WO2023189259A1 - Worm reduction gear and engagement chain drive device - Google Patents

Worm reduction gear and engagement chain drive device Download PDF

Info

Publication number
WO2023189259A1
WO2023189259A1 PCT/JP2023/008436 JP2023008436W WO2023189259A1 WO 2023189259 A1 WO2023189259 A1 WO 2023189259A1 JP 2023008436 W JP2023008436 W JP 2023008436W WO 2023189259 A1 WO2023189259 A1 WO 2023189259A1
Authority
WO
WIPO (PCT)
Prior art keywords
worm
threaded portion
output shaft
wheels
worm wheel
Prior art date
Application number
PCT/JP2023/008436
Other languages
French (fr)
Japanese (ja)
Inventor
卓也 北田
Original Assignee
株式会社椿本チエイン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社椿本チエイン filed Critical 株式会社椿本チエイン
Publication of WO2023189259A1 publication Critical patent/WO2023189259A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • F16H1/12Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes
    • F16H1/16Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes comprising worm and worm-wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H19/00Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion
    • F16H19/02Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/22Toothed members; Worms for transmissions with crossing shafts, especially worms, worm-gears

Definitions

  • the present disclosure relates to a worm reducer and a meshing chain drive device.
  • a worm reducer described in Patent Document 1 is known.
  • the worm reducer includes a worm and a worm wheel.
  • a spiral threaded portion is formed on the circumferential surface of the worm.
  • Teeth are formed on the circumferential surface of the worm wheel and engage with the threaded portion of the worm.
  • the worm is driven and rotated by a driving force transmitted from an electric motor, with both ends in the axial direction being rotatably supported by a pair of bearings.
  • the worm wheel rotates as the worm rotates while its teeth mesh with the threaded portion of the worm.
  • An output shaft for transmitting the reduced rotational force to the output-side motion mechanism is connected to the worm wheel so as to rotate together with the worm wheel.
  • the second output shaft is arranged parallel to the first output shaft. and a first helical gear attached to a predetermined position in the axial direction of the first output shaft, and a second helical gear attached to a position corresponding to the attachment position of the first helical gear of the first output shaft in the axial direction of the second output shaft. are engaged.
  • a worm reducer includes a worm having a spiral threaded portion formed on its circumferential surface and a plurality of worm wheels, the circumferential surface of each worm wheel meshing with the threaded portion of the worm.
  • the plurality of worm wheels each include a plurality of worm wheels each having a tooth portion formed thereon, and a bearing rotatably supporting both ends of the worm.
  • the plurality of worm wheels are arranged in such a manner that their axes are parallel to each other, and the plurality of worm wheels are arranged in such a manner that their axes are parallel to each other.
  • An output shaft corresponding to each of the worm wheels is connected to rotate with the rotation of the worm wheel.
  • a meshing chain drive device includes a worm having a spiral threaded portion formed on its peripheral surface and a plurality of worm wheels, the peripheral surface of each worm wheel having a spiral threaded portion formed thereon. a plurality of worm wheels each having teeth that mesh with each other; and a bearing rotatably supporting both ends of the worm; a first threaded portion formed on the worm wheel; and a second threaded portion formed on the circumferential surface of the worm at a second position different from the first position in the axial direction, and the plurality of worm wheels A first worm wheel rotates as a result of driving rotation of the worm with a first tooth meshing with the first thread of the worm, and a second tooth meshing with the second thread of the worm.
  • a first output shaft is connected to the first worm wheel to rotate as the first worm wheel rotates, and a second output shaft is connected to the second worm wheel to rotate as the second worm wheel rotates.
  • a worm reducer connected to rotate the first output shaft; a first rotating member that rotates as the first output shaft rotates; and a second rotating member that rotates as the second output shaft rotates;
  • the rotating member and the second rotating member are configured such that an elongated first chain member that can move forward and backward in the length direction based on the rotation of the first rotating member is engaged with the first rotating member, and the first chain member is engaged with the first rotating member.
  • FIG. 1 is a perspective view from the front side schematically showing the overall configuration of a movable body moving device including a worm reducer and a meshing chain drive device according to an embodiment.
  • FIG. 2 is a perspective view of the movable body moving device shown in FIG. 1 viewed from the back side in the opposite direction to that in FIG. 1.
  • FIG. 3 is a partially cutaway side view showing a main part of the worm reducer.
  • FIG. 4 is a side view showing a simplified main part of a modified worm reducer.
  • the movable body moving device 11 includes a meshing chain 12 that can move forward and backward along the length direction, and a meshing chain drive device 13 that drives the meshing chain 12 to move forward and backward.
  • the movable body moving device 11 includes a base portion 14 that supports the meshing chain drive device 13. The base portion 14 is fixed to a rectangular plate-shaped substrate portion 15 extending in the up-down direction and the left-right direction in FIGS.
  • a pair of left and right side plate portions 16 are provided. Note that, in FIGS. 1 and 2, illustrations of a portion of the movable body moving device 11 that is connected to the proximal end, which is the end of the engaging chain 12 in the retraction direction, and a storage case that stores the same portion are omitted. .
  • the meshing chain 12 includes a first chain member 17 and a second chain member 18 that form a pair that can mesh with each other.
  • the first chain member 17 and the second chain member 18 each have a plurality of link plates 19 arranged in series.
  • the first chain member 17 and the second chain member 18 are configured to have an elongated shape by sequentially connecting the link plates 19 adjacent to each other in the series direction with the connecting pins 20.
  • the first chain member 17 and the second chain member 18 are connected to each other via a joint portion 21 at link plates 19 located at the tip portions of each other, which are the upper ends in FIG.
  • a movable body 22 is attached to the joint portion 21. The movable body 22 moves forward and backward together with the meshing chain 12 while supporting functional members (not shown), such as a top plate that moves up and down and a door that opens and closes.
  • the vertical direction in FIG. 1 is defined as a forward/backward direction Z in which the meshing chain 12 moves forward and backward when moving the movable body 22.
  • the upward direction in FIG. 1 is defined as the advancing direction Z1 of the meshing chain 12
  • the downward direction in FIG. 1 is defined as the retreating direction Z2 of the meshing chain 12.
  • the left-right direction in FIG. 1 the first chain member 17 and the second chain member 18 in the meshing chain 12 mesh with each other and diverge as they move in the backward direction Z2 from the meshed state where they mesh with each other and become integrated.
  • the branching direction be X.
  • the front-rear direction in FIG. 1 is defined as a depth direction Y that is orthogonal to both the advance/retreat direction Z and the branching direction X.
  • the depth direction Y coincides with the width direction of the meshing chain 12.
  • the first chain member 17 and the second chain member 18 in the meshing chain 12 mesh with each other and become integrated into a rod shape by moving in the advancing direction Z1, which is the direction in which their respective tips are located in the length direction.
  • the first chain member 17 and the second chain member 18 in the meshing chain 12 are disengaged from each other and branch by moving from the meshing state in the backward direction Z2 opposite to the advancing direction Z1.
  • the first chain member 17 and the second chain member 18 mesh with each other by moving in the traveling direction Z1, they are integrated into a straight rod shape.
  • the first chain member 17 and the second chain member 18 may be configured to be integrated into a curved rod shape when they mesh with each other.
  • the meshing chain drive device 13 includes a first electric motor 23 , a second electric motor 24 , a worm reducer 25 , a first output shaft 26 , a second output shaft 27 , a first sprocket 28 , and a second sprocket 29 .
  • the first electric motor 23 and the second electric motor 24 are supported on the side of the side plate 16 of the base portion 14 that is opposite to the side on which the substrate portion 15 is located.
  • the worm reducer 25 is disposed at a position on the rear side of the base portion 14 that is the rear side of the substrate portion 15 and between the left and right side plate portions 16 .
  • the worm reducer 25 is driven by the driving force of the first electric motor 23 or the second electric motor 24.
  • the first output shaft 26 and the second output shaft 27 are each rotatably supported by a pair of through holes (not shown) formed at two positions spaced apart in the branching direction X in the substrate portion 15 of the base portion 14 . That is, the first output shaft 26 and the second output shaft 27 are rotated by the driving force output from the worm reducer 25 in a state where their axes are spaced apart from each other in the branching direction X and extend parallel to the depth direction Y. It is configured as follows.
  • the first sprocket 28 and the second sprocket 29 are arranged at a position in front of the base plate part 15 in the base part 14 and between the left and right side plate parts 16.
  • the first sprocket 28 and the second sprocket 29 are fixed to respective ends of the first output shaft 26 and the second output shaft 27 that protrude toward the front side of the base plate portion 15. That is, the first sprocket 28 and the second sprocket 29 are configured to rotate together with the first output shaft 26 and the second output shaft 27.
  • first sprocket 28 corresponds to a first rotating member that rotates as the first output shaft 26 rotates
  • second sprocket 29 corresponds to a second rotating member that rotates as the second output shaft 27 rotates. Equivalent to.
  • a portion of the first chain member 17 in the length direction is engaged with the first sprocket 28 in a wrapping manner.
  • a portion of the second chain member 18 in the length direction is engaged with the second sprocket 29 in a winding manner. Therefore, when the first output shaft 26 and the second output shaft 27 rotate as the worm reducer 25 is driven, the first sprocket 28 and the second sprocket 29 also rotate in the same direction. As the first sprocket 28 and the second sprocket 29 rotate, the meshing chain 12 made up of the first chain member 17 and the second chain member 18 moves forward and backward in the length direction.
  • the worm reducer 25 includes a worm 30, a first worm wheel 31, a second worm wheel 32, a first bearing 33, and a second bearing 34.
  • the first bearing 33 and the second bearing 34 are attached to a motor shaft (not shown) of each electric motor 23, 24 on the side opposite to the side on which the electric motors 23, 24 are supported in the side plate portion 16 of the base portion 14. It is supported with its axes aligned with each other. That is, in FIG. 3, the first bearing 33 and the second bearing 34 are arranged as a pair above the first output shaft 26 and the second output shaft 27 and spaced apart in the branching direction X. In such an arrangement, the first bearing 33 and the second bearing 34 rotatably support both ends of the worm 30 in the axial direction.
  • the worm 30 has a first thread, which is an example of a helical thread, on the circumferential surface of a portion between a portion supported by the first bearing 33 and a portion supported by the second bearing 34 in the axial direction. It has a section 35 and a second threaded section 36.
  • the first threaded portion 35 is formed on the circumferential surface of the worm 30 at a first position P1 in the axial direction.
  • the second threaded portion 36 is formed on the circumferential surface of the worm 30 at a second position P2 different from the first position P1 in the axial direction.
  • the first threaded part 35 is formed to have a right-handed thread structure
  • the other, the second threaded part 36 is formed to have a left-handed threaded structure. It is shaped like an eggplant.
  • both ends of the worm 30 are connected to the motor shafts of the first electric motor 23 and the second electric motor 24 via connecting shafts 23a, 24a and a one-way clutch (not shown).
  • the connecting shafts 23a and 24a are connected to both ends of the worm 30 via a key structure 37.
  • the first electric motor 23 and the second electric motor 24 are configured to rotate in a counterclockwise direction when viewed from the worm 30 side.
  • the worm 30 has the following rotational direction. become that way. That is, when the first electric motor 23 is driven, the worm 30 rotates in the first rotation direction based on the rotational force transmitted via the connecting shaft 23a. In this case, the second electric motor 24 is in an idling state due to the presence of the one-way clutch. On the other hand, when the second electric motor 24 is driven, the worm 30 rotates in the second rotation direction based on the rotational force transmitted via the connection shaft 24a. In this case, the first electric motor 23 is in an idling state due to the presence of the one-way clutch.
  • a first worm wheel 31 and a second worm wheel 32 which are a plurality of worm wheels, are connected to the first output shaft 26 with respect to the ends of the first output shaft 26 and the second output shaft 27 that protrude to the back side of the base plate part 15. and is attached so as to be rotatable integrally with the second output shaft 27. Therefore, the first worm wheel 31 and the second worm wheel 32 are arranged such that their axes are spaced apart from each other in the branching direction X and parallel to the depth direction Y, and the first output shaft 26 and the second output shaft It rotates together with the shaft 27.
