WO2023189656A1 - 基板処理状況監視装置および基板処理状況監視方法 - Google Patents

基板処理状況監視装置および基板処理状況監視方法 Download PDF

Info

Publication number
WO2023189656A1
WO2023189656A1 PCT/JP2023/010310 JP2023010310W WO2023189656A1 WO 2023189656 A1 WO2023189656 A1 WO 2023189656A1 JP 2023010310 W JP2023010310 W JP 2023010310W WO 2023189656 A1 WO2023189656 A1 WO 2023189656A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectrum
substrate processing
light
substrate
processing
Prior art date
Application number
PCT/JP2023/010310
Other languages
English (en)
French (fr)
Inventor
昇 東
尚樹 大根
皓太 宗徳
Original Assignee
倉敷紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 倉敷紡績株式会社 filed Critical 倉敷紡績株式会社
Publication of WO2023189656A1 publication Critical patent/WO2023189656A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Definitions

  • the present invention relates to an apparatus for monitoring the status of substrate processing in single-wafer processing performed by supplying processing liquid onto a substrate such as a semiconductor wafer.
  • processes such as etching and cleaning are carried out by supplying a processing liquid to the surface of a semiconductor wafer while holding it horizontally and rotating it.
  • Patent Document 1 discloses that while supplying a processing liquid onto a rotating substrate, a liquid film of the processing liquid formed on the top surface of the substrate is irradiated with infrared rays, the reflected light is received, and the absorbance at a predetermined wavelength is determined to form a film of the processing liquid. Methods for determining the abundance of one or more included components are described. By this method, for example, after switching the treatment liquid from pure water for rinsing to 2-propanol (IPA) for drying, it is possible to monitor the amount of H 2 O remaining in IPA. .
  • IPA 2-propanol
  • Patent Document 2 discloses that during dry etching processing of a semiconductor wafer using plasma, the film thickness to be processed is determined based on the spectrum of reflected light from the wafer, and this film thickness is compared with a threshold value.
  • An etching processing apparatus is described that determines the end point of etching processing by performing the following steps.
  • Patent Document 1 monitors the state of a specific element called the component of the processing liquid, and monitors the entire substrate processing including the state of other components of the processing liquid, such as the state of the substrate surface. The progress was not monitored. Further, the etching process described in Patent Document 2 is not a wet process in which a substrate is processed by supplying a processing liquid.
  • monitoring the status of single-wafer processing it is important to monitor various information that changes during processing, rather than just measuring specific components in the processing solution or measuring the thickness of the thin film on the substrate surface.
  • monitoring as a whole refers to comprehensively monitoring the status of substrate processing, rather than measuring and monitoring specific elements in substrate processing, such as the concentration of processing liquid or the thickness of processing liquid film. means.
  • the present invention has been made in consideration of the above, and an object of the present invention is to provide an apparatus for monitoring the status of substrate processing in single-wafer processing performed by supplying processing liquid onto the substrate.
  • the substrate processing status monitoring device of the present invention is a device that monitors the status of substrate processing performed by supplying a processing liquid onto a rotating substrate, and is directed toward the substrate while the processing liquid is on the substrate.
  • a light projecting section that irradiates light
  • a light receiving section that receives the light that has passed through the processing liquid
  • a light receiving section that simultaneously splits the light received by the light receiving section into a plurality of wavelengths, and simultaneously adjusts the light intensity of the plurality of wavelengths.
  • a photometric unit to measure and a spectroscopic spectrum generated from the light intensities of the plurality of wavelengths measured by the photometric unit, and the spectroscopic spectrum is used as a reference spectrum or the past spectroscopic spectrum previously generated during the substrate processing. and an arithmetic unit that detects a change in the status of the substrate processing by comparing with the substrate processing condition.
  • the simultaneous spectroscopy into multiple wavelengths means that the separated light of each wavelength is part of the light received at the same time without any temporal shift.
  • measuring the light intensity of a plurality of wavelengths simultaneously means that the light intensity of each wavelength is the light intensity at the same time without temporal deviation.
  • the reference spectrum refers to a spectrum obtained when the same substrate processing as the substrate processing to be monitored is performed correctly or when an abnormality occurs.
  • the processing liquid by acquiring the spectrum of light that has passed through the processing liquid, it is possible to grasp the overall status of substrate processing, including the conditions of the processing liquid, the substrate surface, and the like. Furthermore, the progress of substrate processing can be monitored by determining the deviation of the spectroscopic spectrum generated during processing from the reference spectrum or the amount of change from the previously generated spectroscopic spectrum during substrate processing in progress. .
  • the calculation unit detects a change in the substrate processing situation by comparing the spectroscopic spectrum with the reference spectrum, and updates the reference spectrum using the spectroscopic spectrum.
  • the calculation unit detects a change in the substrate processing situation by comparing the spectroscopic spectrum with the reference spectrum, and updates the reference spectrum using the spectroscopic spectrum.
  • calculation results using the newly obtained spectroscopic spectrum and the previous reference spectrum can be used. , including replacing the reference spectrum with, for example, a simple average or weighted average of both.
  • the arithmetic unit calculates a modified spectral spectrum by excluding the influence of noise from the spectral spectrum, instead of the spectral spectrum, from the light intensities of the plurality of wavelengths measured by the photometric unit, and
  • the status of the substrate processing can be determined by comparing the modified spectral spectrum with a modified reference spectrum from which the influence of the noise has been removed from the reference spectrum, or with the past modified spectral spectrum calculated earlier during the substrate processing. Detect changes.
  • noise refers to various factors that cause the measured light intensity to fluctuate, regardless of changes in the substrate processing conditions that are originally desired to be detected.
  • the spectral spectrum obtained from the measurement light contains a lot of information at the same time, such as changes in light intensity due to the processing liquid and changes in light intensity due to the condition of the substrate surface. By using the spectrum, changes in the condition of the substrate surface during substrate processing can be detected more clearly.
  • the calculation unit can calculate the modified spectral spectrum and the modified reference spectrum, respectively, by removing the influence of the noise from the spectral spectrum and the reference spectrum through static data processing.
  • the calculation unit can calculate the modified spectral spectrum and the modified reference spectrum, respectively, by removing the influence of noise from the spectral spectrum and the reference spectrum through dynamic data processing.
  • the noise excluded by the dynamic data processing is noise caused by waving of the processing liquid.
  • static data processing refers to processing that removes noise by predetermined calculations without analyzing the measured spectra
  • dynamic data processing refers to processing that removes noise by using predetermined calculations without analyzing the measured spectra. This is the process of removing noise based on the analyzed results.
  • the calculation unit detects the change in the substrate processing situation by comparing the modified spectral spectrum with the modified reference spectrum. , updating the modified reference spectrum using the modified spectroscopic spectrum.
  • the substrate processing status monitoring device further includes a control unit that changes the substrate processing conditions based on a detected change in the substrate processing status.
  • the photometry unit measures the light intensity of the plurality of wavelengths using an exposure time that is a natural number multiple of the rotation period of the substrate.
  • an exposure time that is a natural number multiple of the rotation period of the substrate.
  • the photometry section measures the light intensity of the plurality of wavelengths with an exposure time of 2.5 milliseconds or less.
  • the exposure time By shortening the exposure time, the spatial resolution of the region to be measured can be increased.
  • the photometry section spectrally spectra the light received by the light receiving section into 32 or more wavelengths.
  • the photometry section includes a linear variable filter, and the light received by the light receiving section is separated into spectra by the linear variable filter.
  • Another substrate processing status monitoring device of the present invention is a device that monitors the status of substrate processing performed by supplying a processing liquid onto a rotating substrate, wherein the substrate processing status is monitored while the processing liquid is on the substrate.
  • a light projecting section that irradiates light toward the target; a light receiving section that receives the light that has passed through the processing liquid; and a light receiving section that simultaneously splits the light received by the light receiving section into a plurality of wavelengths, and calculates the light intensity of the plurality of wavelengths.
  • a photometric unit that simultaneously measures the spectral spectrum or a modified spectral spectrum excluding the influence of noise from the light intensities of the plurality of wavelengths measured by the photometric unit; and an arithmetic unit that estimates an abnormality in the substrate processing by inputting the information into a machine-learned substrate processing situation estimation model that has undergone machine learning for estimating an abnormality in the substrate processing situation.
  • the substrate processing status monitoring method of the present invention is a method for monitoring the status of substrate processing performed by supplying a processing liquid onto a rotating substrate, and the method includes: a light projecting step of irradiating light through the processing liquid; a light receiving step of receiving the light that passes through the processing liquid and is reflected from the surface of the substrate; and a light receiving step of simultaneously splitting the light received in the light receiving step into multiple wavelengths.
  • a photometric step of simultaneously measuring light intensities of a plurality of wavelengths a spectroscopic spectrum generating step of generating a spectroscopic spectrum from the light intensities of the plurality of wavelengths measured in the photometric step; and a detection step of detecting a change in the status of the substrate processing by comparing it with the past spectroscopic spectrum previously generated during the substrate processing.
  • the substrate processing status monitoring method includes, instead of the spectral spectrum generation step, a modified spectral spectrum that calculates a modified spectral spectrum excluding the influence of noise from the light intensities of the plurality of wavelengths measured in the photometric step.
  • a spectrum calculation step wherein the sensing step compares the modified spectral spectrum with a modified reference spectrum from which the influence of noise has been excluded, or with the past modified spectral spectrum previously calculated during the substrate processing. This is a step of detecting a change in the status of the substrate processing.
  • the substrate processing status monitoring device of the present invention by acquiring the spectrum of light that has passed through the processing liquid, it is possible to grasp the overall status of substrate processing, including the conditions of the processing liquid, the substrate surface, etc. can. Furthermore, the progress of substrate processing can be monitored by determining the deviation of the spectroscopic spectrum generated during processing from the reference spectrum or the amount of change from the previously generated spectroscopic spectrum during substrate processing in progress. .
  • FIG. 1 is a diagram showing the configuration of a substrate processing apparatus and a substrate processing status monitoring apparatus of first to third embodiments.
  • FIG. FIG. 3 is a diagram showing the structure of a probe that serves as both a light projector and a light receiver.
  • FIG. 3 is a diagram showing the structure of a photometry section.
  • FIG. 7 is a diagram showing another structure of the photometry section. A: AA sectional view of FIG. 4B, B: BB sectional view of FIG. 4A.
  • FIG. 3 is a process flow diagram of a method of using the substrate processing status monitoring device of the first embodiment.
  • FIG. 7 is a process flow diagram of another method of using the substrate processing status monitoring device of the first embodiment.
  • FIG. 7 is a process flow diagram of a method of using the substrate processing status monitoring device according to the second embodiment.
  • FIG. 7 is a process flow diagram of another method of using the substrate processing status monitoring device of the second embodiment.
  • This is an example of measurement results showing differences in spectra due to differences in patterns on the surface of a silicon wafer.
  • FIG. 3 is a diagram for explaining the influence of waving of a processing liquid on light intensity.
  • FIG. 3 is a diagram for explaining the influence of waving of a processing liquid on light intensity.
  • FIG. 3 is a diagram for explaining the influence of waving of a processing liquid on light intensity.
  • It is an example of a measurement result of IPA concentration in a processing liquid.
  • a first embodiment of the substrate processing status monitoring device of the present invention will be described using semiconductor wafer processing as an example.
  • the substrate processing status monitoring device of this embodiment irradiates a wafer being processed with light and monitors the status of substrate processing using the spectrum of light reflected from the wafer.
  • a single-wafer type substrate processing apparatus 10 includes a rotary table 11 that holds and rotates a wafer W horizontally or at a desired angle, and a nozzle 12 that supplies a processing liquid S onto the wafer.
  • a plurality of nozzles 12 are provided for each type of processing liquid, and each nozzle 12 is connected to a processing liquid supply source (not shown) through a pipe 13.
  • the nozzle 12 is movable radially from the center of the wafer to the outer edge.
  • the type of treatment liquid S is not particularly limited.
  • processing liquids include ammonia/hydrogen peroxide mixtures used in various cleaning treatments, sulfuric acid/hydrogen peroxide mixtures, hydrochloric acid/hydrogen peroxide mixtures, dilute hydrofluoric acid and ozone water, and ozone water used in various etching treatments.
  • processing liquids include ammonia/hydrogen peroxide mixtures used in various cleaning treatments, sulfuric acid/hydrogen peroxide mixtures, hydrochloric acid/hydrogen peroxide mixtures, dilute hydrofluoric acid and ozone water, and ozone water used in various etching treatments.
  • examples include hydrofluoric acid, nitric acid, acetic acid, phosphoric acid, and mixed acids of these acids, pure water used for rinsing, and IPA used for drying.
  • the content of substrate processing is not particularly limited, and the status of cleaning processing, etching processing, drying processing, etc. can be monitored.
  • the status of substrate processing includes the concentration of the processing solution and the thickness of the liquid film in various processes, the thickness of the oxide film or nitride film on the substrate surface in etching processing, and the condition of the wafer surface during various processes, such as pattern collapse. This includes the presence or absence of
  • the substrate processing status monitoring device 20 includes a light source 21 , a probe 22 , a photometry section 23 , a calculation section 24 , a recording section 25 , and a control section 26 .
