WO2023188622A1 - Drive device - Google Patents

Drive device Download PDF

Info

Publication number
WO2023188622A1
WO2023188622A1 PCT/JP2022/047299 JP2022047299W WO2023188622A1 WO 2023188622 A1 WO2023188622 A1 WO 2023188622A1 JP 2022047299 W JP2022047299 W JP 2022047299W WO 2023188622 A1 WO2023188622 A1 WO 2023188622A1
Authority
WO
WIPO (PCT)
Prior art keywords
axial
axial direction
rotor
fan
shaft
Prior art date
Application number
PCT/JP2022/047299
Other languages
French (fr)
Japanese (ja)
Inventor
健斗 辻本
啓介 麻生
直大 和田
祐輔 牧野
Original Assignee
ニデック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニデック株式会社 filed Critical ニデック株式会社
Publication of WO2023188622A1 publication Critical patent/WO2023188622A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Definitions

  • the present invention relates to a drive device.
  • This application claims priority based on Japanese Patent Application No. 2022-061149 filed in Japan on March 31, 2022, the contents of which are incorporated herein.
  • Patent Document 1 discloses a motor that allows air to pass through the inside of a rotor (Patent Document 1).
  • one of the objects of the present invention is to provide a drive device that smoothly guides air into the rotor and improves the cooling efficiency of the motor.
  • One aspect of the drive device of the present invention includes a rotor having a shaft rotatable around a central axis, a motor having a stator facing the rotor with a gap therebetween, and a motor located on one axial side of the rotor.
  • the motor includes a first fan that rotates together with the rotor, a first bearing that is disposed at one axial end of the shaft and rotatably supports the shaft, and a housing that accommodates the motor.
  • the rotor is provided with a first air hole passing through the rotor in the axial direction.
  • the first fan includes a cylindrical tube portion centered on the central axis, and an intake port located radially inside the tube portion and connected to the first air hole.
  • the housing includes a first base portion that covers the motor from one axial side, and a cylindrical first holding portion that protrudes from the other axial surface of the first base portion toward the other axial side. .
  • the first bearing is held inside the first holding part in the radial direction.
  • the first holding portion is located inside the cylindrical portion in the radial direction.
  • the first holding portion and the cylindrical portion at least partially overlap in the axial direction.
  • the first base portion has an inclined surface that faces the other side in the axial direction and slopes toward the other side in the axial direction as it goes radially inward.
  • FIG. 1 is a conceptual diagram of a drive device according to an embodiment.
  • FIG. 2 is a partial cross-sectional view of the drive device of one embodiment.
  • FIG. 3 is a perspective view of a fan in one embodiment.
  • FIG. 4 is a cross-sectional view of the water jacket of one embodiment.
  • FIG. 5 is a schematic diagram showing the positional relationship between the fins and teeth portions of one embodiment.
  • FIG. 6 is a schematic diagram showing the positional relationship between the fins and teeth portions of a modified example.
  • FIG. 7 is a perspective view of the first bearing holder.
  • an XYZ coordinate system is appropriately shown as a three-dimensional orthogonal coordinate system.
  • the Z-axis direction indicates the vertical direction (that is, the up-down direction), the +Z direction is the upper side (opposite to the direction of gravity), and the -Z direction is the lower side (the direction of gravity).
  • the X-axis direction is a direction orthogonal to the Z-axis direction, and indicates the front-rear direction of the vehicle in which the drive device 1 is mounted.
  • the Y-axis direction is a direction perpendicular to both the X-axis direction and the Z-axis direction, and indicates the width direction (left-right direction) of the vehicle.
  • the direction parallel to the central axis J1 of the motor 2 (Y-axis direction) is simply referred to as the "axial direction", and the radial direction centered on the central axis J1 is simply referred to as the "radial direction”.
  • the circumferential direction centered on the central axis J1, that is, the circumferential direction around the central axis J1 is simply referred to as the "circumferential direction.”
  • the above-mentioned "parallel direction” also includes substantially parallel directions.
  • the +Y direction may be simply referred to as one axial direction
  • the -Y direction may simply be referred to as the other axial direction.
  • the X-axis direction may be referred to as the first direction.
  • the Z-axis direction may be referred to as a second direction. That is, the first direction (X-axis direction) is a direction perpendicular to the central axis J1, and the second direction (Z-axis direction) is a direction perpendicular to the central axis J1 and the first direction (X-axis direction).
  • the lower side ie, ⁇ Z side
  • Z-axis direction the lower side
  • FIG. 1 is a conceptual diagram of a drive device 1 of this embodiment.
  • FIG. 2 is a partial cross-sectional view of the drive device 1 of this embodiment.
  • the drive device 1 of this embodiment is mounted on a vehicle that uses a motor as a power source, such as a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHV), or an electric vehicle (EV), and is used as the power source.
  • a motor such as a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHV), or an electric vehicle (EV)
  • the drive device 1 includes a motor 2, a power transmission section 4, an inverter (control section) 7, a housing 6, a plurality of fans 10A, 10B, and a plurality of bearings 5A, 5B, 5C. , 5D.
  • the motor 2, the power transmission section 4, and the inverter 7 are arranged on the central axis J1 inside the housing 6.
  • the motor 2 of this embodiment is an inner rotor type three-phase AC motor.
  • the motor 2 has both the functions of an electric motor and a generator. Note that the configuration of the motor 2 is not limited to this embodiment, and may be, for example, a four-phase or more AC motor.
  • the motor 2 includes a rotor 20 that is rotatable around a central axis J1 that extends in the horizontal direction, and a stator 30 that faces the rotor 20 with a gap therebetween.
  • the motor 2 of this embodiment is an inner rotor type motor in which a rotor 20 is arranged inside a stator 30.
  • the rotor 20 includes a first shaft (shaft) 21, a rotor core 24 fixed to the outer peripheral surface of the first shaft 21, and a rotor magnet (not shown) fixed to the rotor core 24.
  • the torque of the rotor 20 is transmitted to the power transmission section 4.
  • the rotor core 24 is provided with a plurality of ventilation holes 24a and 24b.
  • the ventilation holes 24a and 24b penetrate the rotor core 24 in the axial direction.
  • the ventilation holes 24a and 24b open at both end surfaces of the rotor core 24 in the axial direction.
  • the plurality of ventilation holes 24a and 24b are arranged along the circumferential direction.
  • the ventilation holes 24a and 24b have a first ventilation hole 24a and a second ventilation hole 24b.
  • the first ventilation holes 24a and the second ventilation holes 24b are arranged alternately along the circumferential direction.
  • the rotor 20 of this embodiment is provided with four first ventilation holes 24a and four second ventilation holes 24b.
  • the cross-sectional shapes of the first ventilation hole 24a and the second ventilation hole 24b are equal to each other.
  • the first ventilation hole 24a and the second ventilation hole 24b have different flow directions of air flowing therein.
  • the rotor core 24 is provided with a shaft insertion hole 24h.
  • the shaft insertion hole 24h extends in the axial direction centering on the central axis.
  • the shaft insertion hole 24h is circular when viewed from the axial direction.
  • the inner diameter of the shaft insertion hole 24h is slightly larger than the outer diameter of the first shaft 21.
  • the first shaft 21 is inserted into the shaft insertion hole 24h.
  • the inner circumferential surface of the shaft insertion hole 24h is provided with a rotation stopper (not shown) that protrudes radially inward and is inserted into a groove (not shown) provided in the outer circumferential surface of the first shaft 21.
  • the first shaft 21 extends along the axial direction centering on the central axis J1.
  • the first shaft 21 is rotatably supported by bearings 5A and 5B.
  • bearings 5A and 5B In the following description, of the pair of bearings 5A and 5B that support the first shaft 21, one located on one side in the axial direction (+Y side) may be referred to as the first bearing 5A, and the other side in the axial direction (- The other bearing located on the Y side) is sometimes referred to as a second bearing 5B.
  • the first bearing 5A is supported by a first bearing holder 6E of the housing 6.
  • the second bearing 5B is supported by the second bearing holder portion 66 of the housing 6.
  • the outer circumferential surface of the first shaft 21 has a flange portion 21f that protrudes radially outward and a male screw portion 21s.
  • the flange portion 21f and the male screw portion 21s are arranged at a distance in the axial direction.
  • the flange portion 21f is arranged on one side in the axial direction (+Y side) than the male screw portion 21s.
  • a nut 21n is attached to the male threaded portion 21s. The flange 21f and the nut 21n sandwich and hold the rotor core 24 from both sides in the axial direction.
  • a rotor portion 29a of the resolver 29 is fixed to the end of the first shaft 21 on one axial side (+Y side).
  • the rotor portion 29a is located on one axial side (+Y side) of the bearing 5A.
  • the rotor portion 29a rotates together with the first shaft 21 around the central axis J1.
  • the stator 30 is held in the housing 6.
  • the stator 30 surrounds the rotor 20 from the outside in the radial direction.
  • the stator 30 includes an annular stator core 32 centered on the central axis J1, a coil 31 attached to the stator core 32, and an insulator (not shown) interposed between the stator core 32 and the coil 31.
  • the stator core 32 has an annular core back portion 32a and a plurality of teeth portions 32b extending radially inward from the core back portion 32a.
  • the plurality of teeth portions 32b are arranged along the circumferential direction.
  • a coil wire is arranged between the teeth portions 32b arranged in the circumferential direction.
  • the coil wire located between adjacent teeth portions 32b constitutes a coil 31. That is, the coil 31 is arranged in the stator core 32.
  • the insulator is made of an insulating material.
  • the coil 31 has a pair of coil ends 31a and 31b that respectively protrude in the axial direction from both end surfaces of the stator core 32 in the axial direction.
  • one of the pair of coil ends 31a, 31b on one side in the axial direction (+Y side) is defined as a first coil end 31a
  • the other on the other side in the axial direction (-Y side) is defined as a second coil end 31b. That is, the first coil end 31a protrudes from the end face of the stator core 32 on one axial side (+Y side) in the axial direction
  • the second coil end 31b protrudes from the end face of the stator core 32 on the other axial side (-Y side). Projects from the end face to the other side in the axial direction.
  • the first coil end 31a and the second coil end 31b are formed by bundling crossover wires (coil wires) that connect the slots of the stator core 32. Furthermore, in addition to the crossover wire, a neutral point coil wire that connects coil wires of different phases is also bundled at the first coil end 31a. Therefore, in this embodiment, the axial dimension of the first coil end 31a is larger than the axial dimension of the second coil end 31b.
  • the first coil end 31a and the second coil end 31b have a distal end 31P and a proximal end 31Q.
  • the tip portion 31P is the furthest portion of each coil end 31a, 31b from the stator core 32 in the axial direction.
  • the base end portion 31Q is a portion extending from the stator core 32 in each of the coil ends 31a and 31b.
  • the distal end 31P of the first coil end 31a is an end on one axial side (+Y side) of the first coil end 31a
  • the base end 31Q of the first coil end 31a is an axial end of the first coil end 31a. This is the end on the other side ( ⁇ Y side) in the direction.
  • the coil ends 31a, 31b have a base end 31Q located on the end side of the stator core 32 in the axial direction.
  • the distal end 31P of the second coil end 31b is the end on the other axial side (-Y side) of the second coil end 31b
  • the base end 31Q of the second coil end 31b is the end of the second coil end 31b on the other side in the axial direction (-Y side). This is the end on one side in the axial direction (+Y side).
  • the drive device 1 of this embodiment includes a first fan 10A and a second fan 10B as fans 10A and 10B.
  • the first fan 10A and the second fan 10B are fixed to the rotor 20.
  • the first fan 10A and the second fan 10B rotate together with the rotor 20.
  • the first fan 10A and the second fan 10B are located on both sides of the rotor 20 in the axial direction. More specifically, the first fan 10A is located on one axial side (+Y side) of the rotor 20, and the second fan 10B is located on the other axial side ( ⁇ Y side) of the rotor 20.
  • the first fan 10A is located inside the first coil end 31a in the radial direction, and the second fan 10B is located inside the second coil end 31b in the radial direction.
  • the first fan 10A and the second fan 10B have the same shape.
  • the first fan 10A and the second fan 10B are attached to the rotor 20 at different positions and in different orientations.
  • FIG. 3 is a perspective view of the first fan 10A.
  • the structure of the first fan 10A will be specifically explained based on FIG. 3.
  • the second fan 10B has the same shape as the first fan 10A, so a description thereof will be omitted.
  • the first fan 10A is simply referred to as fan 10A, unless it is necessary to distinguish between the first fan 10A and the second fan 10B.
  • the fan 10A includes a fan main body portion 15, a cylindrical portion 13, a plurality of air intake ports 11, and a plurality of air outlet ports 12.
  • the fan 10A is made of, for example, a resin material.
  • the fan main body portion 15 has a disk shape centered on the central axis J1.
  • the fan main body portion 15 has a facing surface 15a, an opposite surface 15b, and an outer circumferential surface 15c.
  • the facing surface 15a and the opposite surface 15b are surfaces facing oppositely to each other in the axial direction.
  • the opposing surface 15a faces the rotor core 24 and contacts a surface of the rotor core 24 facing in the axial direction.
  • the outer peripheral surface 15c is a surface facing outward in the radial direction.
  • the fan main body portion 15 is provided with a central hole 15h.
  • the central hole 15h passes through the fan main body 15 in the vertical direction.
  • the central hole 15h has a substantially circular shape centered on the central axis.
  • a pair of rotation stops 15t are provided on the inner peripheral surface of the central hole 15h.
  • the rotation stopper 15t protrudes radially inward from the inner peripheral surface of the central hole 15h.
  • the first shaft 21 is inserted into the central hole 15h.
  • the inner diameter of the central hole 15h is slightly larger than the outer diameter of the first shaft 21.
  • the rotation stopper 15t is inserted into the groove of the first shaft 21 and suppresses rotation of the fan 10A with respect to the first shaft 21.
  • the outer diameter of the flange 21f provided on the first shaft 21 is larger than the inner diameter of the shaft insertion hole 24h of the rotor core 24 and the fans 10A and 10B. Further, the outer diameter of the male screw portion 21s provided on the first shaft 21 is smaller than the inner diameter of the shaft insertion hole 24h of the rotor core 24 and the fans 10A and 10B.
  • the first fan 10A, rotor core 24, second fan 10B, and nut 21n are inserted into the first shaft 21 in this order from the end on the other axial side (-Y side). Further, the nut 21n is screwed onto the male threaded portion 21s.
  • the opposite surface 15b of the first fan 10A contacts the surface of the flange 21f facing the other axial direction (-Y side).
  • the opposite surface 15b of the second fan 10B contacts the surface of the nut 21n facing one axial side (+Y side).
  • the cylindrical portion 13 has a cylindrical shape centered on the central axis J1.
  • the cylindrical portion 13 of the first fan 10A extends from the outer edge of the fan main body 15 toward one side in the axial direction (+Y side).
  • the cylindrical portion 13 of the second fan 10B is located on the other side in the axial direction from the fan main body 15. (extends to the -Y side). That is, the cylindrical portion 13 extends from the outer edge of the fan main body portion 15 toward the opposite side of the rotor core 24 .
  • the outer circumferential surface of the cylindrical portion 13 extends in the axial direction so as to be continuous with the outer circumferential surface 15c of the fan main body portion 15.
  • the fan 10A of this embodiment is provided with four air intake ports 11 and four air outlet ports 12.
  • the air intake ports 11 and the air outlet ports 12 are arranged alternately in the circumferential direction.
  • the rotor 20 of this embodiment is provided with four first ventilation holes 24a and four second ventilation holes 24b. Seen from the axial direction, the air intake port 11 overlaps with the first air hole 24a, and the air outlet 12 overlaps with the second air hole 24b.
  • the intake port 11 is a through hole that passes through the fan main body 15 in the axial direction.
  • the intake port 11 opens to the facing surface 15a and the opposite surface 15b of the fan main body portion 15.
  • the opening of the opposing surface 15a of the air intake port 11 is connected to the first air hole 24a. That is, the intake port 11 is connected to the first air blow hole 24a.
  • the opening on the opposite surface 15b of the intake port 11 faces the opposite side to the rotor core 24.
  • the intake port 11 is located inside the cylindrical portion 13 in the radial direction.
  • the air outlet 12 is a recess provided in the fan body 15.
  • the air outlet 12 opens on the opposing surface 15a and the outer circumferential surface 15c of the fan main body 15.
  • the opening of the opposing surface 15a of the blower outlet 12 is connected to the second blower hole 24b. That is, the blower outlet 12 is connected to the second blower hole 24b.
  • the opening of the outer circumferential surface 15c of the air outlet 12 faces outward in the radial direction. That is, the air outlet 12 opens radially outward.
  • a plurality of blower fins 12f are provided on the inner surface of the blower outlet 12.
  • one blower outlet 12 is provided with three blower fins 12f.
  • the blower fins 12f protrude toward the rotor 20 from the surface of the air outlet 12 facing the rotor 20 (that is, the surface facing the axial direction). Further, the blower fins 12f extend along the radial direction.
  • the plurality of blower fins 12f are arranged along the circumferential direction.
  • the plurality of blower fins 12f define an opening of the air outlet 12 facing outward in the radial direction along the circumferential direction.
  • the air outlet 12 opens outward in the radial direction. Further, the fan 10A rotates around the central axis J1. Therefore, centrifugal force is applied to the air within the air outlet 12 and the air is blown outward in the radial direction. Furthermore, as the fan 10A rotates, the blower fins 12f provided in the outlet 12 push out the air inside the outlet 12 radially outward and adjust the flow of the air.
  • the first ventilation hole 24a is connected to the intake port 11 of the first fan 10A at one end in the axial direction (+Y side), and is connected to the inlet port 11 of the first fan 10A at the other end in the axial direction (-Y side). It is connected to the air outlet 12 of the second fan 10B.
  • the second ventilation hole 24b is connected to the intake port 11 of the second fan 10B at the other axial end (-Y side), and connected to the first fan 10A at the one axial end (+Y side). It is connected to the air outlet 12.
  • the air in the first ventilation hole 24a and the second ventilation hole 24b of the first fan 10A and the second fan 10B is blown radially outward due to the action of centrifugal force. Accordingly, the insides of the first ventilation hole 24a and the second ventilation hole 24b become negative pressure. Air flows into the first ventilation hole 24a from the intake port 11 of the first fan 10A. Similarly, air flows into the second ventilation hole 24b from the intake port 11 of the second fan 10B. That is, the intake port 11 guides external air into the first ventilation hole 24a and the second ventilation hole 24b.
  • the air outlet 12 of the first fan 10A overlaps the base end 31Q of the first coil end 31a when viewed from the radial direction of the central axis J1.
  • the air outlet 12 of the second fan 10B overlaps the base end 31Q of the second coil end 31b when viewed from the radial direction of the central axis J1. That is, the first coil end 31a is arranged on the radially outer side of the air outlet 12 of the first fan 10A. A second coil end 31b is arranged on the radially outer side of the air outlet 12 of the second fan 10B. Therefore, the first fan 10A and the second fan 10B can cool the first coil end 31a and the second coil end 31b by applying air to them, respectively.
  • the inverter 7 shown in FIG. 1 is electrically connected to the motor 2.
  • the inverter 7 is connected to a battery (not shown) mounted on the vehicle, converts direct current supplied from the battery into alternating current, and supplies the alternating current to the motor 2. Further, the inverter 7 controls the motor 2.
  • the inverter 7 is arranged on one side (+Y side) of the motor 2 in the axial direction. According to this embodiment, the drive device 1 can be made smaller in the radial direction compared to the case where the inverter 7 is arranged outside the motor 2 in the radial direction.
  • the power transmission section 4 is arranged on the other axial side (-Y side) with respect to the motor 2.
  • the power transmission section 4 is connected to the rotor 20 and transmits the power of the motor 2, and outputs the power to the output shaft 47.
  • the power transmission section 4 includes a reduction gear 4a and a differential gear 4b. Torque output from the motor 2 is transmitted to the differential gear 4b via the reduction gear 4a.
  • the speed reducer 4a is a parallel shaft gear type speed reducer in which the rotation axes of each gear are arranged in parallel.
  • the differential device 4b transmits the same torque to both the left and right wheels while absorbing the speed difference between the left and right wheels when the vehicle turns.
  • the reduction gear 4a has a second shaft 44, a third shaft 45, a first gear 41, a second gear 42, and a third gear 43.
  • the differential device 4b includes a ring gear 46g, a differential case 46, and a differential mechanism section 46c disposed inside the differential case 46. That is, the power transmission section 4 has a plurality of gears 41, 42, 43, and 46g.
  • the second shaft 44 extends in the axial direction centering on the central axis J1.
  • the second shaft 44 is arranged coaxially with the first shaft 21.
  • the second shaft 44 is connected at one axial end (+Y side) to the other axial end ( ⁇ Y side) of the first shaft 21 .
  • the second shaft 44 rotates around the central axis J1 together with the first shaft 21.
  • the second shaft 44 is rotatably supported by bearings 5C and 5D.
  • the bearing 5C is supported by the second bearing holder portion 66 of the housing 6.
  • the bearing 5D is supported by the gear cover 6C of the housing 6.
  • the first gear 41 is provided on the outer peripheral surface of the second shaft 44.
  • the first gear 41 rotates together with the second shaft 44 around the central axis J1.
  • the third shaft 45 rotates around an intermediate axis J2 parallel to the central axis J1.
  • the second gear 42 and the third gear 43 are arranged side by side in the axial direction.
  • the second gear 42 and the third gear 43 are provided on the outer peripheral surface of the third shaft 45.
  • the second gear 42 and the third gear 43 are connected via a third shaft 45.
  • the second gear 42 and the third gear 43 rotate about the intermediate axis J2.
  • the second gear 42 meshes with the first gear 41.
  • the third gear 43 meshes with a ring gear 46g of the differential device 4b.
  • the ring gear 46g rotates around an output axis J3 that is parallel to the central axis J1. Torque output from the motor 2 is transmitted to the ring gear 46g via the reduction gear 4a. Ring gear 46g is fixed to differential case 46.
  • the differential case 46 includes a case portion 46b that accommodates a differential mechanism portion 46c therein, and a differential case shaft 46a that protrudes to one side and the other side in the axial direction with respect to the case portion 46b. That is, the power transmission section 4 includes a differential case shaft 46a.
  • the differential case shaft 46a has a cylindrical shape that extends in the axial direction centering on the output axis J3.
  • Ring gear 46g is provided on the outer peripheral surface of differential case shaft 46a. The differential case shaft 46a rotates together with the ring gear 46g about the output axis J3.
  • the pair of output shafts 47 are connected to the differential gear 4b.
  • a pair of output shafts 47 protrude from the differential case 46 of the differential device 4b to one side and the other side in the axial direction.
  • the output shaft 47 is arranged inside the differential case shaft 46a.
  • the output shaft 47 is rotatably supported on the inner peripheral surface of the differential case shaft 46a via a bearing.
  • the torque output from the motor 2 is transmitted to the ring gear 46g of the differential device 4b via the second shaft 44, first gear 41, second gear 42, third shaft 45, and third gear 43 of the motor 2, It is output to the output shaft 47 via the differential mechanism section 46c of the differential device 4b.
  • the plurality of gears 41, 42, 43, and 46g of the power transmission section 4 transmit the power of the motor 2 to the second shaft 44, the third shaft 45, and the differential case shaft 46a in this order.
  • Housing 6 accommodates motor 2, power transmission section 4, and inverter 7. Housing 6 supports motor 2 , power transmission section 4 , and inverter 7 . Further, the housing 6 supports bearings 5A, 5B, 5C, and 5D.
  • the housing 6 includes an inverter holder 6A, a housing main body 6B, a gear cover 6C, a water jacket 6D, and a first bearing holder 6E.
  • the inverter holder 6A, the housing body 6B, the gear cover 6C, the water jacket 6D, and the first bearing holder 6E are each separate members.
  • the inverter holder 6A is arranged on one axial side (+Y side) of the housing body 6B.
  • the gear cover 6C is arranged on the other axial side (-Y side) of the housing body 6B.
  • the water jacket 6D and the first bearing holder 6E are arranged inside the housing body 6B.
  • the housing 6 is provided with a flow path 90 through which the fluid L flows.
  • the fluid L is, for example, water. Note that the fluid L does not have to be water.
  • the fluid L may be oil or other fluid.
  • the flow path 90 includes an external pipe 97 passing through the outside of the housing 6, a first flow path section 91, a second flow path section 92, a third flow path section 93, and a fourth flow path passing through the inside of the housing 6. 94.
  • the fluid L flows inside the housing 6 in the order of the first flow path section 91 , the second flow path section 92 , the third flow path section 93 , and the fourth flow path section 94 .
  • the fluid L mainly cools the inverter in the first flow path section 91 and mainly cools the motor 2 in the third flow path section 93.
  • the external piping 97 is connected to the inverter holder 6A at a first connection part 97a, and connected to the housing main body 6B at a second connection part 97b.
  • a radiator (not shown) that cools the fluid L is arranged in the path of the external pipe 97.
  • the external pipe 97 sends the low-temperature fluid L into the housing 6 at the first connecting portion 97a, and recovers the fluid L whose temperature has increased by absorbing heat within the housing 6 at the second connecting portion 97b.
  • the housing body 6B accommodates the motor 2 and is open on one side in the axial direction (+Y side).
  • the housing main body 6B includes a cylindrical outer cylinder part 65 centered on the central axis J1, and an opening on the other axial side of the outer cylinder part 65, which is arranged on the other axial side (-Y side) of the outer cylinder part 65. It has a second bearing holder part 66 that covers the second bearing holder part 66, and a recessed part 65b that opens on the other side in the axial direction (-Y side).
  • the outer cylinder portion 65 surrounds the motor 2 from the outside in the radial direction.
  • the outer cylinder portion 65 is provided with a second flow path portion 92 and a fourth flow path portion 94 .
  • the second flow path portion 92 and the fourth flow path portion 94 are holes provided in the outer cylinder portion 65.
  • the second flow path section 92 extends inside the wall of the outer cylinder section 65 along the axial direction.
  • the second flow path section 92 connects the downstream end of the first flow path section 91 and the inlet section 93a of the third flow path section 93.
  • the fourth flow path section 94 extends along the radial direction.
  • the fourth flow path portion 94 extends radially outward from the outlet portion 93b of the third flow path portion 93 and opens toward the outside of the outer cylinder portion 65 in the radial direction.
  • a second connecting portion 97b of an external pipe 97 is connected to the opening of the fourth flow path portion 94.
  • the second bearing holder portion 66 is provided with a shaft insertion hole 66h.
  • a pair of bearings 5B and 5C and a seal member 5S are arranged in the shaft insertion hole 66h.
  • the bearing 5B supports the first shaft 21, and the bearing 5C supports the second shaft 44.
  • the first shaft 21 and the second shaft 44 are connected to each other inside the shaft insertion hole 66h.
  • the seal member 5S is arranged between the two bearings 5B and 5C in the axial direction.
  • the seal member 5S seals between the inner peripheral surface of the shaft insertion hole 66h and the outer peripheral surface of the second shaft 44.
  • the configuration of the second bearing holder portion 66 will be explained in more detail later.
  • the gear cover 6C is fixed to the concave portion 65b of the housing body 6B.
  • the gear cover 6C and the concave portion 65b constitute an accommodation space that accommodates the power transmission section 4.
  • Oil O is stored in the accommodation space of the power transmission section 4.
  • the oil O increases the lubricity of the power transmission section 4.
  • the inverter holder 6A accommodates and supports the inverter 7.
  • the inverter holder 6A covers an opening on one axial side (+Y side) of the housing body 6B.
  • a first flow path portion 91 for cooling the inverter 7 is provided in the inverter holder 6A.
  • the water jacket 6D has a cylindrical inner cylinder part 64 centered on the central axis J1, and a rib 64a provided on the outer peripheral surface of the inner cylinder part 64.
  • the inner cylinder portion 64 surrounds the stator 30 from the outside in the radial direction. That is, water jacket 6D surrounds stator 30 from the outside in the radial direction.
  • the inner cylinder part 64 is arranged inside the outer cylinder part 65. That is, the inner cylinder part 64 is surrounded by the outer cylinder part 65 from the outside in the radial direction.
  • the outer diameter of the inner cylindrical portion 64 is smaller than the inner diameter of the outer cylindrical portion 65.
  • O-rings 64c and 64d are arranged at both axial ends of the outer circumferential surface of the inner cylindrical portion 64, respectively. The O-rings 64c and 64d seal between the outer circumferential surface of the inner cylindrical portion 64 and the outer cylindrical portion 65.