  • the first worm wheel 31 has a circumferential surface formed thereon with a first toothed portion 38 having a diagonal shape that engages with the first threaded portion 35 of the worm 30 .
  • the second worm wheel 32 has a circumferential surface formed with a second toothed portion 39 having a diagonal tooth shape that meshes with the second threaded portion 36 of the worm 30 .
  • the first worm wheel 31 and the second worm wheel 32 are fixed to the corresponding ends of the first output shaft 26 and the second output shaft 27, respectively. Therefore, both the first worm wheel 31 and the second worm wheel 32 are arranged below the worm 30 in FIG. 3 . That is, the first worm wheel 31 and the second worm wheel 32 are located on the same side when viewed from the worm 30 in a direction perpendicular to the axial direction of the worm 30, that is, on the lower side than the worm 30 in FIG. Placed.
  • the first worm wheel 31 engages the first toothed portion 38 with the first threaded portion 35 of the worm 30 from below, and the second worm wheel 32 engages the second toothed portion 39 with the first threaded portion 35 of the worm 30. It is engaged with the second threaded portion 36 of the worm 30 from below.
  • a plurality of worm wheels namely the first worm wheel 31 and the second worm wheel 32, are driven to rotate simultaneously.
  • a plurality of output shafts, the first output shaft 26 and the second output shaft 27, which transmit the rotational force due to this driven rotation to the first sprocket 28 and the second sprocket 29, are rotated simultaneously.
  • the plurality of moving members, the first chain member 17 and the second chain member 18, which are engaged with the first sprocket 28 and the second sprocket 29 in a winding manner are also moved simultaneously with the drive rotation of the worm 30.
  • the worm reducer described in Patent Document 1 a large power capable of rotating two mutually meshing gears, the first helical gear and the second helical gear, is transmitted from the worm side. Therefore, in order to withstand the transmission of large amounts of power, it is necessary to expand the shaft diameter of the worm and increase the size of the bearing that supports the worm.This also causes the overall size of the worm reducer to become larger, making it more compact. The problem was that it lacked quality and increased costs.
  • the worm reducer 25 of this embodiment has a configuration that does not require such a plurality of helical gears, so it is possible to achieve downsizing and cost reduction.
  • the first output shaft 26 and the second output shaft 27 are connected to the first sprocket 28 and the second sprocket 29, which are mechanisms on the output side in the power transmission direction when viewed from the worm reducer 25.
  • Vibration may be transmitted to the worm reducer 25 via the worm reducer 25. That is, when the worm reducer 25 is in a stationary state, vibrations due to interference of other members may be transmitted from the output side of the sprocket on the power transmission path to the threaded portion of the worm on the input side via the sprocket.
  • the worm reducer 25 has a configuration in which one worm wheel meshes teeth with one worm 30 having only one threaded part, the worm 30 will move from a stationary state due to vibration propagated from the output side. There is a risk of it rotating backwards.
  • the propagation of such vibrations is This is suppressed by the second worm wheel 32 with two teeth 39 meshing with each other.
  • the first worm wheel 31 and the second worm wheel 32 in the worm reducer 25 are both lower than the worm 30 in the vertical direction orthogonal to the axial direction of the worm 30. is also located at the bottom. Therefore, the space occupied by the worm reducer 25 in the vertical direction is smaller than in the case where the first worm wheel 31 and the second worm wheel 32 are distributed and arranged on both sides in the vertical direction perpendicular to the axial direction of the worm 30. It is possible to do so.
  • the first threaded portion 35 and the second threaded portion 36 both have a right-handed thread structure or both have a left-handed thread structure.
  • the following problems may arise:
  • the worm 30 includes two worms: a first worm wheel 31 in which a first toothed part 38 meshes with a first threaded part 35 and a second worm wheel 32 in which a second toothed part 39 meshes with a second threaded part 36.
  • the wheels are engaged. If the helical screw directions of the first threaded portion 35 and the second threaded portion 36 are the same, the two worm wheels will be driven to rotate in the same direction as the worm 30 is driven to rotate.
  • the first threaded portion 35 of the worm 30 has a right-handed threaded structure
  • the second threaded portion 36 has a left-handed threaded structure. Therefore, when the worm 30 is driven to rotate, the thrust applied in the axial direction of the worm 30 is canceled out by the thrust from one side in the axial direction and the thrust from the other side. Therefore, there is no need to increase the size of the bearings 33 and 34 that rotatably support both ends of the worm 30.
  • the thrust on the first threaded portion 35 side of the right-handed threaded structure and the thrust on the second threaded portion 36 side of the left-handed threaded structure cancel each other out, the amplitude of vibration when the worm reducer 25 is driven also becomes smaller. Therefore, it is possible to suppress deterioration in self-locking performance due to vibrations when the worm reducer 25 is driven.
  • the first output shaft 26 and the second output shaft 27 can be simultaneously rotated as the worm 30 is driven to rotate without using a power transmission mechanism such as a helical gear. Therefore, a plurality of output shafts connected to the output side can be simultaneously rotated as the worm 30 is driven to rotate without increasing the number of parts.
  • the configuration is a combination of the first threaded part 35 with a right-handed threaded structure and the second threaded part 36 with a left-handed threaded structure, the thrust forces applied in the axial direction of the worm 30 during drive rotation of the worm 30 are canceled out by each other. can. Therefore, the equivalent radial load on the bearings 33 and 34 that rotatably support both ends of the worm 30 can be relatively reduced. As a result, the worm reducer 25 can be made smaller by making the bearings 33 and 34 smaller.
  • the space occupied by the worm reducer 25 in the direction perpendicular to the axial direction of the worm 30 can be made smaller than when a plurality of worm wheels are distributed and arranged on both sides of the worm 30 in the axial direction.
  • the first chain member 17 and the second chain member 18 are made using the worm reducer 25 that can simultaneously rotate a plurality of output shafts, the first output shaft 26 and the second output shaft 27, without increasing the number of parts.
  • the meshing chains 12, which form a pair, can be driven to move forward and backward.
  • the worm reducer 125 of this modification the worm 130 that is driven and rotated by the driving force of the electric motor 140 is arranged along, for example, the vertical direction, which is the advancing and retreating direction Z of the meshing chain 12. Both ends of the worm 130 are rotatably supported by a pair of bearings 133 and 134, and only one spiral threaded portion 141 is formed approximately at the center in the axial direction.
  • a first worm wheel 131 that rotates integrally with the first output shaft 126 and a second worm wheel 132 that rotates integrally with the second output shaft 127 rotate the worm 130. They are arranged so that they are sandwiched from both sides.
  • the first toothed portion 138 and the second toothed portion 139 of the first worm wheel 131 and the second worm wheel 132 are engaged with one threaded portion 141 of the worm 130, respectively.
  • the first output shaft 126 and the second output shaft 127 can be rotated simultaneously with the driving rotation of the worm 130 without using a power transmission mechanism consisting of a helical gear, a spur gear, etc. can. Therefore, a plurality of output shafts connected to the output side can be simultaneously rotated as the worm 130 is driven to rotate without increasing the number of parts.
  • the first output shaft 26, 126 and the first worm wheel 31, 131 do not have to be arranged so that their axes coincide with each other and rotate together.
  • the second output shafts 27, 127 and the second worm wheels 32, 132 do not have to be configured to rotate together with their axes aligned with each other.
  • the first output shaft 26, 126 and the second output shaft 27, 127 are arranged so that their axes do not coincide with those of the first worm wheel 31, 131 and the second worm wheel 32, 132, and the transmission is transmitted by a gear mechanism or the like. It may also be configured to rotate with a rotational force generated by the rotational force.
  • the first rotating member and the second rotating member that rotate with the rotation of the first output shaft 26 and the second output shaft 27 are not the first sprocket 28 and the second sprocket 29, but the first roller and a second roller.
  • the worm reducers 25, 125 connect moving members other than the first chain member 17 and the second chain member 18, such as belts, rollers, etc., via the first output shafts 26, 126 and the second output shafts 27, 127. It may also be configured to output power for driving the rotating member. That is, the worm reducers 25 and 125 are not limited to a configuration in which the gear reducers 25 and 125 are provided in the mesh chain drive device 13 and output a driving force for moving the mesh chain 12 forward and backward, but are general-purpose reducers that are provided in other mechanical devices. The configuration may also be such that the driving force is output to a conventional driving device.
  • the first threaded portion 35 and the second threaded portion 36 of the worm 30 may both have a right-handed threaded structure. , or both may have a left-handed screw structure. In this case, twice the thrust will be applied in the axial direction of the worm 30, and the bearings 33 and 34 will need to be made larger. However, if the bearings 33 and 34 are allowed to be made larger due to space considerations, The same screw structure as above may be used.
  • the first worm wheel 31 and the first output shaft 26 and the second worm wheel 32 and the second output shaft 27 are It may be arranged as follows. That is, the first worm wheel 31 and the first output shaft 26 are arranged on one side in the direction orthogonal to the axial direction of the worm 30, and the second worm wheel 32 and the second output shaft 27 are arranged in the axial direction of the worm 30. It may be arranged on the other side in the orthogonal direction. In this case, the space occupied by the worm reducer 25 increases in the direction orthogonal to the axial direction of the worm 30, but if there is space, the above arrangement may be used.
  • the worm reducer 25 may be configured to include two first worm wheels 31 and two second worm wheels 32.
  • the two first worm wheels 31 engage the respective first teeth 38 with the first threaded portion 35 from both sides in a direction orthogonal to the axial direction of the worm 30.
  • the two second worm wheels 32 engage the second tooth portions 39 of the two second threaded portions 36 from both sides in a direction orthogonal to the axial direction of the worm 30 .
  • the worm reducer 25 may include a plurality of worm wheels, such as two worm wheels each, instead of one each of the first worm wheel 31 and the second worm wheel 32. In this way, a plurality of output shafts other than two, such as four output shafts, can be simultaneously rotated as the worm 30 is driven to rotate.
  • the first electric motor 23 and the second electric motor 24 are not limited to a configuration in which one of them is driven while the other is stopped; they may also be configured to rotate synchronously when the meshing chain 12 moves forward and backward. . That is, the first electric motor 23 and the second electric motor 24 may be configured to rotate simultaneously in a clockwise or counterclockwise direction when viewed from the worm 30 side. .
  • the worm reducer 25 can be driven by the combined driving force of the two electric motors, the first electric motor 23 and the second electric motor 24, so a small motor that is relatively low cost can be used. It is possible to use. Further, for example, one electric motor with a relatively high output is used, and the one electric motor rotates in a clockwise direction or a counterclockwise direction when viewed from the worm 30 side. It can also be a configuration.
  • Both ends of the worm 30 may be directly connected to the motor shafts of the first electric motor 23 and the second electric motor 24 by a spigot structure or connected via a coupling.
  • the meshing chain drive device according to claim 5, wherein the meshing chain drive device is provided at a position connecting the ends of the first chain member and the second chain member in the advancing direction, and is moved in the forward and backward direction as the meshing chain moves forward and backward.
  • a movable body moving device comprising: a movable body that moves;
  • the movable body can be moved in the forward and backward directions by driving the meshing chain using a worm reducer that can rotate multiple output shafts simultaneously without increasing the number of parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gear Transmission (AREA)
  • Transmission Devices (AREA)
  • Gears, Cams (AREA)

Abstract

A worm reduction gear (25) comprises: a worm (30); a plurality of worm wheels (31, 32); and bearings (33, 34) that rotatably support both ends of the worm (30). The plurality of worm wheels (31, 32) each undergo driven rotation together with drive rotation of the worm (30) in a state where tooth sections (38, 39) are each meshed with threaded sections (35, 36) of the worm (30). The plurality of worm wheels (31, 32) are arranged such that the axes thereof run parallel to each other. Output shafts (26, 27) that correspond individually to the plurality of worm wheels (31, 32) are connected to the worm wheels so as to rotate together with the rotation of the worm wheels.

