WO2023188534A1 - 半導体レーザ装置 - Google Patents

半導体レーザ装置 Download PDF

Info

Publication number
WO2023188534A1
WO2023188534A1 PCT/JP2022/043314 JP2022043314W WO2023188534A1 WO 2023188534 A1 WO2023188534 A1 WO 2023188534A1 JP 2022043314 W JP2022043314 W JP 2022043314W WO 2023188534 A1 WO2023188534 A1 WO 2023188534A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
gas
optical component
exhaust
intake port
Prior art date
Application number
PCT/JP2022/043314
Other languages
English (en)
French (fr)
Inventor
謙司 瀧
昌浩 多田
啓 大野
光起 菱田
明彦 石橋
Original Assignee
パナソニックホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックホールディングス株式会社 filed Critical パナソニックホールディングス株式会社
Publication of WO2023188534A1 publication Critical patent/WO2023188534A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02218Material of the housings; Filling of the housings
    • H01S5/0222Gas-filled housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30

Definitions

  • the present disclosure relates to a semiconductor laser device.
  • This type of laser device is capable of emitting high-power laser light and has a semiconductor laser element as a light source.
  • Patent Documents 1 to 3 propose techniques for improving the above-mentioned problems with deposits.
  • Patent Document 3 discloses that a gas is sprayed onto a laser beam emitting end face of a semiconductor laser element to suppress the adhesion of contaminants and further the accumulation of deposits.
  • a semiconductor laser device includes: at least one laser element that emits laser light; an accommodating part that accommodates the at least one laser element therein; a gas supply unit that supplies gas from outside the storage unit; a gas exhaust part that exhausts gas inside the housing part to the outside of the housing part; Equipped with The gas supply unit has at least one first intake port that supplies gas from a vertically lower side toward a space on a laser beam emission side around the at least one laser element, The gas exhaust section has at least one first exhaust port disposed at a position facing the at least one first intake port in the vertical direction.
  • FIG. 1 is a perspective view of a semiconductor laser device according to a first embodiment, and is a transparent view showing the inside of the semiconductor laser device.
  • FIG. 2 is a schematic side view showing the inside of the semiconductor laser device according to the first embodiment.
  • FIG. 3 is a schematic side view showing the inside of the semiconductor laser device according to the second embodiment.
  • FIG. 4 is a schematic side view showing the inside of the semiconductor laser device according to the third embodiment.
  • FIG. 5 is a schematic side view showing the inside of the semiconductor laser device according to the fourth embodiment.
  • FIG. 6 is a schematic side view showing the inside of the semiconductor laser device according to the fifth embodiment.
  • FIG. 7 is a schematic plan view showing the inside of the semiconductor laser device according to the fifth embodiment.
  • FIG. 1 is a perspective view of a semiconductor laser device according to a first embodiment, and is a transparent view showing the inside of the semiconductor laser device.
  • FIG. 2 is a schematic side view showing the inside of the semiconductor laser device according to the first embodiment.
  • FIG. 3
  • FIG. 8 is a schematic side view showing the inside of the semiconductor laser device according to the sixth embodiment.
  • FIG. 9 is a schematic side view showing the inside of a semiconductor laser device according to Modification Example 1.
  • FIG. 10 is a schematic side view showing the inside of a semiconductor laser device according to Modification Example 2.
  • FIG. 11 is a diagram showing the fluid analysis results, and is a graph showing the position dependence of the volume fraction of the blown gas.
  • FIG. 12 is a graph showing the relationship between the volume fraction of the blown gas, the position of the blowing port, and the gas flow rate.
  • Patent Document 3 gas is blown onto the laser beam emitting end face of a semiconductor laser element to suppress the accumulation of deposits.
  • laser light emission side space In the space on the laser light emission side (hereinafter referred to as "laser light emission side space"), an upward air current is generated due to heat generation of the semiconductor laser element due to laser oscillation.
  • the blown gas may be blocked by the rising air current and may not be able to exert the desired suppressing effect. Therefore, in order to suppress the accumulation of deposits, a certain amount of spraying is required.
  • the positional relationship between the exhaust port of the blown gas and the blowing port of the blown gas is not considered.
  • contaminants cannot be smoothly exhausted to the outside of the laser device by the blown gas, and the arrangement is such that gas tends to stagnate inside the laser device.
  • deposits will accumulate on the semiconductor laser element and other optical components in the laser device due to the retention of this gas.
  • the inventors conducted fluid analysis regarding the effect of blowing dry gas on a semiconductor laser device having a multi-emitter structure. This fluid analysis was carried out using a semiconductor laser device as a model in which a blowing port was provided above the central part of the space on the laser light output side of the semiconductor laser element. As a result, it was found that the gas diffused from the blowing port, and the volume distribution of the gas became smaller as the distance from the center of the emission end surface increased in the space on the laser light emission side of the semiconductor laser element.
  • FIG. 11 is a graph showing the fluid analysis results, and shows the position dependence of the volume fraction of the blown gas.
  • the vertical axis in FIG. 11 indicates the volume fraction of the blown gas, and the horizontal axis indicates the position in the arrangement direction of the emitters included in the semiconductor laser element. Note that the center position means the center position of the laser light emitting end face of the semiconductor laser element.