  • the probe 22 is arranged on the wafer W inside the substrate processing apparatus 10, and in this embodiment, the probe 22 includes a light projecting part that irradiates light toward the wafer W, and a light projecting part that passes through the processing liquid on the wafer and returns from the substrate. It also serves as a light receiving section that receives light.
  • the light source 21, the photometry section 23, the calculation section 24, the recording section 25, and the control section 26 are arranged outside the substrate processing apparatus 10.
  • the light source 21 and the probe 22 and the probe 22 and the photometer 23 are connected by an optical fiber 28.
  • the optical fiber extending from the probe 22 branches in the middle, and one reaches the light source 21 and the other reaches the photometry section 23 .
  • the calculation section 24 is electrically connected to the photometry section 23, the recording section 25, and the control
  • the light source 21 generates light including at least a plurality of wavelengths, preferably a continuous wavelength range.
  • the wavelength of the light generated by the light source can be determined depending on the purpose. For example, the amount of light absorbed by the components in the processing liquid can be measured by causing a light source to emit light containing infrared rays. Further, for example, the state of the wafer surface can be monitored by causing a light source to generate light that includes a wavelength range in which interference due to a thin film or pattern formed on the wafer surface can be observed.
  • the light source 21 can be a known one, for example a commercially available lamp such as a halogen tungsten lamp.
  • probe 22 irradiates light beam B toward wafer W from above and receives light that passes through processing liquid film F and is reflected from the wafer surface. That is, in the present embodiment, the probe 22 serves both as a light projector that irradiates light toward the processing liquid on the wafer W and as a light receiver that receives light reflected from the surface of the wafer.
  • Light introduced from the light source 21 through the optical fiber 28 from one end of the probe travels horizontally toward the left side in FIG. 2, is collimated by the lens 31, and is reflected downward by the mirror 32. The light passes through the lens 33 and is irradiated vertically toward the wafer W.
  • the light beam that passes through the processing liquid film F on the wafer and is reflected by the wafer W passes through the lens 33, traces the inside of the probe in the opposite direction, and is guided to the optical fiber 28.
  • Probe 22 is movable radially from the center of the wafer to the outer edge.
  • the photometry section 23 includes a slit 42, a linear variable filter (hereinafter referred to as "LVF") 43, and a photodiode (PD) array 44.
  • the PD array 44 measures the light intensity of a plurality of wavelengths.
  • the LVF 43 is a spectral filter whose transmission wavelength differs depending on the incident position along one direction of the substrate.
  • LVF various known ones can be used.
  • received light can be split into multiple wavelengths simultaneously.
  • the term "separated at the same time" means that the separated light of each wavelength is part of the light received at the same time without any temporal lag. For example, if a plurality of interference filters, each of which transmits light of a different wavelength, are exchanged to perform spectroscopy, the spectroscopy will not be performed at the same time.
  • the means for simultaneously separating light is not limited to the LVF; for example, by applying light from an optical fiber to a diffraction grating, simultaneously separated lights can be obtained as reflected light from the diffraction grating.
  • the PD array 44 has PD elements 45 lined up in a line, and by measuring the intensity of light transmitted through different positions of the LVF 43 with each PD element, it simultaneously measures the light intensity of a plurality of separated wavelengths. . Measuring the light intensity of multiple wavelengths simultaneously means that each PD element of the PD array measures the intensity of multiple lights at the same time. More precisely, each PD element starts exposure at the same time. This refers to ending the exposure at the same time and measuring the light intensity.
  • the light introduced from the optical fiber 28 connected to one end (the left end in FIG. 4) of the substantially cylindrical housing 56 is directed by the lens 51 to the optical axis X of the optical fiber. collimated into a parallel bundle of rays.
  • a partition wall 52 that does not transmit light is provided perpendicularly to the optical axis X, and openings 53 of the same shape and area are formed in the partition wall 52 rotationally symmetrically around the optical axis X. Since the apertures are arranged rotationally symmetrically with respect to the optical axis X, they are all at the same distance from the optical axis, and the intensity of light incident on each aperture is equal.
  • a band pass filter (BPF) 54 that transmits light of a different wavelength is arranged in each opening 53 so as to block the entire opening, and a photodetector element 55 is arranged behind the BPF (on the opposite side to the optical fiber). has been done. Thereby, the light introduced from the optical fiber 28 is simultaneously split into spectra, and the light intensity of each wavelength is measured simultaneously.
  • the number of openings is not limited to three, but is preferably three or four.
  • branching the optical fiber from the probe 22 and connecting it to a plurality of spectrophotometers 50 in parallel it is possible to measure the light intensity at a larger number of wavelengths.
  • the number of PD elements 45 constituting the PD array 44 is preferably 32 or more, more preferably 64 or more.
  • the number of PDs included in the PD array is preferably 512 or less, more preferably 256 or less.
  • the exposure time of the PD array 44 for generating a spectroscopic spectrum while monitoring wafer processing is preferably a natural number multiple of the rotation period of the wafer W. Even while the PD array is being exposed to the reflected light from the wafer, the position on the wafer from which the reflected light is emitted moves due to the rotation of the wafer. By setting the exposure time to a natural number multiple of the rotation period of the wafer, reflected light from all positions on the circumference above which the probe 22 passes is received equally no matter what moment the exposure starts. . This makes it possible to smooth out variations in the reflection spectrum depending on the circumferential position of the wafer surface.
  • a synchronization signal is sent from the substrate processing apparatus 10 to the calculation unit 24, and the calculation unit 24 starts the exposure and starts the exposure in accordance with the synchronization signal. Just finish it.
  • the exposure time of the PD array 44 is preferably 2.5 ms or less, more preferably 1.5 ms or less. By shortening the exposure time, the spatial resolution of the region to be measured can be increased. Furthermore, it becomes easier to confirm the influence of the processing liquid on the measured light intensity.
  • the sampling period for exposure is set to a natural number fraction of the rotation period of the wafer. The same position can be measured. Thereby, for example, when an abnormal optical spectrum is detected, it becomes easy to specify its position on the wafer.
  • the calculation unit 24 receives light intensities of a plurality of wavelengths from the photometry unit 23 and generates a spectroscopic spectrum.
  • the optical spectrum can be expressed as a list of light intensities for each wavelength, and can be treated as vector data.
  • the spectroscopic spectrum may be generated from the result of one measurement of light intensity received from the photometry unit, or may be generated by integrating the results of measurement of light intensity multiple times.
  • the spectral spectrum generated by the calculation unit 24 is recorded in the recording unit 25.
  • the calculation unit 24 compares the generated spectral spectrum with a reference spectrum or a past spectral spectrum that was previously generated during the currently monitored wafer processing and recorded in the recording unit 25, thereby determining the status of the wafer processing.
  • Detect changes in The reference spectrum is a spectrum obtained when the same process as the process to be monitored is performed correctly or when an abnormality occurs. More precisely, the reference spectrum is determined when the same substrate processing as the processing to be monitored is carried out under the same conditions and measured under the same conditions, and it is determined that there is no abnormality throughout the processing, or when there is an abnormality during the processing. This is the spectrum when it is determined that an abnormality has occurred or that a situation that requires warning of an abnormality has been reached.
  • the recording unit 25 records the spectroscopic spectrum generated by the calculation unit 24.
  • the storage unit can be realized by a main storage device, an auxiliary storage device, or a combination thereof.
  • the recording unit includes both a main storage device and an auxiliary storage device, and the spectra generated every moment during the process of monitoring the situation are recorded in the main storage device and subjected to various calculations by the calculation unit 24. A copy is recorded in the auxiliary storage device.
  • the recording unit 25 records a reference spectrum for comparison with the spectral spectrum generated during processing.
  • the optical spectrum during substrate processing changes continuously as the reaction progresses, so the recording unit records a series of optical spectra when the processing was performed correctly or optical spectra when an abnormality occurred. Record as a series of reference spectra.
  • the recording unit 25 stores a spectroscopic spectrum that can serve as a reference spectrum for comparison, based on processing conditions such as the amount of processing liquid discharged, the wafer rotation speed, and the wafer temperature, the measurement position on the wafer, and the exposure of the photometry unit 23.
  • a spectroscopic spectrum recorded under the same processing conditions and measurement conditions from among the recorded spectra can be used as a reference spectrum. If the spectral spectrum obtained when the processing is performed correctly is used as the reference spectrum, and the spectral spectrum changes significantly during processing, the spectral spectrum generated during processing is used as the reference spectrum. , for example, can be compared with a reference spectrum having the same elapsed time from the start of processing. It is preferable that the series of reference spectra be recorded in an auxiliary storage device of the recording section.
  • control unit 26 controls the substrate processing apparatus 10 based on the detected change in the wafer processing situation. may be instructed to change the processing conditions.
  • the wafer W is rotated, and the processing liquid is supplied onto the wafer, monitoring is started. While the processing liquid is flowing on the wafer surface, light is irradiated from the probe 22 toward the wafer, and the probe receives the light that passes through the processing liquid and is reflected from the wafer surface.
  • the calculation unit 24 generates a spectroscopic spectrum (current spectrum) by measuring the light intensity of the wavelength. The generated current spectrum is recorded in the recording section 25.
  • the calculation unit 24 compares the current spectrum with the reference spectrum.
  • the reference spectra to be compared are, for example, reference spectra whose elapsed time from the start of processing is the same among a series of reference spectra recorded in the recording unit 25.
  • the following equation is used to integrate the squares of the differences at all wavelengths, and whether or not this value exceeds a preset threshold determines whether the processing progress is abnormal. You can determine whether it is normal.
  • Ii and Iri are the intensities of the current spectrum and reference spectrum at the wavelength ⁇ i.Furthermore, focusing on the shape of the spectrum rather than the absolute value of the light intensity may allow abnormalities to be detected more efficiently and with high precision. From this point, the difference between the light intensities of two different wavelengths ⁇ 1 and ⁇ 2 is determined using the following formula, and whether the progress of the process is abnormal or normal is determined based on whether this value exceeds a preset threshold. Good too. (I1-I2)-(Ir1-Ir2) Subscripts 1 and 2 are wavelengths ⁇ 1 and ⁇ 2, respectively, r means reference spectrum
  • the calculation unit 24 compares the current spectrum and the reference spectrum and determines that there is a large difference between the two and that the processing progress is abnormal, it reports the abnormality to the administrator, and the control unit 26 also controls the board processing.
  • the apparatus 10 may be instructed to change the processing conditions.
  • the calculation unit 24 may update the reference spectrum.
  • the reference spectrum can be replaced with the current spectrum or a moving average of spectra obtained a predetermined number of times before the current spectrum.
  • the reference spectrum can be replaced by a simple average, a weighted average, etc. of the reference spectrum and the current spectrum.
  • the optical spectrum generated during wafer processing changes as the reaction progresses, but the change is continuous. Therefore, if there is a sudden change between the current spectrum and the past spectrum, especially between the current spectrum and the past spectrum obtained from the previous sampling, it is highly likely that some sudden abnormality has occurred. .
  • the method of comparing the current spectrum and the past spectrum is, for example, by integrating the squares of the differences at all wavelengths using the following formula, and determining whether the processing progress is abnormal or normal by checking whether or not this value changes rapidly. may be judged.
  • ⁇ (Ii-Ipi) 2 Ipi is the intensity of the past spectrum at wavelength ⁇ i. Also, calculate the difference between the light intensities at two different wavelengths ⁇ 1 and ⁇ 2 using the following formula, and depending on whether this value changes rapidly, determine whether the processing progress is abnormal or normal. may be judged. (I1-I2)-(Ip1-Ip2) Whether or not the change is rapid can be determined based on whether the amount of change is greater than or equal to a preset threshold, or whether the rate of change exceeds a preset threshold.
  • both the comparison between the current spectrum and the reference spectrum (FIG. 5) and the comparison between the current spectrum and the past spectrum (FIG. 6) may be performed. .
  • the current spectrum includes the condition of the wafer surface at that time, the condition of the wafer surface including the thin film if a thin film such as an oxide film is formed on the wafer surface, and the condition of the processing liquid on the wafer. It reflects the situation. In this way, by monitoring the current spectrum containing a mixture of information from the substrate and information from the processing liquid and comparing it with the reference spectrum or past spectrum, it can be confirmed whether the process is progressing normally.
  • the substrate processing status monitoring device of this embodiment monitors the status of the substrate surface using a spectrum obtained by excluding the influence of noise from the spectrum of reflected light from the wafer.
  • noise refers to various factors that cause the measured light intensity to fluctuate, regardless of changes in the conditions of substrate processing that are originally desired to be detected.
  • the processing liquid may ripple depending on the type of processing liquid and processing conditions.
  • the spectrum of the light reflected from the wafer is affected, making it difficult to understand the state of the wafer and the processing liquid from the obtained spectrum.
  • etching processing information about the state of the wafer surface or the components of the processing solution contained in the spectroscopic spectrum is blocked by fluctuations in the spectrum due to the waving of the processing solution, and changes in the wafer surface or processing solution as the process progresses are blocked by spectroscopy.
  • fluctuations in light intensity due to waving of the processing liquid are noise.
  • noise is not something that causes the measured light intensity to fluctuate in relation to changes in the substrate processing conditions that are to be detected.
  • a spectroscopic spectrum excluding the influence of noise is referred to as a "modified spectroscopic spectrum,” and a spectrum excluding the influence of noise from each of the current spectrum, past spectrum, and reference spectrum is referred to as a “modified current spectrum.”
  • modified past spectrum and “modified reference spectrum.”