Description

ウォーム減速機及び噛合チェーン駆動装置Worm reducer and meshing chain drive device
 本開示は、ウォーム減速機及び噛合チェーン駆動装置に関する。 The present disclosure relates to a worm reducer and a meshing chain drive device.
 例えば特許文献1に記載のウォーム減速機が知られている。ウォーム減速機は、ウォームと、ウォームホイールと、を備えている。ウォームの周面には、螺旋状のねじ部が形成されている。ウォームホイールの周面には、ウォームのねじ部に噛合する歯部が形成されている。ウォームは、軸方向の両端部が一対の軸受により回転自在に支持された状態で電動モータから伝達される駆動力により駆動回転する。一方、ウォームホイールは、その歯部をウォームのねじ部に噛合させた状態でウォームの駆動回転に伴い従動回転する。そして、ウォームホイールには、出力側の運動機構に減速した回転力を伝達するための出力軸がウォームホイールと一体回転するように連結されている。 For example, a worm reducer described in Patent Document 1 is known. The worm reducer includes a worm and a worm wheel. A spiral threaded portion is formed on the circumferential surface of the worm. Teeth are formed on the circumferential surface of the worm wheel and engage with the threaded portion of the worm. The worm is driven and rotated by a driving force transmitted from an electric motor, with both ends in the axial direction being rotatably supported by a pair of bearings. On the other hand, the worm wheel rotates as the worm rotates while its teeth mesh with the threaded portion of the worm. An output shaft for transmitting the reduced rotational force to the output-side motion mechanism is connected to the worm wheel so as to rotate together with the worm wheel.
特開2021-4667号公報JP 2021-4667 Publication
 ところで、ウォーム減速機を介して動力を伝達する際において、ウォームの駆動回転に基づいて二本の出力軸を同時に回転させたい場合がある。その場合には、例えばウォームホイールと一体回転する出力軸を第1出力軸としたとき、その第1出力軸と平行な態様に第2出力軸が配置される。そして、第1出力軸の軸方向の所定位置に取り付けた第1ヘリカルギヤと、第2出力軸の軸方向において第1出力軸の第1ヘリカルギヤの取付位置と対応する位置に取り付けた第2ヘリカルギヤとが噛合される。 By the way, when transmitting power via a worm reducer, there are cases where it is desired to simultaneously rotate two output shafts based on the drive rotation of the worm. In that case, for example, when the output shaft that rotates integrally with the worm wheel is the first output shaft, the second output shaft is arranged parallel to the first output shaft. and a first helical gear attached to a predetermined position in the axial direction of the first output shaft, and a second helical gear attached to a position corresponding to the attachment position of the first helical gear of the first output shaft in the axial direction of the second output shaft. are engaged.
 このように構成した場合には、ウォームの駆動回転に伴いウォームホイールが従動回転したとき、第1ヘリカルギヤ及び第2ヘリカルギヤを介して第1出力軸から第2出力軸に駆動力が伝達される。その結果、ウォームの駆動回転に伴い第1出力軸及び第2出力軸が同時に回転するようになる。 With this configuration, when the worm wheel rotates as a result of the drive rotation of the worm, the driving force is transmitted from the first output shaft to the second output shaft via the first helical gear and the second helical gear. As a result, the first output shaft and the second output shaft rotate simultaneously as the worm rotates.
 しかしながら、このように構成する場合には、駆動力を第1出力軸から第2出力軸に伝達するための動力伝達機構として、第1ヘリカルギヤ及び第2ヘリカルギヤが必要になる。そのため、こうした第1ヘリカルギヤ及び第2ヘリカルギヤからなる動力伝達機構が必要になる分だけ、部品点数が増えてしまうという課題があった。 However, in this configuration, a first helical gear and a second helical gear are required as a power transmission mechanism for transmitting driving force from the first output shaft to the second output shaft. Therefore, there is a problem in that the number of parts increases as the power transmission mechanism including the first helical gear and the second helical gear becomes necessary.
 本開示の一態様によるウォーム減速機は、周面に螺旋状のねじ部が形成されたウォームと、複数のウォームホイールであって、各ウォームホイールの周面には前記ウォームの前記ねじ部に噛合する歯部が形成されている複数のウォームホイールと、前記ウォームの両端部を回転自在に支持する軸受と、を備え、複数の前記ウォームホイールは、前記ウォームの前記ねじ部に前記歯部を各々噛合させた状態で前記ウォームの駆動回転に伴い各々従動回転し、複数の前記ウォームホイールは、互いの軸線同士が平行な態様となるように配置され、複数の前記ウォームホイールには、当該ウォームホイールと個別に対応する出力軸が当該ウォームホイールの回転に伴い回転するように連結されている。 A worm reducer according to an aspect of the present disclosure includes a worm having a spiral threaded portion formed on its circumferential surface and a plurality of worm wheels, the circumferential surface of each worm wheel meshing with the threaded portion of the worm. The plurality of worm wheels each include a plurality of worm wheels each having a tooth portion formed thereon, and a bearing rotatably supporting both ends of the worm. The plurality of worm wheels are arranged in such a manner that their axes are parallel to each other, and the plurality of worm wheels are arranged in such a manner that their axes are parallel to each other. An output shaft corresponding to each of the worm wheels is connected to rotate with the rotation of the worm wheel.
 本開示の一態様による噛合チェーン駆動装置は、周面に螺旋状のねじ部が形成されたウォームと、複数のウォームホイールであって、各ウォームホイールの周面には前記ウォームの前記ねじ部に噛合する歯部が形成されている複数のウォームホイールと、前記ウォームの両端部を回転自在に支持する軸受と、を備え、前記ねじ部が、前記ウォームの軸方向における第1位置の周面に形成された第1ねじ部と、前記ウォームの軸方向における前記第1位置とは別の第2位置の周面に形成された第2ねじ部と、を含み、複数の前記ウォームホイールが、前記ウォームの前記第1ねじ部に第1歯部を噛合させた状態で前記ウォームの駆動回転に伴い従動回転する第1ウォームホイールと、前記ウォームの前記第2ねじ部に第2歯部を噛合させた状態で前記ウォームの駆動回転に伴い従動回転する第2ウォームホイールと、を含み、前記第1ウォームホイール及び前記第2ウォームホイールは、互いの軸線同士が平行な態様となるように配置され、前記第1ウォームホイールには第1出力軸が前記第1ウォームホイールの回転に伴い回転するように連結され、前記第2ウォームホイールには第2出力軸が前記第2ウォームホイールの回転に伴い回転するように連結されたウォーム減速機と、前記第1出力軸の回転に伴い回転する第1回転部材と、前記第2出力軸の回転に伴い回転する第2回転部材と、備え、前記第1回転部材及び前記第2回転部材は、前記第1回転部材の回転に基づき長さ方向に進退移動可能な長尺の第1チェーン部材が前記第1回転部材に係合されると共に、前記第1チェーン部材と対をなすように配置され且つ前記第2回転部材の回転に基づき長さ方向に進退移動可能な長尺の第2チェーン部材が前記第2回転部材に係合された場合には、前記第1回転部材及び前記第2回転部材が各々回転することにより、前記第1チェーン部材及び前記第2チェーン部材を、両者が進行方向への移動に伴い相互に噛み合って棒状に一体化する一方、その棒状に一体化した噛合状態から退行方向への移動に伴い相互に噛み外れて分岐するように駆動する。 A meshing chain drive device according to an aspect of the present disclosure includes a worm having a spiral threaded portion formed on its peripheral surface and a plurality of worm wheels, the peripheral surface of each worm wheel having a spiral threaded portion formed thereon. a plurality of worm wheels each having teeth that mesh with each other; and a bearing rotatably supporting both ends of the worm; a first threaded portion formed on the worm wheel; and a second threaded portion formed on the circumferential surface of the worm at a second position different from the first position in the axial direction, and the plurality of worm wheels A first worm wheel rotates as a result of driving rotation of the worm with a first tooth meshing with the first thread of the worm, and a second tooth meshing with the second thread of the worm. a second worm wheel that rotates as a result of the drive rotation of the worm in a state where the first worm wheel and the second worm wheel are arranged such that their axes are parallel to each other; A first output shaft is connected to the first worm wheel to rotate as the first worm wheel rotates, and a second output shaft is connected to the second worm wheel to rotate as the second worm wheel rotates. a worm reducer connected to rotate the first output shaft; a first rotating member that rotates as the first output shaft rotates; and a second rotating member that rotates as the second output shaft rotates; The rotating member and the second rotating member are configured such that an elongated first chain member that can move forward and backward in the length direction based on the rotation of the first rotating member is engaged with the first rotating member, and the first chain member is engaged with the first rotating member. When a long second chain member that is arranged to form a pair with the chain member and is movable forward and backward in the length direction based on the rotation of the second rotating member is engaged with the second rotating member, When the first rotating member and the second rotating member rotate, the first chain member and the second chain member are engaged with each other as they move in the traveling direction, and are integrated into a rod shape. , are driven so that they disengage from each other and diverge as they move in the retraction direction from the meshed state in which they are integrated into a rod shape.
図1は、一実施形態のウォーム減速機及び噛合チェーン駆動装置を備えた可動体移動装置の全体構成を概略的に示す手前側からの斜視図である。FIG. 1 is a perspective view from the front side schematically showing the overall configuration of a movable body moving device including a worm reducer and a meshing chain drive device according to an embodiment. 図2は、図1に示した可動体移動装置を図1の場合とは反対方向の奥側から斜視した場合の斜視図である。FIG. 2 is a perspective view of the movable body moving device shown in FIG. 1 viewed from the back side in the opposite direction to that in FIG. 1. 図3は、ウォーム減速機の要部を一部破断して示す側面図である。FIG. 3 is a partially cutaway side view showing a main part of the worm reducer. 図4は、変更例のウォーム減速機の要部を簡略化して示す側面図である。FIG. 4 is a side view showing a simplified main part of a modified worm reducer.
 以下、可動体移動装置及び同装置が備えるウォーム減速機及び噛合チェーン駆動装置の一実施形態について、図を参照して説明する。
 <可動体移動装置>
 図1及び図2に示すように、可動体移動装置11は、長さ方向に沿って進退移動可能な噛合チェーン12と、噛合チェーン12を進退移動するように駆動する噛合チェーン駆動装置13とを備えている。また、可動体移動装置11は、噛合チェーン駆動装置13を支持するベース部14を備えている。ベース部14は、図1及び図2で上下方向及び左右方向に沿う矩形板状の基板部15と、その基板部15の左右両端面の上部に上下方向及び前後方向に沿うように固定された左右一対の側板部16と、を備えている。なお、図1及び図2では、可動体移動装置11における噛合チェーン12の退行方向側の端部となる基端部に連なる部分の図示及び同部分を収納する収納ケースの図示を省略している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a movable body moving device, a worm reducer, and a meshing chain drive device included in the device will be described below with reference to the drawings.
<Movable body moving device>
As shown in FIGS. 1 and 2, the movable body moving device 11 includes a meshing chain 12 that can move forward and backward along the length direction, and a meshing chain drive device 13 that drives the meshing chain 12 to move forward and backward. We are prepared. Furthermore, the movable body moving device 11 includes a base portion 14 that supports the meshing chain drive device 13. The base portion 14 is fixed to a rectangular plate-shaped substrate portion 15 extending in the up-down direction and the left-right direction in FIGS. A pair of left and right side plate portions 16 are provided. Note that, in FIGS. 1 and 2, illustrations of a portion of the movable body moving device 11 that is connected to the proximal end, which is the end of the engaging chain 12 in the retraction direction, and a storage case that stores the same portion are omitted. .
 <噛合チェーン>
 噛合チェーン12は、互いに噛合可能な対をなす第1チェーン部材17及び第2チェーン部材18を有している。第1チェーン部材17及び第2チェーン部材18は、直列に配置される複数のリンクプレート19をそれぞれ有している。そして、第1チェーン部材17及び第2チェーン部材18は、直列方向で隣り合うリンクプレート19同士が連結ピン20により順次に連結されることで長尺状をなすように構成されている。なお、噛合チェーン12において、第1チェーン部材17及び第2チェーン部材18は、図1では上端部となる互いの先端部に位置するリンクプレート19同士がジョイント部21を介して連結されている。そして、ジョイント部21には、可動体22が取り付けられている。可動体22は、例えば昇降動作する天板や開閉動作する扉等の図示しない機能性部材を支持した状態で噛合チェーン12と共に進退移動する。
<Interlocking chain>
The meshing chain 12 includes a first chain member 17 and a second chain member 18 that form a pair that can mesh with each other. The first chain member 17 and the second chain member 18 each have a plurality of link plates 19 arranged in series. The first chain member 17 and the second chain member 18 are configured to have an elongated shape by sequentially connecting the link plates 19 adjacent to each other in the series direction with the connecting pins 20. In addition, in the meshing chain 12, the first chain member 17 and the second chain member 18 are connected to each other via a joint portion 21 at link plates 19 located at the tip portions of each other, which are the upper ends in FIG. A movable body 22 is attached to the joint portion 21. The movable body 22 moves forward and backward together with the meshing chain 12 while supporting functional members (not shown), such as a top plate that moves up and down and a door that opens and closes.
 なお、本実施形態では、図1での上下方向を、可動体22を移動させる際に噛合チェーン12が進退移動する進退方向Zとする。この場合、図1での上方向を噛合チェーン12の進行方向Z1とし、図1での下方向を噛合チェーン12の退行方向Z2とする。また、図1での左右方向を、噛合チェーン12における第1チェーン部材17及び第2チェーン部材18が相互に噛み合って一体化した噛合状態から退行方向Z2への移動に伴い相互に噛み外れて分岐する分岐方向Xとする。また、図1での前後方向を、進退方向Z及び分岐方向Xの両方と直交する奥行方向Yとする。奥行方向Yは、噛合チェーン12の幅方向と一致する。 In the present embodiment, the vertical direction in FIG. 1 is defined as a forward/backward direction Z in which the meshing chain 12 moves forward and backward when moving the movable body 22. In this case, the upward direction in FIG. 1 is defined as the advancing direction Z1 of the meshing chain 12, and the downward direction in FIG. 1 is defined as the retreating direction Z2 of the meshing chain 12. Further, in the left-right direction in FIG. 1, the first chain member 17 and the second chain member 18 in the meshing chain 12 mesh with each other and diverge as they move in the backward direction Z2 from the meshed state where they mesh with each other and become integrated. Let the branching direction be X. Further, the front-rear direction in FIG. 1 is defined as a depth direction Y that is orthogonal to both the advance/retreat direction Z and the branching direction X. The depth direction Y coincides with the width direction of the meshing chain 12.