  • the volume fraction of the gas decreased as it moved away from the center, and the influence of the blown gas was relatively small at the ends. Furthermore, it has been found that the distribution of the volume fraction with respect to the center position becomes asymmetric depending on the position of the exhaust port of the laser device.
  • the inventors determined that the volume fraction of the blown gas is determined by the height of the blowing port (i.e., the distance between the laser beam emitting end face and the blowing port), the gas flow rate, and the upward airflow caused by the heat generated by the semiconductor laser element. I thought it would be influenced by.
  • FIG. 12 is a graph showing the relationship between the volume fraction of the blown gas, the position of the blowing port, and the gas flow rate.
  • the horizontal axis represents the position of the nozzle (height from the laser beam emitting end face), and the vertical axis represents the volume fraction of the blown gas, and the volume fraction with respect to the position of the nozzle is shown.
  • the rate is plotted.
  • the analysis results are shown by a dashed-dotted line L1, a broken line L2, and a solid line L3 in descending order of gas flow rate.
  • An object of the present disclosure is to provide a highly reliable semiconductor laser device that can suppress the accumulation of deposits derived from contaminants without deteriorating the optical characteristics of laser light.
  • FIG. 1 is a perspective view of a semiconductor laser device 100 according to a first embodiment, and shows the inside of the semiconductor laser device 100 as seen through.
  • FIG. 2 is a schematic side view showing the inside of the semiconductor laser device 100.
  • the thick black arrows in FIG. 2 indicate rising air currents due to heat generation in each element or component, and the white arrows indicate the flow of supply gas or exhaust gas.
  • the rising air current accompanying heat generation of each element or component may be simply referred to as "rising air current.”
  • the semiconductor laser device 100 is, for example, an external resonance type laser processing device that combines a plurality of laser beams 1 and outputs the synthesized laser beams to the outside.
  • the semiconductor laser device 100 includes a housing section 110, a laser module 101, an optical component 104, a gas supply section 120, and a gas exhaust section 130.
  • the housing section 110 is a hollow body that houses the laser element 102 and the optical component 104, and is, for example, a housing.
  • the internal space of the housing part 110 is surrounded by four side surfaces including a side surface 111 on the positive side in the Y-axis direction along the ZX plane (a vertical plane along the traveling direction of the laser beam 1), a top surface 112, and a bottom surface 113.
  • a mounting board on which the laser element 102 and the optical component 104 are mounted is arranged on the side surface 111.
  • the bottom surface 113 is provided with a first intake port 121 and a second intake port 122
  • the top surface 112 is provided with a first exhaust port 131 and a second exhaust port 132.
  • the semiconductor laser device 100 is used in a state where a line connecting opposing intake ports and exhaust ports is arranged along the Z-axis direction.
  • the internal space of the accommodating part 110 is, for example, filled with the atmosphere and contains at least one of oxygen, hydrogen, nitrogen, argon, and halogen gas. Note that the internal space may be filled with dry air from which moisture has been removed from the atmosphere.
  • the laser module 101 includes a semiconductor laser element (hereinafter sometimes simply referred to as a "laser element") 102, an optical component within the module 103, and the like.
  • a semiconductor laser element hereinafter sometimes simply referred to as a "laser element”
  • the laser element 102 is, for example, a semiconductor laser array in which a plurality of emitters are formed. Laser light 1 is emitted from each emitter.
  • the laser element 102 is a nitride-based semiconductor laser element, and emits laser light in a wavelength band of 500 nm or less (from blue to ultraviolet band).
  • the in-module optical component 103 is arranged on the emission side of the laser beam 1 of the laser element 102, and is connected to the laser element 102 via a block or adhesive (not shown).
  • the in-module optical component 103 has the functions of collimating the laser beam 1 into parallel light, rotating the cross-sectional shape of the laser beam 1 in a plane perpendicular to the propagation direction of the laser beam 1, and separating the laser beams.
  • the intra-module optical component 103 is, for example, a beam twister unit composed of a plurality of lenses.
  • the laser module 101 includes a base material on which the laser element 102 is mounted, a plurality of electrodes for flowing current to the semiconductor laser element 102, a cooling block for cooling the laser element 102, and the like. .
  • the optical component 104 is a component into which the plurality of laser beams 1 emitted from the laser module 101 enter during the process of being emitted to the outside of the semiconductor laser device 100.
  • the optical component 104 is a component with high energy density, such as an external resonant mirror.
  • the external resonant mirror is a component onto which the laser beam 1 after being focused on the diffraction grating is incident.
  • the optical component 104 is shown as an optical component in FIGS. 1 and 2, in the semiconductor laser device 100, apart from the optical component 104, there is another optical component that emits more laser light 1 than the optical component 104. It may be arranged on the upstream side in the traveling direction.
  • the other optical component is a diffraction grating or the like.
  • the gas supply unit 120 has a first intake port 121 and a second intake port 122, and jets gas vertically upward (positive side in the Z-axis direction) toward a specific portion inside the storage unit 110.