  • the configurations of the substrate processing apparatus 10, the type of processing liquid S, and the substrate processing status monitoring device 20 are the same as in the first embodiment.
  • the calculation unit 24 and other functions are partially different from those in the first embodiment. Below, points different from the first embodiment will be explained.
  • the exposure time of the PD array 44 is preferably 2.5 ms or less, more preferably 1.5 ms or less. This makes it easier to determine the influence of waving of the processing liquid on the spectroscopic spectrum.
  • the calculation unit 24 of this embodiment receives the light intensities of a plurality of wavelengths from the photometry unit 23, and calculates a modified spectral spectrum excluding the influence of noise, instead of the spectral spectrum.
  • the corrected spectroscopic spectrum may be calculated from the result of one measurement of light intensity received from the photometry unit, or may be calculated from the result of measurement of light intensity multiple times.
  • the corrected spectral spectrum generated by the calculation unit 24 is recorded in the recording unit 25. Note that calculating a modified spectral spectrum instead of a spectral spectrum does not preclude calculating a modified spectral spectrum and also generating a spectral spectrum that does not exclude noise as in the first embodiment; 24 may generate both a spectroscopic spectrum and a modified spectroscopic spectrum.
  • the calculation unit 24 detects a change in the wafer processing situation by comparing the calculated corrected current spectrum with the corrected reference spectrum or the corrected past spectrum.
  • the recording unit 25 of this embodiment records a series of modified spectral spectra and a series of modified reference spectra calculated during wafer processing.
  • FIG. 7 The flow of how to use the substrate processing status monitoring device 20 of this embodiment is shown in FIG. 7 for comparing a modified current spectrum with a modified reference spectrum, and in FIG. 8 for comparing a modified current spectrum with a modified past spectrum.
  • the calculation unit 24 calculates the corrected current spectrum, records it in the recording unit 25, compares it with the corrected reference spectrum, and The next step is to update the modified reference spectrum.
  • the comparison between the modified current spectrum and the modified reference spectrum can be performed in the same way as the comparison between the current spectrum and the reference spectrum in the first embodiment.
  • the difference from FIG. 6 of the first embodiment is that the calculation unit 24 calculates a modified current spectrum, records it in the recording unit 25, and compares it with the modified past spectrum.
  • the comparison between the modified current spectrum and the modified past spectrum can be performed in the same way as the comparison between the current spectrum and the past spectrum in the first embodiment. Note that a specific method for calculating the corrected spectroscopic spectrum will be described later.
  • noise and its removal method will be further explained.
  • the former noise can be removed by predetermined calculations to exclude its influence from the spectroscopic spectrum measured during substrate processing monitoring (static data processing).
  • Examples of the former type of noise include temperature changes in the substrate, temperature changes in the processing liquid, absorption by components of the processing liquid, changes in the concentration of the processing liquid, and changes in the film thickness of the processing liquid.
  • the latter noise can only be removed by analyzing the spectra measured during substrate processing monitoring (dynamic data processing). A typical example of the latter noise is waving of the processing liquid.
  • An example of a noise removal method using static data processing is roughly as follows.
  • a spectral spectrum consisting of light intensities of n wavelengths is measured under the same conditions as the substrate processing to be monitored, and is represented by an n-dimensional space vector B0.
  • An (nm)-dimensional subspace orthogonal to all of the n-dimensional vectors (B1-B0), (B2-B0), . . . , (Bm-B0) is determined in advance.
  • n-dimensional space vector A When the spectroscopic spectrum measured during substrate processing monitoring is expressed as an n-dimensional space vector A and projected onto the above partial space, a (nm)-dimensional space vector P is obtained.
  • the obtained vector P is not affected by the above noise factors.
  • the temperature of the processing liquid becomes a factor of noise.
  • the substrate processing monitoring device of this embodiment uses this vector P as a modified spectroscopic spectrum that excludes the influence of the temperature of the processing liquid, it will not be possible to detect abnormalities in the temperature of the processing liquid. , it becomes easier to monitor conditions other than the temperature of the processing liquid more clearly. This method is effective when the temperature of the processing liquid can be monitored by a separate means.
  • the purpose is not to detect changes in the concentration of components in the processing solution or the thickness of the processing solution film, noise caused by the concentration of components in the processing solution or the thickness of the processing solution film can be excluded.
  • a modified optical spectrum in which the interference components in the optical spectrum have a large specific gravity can be obtained. This makes it easier to more clearly monitor the conditions of substrate processing that have a large influence on interference components, such as the thickness of a thin film on the wafer surface.
  • This method is particularly effective when interference components in the near-infrared region, which are largely absorbed by the processing liquid, are important.
  • a typical noise that requires dynamic data processing is waving of the processing liquid.
  • the waving of the processing liquid differs every time the substrate is processed even when the substrate is processed under the same conditions. For this reason, it is not possible to determine a calculation method to exclude the effect of waving from the spectroscopic spectrum through prior experiments. Therefore, the effect of waving can only be removed by analyzing the spectral spectrum measured during substrate processing monitoring. .
  • the noise caused by waving differs each time it is processed, it becomes a major hindrance in comparing a spectroscopic spectrum with a reference spectrum or the like.
  • a method for determining the presence or absence of the effect of waving of the processing liquid and removing noise caused by it will be explained in Experiments 2 and 3 below.
  • the period of interference can be determined by performing discrete Fourier transform (DFT) on the measured optical spectrum with the wave number k on the horizontal axis. From this DFT result, a spectrum was calculated with the amplitude of order components considered to be interference components reduced, and the interference components were removed from the spectroscopic spectrum by performing inverse discrete Fourier transform (IDFT) on the obtained spectrum. An absorption spectrum is obtained.
  • DFT discrete Fourier transform
  • IDFT inverse discrete Fourier transform
  • both the comparison between the modified current spectrum and the modified reference spectrum (FIG. 7) and the comparison between the modified current spectrum and the modified past spectrum (FIG. 8) are performed. Good too. Furthermore, both static data processing and dynamic data processing may be performed to remove the influence of noise. Furthermore, both the comparison between the modified current spectrum and the modified reference spectrum or the modified past spectrum, and the comparison between the current spectrum and the reference spectrum or the past spectrum described in the first embodiment may be performed.
  • the configurations of the substrate processing apparatus 10, the type of processing liquid S, and the substrate processing status monitoring device 20 are the same as in the first embodiment.
  • a substrate processing situation estimation model (hereinafter simply referred to as an "estimated" model) for estimating abnormalities in the substrate processing situation is generated by machine learning.
  • various processing conditions, a series of spectra during processing, and processing results are used when the same processing as the substrate processing to be monitored is performed.
  • the processing conditions include, for example, the rotation speed of the substrate, the type, concentration, temperature, and supply rate of the processing liquid.
  • the processing result is, for example, whether the processing has ended normally or not, and if an abnormality has occurred, the type of abnormality that has occurred.
  • the generated learned estimation model is recorded in the recording unit 25.
  • the calculation unit 24 inputs various processing conditions and the current spectrum into the estimation model, and obtains the presence or absence of an abnormality in the substrate processing and, if an abnormality occurs, the type of abnormality that has occurred as an output of the estimation model. After substrate processing is completed, whether or not the output of the estimation model is correct is inputted into the estimation model to continuously improve the estimation model.
  • the substrate processing status monitoring device of this embodiment by using a substrate processing status estimation model based on machine learning, when a processing abnormality occurs, it is possible to determine the type of abnormality, such as a shortage of processing liquid or a pattern on the wafer surface. It will be easier to know about collapses and the like on the spot.
  • the above embodiment will be explained in further detail based on experimental results.
  • the apparatus used in the experiment was shown in FIG. 1, and a tungsten lamp (15W) was used as the light source 21.
  • Three spectrophotometers shown in FIG. 4 were used in the photometry section 23 in parallel, and the light intensity was measured at nine wavelengths in the near-infrared region. Based on this measured value, the calculation unit 24 generated a spectroscopic spectrum or a modified spectroscopic spectrum expressed by the light intensity of nine wavelengths.
  • a silicon wafer with a diameter of 200 mm and different patterned areas lined up in the circumferential direction was rotated at 1000 rpm, and pure water was supplied to the center of the wafer at a rate of 0.5 L/min.
  • Light was irradiated at a position of 5 mm, and a spectroscopic spectrum was generated from the reflected light.
  • the exposure time for sampling was 100 ⁇ s.
  • FIG. 9 shows changes in light intensity at each wavelength measured during 10 ms.
  • the position on the wafer from which the reflected light is emitted moves in the circumferential direction as the wafer rotates, and after sampling several times, moves to another adjacent pattern area. From FIG. 9, it can be seen that the spectra of the received reflected light clearly differ depending on the pattern formed on the wafer surface. From this result, it is possible to monitor the state of the wafer surface during wafer processing while supplying processing liquid using the substrate processing status monitoring device of the first embodiment, for example, to detect collapse of a wafer pattern during processing. I was able to confirm that it is possible.
  • an unpatterned silicon wafer with a diameter of 200 mm was rotated at 500 rpm, and while pure water was supplied to the center of the wafer at a rate of 1.0 L/min, light was irradiated to a position 50 mm from the center of the wafer, and light was reflected. A spectroscopic spectrum was generated from light. The exposure time for sampling was 1 ms.
  • FIG. 10 shows the absorbance calculated from the received light intensity at a wavelength of 1300 nm.
  • I the measured light intensity
  • I0 the light intensity when pure water is not supplied.
  • A -log(I/I 0 )
  • the received light intensity measured for 1 second, that is, 1000 times is plotted.
  • the absorbance varied widely, and extremely large values were occasionally observed.
  • FIG. 11 and FIG. 12 show the absorbance calculated after integrating the received light intensity in the experiment shown in FIG. 10 twice or three times, respectively.
  • 11 and 12 correspond to the results when the exposure time was 2 ms and 3 ms, respectively. Comparing FIGS. 10 to 12, it can be seen that the shorter the exposure time, the easier it is to determine the influence of the waving of the processing liquid on the light intensity. From this result, it was found that the exposure time of the photometric section is preferably 2.5 ms or less, and more preferably 1.5 ms or less.
  • the influence of waving of the processing liquid was excluded by the following method. For each wavelength, absorbance was calculated from each of the 100 light intensities measured for 0.1 seconds, and 10 pieces of absorbance data with small values were unconditionally regarded as abnormal values and excluded. Then, the minimum value among the remaining 90 values was considered to be a normal value of absorbance and was used as a reference value. Note that the reference value is a value that is considered to be a normal value with extreme certainty, and it does not matter if the 10 data items that are unconditionally excluded include a normal value. Next, using the reference value +0.2 as a threshold, data exceeding the threshold among the 90 absorbance data were determined to be abnormal values, and data below the threshold were left as normal values.
  • the threshold value may be set in advance to a constant value, for example, the expected maximum absorbance, or may be set according to a reference value and a predetermined calculation formula, as in this experiment. From the absorbance data left as normal values, the IPA concentration in the processing solution on the wafer was determined by multivariate analysis.
  • FIG. 13 shows the measurement results of the amount of IPA present on the wafer before and after switching the processing liquid from pure water to IPA.
  • the horizontal axis represents the passage of time, and the vertical axis represents the concentration of IPA.
  • the white circles are IPA concentrations calculated every 0.1 seconds based on the absorbance values that were determined not to be abnormal values.
  • the black circle is an index of time change in IPA concentration, and is the absolute value of the difference between the maximum and minimum concentrations of the previous five times.
  • the sampling interval is preferably 0.5 seconds or less, more preferably 0.25 seconds.
  • the time is particularly preferably 0.1 seconds or less. Therefore, even when generating a spectroscopic spectrum from the result of one measurement of light intensity, the exposure time is preferably 0.5 seconds or less, more preferably 0.25 seconds or less, particularly preferably 0.1 seconds or less. Furthermore, when calculating a modified spectroscopic spectrum excluding the influence of the treatment liquid using the method of Experiment 3, it is necessary to measure the light intensity multiple times within the above-mentioned time.
  • the tolerance is 0.05
  • the 95% confidence interval is about 30 to 50 times
  • the 99% confidence interval is about 60 times. It is necessary to measure the light intensity about ⁇ 80 times.
  • the substrate processing status monitoring device and method are not limited to those that target processing liquids on silicon wafers; the substrate may be a compound semiconductor such as silicon carbide or gallium arsenide, a crystal wafer such as sapphire, or a glass substrate. It's okay.
  • the substrate processing status was monitored by receiving light from the processing liquid, but the light emitting part and the light receiving part were separated, and the light was irradiated diagonally from the light projecting part to the upper surface of the wafer W, so that the light passed through the processing liquid and was reflected from the wafer W.
  • the light may be received by a light receiving section.
  • the substrate processing status may be monitored using light transmitted through the wafer W.
  • light is emitted toward the wafer from a light emitter placed above or below the wafer, and the light that has passed through the wafer and processing solution is detected by a light receiver facing the light emitter with the wafer in between.
  • a light receiver facing the light emitter with the wafer in between.
  • Substrate processing device 11 Rotary table; 12 Nozzle; 13 Piping
  • Substrate processing status monitoring device 21 Light source; 22 Probe (light projecting section, light receiving section); 23 Photometry section; 24 Computing section; 25 Recording section; 26 Control section 28 optical fiber 31, 33 lens; 32 mirror 42 slit; 43 linear variable filter (LVF); 44 photodiode array (PD array); 45 photodiode element (PD element) 50 Spectrophotometer; 51 Lens; 52 Partition wall; 53 Opening; 54 Bandpass filter (BPF); 55 Photodetection element; 56 Housing B Light beam; F Processing liquid film; S Processing liquid; W Wafer (substrate); Spectrophotometer optical axis