  • a gap is provided between the inner cylinder part 64 and the outer cylinder part 65 and between the pair of O-rings 64c and 64d, which functions as the third flow path part 93.
  • the rib 64a extends spirally around the central axis J1.
  • the rib 64a has a tip located at the radially outer end.
  • the tip of the rib 64a contacts the inner circumferential surface of the outer cylindrical portion 65, or faces the inner circumferential surface of the outer cylinder portion 65 with a slight gap therebetween.
  • the rib 64a partitions the gap between the outer circumferential surface of the inner cylindrical portion 64 and the outer cylindrical portion 65 to form a spiral third flow path portion 93.
  • the third flow path portion (water channel) 93 is arranged between the outer cylindrical portion 65 of the housing body 6B and the inner cylindrical portion 64 of the water jacket 6D in the radial direction. More specifically, the third flow path portion 93 is provided radially inside the outer cylinder portion 65 and radially outside the water jacket 6D.
  • the third flow path section 93 extends spirally about the central axis J1.
  • the third flow path section 93 surrounds the stator 30 from the outside in the radial direction.
  • the fluid L flowing through the third flow path portion 93 cools the water jacket 6D. Water jacket 6D contacts stator core 32 and cools stator core 32.
  • the third flow path portion 93 extends in a spiral shape.
  • the third flow path section 93 is not limited to this embodiment as long as it surrounds the stator 30.
  • the third flow path portion 93 may be a flow path that meanders in the axial direction or the circumferential direction.
  • the flow path configuration of the third flow path section 93 can be determined by the shape of the rib 64a.
  • the inner circumferential surface of the inner cylindrical portion 64 includes a fitting inner circumferential surface 50e, a first inner circumferential surface 50f, and a second inner circumferential surface 50g. That is, the inner circumferential surface of the water jacket 6D includes a fitting inner circumferential surface 50e, a first inner circumferential surface 50f, and a second inner circumferential surface 50g.
  • the fitting inner circumferential surface 50e contacts the outer circumferential surface of the stator core.
  • the stator core 32 is held on the fitting inner circumferential surface 50e.
  • the inner diameters of the first inner circumferential surface 50f and the second inner circumferential surface 50g are larger than the inner diameter of the fitting inner circumferential surface 50e.
  • the first inner circumferential surface 50f is located on one axial side (+Y side) of the fitting inner circumferential surface 50e.
  • the second inner circumferential surface 50g is located on the other axial side (-Y side) of the fitting inner circumferential surface 50e.
  • the first inner circumferential surface 50f surrounds the first coil end 31a from the outside in the radial direction via a gap.
  • the end of the first inner circumferential surface 50f on one axial side (+Y side) is located on the one axial side of the tip 31P of the first coil end 31a.
  • the second inner circumferential surface 50g surrounds the second coil end 31b from the outside in the radial direction via a gap.
  • the end of the second inner circumferential surface 50g on the other axial side (-Y side) is located on the other axial side than the tip 31P of the second coil end 31b.
  • the axial dimension of the first coil end 31a is larger than the axial dimension of the second coil end 31b.
  • the axial dimension of the first inner circumferential surface 50f is larger than the axial dimension of the second inner circumferential surface 50g.
  • a first fin (fin) 55A is provided on the first inner peripheral surface 50f.
  • second fins (fins) 55B are provided on the second inner peripheral surface 50g. That is, a plurality of fins 55A, 55B are provided on the inner peripheral surface of the water jacket 6D, which are arranged on the radially outer side of the coil ends 31a, 31b.
  • a first fin 55A and a second fin 55B are provided as fins 55A and 55B on the inner peripheral surface of the water jacket 6D.
  • the first fin 55A is located on the radially outer side of the first coil end 31a.
  • the second fin 55B is located on the radially outer side of the second coil end 31b.
  • the water jacket 6D is cooled by the fluid L flowing through the third flow path section 93.
  • the surface area of the water jacket 6D can be increased and the efficiency of cooling the air in the space surrounded by the water jacket 6D can be increased.
  • the air outlet 12 of the first fan 10A, the first coil end 31a, and the first fin 55A are arranged side by side in the radial direction. Further, the blower outlet 12 opens outward in the radial direction. Air blown out radially outward from the air outlet 12 passes through the first coil end 31a and hits the first fin 55A. Therefore, the air heated when passing through the first coil end 31a can be cooled by hitting the first fins 55A. Thereby, the temperature of the air flowing around the first coil end 31a can be kept low, and the first coil end 31a can be efficiently cooled.
  • the air outlet 12, second coil end 31b, and second fin 55B of the second fan 10B are arranged side by side in the radial direction. Therefore, the same effect as that around the first coil end 31a can be obtained also around the second coil end 31b.
  • the end surface (first end surface 32d) of the stator core 32 that extends orthogonally to the axial direction is arranged on the other axial side (-Y side) of the first fin 55A. Therefore, the air that has reached the first fins 55A from the air outlet 12 changes its flow direction so as to move toward one side in the axial direction. Therefore, the air cooled by the first fins 55A further cools the first coil end 31a while flowing between the first inner peripheral surface 50f and the first coil end 31a. According to this embodiment, the first coil end 31a can be cooled, and the warmed air can be cooled by the first fins 55A.
  • an end face facing the other axial side (-Y side) of the stator core 32 is arranged on one axial side (+Y side) of the second fin 55B. Therefore, the air that has reached the second fin 55B can flow between the second inner peripheral surface 50g and the second coil end 31b, thereby cooling the second coil end 31b and directing the warmed air to the second fin. 55B can be used for cooling.
  • the first coil end 31a of the present embodiment overlaps the air outlet 12 and the first fin 55A at the base end 31Q when viewed from the outside in the radial direction of the central axis J1. That is, the air outlet 12 of the first fan 10A, the base end 31Q of the first coil end 31a, and the first fin 55A are arranged side by side in the radial direction.
  • the second coil end 31b overlaps the air outlet 12 and the second fin 55B at the base end 31Q when viewed from the outside in the radial direction of the central axis J1. That is, the air outlet 12 of the second fan 10B, the base end 31Q of the second coil end 31b, and the second fin 55B are arranged side by side in the radial direction.
  • the connecting wires extending along the circumferential direction are bundled without any gaps. Therefore, it is difficult for the air blown out from the air outlet 12 to smoothly pass through the insides of the coil ends 31a and 31b.
  • the crossover wires of the coil ends 31a and 31b extend in the axial direction from the slot between the teeth portions 32b at the base end 31Q, and gradually curve toward the circumferential direction as they move away from the end surface of the stator core 32.
  • the crossover wire extends in the axial direction at a portion extending from the stator core 32. Therefore, a gap extending along the teeth portion 32b is provided at the base end portion 31Q of the coil ends 31a, 31b.
  • the air blown out from the air outlet 12 is transferred to the diameter of the coil ends 31a, 31b. It can be sent to the outside. Thereby, the air blown out from the air outlet 12 can be applied to the fins 55A and 55B located on the radially outer side of the air outlet 12.
  • FIG. 4 is a cross-sectional view of the water jacket 6D.
  • the plurality of first fins 55A of this embodiment extend along the axial direction and are lined up along the circumferential direction.
  • the second fins 55B extend along the axial direction and are lined up along the circumferential direction.
  • the air that has reached the fins 55A, 55B from the outlet 12 can flow smoothly along the axial direction.
  • the flow velocity of the air circulating around the coil ends 31a, 31b can be increased, and the cooling efficiency of the coil ends 31a, 31b by the air can be increased.
  • the fins 55A and 55B of this embodiment also function as rectifying fins that smooth the flow of air.
  • the fins 55A and 55B of this embodiment become thinner as they move away from the stator core 32 in the axial direction. That is, the first fins 55A become thinner toward one side in the axial direction (+Y side), and the second fins 55B become thinner toward the other side in the axial direction ( ⁇ Y side).
  • the fins 55A, 55B are "slender", it means that the width dimension of the fins 55A, 55B along the circumferential direction is small.
  • the fins 55A and 55B can be made thinner toward the downstream side of the air flow, and as a result, the cross-sectional area of the flow path on the downstream side can be increased. This allows the air to flow more smoothly.
  • the fins 55A and 55B become thinner toward both sides in the axial direction. Therefore, when the water jacket 6D is manufactured by die-casting or the like, the mold configuration can be simplified by making the punching directions on both sides in the axial direction, and the water jacket 6D can be manufactured at low cost.
  • the fins 55A and 55B of this embodiment have a surface facing radially inward (hereinafter referred to as an inner end surface 55a).
  • the inner end surfaces 55a of the fins 55A, 55B slope radially outward as they move away from the stator core 32 in the axial direction.
  • the cross-sectional area of the flow path on the downstream side of the air flowing between the inner surface of the water jacket 6D and the coil ends 31a, 31b can be increased. This allows the air to flow more smoothly.
  • the mold configuration can be simplified by setting the drawing directions to both sides in the axial direction, and the water jacket 6D can be manufactured at low cost.
  • the axial dimension of the first fin 55A is larger than the axial dimension of the first coil end 31a.
  • the axial dimension of the second fin 55B is larger than the axial dimension of the second coil end 31b.
  • the axial dimension of the first fin 55A is larger than the axial dimension of the second fin 55B.
  • the axial dimension of the first coil end 31a is larger than the axial dimension of the second coil end 31b.
  • each coil end 31a, 31b can be cooled according to the amount of heat generated by making the fins 55A, 55B an appropriate size in the axial direction according to the size of the coil ends 31a, 31b.
  • a third flow path section 93 that surrounds the stator 30 from the outside in the radial direction is provided on the radial side of the water jacket 6D.
  • An inlet portion 93 a through which the fluid L flows into the third flow path portion 93 is provided at the upstream end of the third flow path portion 93 .
  • the inlet portion 93a is a connection portion between the third flow path portion 93 and the second flow path portion 92 (see FIG. 1).
  • the inlet portion 93a overlaps with the first fin 55A when viewed from the radial direction.
  • the fluid L flowing through the third flow path section 93 receives heat from the stator 30 and increases in temperature as it moves downstream within the third flow path section 93 . Therefore, the temperature of the fluid L in the third flow path section 93 is lowest near the inlet section 93a.
  • the inlet portion 93a by arranging the inlet portion 93a on the radially outer side of the first fin 55A, the first fin 55A is cooled and passes around the first coil end 31a via the first fin 55A. Air can be effectively cooled.
  • the axial dimension of the first coil end 31a is larger than the axial dimension of the second coil end 31b.
  • the amount of heat generated by the first coil end 31a tends to be larger than the amount of heat generated by the second coil end 31b.
  • the first coil end 31a can be cooled with the low temperature fluid L flowing from the inlet portion 93a via the first fins 55A and air. Thereby, the first coil end 31a can be efficiently cooled.
  • FIG. 5 is a schematic diagram showing the positional relationship between the teeth portion 32b of the stator core 32 and the first fin 55A.
  • the illustration of the coil 31 attached to the stator core 32 is omitted.
  • an extension line TL extending radially outward from a straight line passing through the circumferential center of the teeth portion 32b when viewed from the axial direction is assumed.
  • the extension line TL is a straight line that passes through the central axis J1 and the center of the teeth portion 32b.
  • the recessed portion 55s between the first fins 55A is arranged on the extension line TL of the teeth portion 32b when viewed from the axial direction.
  • the recess 55s extends along the axial direction.
  • a gap is provided in the base end portion 31Q of the first coil end 31a along the teeth portion 32b.
  • the air blown out from the air outlet 12 of the first fan 10A flows along the end surface of the teeth portion 32b on one axial side (+Y side) at the base end 31Q of the first coil end 31a. That is, the air passing through the first coil end 31a flows along the extension line TL, which is the direction in which the teeth portion 32b extends.
  • the air that has passed through the first coil end 31a can be applied to the recess 55s of the first fin 55A.
  • This allows air to flow smoothly in the axial direction along the inner surface of the recess 55s. That is, according to this configuration, the rectifying effect of the first fins 55A can be enhanced, the air can flow easily, and the circulation of the air around the first coil end 31a can be promoted.
  • FIG. 6 is a schematic diagram showing the positional relationship between the first fin 155A and the teeth portion 32b in a modification that can be employed in this embodiment.
  • the illustration of the coil 31 attached to the stator core 32 is omitted.
  • the radially inner surface (inner end surface 155a) of the first fin 155A is arranged on the extension line TL of the teeth portion 32b when viewed from the axial direction.
  • the air that has passed through the first coil end 31a can be directly applied to the convex surface of the first fin 155A, and the contact area between the air and the first fin 55A can be increased. .
  • the air can be efficiently cooled by the first fins 55A. That is, according to this configuration, the heat absorption effect by the first fins 55A can be enhanced to efficiently cool the air.
  • the configuration of this modification can be applied not only to the first fin 55A in the above-described embodiment but also to the second fin 55B.
  • the first bearing holder 6E is arranged on one axial side (+Y side) with respect to the motor 2 inside the housing 6.
  • the first bearing holder 6E is fixed to an end surface on one axial side (+Y side) of the water jacket 6D.
  • the first bearing holder 6E holds the first bearing 5A.
  • the first bearing 5A is arranged at one end of the first shaft 21 in the axial direction (+Y side), and rotatably supports the first shaft 21.
  • the first bearing holder 6E has a first base portion (base portion) 71 and a first holding portion (holding portion) 72. That is, the housing 6 has a first base part 71 and a first holding part 72.
  • the first base portion 71 covers the motor 2 from one side in the axial direction (+Y side).
  • the first base part 71 supports the first holding part 72.
  • FIG. 7 is a perspective view of the first bearing holder 6E.
  • the first base portion 71 has a disk shape centered on the central axis J1.
  • a first holding portion 72 is arranged at the center of the first base portion 71 . That is, the first base portion 71 extends radially outward from the first holding portion 72.
  • the first bearing holder 6E is fixed to the water jacket 6D of the housing 6 at the outer edge 71d of the first base portion 71.
  • the first base portion 71 is provided with a base center hole 71h.
  • the base center hole 71h passes through the first base portion 71 in the axial direction.
  • the base central hole 71h has a circular shape centered on the central axis J1. An end portion of the first shaft 21 on one axial side (+Y side) is inserted into the base center hole 71h.
  • the rotor portion 29a of the resolver 29 is fixed to the end of the first shaft 21 on one axial side (+Y side). Therefore, the rotor portion 29a is arranged on one side in the axial direction (+Y side) with respect to the first base portion 71.
  • the first base portion 71 is also provided with a plurality of through holes. For example, a lead wire extending from the first coil end 31a toward the inverter 7, a thermistor cable, etc. are passed through these through holes.
  • the first holding portion 72 has a cylindrical shape extending along the central axis J1.
  • the first holding portion 72 surrounds the first bearing 5A from the outside in the radial direction and holds the first bearing 5A. That is, the first bearing 5A is arranged radially inside the first holding portion 72.
  • the first holding portion 72 surrounds the base center hole 71h from the outside in the radial direction.
  • the air blown out from the outlet 12 of the first fan 10A flows between the inner peripheral surface of the water jacket 6D and the first coil end 31a in the axial direction on one side (+Y side). This air hits the first base portion 71 of the first bearing holder 6E and flows radially inward along the first base portion 71.
  • the surface of the first base portion 71 facing the other side in the axial direction (-Y side) is referred to as the first guiding surface 71c. That is, the first base portion 71 has a first guiding surface 71c.
  • the first guide surface 71c is provided with a first inclined surface 71a that is inclined toward the other side in the axial direction as it goes radially inward. That is, the first base portion 71 has a first inclined surface 71a that faces the other axial side (-Y side) and slopes toward the other axial side as it goes radially inward.
  • the first base portion 71 can guide the air flowing radially inward along the first guiding surface 71c to the other axial side (-Y side) at the first inclined surface 71a. .
  • the first holding portion 72 is a cylindrical portion that protrudes from the first guiding surface 71c toward the other side in the axial direction ( ⁇ Y side).
  • the air flowing radially inward and axially on the other side (-Y side) along the first guide surface 71c hits the outer peripheral surface of the first holding part 72 and changes the flow direction to the axially other side (-Y side).
  • the first guide surface 71c faces the intake port 11 of the first fan 10A in the axial direction. Therefore, the air that changes its flow direction and flows toward the other side in the axial direction (-Y side) is smoothly sucked into the intake port 11.
  • the surface of the first base portion 71 facing the motor 2 side i.e., the first guiding surface 71c
  • the first guiding surface 71c has a plurality of grooves extending radially along the radial direction.
  • Three fins 70f may be provided. In this case, the heat of the air flowing along the first guide surface 71c can be released to the first bearing holder 6E by the third fins 70f. Further, the air flowing along the first guiding surface 71c can be rectified by the third fins 70f.
  • the first holding portion 72 is located on the radially inner side of the cylindrical portion 13 of the first fan 10A. Further, the first holding portion 72 and the cylindrical portion 13 at least partially overlap in the axial direction. That is, the first holding portion 72 and the cylindrical portion 13 overlap each other when viewed from the radial direction. Therefore, the radially outer side of the air flowing toward the other axial side ( ⁇ Y side) along the outer peripheral surface of the first holding portion 72 can be surrounded by the cylindrical portion 13.
  • the cylindrical portion 13 guides the air flowing to the other side in the axial direction (-Y side) to encourage the air to flow into the intake port 11, thereby making it possible to ensure the amount of air flowing into the intake port 11.
  • the end of the first inclined surface 71a on the other axial side is on the other axial side of the tip 31P on the one axial side (+Y side) of the first coil end 31a. (-Y side).
  • the air flowing radially inward along the first guide surface 71c of the first base portion 71 is applied to the first inclined surface 71a to smoothly move to the other side in the axial direction (-Y side). can be guided to
  • the first inclined surface 71a protrudes toward the motor 2 side, the volume of the space in which the motor 2 is accommodated can be reduced. Thereby, the flow velocity of the air circulated by the fans 10A and 10B within the space in which the motor 2 is accommodated can be increased, and the cooling efficiency of the motor 2 can be increased.
  • the first inclined surface 71a protrudes toward the motor 2, one axial side (+Y side) of the first base portion 71 is recessed.
  • the drive device 1 can be downsized in the axial direction by effectively utilizing the inside of the housing 6, such as by arranging a member (in this embodiment, the resolver 29) in a concave depression.
  • the flange 21f provided on the outer peripheral surface of the first shaft 21 is closer to the other axial side (-Y side) than the end 72a of the first holding part 72 on the other axial side (-Y side). side). According to this embodiment, it is possible to suppress the air flowing along the outer circumferential surface of the first holding part 72 from flowing into the first bearing 5A side. This allows air to flow smoothly into the intake port 11.
  • the flange portion 21f and the cylindrical portion 13 overlap when viewed from the radial direction. Therefore, the flange portion 21f and the cylindrical portion 13 can smoothly guide air flowing between them in the radial direction along the axial direction. Further, the end portion of the collar portion 21f on one axial side (+Y side) is located on the other axial side ( ⁇ Y side) side than the end portion of the cylindrical portion 13 on the one axial side (+Y side). Therefore, it is possible to prevent the flange portion 21f from protruding toward one side in the axial direction (+Y side) with respect to the first fan 10A, and it is possible to prevent the drive device 1 from increasing in size in the axial direction. In addition, the radially outer end of the collar portion 21f is located radially outer than the radially inner end of the intake port 11. Therefore, the flange portion 21f does not block the intake port 11 and does not prevent air from entering the intake port 11.
  • the distance from the first end surface 32d of the stator core 32 on one axial side (+Y side) to the end of the first holding part 72 on the other axial side (-Y side) is the first distance d1.
  • the distance from the first end surface 32d to the tip 31P of the first coil end 31a is defined as a second distance d2.
  • the distance from the first end surface 32d to the end of the first fin 55A on one axial side (+Y side) is defined as a third distance d3.
  • the first distance d1 is smaller than the second distance d2.
  • the second distance d2 is smaller than the third distance d3.
  • the heat of the air is transferred from the air by the first fin 55A to the water jacket while allowing the air to flow smoothly. It can be released to 6D.
  • the configuration of each part (first coil end 31a, first fin 55A, and first holding part 72) on one axial side (+Y side) of the rotor 20 has been described, but on the other axial side (- A similar configuration can be adopted for each part (the second coil end 31b, the second fin 55B, and the second holding part 66b, which will be described later) on the Y side.
  • the first bearing holder 6E of this embodiment is plate-shaped. Further, in this embodiment, a first inclined surface (slanted surface) 71b is provided on the first guide surface 71c of the first base portion 71 facing the other axial direction (-Y side). Therefore, the first base portion 71 protrudes toward the other axial side (-Y side) as it goes radially inward. Further, the surface of the first base portion 71 facing one side in the axial direction (+Y side) is inclined along the first inclined surface 71a. As a result, a recess 71b is provided on one axial side (+Y side) of the first base portion 71. That is, the first base portion 71 has a recessed portion 71b that is recessed from the other axial surface to one axial side.
  • the stator portion 29b of the resolver 29 is fixed to the inner surface of the recess 71b. Further, the stator portion 29b surrounds the rotor portion 29a of the resolver 29 from the outside in the radial direction. That is, the resolver (rotation detection section) 29 is arranged inside the recess 71b.
  • the rotor portion 29a has a plurality of magnets arranged along the circumferential direction.
  • the stator section 29b includes a coil that is excited by changes in magnetic flux accompanying the rotation of the rotor section 29a, and measures the number of rotations of the rotor 20.
  • the drive device 1 can be downsized.
  • the case where the resolver 29 is accommodated in the recessed part 71b was demonstrated.
  • the device accommodated in the recess 71b may be any other device such as a rotary encoder as long as it is a rotation detector that detects the number of rotations of the rotor 20.
  • the flange 21f is arranged on one axial side of the rotor core 24 in the same direction as the resolver 29.
  • the nut 21n needs to have a sufficient size in the axial direction to ensure engagement with the male threaded portion 21s. Therefore, the axial dimension of the nut 21n tends to be larger than the axial dimension of the flange 21f.
  • the second bearing holder portion 66 faces the first bearing holder 6E in the axial direction.
  • the second bearing holder portion 66 is disposed inside the housing 6 on the other axial side (-Y side) with respect to the motor 2.
  • the second bearing holder section 66 holds the bearings 5B and 5C.
  • the second bearing 5B is arranged at the other axial end (-Y side) of the first shaft 21, and rotatably supports the first shaft 21.
  • the second bearing holder part 66 has a second base part 66a and a second holding part 66b. That is, the housing 6 has a second base portion 66a and a second holding portion 66b.
  • the second base portion 66a covers the motor 2 from the other side in the axial direction ( ⁇ Y side).
  • the second base portion 66a supports the second holding portion 66b.
  • the second base portion 66a has a disk shape centered on the central axis J1.
  • a second holding portion 66b is arranged at the center of the second base portion 66a. That is, the second base portion 66a extends radially outward from the second holding portion 66b.
  • the second holding portion 66b is a cylindrical portion extending along the central axis J1 from the inner edge of the shaft insertion hole 66b. Further, the second holding portion 66b protrudes from the surface of the second base portion 66a on the other axial direction ( ⁇ Y side) toward the other axial direction ( ⁇ Y side).
  • the second holding portion 66b surrounds the second bearing 5B from the outside in the radial direction and holds the second bearing 5B. That is, the second bearing 5B is arranged radially inside the second holding portion 66b.
  • the air blown out from the outlet 12 of the second fan 10B flows between the inner peripheral surface of the water jacket 6D and the second coil end 31b in the other axial direction (-Y side). This air hits the second base portion 66a of the second bearing holder portion 66 and flows radially inward along the second base portion 66a.
  • the surface of the second base portion 66a facing one side in the axial direction (+Y side) is referred to as a second guiding surface 66c. That is, the second base portion 66a has a second guide surface 66c.
  • the second guide surface 66c is provided with a second inclined surface 66d that is inclined toward one side in the axial direction as it goes radially inward. That is, the second base portion 66a has a second inclined surface 66d that faces one axial side (+Y side) and slopes toward the one axial side as it goes radially inward.
  • the second base portion 66a can guide the air flowing radially inward along the second guide surface 66c to one side in the axial direction (+Y side) at the second inclined surface 66d. Further, the air flowing radially inward and to one axial side (+Y side) along the second guiding surface 66c hits the outer peripheral surface of the second holding part 66b and changes the flow direction to one axial side (+Y side). .
  • the second guide surface 66c faces the intake port 11 of the second fan 10B in the axial direction. Therefore, the air that changes its flow direction and flows toward one side in the axial direction (+Y side) is smoothly sucked into the intake port 11.
  • the first base portion 71 of the first bearing holder 6E and the second base portion 66a of the second bearing holder portion 66 each protrude toward the rotor 20 as they go radially inward from the outer edge.
  • the axial dimension of the first base portion 71 is larger than the axial dimension of the second base portion 66a. Note that the axial dimensions of the first base portion 71 and the second base portion 66a mean the protrusion heights of the respective base portions in the axial direction.
  • the axial dimension of the first coil end 31a is larger than the axial dimension of the second coil end 31b.
  • the size of each coil end 31a and 31b can be adjusted. Air can be guided at an inclination according to the According to this embodiment, it is possible to suppress the drive device 1 from increasing in size in the axial direction more than necessary.
  • the first base portion 71 is arranged between the motor 2 and the inverter 7.
  • the first base portion 71 partitions a space in which the motor 2 is accommodated and a space in which the inverter 7 is accommodated within the housing 6. Therefore, by making the first base portion 71 largely protrude toward the motor 2 side, the space in which the inverter 7 is accommodated within the housing 6 can be expanded. Thereby, the inverter 7 can be placed close to the motor 2, and the drive device 1 can be downsized.
  • the second base part 66a is arranged between the motor 2 and the power transmission part 4.
  • the second base portion 66a supports not only a bearing that supports the first shaft 21 of the motor 2, but also a plurality of bearings that support each of the shafts 44 and 45 of the power transmission portion 4. For this reason, the second base part 66a requires high rigidity, and it is preferable to make the dent smaller than the first base part 71. In other words, the second base portion 66a requires high rigidity, and it is preferable that the height of the second base portion 66a protrudes toward the motor 2 side is suppressed compared to the first base portion 71.
  • the power transmission portion 4 can be stably supported.
  • the rotor core 24 is fixed to the first shaft 21 by being sandwiched between the flange 21f and the nut 21n.
  • the rotor core 24 may be fixed to the first shaft 21 in other ways.
  • the arrangement of the collar portion 21f and the nut 21n in this embodiment is merely an example, and is not limited to this embodiment. That is, with respect to the rotor core 24, the flange 21f may be arranged on the other axial side (-Y side), and the nut 21n may be arranged on one axial side (+Y side).
  • the coil is a bendable conducting wire attached to the stator, and the leader wire extending from the coil has a structure in which a plurality of conducting wires are bundled using crimp terminals.
  • the coil is a segment coil made of a highly rigid rectangular wire, and the leader wire extending from the coil may also be a single rectangular wire.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

