mass.
  8.  請求項1~7のいずれか1項に記載の成形用樹脂組成物において、
     前記硬化触媒を含み、前記硬化触媒がイミダゾール系化合物を含む、成形用樹脂組成物。
    In the molding resin composition according to any one of claims 1 to 7,
    A molding resin composition comprising the curing catalyst, the curing catalyst comprising an imidazole compound.
  9.  請求項8に記載の成形用樹脂組成物において、
     前記硬化触媒の含有量が、前記成形用樹脂組成物の固形分全体を100質量%としたとき、0.01質量%以上2.0質量%以下である、成形用樹脂組成物。
    The molding resin composition according to claim 8,
    A molding resin composition in which the content of the curing catalyst is 0.01% by mass or more and 2.0% by mass or less, when the entire solid content of the molding resin composition is 100% by mass.
  10.  請求項1~9のいずれか1項に記載の成形用樹脂組成物において、
     当該成形用樹脂組成物を金型温度175℃、注入圧力9.8MPa、硬化時間3分で測定したスパイラルフローをSとし、当該成形用樹脂組成物を25℃で48時間放置した後、金型温度175℃、注入圧力9.8MPa、硬化時間3分で測定したスパイラルフローをSとしたとき、S≧0.8×Sを満たす、成形用樹脂組成物。
    In the molding resin composition according to any one of claims 1 to 9,
    The spiral flow of the molding resin composition was measured at a mold temperature of 175°C, an injection pressure of 9.8 MPa, and a curing time of 3 minutes, and S1 was used. After the molding resin composition was left at 25°C for 48 hours, A molding resin composition that satisfies S 2 ≧0.8×S 1 , where S 2 is a spiral flow measured at a mold temperature of 175° C., an injection pressure of 9.8 MPa, and a curing time of 3 minutes.
  11.  請求項1~10のいずれか1項に記載の成形用樹脂組成物において、
     以下の(方法2)によって測定される、トルク値が2N・mに達する時間が100秒未満である、成形用樹脂組成物。
    (方法2)
     キュラストメーター(登録商標)を用い、金型温度140℃、振幅角度±0.25度にて、前記成形用樹脂組成物のトルク値を経時的に測定する。測定結果に基づいて、測定開始から、トルク値が2N・mに達する時間(秒)を算出する。
    In the molding resin composition according to any one of claims 1 to 10,
    A molding resin composition, which takes less than 100 seconds to reach a torque value of 2 N·m, as measured by (Method 2) below.
    (Method 2)
    Using a Curelastometer (registered trademark), the torque value of the molding resin composition is measured over time at a mold temperature of 140° C. and an amplitude angle of ±0.25 degrees. Based on the measurement results, the time (seconds) from the start of the measurement until the torque value reaches 2 N·m is calculated.
  12.  請求項1~11のいずれか1項に記載の成形用樹脂組成物において、
     以下の(方法3)によって測定される、スパイラルフローが70cm以上である、成形用樹脂組成物。
    (方法3)
     前記成形用樹脂組成物を、低圧トランスファー成形機を用いて、ANSI/ASTM D 3123-72に準じたスパイラルフロー測定用金型に、175℃、注入圧力6.9MPa、保圧時間3分の条件で注入し、流動長を測定し、これをスパイラルフロー(cm)とする。
    In the molding resin composition according to any one of claims 1 to 11,
    A molding resin composition having a spiral flow of 70 cm or more as measured by the following (Method 3).
    (Method 3)
    The resin composition for molding was placed into a spiral flow measurement mold according to ANSI/ASTM D 3123-72 using a low-pressure transfer molding machine under conditions of 175°C, injection pressure of 6.9 MPa, and pressure holding time of 3 minutes. The flow length is measured, and this is defined as the spiral flow (cm).
  13.  請求項1~12のいずれか1項に記載の成形用樹脂組成物において、
     以下の(方法4)によって測定される、ゲルタイムが30秒以上である、成形用樹脂組成物。
    (方法4)
     前記成形用樹脂組成物を、低圧トランスファー成形機を用いて、ANSI/ASTM D 3123-72に準じたスパイラルフロー測定用金型に、175℃、注入圧力6.9MPa、保圧時間3分の条件で注入する。注入開始から成形用樹脂組成物が硬化し流動しなくなるまでの時間を測定し、ゲルタイム(秒)とする。
    In the molding resin composition according to any one of claims 1 to 12,
    A molding resin composition having a gel time of 30 seconds or more as measured by the following (Method 4).
    (Method 4)
    The resin composition for molding was placed into a spiral flow measurement mold according to ANSI/ASTM D 3123-72 using a low-pressure transfer molding machine under conditions of 175°C, injection pressure of 6.9 MPa, and pressure holding time of 3 minutes. Inject with. The time from the start of injection until the molding resin composition hardens and ceases to flow is measured and is defined as gel time (seconds).
  14.  請求項1~13のいずれか1項に記載の成形用樹脂組成物において、
     以下の(方法5)によって測定される、線膨張係数α1が10.0ppm/℃以下である、成形用樹脂組成物。
    (方法5)
     前記成形用樹脂組成物を、低圧トランスファー成形機を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間3分の条件で注入成形し、15mm×4mm×4mmの成形品を得る。次いで、得られた成形品を175℃、4時間で後硬化して試験片を作製する。そして、得られた試験片に対して、熱機械分析装置を用いて、測定温度範囲0℃~400℃、昇温速度5℃/分の条件下で、25-70℃における平均線膨張係数α1(ppm/℃)を測定する。
    In the molding resin composition according to any one of claims 1 to 13,
    A molding resin composition having a linear expansion coefficient α1 of 10.0 ppm/°C or less, as measured by the following (Method 5).
    (Method 5)