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

[課題]基板上に処理液を供給して行われる枚葉式処理において、基板処理の状況を監視する装置を提供する。 [解決手段]回転する基板(W)上に処理液(S)を供給して行われる基板処理の状況を監視する装置であって、前記基板に向かって光を照射する投光部(22)と、前記処理液中を通過した光を受光する受光部(22)と、前記受光部が受光した光を複数の波長に同時に分光し、前記複数の波長の光強度を同時に測定する測光部(23)と、前記測光部が測定した前記複数の波長の光強度から分光スペクトルを生成し、前記分光スペクトルを、参照スペクトル、または前記基板処理中に先に生成された過去の前記分光スペクトルと比較することにより、前記基板処理の状況の変化を検知する演算部(24)とを有する基板処理状況監視装置(20)。

Description

基板処理状況監視装置および基板処理状況監視方法
 本発明は、半導体ウェハ等の基板上に処理液を供給して行われる枚葉式処理において、基板処理の状況を監視する装置に関する。
 半導体工業における枚葉式プロセスでは、半導体ウェハを水平等に保持して回転させながら、その表面に処理液を供給することにより、エッチングや洗浄などの工程が実施される。
 特許文献1には、回転する基板上に処理液を供給しながら、基板上面に形成された処理液の液膜に赤外線を照射して反射光を受光し、所定波長における吸光度から処理液膜に含まれる1以上の成分の存在量を測定する方法が記載されている。この方法によって、例えば、処理液をリンス処理のための純水から乾燥処理のための2-プロパノール(IPA)に切り替えた後に、IPA中に残存するHOの存在量を監視することができる。
 一方、特許文献2には、プラズマを用いた半導体ウェハのドライエッチング処理中に、ウェハからの反射光の分光スペクトルに基づいて処理対象の膜厚を決定して、この膜厚と閾値とを比較することにより、エッチング処理の終点を判定するエッチング処理装置が記載されている。
特開2016-070669号公報 国際公開第2020/161887号 特開平3-209149号公報
 しかし、特許文献1に記載された方法は、処理液の成分という特定の要素の状態を監視するものであって、処理液の成分以外の状態、例えば基板表面の状態などを含めた基板処理全体の進行状況を監視するものではなかった。また、特許文献2に記載されたエッチング処理は、処理液を供給して基板を処理するウェットプロセスではなかった。
 枚葉式処理の状況を監視するに当たって、処理液中の特定の成分の測定や、基板表面の薄膜の膜厚計測のみを行うのではなく、処理中に変化する様々な情報を全体として監視できれば多くのメリットが得られる。例えば、処理が正常に進行したか否かを検知することで、追加の検査を行う必要があるか否かを判断することができる。また、例えば、処理の状況が当該処理時に通常観測される状況とずれたことを検知することで、処理条件をフィードバック制御することができる。しかし、基板上に処理液を供給して行われる枚葉式処理において、その基板処理の状況を全体として監視する装置は従来存在しなかった。ここで全体として監視するとは、処理液の濃度や処理液膜の厚さなどの、基板処理における特定の要素を計測して監視するのではなく、基板処理の状態を網羅的に監視することを意味する。
 本発明は上記を考慮してなされたものであり、基板上に処理液を供給して行われる枚葉式処理において、基板処理の状況を監視する装置を提供することを課題とする。
 本発明の基板処理状況監視装置は、回転する基板上に処理液を供給して行われる基板処理の状況を監視する装置であって、前記基板上に前記処理液がある状態で前記基板に向かって光を照射する投光部と、前記処理液中を通過した光を受光する受光部と、前記受光部が受光した光を複数の波長に同時に分光し、前記複数の波長の光強度を同時に測定する測光部と、前記測光部が測定した前記複数の波長の光強度から分光スペクトルを生成し、前記分光スペクトルを、参照スペクトル、または前記基板処理中に先に生成された過去の前記分光スペクトルと比較することにより、前記基板処理の状況の変化を検知する演算部とを有する。
 ここで、複数の波長に同時に分光するとは、分光された各波長の光が、時間的にずれることなく、同時刻に受光した光の一部であることをいう。また、複数の波長の光強度を同時に測定するとは、各波長の光強度が、時間的にずれることなく、同時刻の光強度であることをいう。また、参照スペクトルとは、監視対象とする基板処理と同じ基板処理が正しく行われたときまたは異常が発生したときの分光スペクトルをいう。
 この構成によれば、処理液中を通過した光の分光スペクトルを取得することによって、処理液、基板表面などの状態を含めた、基板処理全体の状況を把握することができる。さらに、処理中に生成した分光スペクトルの参照スペクトルからのずれや、実行中の基板処理において先に生成された分光スペクトルからの変化量を求めることによって、基板処理の進行状況を監視することができる。
 好ましくは、前記演算部は、前記分光スペクトルを前記参照スペクトルと比較することにより前記基板処理の状況の変化を検知し、前記分光スペクトルを用いて前記参照スペクトルを更新する。分光スペクトルを用いて参照スペクトルを更新することには、新たに得られた分光スペクトルで参照スペクトルを単純に置き換えることの他、新たに得られた分光スペクトルと従前の参照スペクトルとを用いた演算結果、例えば両者の単純平均や重み付け平均で参照スペクトルを置き換えることを含む。
 あるいは、好ましくは、前記演算部は、前記測光部が測定した前記複数の波長の光強度から、前記分光スペクトルに代えて、前記分光スペクトルからノイズの影響を除外した修正分光スペクトルを算出し、前記修正分光スペクトルを、前記参照スペクトルから前記ノイズの影響が除外された修正参照スペクトル、または前記基板処理中に先に算出された過去の前記修正分光スペクトルと比較することにより、前記基板処理の状況の変化を検知する。ここで、ノイズとは、本来検知したい基板処理の状況変化とは関係なく、測定する光強度を変動させてしまう種々の要因を指す。測定光から得られる分光スペクトルは、処理液による光強度変化や基板表面の状況による光強度変化など多くの情報を同時に含むため、例えば分光スペクトルから処理液による光強度の変化成分を除外した修正分光スペクトルを用いることによって、基板処理の状況における基板表面の状況の変化をより明瞭に検知することができる。
 前記演算部は、静的なデータ処理によって、前記分光スペクトルおよび前記参照スペクトルから前記ノイズの影響を除外して、それぞれ前記修正分光スペクトルおよび前記修正参照スペクトルを算出することができる。あるいは、前記演算部は、動的なデータ処理によって、前記分光スペクトルおよび前記参照スペクトルからノイズの影響を除外して、それぞれ前記修正分光スペクトルおよび前記修正参照スペクトルを算出することができる。好ましくは、動的なデータ処理によって除外されるノイズが、前記処理液の波打ちに起因するノイズである。ここで、静的なデータ処理とは、測定された分光スペクトルを解析するまでもなく、予め定めた演算によってノイズを除去する処理をいい、動的なデータ処理とは、測定された分光スペクトルを解析した結果に基づいてノイズを除去する処理をいう。
 修正分光スペクトルを利用して基板処理の状況の変化を検知する場合、好ましくは、前記演算部は、前記修正分光スペクトルを前記修正参照スペクトルと比較することにより前記基板処理の状況の変化を検知し、前記修正分光スペクトルを用いて前記修正参照スペクトルを更新する。
 好ましくは、上記基板処理状況監視装置は、検知した前記基板処理の状況の変化に基づいて前記基板処理の条件を変更する制御部をさらに備える。
 好ましくは、前記測光部は、前記基板の回転周期の自然数倍の時間を露光時間として、前記複数の波長の光強度を測定する。露光時間を基板の回転周期に同期させることによって、基板表面の周方向の位置による分光スペクトルの変動を均すことができる。
 あるいは、好ましくは、前記測光部は、2.5ミリ秒以下の露光時間で前記複数の波長の光強度を測定する。露光時間を短くすることによって、計測する領域の空間分解能を高めることができる。また、分光スペクトルへのノイズの影響、特に動的なデータ処理を必要とする処理液の波打ち等のノイズの影響が確認しやすくなる。
 好ましくは、前記測光部は、前記受光部が受光した光を32以上の波長に分光する。
 好ましくは、前記測光部は、線形可変フィルタを有し、前記受光部が受光した光を前記線形可変フィルタによって分光する。
 本発明の他の基板処理状況監視装置は、回転する基板上に処理液を供給して行われる基板処理の状況を監視する装置であって、前記基板上に前記処理液がある状態で前記基板に向かって光を照射する投光部と、前記処理液中を通過した光を受光する受光部と、前記受光部が受光した光を複数の波長に同時に分光し、前記複数の波長の光強度を同時に測定する測光部と、前記測光部が測定した前記複数の波長の光強度から分光スペクトル、またはノイズの影響を除外した修正分光スペクトルを算出し、前記分光スペクトルまたは前記修正分光スペクトルを、前記基板処理の状況の異常を推定するための機械学習された学習済みの基板処理状況推定モデルに入力することで、前記基板処理の異常を推定する演算部とを有する。
 本発明の基板処理状況監視方法は、回転する基板上に処理液を供給して行われる基板処理の状況を監視する方法であって、前記基板上に前記処理液がある状態で前記基板に向かって光を照射する投光工程と、前記処理液中を通過して前記基板の表面から反射する光を受光する受光工程と、前記受光工程で受光した光を複数の波長に同時に分光し、前記複数の波長の光強度を同時に測定する測光工程と、前記測光工程で測定された前記複数の波長の光強度から分光スペクトルを生成する分光スペクトル生成工程と、前記分光スペクトルを、参照スペクトル、または前記基板処理中に先に生成された過去の前記分光スペクトルと比較することにより、前記基板処理の状況の変化を検知する検知工程とを有する。
 好ましくは、上記基板処理状況監視方法は、前記分光スペクトル生成工程に代えて、前記測光工程で測定された前記複数の波長の光強度から、ノイズの影響を除外した修正分光スペクトルを算出する修正分光スペクトル算出工程を有し、前記検知工程が、前記修正分光スペクトルを、前記ノイズの影響が除外された修正参照スペクトル、または前記基板処理中に先に算出された過去の前記修正分光スペクトルと比較することにより、前記基板処理の状況の変化を検知する工程である。
 本発明の基板処理状況監視装置によれば、処理液中を通過した光の分光スペクトルを取得することによって、処理液、基板表面などの状態を含めた、基板処理全体の状況を把握することができる。さらに、処理中に生成した分光スペクトルの参照スペクトルからのずれや、実行中の基板処理において先に生成された分光スペクトルからの変化量を求めることによって、基板処理の進行状況を監視することができる。
基板処理装置および第1~第3実施形態の基板処理状況監視装置の構成を示す図である。 投光部と受光部を兼ねるプローブの構造を示す図である。 測光部の構造を示す図である。 測光部の他の構造を示す図である。A:図4BのAA断面図、B:図4AのBB断面図である。 第1実施形態の基板処理状況監視装置の使用方法の工程フロー図である。 第1実施形態の基板処理状況監視装置の他の使用方法の工程フロー図である。 第2実施形態の基板処理状況監視装置の使用方法の工程フロー図である。 第2実施形態の基板処理状況監視装置の他の使用方法の工程フロー図である。 シリコンウェハ表面のパターンに違いによる分光スペクトルの違いを示す測定結果の例である。 処理液の波打ちによる光強度への影響を説明するための図である。 処理液の波打ちによる光強度への影響を説明するための図である。 処理液の波打ちによる光強度への影響を説明するための図である。 処理液中のIPA濃度の測定結果の例である。