One embodiment of the drive device of the present invention comprises a motor, a fan rotating together with the rotor of the motor, a bearing, and a housing for housing the motor. The rotor is provided with a blast hole penetrating in the axial direction. The fan has: a cylindrical cylinder portion centered on the central axis line; and an inlet positioned on the inside of the cylinder portion in the radial direction and connecting to the blast hole. The housing has: a base portion covering the motor from one side in the axial direction; and a cylindrical holding portion projecting from the surface of the base portion on the other side in the axial direction to the other side in the axial direction. The bearing is held on the inside of the holding portion in the radial direction. The holding portion is positioned on the inside of the cylinder portion in the radial direction. At least parts of the holding portion and the cylinder portion are overlapped with each other in the axial direction. The base portion has a tilted surface that faces the other side in the axial direction and tilts to the other side in the axial direction toward the inside in the radial direction.

Description

駆動装置drive device
 本発明は、駆動装置に関する。
 本願は、2022年3月31日に日本に出願された特願2022-061149号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a drive device.
This application claims priority based on Japanese Patent Application No. 2022-061149 filed in Japan on March 31, 2022, the contents of which are incorporated herein.
 近年の電気自動車への関心の高まりとともに、モータを冷却する方法についても様々に開発が進んでいる。例えば、モータにオイルを供給しオイルによって冷却する方法などが知られている。この場合、モータの周りをシールする必要がありハウジング構造が複雑化するという問題があった。このような問題を解決する方法として、回転軸に設けたファンで風を起こしてモータの冷却を行う空冷式のモータが知られている。特許文献1には、ロータの内部に風を通すモータが開示されている(特許文献1)。 As interest in electric vehicles increases in recent years, various methods of cooling motors are being developed. For example, a method is known in which oil is supplied to the motor and cooled by the oil. In this case, there is a problem in that it is necessary to seal around the motor, which complicates the housing structure. As a method for solving such problems, an air-cooled motor is known in which the motor is cooled by generating wind using a fan provided on the rotating shaft. Patent Document 1 discloses a motor that allows air to pass through the inside of a rotor (Patent Document 1).
特開平7-177703号公報Japanese Unexamined Patent Publication No. 7-177703
 モータを空気によって効率的に冷却するためには、ハウジング内での空気の循環速度を高めることが望まれる。このため、ロータの内部への空気の誘導をより円滑に行うことが望まれる。 In order to efficiently cool the motor with air, it is desirable to increase the air circulation speed within the housing. Therefore, it is desirable to guide air into the rotor more smoothly.
 本発明は、上記事情に鑑みて、ロータ内に空気を円滑に誘導してモータの冷却効率を高めた駆動装置の提供を目的の一つとする。 In view of the above circumstances, one of the objects of the present invention is to provide a drive device that smoothly guides air into the rotor and improves the cooling efficiency of the motor.
 本発明の駆動装置の一つの態様は、中心軸線を中心に回転可能なシャフトを有するロータ、および前記ロータと隙間を介して対向するステータを有するモータと、前記ロータの軸方向一方側に位置し前記ロータとともに回転する第1ファンと、前記シャフトの軸方向一方側の端部に配置され、前記シャフトを回転可能に支持する第1ベアリングと、前記モータを収容するハウジングと、を備える。前記ロータには、軸方向に貫通する第1送風孔が設けられる。前記第1ファンは、前記中心軸線を中心とする筒状の筒部と、前記筒部の径方向内側に位置し前記第1送風孔に繋がる吸気口と、を有する。前記ハウジングは、前記モータを軸方向一方側から覆う第1ベース部と、前記第1ベース部の軸方向他方側の面から軸方向他方側に突出する筒状の第1保持部と、を有する。前記第1ベアリングは前記第1保持部の径方向内側に保持される。前記第1保持部は、前記筒部の径方向内側に位置する。前記第1保持部と、前記筒部とは、少なくとも一部が軸方向に重なる。前記第1ベース部は、軸方向他方側を向き径方向内側に向かうに従い軸方向他方側に傾斜する傾斜面を有する。 One aspect of the drive device of the present invention includes a rotor having a shaft rotatable around a central axis, a motor having a stator facing the rotor with a gap therebetween, and a motor located on one axial side of the rotor. The motor includes a first fan that rotates together with the rotor, a first bearing that is disposed at one axial end of the shaft and rotatably supports the shaft, and a housing that accommodates the motor. The rotor is provided with a first air hole passing through the rotor in the axial direction. The first fan includes a cylindrical tube portion centered on the central axis, and an intake port located radially inside the tube portion and connected to the first air hole. The housing includes a first base portion that covers the motor from one axial side, and a cylindrical first holding portion that protrudes from the other axial surface of the first base portion toward the other axial side. . The first bearing is held inside the first holding part in the radial direction. The first holding portion is located inside the cylindrical portion in the radial direction. The first holding portion and the cylindrical portion at least partially overlap in the axial direction. The first base portion has an inclined surface that faces the other side in the axial direction and slopes toward the other side in the axial direction as it goes radially inward.
 本発明の一つの態様によれば、ロータ内に空気を円滑に誘導してモータの冷却効率を高めた駆動装置を提供できる。 According to one aspect of the present invention, it is possible to provide a drive device that smoothly guides air into the rotor and improves the cooling efficiency of the motor.
図1は、一実施形態の駆動装置の概念図である。FIG. 1 is a conceptual diagram of a drive device according to an embodiment. 図2は、一実施形態の駆動装置の部分断面図である。FIG. 2 is a partial cross-sectional view of the drive device of one embodiment. 図3は、一実施形態のファンの斜視図である。FIG. 3 is a perspective view of a fan in one embodiment. 図4は、一実施形態のウォータジャケットの断面図である。FIG. 4 is a cross-sectional view of the water jacket of one embodiment. 図5は、一実施形態のフィンとティース部との位置関係を示す模式化である。FIG. 5 is a schematic diagram showing the positional relationship between the fins and teeth portions of one embodiment. 図6は、変形例のフィンとティース部との位置関係を示す模式図である。FIG. 6 is a schematic diagram showing the positional relationship between the fins and teeth portions of a modified example. 図7は、第1ベアリングホルダの斜視図である。FIG. 7 is a perspective view of the first bearing holder.
 以下の説明では、駆動装置1が水平な路面上に位置する車両に搭載された場合の位置関係を基に、重力方向を規定して説明する。また、図面においては、適宜3次元直交座標系としてXYZ座標系を示す。 In the following explanation, the direction of gravity will be defined and explained based on the positional relationship when the drive device 1 is mounted on a vehicle located on a horizontal road surface. In addition, in the drawings, an XYZ coordinate system is appropriately shown as a three-dimensional orthogonal coordinate system.
 XYZ座標系において、Z軸方向は、鉛直方向(すなわち上下方向)を示し、+Z方向が上側(重力方向の反対側)であり、-Z方向が下側(重力方向)である。また、X軸方向は、Z軸方向と直交する方向であって駆動装置1が搭載される車両の前後方向を示す。Y軸方向は、X軸方向とZ軸方向との両方と直交する方向であって、車両の幅方向(左右方向)を示す。 In the XYZ coordinate system, the Z-axis direction indicates the vertical direction (that is, the up-down direction), the +Z direction is the upper side (opposite to the direction of gravity), and the -Z direction is the lower side (the direction of gravity). Moreover, the X-axis direction is a direction orthogonal to the Z-axis direction, and indicates the front-rear direction of the vehicle in which the drive device 1 is mounted. The Y-axis direction is a direction perpendicular to both the X-axis direction and the Z-axis direction, and indicates the width direction (left-right direction) of the vehicle.
 以下の説明において特に断りのない限り、モータ2の中心軸線J1に平行な方向(Y軸方向)を単に「軸方向」と呼び、中心軸線J1を中心とする径方向を単に「径方向」と呼び、中心軸線J1を中心とする周方向、すなわち、中心軸線J1の軸周りを単に「周方向」と呼ぶ。ただし、上記の「平行な方向」は、略平行な方向も含む。さらに、以下の説明において、中心軸線J1の軸方向のうち、+Y方向を単に軸方向一方側と呼び、-Y方向を単に軸方向他方側と呼ぶ場合がある。 In the following description, unless otherwise specified, the direction parallel to the central axis J1 of the motor 2 (Y-axis direction) is simply referred to as the "axial direction", and the radial direction centered on the central axis J1 is simply referred to as the "radial direction". The circumferential direction centered on the central axis J1, that is, the circumferential direction around the central axis J1 is simply referred to as the "circumferential direction." However, the above-mentioned "parallel direction" also includes substantially parallel directions. Furthermore, in the following description, among the axial directions of the central axis J1, the +Y direction may be simply referred to as one axial direction, and the -Y direction may simply be referred to as the other axial direction.
 さらに、本明細書において、X軸方向を第1方向と呼ぶ場合がある。Z軸方向を第2方向と呼ぶ場合がある。すなわち、第1方向(X軸方向)は、中心軸線J1と直交する方向であり、第2方向(Z軸方向)は、中心軸線J1、および第1方向(X軸方向)と直交する方向である。また、本明細書において下側(すなわち、-Z側)を、第2方向(Z軸方向)一方側と呼ぶ場合がある。 Furthermore, in this specification, the X-axis direction may be referred to as the first direction. The Z-axis direction may be referred to as a second direction. That is, the first direction (X-axis direction) is a direction perpendicular to the central axis J1, and the second direction (Z-axis direction) is a direction perpendicular to the central axis J1 and the first direction (X-axis direction). be. Further, in this specification, the lower side (ie, −Z side) may be referred to as one side in the second direction (Z-axis direction).
 <駆動装置>
 図1は、本実施形態の駆動装置1の概念図である。図2は、本実施形態の駆動装置1の部分断面図である。
 本実施形態の駆動装置1は、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHV)、電気自動車(EV)等、モータを動力源とする車両に搭載され、その動力源として使用される。
<Drive device>
FIG. 1 is a conceptual diagram of a drive device 1 of this embodiment. FIG. 2 is a partial cross-sectional view of the drive device 1 of this embodiment.
The drive device 1 of this embodiment is mounted on a vehicle that uses a motor as a power source, such as a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHV), or an electric vehicle (EV), and is used as the power source.
 図1に示すように、駆動装置1は、モータ2と、動力伝達部4と、インバータ(制御部)7と、ハウジング6と、複数のファン10A、10Bと、複数のベアリング5A、5B、5C、5Dと、を備える。モータ2、動力伝達部4、およびインバータ7は、ハウジング6の内部において、中心軸線J1上に配置される。 As shown in FIG. 1, the drive device 1 includes a motor 2, a power transmission section 4, an inverter (control section) 7, a housing 6, a plurality of fans 10A, 10B, and a plurality of bearings 5A, 5B, 5C. , 5D. The motor 2, the power transmission section 4, and the inverter 7 are arranged on the central axis J1 inside the housing 6.
 <モータ>
 本実施形態のモータ2は、インナーロータ型の三相交流モータである。モータ2は、電動機としての機能と発電機としての機能とを兼ね備える。なお、モータ2の構成は本実施形態に限定されず、例えば四相以上の交流モータであってもよい。
<Motor>
The motor 2 of this embodiment is an inner rotor type three-phase AC motor. The motor 2 has both the functions of an electric motor and a generator. Note that the configuration of the motor 2 is not limited to this embodiment, and may be, for example, a four-phase or more AC motor.
 モータ2は、水平方向に延びる中心軸線J1を中心に回転可能なロータ20と、ロータ20と隙間を介して対向するステータ30と、を備える。本実施形態のモータ2は、ステータ30の内側にロータ20が配置されるインナーロータ型モータである。 The motor 2 includes a rotor 20 that is rotatable around a central axis J1 that extends in the horizontal direction, and a stator 30 that faces the rotor 20 with a gap therebetween. The motor 2 of this embodiment is an inner rotor type motor in which a rotor 20 is arranged inside a stator 30.
 ロータ20は、第1シャフト(シャフト)21と、第1シャフト21の外周面に固定されるロータコア24と、ロータコア24に固定されるロータマグネット(図示略)と、を有する。ロータ20のトルクは、動力伝達部4に伝達される。 The rotor 20 includes a first shaft (shaft) 21, a rotor core 24 fixed to the outer peripheral surface of the first shaft 21, and a rotor magnet (not shown) fixed to the rotor core 24. The torque of the rotor 20 is transmitted to the power transmission section 4.
 図2に示すように、ロータコア24には、複数の送風孔24a、24bが設けられる。送風孔24a、24bは、ロータコア24を軸方向に貫通する。送風孔24a、24bは、ロータコア24の軸方向の両端面に開口する。複数の送風孔24a、24bは、周方向に沿って並ぶ。 As shown in FIG. 2, the rotor core 24 is provided with a plurality of ventilation holes 24a and 24b. The ventilation holes 24a and 24b penetrate the rotor core 24 in the axial direction. The ventilation holes 24a and 24b open at both end surfaces of the rotor core 24 in the axial direction. The plurality of ventilation holes 24a and 24b are arranged along the circumferential direction.
 送風孔24a、24bは、第1送風孔24aと第2送風孔24bとを有する。第1送風孔24a、および第2送風孔24bは、周方向に沿って交互に並ぶ。本実施形態のロータ20には、4つの第1送風孔24aと4つの第2送風孔24bとが設けられる。第1送風孔24aと第2送風孔24bの横断面形状は、互いに等しい。第1送風孔24aと第2送風孔24bとは、内部を流れる空気の流動方向が互いに異なる。 The ventilation holes 24a and 24b have a first ventilation hole 24a and a second ventilation hole 24b. The first ventilation holes 24a and the second ventilation holes 24b are arranged alternately along the circumferential direction. The rotor 20 of this embodiment is provided with four first ventilation holes 24a and four second ventilation holes 24b. The cross-sectional shapes of the first ventilation hole 24a and the second ventilation hole 24b are equal to each other. The first ventilation hole 24a and the second ventilation hole 24b have different flow directions of air flowing therein.
 また、ロータコア24には、シャフト挿入孔24hが設けられる。シャフト挿入孔24hは、中心軸線を中心として軸方向に沿って延びる。シャフト挿入孔24hは、軸方向から見て円形である。シャフト挿入孔24hの内径は、第1シャフト21の外径より若干大きい。シャフト挿入孔24hには、第1シャフト21が挿入される。シャフト挿入孔24hの内周面には、径方向内側に向かって突出して第1シャフト21の外周面に設けられる凹溝(図示略)に挿入される回転止め(図示略)が設けられる。 Further, the rotor core 24 is provided with a shaft insertion hole 24h. The shaft insertion hole 24h extends in the axial direction centering on the central axis. The shaft insertion hole 24h is circular when viewed from the axial direction. The inner diameter of the shaft insertion hole 24h is slightly larger than the outer diameter of the first shaft 21. The first shaft 21 is inserted into the shaft insertion hole 24h. The inner circumferential surface of the shaft insertion hole 24h is provided with a rotation stopper (not shown) that protrudes radially inward and is inserted into a groove (not shown) provided in the outer circumferential surface of the first shaft 21.
 第1シャフト21は、中心軸線J1を中心として軸方向に沿って延びる。第1シャフト21は、ベアリング5A、5Bに回転可能に支持される。以下の説明において、第1シャフト21を支持する一対のベアリング5A、5Bのうち、軸方向一方側(+Y側)に位置する一方を第1ベアリング5Aと呼ぶ場合があり、軸方向他方側(-Y側)に位置する他方を第2ベアリング5Bと呼ぶ場合がある。第1ベアリング5Aは、ハウジング6の第1ベアリングホルダ6Eに支持される。一方で、第2ベアリング5Bは、ハウジング6の第2ベアリングホルダ部66に支持される。 The first shaft 21 extends along the axial direction centering on the central axis J1. The first shaft 21 is rotatably supported by bearings 5A and 5B. In the following description, of the pair of bearings 5A and 5B that support the first shaft 21, one located on one side in the axial direction (+Y side) may be referred to as the first bearing 5A, and the other side in the axial direction (- The other bearing located on the Y side) is sometimes referred to as a second bearing 5B. The first bearing 5A is supported by a first bearing holder 6E of the housing 6. On the other hand, the second bearing 5B is supported by the second bearing holder portion 66 of the housing 6.
 第1シャフト21の外周面には、径方向外側に突出する鍔部21fとオネジ部21sとを有する。鍔部21fとオネジ部21sとは、軸方向において距離をおいて配置されている。鍔部21fは、オネジ部21sよりも軸方向一方側(+Y側)に配置される。また、オネジ部21sには、ナット21nが取り付けられる。鍔部21fとナット21nとは、ロータコア24を軸方向の両側から挟み込んで保持する。 The outer circumferential surface of the first shaft 21 has a flange portion 21f that protrudes radially outward and a male screw portion 21s. The flange portion 21f and the male screw portion 21s are arranged at a distance in the axial direction. The flange portion 21f is arranged on one side in the axial direction (+Y side) than the male screw portion 21s. Further, a nut 21n is attached to the male threaded portion 21s. The flange 21f and the nut 21n sandwich and hold the rotor core 24 from both sides in the axial direction.
 第1シャフト21の軸方向一方側(+Y側)の端部には、レゾルバ29のロータ部29aが固定される。本実施形態において、ロータ部29aは、ベアリング5Aよりも軸方向一方側(+Y側)に位置する。ロータ部29aは、第1シャフト21とともに中心軸線J1周りを回転する。 A rotor portion 29a of the resolver 29 is fixed to the end of the first shaft 21 on one axial side (+Y side). In this embodiment, the rotor portion 29a is located on one axial side (+Y side) of the bearing 5A. The rotor portion 29a rotates together with the first shaft 21 around the central axis J1.
 ステータ30は、ハウジング6に保持される。ステータ30は、ロータ20を径方向外側から囲む。ステータ30は、中心軸線J1を中心とする環状のステータコア32と、ステータコア32に装着されるコイル31と、ステータコア32とコイル31との間に介在するインシュレータ(図示略)とを有する。 The stator 30 is held in the housing 6. The stator 30 surrounds the rotor 20 from the outside in the radial direction. The stator 30 includes an annular stator core 32 centered on the central axis J1, a coil 31 attached to the stator core 32, and an insulator (not shown) interposed between the stator core 32 and the coil 31.
 ステータコア32は、環状のコアバック部32aと、コアバック部32aから径方向内側に延びる複数のティース部32bと、を有する。複数のティース部32bは、周方向に沿って並ぶ。周方向に並ぶティース部32b同士の間には、コイル線が配置される。隣り合うティース部32bの間に位置するコイル線は、コイル31を構成する。すなわち、コイル31は、ステータコア32に配置される。インシュレータは、絶縁性の材料からなる。 The stator core 32 has an annular core back portion 32a and a plurality of teeth portions 32b extending radially inward from the core back portion 32a. The plurality of teeth portions 32b are arranged along the circumferential direction. A coil wire is arranged between the teeth portions 32b arranged in the circumferential direction. The coil wire located between adjacent teeth portions 32b constitutes a coil 31. That is, the coil 31 is arranged in the stator core 32. The insulator is made of an insulating material.
 コイル31は、ステータコア32の軸方向両側の端面から軸方向にそれぞれ突出する一対のコイルエンド31a、31bを有する。ここで、一対のコイルエンド31a、31bのうち軸方向一方側(+Y側)の一方を第1コイルエンド31aとし、軸方向他方側(-Y側)の他方を第2コイルエンド31bとする。すなわち、第1コイルエンド31aは、ステータコア32の軸方向一方側(+Y側)の端面から軸方向一方側に突出し、第2コイルエンド31bは、ステータコア32の軸方向他方側(-Y側)の端面から軸方向他方側に突出する。 The coil 31 has a pair of coil ends 31a and 31b that respectively protrude in the axial direction from both end surfaces of the stator core 32 in the axial direction. Here, one of the pair of coil ends 31a, 31b on one side in the axial direction (+Y side) is defined as a first coil end 31a, and the other on the other side in the axial direction (-Y side) is defined as a second coil end 31b. That is, the first coil end 31a protrudes from the end face of the stator core 32 on one axial side (+Y side) in the axial direction, and the second coil end 31b protrudes from the end face of the stator core 32 on the other axial side (-Y side). Projects from the end face to the other side in the axial direction.
 第1コイルエンド31a、および第2コイルエンド31bは、ステータコア32のスロット間を繋ぐ渡り線(コイル線)が束ねられて形成されている。また、第1コイルエンド31aおいては、渡り線に加えて異なる相のコイル線同士を繋ぐ中性点のコイル線も束ねられている。このため、本実施形態において、第1コイルエンド31aの軸方向の寸法は、第2コイルエンド31bの軸方向の寸法よりも大きい。 The first coil end 31a and the second coil end 31b are formed by bundling crossover wires (coil wires) that connect the slots of the stator core 32. Furthermore, in addition to the crossover wire, a neutral point coil wire that connects coil wires of different phases is also bundled at the first coil end 31a. Therefore, in this embodiment, the axial dimension of the first coil end 31a is larger than the axial dimension of the second coil end 31b.
 第1コイルエンド31a、および第2コイルエンド31bは、先端部31Pと基端部31Qとを有する。先端部31Pは、それぞれのコイルエンド31a、31bにおいて、ステータコア32から軸方向において最も遠い部分である。一方で、基端部31Qは、それぞれのコイルエンド31a、31bにおいて、ステータコア32から延び出る部分である。第1コイルエンド31aの先端部31Pは、第1コイルエンド31aの軸方向一方側(+Y側)の端部であり、第1コイルエンド31aの基端部31Qは、第1コイルエンド31aの軸方向他方側(-Y側)の端部である。すなわち、コイルエンド31a、31bは、ステータコア32の軸方向の端部側に位置する基端部31Qを有する。第2コイルエンド31bの先端部31Pは、第2コイルエンド31bの軸方向他方側(-Y側)の端部であり、第2コイルエンド31bの基端部31Qは、第1コイルエンド31aの軸方向一方側(+Y側)の端部である。 The first coil end 31a and the second coil end 31b have a distal end 31P and a proximal end 31Q. The tip portion 31P is the furthest portion of each coil end 31a, 31b from the stator core 32 in the axial direction. On the other hand, the base end portion 31Q is a portion extending from the stator core 32 in each of the coil ends 31a and 31b. The distal end 31P of the first coil end 31a is an end on one axial side (+Y side) of the first coil end 31a, and the base end 31Q of the first coil end 31a is an axial end of the first coil end 31a. This is the end on the other side (−Y side) in the direction. That is, the coil ends 31a, 31b have a base end 31Q located on the end side of the stator core 32 in the axial direction. The distal end 31P of the second coil end 31b is the end on the other axial side (-Y side) of the second coil end 31b, and the base end 31Q of the second coil end 31b is the end of the second coil end 31b on the other side in the axial direction (-Y side). This is the end on one side in the axial direction (+Y side).
 <ファン>
 ファン10A、10Bは、ロータ20に固定される。本実施形態の駆動装置1は、ファン10A、10Bとして、第1ファン10Aと第2ファン10Bと、を備える。第1ファン10A、および第2ファン10Bは、ロータ20に固定される。第1ファン10A、および第2ファン10Bは、ロータ20とともに回転する。第1ファン10A、および第2ファン10Bは、ロータ20に対し軸方向両側に位置する。より具体的には、第1ファン10Aは、ロータ20の軸方向一方側(+Y側)に位置し、第2ファン10Bは、ロータ20の軸方向他方側(-Y側)に位置する。第1ファン10Aは、第1コイルエンド31aの径方向内側に位置し、第2ファン10Bは、第2コイルエンド31bの径方向内側に位置する。第1ファン10Aと第2ファン10Bとは、互いに同形状である。第1ファン10Aと第2ファン10Bとは、ロータ20に対して取り付けられる位置および向きが異なる。
<Fan>
Fans 10A and 10B are fixed to rotor 20. The drive device 1 of this embodiment includes a first fan 10A and a second fan 10B as fans 10A and 10B. The first fan 10A and the second fan 10B are fixed to the rotor 20. The first fan 10A and the second fan 10B rotate together with the rotor 20. The first fan 10A and the second fan 10B are located on both sides of the rotor 20 in the axial direction. More specifically, the first fan 10A is located on one axial side (+Y side) of the rotor 20, and the second fan 10B is located on the other axial side (−Y side) of the rotor 20. The first fan 10A is located inside the first coil end 31a in the radial direction, and the second fan 10B is located inside the second coil end 31b in the radial direction. The first fan 10A and the second fan 10B have the same shape. The first fan 10A and the second fan 10B are attached to the rotor 20 at different positions and in different orientations.
 図3は、第1ファン10Aの斜視図である。以下、図3を基に第1ファン10Aの構造を具体的に説明する。なお、第2ファン10Bは、第1ファン10Aと同形状であるためこの説明を省略する。ここでは、第1ファン10Aと第2ファン10Bとを区別する必要がある場合の除き、第1ファン10Aを単にファン10Aと呼ぶ。 FIG. 3 is a perspective view of the first fan 10A. Hereinafter, the structure of the first fan 10A will be specifically explained based on FIG. 3. Note that the second fan 10B has the same shape as the first fan 10A, so a description thereof will be omitted. Here, the first fan 10A is simply referred to as fan 10A, unless it is necessary to distinguish between the first fan 10A and the second fan 10B.
 ファン10Aは、ファン本体部15と、筒部13と、複数の吸気口11と、複数の吹出口12と、を有する。ファン10Aは、例えば樹脂材料から構成される。 The fan 10A includes a fan main body portion 15, a cylindrical portion 13, a plurality of air intake ports 11, and a plurality of air outlet ports 12. The fan 10A is made of, for example, a resin material.
 ファン本体部15は、中心軸線J1を中心とする円板状である。ファン本体部15は、対向面15aと反対面15bと外周面15cとを有する。対向面15aと反対面15bとは、互いに軸方向の反対側を向く面である。また、対向面15aは、ロータコア24に対向し、ロータコア24の軸方向を向く面に接触する。外周面15cは、径方向外側を向く面である。 The fan main body portion 15 has a disk shape centered on the central axis J1. The fan main body portion 15 has a facing surface 15a, an opposite surface 15b, and an outer circumferential surface 15c. The facing surface 15a and the opposite surface 15b are surfaces facing oppositely to each other in the axial direction. Further, the opposing surface 15a faces the rotor core 24 and contacts a surface of the rotor core 24 facing in the axial direction. The outer peripheral surface 15c is a surface facing outward in the radial direction.
 ファン本体部15には、中央孔15hが設けられる。中央孔15hは、ファン本体部15を上下方向に貫通する。中央孔15hは、中心軸線を中心とする略円形である。中央孔15hの内周面には、一対の回転止め15tが設けられる。回転止め15tは、中央孔15hの内周面から径方向内側に突出する。 The fan main body portion 15 is provided with a central hole 15h. The central hole 15h passes through the fan main body 15 in the vertical direction. The central hole 15h has a substantially circular shape centered on the central axis. A pair of rotation stops 15t are provided on the inner peripheral surface of the central hole 15h. The rotation stopper 15t protrudes radially inward from the inner peripheral surface of the central hole 15h.
 図2に示すように、中央孔15hには、第1シャフト21が挿入される。中央孔15hの内径は、第1シャフト21の外径より若干大きい。図示を省略するが、回転止め15tは、第1シャフト21の凹溝に挿入され、第1シャフト21に対するファン10Aの回転を抑制する。 As shown in FIG. 2, the first shaft 21 is inserted into the central hole 15h. The inner diameter of the central hole 15h is slightly larger than the outer diameter of the first shaft 21. Although not shown, the rotation stopper 15t is inserted into the groove of the first shaft 21 and suppresses rotation of the fan 10A with respect to the first shaft 21.
 ここで、第1ファン10Aおよび第2ファン10Bの固定方法について説明する。
 第1シャフト21に設けられる鍔部21fの外径は、ロータコア24のシャフト挿入孔24h、およびファン10A、10Bの内径よりも大きい。また、第1シャフト21に設けられるオネジ部21sの外径は、ロータコア24のシャフト挿入孔24h、およびファン10A、10Bの内径よりも小さい。第1ファン10A、ロータコア24、第2ファン10B、およびナット21nは、第1シャフト21に軸方向他方側(-Y側)の端部から、この順で挿入される。また、ナット21nは、オネジ部21sにネジ止めされる。第1ファン10Aの反対面15bは、鍔部21fの軸方向他方側(-Y側)を向く面に接触する。一方で、第2ファン10Bの反対面15bは、ナット21nの軸方向一方側(+Y側)を向く面に接触する。ナット21nを締め付けることで、第1ファン10A、ロータコア24、および第2ファン10Bは、鍔部21fとナット21nとの間に挟み込まれ第1シャフト21に固定される。すなわち、鍔部は、第1ファン10Aの軸方向一方側の面(反対面15b)に接触する。
Here, a method of fixing the first fan 10A and the second fan 10B will be explained.
The outer diameter of the flange 21f provided on the first shaft 21 is larger than the inner diameter of the shaft insertion hole 24h of the rotor core 24 and the fans 10A and 10B. Further, the outer diameter of the male screw portion 21s provided on the first shaft 21 is smaller than the inner diameter of the shaft insertion hole 24h of the rotor core 24 and the fans 10A and 10B. The first fan 10A, rotor core 24, second fan 10B, and nut 21n are inserted into the first shaft 21 in this order from the end on the other axial side (-Y side). Further, the nut 21n is screwed onto the male threaded portion 21s. The opposite surface 15b of the first fan 10A contacts the surface of the flange 21f facing the other axial direction (-Y side). On the other hand, the opposite surface 15b of the second fan 10B contacts the surface of the nut 21n facing one axial side (+Y side). By tightening the nut 21n, the first fan 10A, the rotor core 24, and the second fan 10B are fixed to the first shaft 21 by being sandwiched between the flange 21f and the nut 21n. That is, the flange portion contacts one axial surface (opposite surface 15b) of the first fan 10A.