    The resin composition for molding is injection molded using a low-pressure transfer molding machine under conditions of a mold temperature of 175° C., an injection pressure of 9.8 MPa, and a curing time of 3 minutes to obtain a molded article of 15 mm x 4 mm x 4 mm. Next, the obtained molded article is post-cured at 175° C. for 4 hours to prepare a test piece. Then, the obtained test piece was measured using a thermomechanical analyzer under the conditions of a measurement temperature range of 0°C to 400°C and a heating rate of 5°C/min, and the average linear expansion coefficient α1 at 25-70°C (ppm/°C).
  15.  請求項1~14のいずれか1項に記載の成形用樹脂組成物において、
     以下の(方法6)によって測定される、熱伝導率が0.5W/m・K以上である、成形用樹脂組成物。
    (方法6)
     前記成形用樹脂組成物を、トランスファー成形機を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間90秒間の条件で注入成形し、80mm×10mm×4mmの成形体を得る。次いで、得られた成形体を175℃、2時間で後硬化し、試験片を得る。得られた試験片について、レーザーフラッシュ法を用いて熱拡散率を測定する。また、電子比重計を用いて、熱伝導率測定に用いた試験片の比重を測定する。さらに、示差走査熱量計を用いて、熱伝導率及び比重測定に用いた試験片の比熱を測定する。測定した熱拡散率、比重および比熱の各測定値から、当該試験片の厚さ方向の熱伝導率(W/m・K)を算出する。
    In the molding resin composition according to any one of claims 1 to 14,
    A molding resin composition having a thermal conductivity of 0.5 W/m·K or more as measured by the following (Method 6).
    (Method 6)
    The resin composition for molding is injection molded using a transfer molding machine under conditions of a mold temperature of 175° C., an injection pressure of 6.9 MPa, and a curing time of 90 seconds to obtain a molded article of 80 mm x 10 mm x 4 mm. Next, the obtained molded body is post-cured at 175° C. for 2 hours to obtain a test piece. Thermal diffusivity of the obtained test piece is measured using the laser flash method. In addition, the specific gravity of the test piece used for thermal conductivity measurement is measured using an electronic hydrometer. Furthermore, using a differential scanning calorimeter, the specific heat of the test piece used for the thermal conductivity and specific gravity measurement is measured. The thermal conductivity (W/m·K) of the test piece in the thickness direction is calculated from the measured values of thermal diffusivity, specific gravity, and specific heat.
  16.  トランスファー成形機中の成形型に、電子部品が搭載された基板と、周方向に形成された複数のスロットを有する前記基板上に固定されたステータコアと、前記スロットに収容された複数個のコイルと、を配置する工程と、
     前記トランスファー成形機を用いるトランスファーモールド法にて、請求項1~15のいずれか1項に記載の成形用樹脂組成物で前記成形型内の前記基板と、前記ステータコアと、前記コイルと、を封止成形することにより、封止構造体を得る工程と、
     を含む、封止構造体の製造方法。
    A mold in a transfer molding machine includes a board on which electronic components are mounted, a stator core fixed on the board having a plurality of slots formed in the circumferential direction, and a plurality of coils accommodated in the slots. a step of arranging ,
    In a transfer molding method using the transfer molding machine, the substrate in the mold, the stator core, and the coil are sealed with the molding resin composition according to any one of claims 1 to 15. Obtaining a sealed structure by molding;
    A method for manufacturing a sealed structure, comprising:
  17.  請求項16に記載の封止構造体の製造方法において、
     前記封止構造体を得る前記工程において、前記成形用樹脂組成物の硬化体のTg以下の温度で封止成形する、封止構造体の製造方法。
    The method for manufacturing a sealed structure according to claim 16,
    A method for manufacturing a sealed structure, wherein in the step of obtaining the sealed structure, sealing molding is performed at a temperature equal to or lower than Tg of a cured product of the molding resin composition.
  18.  請求項16または17に記載の封止構造体の製造方法において、
     前記封止構造体を得る前記工程として、後硬化工程を行わない、封止構造体の製造方法。
    The method for manufacturing a sealing structure according to claim 16 or 17,
    A method for manufacturing a sealed structure, in which a post-curing step is not performed as the step of obtaining the sealed structure.
  19.  電子部品が搭載された基板と、
     前記基板の一面上に固定され、周方向に形成された複数のスロットを有するステータコアと、
     前記スロットに収容された複数個のコイルと、
     を含む被封止体と、
     前記被封止体の一部または全部を被覆して設けられる封止部材と、を備え、
     前記封止部材が、請求項1~15のいずれか1項に記載の成形用樹脂組成物の硬化物により構成されている、封止構造体。
    A board on which electronic components are mounted,
    a stator core fixed on one surface of the substrate and having a plurality of slots formed in the circumferential direction;
    a plurality of coils accommodated in the slot;
    an encapsulated body containing;
    a sealing member provided to cover part or all of the object to be sealed,
    A sealing structure, wherein the sealing member is made of a cured product of the molding resin composition according to any one of claims 1 to 15.
PCT/JP2023/011406 2022-03-31 2023-03-23 Resin composition for molding, manufacturing method for sealing structure, and sealing structure WO2023189996A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023552516A JP7501801B2 (en) 2022-03-31 2023-03-23 Molding resin composition, method for producing sealed structure, and sealed structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022058500 2022-03-31
JP2022-058500 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023189996A1 true WO2023189996A1 (en) 2023-10-05