 噛合チェーン12における第1チェーン部材17及び第2チェーン部材18は、長さ方向において各々の先端が位置する方向である進行方向Z1に各々移動することで相互に噛み合って棒状に一体化する。その一方、噛合チェーン12における第1チェーン部材17及び第2チェーン部材18は、噛合状態から進行方向Z1とは反対の退行方向Z2に各々移動することで相互に噛み外れて分岐する。因みに、本実施形態では、第1チェーン部材17と第2チェーン部材18は、進行方向Z1に各々移動することで相互に噛み合った場合、直棒状に一体化する。但し、第1チェーン部材17と第2チェーン部材18は、相互に噛み合ったとき曲棒状に一体化するように構成されてもよい。 The first chain member 17 and the second chain member 18 in the meshing chain 12 mesh with each other and become integrated into a rod shape by moving in the advancing direction Z1, which is the direction in which their respective tips are located in the length direction. On the other hand, the first chain member 17 and the second chain member 18 in the meshing chain 12 are disengaged from each other and branch by moving from the meshing state in the backward direction Z2 opposite to the advancing direction Z1. Incidentally, in this embodiment, when the first chain member 17 and the second chain member 18 mesh with each other by moving in the traveling direction Z1, they are integrated into a straight rod shape. However, the first chain member 17 and the second chain member 18 may be configured to be integrated into a curved rod shape when they mesh with each other.
 <噛合チェーン駆動装置>
 噛合チェーン駆動装置13は、第1電動モータ23、第2電動モータ24、ウォーム減速機25、第1出力軸26、第2出力軸27、第1スプロケット28及び第2スプロケット29を備えている。第1電動モータ23及び第2電動モータ24は、ベース部14の側板部16における基板部15が位置する側とは反対側の面に支持されている。ウォーム減速機25は、ベース部14における基板部15の背面側となる奥側であって左右の側板部16の間となる位置に配置されている。ウォーム減速機25は、第1電動モータ23又は第2電動モータ24の駆動力で駆動される。第1出力軸26及び第2出力軸27は、ベース部14の基板部15における分岐方向Xに離間した二位置に形成された一対の不図示の貫通孔に各々回転自在に支持されている。すなわち、第1出力軸26及び第2出力軸27は、互いの軸線同士が分岐方向Xに離間し且つ奥行方向Yに平行に延びた状態においてウォーム減速機25から出力される駆動力で回転するように構成されている。
<Meshing chain drive device>
The meshing chain drive device 13 includes a first electric motor 23 , a second electric motor 24 , a worm reducer 25 , a first output shaft 26 , a second output shaft 27 , a first sprocket 28 , and a second sprocket 29 . The first electric motor 23 and the second electric motor 24 are supported on the side of the side plate 16 of the base portion 14 that is opposite to the side on which the substrate portion 15 is located. The worm reducer 25 is disposed at a position on the rear side of the base portion 14 that is the rear side of the substrate portion 15 and between the left and right side plate portions 16 . The worm reducer 25 is driven by the driving force of the first electric motor 23 or the second electric motor 24. The first output shaft 26 and the second output shaft 27 are each rotatably supported by a pair of through holes (not shown) formed at two positions spaced apart in the branching direction X in the substrate portion 15 of the base portion 14 . That is, the first output shaft 26 and the second output shaft 27 are rotated by the driving force output from the worm reducer 25 in a state where their axes are spaced apart from each other in the branching direction X and extend parallel to the depth direction Y. It is configured as follows.
 一方、第1スプロケット28及び第2スプロケット29は、ベース部14における基板部15の手前側であって左右の側板部16の間となる位置に配置されている。この場合、第1スプロケット28及び第2スプロケット29は、第1出力軸26及び第2出力軸27における基板部15の手前側に突出した各端部に固定されている。すなわち、第1スプロケット28及び第2スプロケット29は、第1出力軸26及び第2出力軸27と一体回転するように構成されている。この点で、第1スプロケット28は第1出力軸26の回転に伴い回転する第1回転部材に相当すると共に、第2スプロケット29は第2出力軸27の回転に伴い回転する第2回転部材に相当する。 On the other hand, the first sprocket 28 and the second sprocket 29 are arranged at a position in front of the base plate part 15 in the base part 14 and between the left and right side plate parts 16. In this case, the first sprocket 28 and the second sprocket 29 are fixed to respective ends of the first output shaft 26 and the second output shaft 27 that protrude toward the front side of the base plate portion 15. That is, the first sprocket 28 and the second sprocket 29 are configured to rotate together with the first output shaft 26 and the second output shaft 27. In this respect, the first sprocket 28 corresponds to a first rotating member that rotates as the first output shaft 26 rotates, and the second sprocket 29 corresponds to a second rotating member that rotates as the second output shaft 27 rotates. Equivalent to.
 第1スプロケット28には、第1チェーン部材17の長さ方向の一部が巻き掛け態様で係合されている。第2スプロケット29には、第2チェーン部材18の長さ方向の一部が巻き掛け態様で係合されている。そのため、ウォーム減速機25の駆動に伴い第1出力軸26及び第2出力軸27が回転した場合には、第1スプロケット28及び第2スプロケット29も同方向に各々回転する。そして、第1スプロケット28及び第2スプロケット29が回転することによって、第1チェーン部材17及び第2チェーン部材18からなる噛合チェーン12が長さ方向に進退移動する。 A portion of the first chain member 17 in the length direction is engaged with the first sprocket 28 in a wrapping manner. A portion of the second chain member 18 in the length direction is engaged with the second sprocket 29 in a winding manner. Therefore, when the first output shaft 26 and the second output shaft 27 rotate as the worm reducer 25 is driven, the first sprocket 28 and the second sprocket 29 also rotate in the same direction. As the first sprocket 28 and the second sprocket 29 rotate, the meshing chain 12 made up of the first chain member 17 and the second chain member 18 moves forward and backward in the length direction.
 <ウォーム減速機>
 図2及び図3に示すように、ウォーム減速機25は、ウォーム30、第1ウォームホイール31、第2ウォームホイール32、第1軸受33及び第2軸受34を備えている。第1軸受33及び第2軸受34は、ベース部14の側板部16における各電動モータ23,24が支持された側とは反対側の面に、各電動モータ23,24における不図示のモータ軸と軸線同士を一致させた状態に支持されている。すなわち、第1軸受33及び第2軸受34は、図3では第1出力軸26及び第2出力軸27よりも上方において分岐方向Xに離間して対をなすように配置されている。そして、そのような配置状態で、第1軸受33及び第2軸受34は、ウォーム30の軸方向の両端部を回転自在に支持している。
<Worm reducer>
As shown in FIGS. 2 and 3, the worm reducer 25 includes a worm 30, a first worm wheel 31, a second worm wheel 32, a first bearing 33, and a second bearing 34. The first bearing 33 and the second bearing 34 are attached to a motor shaft (not shown) of each electric motor 23, 24 on the side opposite to the side on which the electric motors 23, 24 are supported in the side plate portion 16 of the base portion 14. It is supported with its axes aligned with each other. That is, in FIG. 3, the first bearing 33 and the second bearing 34 are arranged as a pair above the first output shaft 26 and the second output shaft 27 and spaced apart in the branching direction X. In such an arrangement, the first bearing 33 and the second bearing 34 rotatably support both ends of the worm 30 in the axial direction.
 <ウォーム>
 ウォーム30は、その軸方向において第1軸受33に支持された部分と第2軸受34に支持された部分との間となる部分の周面に、螺旋状のねじ部の一例である第1ねじ部35と第2ねじ部36を有している。第1ねじ部35は、ウォーム30の軸方向における第1位置P1の周面に形成されている。第2ねじ部36は、ウォーム30の軸方向における第1位置P1とは別の第2位置P2の周面に形成されている。なお、第1ねじ部35及び第2ねじ部36のうち、その一方である第1ねじ部35は右ねじ構造をなすように形成され、その他方である第2ねじ部36は左ねじ構造をなすように形成されている。
<Warm>
The worm 30 has a first thread, which is an example of a helical thread, on the circumferential surface of a portion between a portion supported by the first bearing 33 and a portion supported by the second bearing 34 in the axial direction. It has a section 35 and a second threaded section 36. The first threaded portion 35 is formed on the circumferential surface of the worm 30 at a first position P1 in the axial direction. The second threaded portion 36 is formed on the circumferential surface of the worm 30 at a second position P2 different from the first position P1 in the axial direction. In addition, among the first threaded part 35 and the second threaded part 36, one of them, the first threaded part 35, is formed to have a right-handed thread structure, and the other, the second threaded part 36, is formed to have a left-handed threaded structure. It is shaped like an eggplant.
 また、図3に示すように、ウォーム30の両端部は、第1電動モータ23及び第2電動モータ24のモータ軸に対して連結軸23a,24a及び不図示のワンウェイクラッチを介して連結されている。連結軸23a,24aは、ウォーム30の両端部にキー構造37を介して連結されている。第1電動モータ23及び第2電動モータ24は、ウォーム30側から見た場合に、それぞれ反時計回り方向を駆動時の回転方向として各々回転する構成とされている。 Further, as shown in FIG. 3, both ends of the worm 30 are connected to the motor shafts of the first electric motor 23 and the second electric motor 24 via connecting shafts 23a, 24a and a one-way clutch (not shown). There is. The connecting shafts 23a and 24a are connected to both ends of the worm 30 via a key structure 37. The first electric motor 23 and the second electric motor 24 are configured to rotate in a counterclockwise direction when viewed from the worm 30 side.
 ここで、第1電動モータ23の駆動時の回転方向を第1回転方向とし、第2電動モータ24の駆動時の回転方向を第2回転方向とした場合、ウォーム30は、その回転方向が次のようになる。すなわち、第1電動モータ23が駆動された場合、ウォーム30は連結軸23aを介して伝達される回転力に基づき第1回転方向に回転する。そして、この場合、第2電動モータ24はワンウェイクラッチが介在するため空転状態となる。一方、第2電動モータ24が駆動された場合、ウォーム30は連結軸24aを介して伝達される回転力に基づき第2回転方向に回転する。そして、この場合、第1電動モータ23はワンウェイクラッチが介在するため空転状態となる。 Here, if the rotational direction when the first electric motor 23 is driven is the first rotational direction, and the rotational direction when the second electric motor 24 is driven is the second rotational direction, the worm 30 has the following rotational direction. become that way. That is, when the first electric motor 23 is driven, the worm 30 rotates in the first rotation direction based on the rotational force transmitted via the connecting shaft 23a. In this case, the second electric motor 24 is in an idling state due to the presence of the one-way clutch. On the other hand, when the second electric motor 24 is driven, the worm 30 rotates in the second rotation direction based on the rotational force transmitted via the connection shaft 24a. In this case, the first electric motor 23 is in an idling state due to the presence of the one-way clutch.
 <ウォームホイール>
 複数のウォームホイールである第1ウォームホイール31と第2ウォームホイール32は、第1出力軸26及び第2出力軸27における基板部15の奧側に突出した端部に対して第1出力軸26及び第2出力軸27と一体回転可能に取り付けられている。そのため、第1ウォームホイール31及び第2ウォームホイール32は、互いの軸線同士が分岐方向Xに離間し且つ奥行方向Yに平行な態様に配置された状態で、第1出力軸26及び第2出力軸27と共に回転する。第1ウォームホイール31の周面にはウォーム30の第1ねじ部35に噛合する斜歯状の第1歯部38が形成されている。第2ウォームホイール32の周面にはウォーム30の第2ねじ部36に噛合する斜歯状の第2歯部39が形成されている。
<Worm wheel>
A first worm wheel 31 and a second worm wheel 32, which are a plurality of worm wheels, are connected to the first output shaft 26 with respect to the ends of the first output shaft 26 and the second output shaft 27 that protrude to the back side of the base plate part 15. and is attached so as to be rotatable integrally with the second output shaft 27. Therefore, the first worm wheel 31 and the second worm wheel 32 are arranged such that their axes are spaced apart from each other in the branching direction X and parallel to the depth direction Y, and the first output shaft 26 and the second output shaft It rotates together with the shaft 27. The first worm wheel 31 has a circumferential surface formed thereon with a first toothed portion 38 having a diagonal shape that engages with the first threaded portion 35 of the worm 30 . The second worm wheel 32 has a circumferential surface formed with a second toothed portion 39 having a diagonal tooth shape that meshes with the second threaded portion 36 of the worm 30 .
 第1ウォームホイール31及び第2ウォームホイール32は、それらと個別に対応する第1出力軸26及び第2出力軸27の端部に固定されている。そのため、第1ウォームホイール31及び第2ウォームホイール32は、両方とも図3ではウォーム30よりも下側に配置されることになる。すなわち、第1ウォームホイール31及び第2ウォームホイール32は、ウォーム30の軸方向と直交する方向において、ウォーム30から見た場合に同じ片方側に、すなわち、図3ではウォーム30よりも下側に配置される。そして、そのように配置された状態において、第1ウォームホイール31は第1歯部38をウォーム30の第1ねじ部35に下側から噛合させ、第2ウォームホイール32は第2歯部39をウォーム30の第2ねじ部36に下側から噛合させている。 The first worm wheel 31 and the second worm wheel 32 are fixed to the corresponding ends of the first output shaft 26 and the second output shaft 27, respectively. Therefore, both the first worm wheel 31 and the second worm wheel 32 are arranged below the worm 30 in FIG. 3 . That is, the first worm wheel 31 and the second worm wheel 32 are located on the same side when viewed from the worm 30 in a direction perpendicular to the axial direction of the worm 30, that is, on the lower side than the worm 30 in FIG. Placed. In such an arranged state, the first worm wheel 31 engages the first toothed portion 38 with the first threaded portion 35 of the worm 30 from below, and the second worm wheel 32 engages the second toothed portion 39 with the first threaded portion 35 of the worm 30. It is engaged with the second threaded portion 36 of the worm 30 from below.