 筒部13は、中心軸線J1を中心とする筒状である。第1ファン10Aの筒部13は、ファン本体部15の外縁部から軸方向一方側(+Y側)に延びる。また、図2に示すように、第2ファン10Bは軸方向において第1ファン10Aを反転した姿勢で配置されるため、第2ファン10Bの筒部13は、ファン本体部15から軸方向他方側(-Y側)に延びる。すなわち、筒部13は、ファン本体部15の外縁からロータコア24の反対側に向かって延びる。筒部13の外周面は、ファン本体部15の外周面15cに連なって軸方向に延びる。 The cylindrical portion 13 has a cylindrical shape centered on the central axis J1. The cylindrical portion 13 of the first fan 10A extends from the outer edge of the fan main body 15 toward one side in the axial direction (+Y side). Further, as shown in FIG. 2, since the second fan 10B is disposed in an inverted orientation with respect to the first fan 10A in the axial direction, the cylindrical portion 13 of the second fan 10B is located on the other side in the axial direction from the fan main body 15. (extends to the -Y side). That is, the cylindrical portion 13 extends from the outer edge of the fan main body portion 15 toward the opposite side of the rotor core 24 . The outer circumferential surface of the cylindrical portion 13 extends in the axial direction so as to be continuous with the outer circumferential surface 15c of the fan main body portion 15.
 図3に示すように、本実施形態のファン10Aには、4つの吸気口11と4つの吹出口12とが設けられる。吸気口11と吹出口12とは、周方向に交互に並ぶ。上述したように、本実施形態のロータ20には、4つの第1送風孔24aと4つの第2送風孔24bとが設けられる。軸方向から見て、吸気口11は、第1送風孔24aに重なり、吹出口12は第2送風孔24bに重なる。 As shown in FIG. 3, the fan 10A of this embodiment is provided with four air intake ports 11 and four air outlet ports 12. The air intake ports 11 and the air outlet ports 12 are arranged alternately in the circumferential direction. As described above, the rotor 20 of this embodiment is provided with four first ventilation holes 24a and four second ventilation holes 24b. Seen from the axial direction, the air intake port 11 overlaps with the first air hole 24a, and the air outlet 12 overlaps with the second air hole 24b.
 吸気口11は、ファン本体部15を軸方向に貫通する貫通孔である。吸気口11は、ファン本体部15の対向面15aおよび反対面15bに開口する。吸気口11の対向面15aの開口は、第1送風孔24aに繋がる。すなわち、吸気口11は、第1送風孔24aに繋がる。吸気口11の反対面15bの開口は、ロータコア24に対して反対側を向く。吸気口11は、筒部13の径方向内側に位置する。 The intake port 11 is a through hole that passes through the fan main body 15 in the axial direction. The intake port 11 opens to the facing surface 15a and the opposite surface 15b of the fan main body portion 15. The opening of the opposing surface 15a of the air intake port 11 is connected to the first air hole 24a. That is, the intake port 11 is connected to the first air blow hole 24a. The opening on the opposite surface 15b of the intake port 11 faces the opposite side to the rotor core 24. The intake port 11 is located inside the cylindrical portion 13 in the radial direction.
 吹出口12は、ファン本体部15に設けられる凹部である。吹出口12は、ファン本体部15の対向面15aと外周面15cとに開口する。吹出口12の対向面15aの開口は、第2送風孔24bに繋がる。すなわち、吹出口12は、第2送風孔24bに繋がる。吹出口12の外周面15cの開口は、径方向外側を向く。すなわち、吹出口12は、径方向外側に向かって開口する。 The air outlet 12 is a recess provided in the fan body 15. The air outlet 12 opens on the opposing surface 15a and the outer circumferential surface 15c of the fan main body 15. The opening of the opposing surface 15a of the blower outlet 12 is connected to the second blower hole 24b. That is, the blower outlet 12 is connected to the second blower hole 24b. The opening of the outer circumferential surface 15c of the air outlet 12 faces outward in the radial direction. That is, the air outlet 12 opens radially outward.
 吹出口12の内側面には、複数の送風フィン12fが設けられる。本実施形態のファン10Aにおいて、1つの吹出口12には、3つの送風フィン12fが設けられる。送風フィン12fは、吹出口12のロータ20側を向く面(すなわち、軸方向を向く面)からロータ20側に突出する。また、送風フィン12fは、径方向に沿って延びる。複数の送風フィン12fは、周方向に沿って並ぶ。複数の送風フィン12fは、吹出口12の径方向外側を向く開口を周方向に沿って区画する。 A plurality of blower fins 12f are provided on the inner surface of the blower outlet 12. In the fan 10A of this embodiment, one blower outlet 12 is provided with three blower fins 12f. The blower fins 12f protrude toward the rotor 20 from the surface of the air outlet 12 facing the rotor 20 (that is, the surface facing the axial direction). Further, the blower fins 12f extend along the radial direction. The plurality of blower fins 12f are arranged along the circumferential direction. The plurality of blower fins 12f define an opening of the air outlet 12 facing outward in the radial direction along the circumferential direction.
 吹出口12は、径方向外側に開口する。また、ファン10Aは、中心軸線J1を中心として回転する。このため、吹出口12内の空気は、遠心力が付与されて径方向外側に吹き出される。さらに、ファン10Aの回転に伴い、吹出口12に設けられる送風フィン12fが、吹出口12の内部の空気を径方向外側に押し出しつつ空気の流れを整える。 The air outlet 12 opens outward in the radial direction. Further, the fan 10A rotates around the central axis J1. Therefore, centrifugal force is applied to the air within the air outlet 12 and the air is blown outward in the radial direction. Furthermore, as the fan 10A rotates, the blower fins 12f provided in the outlet 12 push out the air inside the outlet 12 radially outward and adjust the flow of the air.
 図2に示すように、第1送風孔24aは、軸方向一方側(+Y側)の端部で第1ファン10Aの吸気口11に繋がり、軸方向他方側(-Y側)の端部で第2ファン10Bの吹出口12に繋がる。一方で、第2送風孔24bは、軸方向他方側(-Y側)の端部で第2ファン10Bの吸気口11に繋がり、軸方向一方側(+Y側)の端部で第1ファン10Aの吹出口12に繋がる。 As shown in FIG. 2, the first ventilation hole 24a is connected to the intake port 11 of the first fan 10A at one end in the axial direction (+Y side), and is connected to the inlet port 11 of the first fan 10A at the other end in the axial direction (-Y side). It is connected to the air outlet 12 of the second fan 10B. On the other hand, the second ventilation hole 24b is connected to the intake port 11 of the second fan 10B at the other axial end (-Y side), and connected to the first fan 10A at the one axial end (+Y side). It is connected to the air outlet 12.
 ロータ20が回転すると、遠心力の作用で、第1ファン10Aおよび第2ファン10Bの第1送風孔24a、および第2送風孔24b内の空気は、径方向外側に吹き出される。これに伴い、第1送風孔24a、および第2送風孔24bの内部は、負圧となる。第1送風孔24aには、第1ファン10Aの吸気口11から空気が流入する。同様に、第2送風孔24bには、第2ファン10Bの吸気口11から空気が流入する。すなわち、吸気口11は、第1送風孔24a、および第2送風孔24bの内部に外部の空気を導く。 When the rotor 20 rotates, the air in the first ventilation hole 24a and the second ventilation hole 24b of the first fan 10A and the second fan 10B is blown radially outward due to the action of centrifugal force. Accordingly, the insides of the first ventilation hole 24a and the second ventilation hole 24b become negative pressure. Air flows into the first ventilation hole 24a from the intake port 11 of the first fan 10A. Similarly, air flows into the second ventilation hole 24b from the intake port 11 of the second fan 10B. That is, the intake port 11 guides external air into the first ventilation hole 24a and the second ventilation hole 24b.
 本実施形態によれば、ロータ20の第1送風孔24a、および第2送風孔24bに空気が流れる。このため、ロータ20の内部を空気によって冷却することができる。また、本実施形態によれば、第1送風孔24aと第2送風孔24bとには、互いに異なる方向に向かって空気が流れる。このため、第1送風孔24aの内側面に加わる空気抵抗の反力と、第2送風孔24bの内側面に加わる空気抵抗の反力と、が互いに打ち消し合う。空気抵抗の反力でロータ20に対して軸方向の何れの位置に偏った力が付与されることを抑制できる。 According to this embodiment, air flows through the first ventilation hole 24a and the second ventilation hole 24b of the rotor 20. Therefore, the inside of the rotor 20 can be cooled with air. Furthermore, according to the present embodiment, air flows through the first ventilation hole 24a and the second ventilation hole 24b in mutually different directions. Therefore, the reaction force of air resistance applied to the inner surface of the first ventilation hole 24a and the reaction force of air resistance applied to the inner surface of the second ventilation hole 24b cancel each other out. It is possible to prevent biased force from being applied to any position in the axial direction on the rotor 20 due to the reaction force of air resistance.
 本実施形態において、第1ファン10Aの吹出口12は、中心軸線J1の径方向から見て第1コイルエンド31aの基端部31Qに重なる。一方で、第2ファン10Bの吹出口12は、中心軸線J1の径方向から見て第2コイルエンド31bの基端部31Qに重なる。すなわち、第1ファン10Aの吹出口12の径方向外側には、第1コイルエンド31aが配置される。第2ファン10Bの吹出口12の径方向外側には、第2コイルエンド31bが配置される。このため、第1ファン10A、および第2ファン10Bは、それぞれ第1コイルエンド31a、および第2コイルエンド31bに対して空気を当てて冷却することができる。 In this embodiment, the air outlet 12 of the first fan 10A overlaps the base end 31Q of the first coil end 31a when viewed from the radial direction of the central axis J1. On the other hand, the air outlet 12 of the second fan 10B overlaps the base end 31Q of the second coil end 31b when viewed from the radial direction of the central axis J1. That is, the first coil end 31a is arranged on the radially outer side of the air outlet 12 of the first fan 10A. A second coil end 31b is arranged on the radially outer side of the air outlet 12 of the second fan 10B. Therefore, the first fan 10A and the second fan 10B can cool the first coil end 31a and the second coil end 31b by applying air to them, respectively.
 <インバータ>
 図1に示すインバータ7は、モータ2と電気的に接続される。インバータ7は、車両に搭載されるバッテリ(不図示)に接続され、バッテリーから供給された直流電流を交流電流に変換して、モータ2に供給する。また、インバータ7は、モータ2を制御する。インバータ7は、モータ2に対し軸方向一方側(+Y側)に配置される。本実施形態によれば、インバータ7をモータ2の径方向外側に配置する場合と比較して駆動装置1を径方向に小型化することができる。
<Inverter>
The inverter 7 shown in FIG. 1 is electrically connected to the motor 2. The inverter 7 is connected to a battery (not shown) mounted on the vehicle, converts direct current supplied from the battery into alternating current, and supplies the alternating current to the motor 2. Further, the inverter 7 controls the motor 2. The inverter 7 is arranged on one side (+Y side) of the motor 2 in the axial direction. According to this embodiment, the drive device 1 can be made smaller in the radial direction compared to the case where the inverter 7 is arranged outside the motor 2 in the radial direction.
 <動力伝達部>
 動力伝達部4は、モータ2に対し軸方向他方側(-Y側)に配置される。動力伝達部4は、ロータ20に接続されてモータ2の動力を伝達し出力シャフト47に出力する。動力伝達部4は、減速装置4aと差動装置4bとを有する。モータ2から出力されるトルクは、減速装置4aを介して差動装置4bに伝達される。減速装置4aは、各ギヤの回転軸線が平行に配置される平行軸歯車タイプの減速機である。差動装置4bは、車両の旋回時に、左右の車輪の速度差を吸収しつつ左右両輪に同トルクを伝達する。
<Power transmission section>
The power transmission section 4 is arranged on the other axial side (-Y side) with respect to the motor 2. The power transmission section 4 is connected to the rotor 20 and transmits the power of the motor 2, and outputs the power to the output shaft 47. The power transmission section 4 includes a reduction gear 4a and a differential gear 4b. Torque output from the motor 2 is transmitted to the differential gear 4b via the reduction gear 4a. The speed reducer 4a is a parallel shaft gear type speed reducer in which the rotation axes of each gear are arranged in parallel. The differential device 4b transmits the same torque to both the left and right wheels while absorbing the speed difference between the left and right wheels when the vehicle turns.
 減速装置4aは、第2シャフト44、第3シャフト45、第1ギヤ41、第2ギヤ42、および第3ギヤ43を有する。差動装置4bは、リングギヤ46g、デフケース46、およびデフケース46の内部に配置される差動機構部46cを有する。すなわち、動力伝達部4は、複数のギヤ41、42、43、46gを有する。 The reduction gear 4a has a second shaft 44, a third shaft 45, a first gear 41, a second gear 42, and a third gear 43. The differential device 4b includes a ring gear 46g, a differential case 46, and a differential mechanism section 46c disposed inside the differential case 46. That is, the power transmission section 4 has a plurality of gears 41, 42, 43, and 46g.
 第2シャフト44は、中心軸線J1を中心として軸方向に延びる。第2シャフト44は、第1シャフト21と同軸上に配置される。第2シャフト44は、軸方向一方側(+Y側)の端部において、第1シャフト21の軸方向他方側(-Y側)の端部に連結される。第2シャフト44は、第1シャフト21ととともに中心軸線J1周りを回転する。第2シャフト44は、ベアリング5C、5Dに回転可能に支持される。ベアリング5Cは、ハウジング6の第2ベアリングホルダ部66に支持される。一方で、ベアリング5Dは、ハウジング6のギヤカバー6Cに支持される。 The second shaft 44 extends in the axial direction centering on the central axis J1. The second shaft 44 is arranged coaxially with the first shaft 21. The second shaft 44 is connected at one axial end (+Y side) to the other axial end (−Y side) of the first shaft 21 . The second shaft 44 rotates around the central axis J1 together with the first shaft 21. The second shaft 44 is rotatably supported by bearings 5C and 5D. The bearing 5C is supported by the second bearing holder portion 66 of the housing 6. On the other hand, the bearing 5D is supported by the gear cover 6C of the housing 6.
 第1ギヤ41は、第2シャフト44の外周面に設けられる。第1ギヤ41は、第2シャフト44とともに中心軸線J1周りに回転する。第3シャフト45は、中心軸線J1と平行な中間軸線J2を中心として回転する。第2ギヤ42と第3ギヤ43とは、軸方向に並んで配置される。第2ギヤ42および第3ギヤ43は、第3シャフト45の外周面に設けられる。第2ギヤ42および第3ギヤ43は、第3シャフト45を介して接続される。第2ギヤ42および第3ギヤ43は、中間軸線J2を中心として回転する。第2ギヤ42は、第1ギヤ41と噛み合う。第3ギヤ43は、差動装置4bのリングギヤ46gと噛み合う。 The first gear 41 is provided on the outer peripheral surface of the second shaft 44. The first gear 41 rotates together with the second shaft 44 around the central axis J1. The third shaft 45 rotates around an intermediate axis J2 parallel to the central axis J1. The second gear 42 and the third gear 43 are arranged side by side in the axial direction. The second gear 42 and the third gear 43 are provided on the outer peripheral surface of the third shaft 45. The second gear 42 and the third gear 43 are connected via a third shaft 45. The second gear 42 and the third gear 43 rotate about the intermediate axis J2. The second gear 42 meshes with the first gear 41. The third gear 43 meshes with a ring gear 46g of the differential device 4b.
 リングギヤ46gは、中心軸線J1と平行な出力軸線J3を中心として回転する。リングギヤ46gには、モータ2から出力されるトルクが減速装置4aを介して伝えられる。リングギヤ46gは、デフケース46に固定される。 The ring gear 46g rotates around an output axis J3 that is parallel to the central axis J1. Torque output from the motor 2 is transmitted to the ring gear 46g via the reduction gear 4a. Ring gear 46g is fixed to differential case 46.
 デフケース46は、内部に差動機構部46cを収容するケース部46bと、ケース部46bに対して軸方向一方側および他方側にそれぞれ突出するデフケースシャフト46aと、を有する。すなわち、動力伝達部4は、デフケースシャフト46aを有する。デフケースシャフト46aは、出力軸線J3を中心として軸方向に沿って延びる筒状である。リングギヤ46gは、デフケースシャフト46aの外周面に設けられる。デフケースシャフト46aは、出力軸線J3を中心としてリングギヤ46gとともに回転する。 The differential case 46 includes a case portion 46b that accommodates a differential mechanism portion 46c therein, and a differential case shaft 46a that protrudes to one side and the other side in the axial direction with respect to the case portion 46b. That is, the power transmission section 4 includes a differential case shaft 46a. The differential case shaft 46a has a cylindrical shape that extends in the axial direction centering on the output axis J3. Ring gear 46g is provided on the outer peripheral surface of differential case shaft 46a. The differential case shaft 46a rotates together with the ring gear 46g about the output axis J3.
 一対の出力シャフト47は、差動装置4bに接続される。一対の出力シャフト47は、差動装置4bのデフケース46から軸方向一方側および他方側に突出する。出力シャフト47は、デフケースシャフト46aの内側に配置される。出力シャフト47は、デフケースシャフト46aの内周面に、ベアリングを介して回転可能に支持される。 The pair of output shafts 47 are connected to the differential gear 4b. A pair of output shafts 47 protrude from the differential case 46 of the differential device 4b to one side and the other side in the axial direction. The output shaft 47 is arranged inside the differential case shaft 46a. The output shaft 47 is rotatably supported on the inner peripheral surface of the differential case shaft 46a via a bearing.
 モータ2から出力されるトルクは、モータ2の第2シャフト44、第1ギヤ41、第2ギヤ42、第3シャフト45および第3ギヤ43を介して差動装置4bのリングギヤ46gに伝達され、差動装置4bの差動機構部46cを介して出力シャフト47に出力される。動力伝達部4の複数のギヤ41、42、43、46gは、第2シャフト44、第3シャフト45、デフケースシャフト46aの順でモータ2の動力を伝達する。 The torque output from the motor 2 is transmitted to the ring gear 46g of the differential device 4b via the second shaft 44, first gear 41, second gear 42, third shaft 45, and third gear 43 of the motor 2, It is output to the output shaft 47 via the differential mechanism section 46c of the differential device 4b. The plurality of gears 41, 42, 43, and 46g of the power transmission section 4 transmit the power of the motor 2 to the second shaft 44, the third shaft 45, and the differential case shaft 46a in this order.
 <ハウジング>
 ハウジング6は、モータ2、動力伝達部4、およびインバータ7を収容する。ハウジング6は、モータ2、動力伝達部4、およびインバータ7を支持する。また、ハウジング6は、ベアリング5A、5B、5C、5Dを支持する。
<Housing>
Housing 6 accommodates motor 2, power transmission section 4, and inverter 7. Housing 6 supports motor 2 , power transmission section 4 , and inverter 7 . Further, the housing 6 supports bearings 5A, 5B, 5C, and 5D.
 ハウジング6は、インバータホルダ6Aとハウジング本体6Bとギヤカバー6Cとウォータジャケット6Dと、第1ベアリングホルダ6Eと、を有する。インバータホルダ6A、ハウジング本体6B、ギヤカバー6C、ウォータジャケット6D、および第1ベアリングホルダ6Eは、それぞれ別部材である。インバータホルダ6Aは、ハウジング本体6Bの軸方向一方側(+Y側)に配置される。ギヤカバー6Cは、ハウジング本体6Bの軸方向他方側(-Y側)に配置される。ウォータジャケット6D、および第1ベアリングホルダ6Eは、ハウジング本体6Bの内部に配置される。 The housing 6 includes an inverter holder 6A, a housing main body 6B, a gear cover 6C, a water jacket 6D, and a first bearing holder 6E. The inverter holder 6A, the housing body 6B, the gear cover 6C, the water jacket 6D, and the first bearing holder 6E are each separate members. The inverter holder 6A is arranged on one axial side (+Y side) of the housing body 6B. The gear cover 6C is arranged on the other axial side (-Y side) of the housing body 6B. The water jacket 6D and the first bearing holder 6E are arranged inside the housing body 6B.
 ハウジング6には、流体Lが流れる流路90が設けられる。流体Lは、例えば、水である。なお、流体Lは、水でなくてもよい。例えば、流体Lは、オイルであってもよく、他の流体で合っても良い。流路90は、ハウジング6の外部を通過する外部配管97と、ハウジング6の内部を通過する第1流路部91、第2流路部92、第3流路部93、および第4流路部94と、を含む。 The housing 6 is provided with a flow path 90 through which the fluid L flows. The fluid L is, for example, water. Note that the fluid L does not have to be water. For example, the fluid L may be oil or other fluid. The flow path 90 includes an external pipe 97 passing through the outside of the housing 6, a first flow path section 91, a second flow path section 92, a third flow path section 93, and a fourth flow path passing through the inside of the housing 6. 94.
 流体Lは、ハウジング6の内部において、第1流路部91、第2流路部92、第3流路部93、第4流路部94の順で流れる。流体Lは、第1流路部91で主にインバータを冷却し、第3流路部93で主にモータ2を冷却する。 The fluid L flows inside the housing 6 in the order of the first flow path section 91 , the second flow path section 92 , the third flow path section 93 , and the fourth flow path section 94 . The fluid L mainly cools the inverter in the first flow path section 91 and mainly cools the motor 2 in the third flow path section 93.
 外部配管97は、第1連結部97aにおいてインバータホルダ6Aに連結され、第2連結部97bにおいてハウジング本体6Bに接続される。外部配管97の経路中には、流体Lを冷却するラジエータ(図示略)が配置される。外部配管97は、第1連結部97aにおいてハウジング6内に低温の流体Lを送り、第2連結部97bにおいてハウジング6内で熱を吸収して温度が高まった流体Lを回収する。 The external piping 97 is connected to the inverter holder 6A at a first connection part 97a, and connected to the housing main body 6B at a second connection part 97b. A radiator (not shown) that cools the fluid L is arranged in the path of the external pipe 97. The external pipe 97 sends the low-temperature fluid L into the housing 6 at the first connecting portion 97a, and recovers the fluid L whose temperature has increased by absorbing heat within the housing 6 at the second connecting portion 97b.
 ハウジング本体6Bは、モータ2を収容し軸方向一方側(+Y側)に開口する。ハウジング本体6Bは、中心軸線J1を中心とする筒状の外側筒部65と、外側筒部65の軸方向他方側(-Y側)に配置され外側筒部65の軸方向他方側の開口を覆う第2ベアリングホルダ部66と、軸方向他方側(-Y側)に開口する凹状部65bと、を有する。 The housing body 6B accommodates the motor 2 and is open on one side in the axial direction (+Y side). The housing main body 6B includes a cylindrical outer cylinder part 65 centered on the central axis J1, and an opening on the other axial side of the outer cylinder part 65, which is arranged on the other axial side (-Y side) of the outer cylinder part 65. It has a second bearing holder part 66 that covers the second bearing holder part 66, and a recessed part 65b that opens on the other side in the axial direction (-Y side).
 外側筒部65は、径方向外側からモータ2を囲む。外側筒部65には、第2流路部92と第4流路部94とが設けられる。第2流路部92および第4流路部94は、外側筒部65に設けられる孔部である。第2流路部92は、外側筒部65の壁内部を軸方向に沿って延びる。第2流路部92は、第1流路部91の下流側端部と第3流路部93の入口部93a部とを繋ぐ。第4流路部94は、径方向に沿って延びる。第4流路部94は、第3流路部93の出口部93bから径方向外側に延びて外側筒部65の径方向外側に開口する。第4流路部94の開口には、外部配管97の第2連結部97bが接続される。 The outer cylinder portion 65 surrounds the motor 2 from the outside in the radial direction. The outer cylinder portion 65 is provided with a second flow path portion 92 and a fourth flow path portion 94 . The second flow path portion 92 and the fourth flow path portion 94 are holes provided in the outer cylinder portion 65. The second flow path section 92 extends inside the wall of the outer cylinder section 65 along the axial direction. The second flow path section 92 connects the downstream end of the first flow path section 91 and the inlet section 93a of the third flow path section 93. The fourth flow path section 94 extends along the radial direction. The fourth flow path portion 94 extends radially outward from the outlet portion 93b of the third flow path portion 93 and opens toward the outside of the outer cylinder portion 65 in the radial direction. A second connecting portion 97b of an external pipe 97 is connected to the opening of the fourth flow path portion 94.
 第2ベアリングホルダ部66には、シャフト挿通孔66hが設けられる。シャフト挿通孔66hには、一対のベアリング5B、5Cと、シール部材5Sが配置される。ベアリング5Bは、第1シャフト21を支持し、ベアリング5Cは、第2シャフト44を支持する。第1シャフト21と第2シャフト44とは、シャフト挿通孔66hの内部で互いに連結される。シール部材5Sは、軸方向において2つのベアリング5B、5Cの間に配置される。シール部材5Sは、シャフト挿通孔66hの内周面と第2シャフト44の外周面との間をシールする。第2ベアリングホルダ部66の構成については、後段においてより詳細に説明する。 The second bearing holder portion 66 is provided with a shaft insertion hole 66h. A pair of bearings 5B and 5C and a seal member 5S are arranged in the shaft insertion hole 66h. The bearing 5B supports the first shaft 21, and the bearing 5C supports the second shaft 44. The first shaft 21 and the second shaft 44 are connected to each other inside the shaft insertion hole 66h. The seal member 5S is arranged between the two bearings 5B and 5C in the axial direction. The seal member 5S seals between the inner peripheral surface of the shaft insertion hole 66h and the outer peripheral surface of the second shaft 44. The configuration of the second bearing holder portion 66 will be explained in more detail later.
 ギヤカバー6Cは、ハウジング本体6Bの凹状部65bに固定される。ギヤカバー6Cと凹状部65bとは、動力伝達部4を収容する収容空間を構成する。動力伝達部4の収容空間には、オイルOが貯留される。オイルOは、動力伝達部4の潤滑性を高める。 The gear cover 6C is fixed to the concave portion 65b of the housing body 6B. The gear cover 6C and the concave portion 65b constitute an accommodation space that accommodates the power transmission section 4. Oil O is stored in the accommodation space of the power transmission section 4. The oil O increases the lubricity of the power transmission section 4.
 インバータホルダ6Aは、インバータ7を収容するとともにインバータ7を支持する。インバータホルダ6Aは、ハウジング本体6Bの軸方向一方側(+Y側)の開口を覆う。インバータホルダ6Aには、インバータ7を冷却する第1流路部91が設けられる。 The inverter holder 6A accommodates and supports the inverter 7. The inverter holder 6A covers an opening on one axial side (+Y side) of the housing body 6B. A first flow path portion 91 for cooling the inverter 7 is provided in the inverter holder 6A.
 <ウォータジャケット>
 ウォータジャケット6Dは、中心軸線J1を中心とする筒状の内側筒部64と、内側筒部64の外周面に設けられるリブ64aと、を有する。内側筒部64は、ステータ30を径方向外側から囲む。すなわち、ウォータジャケット6Dは、ステータ30を径方向外側から囲む。
<Water jacket>
The water jacket 6D has a cylindrical inner cylinder part 64 centered on the central axis J1, and a rib 64a provided on the outer peripheral surface of the inner cylinder part 64. The inner cylinder portion 64 surrounds the stator 30 from the outside in the radial direction. That is, water jacket 6D surrounds stator 30 from the outside in the radial direction.
 内側筒部64は、外側筒部65の内側に配置される。すなわち、内側筒部64は、外側筒部65に径方向外側から囲まれる。内側筒部64の外径は、外側筒部65の内径よりも小さい。内側筒部64の外周面の軸方向両端部には、それぞれOリング64c、64dが配置される。Oリング64c、64dは、内側筒部64の外周面と外側筒部65との間をシールする。内側筒部64と外側筒部65との間であって、一対のOリング64c、64dの間には、第3流路部93として機能する隙間が設けられる。 The inner cylinder part 64 is arranged inside the outer cylinder part 65. That is, the inner cylinder part 64 is surrounded by the outer cylinder part 65 from the outside in the radial direction. The outer diameter of the inner cylindrical portion 64 is smaller than the inner diameter of the outer cylindrical portion 65. O- rings 64c and 64d are arranged at both axial ends of the outer circumferential surface of the inner cylindrical portion 64, respectively. The O- rings 64c and 64d seal between the outer circumferential surface of the inner cylindrical portion 64 and the outer cylindrical portion 65. A gap is provided between the inner cylinder part 64 and the outer cylinder part 65 and between the pair of O- rings 64c and 64d, which functions as the third flow path part 93.
 リブ64aは、中心軸線J1を中心として螺旋状に延びる。リブ64aは、径方向外側の端部に位置する先端部を有する。リブ64aの先端部は、外側筒部65の内周面に接触するか、又はわずかな隙間を介して対向する。これにより、リブ64aは、内側筒部64の外周面と外側筒部65の間の隙間を仕切って螺旋状の第3流路部93を形成する。 The rib 64a extends spirally around the central axis J1. The rib 64a has a tip located at the radially outer end. The tip of the rib 64a contacts the inner circumferential surface of the outer cylindrical portion 65, or faces the inner circumferential surface of the outer cylinder portion 65 with a slight gap therebetween. Thereby, the rib 64a partitions the gap between the outer circumferential surface of the inner cylindrical portion 64 and the outer cylindrical portion 65 to form a spiral third flow path portion 93.
 第3流路部(水路)93は、ハウジング本体6Bの外側筒部65と、ウォータジャケット6Dの内側筒部64との径方向の間に配置される。より具体的には、第3流路部93は、外側筒部65の径方向内側かつウォータジャケット6Dの径方向外側に設けられる。第3流路部93は、中心軸線J1を中心として螺旋状に延びる。第3流路部93は、ステータ30を径方向外側から囲む。第3流路部93を流れる流体Lは、ウォータジャケット6Dを冷却する。ウォータジャケット6Dは、ステータコア32に接触しステータコア32を冷却する。 The third flow path portion (water channel) 93 is arranged between the outer cylindrical portion 65 of the housing body 6B and the inner cylindrical portion 64 of the water jacket 6D in the radial direction. More specifically, the third flow path portion 93 is provided radially inside the outer cylinder portion 65 and radially outside the water jacket 6D. The third flow path section 93 extends spirally about the central axis J1. The third flow path section 93 surrounds the stator 30 from the outside in the radial direction. The fluid L flowing through the third flow path portion 93 cools the water jacket 6D. Water jacket 6D contacts stator core 32 and cools stator core 32.