Family

ID=88201921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011406 WO2023189996A1 (en) 2022-03-31 2023-03-23 Resin composition for molding, manufacturing method for sealing structure, and sealing structure

Country Status (3)

Country Link
JP (1) JP7501801B2 (en)
TW (1) TW202348678A (en)
WO (1) WO2023189996A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196400A (en) * 2000-01-11 2001-07-19 Sanyo Electric Co Ltd Method for manufacturing semiconductor device
JP2010110198A (en) * 2008-09-30 2010-05-13 Canon Inc Inner rotor type brushless motor
JP2015000941A (en) * 2013-06-14 2015-01-05 日立化成株式会社 Epoxy resin composition and electronic part device
JP2017206631A (en) * 2016-05-19 2017-11-24 パナソニックIpマネジメント株式会社 Sealing resin composition, cured product thereof, and semiconductor device
JP2021015932A (en) * 2019-07-16 2021-02-12 住友ベークライト株式会社 Sealing resin composition and mold coil

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7302166B2 (en) 2018-12-10 2023-07-04 住友ベークライト株式会社 Resin composition for stator core insulation
WO2021171435A1 (en) 2020-02-26 2021-09-02 三菱電機株式会社 Stator, electric motor, blower, air conditioner, and stator manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196400A (en) * 2000-01-11 2001-07-19 Sanyo Electric Co Ltd Method for manufacturing semiconductor device
JP2010110198A (en) * 2008-09-30 2010-05-13 Canon Inc Inner rotor type brushless motor
JP2015000941A (en) * 2013-06-14 2015-01-05 日立化成株式会社 Epoxy resin composition and electronic part device
JP2017206631A (en) * 2016-05-19 2017-11-24 パナソニックIpマネジメント株式会社 Sealing resin composition, cured product thereof, and semiconductor device
JP2021015932A (en) * 2019-07-16 2021-02-12 住友ベークライト株式会社 Sealing resin composition and mold coil

Also Published As

Publication number Publication date
JP7501801B2 (en) 2024-06-18
JPWO2023189996A1 (en) 2023-10-05
TW202348678A (en) 2023-12-16

Similar Documents

Publication Publication Date Title
EP2613426B1 (en) Fixing resin composition for use in rotor
EP2821437B1 (en) Resin composition for rotor fixing, rotor, and automotive vehicle
JP5994961B1 (en) Resin composition for sealing, method for producing vehicle-mounted electronic control unit, and vehicle-mounted electronic control unit
JP6583278B2 (en) Semiconductor sealing resin composition, semiconductor device and structure
JP6766360B2 (en) Resin composition
JP2013181101A (en) Resin composition for fixing, rotor, and automobile
JP5957961B2 (en) Fixing resin composition, rotor and automobile
WO2023189996A1 (en) Resin composition for molding, manufacturing method for sealing structure, and sealing structure
JP2016182032A (en) Resin composition for fixing rotor, rotor, and motor car
JP6322966B2 (en) Resin composition for sealing and electronic component device
JP2012007086A (en) Resin composition for sealing and electronic part device
JP2013138611A (en) Fixing resin composition for use in rotor
JP6989044B1 (en) Manufacturing method of sealed structure and tablet
KR102681999B1 (en) Resin composition for encapsulation
JP7501131B2 (en) Thermosetting resin composition and structure for LDS
WO2023182485A1 (en) Resin composition for encapsulation and method for producing single-sided-encapsulation structure
WO2016174757A1 (en) Encapsulating resin composition and electronic component device
JP2017125149A (en) Sealing resin composition and electronic apparatus
JP6275946B2 (en) Rotor fixing resin composition and rotor
JP2018115339A (en) Sealing resin composition and electronic component device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023552516

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780007

Country of ref document: EP

Kind code of ref document: A1