 <作用>
 次に、本実施形態のウォーム減速機25及び噛合チェーン駆動装置13の作用について説明する。
<Effect>
Next, the functions of the worm reducer 25 and the meshing chain drive device 13 of this embodiment will be explained.
 さて、噛合チェーン駆動装置13において第1電動モータ23又は第2電動モータ24が駆動されると、ウォーム減速機25においてウォーム30が第1回転方向又は第2回転方向に駆動回転する。すると、ウォーム30の第1ねじ部35に第1歯部38を噛合させた第1ウォームホイール31及びウォーム30の第2ねじ部36に第2歯部39を噛合させた第2ウォームホイール32が各々従動回転する。そして、第1ウォームホイール31及び第2ウォームホイール32の従動回転による回転力が第1出力軸26及び第2出力軸27を介して第1スプロケット28及び第2スプロケット29に伝達される。その結果、第1スプロケット28及び第2スプロケット29に巻き掛け態様で係合する第1チェーン部材17及び第2チェーン部材18の各々が進行方向Z1又は退行方向Z2に移動する。 Now, when the first electric motor 23 or the second electric motor 24 is driven in the meshing chain drive device 13, the worm 30 in the worm reducer 25 is driven to rotate in the first rotation direction or the second rotation direction. Then, the first worm wheel 31 in which the first toothed part 38 is engaged with the first threaded part 35 of the worm 30 and the second worm wheel 32 in which the second toothed part 39 is engaged in the second threaded part 36 of the worm 30 are activated. Each rotates as a result. Then, the rotational force due to the driven rotation of the first worm wheel 31 and the second worm wheel 32 is transmitted to the first sprocket 28 and the second sprocket 29 via the first output shaft 26 and the second output shaft 27. As a result, each of the first chain member 17 and the second chain member 18, which are engaged with the first sprocket 28 and the second sprocket 29 in a wrapping manner, moves in the advancing direction Z1 or the retreating direction Z2.
 このように、本実施形態では、ウォーム減速機25のウォーム30の駆動回転に伴い、第1ウォームホイール31及び第2ウォームホイール32という複数のウォームホイールが同時に従動回転する。そして、この従動回転による回転力を第1スプロケット28及び第2スプロケット29に伝達するための第1出力軸26及び第2出力軸27という複数の出力軸が同時に回転される。その結果、第1スプロケット28及び第2スプロケット29に巻き掛け態様で係合した第1チェーン部材17及び第2チェーン部材18という複数の移動部材もウォーム30の駆動回転に伴い同時に移動される。 As described above, in this embodiment, as the worm 30 of the worm reducer 25 is driven to rotate, a plurality of worm wheels, namely the first worm wheel 31 and the second worm wheel 32, are driven to rotate simultaneously. Then, a plurality of output shafts, the first output shaft 26 and the second output shaft 27, which transmit the rotational force due to this driven rotation to the first sprocket 28 and the second sprocket 29, are rotated simultaneously. As a result, the plurality of moving members, the first chain member 17 and the second chain member 18, which are engaged with the first sprocket 28 and the second sprocket 29 in a winding manner, are also moved simultaneously with the drive rotation of the worm 30.
 また、特許文献1に記載のウォーム減速機の場合は、第1ヘリカルギヤ及び第2ヘリカルギヤという互いに噛合する2つのギヤを回転させ得る大きな動力をウォーム側から伝達していた。そのため、大きな動力の伝達に耐え得るように、ウォームの軸径を拡張したりウォームを支持する軸受を大きくしたりする必要があり、この点でも、ウォーム減速機の全体を大きくする要因となりコンパクト性に欠け、コストがかさむという課題があった。これに対し、本実施形態のウォーム減速機25の場合は、そのような複数のヘリカルギヤを不要とする構成であるため、コンパクト化及びコストの低減を図ることができる。 Furthermore, in the case of the worm reducer described in Patent Document 1, a large power capable of rotating two mutually meshing gears, the first helical gear and the second helical gear, is transmitted from the worm side. Therefore, in order to withstand the transmission of large amounts of power, it is necessary to expand the shaft diameter of the worm and increase the size of the bearing that supports the worm.This also causes the overall size of the worm reducer to become larger, making it more compact. The problem was that it lacked quality and increased costs. On the other hand, the worm reducer 25 of this embodiment has a configuration that does not require such a plurality of helical gears, so it is possible to achieve downsizing and cost reduction.
 ところで、図1及び図2の状態において、ウォーム減速機25から見て動力伝達方向で出力側の機構である第1スプロケット28及び第2スプロケット29などから第1出力軸26及び第2出力軸27を介してウォーム減速機25に振動が伝わることがある。すなわち、ウォーム減速機25が静止状態のときに動力伝達経路上でスプロケットよりも出力側から他部材の干渉等に基づく振動がスプロケットを介して入力側のウォームのねじ部に伝わることがある。こうした場合、ウォーム減速機25が、ねじ部を一つだけ有する一つのウォーム30に一つのウォームホイールが歯部を噛合させた構成であると、出力側から伝播した振動でウォーム30が静止状態から逆回転する虞がある。しかし、本実施形態では、例えば出力側の第1スプロケット28から第1出力軸26を介して入力側のウォーム30に振動が伝播しようとしても、そうした振動の伝播は、第2ねじ部36に第2歯部39を噛合させた第2ウォームホイール32により抑制される。 By the way, in the state shown in FIGS. 1 and 2, the first output shaft 26 and the second output shaft 27 are connected to the first sprocket 28 and the second sprocket 29, which are mechanisms on the output side in the power transmission direction when viewed from the worm reducer 25. Vibration may be transmitted to the worm reducer 25 via the worm reducer 25. That is, when the worm reducer 25 is in a stationary state, vibrations due to interference of other members may be transmitted from the output side of the sprocket on the power transmission path to the threaded portion of the worm on the input side via the sprocket. In such a case, if the worm reducer 25 has a configuration in which one worm wheel meshes teeth with one worm 30 having only one threaded part, the worm 30 will move from a stationary state due to vibration propagated from the output side. There is a risk of it rotating backwards. However, in this embodiment, even if vibrations are to be propagated from the first sprocket 28 on the output side to the worm 30 on the input side via the first output shaft 26, the propagation of such vibrations is This is suppressed by the second worm wheel 32 with two teeth 39 meshing with each other.
 また、図2及び図3に示すように、本実施形態では、ウォーム減速機25における第1ウォームホイール31及び第2ウォームホイール32がウォーム30の軸方向と直交する上下方向で両方ともウォーム30よりも下側に配置されている。そのため、ウォーム30の軸方向と直交する上下方向の両側に第1ウォームホイール31と第2ウォームホイール32が振り分けられて配置されている場合よりも、ウォーム減速機25の上下方向の占有スペースを小さくすることが可能とされる。 Further, as shown in FIGS. 2 and 3, in this embodiment, the first worm wheel 31 and the second worm wheel 32 in the worm reducer 25 are both lower than the worm 30 in the vertical direction orthogonal to the axial direction of the worm 30. is also located at the bottom. Therefore, the space occupied by the worm reducer 25 in the vertical direction is smaller than in the case where the first worm wheel 31 and the second worm wheel 32 are distributed and arranged on both sides in the vertical direction perpendicular to the axial direction of the worm 30. It is possible to do so.
 また、第1電動モータ23又は第2電動モータ24の駆動力でウォーム30が駆動回転した場合において、第1ねじ部35及び第2ねじ部36が両方共に右ねじ構造又は両方共に左ねじ構造である場合には、次のような問題がある。 Further, when the worm 30 is driven and rotated by the driving force of the first electric motor 23 or the second electric motor 24, the first threaded portion 35 and the second threaded portion 36 both have a right-handed thread structure or both have a left-handed thread structure. In some cases, the following problems may arise:
 すなわち、ウォーム30には、第1ねじ部35に第1歯部38が噛合する第1ウォームホイール31及び第2ねじ部36に第2歯部39が噛合する第2ウォームホイール32という二つのウォームホイールが噛合している。そして、その二つのウォームホイールは、第1ねじ部35及び第2ねじ部36の螺旋ねじ方向が同じであると、ウォーム30の駆動回転に伴い両方とも同一方向に従動回転することになる。 That is, the worm 30 includes two worms: a first worm wheel 31 in which a first toothed part 38 meshes with a first threaded part 35 and a second worm wheel 32 in which a second toothed part 39 meshes with a second threaded part 36. The wheels are engaged. If the helical screw directions of the first threaded portion 35 and the second threaded portion 36 are the same, the two worm wheels will be driven to rotate in the same direction as the worm 30 is driven to rotate.
 そのため、ねじ部を一つだけ有するウォーム30のねじ部に一つのウォームホイールが歯部を噛合させただけの構成に比して、同一方向に従動回転するウォームホイールの数が2倍になることから、ウォーム30の軸方向にかかる推力が2倍になる。その結果、そのウォーム30の両端部を回転自在に支持する軸受33,34にも、同様に、2倍の推力がかかることになるので、軸受33,34を大型化させる必要があった。 Therefore, compared to a configuration in which one worm wheel has its teeth meshed with the threaded part of the worm 30 having only one threaded part, the number of worm wheels that are driven to rotate in the same direction is doubled. Therefore, the thrust force applied to the worm 30 in the axial direction is doubled. As a result, the bearings 33 and 34 that rotatably support both ends of the worm 30 are also subjected to twice the thrust, so it was necessary to increase the size of the bearings 33 and 34.
 この点、本実施形態では、ウォーム30における第1ねじ部35が右ねじ構造であると共に第2ねじ部36が左ねじ構造である。そのため、ウォーム30が駆動回転したときにウォーム30の軸方向にかかる推力が、軸方向の一方側からの推力と他方側からの推力で互いに打ち消し合うことになる。したがって、ウォーム30の両端部を回転自在に支持する軸受33,34を大型化する必要もなくなる。また、右ねじ構造の第1ねじ部35側の推力と左ねじ構造の第2ねじ部36側の推力が互いに打ち消し合うため、ウォーム減速機25の駆動時における振動の振幅も小さくなる。そのため、ウォーム減速機25の駆動時の振動に起因するセルフロック性の低下を抑制することができる。 In this regard, in the present embodiment, the first threaded portion 35 of the worm 30 has a right-handed threaded structure, and the second threaded portion 36 has a left-handed threaded structure. Therefore, when the worm 30 is driven to rotate, the thrust applied in the axial direction of the worm 30 is canceled out by the thrust from one side in the axial direction and the thrust from the other side. Therefore, there is no need to increase the size of the bearings 33 and 34 that rotatably support both ends of the worm 30. Further, since the thrust on the first threaded portion 35 side of the right-handed threaded structure and the thrust on the second threaded portion 36 side of the left-handed threaded structure cancel each other out, the amplitude of vibration when the worm reducer 25 is driven also becomes smaller. Therefore, it is possible to suppress deterioration in self-locking performance due to vibrations when the worm reducer 25 is driven.
 <効果>
 (1)ヘリカルギヤ等からなる動力伝達機構を用いなくても、ウォーム30の駆動回転に伴い第1出力軸26及び第2出力軸27を同時に回転させることができる。そのため、部品点数を増やすことなく、ウォーム30の駆動回転に伴い出力側に連結した複数の出力軸を同時に回転させることができる。
<Effect>
(1) The first output shaft 26 and the second output shaft 27 can be simultaneously rotated as the worm 30 is driven to rotate without using a power transmission mechanism such as a helical gear. Therefore, a plurality of output shafts connected to the output side can be simultaneously rotated as the worm 30 is driven to rotate without increasing the number of parts.
 (2)例えば第1ねじ部35に第1歯部38を噛合させた第1ウォームホイール31の出力側から入力側のウォーム30に振動が伝播しそうになっても、その振動の伝播を第2ねじ部36に第2歯部39を噛合させた第2ウォームホイール32により抑制できる。 (2) For example, even if vibration is about to propagate from the output side of the first worm wheel 31, in which the first tooth portion 38 is meshed with the first screw portion 35, to the input side worm 30, the propagation of the vibration is This can be suppressed by the second worm wheel 32 in which the second tooth portion 39 is engaged with the threaded portion 36.
 (3)右ねじ構造の第1ねじ部35と左ねじ構造の第2ねじ部36との組み合わせ構成であるため、ウォーム30の駆動回転時にウォーム30の軸方向にかかる推力を互いに打ち消し合うようにできる。そのため、ウォーム30の両端部を回転自在に支持する軸受33,34における等価ラジアル荷重を相対的に小さくできる。その結果、軸受33,34の小型化を通じてウォーム減速機25の小型化を図ることができる。 (3) Since the configuration is a combination of the first threaded part 35 with a right-handed threaded structure and the second threaded part 36 with a left-handed threaded structure, the thrust forces applied in the axial direction of the worm 30 during drive rotation of the worm 30 are canceled out by each other. can. Therefore, the equivalent radial load on the bearings 33 and 34 that rotatably support both ends of the worm 30 can be relatively reduced. As a result, the worm reducer 25 can be made smaller by making the bearings 33 and 34 smaller.
 (4)複数のウォームホイールをウォーム30の軸方向と直交する方向の両側に振り分けて配置した場合よりも、ウォーム30の軸方向と直交する方向におけるウォーム減速機25の占有スペースを小さくできる。 (4) The space occupied by the worm reducer 25 in the direction perpendicular to the axial direction of the worm 30 can be made smaller than when a plurality of worm wheels are distributed and arranged on both sides of the worm 30 in the axial direction.
 (5)部品点数を増やすことなく第1出力軸26及び第2出力軸27という複数の出力軸を同時に回転させることができるウォーム減速機25を用いて第1チェーン部材17と第2チェーン部材18とが対をなす噛合チェーン12を進退移動するように駆動できる。 (5) The first chain member 17 and the second chain member 18 are made using the worm reducer 25 that can simultaneously rotate a plurality of output shafts, the first output shaft 26 and the second output shaft 27, without increasing the number of parts. The meshing chains 12, which form a pair, can be driven to move forward and backward.
 <変更例>