 本実施形態では、第3流路部93が螺旋状に延びる場合について説明した。しかしながら、第3流路部93は、ステータ30を囲むものであれば、本実施形態に限定されない。第3流路部93は、軸方向又は周方向に蛇行する流路であってもよい。第3流路部93の流路構成は、リブ64aの形状によって決めることができる。 In the present embodiment, a case has been described in which the third flow path portion 93 extends in a spiral shape. However, the third flow path section 93 is not limited to this embodiment as long as it surrounds the stator 30. The third flow path portion 93 may be a flow path that meanders in the axial direction or the circumferential direction. The flow path configuration of the third flow path section 93 can be determined by the shape of the rib 64a.
 内側筒部64の内周面は、嵌合内周面50eと第1内周面50fと第2内周面50gとを含む。すなわち、ウォータジャケット6Dの内周面は、嵌合内周面50eと第1内周面50fと第2内周面50gとを含む。嵌合内周面50eは、ステータコアの外周面に接触する。嵌合内周面50eには、ステータコア32が保持される。第1内周面50f、および第2内周面50gの内径は、嵌合内周面50eの内径よりも大きい。第1内周面50fは、嵌合内周面50eの軸方向一方側(+Y側)に位置する。第2内周面50gは、嵌合内周面50eの軸方向他方側(-Y側)に位置する。 The inner circumferential surface of the inner cylindrical portion 64 includes a fitting inner circumferential surface 50e, a first inner circumferential surface 50f, and a second inner circumferential surface 50g. That is, the inner circumferential surface of the water jacket 6D includes a fitting inner circumferential surface 50e, a first inner circumferential surface 50f, and a second inner circumferential surface 50g. The fitting inner circumferential surface 50e contacts the outer circumferential surface of the stator core. The stator core 32 is held on the fitting inner circumferential surface 50e. The inner diameters of the first inner circumferential surface 50f and the second inner circumferential surface 50g are larger than the inner diameter of the fitting inner circumferential surface 50e. The first inner circumferential surface 50f is located on one axial side (+Y side) of the fitting inner circumferential surface 50e. The second inner circumferential surface 50g is located on the other axial side (-Y side) of the fitting inner circumferential surface 50e.
 第1内周面50fは、隙間を介して第1コイルエンド31aを径方向外側から囲む。第1内周面50fの軸方向一方側(+Y側)の端部は、第1コイルエンド31aの先端部31Pよりも軸方向一方側に位置する。第2内周面50gは、隙間を介して第2コイルエンド31bを径方向外側から囲む。第2内周面50gの軸方向他方側(-Y側)の端部は、第2コイルエンド31bの先端部31Pよりも軸方向他方側に位置する。上述したように第1コイルエンド31aの軸方向の寸法は、第2コイルエンド31bの軸方向の寸法よりも大きい。これに応じて、第1内周面50fの軸方向の寸法は、第2内周面50gの軸方向の寸法よりも大きい。 The first inner circumferential surface 50f surrounds the first coil end 31a from the outside in the radial direction via a gap. The end of the first inner circumferential surface 50f on one axial side (+Y side) is located on the one axial side of the tip 31P of the first coil end 31a. The second inner circumferential surface 50g surrounds the second coil end 31b from the outside in the radial direction via a gap. The end of the second inner circumferential surface 50g on the other axial side (-Y side) is located on the other axial side than the tip 31P of the second coil end 31b. As described above, the axial dimension of the first coil end 31a is larger than the axial dimension of the second coil end 31b. Accordingly, the axial dimension of the first inner circumferential surface 50f is larger than the axial dimension of the second inner circumferential surface 50g.
 第1内周面50fには、第1フィン(フィン)55Aが設けられる。同様に第2内周面50gには、第2フィン(フィン)55Bが設けられる。すなわち、ウォータジャケット6Dの内周面には、コイルエンド31a、31bの径方向外側に配置される複数のフィン55A、55Bが設けられる。また、ウォータジャケット6Dの内周面には、フィン55A、55Bとして、第1フィン55Aと第2フィン55Bとが設けられる。第1フィン55Aは、第1コイルエンド31aの径方向外側に位置する。第2フィン55Bは、第2コイルエンド31bの径方向外側に位置する。 A first fin (fin) 55A is provided on the first inner peripheral surface 50f. Similarly, second fins (fins) 55B are provided on the second inner peripheral surface 50g. That is, a plurality of fins 55A, 55B are provided on the inner peripheral surface of the water jacket 6D, which are arranged on the radially outer side of the coil ends 31a, 31b. Moreover, a first fin 55A and a second fin 55B are provided as fins 55A and 55B on the inner peripheral surface of the water jacket 6D. The first fin 55A is located on the radially outer side of the first coil end 31a. The second fin 55B is located on the radially outer side of the second coil end 31b.
 ウォータジャケット6Dは、第3流路部93を流れる流体Lによって冷却される。本実施形態によれば、ウォータジャケット6Dの内周面にフィン55A、55Bを設けることで、ウォータジャケット6Dの表面積を高めてウォータジャケット6Dに囲まれる空間の空気の冷却効率を高めることができる。 The water jacket 6D is cooled by the fluid L flowing through the third flow path section 93. According to this embodiment, by providing the fins 55A and 55B on the inner peripheral surface of the water jacket 6D, the surface area of the water jacket 6D can be increased and the efficiency of cooling the air in the space surrounded by the water jacket 6D can be increased.
 本実施形態の駆動装置1によれば、第1ファン10Aの吹出口12と第1コイルエンド31aと第1フィン55Aとは、径方向に並んで配置される。また、吹出口12は、径方向外側に開口する。吹出口12から径方向外側に吹き出される空気は、第1コイルエンド31aを通過して第1フィン55Aに当たる。このため、第1コイルエンド31aを通過する際に温められた空気を第1フィン55Aに当てて冷却することができる。これにより、第1コイルエンド31aの周囲を流れる空気の温度を低く保つことができ、第1コイルエンド31aを効率的に冷却できる。 According to the drive device 1 of this embodiment, the air outlet 12 of the first fan 10A, the first coil end 31a, and the first fin 55A are arranged side by side in the radial direction. Further, the blower outlet 12 opens outward in the radial direction. Air blown out radially outward from the air outlet 12 passes through the first coil end 31a and hits the first fin 55A. Therefore, the air heated when passing through the first coil end 31a can be cooled by hitting the first fins 55A. Thereby, the temperature of the air flowing around the first coil end 31a can be kept low, and the first coil end 31a can be efficiently cooled.
 本実施形態の駆動装置1によれば、第1ファン10Aと同様に、第2ファン10Bの吹出口12と第2コイルエンド31bと第2フィン55Bとは、径方向に並んで配置される。このため、第2コイルエンド31bの周囲においても、第1コイルエンド31aの周囲と同様の効果を得ることができる。 According to the drive device 1 of this embodiment, similarly to the first fan 10A, the air outlet 12, second coil end 31b, and second fin 55B of the second fan 10B are arranged side by side in the radial direction. Therefore, the same effect as that around the first coil end 31a can be obtained also around the second coil end 31b.
 また、本実施形態において、第1フィン55Aの軸方向他方側(-Y側)には、軸方向と直交して延びるステータコア32の端面(第1端面32d)が配置される。このため、吹出口12から第1フィン55Aに達した空気は、軸方向一方側に向かうように流動方向を変化させる。このため、第1フィン55Aによって冷却される空気は、第1内周面50fと第1コイルエンド31aとの間を流れながら、さらに第1コイルエンド31aを冷却する。本実施形態によれば、第1コイルエンド31aを冷やすとともに、温められた空気を第1フィン55Aによって冷却できる。 Furthermore, in this embodiment, the end surface (first end surface 32d) of the stator core 32 that extends orthogonally to the axial direction is arranged on the other axial side (-Y side) of the first fin 55A. Therefore, the air that has reached the first fins 55A from the air outlet 12 changes its flow direction so as to move toward one side in the axial direction. Therefore, the air cooled by the first fins 55A further cools the first coil end 31a while flowing between the first inner peripheral surface 50f and the first coil end 31a. According to this embodiment, the first coil end 31a can be cooled, and the warmed air can be cooled by the first fins 55A.
 同様に、第2フィン55Bの軸方向一方側(+Y側)には、ステータコア32の軸方向他方側(-Y側)を向く端面が配置される。このため、第2フィン55Bに達した空気を第2内周面50gと第2コイルエンド31bとの間に流すことができ、第2コイルエンド31bを冷やすとともに、温められた空気を第2フィン55Bによって冷却できる。 Similarly, an end face facing the other axial side (-Y side) of the stator core 32 is arranged on one axial side (+Y side) of the second fin 55B. Therefore, the air that has reached the second fin 55B can flow between the second inner peripheral surface 50g and the second coil end 31b, thereby cooling the second coil end 31b and directing the warmed air to the second fin. 55B can be used for cooling.
 本実施形態の第1コイルエンド31aは、中心軸線J1の径方向外側から見たとき、基端部31Qにおいて、吹出口12および第1フィン55Aに重なる。すなわち、第1ファン10Aの吹出口12と第1コイルエンド31aの基端部31Qと第1フィン55Aとは、径方向に並んで配置される。同様に、第2コイルエンド31bは、中心軸線J1の径方向外側から見たとき、基端部31Qにおいて、吹出口12および第2フィン55Bに重なる。すなわち、第2ファン10Bの吹出口12と第2コイルエンド31bの基端部31Qと第2フィン55Bとは、径方向に並んで配置される。 The first coil end 31a of the present embodiment overlaps the air outlet 12 and the first fin 55A at the base end 31Q when viewed from the outside in the radial direction of the central axis J1. That is, the air outlet 12 of the first fan 10A, the base end 31Q of the first coil end 31a, and the first fin 55A are arranged side by side in the radial direction. Similarly, the second coil end 31b overlaps the air outlet 12 and the second fin 55B at the base end 31Q when viewed from the outside in the radial direction of the central axis J1. That is, the air outlet 12 of the second fan 10B, the base end 31Q of the second coil end 31b, and the second fin 55B are arranged side by side in the radial direction.
 上述したようにコイルエンド31a、31bでは、周方向に沿って延びる渡り線が隙間なく束ねられている。このため、吹出口12から吹き出された空気は、コイルエンド31a、31bの内部を円滑に通過し難い。コイルエンド31a、31bの渡り線は、基端部31Qにおいてティース部32b同士の間のスロットから軸方向に延び出て、ステータコア32の端面から離れるに従い徐々に周方向に向かって湾曲する。渡り線は、ステータコア32から延び出た部分で軸方向に延びている。このため、コイルエンド31a、31bの基端部31Qには、ティース部32bに沿って延びる隙間が設けられる。本実施形態によれば、径方向から見て吹出口12をコイルエンド31a、31bの基端部31Qに重ねて配置することで、吹出口12から吹き出された空気をコイルエンド31a、31bの径方向外側まで送ることができる。これにより、吹出口12から吹き出された空気を、吹出口12の径方向外側に位置するフィン55A、55Bに当てることができる。 As described above, in the coil ends 31a and 31b, the connecting wires extending along the circumferential direction are bundled without any gaps. Therefore, it is difficult for the air blown out from the air outlet 12 to smoothly pass through the insides of the coil ends 31a and 31b. The crossover wires of the coil ends 31a and 31b extend in the axial direction from the slot between the teeth portions 32b at the base end 31Q, and gradually curve toward the circumferential direction as they move away from the end surface of the stator core 32. The crossover wire extends in the axial direction at a portion extending from the stator core 32. Therefore, a gap extending along the teeth portion 32b is provided at the base end portion 31Q of the coil ends 31a, 31b. According to this embodiment, by arranging the air outlet 12 so as to overlap the base end 31Q of the coil ends 31a, 31b when viewed from the radial direction, the air blown out from the air outlet 12 is transferred to the diameter of the coil ends 31a, 31b. It can be sent to the outside. Thereby, the air blown out from the air outlet 12 can be applied to the fins 55A and 55B located on the radially outer side of the air outlet 12.
 図4は、ウォータジャケット6Dの断面図である。
 本実施形態の複数の第1フィン55Aは、軸方向に沿って延び、周方向に沿って並ぶ。同様に、第2フィン55Bは、軸方向に沿って延び、周方向に沿って並ぶ。本実施形態によれば、吹出口12からフィン55A、55Bに達した空気を軸方向に沿って円滑に流すことができる。これにより、コイルエンド31a、31bの周りを循環させる空気の流速を高めて空気によるコイルエンド31a、31bの冷却効率を高めることができる。このように、本実施形態のフィン55A、55Bは、空気の流れを円滑とする整流フィンとしても機能する。
FIG. 4 is a cross-sectional view of the water jacket 6D.
The plurality of first fins 55A of this embodiment extend along the axial direction and are lined up along the circumferential direction. Similarly, the second fins 55B extend along the axial direction and are lined up along the circumferential direction. According to this embodiment, the air that has reached the fins 55A, 55B from the outlet 12 can flow smoothly along the axial direction. Thereby, the flow velocity of the air circulating around the coil ends 31a, 31b can be increased, and the cooling efficiency of the coil ends 31a, 31b by the air can be increased. In this way, the fins 55A and 55B of this embodiment also function as rectifying fins that smooth the flow of air.
 本実施形態のフィン55A、55Bは、軸方向においてステータコア32から離れるに従い細くなる。すなわち、第1フィン55Aは軸方向一方側(+Y側)に向かうに従い細くなり、第2フィン55Bは軸方向他方側(-Y側)に向かうに従い細くなる。ここで、フィン55A、55Bが「細い」とは、フィン55A、55Bの周方向に沿う幅寸法が小さいことを意味する。 The fins 55A and 55B of this embodiment become thinner as they move away from the stator core 32 in the axial direction. That is, the first fins 55A become thinner toward one side in the axial direction (+Y side), and the second fins 55B become thinner toward the other side in the axial direction (−Y side). Here, when the fins 55A, 55B are "slender", it means that the width dimension of the fins 55A, 55B along the circumferential direction is small.
 ウォータジャケット6Dの内側面とコイルエンド31a、31bとの間には、ステータコア32から離れる方向に空気が流れる。本実施形態によれば、フィン55A、55Bを、空気の流れの下流側に向かうに従い細くすることができ、結果的に下流側の流路断面積を広くできる。これにより、空気の流れをより円滑にすることができる。 Air flows in the direction away from the stator core 32 between the inner surface of the water jacket 6D and the coil ends 31a, 31b. According to this embodiment, the fins 55A and 55B can be made thinner toward the downstream side of the air flow, and as a result, the cross-sectional area of the flow path on the downstream side can be increased. This allows the air to flow more smoothly.
 また、本実施形態によれば、フィン55A、55Bは、それぞれ軸方向両側に向かうに従い細くなる。このため、ウォータジャケット6Dをダイカスト成型などで製造する場合に、抜き方向を軸方向両側とすることで金型構成を簡素化でき、ウォータジャケット6Dを安価に製造できる。 Furthermore, according to the present embodiment, the fins 55A and 55B become thinner toward both sides in the axial direction. Therefore, when the water jacket 6D is manufactured by die-casting or the like, the mold configuration can be simplified by making the punching directions on both sides in the axial direction, and the water jacket 6D can be manufactured at low cost.
 本実施形態のフィン55A、55Bは、径方向内側を向く面(以下、内端面55a)を有する。本実施形態において、フィン55A、55Bの内端面55aは、軸方向においてステータコア32から離れるに従い径方向外側に傾斜する。本実施形態によれば、ウォータジャケット6Dの内側面とコイルエンド31a、31bとの間を流れる空気の下流側の流路断面積を広くできる。これにより、空気の流れをより円滑にすることができる。また、本実施形態によれば、抜き方向を軸方向両側とすることで金型構成を簡素化でき、ウォータジャケット6Dを安価に製造できる。 The fins 55A and 55B of this embodiment have a surface facing radially inward (hereinafter referred to as an inner end surface 55a). In this embodiment, the inner end surfaces 55a of the fins 55A, 55B slope radially outward as they move away from the stator core 32 in the axial direction. According to this embodiment, the cross-sectional area of the flow path on the downstream side of the air flowing between the inner surface of the water jacket 6D and the coil ends 31a, 31b can be increased. This allows the air to flow more smoothly. Further, according to the present embodiment, the mold configuration can be simplified by setting the drawing directions to both sides in the axial direction, and the water jacket 6D can be manufactured at low cost.
 本実施形態において、第1フィン55Aの軸方向の寸法は、第1コイルエンド31aの軸方向の寸法よりも大きい。同様に、第2フィン55Bの軸方向の寸法は、第2コイルエンド31bの軸方向の寸法よりも大きい。本実施形態によれば、コイルエンド31a、31bの径方向外側の全域の空気をフィン55A、55Bで冷却できる。また、コイルエンド31a、31bの径方向外側の全域の空気をフィン55A、55Bで円滑に軸方向に流すことができる。 In this embodiment, the axial dimension of the first fin 55A is larger than the axial dimension of the first coil end 31a. Similarly, the axial dimension of the second fin 55B is larger than the axial dimension of the second coil end 31b. According to this embodiment, the air in the entire area outside the coil ends 31a and 31b in the radial direction can be cooled by the fins 55A and 55B. Moreover, the air in the entire area outside the coil ends 31a and 31b in the radial direction can be smoothly flowed in the axial direction by the fins 55A and 55B.
 本実施形態において、第1フィン55Aの軸方向の寸法は、第2フィン55Bの軸方向の寸法よりも大きい。上述したように、第1コイルエンド31aの軸方向の寸法は、第2コイルエンド31bの軸方向の寸法よりも大きい。本実施形態によれば、コイルエンド31a、31bの大きさに応じてフィン55A、55Bを軸方向に適切な大きさとすることで、各コイルエンド31a、31bを発熱量に応じて冷却できる。また、本実施形態によれば、必要以上に駆動装置1が軸方向に大型化することを抑制できる。 In this embodiment, the axial dimension of the first fin 55A is larger than the axial dimension of the second fin 55B. As described above, the axial dimension of the first coil end 31a is larger than the axial dimension of the second coil end 31b. According to this embodiment, each coil end 31a, 31b can be cooled according to the amount of heat generated by making the fins 55A, 55B an appropriate size in the axial direction according to the size of the coil ends 31a, 31b. Moreover, according to this embodiment, it is possible to suppress the drive device 1 from becoming larger in the axial direction than necessary.
 図2に示すように、ウォータジャケット6Dの径方向側にはステータ30を径方向外側から囲む第3流路部93が設けられる。第3流路部93の上流側の端部には、第3流路部93に流体Lが流入する入口部93aが設けられる。入口部93aは、第3流路部93と第2流路部92(図1参照)との接続部である。 As shown in FIG. 2, a third flow path section 93 that surrounds the stator 30 from the outside in the radial direction is provided on the radial side of the water jacket 6D. An inlet portion 93 a through which the fluid L flows into the third flow path portion 93 is provided at the upstream end of the third flow path portion 93 . The inlet portion 93a is a connection portion between the third flow path portion 93 and the second flow path portion 92 (see FIG. 1).
 本実施形態において、入口部93aは、径方向から見て第1フィン55Aと重なる。第3流路部93を流れる流体Lは、第3流路部93内で下流側に向かうに従いステータ30から熱を受け取り温度が高まる。したがって、第3流路部93の流体Lは、入口部93aの近くで最も温度が低い。本実施形態によれば、第1フィン55Aの径方向外側に入口部93aを配置することで、第1フィン55Aを冷却して第1フィン55Aを介して第1コイルエンド31aの周囲を通過する空気を効果的に冷却できる。特に、本実施形態では、第1コイルエンド31aの軸方向の寸法が、第2コイルエンド31bの軸方向の寸法よりも大きい。このため、第1コイルエンド31aの発熱量は、第2コイルエンド31bの発熱量よりも大きくなりやすい。本実施形態によれば、第1コイルエンド31aを、第1フィン55Aおよび空気を介して、入口部93aから流入した低温の流体Lで冷却することができる。これにより、第1コイルエンド31aを効率的に冷却できる。 In this embodiment, the inlet portion 93a overlaps with the first fin 55A when viewed from the radial direction. The fluid L flowing through the third flow path section 93 receives heat from the stator 30 and increases in temperature as it moves downstream within the third flow path section 93 . Therefore, the temperature of the fluid L in the third flow path section 93 is lowest near the inlet section 93a. According to this embodiment, by arranging the inlet portion 93a on the radially outer side of the first fin 55A, the first fin 55A is cooled and passes around the first coil end 31a via the first fin 55A. Air can be effectively cooled. In particular, in this embodiment, the axial dimension of the first coil end 31a is larger than the axial dimension of the second coil end 31b. Therefore, the amount of heat generated by the first coil end 31a tends to be larger than the amount of heat generated by the second coil end 31b. According to this embodiment, the first coil end 31a can be cooled with the low temperature fluid L flowing from the inlet portion 93a via the first fins 55A and air. Thereby, the first coil end 31a can be efficiently cooled.
 図5は、ステータコア32のティース部32bと第1フィン55Aの位置関係を示す模式化である。図5においてステータコア32に装着されるコイル31は図示が省略されている。
 図5に示すように、軸方向から見てティース部32bの周方向中央を通過する直線を径方向外側に延ばす延長線TLを想定する。延長線TLは、中心軸線J1とティース部32bの中心を通過する直線である。
FIG. 5 is a schematic diagram showing the positional relationship between the teeth portion 32b of the stator core 32 and the first fin 55A. In FIG. 5, the illustration of the coil 31 attached to the stator core 32 is omitted.
As shown in FIG. 5, an extension line TL extending radially outward from a straight line passing through the circumferential center of the teeth portion 32b when viewed from the axial direction is assumed. The extension line TL is a straight line that passes through the central axis J1 and the center of the teeth portion 32b.
 本実施形態において、軸方向から見て、ティース部32bの延長線TL上には、第1フィン55A同士の間の凹部55sが配置される。凹部55sは、軸方向に沿って延びる。上述したように、第1コイルエンド31aの基端部31Qには、ティース部32bに沿って隙間が設けられる。また、第1ファン10Aの吹出口12から吹き出された空気は、第1コイルエンド31aの基端部31Qにおいてティース部32bの軸方向一方側(+Y側)の端面に沿って流れる。すなわち、第1コイルエンド31aを通過する空気は、ティース部32bの延びる方向である延長線TLに沿って流れる。本実施形態によれば、第1コイルエンド31aを通過した空気を、第1フィン55Aの凹部55sに当てることができる。これにより、空気を凹部55sの内側面に沿って軸方向に円滑に流すことができる。すなわち、この構成によれば、第1フィン55Aによる整流効果を高めて、空気を流れ易くして、第1コイルエンド31aの周囲での空気の循環を促すことができる。 In this embodiment, the recessed portion 55s between the first fins 55A is arranged on the extension line TL of the teeth portion 32b when viewed from the axial direction. The recess 55s extends along the axial direction. As described above, a gap is provided in the base end portion 31Q of the first coil end 31a along the teeth portion 32b. Moreover, the air blown out from the air outlet 12 of the first fan 10A flows along the end surface of the teeth portion 32b on one axial side (+Y side) at the base end 31Q of the first coil end 31a. That is, the air passing through the first coil end 31a flows along the extension line TL, which is the direction in which the teeth portion 32b extends. According to this embodiment, the air that has passed through the first coil end 31a can be applied to the recess 55s of the first fin 55A. This allows air to flow smoothly in the axial direction along the inner surface of the recess 55s. That is, according to this configuration, the rectifying effect of the first fins 55A can be enhanced, the air can flow easily, and the circulation of the air around the first coil end 31a can be promoted.
 図5では、第1フィン55Aとティース部32bの周方向の位置関係について説明した。しかしながら、第2フィン55Bとティース部32bとの周方向の関係についても同様の関係とすることで、同様の効果を得ることができる。 In FIG. 5, the circumferential positional relationship between the first fin 55A and the teeth portion 32b has been described. However, the same effect can be obtained by establishing the same circumferential relationship between the second fin 55B and the teeth portion 32b.
 図6は、本実施形態に採用可能な変形例の第1フィン155Aとティース部32bとの位置関係を示す模式図である。図6においてステータコア32に装着されるコイル31は図示が省略されている。
 この変形例では、軸方向から見て、ティース部32bの延長線TL上には、第1フィン155Aの径方向内側の面(内端面155a)が配置される。本変形例によれば、第1コイルエンド31aを通過した空気を、第1フィン155Aの凸形状の表面に直接当てることができ、空気と第1フィン55Aとの接触面積を広くすることができる。結果的に第1フィン55Aによって空気を効率的に冷却できる。すなわち、この構成によれば、第1フィン55Aによる吸熱効果を高めて、空気を効率的に冷却できる。本変形例の構成は、上述の実施形態における第1フィン55Aのみならず、第2フィン55Bにも適用できる。
FIG. 6 is a schematic diagram showing the positional relationship between the first fin 155A and the teeth portion 32b in a modification that can be employed in this embodiment. In FIG. 6, the illustration of the coil 31 attached to the stator core 32 is omitted.
In this modification, the radially inner surface (inner end surface 155a) of the first fin 155A is arranged on the extension line TL of the teeth portion 32b when viewed from the axial direction. According to this modification, the air that has passed through the first coil end 31a can be directly applied to the convex surface of the first fin 155A, and the contact area between the air and the first fin 55A can be increased. . As a result, the air can be efficiently cooled by the first fins 55A. That is, according to this configuration, the heat absorption effect by the first fins 55A can be enhanced to efficiently cool the air. The configuration of this modification can be applied not only to the first fin 55A in the above-described embodiment but also to the second fin 55B.
 <ベアリングホルダ>
 図2に示すように、第1ベアリングホルダ6Eは、ハウジング6の内部でモータ2に対し軸方向一方側(+Y側)に配置される。第1ベアリングホルダ6Eは、ウォータジャケット6Dの軸方向一方側(+Y側)の端面に固定される。第1ベアリングホルダ6Eは、第1ベアリング5Aを保持する。第1ベアリング5Aは、第1シャフト21の軸方向一方側(+Y側)の端部に配置され、第1シャフト21を回転可能に支持する。
<Bearing holder>
As shown in FIG. 2, the first bearing holder 6E is arranged on one axial side (+Y side) with respect to the motor 2 inside the housing 6. The first bearing holder 6E is fixed to an end surface on one axial side (+Y side) of the water jacket 6D. The first bearing holder 6E holds the first bearing 5A. The first bearing 5A is arranged at one end of the first shaft 21 in the axial direction (+Y side), and rotatably supports the first shaft 21.
 第1ベアリングホルダ6Eは、第1ベース部(ベース部)71と第1保持部(保持部)72とを有する。すなわち、ハウジング6は、第1ベース部71と第1保持部72とを有する。第1ベース部71は、モータ2を軸方向一方側(+Y側)から覆う。第1ベース部71は、第1保持部72を支持する。 The first bearing holder 6E has a first base portion (base portion) 71 and a first holding portion (holding portion) 72. That is, the housing 6 has a first base part 71 and a first holding part 72. The first base portion 71 covers the motor 2 from one side in the axial direction (+Y side). The first base part 71 supports the first holding part 72.
 図7は、第1ベアリングホルダ6Eの斜視図である。
 第1ベース部71は、中心軸線J1を中心とする円板状である。第1ベース部71の中央には、第1保持部72が配置される。すなわち、第1ベース部71は、第1保持部72から径方向外側に延びる。第1ベアリングホルダ6Eは、第1ベース部71の外縁71dにおいて、ハウジング6のウォータジャケット6Dに固定される。
FIG. 7 is a perspective view of the first bearing holder 6E.
The first base portion 71 has a disk shape centered on the central axis J1. A first holding portion 72 is arranged at the center of the first base portion 71 . That is, the first base portion 71 extends radially outward from the first holding portion 72. The first bearing holder 6E is fixed to the water jacket 6D of the housing 6 at the outer edge 71d of the first base portion 71.
 第1ベース部71には、ベース中央孔71hが設けられる。ベース中央孔71hは、第1ベース部71を軸方向に貫通する。ベース中央孔71hは、中心軸線J1を中心とする円形である。ベース中央孔71hには、第1シャフト21の軸方向一方側(+Y側)の端部が挿入される。 The first base portion 71 is provided with a base center hole 71h. The base center hole 71h passes through the first base portion 71 in the axial direction. The base central hole 71h has a circular shape centered on the central axis J1. An end portion of the first shaft 21 on one axial side (+Y side) is inserted into the base center hole 71h.
 図2に示すように、第1シャフト21の軸方向一方側(+Y側)の端部には、レゾルバ29のロータ部29aが固定される。このため、ロータ部29aは、第1ベース部71に対し軸方向一方側(+Y側)に配置される。第1ベース部71には、その他に複数の貫通孔が設けられる。これらの貫通孔は、例えば第1コイルエンド31aからインバータ7側に延び出る引出線、およびサーミスタのケーブルなどが通される。 As shown in FIG. 2, the rotor portion 29a of the resolver 29 is fixed to the end of the first shaft 21 on one axial side (+Y side). Therefore, the rotor portion 29a is arranged on one side in the axial direction (+Y side) with respect to the first base portion 71. The first base portion 71 is also provided with a plurality of through holes. For example, a lead wire extending from the first coil end 31a toward the inverter 7, a thermistor cable, etc. are passed through these through holes.
 第1保持部72は、中心軸線J1に沿って延びる筒状である。第1保持部72は、第1ベアリング5Aを径方向外側から囲み第1ベアリング5Aを保持する。すなわち、第1ベアリング5Aは、第1保持部72の径方向内側に配置される。第1保持部72は、ベース中央孔71hを径方向外側から囲む。 The first holding portion 72 has a cylindrical shape extending along the central axis J1. The first holding portion 72 surrounds the first bearing 5A from the outside in the radial direction and holds the first bearing 5A. That is, the first bearing 5A is arranged radially inside the first holding portion 72. The first holding portion 72 surrounds the base center hole 71h from the outside in the radial direction.