 本発明の基板処理状況監視装置の第1実施形態を、半導体ウェハの処理を例に説明する。本実施形態の基板処理状況監視装置は、処理中のウェハに光を照射し、ウェハからの反射光の分光スペクトルを利用して、基板処理の状況を監視する。
 図1を参照して、枚葉式の基板処理装置10は、ウェハWを水平または所望の角度に保持して回転させる回転テーブル11と、ウェハ上に処理液Sを供給するノズル12を有する。ノズル12は、処理液の種類毎に複数設けられ、それぞれ配管13によって図示しない処理液供給源に接続されている。ノズル12は、ウェハの中心から外縁にかけて半径方向に移動可能である。ウェハWを回転させながらその上面に処理液Sを供給すると、処理液は遠心力によってウェハの外縁に向かって移動し、移動量と供給量が釣り合う膜厚の処理液膜Fを形成する。処理液の供給が停止すると、処理液はウェハ外縁から排出され、処理液膜は膜厚を減じて、やがて消滅する。
 処理液Sの種類は特に限定されない。処理液の例としては、各種洗浄処理に用いられるアンモニア過酸化水素水混合液、硫酸過酸化水素水混合液、塩酸過酸化水素水混合液、希フッ酸やオゾン水、各種エッチング処理に用いられるフッ酸、硝酸、酢酸、リン酸およびそれらを混合した混酸、リンス処理に用いられる純水、乾燥処理に用いられるIPAなどが挙げられる。
 基板処理の内容は特に限定されず、洗浄処理、エッチング処理、乾燥処理などの状況を監視できる。また、基板処理の状況には、各種処理における処理液の濃度や液膜の厚さ、エッチング処理における基板表面の酸化膜や窒化膜の厚さ、各種処理中のウェハ表面の状態、例えばパターン倒壊の有無などが含まれる。
 基板処理状況監視装置20は、光源21、プローブ22、測光部23、演算部24、記録部25および制御部26を有する。プローブ22は、基板処理装置10の内部でウェハW上に配置され、本実施形態では、ウェハWに向かって光を照射する投光部と、ウェハ上の処理液中を通って基板から戻る反射光を受光する受光部を兼ねている。光源21、測光部23、演算部24、記録部25および制御部26は基板処理装置10の外部に配置されている。光源21とプローブ22、およびプローブ22と測光部23は、光ファイバ28によって接続されている。プローブ22から延びる光ファイバは途中で分岐して、一方は光源21に、他方は測光部23に到る。演算部24は、測光部23、記録部25および制御部26と電気的に接続されている。
 光源21は、少なくとも複数の波長を含む光を発生し、好ましくは、連続する波長範囲の光を発生する。光源が発生する光の波長は、目的に応じて決定することができる。例えば、光源に赤外線を含む光を発生させて、処理液中の成分による吸収量を測定することができる。また、例えば、ウェハ表面に形成された薄膜やパターンによる干渉が観測できる波長範囲を含む光を光源に発生させて、ウェハ表面の状態を監視することができる。光源21には公知のもの、例えば、ハロゲンタングステンランプ等の市販のランプを用いることができる。
 図2を参照して、プローブ22は、ウェハWの上方からウェハWに向かって光線Bを照射して、処理液膜F中を通ってウェハ表面から反射する光を受光する。つまり、本実施形態では、プローブ22が、ウェハW上の処理液に向かって光を照射する投光部と、ウェハの表面から反射する光を受光する受光部を兼ねている。光源21から光ファイバ28を通ってプローブの一端(図2の右端)から導入された光は、図2の左側に向かって水平に進み、レンズ31でコリメートされ、ミラー32で下向きに反射され、レンズ33を通って、ウェハWに向けて垂直に照射される。ウェハ上の処理液膜Fを通過してウェハWで反射された光線はレンズ33を通り、プローブ内を逆向きに辿って光ファイバ28へと導かれる。プローブ22は、ウェハの中心から外縁にかけて半径方向に移動可能である。
 図3を参照して、測光部23は、スリット42、線形可変フィルタ(Linear Variable Filter、以下「LVF」という)43およびフォトダイオード(PD)アレイ44を備える。プローブ22から光ファイバ28を通って測光部の一端(図3の左端)から導入された光は、図3の右側に向かって進み、縦長のスリット42によってLVFの幅に絞られ、LVF43で分光され、PDアレイ44で複数の波長の光強度が測定される。
 LVF43は、基板の一方向に沿った入射位置に応じて透過波長が異なる分光フィルタである。LVFとしては、各種公知のものを用いることができる。LVFを用いることによって、受光した光を複数の波長に同時に分光することができる。同時に分光するとは、分光された各波長の光が、時間的にずれることなく、同時刻に受光した光の一部であることをいう。例えば、それぞれ異なる波長の光を透過する複数の干渉フィルタを入れ替えながら分光するのでは、同時に分光したことにならない。光を同時に分光する手段はLVFには限られず、例えば、光ファイバからの光を回折格子に当てることによって、同時に分光された光が回折格子からの反射光として得られる。
 PDアレイ44は、PD素子45が線状に並列したもので、LVF43の異なる位置を透過した光の強度を各PD素子で測定することによって、分光された複数の波長の光強度を同時に測定する。複数の波長の光強度を同時に測定するとは、PDアレイの各PD素子が複数の光の強度を同時刻に測定することをいい、より正確には、各PD素子が同一時刻に露光を開始し、同一時刻に露光を終了して光強度を測定することをいう。
 複数の波長に同時に分光して、各波長の光強度を同時に測定する他の手段として、後述する実験では、それぞれ異なる波長の光を透過する干渉フィルタとPD素子が、光軸の周りに回転対称の位置に配置された分光光度計を用いた(図4)。
 図4に示した分光光度計50では、略円筒状の筐体56の一端(図4では左端)に接続された光ファイバ28から導入された光は、レンズ51によって光ファイバの光軸Xに平行な光線束にコリメートされる。光路には、光を通さない隔壁52が光軸Xに垂直に設けられ、隔壁52には同形状で同面積の開口部53が光軸Xの周りに回転対称に形成されている。開口部は、光軸Xに対して回転対称に配置されているので、いずれも光軸からの距離が等しく、各開口部に入射する光の強度は等しい。各開口部53には、開口部全体を塞ぐようにそれぞれ異なる波長の光を透過するバンドパスフィルタ(BPF)54が配置され、BPFの後方(光ファイバと反対側)に光検出素子55が配置されている。これにより、光ファイバ28から導入された光が、同時に分光されて、各波長の光強度が同時に測定される。なお、開口部の数は3には限られず、好ましくは3または4である。また、プローブ22からの光ファイバを分岐して、複数台の分光光度計50に並列に接続することによって、より多くの数の波長で光強度を測定することができる。
 図3に戻って、PDアレイ44を構成するPD素子45の数、つまり分光スペクトルの波長の数は、好ましくは32以上、より好ましくは64以上である。分光スペクトルの波長分解能が高いほど、ウェハ処理の進行状況をより的確に把握することができる。一方、PDアレイが有するPDの数は、好ましくは512以下、より好ましくは256以下である。分光スペクトルの波長分解能をこれ以上に高くしても特にメリットはなく、個々のPD素子に届く光量が小さくなるため、光強度の測定精度が低下したり、露光時間を長くする必要が生じたりするからである。
 ウェハ処理を監視中に分光スペクトルを生成するためのPDアレイ44の露光時間は、好ましくは、ウェハWの回転周期の自然数倍とする。ウェハからの反射光にPDアレイを露光している間にも、ウェハの回転によって、反射光が出射するウェハ上の位置は移動する。露光時間をウェハの回転周期の自然数倍とすることによって、どの瞬間から露光を開始しても、上方をプローブ22が通過する円周上のすべての位置からの反射光が均等に受光される。これによって、ウェハ表面の周方向の位置による反射スペクトルの変動を均すことができる。露光時間とウェハの回転周期を同期させるには、例えばウェハが1回転する毎に、基板処理装置10から演算部24に同期信号を送信し、演算部24が同期信号に合わせて露光開始および露光終了すればよい。
 あるいは、PDアレイ44の露光時間は、好ましくは2.5ms以下、より好ましくは1.5ms以下とする。露光時間を短くすることによって、計測する領域の空間分解能を高めることができる。また、測定された光強度への処理液による影響が確認しやすくなる。
 また、PDアレイ44の露光時間をウェハWの回転周期より短くした場合は、露光を行うサンプリング周期をウェハの回転周期の自然数分の1とすることで、ウェハが1回転する毎にウェハ上の同じ位置を計測することができる。これにより、例えば異常な分光スペクトルが検知された場合に、その位置をウェハ上で特定することが容易になる。
 演算部24は、測光部23から複数の波長の光強度を受信して、分光スペクトルを生成する。分光スペクトルは、各波長に対する光強度のリストとして表すことができ、ベクトルデータとして扱うことが可能である。分光スペクトルは、測光部から受信した1回の光強度の測定結果から生成してもよいし、複数回の光強度の測定結果を積算して生成してもよい。演算部24で生成された分光スペクトルは記録部25に記録される。
 演算部24は、生成した分光スペクトルと、参照スペクトル、または現に監視しているウェハ処理中に先に生成されて記録部25に記録された過去の分光スペクトルと比較することにより、ウェハ処理の状況の変化を検知する。参照スペクトルは、監視する処理と同じ処理が正しく行われたとき、または異常が発生したときの分光スペクトルである。より正確には、参照スペクトルは、監視する処理と同じ基板処理を同じ条件で実施し、同じ条件で測定したときに、当該処理を通じて異常がなかったと判断されたとき、または当該処理中に異常が発生した、もしくは異常を警戒すべき状況に達したと判断されたときの分光スペクトルである。
 なお、処理液の状況を監視したい場合には吸光スペクトルに、ウェハ表面の薄膜やパターンの状況を監視したい場合には光干渉スペクトルに多くの情報が含まれることになり、演算部24は、データ処理により分光スペクトル中の吸光成分と干渉成分を分離することもできる。データ処理によって、測定した分光スペクトルを修正することについては、第2実施形態で説明する。
 記録部25には、演算部24で生成された分光スペクトルが記録される。記録部は、主記憶装置、補助記憶装置、またはこれらの組み合わせによって実現できる。好ましくは、記録部は主記憶装置および補助記憶装置の両方からなり、状況を監視しているその処理中に刻々と生成される分光スペクトルは、主記憶装置に記録して演算部24による各種演算に供されるとともに、複製が補助記憶装置に記録される。
 また、記録部25は、処理中に生成される分光スペクトルと比較するための参照スペクトルを記録する。基板処理中の分光スペクトルは、反応の進行等に伴って連続的に変化するので、記録部は、正しく処理が行われたときの一連の分光スペクトル、または異常が発生したときの分光スペクトルを、一連の参照スペクトルとして記録する。実用上は、記録部25は、比較のための参照スペクトルとなり得る分光スペクトルを、処理液の吐出量、ウェハ回転数、ウェハ温度などの処理条件や、ウェハ上の測定位置、測光部23の露光時間、分光スペクトル生成のための積算時間などの測定条件とともに記録し、基板処理監視時には、記録された分光スペクトルの中から同じ処理条件および測定条件で記録された分光スペクトルを参照スペクトルとして採用できる。処理が正しく行われたときの分光スペクトルを参照スペクトルとする場合で、処理中の分光スペクトルの変化が大きい処理を行う場合は、処理中に生成された分光スペクトルを、一連の参照スペクトルの中の、例えば処理開始からの経過時間が同じである参照スペクトルと比較することができる。一連の参照スペクトルは、記録部の補助記憶装置に記録しておくことが好ましい。
 演算部24がウェハ処理の状況の変化を検知した結果、その変化が異常な変化であると判断されたときは、検知したウェハ処理の状況の変化に基づいて、制御部26が基板処理装置10に処理条件の変更を指示してもよい。