 上記の実施形態は以下に示す変更例のように変更してもよい。また、実施形態に含まれる構成と下記変更例に含まれる構成とを任意に組み合わせてもよいし、下記変更例に含まれる構成同士を任意に組み合わせてもよい。
<Example of change>
The above embodiment may be modified as shown below. Further, the configurations included in the embodiment and the configurations included in the following modification examples may be arbitrarily combined, or the configurations included in the following modification examples may be arbitrarily combined.
 ・図4に示す変更例のウォーム減速機125を噛合チェーン駆動装置13に備える構成としてもよい。
 この変更例のウォーム減速機125においては、電動モータ140の駆動力で駆動回転するウォーム130が噛合チェーン12の進退方向Zとなる例えば上下方向に沿うように配置されている。ウォーム130は、その両端部が一対の軸受133,134により回転自在に支持されると共に、その軸方向の略中央部には、螺旋状のねじ部141が一つだけ形成されている。また、ウォーム130の軸方向と直交する方向の両側には、第1出力軸126と一体回転する第1ウォームホイール131及び第2出力軸127と一体回転する第2ウォームホイール132が、ウォーム130を両側から挟むように配置されている。そして、ウォーム130の一つのねじ部141に第1ウォームホイール131及び第2ウォームホイール132の第1歯部138及び第2歯部139が各々噛合されている。この変更例のウォーム減速機125でも、ヘリカルギヤ及び平歯車等からなる動力伝達機構を用いなくても、ウォーム130の駆動回転に伴い第1出力軸126及び第2出力軸127を同時に回転させることができる。そのため、部品点数を増やすことなく、ウォーム130の駆動回転に伴い出力側に連結した複数の出力軸を同時に回転させることができる。
- It is good also as a structure which equips the meshing chain drive device 13 with the worm reducer 125 of the modification shown in FIG.
In the worm reducer 125 of this modification, the worm 130 that is driven and rotated by the driving force of the electric motor 140 is arranged along, for example, the vertical direction, which is the advancing and retreating direction Z of the meshing chain 12. Both ends of the worm 130 are rotatably supported by a pair of bearings 133 and 134, and only one spiral threaded portion 141 is formed approximately at the center in the axial direction. Further, on both sides of the worm 130 in a direction orthogonal to the axial direction, a first worm wheel 131 that rotates integrally with the first output shaft 126 and a second worm wheel 132 that rotates integrally with the second output shaft 127 rotate the worm 130. They are arranged so that they are sandwiched from both sides. The first toothed portion 138 and the second toothed portion 139 of the first worm wheel 131 and the second worm wheel 132 are engaged with one threaded portion 141 of the worm 130, respectively. Even in the worm reducer 125 of this modified example, the first output shaft 126 and the second output shaft 127 can be rotated simultaneously with the driving rotation of the worm 130 without using a power transmission mechanism consisting of a helical gear, a spur gear, etc. can. Therefore, a plurality of output shafts connected to the output side can be simultaneously rotated as the worm 130 is driven to rotate without increasing the number of parts.
 ・第1出力軸26,126と第1ウォームホイール31,131は、互いに軸線同士を一致させた配置で一体回転する構成でなくてもよい。同様に、第2出力軸27,127と第2ウォームホイール32,132も、互いに軸線同士を一致させた配置で一体回転する構成でなくてもよい。例えば、第1出力軸26,126及び第2出力軸27,127は、第1ウォームホイール31,131及び第2ウォームホイール32,132とは軸線同士が一致しない配置とされて歯車機構等により伝達される回転力で回転する構成でもよい。 - The first output shaft 26, 126 and the first worm wheel 31, 131 do not have to be arranged so that their axes coincide with each other and rotate together. Similarly, the second output shafts 27, 127 and the second worm wheels 32, 132 do not have to be configured to rotate together with their axes aligned with each other. For example, the first output shaft 26, 126 and the second output shaft 27, 127 are arranged so that their axes do not coincide with those of the first worm wheel 31, 131 and the second worm wheel 32, 132, and the transmission is transmitted by a gear mechanism or the like. It may also be configured to rotate with a rotational force generated by the rotational force.
 ・噛合チェーン駆動装置13において第1出力軸26及び第2出力軸27の回転に伴い回転する第1回転部材及び第2回転部材は、第1スプロケット28及び第2スプロケット29ではなく、第1ローラ及び第2ローラ等のローラで構成されてもよい。 - In the meshing chain drive device 13, the first rotating member and the second rotating member that rotate with the rotation of the first output shaft 26 and the second output shaft 27 are not the first sprocket 28 and the second sprocket 29, but the first roller and a second roller.
 ・ウォーム減速機25、125は、第1出力軸26,126及び第2出力軸27,127を介して第1チェーン部材17及び第2チェーン部材18以外の例えばベルト等の移動部材やローラ等の回転部材を駆動するための動力を出力する構成でもよい。すなわち、ウォーム減速機25、125は、噛合チェーン駆動装置13に備えられて噛合チェーン12を進退移動させるための駆動力を出力する構成に限定されるものではなく、その他の機械装置に備えられる汎用的な駆動装置に駆動力を出力する構成でもよい。 - The worm reducers 25, 125 connect moving members other than the first chain member 17 and the second chain member 18, such as belts, rollers, etc., via the first output shafts 26, 126 and the second output shafts 27, 127. It may also be configured to output power for driving the rotating member. That is, the worm reducers 25 and 125 are not limited to a configuration in which the gear reducers 25 and 125 are provided in the mesh chain drive device 13 and output a driving force for moving the mesh chain 12 forward and backward, but are general-purpose reducers that are provided in other mechanical devices. The configuration may also be such that the driving force is output to a conventional driving device.
 ・ウォーム減速機25、125は、汎用的な駆動装置に駆動力を出力する構成の場合、ウォーム30における第1ねじ部35及び第2ねじ部36は、両方共に右ねじ構造であってもよく、あるいは、両方共に左ねじ構造であってもよい。この場合、ウォーム30の軸方向には2倍の推力がかかることになり、軸受33,34の大型化が必要になるが、スペース的に軸受33,34の大型化が許容されるならば、上記のように同じねじ構造にしてもよい。 - If the worm reducer 25, 125 is configured to output driving force to a general-purpose drive device, the first threaded portion 35 and the second threaded portion 36 of the worm 30 may both have a right-handed threaded structure. , or both may have a left-handed screw structure. In this case, twice the thrust will be applied in the axial direction of the worm 30, and the bearings 33 and 34 will need to be made larger. However, if the bearings 33 and 34 are allowed to be made larger due to space considerations, The same screw structure as above may be used.
 ・ウォーム減速機25、125は、汎用的な駆動装置に駆動力を出力する構成の場合、第1ウォームホイール31と第1出力軸26及び第2ウォームホイール32と第2出力軸27が次のように配置された構成でもよい。すなわち、第1ウォームホイール31と第1出力軸26がウォーム30の軸方向と直交する方向の一方側に配置されると共に、第2ウォームホイール32と第2出力軸27がウォーム30の軸方向と直交する方向の他方側に配置される構成でもよい。この場合、ウォーム30の軸方向と直交する方向においてウォーム減速機25の占有スペースが大きくなるが、スペース的な余裕があれば、上記のようにしてもよい。 - In the case of a configuration in which the worm reducers 25 and 125 output driving force to a general-purpose drive device, the first worm wheel 31 and the first output shaft 26 and the second worm wheel 32 and the second output shaft 27 are It may be arranged as follows. That is, the first worm wheel 31 and the first output shaft 26 are arranged on one side in the direction orthogonal to the axial direction of the worm 30, and the second worm wheel 32 and the second output shaft 27 are arranged in the axial direction of the worm 30. It may be arranged on the other side in the orthogonal direction. In this case, the space occupied by the worm reducer 25 increases in the direction orthogonal to the axial direction of the worm 30, but if there is space, the above arrangement may be used.
 ・ウォーム減速機25は、第1ウォームホイール31及び第2ウォームホイール32をそれぞれ二つずつ備える構成でもよい。この場合、二つの第1ウォームホイール31は、ウォーム30の軸方向と直交する方向の両側から第1ねじ部35に各々の第1歯部38を噛合させる。また、二つの第2ウォームホイール32は、ウォーム30の軸方向と直交する方向の両側から第2ねじ部36に各々の第2歯部39を噛合させる。このように、ウォーム減速機25は、第1ウォームホイール31と第2ウォームホイール32とが一つずつ以外の二つずつなど複数のウォームホイールを含む構成でもよい。このようにすれば、例えば四つなど二つ以外の複数の出力軸をウォーム30の駆動回転に伴い同時に回転させることができる。 - The worm reducer 25 may be configured to include two first worm wheels 31 and two second worm wheels 32. In this case, the two first worm wheels 31 engage the respective first teeth 38 with the first threaded portion 35 from both sides in a direction orthogonal to the axial direction of the worm 30. Further, the two second worm wheels 32 engage the second tooth portions 39 of the two second threaded portions 36 from both sides in a direction orthogonal to the axial direction of the worm 30 . In this way, the worm reducer 25 may include a plurality of worm wheels, such as two worm wheels each, instead of one each of the first worm wheel 31 and the second worm wheel 32. In this way, a plurality of output shafts other than two, such as four output shafts, can be simultaneously rotated as the worm 30 is driven to rotate.
 ・第1電動モータ23及び第2電動モータ24は、何れか一方が駆動される一方で他方が駆動を停止される構成に限らず、噛合チェーン12の進退移動時に両方が同期回転する構成でもよい。すなわち、第1電動モータ23及び第2電動モータ24は、ウォーム30側から見た場合に、両方が時計回り方向又は反時計回り方向を駆動時の回転方向として、一斉に同期回転する構成でもよい。このように構成した場合は、第1電動モータ23及び第2電動モータ24という2つの電動モータの合算された駆動力でウォーム減速機25を駆動できるため、相対的に低コストである小型のモータを使用することが可能とされる。また、例えば相対的に高出力である1つの電動モータを使用して、当該1つの電動モータがウォーム30側から見た場合に時計回り方向又は反時計回り方向を駆動時の回転方向として回転する構成でもよい。 - The first electric motor 23 and the second electric motor 24 are not limited to a configuration in which one of them is driven while the other is stopped; they may also be configured to rotate synchronously when the meshing chain 12 moves forward and backward. . That is, the first electric motor 23 and the second electric motor 24 may be configured to rotate simultaneously in a clockwise or counterclockwise direction when viewed from the worm 30 side. . When configured in this way, the worm reducer 25 can be driven by the combined driving force of the two electric motors, the first electric motor 23 and the second electric motor 24, so a small motor that is relatively low cost can be used. It is possible to use. Further, for example, one electric motor with a relatively high output is used, and the one electric motor rotates in a clockwise direction or a counterclockwise direction when viewed from the worm 30 side. It can also be a configuration.
 ・ウォーム30の両端部は、第1電動モータ23及び第2電動モータ24のモータ軸に対して、インロー構造により直結、またはカップリング介して連結される構成でもよい。
 <付記>
 以下に、上記の実施形態及び変更例から把握される技術的思想及びその作用効果を記載する。
- Both ends of the worm 30 may be directly connected to the motor shafts of the first electric motor 23 and the second electric motor 24 by a spigot structure or connected via a coupling.
<Additional notes>
Below, technical ideas and their effects understood from the above embodiments and modified examples will be described.
 (A)長さ方向に進退移動可能な長尺の第1チェーン部材と、当該第1チェーン部材と対をなすように配置されて長さ方向に進退移動可能な長尺の第2チェーン部材と、請求項5に記載の噛合チェーン駆動装置と、前記第1チェーン部材と前記第2チェーン部材との進行方向の端部同士を連結する位置に設けられて噛合チェーンの進退移動に伴い進退方向に移動する可動体と、を備える可動体移動装置。 (A) A long first chain member that is movable forward and backward in the length direction, and a second long chain member that is arranged to form a pair with the first chain member and that is movable forward and backward in the length direction. , the meshing chain drive device according to claim 5, wherein the meshing chain drive device is provided at a position connecting the ends of the first chain member and the second chain member in the advancing direction, and is moved in the forward and backward direction as the meshing chain moves forward and backward. A movable body moving device comprising: a movable body that moves;
 この構成によれば、部品点数を増やすことなく複数の出力軸を同時に回転させることができるウォーム減速機を用いて噛合チェーンを駆動することにより、可動体を進退方向に移動させることができる。 According to this configuration, the movable body can be moved in the forward and backward directions by driving the meshing chain using a worm reducer that can rotate multiple output shafts simultaneously without increasing the number of parts.
 11…可動体移動装置
 12…噛合チェーン
 13…噛合チェーン駆動装置
 17…第1チェーン部材
 18…第2チェーン部材
 25…ウォーム減速機
 26…第1出力軸
 27…第2出力軸
 28…第1回転部材の一例である第1スプロケット
 29…第2回転部材の一例である第2スプロケット
 30…ウォーム
 31…第1ウォームホイール
 32…第2ウォームホイール
 33…第1軸受
 34…第2軸受
 35…第1ねじ部
 36…第2ねじ部
 38…第1歯部
 39…第2歯部
 125…ウォーム減速機
 126…第1出力軸
 127…第2出力軸
 130…ウォーム
 131…第1ウォームホイール
 132…第2ウォームホイール
 133…第1軸受
 134…第2軸受
 138…第1歯部
 139…第2歯部
 141…ねじ部
 P1…第1位置
 P2…第2位置
DESCRIPTION OF SYMBOLS 11...Movable body moving device 12...Matching chain 13...Matching chain drive device 17...1st chain member 18...2nd chain member 25...Worm reducer 26...1st output shaft 27...2nd output shaft 28...1st rotation First sprocket which is an example of a member 29... Second sprocket which is an example of a second rotating member 30... Worm 31... First worm wheel 32... Second worm wheel 33... First bearing 34... Second bearing 35... First Threaded part 36... Second threaded part 38... First toothed part 39... Second toothed part 125... Worm reducer 126... First output shaft 127... Second output shaft 130... Worm 131... First worm wheel 132... Second Worm wheel 133...First bearing 134...Second bearing 138...First tooth portion 139...Second tooth portion 141...Threaded portion P1...First position P2...Second position