 上述したように、第1ファン10Aの吹出口12から吹き出された空気は、ウォータジャケット6Dの内周面と第1コイルエンド31aの間を軸方向一方側(+Y側)に流れる。この空気は第1ベアリングホルダ6Eの第1ベース部71に当たり第1ベース部71に沿って径方向内側に流れる。 As described above, the air blown out from the outlet 12 of the first fan 10A flows between the inner peripheral surface of the water jacket 6D and the first coil end 31a in the axial direction on one side (+Y side). This air hits the first base portion 71 of the first bearing holder 6E and flows radially inward along the first base portion 71.
 ここで、第1ベース部71の軸方向他方側(-Y側)を向く面を、第1誘導面71cと呼ぶ。すなわち、第1ベース部71は、第1誘導面71cを有する。第1誘導面71cには、径方向内側に向かうに従い軸方向他方側に傾斜する第1傾斜面71aが設けられる。すなわち、第1ベース部71は、軸方向他方側(-Y側)を向き径方向内側に向かうに従い軸方向他方側に傾斜する第1傾斜面71aを有する。本実施形態によれば、第1ベース部71は、第1誘導面71cに沿って径方向内側に流れる空気を、第1傾斜面71aにおいて軸方向他方側(-Y側)に導くことができる。 Here, the surface of the first base portion 71 facing the other side in the axial direction (-Y side) is referred to as the first guiding surface 71c. That is, the first base portion 71 has a first guiding surface 71c. The first guide surface 71c is provided with a first inclined surface 71a that is inclined toward the other side in the axial direction as it goes radially inward. That is, the first base portion 71 has a first inclined surface 71a that faces the other axial side (-Y side) and slopes toward the other axial side as it goes radially inward. According to the present embodiment, the first base portion 71 can guide the air flowing radially inward along the first guiding surface 71c to the other axial side (-Y side) at the first inclined surface 71a. .
 本実施形態によれば、第1保持部72は、第1誘導面71cから軸方向他方側(-Y側)に突出する筒状の部分である。第1誘導面71cに沿って径方向内側かつ軸方向他方側(-Y側)に流れる空気は、第1保持部72の外周面に当たって軸方向他方側(-Y側)に流動方向を変化させる。第1誘導面71cは、軸方向において第1ファン10Aの吸気口11に対向する。このため、流動方向を変えて軸方向他方側(-Y側)に流れる空気は、吸気口11に円滑に吸い込まれる。 According to the present embodiment, the first holding portion 72 is a cylindrical portion that protrudes from the first guiding surface 71c toward the other side in the axial direction (−Y side). The air flowing radially inward and axially on the other side (-Y side) along the first guide surface 71c hits the outer peripheral surface of the first holding part 72 and changes the flow direction to the axially other side (-Y side). . The first guide surface 71c faces the intake port 11 of the first fan 10A in the axial direction. Therefore, the air that changes its flow direction and flows toward the other side in the axial direction (-Y side) is smoothly sucked into the intake port 11.
 図7に仮想線(二点鎖線)で示すように、第1ベース部71のモータ2側を向く面(すなわち、第1誘導面71c)には、径方向に沿って放射状に延びる複数の第3フィン70fが設けられていてもよい。この場合、第1誘導面71cに沿って流れる空気の熱を第3フィン70fによって第1ベアリングホルダ6Eに逃がすことができる。また、第1誘導面71cに沿って流れる空気を第3フィン70fによって整流することができる。 As shown by the imaginary line (two-dot chain line) in FIG. 7, the surface of the first base portion 71 facing the motor 2 side (i.e., the first guiding surface 71c) has a plurality of grooves extending radially along the radial direction. Three fins 70f may be provided. In this case, the heat of the air flowing along the first guide surface 71c can be released to the first bearing holder 6E by the third fins 70f. Further, the air flowing along the first guiding surface 71c can be rectified by the third fins 70f.
 本実施形態によれば、第1保持部72は、第1ファン10Aの筒部13の径方向内側に位置する。また、第1保持部72と筒部13とは、少なくとも一部が軸方向に重なる。すなわち、第1保持部72と筒部13とは、径方向からみて互いに重なる。このため、第1保持部72の外周面に沿って軸方向他方側(-Y側)に流れる空気の径方向外側を筒部13によって囲むことができる。筒部13が軸方向他方側(-Y側)に流れる空気をガイドして吸気口11へ空気が流入することを促し、吸気口11への空気の流入量を確保することができる。 According to the present embodiment, the first holding portion 72 is located on the radially inner side of the cylindrical portion 13 of the first fan 10A. Further, the first holding portion 72 and the cylindrical portion 13 at least partially overlap in the axial direction. That is, the first holding portion 72 and the cylindrical portion 13 overlap each other when viewed from the radial direction. Therefore, the radially outer side of the air flowing toward the other axial side (−Y side) along the outer peripheral surface of the first holding portion 72 can be surrounded by the cylindrical portion 13. The cylindrical portion 13 guides the air flowing to the other side in the axial direction (-Y side) to encourage the air to flow into the intake port 11, thereby making it possible to ensure the amount of air flowing into the intake port 11.
 本実施形態によれば、第1傾斜面71aの軸方向他方側(-Y側)の端部が、第1コイルエンド31aの軸方向一方側(+Y側)の先端部31Pより軸方向他方側(-Y側)に位置する。本実施形態によれば、第1ベース部71の第1誘導面71cに沿って径方向内側に向かって流れる空気を、第1傾斜面71aに当てて軸方向他方側(-Y側)に円滑に誘導できる。 According to the present embodiment, the end of the first inclined surface 71a on the other axial side (-Y side) is on the other axial side of the tip 31P on the one axial side (+Y side) of the first coil end 31a. (-Y side). According to the present embodiment, the air flowing radially inward along the first guide surface 71c of the first base portion 71 is applied to the first inclined surface 71a to smoothly move to the other side in the axial direction (-Y side). can be guided to
 さらに本実施形態によれば、第1傾斜面71aがモータ2側に突出するため、モータ2が収容される空間の容積を小さくできる。これにより、モータ2が収容される空間内で、ファン10A、10Bによって循環される空気の流速を高めることができ、モータ2の冷却効率を高めることができる。加えて、第1傾斜面71aがモータ2に突出することで、第1ベース部71の軸方向一方側(+Y側)が凹状に窪む。凹状の窪みに部材(本実施形態ではレゾルバ29)を配置するなど、ハウジング6内を有効利用して、駆動装置1を軸方向に小型化できる。 Furthermore, according to this embodiment, since the first inclined surface 71a protrudes toward the motor 2 side, the volume of the space in which the motor 2 is accommodated can be reduced. Thereby, the flow velocity of the air circulated by the fans 10A and 10B within the space in which the motor 2 is accommodated can be increased, and the cooling efficiency of the motor 2 can be increased. In addition, since the first inclined surface 71a protrudes toward the motor 2, one axial side (+Y side) of the first base portion 71 is recessed. The drive device 1 can be downsized in the axial direction by effectively utilizing the inside of the housing 6, such as by arranging a member (in this embodiment, the resolver 29) in a concave depression.
 本実施形態によれば、第1シャフト21の外周面に設けられる鍔部21fは、第1保持部72の軸方向他方側(-Y側)の端部72aよりも軸方向他方側(-Y側)に配置される。本実施形態によれば、第1保持部72の外周面に沿って流れる空気の第1ベアリング5A側への流入を抑制できる。これにより、空気を吸気口11へ円滑に流入させることができる。 According to the present embodiment, the flange 21f provided on the outer peripheral surface of the first shaft 21 is closer to the other axial side (-Y side) than the end 72a of the first holding part 72 on the other axial side (-Y side). side). According to this embodiment, it is possible to suppress the air flowing along the outer circumferential surface of the first holding part 72 from flowing into the first bearing 5A side. This allows air to flow smoothly into the intake port 11.
 本実施形態によれば、鍔部21fと筒部13とは、径方向から見て重なる。このため、鍔部21fと筒部13とは、径方向の間を流れる空気を軸方向に沿って円滑に誘導できる。さらに、鍔部21fの軸方向一方側(+Y側)の端部は、筒部13の軸方向一方側(+Y側)の端部より軸方向他方側(-Y側)側に位置する。このため、鍔部21fが第1ファン10Aに対し軸方向一方側(+Y側)に突出することを抑制することができ、駆動装置1の軸方向への大型化を抑制できる。加えて、鍔部21fの径方向外側の端部は、吸気口11の径方向内側の端部より径方向外側に位置する。このため、鍔部21fは、吸気口11を塞ぐことがなく吸気口11への空気の侵入を阻害しない。 According to this embodiment, the flange portion 21f and the cylindrical portion 13 overlap when viewed from the radial direction. Therefore, the flange portion 21f and the cylindrical portion 13 can smoothly guide air flowing between them in the radial direction along the axial direction. Further, the end portion of the collar portion 21f on one axial side (+Y side) is located on the other axial side (−Y side) side than the end portion of the cylindrical portion 13 on the one axial side (+Y side). Therefore, it is possible to prevent the flange portion 21f from protruding toward one side in the axial direction (+Y side) with respect to the first fan 10A, and it is possible to prevent the drive device 1 from increasing in size in the axial direction. In addition, the radially outer end of the collar portion 21f is located radially outer than the radially inner end of the intake port 11. Therefore, the flange portion 21f does not block the intake port 11 and does not prevent air from entering the intake port 11.
 本実施形態において、ステータコア32の軸方向一方側(+Y側)の第1端面32dから第1保持部72の軸方向他方側(-Y側)の端部までの距離を第1距離d1とする。また、第1端面32dから第1コイルエンド31aの先端部31Pまでの距離を第2距離d2とする。さらに、第1端面32dから第1フィン55Aの軸方向一方側(+Y側)の端部までの距離を第3距離d3とする。このとき、第1距離d1は、第2距離d2よりも小さい。また、第2距離d2は、第3距離d3よりも小さい。 In this embodiment, the distance from the first end surface 32d of the stator core 32 on one axial side (+Y side) to the end of the first holding part 72 on the other axial side (-Y side) is the first distance d1. . Further, the distance from the first end surface 32d to the tip 31P of the first coil end 31a is defined as a second distance d2. Further, the distance from the first end surface 32d to the end of the first fin 55A on one axial side (+Y side) is defined as a third distance d3. At this time, the first distance d1 is smaller than the second distance d2. Further, the second distance d2 is smaller than the third distance d3.
 本実施形態によれば、第1距離d1、第2距離d2、および第3距離d3を上述の関係とすることで、円滑に空気を流しつつ空気から第1フィン55Aによって空気の熱をウォータジャケット6Dに逃がすことができる。なお、ここでは、ロータ20の軸方向一方側(+Y側)の各部(第1コイルエンド31a、第1フィン55A、および第1保持部72)の構成について説明したが、軸方向他方側(-Y側)の各部(第2コイルエンド31b、第2フィン55B、および後述する第2保持部66b)においても同様の構成を採用できる。 According to the present embodiment, by setting the first distance d1, the second distance d2, and the third distance d3 to the above-mentioned relationship, the heat of the air is transferred from the air by the first fin 55A to the water jacket while allowing the air to flow smoothly. It can be released to 6D. Here, the configuration of each part (first coil end 31a, first fin 55A, and first holding part 72) on one axial side (+Y side) of the rotor 20 has been described, but on the other axial side (- A similar configuration can be adopted for each part (the second coil end 31b, the second fin 55B, and the second holding part 66b, which will be described later) on the Y side.
 本実施形態の第1ベアリングホルダ6Eは、板状である。また、本実施形態において第1ベース部71の軸方向他方側(-Y側)を向く第1誘導面71cには、第1傾斜面(傾斜面)71bが設けられる。このため、第1ベース部71は、径方向内側に向かうに従い軸方向他方側(-Y側)に突出する。また、第1ベース部71の軸方向一方側(+Y側)を向く面は、第1傾斜面71aに沿って傾斜する。これにより、第1ベース部71の軸方向一方側(+Y側)には、凹部71bが設けられる。すなわち、第1ベース部71は、軸方向他方側の面から軸方向一方側に凹む凹部71bを有する。 The first bearing holder 6E of this embodiment is plate-shaped. Further, in this embodiment, a first inclined surface (slanted surface) 71b is provided on the first guide surface 71c of the first base portion 71 facing the other axial direction (-Y side). Therefore, the first base portion 71 protrudes toward the other axial side (-Y side) as it goes radially inward. Further, the surface of the first base portion 71 facing one side in the axial direction (+Y side) is inclined along the first inclined surface 71a. As a result, a recess 71b is provided on one axial side (+Y side) of the first base portion 71. That is, the first base portion 71 has a recessed portion 71b that is recessed from the other axial surface to one axial side.
 凹部71bの内側面にはレゾルバ29のステータ部29bが固定される。また、ステータ部29bは、レゾルバ29のロータ部29aを径方向外側から囲む。すなわち、レゾルバ(回転検出部)29は、凹部71bの内部に配置される。ロータ部29aは、周方向に沿って並ぶ複数のマグネットを有する。ステータ部29bは、ロータ部29aの回転に伴う磁束変化で励磁されるコイルを有しロータ20の回転数を測定する。 The stator portion 29b of the resolver 29 is fixed to the inner surface of the recess 71b. Further, the stator portion 29b surrounds the rotor portion 29a of the resolver 29 from the outside in the radial direction. That is, the resolver (rotation detection section) 29 is arranged inside the recess 71b. The rotor portion 29a has a plurality of magnets arranged along the circumferential direction. The stator section 29b includes a coil that is excited by changes in magnetic flux accompanying the rotation of the rotor section 29a, and measures the number of rotations of the rotor 20.
 本実施形態によれば、第1ベース部71の凹部71bにレゾルバ29を収容することで、第1傾斜面71aの反対側に設けられた凹部71b内のスペ-スを有効利用できる。これにより、駆動装置1の小型化を図ることができる。なお、本実施形態では、凹部71b内にレゾルバ29が収容される場合について説明した。しかしながら、凹部71bに収容される装置は、ロータ20の回転数を検出する回転検出部であればロータリーエンコーダなどの他の装置であってもよい。 According to this embodiment, by accommodating the resolver 29 in the recess 71b of the first base portion 71, it is possible to effectively utilize the space within the recess 71b provided on the opposite side of the first inclined surface 71a. Thereby, the drive device 1 can be downsized. In addition, in this embodiment, the case where the resolver 29 is accommodated in the recessed part 71b was demonstrated. However, the device accommodated in the recess 71b may be any other device such as a rotary encoder as long as it is a rotation detector that detects the number of rotations of the rotor 20.
 本実施形態によれば、第1シャフト21の外周面に設けられる鍔部21fおよびナット21nのうち、鍔部21fをロータコア24に対しレゾルバ29と同方向である軸方向一方側に配置する。ナット21nは、オネジ部21sとの係り代を確保するために軸方向において十分な大きさが必要になる。このため、ナット21nの軸方向寸法は、鍔部21fの軸方向寸法よりも大きくなりやすい。鍔部21fとレゾルバ29とを、軸方向においてロータコア24に対し同方向に配置することで、ナット21nとレゾルバ29とを同方向に配置する場合と比較して、全体の軸方向寸法を小型化できる。 According to the present embodiment, of the flange 21f and nut 21n provided on the outer circumferential surface of the first shaft 21, the flange 21f is arranged on one axial side of the rotor core 24 in the same direction as the resolver 29. The nut 21n needs to have a sufficient size in the axial direction to ensure engagement with the male threaded portion 21s. Therefore, the axial dimension of the nut 21n tends to be larger than the axial dimension of the flange 21f. By arranging the flange 21f and the resolver 29 in the same axial direction with respect to the rotor core 24, the overall axial dimension can be reduced compared to the case where the nut 21n and the resolver 29 are arranged in the same direction. can.
 第2ベアリングホルダ部66は、軸方向において第1ベアリングホルダ6Eと対向する。第2ベアリングホルダ部66は、ハウジング6の内部でモータ2に対し軸方向他方側(-Y側)に配置される。第2ベアリングホルダ部66は、ベアリング5B、5Cを保持する。第2ベアリング5Bは、第1シャフト21の軸方向他方側(-Y側)の端部に配置され、第1シャフト21を回転可能に支持する。 The second bearing holder portion 66 faces the first bearing holder 6E in the axial direction. The second bearing holder portion 66 is disposed inside the housing 6 on the other axial side (-Y side) with respect to the motor 2. The second bearing holder section 66 holds the bearings 5B and 5C. The second bearing 5B is arranged at the other axial end (-Y side) of the first shaft 21, and rotatably supports the first shaft 21.
 第2ベアリングホルダ部66は、第2ベース部66aと第2保持部66bとを有する。すなわち、ハウジング6は、第2ベース部66aと第2保持部66bとを有する。第2ベース部66aは、モータ2を軸方向他方側(-Y側)から覆う。第2ベース部66aは、第2保持部66bを支持する。 The second bearing holder part 66 has a second base part 66a and a second holding part 66b. That is, the housing 6 has a second base portion 66a and a second holding portion 66b. The second base portion 66a covers the motor 2 from the other side in the axial direction (−Y side). The second base portion 66a supports the second holding portion 66b.
 第2ベース部66aは、中心軸線J1を中心とする円板状である。第2ベース部66aの中央には、第2保持部66bが配置される。すなわち、第2ベース部66aは、第2保持部66bから径方向外側に延びる。 The second base portion 66a has a disk shape centered on the central axis J1. A second holding portion 66b is arranged at the center of the second base portion 66a. That is, the second base portion 66a extends radially outward from the second holding portion 66b.
 第2保持部66bは、シャフト挿通孔の66bの内縁から中心軸線J1に沿って延びる筒状の部分である。また、第2保持部66bは、第2ベース部66aの軸方向他方側(-Y側)の面から軸方向他方側(-Y側)に突出する。第2保持部66bは、第2ベアリング5Bを径方向外側から囲み第2ベアリング5Bを保持する。すなわち、第2ベアリング5Bは、第2保持部66bの径方向内側に配置される。 The second holding portion 66b is a cylindrical portion extending along the central axis J1 from the inner edge of the shaft insertion hole 66b. Further, the second holding portion 66b protrudes from the surface of the second base portion 66a on the other axial direction (−Y side) toward the other axial direction (−Y side). The second holding portion 66b surrounds the second bearing 5B from the outside in the radial direction and holds the second bearing 5B. That is, the second bearing 5B is arranged radially inside the second holding portion 66b.
 上述したように、第2ファン10Bの吹出口12から吹き出された空気は、ウォータジャケット6Dの内周面と第2コイルエンド31bの間を軸方向他方側(-Y側)に流れる。この空気は第2ベアリングホルダ部66の第2ベース部66aに当たり第2ベース部66aに沿って径方向内側に流れる。 As described above, the air blown out from the outlet 12 of the second fan 10B flows between the inner peripheral surface of the water jacket 6D and the second coil end 31b in the other axial direction (-Y side). This air hits the second base portion 66a of the second bearing holder portion 66 and flows radially inward along the second base portion 66a.
 ここで、第2ベース部66aの軸方向一方側(+Y側)を向く面を、第2誘導面66cと呼ぶ。すなわち、第2ベース部66aは、第2誘導面66cを有する。本実施形態によれば、第2誘導面66cには、径方向内側に向かうに従い軸方向一方側に傾斜する第2傾斜面66dが設けられる。すなわち、第2ベース部66aは、軸方向一方側(+Y側)を向き径方向内側に向かうに従い軸方向一方側に傾斜する第2傾斜面66dを有する。本実施形態によれば、第2ベース部66aは、第2誘導面66cに沿って径方向内側に流れる空気を、第2傾斜面66dにおいて軸方向一方側(+Y側)に導くことができる。また、第2誘導面66cに沿って径方向内側かつ軸方向一方側(+Y側)に流れる空気は、第2保持部66bの外周面に当たって軸方向一方側(+Y側)に流動方向を変化させる。第2誘導面66cは、軸方向において第2ファン10Bの吸気口11に対向する。このため、流動方向を変えて軸方向一方側(+Y側)に流れる空気は、吸気口11に円滑に吸い込まれる。 Here, the surface of the second base portion 66a facing one side in the axial direction (+Y side) is referred to as a second guiding surface 66c. That is, the second base portion 66a has a second guide surface 66c. According to this embodiment, the second guide surface 66c is provided with a second inclined surface 66d that is inclined toward one side in the axial direction as it goes radially inward. That is, the second base portion 66a has a second inclined surface 66d that faces one axial side (+Y side) and slopes toward the one axial side as it goes radially inward. According to this embodiment, the second base portion 66a can guide the air flowing radially inward along the second guide surface 66c to one side in the axial direction (+Y side) at the second inclined surface 66d. Further, the air flowing radially inward and to one axial side (+Y side) along the second guiding surface 66c hits the outer peripheral surface of the second holding part 66b and changes the flow direction to one axial side (+Y side). . The second guide surface 66c faces the intake port 11 of the second fan 10B in the axial direction. Therefore, the air that changes its flow direction and flows toward one side in the axial direction (+Y side) is smoothly sucked into the intake port 11.
 本実施形態によれば、第1ベアリングホルダ6Eの第1ベース部71、および第2ベアリングホルダ部66の第2ベース部66aは、それぞれ外縁から径方向内側に向かうに従いロータ20側に突出する。第1ベース部71の軸方向の寸法は、第2ベース部66aの軸方向の寸法よりも大きい。なお、第1ベース部71、および第2ベース部66aの軸方向の寸法とは、それぞれのベース部が軸方向に突出する突出高さを意味する。 According to the present embodiment, the first base portion 71 of the first bearing holder 6E and the second base portion 66a of the second bearing holder portion 66 each protrude toward the rotor 20 as they go radially inward from the outer edge. The axial dimension of the first base portion 71 is larger than the axial dimension of the second base portion 66a. Note that the axial dimensions of the first base portion 71 and the second base portion 66a mean the protrusion heights of the respective base portions in the axial direction.
 上述したように、第1コイルエンド31aの軸方向の寸法は、第2コイルエンド31bの軸方向の寸法よりも大きい。本実施形態によれば、コイルエンド31a、31bの大きさに応じて第1ベース部71、および第2ベース部66aの突出する高さを調整することで、各コイルエンド31a、31bの大きさに応じた傾斜で空気を誘導できる。本実施形態によれば、必要以上に駆動装置1が軸方向に大型化することを抑制できる。 As described above, the axial dimension of the first coil end 31a is larger than the axial dimension of the second coil end 31b. According to this embodiment, by adjusting the protruding heights of the first base part 71 and the second base part 66a according to the sizes of the coil ends 31a and 31b, the size of each coil end 31a and 31b can be adjusted. Air can be guided at an inclination according to the According to this embodiment, it is possible to suppress the drive device 1 from increasing in size in the axial direction more than necessary.
 本実施形態において、第1ベース部71は、モータ2とインバータ7との間に配置される。第1ベース部71は、ハウジング6内において、モータ2が収容される空間と、インバータ7が収容される空間とを区画する。このため、第1ベース部71をモータ2側に大きく突出させることで、ハウジング6内でインバータ7を収容する空間を広げることができる。これにより、インバータ7をモータ2に近づけて配置することが可能となり、駆動装置1の小型化を図ることができる。一方で、第2ベース部66aは、モータ2と動力伝達部4との間に配置される。また、第2ベース部66aは、モータ2の第1シャフト21を支持するベアリングのみならず、動力伝達部4の各シャフト44、45を支持する複数のベアリングをも支持する。このため、第2ベース部66aは、高い剛性を必要とし、第1ベース部71と比較して凹みを小さくすることが好ましい。言い換えると、第2ベース部66aは、高い剛性を必要とし、第1ベース部71と比較してモータ2側への突出高さを抑えることが好ましい。すなわち、本実施形態によれば、第1ベース部71の軸方向の寸法を第2ベース部66aの軸方向の寸法よりも大きくすることで、ハウジング6内のインバータ7側の空間を広くし、第2ベース部66aの剛性を高めて動力伝達部4を安定して支持することができる。 In this embodiment, the first base portion 71 is arranged between the motor 2 and the inverter 7. The first base portion 71 partitions a space in which the motor 2 is accommodated and a space in which the inverter 7 is accommodated within the housing 6. Therefore, by making the first base portion 71 largely protrude toward the motor 2 side, the space in which the inverter 7 is accommodated within the housing 6 can be expanded. Thereby, the inverter 7 can be placed close to the motor 2, and the drive device 1 can be downsized. On the other hand, the second base part 66a is arranged between the motor 2 and the power transmission part 4. Further, the second base portion 66a supports not only a bearing that supports the first shaft 21 of the motor 2, but also a plurality of bearings that support each of the shafts 44 and 45 of the power transmission portion 4. For this reason, the second base part 66a requires high rigidity, and it is preferable to make the dent smaller than the first base part 71. In other words, the second base portion 66a requires high rigidity, and it is preferable that the height of the second base portion 66a protrudes toward the motor 2 side is suppressed compared to the first base portion 71. That is, according to the present embodiment, by making the axial dimension of the first base part 71 larger than the axial dimension of the second base part 66a, the space on the inverter 7 side in the housing 6 is widened, By increasing the rigidity of the second base portion 66a, the power transmission portion 4 can be stably supported.
 以上に、本発明の様々な実施形態および変形例を説明したが、各実施形態および変形例における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。 Various embodiments and modifications of the present invention have been described above, but each configuration and combination thereof in each embodiment and modification is merely an example, and the configurations may be changed without departing from the spirit of the present invention. Additions, omissions, substitutions, and other changes are possible. Moreover, the present invention is not limited by the embodiments.
 例えば、上述の実施形態では、鍔部21fとナット21nとで挟み込むことで第1シャフト21に対しロータコア24を固定する場合について説明した。しかしながら、ロータコア24は、他の方法で第1シャフト21に固定されていてもよい。また、本実施形態の鍔部21fとナット21nの配置は、一例であり、本実施形態に限定されない。すなわち、ロータコア24に対して、鍔部21fを軸方向他方側(-Y側)に配置し、ナット21nを軸方向一方側(+Y側)に配置してもよい。 For example, in the above-described embodiment, the rotor core 24 is fixed to the first shaft 21 by being sandwiched between the flange 21f and the nut 21n. However, the rotor core 24 may be fixed to the first shaft 21 in other ways. Further, the arrangement of the collar portion 21f and the nut 21n in this embodiment is merely an example, and is not limited to this embodiment. That is, with respect to the rotor core 24, the flange 21f may be arranged on the other axial side (-Y side), and the nut 21n may be arranged on one axial side (+Y side).
 例えば、上述の実施形態において、コイルは、ステータに装着される屈曲可能な導線であり、コイルから延び出る引出線は、複数の導線を圧着端子によった束ねた構造を有する。しかしながら、コイルは、剛性の高い平角線から構成されるセグメントコイルであって、コイルから延び出る引出線も1本の平角線であってもよい。 For example, in the embodiments described above, the coil is a bendable conducting wire attached to the stator, and the leader wire extending from the coil has a structure in which a plurality of conducting wires are bundled using crimp terminals. However, the coil is a segment coil made of a highly rigid rectangular wire, and the leader wire extending from the coil may also be a single rectangular wire.
1…駆動装置、2…モータ、5A…第1ベアリング(ベアリング),5B…第2ベアリング(ベアリング)、6…ハウジング、6D…ウォータジャケット、10A…第1ファン(ファン)、10B…第2ファン(ファン)、11…吸気口、12…吹出口、13…筒部、20…ロータ、21…第1シャフト(シャフト)、21f…鍔部、24a…第1送風孔(送風孔)、24b…第2送風孔(送風孔)、29…レゾルバ(回転検出部)、30…ステータ、31…コイル、31a…第1コイルエンド(コイルエンド)、31b…第2コイルエンド(コイルエンド)、31P…先端部、31Q…基端部、32…ステータコア、32a…コアバック部、32b…ティース部、32d…第1端面、55s,71b…凹部、55A…第1フィン(フィン)、55B…第2フィン(フィン)、66a…第2ベース部、66b…第2保持部、70f…第3フィン、71…第1ベース部(ベース部)、71b…第1傾斜面(傾斜面)、71d…外縁、72…第1保持部(保持部)、72a…端部、93…第3流路部(水路)、93a…入口部、d1…第1距離、d2…第2距離、d3…第3距離、J1…中心軸線、L…流体、TL…延長線 1... Drive device, 2... Motor, 5A... First bearing (bearing), 5B... Second bearing (bearing), 6... Housing, 6D... Water jacket, 10A... First fan (fan), 10B... Second fan (Fan), 11... Intake port, 12... Outlet, 13... Cylindrical part, 20... Rotor, 21... First shaft (shaft), 21f... Flange part, 24a... First blowing hole (air blowing hole), 24b... 2nd blowing hole (air blowing hole), 29... Resolver (rotation detection part), 30... Stator, 31... Coil, 31a... First coil end (coil end), 31b... Second coil end (coil end), 31P... Tip part, 31Q... Base end part, 32... Stator core, 32a... Core back part, 32b... Teeth part, 32d... First end surface, 55s, 71b... Recessed part, 55A... First fin (fin), 55B... Second fin (fin), 66a...second base part, 66b...second holding part, 70f...third fin, 71...first base part (base part), 71b...first slope (slope), 71d...outer edge, 72... First holding part (holding part), 72a... End part, 93... Third flow path part (water channel), 93a... Inlet part, d1... First distance, d2... Second distance, d3... Third distance, J1...center axis line, L...fluid, TL...extension line