 次に、本実施形態の基板処理状況監視装置20の使用方法について、まず、ウェハ処理中に生成した分光スペクトルを参照スペクトルと比較する場合を図5のフローに沿って説明する。ここでは、参照スペクトルが、監視する処理と同じ処理が正しく行われたときの分光スペクトルであるとして説明する。
 なお、本明細書において、現に監視している処理中に生成された最新の分光スペクトルを「現在スペクトル」といい、現に監視している処理中に先に生成された、最新でない分光スペクトルを「過去スペクトル」という。
 図5を参照して、処理が開始されて、ウェハWが回転し、ウェハ上に処理液が供給されたら、監視を開始する。ウェハ表面に処理液が流されている状態で、プローブ22からウェハに向かって光を照射し、処理液中を通過してウェハ表面から反射する光をプローブで受光して、測光部23が複数の波長の光強度を測定して、演算部24が分光スペクトル(現在スペクトル)を生成する。生成した現在スペクトルは記録部25に記録する。
 次いで、演算部24が現在スペクトルを参照スペクトルと比較する。比較の対象とする参照スペクトルは、記録部25に記録された一連の参照スペクトルの中の、例えば処理開始からの経過時間が同じである参照スペクトルとする。現在スペクトルと参照スペクトルを比較する方法として、例えば、次式によりすべての波長における差の2乗を積算して、この値が予め設定した閾値を超えるか否かで、処理の進行状況が異常か正常かを判断してもよい。
   Σ(Ii-Iri)
   IiおよびIriは波長λiにおける現在スペクトルおよび参照スペクトルの強度
 また、光強度の絶対値ではなくスペクトルの形状に着目する方が、異常をより効率的、高精度に検知できる場合がある。この点から、次式により異なる2つの波長λ1、λ2の光強度の差を求めて、この値が予め設定した閾値を超えるか否かで、処理の進行状況が異常か正常かを判断してもよい。
   (I1-I2)-(Ir1-Ir2)
   添え字1、2はそれぞれ波長λ1およびλ2、rは参照スペクトルを意味する
 演算部24が現在スペクトルと参照スペクトルを比較した結果、両者の差が大きく、処理の進行状況が異常であると判断した場合は、管理者に異常を報告し、さらに、制御部26が基板処理装置10に処理条件の変更を指示してもよい。
 演算部24が現在スペクトルと参照スペクトルを比較した結果、両者の差が小さく、処理の進行状況が正常であると判断した場合は、演算部24が参照スペクトルを更新してもよい。例えば、参照スペクトルを、現在スペクトルや、現在スペクトル以前に得られた所定回数の分光スペクトルの移動平均で置き換えることができる。あるいは、参照スペクトルを、参照スペクトルと現在スペクトルの単純平均や重み付け平均などで置き換えることができる。
 以上の工程を、ウェハ処理が終了するまで繰り返す。
 なお、現在スペクトルと参照スペクトルの比較は繰り返し行われるので、処理の進行状況が正常であるか否かを判断するにあたって、比較結果の変化、例えば両者の差が広がっているか否かなどを考慮してもよい。
 また、異常が発生したときの分光スペクトルを参照スペクトルとする場合は、上記各式の値が予め設定した閾値を超えるか否かを、現在スペクトルと参照スペクトルの差が大きいか小さいかの基準として、両者の差が小さい場合に、処理に異常が発生したと判断できる。
 次に、本実施形態の基板処理状況監視装置20の他の使用方法として、現在スペクトルを過去スペクトルと比較する場合を、図6を参照して説明する。以下に、図5と異なる工程について説明する。
 ウェハ処理中に生成される分光スペクトルは、反応の進行等に伴って変化するが、その変化は連続的である。従って、現在スペクトルと過去スペクトル、特に現在スペクトルとその1回前のサンプリングで得られた過去スペクトルとの間に急激な変化があれば、何らかの突発的な異常が生じた可能性が高いと考えられる。
 現在スペクトルと過去スペクトルを比較する方法は、例えば、次式によりすべての波長における差の2乗を積算して、この値が急激に変化したか否かで、処理の進行状況が異常か正常かを判断してもよい。
   Σ(Ii-Ipi)
   Ipiは波長λiにおける過去スペクトルの強度
 また、次式により異なる2つの波長λ1、λ2の光強度の差を求め、この値が急激に変化したか否かで、処理の進行状況が異常か正常かを判断してもよい。
   (I1-I2)-(Ip1-Ip2)
 変化が急激であるか否かは、変化量が予め設定した閾値以上であるか否か、あるいは変化の割合が予め設定した閾値の範囲を超えているか否かによって判断することができる。
 なお、本実施形態の基板処理状況監視装置20を使用する場合に、現在スペクトルと参照スペクトルの比較(図5)、および現在スペクトルと過去スペクトルの比較(図6)の両方を実施してもよい。
 本実施形態において、現在スペクトルは、その時点でのウェハ表面の状況、ウェハ表面に酸化膜等の薄膜が形成されている場合は当該薄膜を含めたウェハ表面の状況、およびウェハ上の処理液の状況を反映している。このように、基板からの情報と処理液からの情報が混在する現在スペクトルを監視して、参照スペクトルまたは過去スペクトルと比較することにより、プロセスが正常に進行しているか否かが確認できる。
 次に、本発明の基板処理状況監視装置の第2実施形態を、上記第1実施形態と同様に、半導体ウェハの処理を例に説明する。本実施形態の基板処理状況監視装置は、ウェハからの反射光の分光スペクトルからノイズの影響を除外したスペクトルを利用して、基板表面の状況を監視する。
 なお、本明細書において「ノイズ」とは、本来検知したい基板処理の状況変化とは関係なく、測定する光強度を変動させてしまう種々の要因を指す。例えば、ウェハ上に処理液を供給して行われる処理では、処理液の種類や処理条件によって、処理液が波打つことがある。処理液が波打つと、ウェハからの反射光の分光スペクトルがその影響を受けるので、得られた分光スペクトルからウェハや処理液の状態を把握することが難しくなる。例えばエッチング処理において、分光スペクトルに含まれるウェハ表面の状態や処理液の成分に関する情報が処理液の波打ちによる分光スペクトルの変動に遮蔽されて、処理の進行に伴うウェハ表面または処理液の変化を分光スペクトルから読み取ることが難しい場合があった。この場合、処理液の波打ちに起因する光強度の変動はノイズである。一方で、検知したい基板処理の状況変化に関係して、測定する光強度を変動させるものはノイズではない。
 また、本明細書において、ノイズの影響を除外した分光スペクトルを「修正分光スペクトル」といい、現在スペクトル、過去スペクトル、参照スペクトルのそれぞれからノイズの影響を除外したものを「修正現在スペクトル」、「修正過去スペクトル」、「修正参照スペクトル」という。
 図1~3を参照して、本実施形態において、基板処理装置10、処理液Sの種類、基板処理状況監視装置20の構成は、第1実施形態と同じである。本実施形態では、修正分光スペクトルを利用するために、演算部24他の機能が第1実施形態と一部異なる。以下に、第1実施形態と異なる点について説明する。
 本実施形態の測光部23では、分光スペクトルを生成するためのPDアレイ44の露光時間を短くすることが特に好ましい。PDアレイ44の露光時間は、好ましくは2.5ms以下、より好ましくは1.5ms以下とする。これによって、分光スペクトルへの処理液の波打ちなどによる影響が判別しやすくなる。
 本実施形態の演算部24は、測光部23から複数の波長の光強度を受信して、分光スペクトルに代えて、ノイズの影響を除外した修正分光スペクトルを算出する。修正分光スペクトルは、測光部から受信した1回の光強度の測定結果から算出してもよいし、複数回の光強度の測定結果から算出してもよい。演算部24で生成された修正分光スペクトルは記録部25に記録される。なお、分光スペクトルに代えて修正分光スペクトルを算出することは、修正分光スペクトルを算出するとともに、第1実施形態と同様にノイズを除外しない分光スペクトルを生成することを排除するものではなく、演算部24は分光スペクトルと修正分光スペクトルの両方を生成してもよい。
 演算部24は、算出した修正現在スペクトルと、修正参照スペクトル、または修正過去スペクトルと比較することにより、ウェハ処理の状況の変化を検知する。
 本実施形態の記録部25は、ウェハ処理中に算出された一連の修正分光スペクトルおよび一連の修正参照スペクトルを記録する。
 本実施形態の基板処理状況監視装置20の使用方法のフローを、修正現在スペクトルを修正参照スペクトルと比較する場合を図7に、修正現在スペクトルを修正過去スペクトルと比較する場合を図8に示す。
 図7を参照して、第1実施形態の図5と異なる点は、演算部24が修正現在スペクトルを算出し、これを記録部25に記録し、修正参照スペクトルと比較して、必要に応じて修正参照スペクトルを更新することである。修正現在スペクトルと修正参照スペクトルの比較は、第1実施形態における現在スペクトルと参照スペクトルの比較と同様に行うことができる。
 図8を参照して、第1実施形態の図6と異なる点は、演算部24が修正現在スペクトルを算出し、これを記録部25に記録し、修正過去スペクトルと比較することである。修正現在スペクトルと修正過去スペクトルの比較は、第1実施形態における現在スペクトルと過去スペクトルの比較と同様に行うことができる。なお、修正分光スペクトルの具体的な算出方法は後述する。
 ここで、ノイズおよびその除外方法についてさらに説明する。ノイズには、そのノイズが分光スペクトルにどのような影響を及ぼすかを予め推定できるものとできないものがある。前者のノイズは、その影響を除外するための演算を予め定めておいて、基板処理監視時に測定した分光スペクトルから予め定めた演算によって除去することができる(静的なデータ処理)。前者のノイズの例としては、基板の温度変化、処理液の温度変化、処理液の成分による吸収、処理液の濃度変化、処理液の液膜厚の変化などが挙げられる。一方、後者のノイズは、基板処理監視時に測定された分光スペクトルを解析することによって初めて除去可能となる(動的なデータ処理)。後者のノイズの代表的なものは、処理液の波打ちである。
 静的なデータ処理によるノイズの除去方法の一例は、概略次のとおりである。予め、監視対象とする基板処理と同様の条件で、n個の波長の光強度からなる分光スペクトルを測定して、n次元空間ベクトルB0で表す。次に、除去したいノイズの要因(1,2,・・・,m)をそれぞれ単独で変化させたときの分光スペクトルを測定して、n次元空間ベクトルB1,B2,・・・,Bmで表す。n次元ベクトル(B1-B0),(B2-B0),・・・,(Bm-B0)のすべてに直交する(n-m)次元の部分空間を求めておく。基板処理監視時に測定された分光スペクトルをn次元空間ベクトルAで表し、上記部分空間に投影すると(n-m)次元空間ベクトルPが求められる。得られたベクトルPは、上記ノイズ要因の影響を受けない。なお、除外する要因の数mは特に限定されず、自然数であればよく、1つの要因によるノイズのみを除去したい場合であれば、m=1として、(B1-B0)のみに直交する部分空間を求めればよい。なお、この分光スペクトルの部分空間への投影による方法の詳細は、特許文献3に開示されている。
 例えば、処理液の温度変化の検知を目的としない場合は、処理液の温度はノイズの要因となる。処理液の温度変化に起因するノイズを除去する場合は、予め、監視対象とする基板処理と同様の条件で、処理液の温度のみを変化させて分光スペクトルB0およびB1を測定し、ベクトル(B1-B0)に直交する部分空間を求め、基板処理時に測定された分光スペクトルAの当該部分空間への投影をベクトルPとして求めると、ベクトルPは処理液の温度によって変化しない。このベクトルPを、処理液の温度の影響を除外した修正分光スペクトルとして本実施形態の基板処理監視装置を使用すると、処理液の温度の異常を検知することはできないが、基板処理の状況のうち、処理液の温度以外の状況を、より明瞭に監視しやすくなる。この方法は、処理液の温度を別途の手段で監視できる場合などに有効である。