Claims (5)

  1.  周面に螺旋状のねじ部が形成されたウォームと、
     複数のウォームホイールであって、各ウォームホイールの周面には前記ウォームの前記ねじ部に噛合する歯部が形成されている複数のウォームホイールと、
     前記ウォームの両端部を回転自在に支持する軸受と、を備え、
     複数の前記ウォームホイールは、前記ウォームの前記ねじ部に前記歯部を各々噛合させた状態で前記ウォームの駆動回転に伴い各々従動回転し、
     複数の前記ウォームホイールは、互いの軸線同士が平行な態様となるように配置され、
     複数の前記ウォームホイールには、当該ウォームホイールと個別に対応する出力軸が当該ウォームホイールの回転に伴い回転するように連結されているウォーム減速機。
    A worm with a spiral thread formed on its circumferential surface;
    a plurality of worm wheels, each worm wheel having a tooth portion formed on a circumferential surface thereof to mesh with the threaded portion of the worm;
    a bearing rotatably supporting both ends of the worm,
    The plurality of worm wheels each rotate in accordance with the drive rotation of the worm, with the tooth portions meshing with the threaded portions of the worm,
    The plurality of worm wheels are arranged so that their axes are parallel to each other,
    A worm reducer in which output shafts corresponding to the worm wheels are connected to the plurality of worm wheels so as to rotate as the worm wheels rotate.
  2.  前記ねじ部は、前記ウォームの軸方向における第1位置の周面に形成された第1ねじ部と、前記ウォームの軸方向における前記第1位置とは別の第2位置の周面に形成された第2ねじ部と、を含み、
     前記第1ねじ部には、複数の前記ウォームホイールのうち第1ウォームホイールの前記歯部が噛合し、
     前記第2ねじ部には、複数の前記ウォームホイールのうち第2ウォームホイールの前記歯部が噛合する請求項1に記載のウォーム減速機。
    The threaded portion includes a first threaded portion formed on a circumferential surface at a first position in the axial direction of the worm, and a circumferential surface at a second position different from the first position in the axial direction of the worm. a second threaded portion;
    The tooth portion of a first worm wheel among the plurality of worm wheels meshes with the first threaded portion,
    The worm reducer according to claim 1, wherein the tooth portion of a second worm wheel among the plurality of worm wheels meshes with the second threaded portion.
  3.  前記第1ねじ部及び前記第2ねじ部のうち、その一方は右ねじ構造であり、その他方は左ねじ構造である請求項2に記載のウォーム減速機。 The worm reducer according to claim 2, wherein one of the first threaded portion and the second threaded portion has a right-handed threaded structure, and the other has a left-handed threaded structure.
  4.  複数の前記ウォームホイールは、前記ウォームの軸方向と直交する方向において前記ウォームから見た場合に片方側に配置されている請求項1~請求項3のうち何れか一項に記載のウォーム減速機。 The worm reducer according to any one of claims 1 to 3, wherein the plurality of worm wheels are arranged on one side when viewed from the worm in a direction perpendicular to the axial direction of the worm. .
  5.  周面に螺旋状のねじ部が形成されたウォームと、複数のウォームホイールであって、各ウォームホイールの周面には前記ウォームの前記ねじ部に噛合する歯部が形成されている複数のウォームホイールと、前記ウォームの両端部を回転自在に支持する軸受と、を備え、前記ねじ部が、前記ウォームの軸方向における第1位置の周面に形成された第1ねじ部と、前記ウォームの軸方向における前記第1位置とは別の第2位置の周面に形成された第2ねじ部と、を含み、複数の前記ウォームホイールが、前記ウォームの前記第1ねじ部に第1歯部を噛合させた状態で前記ウォームの駆動回転に伴い従動回転する第1ウォームホイールと、前記ウォームの前記第2ねじ部に第2歯部を噛合させた状態で前記ウォームの駆動回転に伴い従動回転する第2ウォームホイールと、を含み、前記第1ウォームホイール及び前記第2ウォームホイールは、互いの軸線同士が平行な態様となるように配置され、前記第1ウォームホイールには第1出力軸が前記第1ウォームホイールの回転に伴い回転するように連結され、前記第2ウォームホイールには第2出力軸が前記第2ウォームホイールの回転に伴い回転するように連結されたウォーム減速機と、
     前記第1出力軸の回転に伴い回転する第1回転部材と、
     前記第2出力軸の回転に伴い回転する第2回転部材と、
    を備え、
     前記第1回転部材及び前記第2回転部材は、前記第1回転部材の回転に基づき長さ方向に進退移動可能な長尺の第1チェーン部材が前記第1回転部材に係合されると共に、前記第1チェーン部材と対をなすように配置され且つ前記第2回転部材の回転に基づき長さ方向に進退移動可能な長尺の第2チェーン部材が前記第2回転部材に係合された場合には、前記第1回転部材及び前記第2回転部材が各々回転することにより、前記第1チェーン部材及び前記第2チェーン部材を、両者が進行方向への移動に伴い相互に噛み合って棒状に一体化する一方、その棒状に一体化した噛合状態から退行方向への移動に伴い相互に噛み外れて分岐するように駆動する噛合チェーン駆動装置。
    A worm having a spiral threaded portion formed on its peripheral surface, and a plurality of worm wheels, each of which has teeth formed on its peripheral surface to mesh with the threaded portion of the worm. a wheel; and a bearing that rotatably supports both ends of the worm; a second threaded portion formed on a circumferential surface at a second position different from the first position in the axial direction, and the plurality of worm wheels include a first toothed portion on the first threaded portion of the worm. a first worm wheel that rotates as a result of the drive rotation of the worm in a state where the worm wheels are in mesh with each other; and a second worm wheel that rotates as a result of the drive rotation of the worm with the second toothed portion of the worm in mesh with the second threaded portion of the worm; a second worm wheel, the first worm wheel and the second worm wheel are arranged such that their axes are parallel to each other, and the first worm wheel has a first output shaft. a worm reducer connected to rotate as the first worm wheel rotates, and a second output shaft connected to the second worm wheel so as to rotate as the second worm wheel rotates;
    a first rotating member that rotates as the first output shaft rotates;
    a second rotating member that rotates as the second output shaft rotates;
    Equipped with
    The first rotating member and the second rotating member include a long first chain member that is movable forward and backward in the length direction based on the rotation of the first rotating member, and is engaged with the first rotating member; When a long second chain member that is arranged to form a pair with the first chain member and that can move forward and backward in the length direction based on the rotation of the second rotating member is engaged with the second rotating member. When the first rotating member and the second rotating member respectively rotate, the first chain member and the second chain member are meshed with each other as they move in the traveling direction, and are integrated into a rod shape. The meshing chain drive device drives the meshing chain drive device so that the meshing state in which the rod-like rods are integrated becomes separated from each other and branches as the meshing state moves in the retraction direction.
PCT/JP2023/008436 2022-03-31 2023-03-07 Worm reduction gear and engagement chain drive device WO2023189259A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022058406A JP2023149692A (en) 2022-03-31 2022-03-31 Worm speed reducer and engagement chain drive device
JP2022-058406 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023189259A1 true WO2023189259A1 (en) 2023-10-05