Claims (8)

  1.  中心軸線を中心に回転可能なシャフトを有するロータ、および前記ロータと隙間を介して対向するステータを有するモータと、
     前記ロータの軸方向一方側に位置し前記ロータとともに回転する第1ファンと、
     前記シャフトの軸方向一方側の端部に配置され、前記シャフトを回転可能に支持する第1ベアリングと、
     前記モータを収容するハウジングと、を備え、
     前記ロータには、軸方向に貫通する第1送風孔が設けられ、
     前記第1ファンは、
      前記中心軸線を中心とする筒状の筒部と、
      前記筒部の径方向内側に位置し前記第1送風孔に繋がる吸気口と、を有し、
     前記ハウジングは、
      前記モータを軸方向一方側から覆う第1ベース部と、
      前記第1ベース部の軸方向他方側の面から軸方向他方側に突出する筒状の第1保持部と、を有し、
     前記第1ベアリングは前記第1保持部の径方向内側に保持され、
     前記第1保持部は、前記筒部の径方向内側に位置し、
     前記第1保持部と、前記筒部とは、少なくとも一部が軸方向に重なり、
     前記第1ベース部は、軸方向他方側を向き径方向内側に向かうに従い軸方向他方側に傾斜する傾斜面を有する、駆動装置。
    a motor having a rotor having a shaft rotatable around a central axis, and a stator facing the rotor with a gap therebetween;
    a first fan located on one axial side of the rotor and rotating together with the rotor;
    a first bearing that is arranged at one end of the shaft in the axial direction and rotatably supports the shaft;
    a housing that accommodates the motor;
    The rotor is provided with a first ventilation hole that penetrates in the axial direction,
    The first fan is
    a cylindrical tube portion centered on the central axis;
    an intake port located on the radially inner side of the cylindrical portion and connected to the first ventilation hole;
    The housing includes:
    a first base portion that covers the motor from one side in the axial direction;
    a cylindrical first holding portion protruding from the other axial surface of the first base portion toward the other axial side;
    The first bearing is held radially inside the first holding part,
    The first holding part is located inside the cylindrical part in the radial direction,
    The first holding part and the cylindrical part at least partially overlap in the axial direction,
    The first base portion has an inclined surface that faces the other side in the axial direction and slopes toward the other side in the axial direction as it goes radially inward.
  2.  前記ステータは、円環状のステータコアと、前記ステータコアに配置されるコイルと、を有し、
     前記コイルは、前記ステータコアの軸方向一方側の端面から軸方向一方側に突出する第1コイルエンドを有し、
     前記傾斜面の軸方向他方側の端部は、前記第1コイルエンドの軸方向一方側の先端部より軸方向他方側に位置する、請求項1に記載の駆動装置。
    The stator includes an annular stator core and a coil disposed in the stator core,
    The coil has a first coil end that protrudes toward one axial side from an end surface on one axial side of the stator core,
    The drive device according to claim 1, wherein the other end of the inclined surface in the axial direction is located on the other axial side of the tip of the first coil end on the one axial side.
  3.  前記シャフトの外周面には、前記第1ファンの軸方向一方側の面に接触する鍔部が設けられ、
     前記鍔部は、前記第1保持部の軸方向他方側の端部よりも軸方向他方側に配置される、請求項1又は2に記載の駆動装置。
    A collar portion is provided on the outer circumferential surface of the shaft, and the collar portion contacts a surface on one axial side of the first fan;
    The drive device according to claim 1 or 2, wherein the collar portion is arranged on the other axial side of the first holding portion from the other axial end.
  4.  前記鍔部と前記筒部とは、径方向から見て重なる、請求項3に記載の駆動装置。 The drive device according to claim 3, wherein the collar portion and the cylindrical portion overlap when viewed from a radial direction.
  5.  前記ロータの軸方向他方側に位置し前記ロータとともに回転する第2ファンと、
     前記シャフトの軸方向他方側の端部に配置され、前記シャフトを回転可能に支持する第2ベアリングと、を備え、
     前記ロータには、軸方向に貫通する第2送風孔が設けられ、
     前記第2ファンは、軸方向に貫通して前記第2送風孔に繋がる吸気口を有し、
     前記ステータは、環状のステータコアと、前記ステータコアに装着されるコイルと、を有し、
     前記コイルは、
      前記ステータコアの軸方向一方側の端面から軸方向一方側に突出する第1コイルエンドと、
      前記ステータコアの軸方向他方側の端面から軸方向他方側に突出する第2コイルエンドと、を有し、
     前記ハウジングは、
      前記モータを軸方向一方側から覆う第2ベース部と、
      前記第2ベース部の軸方向他方側の面から軸方向他方側に突出し前記第2ベアリングを保持する筒状の第2保持部と、を有し、
     前記第1コイルエンドの軸方向の寸法は、前記第2コイルエンドの軸方向の寸法よりも大きく、
     前記第1ベース部および前記第2ベース部は、それぞれ外縁から径方向内側に向かうに従い前記ロータ側に突出し、
     前記第1ベース部の軸方向の寸法は、前記第2ベース部の軸方向の寸法よりも大きい、請求項1~4の何れか一項に記載の駆動装置。
    a second fan located on the other axial side of the rotor and rotating together with the rotor;
    a second bearing disposed at the other end of the shaft in the axial direction and rotatably supporting the shaft;
    The rotor is provided with a second ventilation hole that penetrates in the axial direction,
    The second fan has an intake port that extends through the second fan in the axial direction and connects to the second ventilation hole,
    The stator includes an annular stator core and a coil attached to the stator core,
    The coil is
    a first coil end protruding from an end surface of the stator core on one axial side;
    a second coil end protruding from the other axial end surface of the stator core toward the other axial side;
    The housing includes:
    a second base portion that covers the motor from one side in the axial direction;
    a cylindrical second holding portion that protrudes from the other axial surface of the second base portion toward the other axial side and holds the second bearing;
    The axial dimension of the first coil end is larger than the axial dimension of the second coil end,
    The first base portion and the second base portion each protrude toward the rotor as they go radially inward from the outer edge,
    The drive device according to any one of claims 1 to 4, wherein an axial dimension of the first base portion is larger than an axial dimension of the second base portion.
  6.  前記ハウジングは、前記ステータを径方向外側から囲む内周面を有し、
     前記内周面には、複数のフィンが設けられる、請求項1~5の何れか一項に記載の駆動装置。
    The housing has an inner circumferential surface surrounding the stator from the outside in a radial direction,
    The drive device according to claim 1, wherein the inner peripheral surface is provided with a plurality of fins.
  7.  複数の前記フィンは、軸方向に沿って延び周方向に沿って並ぶ、請求項6に記載の駆動装置。 The drive device according to claim 6, wherein the plurality of fins extend along the axial direction and are lined up along the circumferential direction.
  8.  前記ロータの回転数を検出する回転検出部を備え、
     前記第1ベース部は、軸方向他方側の面から軸方向一方側に凹む凹部を有し、
     前記回転検出部は、前記凹部の内部に配置される、請求項1~7の何れか一項に記載の駆動装置。
    comprising a rotation detection unit that detects the rotation speed of the rotor,
    The first base portion has a recess that is recessed from the other axial surface to one axial side,
    The drive device according to any one of claims 1 to 7, wherein the rotation detection section is arranged inside the recess.
PCT/JP2022/047299 2022-03-31 2022-12-22 Drive device WO2023188622A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-061149 2022-03-31
JP2022061149 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023188622A1 true WO2023188622A1 (en) 2023-10-05