 また、例えば、処理液中の成分の濃度や処理液膜の厚さの変化の検知を目的としない場合に、処理液中の成分の濃度や、処理液膜の厚さに起因するノイズを除外すれば、分光スペクトル中の干渉成分の比重の大きな修正分光スペクトルが得られる。これにより、基板処理の状況のうち、ウェハ表面の薄膜の厚さなど、干渉成分への影響が大きい部分の状況を、より明瞭に監視しやすくなる。この方法は、処理液による吸収が大きい近赤外域の干渉成分が重要となる場合に、特に有効である。
 動的なデータ処理を必要とするノイズの代表的なものは、処理液の波打ちである。処理液の波打ちは、基板処理を同じ条件で行った場合でも、処理の度にその状況が異なる。そのため、分光スペクトルから波打ちの影響を除外するための演算方法を事前の実験によって定めることができず、そのため、基板処理監視時に測定した分光スペクトルを解析することによって初めて波打ちの影響を除去可能となる。また、波打ちによるノイズは、処理の度にその状況が異なることから、分光スペクトルを参照スペクトル等と比較する上で大きな障害となる。処理液の波打ちの影響の有無を判別して、それに起因するノイズを除去する方法は、後述の実験2および3で説明する。
 また、測定した分光スペクトルの吸光成分と干渉成分の分離は、動的なデータ処理によって行うこともできる。例えば、測定した分光スペクトルに対して波数kを横軸にとって離散フーリエ変換(DFT)を行うことで、干渉の周期が求められる。このDFTの結果から干渉成分と考えられる次数成分の振幅を低減させたスペクトルを計算し、得られたスペクトルに対して逆離散フーリエ変換(IDFT)を行うことで、分光スペクトルから干渉成分を除去した吸収スペクトルが得られる。
 なお、本実施形態の基板処理監視装置を使用する場合に、修正現在スペクトルと修正参照スペクトルの比較(図7)、および修正現在スペクトルと修正過去スペクトルの比較(図8)の両方を実施してもよい。また、ノイズの影響を除去するために、静的なデータ処理と動的なデータ処理の両方を実施してもよい。また、修正現在スペクトルと修正参照スペクトルまたは修正過去スペクトルとの比較と、第1実施形態で説明した、現在スペクトルと参照スペクトルまたは過去スペクトルとの比較の両方を実施してもよい。
 次に、本発明の基板処理状況監視装置の第3実施形態を、上記第1実施形態と同様に、半導体ウェハの処理を例に説明する。本実施形態の基板処理状況監視装置は、機械学習を行う。
 図1~3を参照して、本実施形態において、基板処理装置10、処理液Sの種類、基板処理状況監視装置20の構成は、第1実施形態と同じである。
 事前に、機械学習によって、基板処理の状況の異常を推定するための基板処理状況推定モデル(以下、単に「推定」モデルという)を生成する。教師データとしては、監視しようとする基板処理と同じ処理を行ったときの各種処理条件、処理中の一連の分光スペクトルおよび処理結果を用いる。処理条件は、例えば、基板の回転速度、処理液の種類、濃度、温度および供給速度である。処理結果は、例えば、処理が正常に終了したか否か、異常が発生した場合は発生した異常の種類である。生成した学習済みの推定モデルは、記録部25に記録しておく。
 基板処理中に、演算部24が、各種処理条件と現在スペクトルを推定モデルに入力して、基板処理の異常の有無および異常が発生した場合は発生した異常の種類を推定モデルの出力として得る。基板処理終了後に推定モデルの出力が正しかったか否かを推定モデルに入力して、推定モデルを継続的に改善する。
 本実施形態の基板処理状況監視装置では、機械学習による基板処理状況推定モデルを利用することによって、処理の異常が発生したときにその異常の種類、例えば、処理液の液切れやウェハ表面のパターン倒壊などをその場で知ることが容易になる。
 上記実施形態について、実験結果によってさらに詳細を説明する。実験に用いた装置は、図1に示したもので、光源21にはタングステンランプ(15W)を用いた。測光部23には図4に示した分光光度計3台を並列にして用い、近赤外域での9つの波長で光強度を測定した。この測定値に基づいて、演算部24が9波長の光強度で表された分光スペクトルまたは修正分光スペクトルを生成した。
 実験1として、分光スペクトルから基板の状態の変化が検知可能であることを確認した。
 実験は、径200mmで、異なるパターニングがされた領域が周方向に並ぶシリコンウェハを1000rpmで回転させて、ウェハの中心に純水を0.5L/分で供給しながら、ウェハの中心から31.5mmの位置に光を照射して、反射光から分光スペクトルを生成した。サンプリングの露光時間は100μsとした。
 図9に、10msの間に測定された各波長における光強度の変化を示す。反射光を出射するウェハ上の位置は、ウェハの回転に伴って周方向に移動し、何回かのサンプリングを経て、隣接する他のパターンの領域に移る。図9から、ウェハ表面に形成されたパターンの違いによって、受光した反射光の分光スペクトルが明らかに異なることが分かる。この結果から、上記第1実施形態の基板処理状況監視装置を用いて、処理液を供給しながら行うウェハの処理中にウェハ表面の状態を監視できること、例えば処理中にウェハのパターンの倒壊を検知できることが確認できた。
 実験2として、処理液の波打ちの影響が判別可能であることを確認した。
 実験は、径200mmのパターニングされていないシリコンウェハを500rpmで回転させて、ウェハの中心に純水を1.0L/分で供給しながら、ウェハの中心から50mmの位置に光を照射し、反射光から分光スペクトルを生成した。サンプリングの露光時間は1msとした。
 図10に、波長1300nmでの受光強度から算出した吸光度を示す。吸光度Aは、測定した受光強度をI、純水を供給しない場合の受光強度をIとして、次式により算出した。
   A=-log(I/I
 図10には1秒間、すなわち1000回の測定による受光強度がプロットされている。図10において、吸光度は大きくばらつき、飛び抜けて大きな値が時おり観測された。この結果からは、処理液が波打つことによる光強度の変動は、単に処理液膜の厚さの大小の変化によるものではなく、処理液に照射された光が散乱されて、受光部に戻る光量が減少したことによるものであると考えられた。そして、露光時間が1msの場合に、処理液の波打ちによる光強度の変動が明瞭に判別可能であることが確認できた。
 図11および図12に、図10の実験での受光強度をそれぞれ2回または3回ずつ積算してから算出した吸光度を示す。図11および図12は、露光時間をそれぞれ2ms、3msとした場合の結果に相当する。図10~図12を比較すると、処理液の波打ちによる光強度への影響は、露光時間が短いほど判別が容易であることが分かる。この結果から、測光部の露光時間は2.5ms以下であることが好ましく、1.5ms以下であることがさらに好ましいことが分かった。
 なお、シリコンウェハの回転速度を100~1000rpm、純水の供給速度を0.1~1.0L/分の範囲で変えた実験の結果からも、露光時間の好ましい範囲として同様の結果が得られた。
 実験3として、分光スペクトルから処理液の波打ちによるノイズの影響を除外した修正分光スペクトルを用いることの効果を、処理液中の成分濃度を測定することによって確認した。
 実験は、径200mmのパターニングされていないシリコンウェハを1000rpmで回転させて、ウェハの中心に、純水を50mL/分で18秒間供給した後、純水の供給を停止してIPAを50mL/分で約20秒間供給した。ウェハの中心から50mmの位置に光を照射し、反射光から9波長の光強度を測定した。露光時間は1msとして、0.1秒間に測定された100回の測定による光強度から処理液による影響を除外して吸光度を求め、液膜厚とIPA-水混合比を変えて予め測定した一群の吸光度データを用いて多変量解析を行うことによって、ウェハ上の処理液中のIPA濃度および液膜厚を求めた。
 処理液の波打ちによる影響は、以下の方法によって除外した。各波長について、0.1秒間に測定された100回の光強度のそれぞれから吸光度を算出し、値の小さい10個の吸光度データを、無条件に異常値とみなして排除した。そして、残りの90個のなかの最小値を、吸光度の正常な値であるとみなして基準値とした。なお、基準値は、正常値であることが極めて確実と考えられる値であり、無条件に排除した10個のデータが正常値を含んでいても構わない。次に、基準値+0.2を閾値として、90個の吸光度データの中で閾値超のデータを異常値と判定して、閾値以下のデータを正常値として残した。なお、閾値の設定方法は、予め一定の値、例えば予想される最大の吸光度に定めておいてもよいし、本実験のように、基準値と所定の計算式に従って定めてもよい。正常値として残した吸光度データから、多変量解析によって、ウェハ上の処理液中のIPA濃度を求めた。
 図13に、処理液を純水からIPAに切り替えた前後の、ウェハ上のIPAの存在量の測定結果を示す。横軸は時間経過、縦軸はIPAの濃度を表している。白丸は、異常値でないと判定された吸光度の値に基づいて算出された0.1秒毎のIPA濃度である。黒丸は、IPA濃度の時間変化の指標で、直前5回の濃度の最大値と最小値の差の絶対値を取ったものである。IPA濃度が100%を超えているのは定量誤差によるものであるが、算出されたIPA濃度の変化はなめらかで、処理液がIPAに置換された後のIPA変動量も安定している。
 図13の結果は、処理液の波打ちによる影響を除外することによって、処理液中の成分量を精度よく定量できることを示したものであるが、この結果から、処理液によるノイズの影響を除外することによって、基板処理全体の進行状況をより明瞭に監視できることが分かった。
 なお、基板処理の状況をリアルタイムで監視するには、ある程度短いサンプリング間隔で現在スペクトルまたは修正現在スペクトルを求める必要があり、サンプリング間隔は、好ましくは0.5秒以下、より好ましくは0.25秒以下、特に好ましくは0.1秒以下であると言われている。したがって、1回の光強度の測定結果から分光スペクトルを生成する場合でも、露光時間は好ましくは0.5秒以下、より好ましくは0.25秒以下、特に好ましくは0.1秒以下である。また、実験3の方法で処理液による影響を除外した修正分光スペクトルを算出する場合は、上記時間内に複数回の光強度測定を行う必要がある。実験2の光強度のばらつきを統計的に処理した結果によれば、例えば許容誤差を0.05とすると、上記時間内に、95%信頼区間では30~50回程度、99%信頼区間では60~80回程度の光強度測定を行う必要がある。
 本発明は、上記の実施形態や実施例に限定されるものではなく、その技術的思想の範囲内で種々の変形が可能である。
 例えば、基板処理状況監視装置および方法は、シリコンウェハ上の処理液を対象とするものには限られず、基板は、炭化ケイ素、ガリウムヒ素等の化合物半導体、サファイア等の結晶ウェハ、ガラス基板であってもよい。
 また、例えば、上記実施形態では、投光部と受光部を兼ねるプローブ22からウェハWの上面に向かって垂直に光を照射し、処理液中を通過してウェハWから反射した光をプローブ22で受光することによって基板処理状況を監視したが、投光部と受光部を離して、投光部からウェハW上面に斜めに光を照射し、処理液中を通過してウェハWから反射した光を受光部で受光してもよい。さらに、ウェハWを透過した光を用いて基板処理状況を監視してもよい。具体的には、ウェハの上または下に配置した投光部からウェハに向かって光を照射して、ウェハを挟んで投光部と相対する受光部でウェハおよび処理液中を通過した光を受光し、受光した透過光の分光スペクトル等を生成して、基板処理の状況の変化を検知することができる。
 10 基板処理装置; 11 回転テーブル; 12 ノズル; 13 配管
 20 基板処理状況監視装置; 21 光源; 22 プローブ(投光部、受光部); 23 測光部; 24 演算部; 25 記録部; 26 制御部; 28 光ファイバ
 31、33 レンズ; 32 ミラー
 42 スリット; 43 線形可変フィルタ(LVF); 44 フォトダイオードアレイ(PDアレイ); 45 フォトダイオード素子(PD素子)
 50 分光光度計; 51 レンズ; 52 隔壁; 53 開口部; 54 バンドパスフィルタ(BPF); 55 光検出素子; 56 筐体
 B 光線; F 処理液膜; S 処理液; W ウェハ(基板); X 分光光度計の光軸