Family

ID=88201267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008436 WO2023189259A1 (en) 2022-03-31 2023-03-07 Worm reduction gear and engagement chain drive device

Country Status (2)

Country Link
JP (1) JP2023149692A (en)
WO (1) WO2023189259A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09119495A (en) * 1995-10-24 1997-05-06 Sanin Booruto Seisakusho:Kk Stretch feeding device for band body
JPH1078095A (en) * 1996-09-04 1998-03-24 Sanin Booruto Seisakusho:Kk Advancing/retracting motion device by belt unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09119495A (en) * 1995-10-24 1997-05-06 Sanin Booruto Seisakusho:Kk Stretch feeding device for band body
JPH1078095A (en) * 1996-09-04 1998-03-24 Sanin Booruto Seisakusho:Kk Advancing/retracting motion device by belt unit

Also Published As

Publication number Publication date
JP2023149692A (en) 2023-10-13

Similar Documents

Publication Publication Date Title
JP5473932B2 (en) 2-speed transaxle gearbox for electric vehicles
KR101489933B1 (en) Gear system for combining inputs
JPS6127618B2 (en)
JP5449365B2 (en) Reversible seat belt tensioner
JPH08240254A (en) Power transmission device for electric vehicle
US11485226B2 (en) Transmission device for a motor vehicle
JP5325754B2 (en) Continuously variable transmission
JP2011521183A (en) Manual transmission using chain and planetary gear set as final drive
JP2012067771A (en) Linear actuator
US4399719A (en) Twin screw extruder with power branching gearing
WO2023189259A1 (en) Worm reduction gear and engagement chain drive device
KR101013529B1 (en) Counter rotating drive mechanism
JP3473471B2 (en) Transmission ratio infinitely variable transmission
JP3982189B2 (en) Infinite gear ratio continuously variable transmission
CN202251751U (en) Speed changing box for small-sized agricultural machine
US6582338B1 (en) Differential unit with worm gearsets
JP5746665B2 (en) Gear device
JP4349688B2 (en) Vehicle drive device
KR102275048B1 (en) Reduction device with high reduction ratio performance
JP5280592B1 (en) Transmission
KR100699951B1 (en) Method for increasing torque of driving gear using several motors and structure thereof
RU2466315C1 (en) Planetary gear without carrier
CN106740080B (en) Gearbox and agricultural machine
JPH01206138A (en) Transmission for automobile
KR950008809B1 (en) Reversing gear assembly for yachts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779287

Country of ref document: EP

Kind code of ref document: A1