Family

ID=88200147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047299 WO2023188622A1 (en) 2022-03-31 2022-12-22 Drive device

Country Status (1)

Country Link
WO (1) WO2023188622A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3004612U (en) * 1994-05-25 1994-11-22 国産電機株式会社 Rotating machine rotor
JPH099575A (en) * 1995-06-19 1997-01-10 Hitachi Ltd Rotary electric machine
JPH0993868A (en) * 1995-09-28 1997-04-04 Toyo Electric Mfg Co Ltd Main motor for vehicle
JPH09182372A (en) * 1995-12-25 1997-07-11 Toyo Electric Mfg Co Ltd Main motor for railway car
JP2004312875A (en) * 2003-04-07 2004-11-04 Toshiba Corp Totally-enclosed motor for vehicle drive
JP2011166908A (en) * 2010-02-08 2011-08-25 Toshiba Corp Totally enclosed motor
JP2011254574A (en) * 2010-05-31 2011-12-15 Aisin Seiki Co Ltd Rotor of rotary electric machine
JP2013150441A (en) * 2012-01-19 2013-08-01 Mitsuba Corp Outer rotor type brushless motor
WO2014174721A1 (en) * 2013-04-26 2014-10-30 株式会社 豊田自動織機 Induction machine
JP2020150609A (en) * 2019-03-11 2020-09-17 株式会社デンソー Electric driving device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3004612U (en) * 1994-05-25 1994-11-22 国産電機株式会社 Rotating machine rotor
JPH099575A (en) * 1995-06-19 1997-01-10 Hitachi Ltd Rotary electric machine
JPH0993868A (en) * 1995-09-28 1997-04-04 Toyo Electric Mfg Co Ltd Main motor for vehicle
JPH09182372A (en) * 1995-12-25 1997-07-11 Toyo Electric Mfg Co Ltd Main motor for railway car
JP2004312875A (en) * 2003-04-07 2004-11-04 Toshiba Corp Totally-enclosed motor for vehicle drive
JP2011166908A (en) * 2010-02-08 2011-08-25 Toshiba Corp Totally enclosed motor
JP2011254574A (en) * 2010-05-31 2011-12-15 Aisin Seiki Co Ltd Rotor of rotary electric machine
JP2013150441A (en) * 2012-01-19 2013-08-01 Mitsuba Corp Outer rotor type brushless motor
WO2014174721A1 (en) * 2013-04-26 2014-10-30 株式会社 豊田自動織機 Induction machine
JP2020150609A (en) * 2019-03-11 2020-09-17 株式会社デンソー Electric driving device

Similar Documents

Publication Publication Date Title
US8154158B2 (en) Cooling an electrical machine
US7466053B1 (en) Dual-rotor electric traction motor
JP5625565B2 (en) Rotating machine and vehicle
JP4800847B2 (en) Fully closed liquid-cooled electric motor
JP6952887B2 (en) Electric drive system
US9450473B2 (en) Motor for vehicle and railway vehicle
JP7157135B2 (en) In-wheel electric motor with cooling system
US11973398B2 (en) Electric motor cooling system and method for operation of said system
JP2008125330A (en) Cooling structure for rotor, and method of manufacturing the rotor
US20090206688A1 (en) Cooling structure for stator
JP5534934B2 (en) In-wheel motor cooling structure
JP2008125172A (en) Driving device for vehicle
JP2020054066A (en) vehicle
WO2023188622A1 (en) Drive device
WO2023188620A1 (en) Drive device
US10978930B2 (en) Sleeve and shaft for an electrical machine
US20230090548A1 (en) Drive apparatus
JP2021045988A (en) Electric device in wheel
JP2021045988A5 (en)
WO2024070228A1 (en) Drive device
US20200195084A1 (en) Meandering coolant channels with varying widths in a multi-section motor housing
WO2023162442A1 (en) Drive device
WO2024042797A1 (en) Drive device
WO2023188619A1 (en) Drive device and method for manufacturing drive device
KR101412591B1 (en) Electric motor and electric vehicle having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935748

Country of ref document: EP

Kind code of ref document: A1