Claims (14)

  1.  回転する基板上に処理液を供給して行われる基板処理の状況を監視する装置であって、
     前記基板に向かって光を照射する投光部と、
     前記処理液中を通過した光を受光する受光部と、
     前記受光部が受光した光を複数の波長に同時に分光し、前記複数の波長の光強度を同時に測定する測光部と、
     前記測光部が測定した前記複数の波長の光強度から分光スペクトルを生成し、前記分光スペクトルを、参照スペクトル、または前記基板処理中に先に生成された過去の前記分光スペクトルと比較することにより、前記基板処理の状況の変化を検知する演算部と、
    を有する基板処理状況監視装置。
  2.  前記演算部は、
      前記分光スペクトルを前記参照スペクトルと比較することにより前記基板処理の状況の変化を検知し、
      前記分光スペクトルを用いて前記参照スペクトルを更新する、
    請求項1に記載の基板処理状況監視装置。
  3.  前記演算部は、前記測光部が測定した前記複数の波長の光強度から、前記分光スペクトルに代えて、前記分光スペクトルからノイズの影響を除外した修正分光スペクトルを算出し、前記修正分光スペクトルを、前記参照スペクトルから前記ノイズの影響が除外された修正参照スペクトル、または前記基板処理中に先に算出された過去の前記修正分光スペクトルと比較することにより、前記基板処理の状況の変化を検知する、
    請求項1に記載の基板処理状況監視装置。
  4.  前記演算部は、動的なデータ処理によって、前記分光スペクトルおよび前記参照スペクトルから前記ノイズの影響を除外して、それぞれ前記修正分光スペクトルおよび前記修正参照スペクトルを算出する、
    請求項3に記載の基板処理状況監視装置。
  5.  前記ノイズが、前記処理液の波打ちに起因するノイズである、
    請求項4に記載の基板処理状況監視装置。
  6.  前記演算部は、
      前記修正分光スペクトルを前記修正参照スペクトルと比較することにより前記基板処理の状況の変化を検知し、
      前記修正分光スペクトルを用いて前記修正参照スペクトルを更新する、
    請求項3~5のいずれか一項に記載の基板処理状況監視装置。
  7.  検知した前記基板処理の状況の変化に基づいて前記基板処理の条件を変更する制御部をさらに備える、
    請求項1~5のいずれか一項に記載の基板処理状況監視装置。
  8.  前記測光部は、前記基板の回転周期の自然数倍の時間を露光時間として、前記複数の波長の光強度を測定する、
    請求項1~5のいずれか一項に記載の基板処理状況監視装置。
  9.  前記測光部は、2.5ミリ秒以下の露光時間で前記複数の波長の光強度を測定する、
    請求項1~5のいずれか一項に記載の基板処理状況監視装置。
  10.  前記測光部は、前記受光部が受光した光を32以上の波長に分光する、
    請求項1~5のいずれか一項に記載の基板処理状況監視装置。
  11.  前記測光部は、線形可変フィルタを有し、前記受光部が受光した光を前記線形可変フィルタによって分光する、
    請求項1~5のいずれか一項に記載の基板処理状況監視装置。
  12.  回転する基板上に処理液を供給して行われる基板処理の状況を監視する装置であって、
     前記基板に向かって光を照射する投光部と、
     前記処理液中を通過した光を受光する受光部と、
     前記受光部が受光した光を複数の波長に同時に分光し、前記複数の波長の光強度を同時に測定する測光部と、
     前記測光部が測定した前記複数の波長の光強度から分光スペクトル、またはノイズの影響を除外した修正分光スペクトルを算出し、前記分光スペクトルまたは前記修正分光スペクトルを、前記基板処理の状況の異常を推定するための機械学習された学習済みの基板処理状況推定モデルに入力することで、前記基板処理の異常を推定する演算部と、
    を有する基板処理状況監視装置。
  13.  回転する基板上に処理液を供給して行われる基板処理の状況を監視する方法であって、
     前記基板に向かって光を照射する投光工程と、
     前記処理液中を通過して前記基板の表面から反射する光を受光する受光工程と、
     前記受光工程で受光した光を複数の波長に同時に分光し、前記複数の波長の光強度を同時に測定する測光工程と、
     前記測光工程で測定された前記複数の波長の光強度から分光スペクトルを生成する分光スペクトル生成工程と、
     前記分光スペクトルを、参照スペクトル、または前記基板処理中に先に生成された過去の前記分光スペクトルと比較することにより、前記基板処理の状況の変化を検知する検知工程と、
    を有する基板処理状況監視方法。
  14.  前記分光スペクトル生成工程に代えて、前記測光工程で測定された前記複数の波長の光強度から、ノイズの影響を除外した修正分光スペクトルを算出する修正分光スペクトル算出工程を有し、
     前記検知工程が、前記修正分光スペクトルを、前記ノイズの影響が除外された修正参照スペクトル、または前記基板処理中に先に算出された過去の前記修正分光スペクトルと比較することにより、前記基板処理の状況の変化を検知する工程である、
    請求項13に記載の基板処理状況監視方法。
PCT/JP2023/010310 2022-03-30 2023-03-16 基板処理状況監視装置および基板処理状況監視方法 WO2023189656A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-055201 2022-03-30
JP2022055201 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023189656A1 true WO2023189656A1 (ja) 2023-10-05

Family

ID=88201698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010310 WO2023189656A1 (ja) 2022-03-30 2023-03-16 基板処理状況監視装置および基板処理状況監視方法

Country Status (2)

Country Link
TW (1) TW202403288A (ja)
WO (1) WO2023189656A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011253078A (ja) * 2010-06-03 2011-12-15 Nikon Corp 光学部品及び分光測光装置
WO2015163164A1 (ja) * 2014-04-22 2015-10-29 株式会社 荏原製作所 研磨方法および研磨装置
JP2019168460A (ja) * 2019-04-25 2019-10-03 倉敷紡績株式会社 基板上の液体成分の測定方法および基板処理装置
JP2020035961A (ja) * 2018-08-31 2020-03-05 株式会社Screenホールディングス 基板処理方法および基板処理装置
JP2020202290A (ja) * 2019-06-10 2020-12-17 東京エレクトロン株式会社 基板検査システム、基板検査方法、及び記憶媒体
JP2022010553A (ja) * 2020-06-29 2022-01-17 株式会社荏原製作所 研磨方法、研磨装置、およびプログラムを記録したコンピュータ読み取り可能な記録媒体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011253078A (ja) * 2010-06-03 2011-12-15 Nikon Corp 光学部品及び分光測光装置
WO2015163164A1 (ja) * 2014-04-22 2015-10-29 株式会社 荏原製作所 研磨方法および研磨装置
JP2020035961A (ja) * 2018-08-31 2020-03-05 株式会社Screenホールディングス 基板処理方法および基板処理装置
JP2019168460A (ja) * 2019-04-25 2019-10-03 倉敷紡績株式会社 基板上の液体成分の測定方法および基板処理装置
JP2020202290A (ja) * 2019-06-10 2020-12-17 東京エレクトロン株式会社 基板検査システム、基板検査方法、及び記憶媒体
JP2022010553A (ja) * 2020-06-29 2022-01-17 株式会社荏原製作所 研磨方法、研磨装置、およびプログラムを記録したコンピュータ読み取り可能な記録媒体

Also Published As

Publication number Publication date
TW202403288A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
JP6522915B2 (ja) 基板上の液体成分の測定方法および基板処理装置
US8885173B2 (en) Film thickness measurement device and film thickness measurement method
KR100798648B1 (ko) 주성분 분석을 이용한 공정 감시 방법 및 장치
US6771374B1 (en) Scatterometry based measurements of a rotating substrate
JP2018091836A (ja) 半導体処理システム内の光信号の校正のためのシステムおよび方法
KR20120004394A (ko) 막 두께 측정 장치 및 측정 방법
JP2004507070A (ja) パルス広帯域光源を用いてプラズマエッチングおよび堆積プロセスをその場モニタリングするための方法および装置
JPH0786254A (ja) 半導体製造装置及び半導体製造方法
US6556303B1 (en) Scattered signal collection using strobed technique
JP3694662B2 (ja) 半導体素子製造プロセスにおける膜の処理量測定方法と装置、及びそれを用いた被処理材の処理方法と装置、及びそれを用いたプロセスの終点判定方法と装置
JP7082639B2 (ja) 基板上の液体成分の測定方法および基板処理装置
JP2022533246A (ja) ハイパースペクトルイメージングを使用する半導体プロセスの光学的診断
US20080078948A1 (en) Processing termination detection method and apparatus
JP2022523054A (ja) 高アスペクト比構造の測定のための中赤外分光法
WO2020028105A1 (en) Normal-incidence in-situ process monitor sensor
JP2016080668A (ja) 表面処理状況モニタリング装置及び表面処理状況モニタリング方法
WO2023189656A1 (ja) 基板処理状況監視装置および基板処理状況監視方法
WO2022118694A1 (ja) ガス分析装置及びガス分析方法
JP2021003789A (ja) 光学式膜厚測定装置の最適な動作レシピを決定する方法、装置、およびシステム
JP2019168460A (ja) 基板上の液体成分の測定方法および基板処理装置
JP2013048183A (ja) エッチングモニタリング装置
JP4385433B2 (ja) 近赤外分析による製造運転制御方法
WO2016166593A1 (en) Inspection method and device for inspecting a surface pattern
JP7012900B1 (ja) プラズマ処理装置及びプラズマ処理方法
JP6750410B2 (ja) レーザ式ガス分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779674

Country of ref document: EP

Kind code of ref document: A1