  • a gas supply pump is connected to the first intake port 121 and the second intake port 122, for example, via piping, and the gas sent out from the gas supply pump flows through the first intake port 121 and the second intake port 122.
  • the liquid is supplied to the inside of the housing section 110 through the medium.
  • the gas to be supplied (hereinafter sometimes referred to as "supply gas") is, for example, dry air from which moisture has been removed from the atmosphere, that is, a gas containing nitrogen and oxygen.
  • the supply gas may be any gas containing at least one of nitrogen, hydrogen, helium, argon, halogen gas, and halogen compound gas in addition to oxygen.
  • first intake ports 121 are arranged on the bottom surface 113 of the housing section 110, corresponding to the laser element 102 and the optical component 103 in the module, respectively.
  • the first intake ports 121 are provided in the bottom surface 113 of the housing part 110 in the area below the laser beam emission side space of the laser element 102 and the laser beam emission side space of the intra-module optical component 103 in the vertical direction, respectively.
  • gas is supplied from the lower side in the vertical direction toward the laser beam output side space of the laser element 102 and the laser beam output side space of the intra-module optical component 103.
  • “partially provided” means that the intake port is provided as a hole with a relatively narrow area.
  • the laser beam emitting side space may be simply referred to as "emitting side space.”
  • two second air intake ports 122 are arranged on the bottom surface 113 of the housing portion 110 in correspondence with the optical components 104. Specifically, on the bottom surface 113 of the accommodating portion 110 , they are partially provided in regions below the laser beam incident side space and the laser beam output side space of the optical component 104 in the vertical direction. Therefore, gas is supplied from the vertically lower side toward the laser light incident side space and the laser light output side space of the optical component 104. Note that in the following description, the space on the laser beam incidence side may be simply referred to as the "incidence side space.”
  • the gas exhaust section 130 has a first exhaust port 131 and a second exhaust port 132, and exhausts the gas inside the housing section 110.
  • piping is connected to the first exhaust port 131 and the second exhaust port 132.
  • a configuration may be adopted in which a gas exhaust pump is connected to the piping to forcibly suck up the gas in the housing section 110.
  • first exhaust ports 131 are arranged on the top surface 112 of the housing section 110.
  • the first exhaust port 131 is provided at a position facing the first intake port 121 in the Z-axis direction. More specifically, one first exhaust port 131 is provided so as to be connected to the opposing first intake port 121 in a straight line via the emission side space of the laser element 102 . Further, the other first exhaust port 131 is provided so as to be connected to the opposing first intake port 121 in a straight line via the exit side space of the optical component 103 in the module.
  • two second exhaust ports 132 are arranged on the top surface 112 of the housing section 110.
  • the second exhaust port 132 is provided at a position facing the second intake port 122 in the Z-axis direction. More specifically, one second exhaust port 132 is provided so as to be connected to the opposing second intake port 122 in a straight line via the incident side space of the optical component 104 . The other second exhaust port 132 is provided so as to be connected to the opposing second intake port 122 in a straight line via the exit side space of the optical component 104 .
  • Contaminants contained in the gas in the internal space are decomposed by the laser beam 1, and the contaminants are distributed to the emission end face 102a of the laser element 102, the input end face and the output end face of the optical component 103 and the optical component 104 in the module. It adheres to the surface, undergoes a chemical change, and is deposited as a deposit.
  • the contaminant is, for example, siloxane, and the deposit is, for example, a Si organic compound or a hydrocarbon compound.
  • rising air currents are generated as each element and component generates heat at positions corresponding to the emission side space of the laser element 102, the in-module optical component 103, and the incident side space and output side space of the optical component 104, respectively. .
  • the gas introduced into the housing section 110 to suppress the accumulation of deposits is exhausted to the outside of the housing section 110 so as not to be obstructed by the upward air current. ing.
  • the intake ports 121, 122 and the exhaust ports 131, 132 are arranged to face each other in the vertical direction. Therefore, when the gas introduced by the gas supply section 120 passes through the emission side space of the laser element 102, the gas is smoothly exhausted from the exhaust port without being hindered by the rising air current. Therefore, deposition of deposits can be effectively suppressed.
  • the second intake port 122 and the second exhaust port 132 may be provided at a position on the bottom surface 113 and the top surface 112 that corresponds to at least one of the entrance side space and the exit side space of the optical component 104.
  • the second intake port 122 and the second exhaust port 132 are provided on the vertically lower side and the vertically upper side, respectively, of the end face side space where deposits tend to accumulate, of the incident end face and the output end face of the optical component 104. It's okay.
  • the semiconductor laser device 100 includes the laser element 102 that emits the laser beam 1, the accommodating part 110 that accommodates the laser element 102, and the It includes a gas supply section 120 that supplies gas, and a gas exhaust section 130 that exhausts gas inside the accommodation section 110 to the outside of the accommodation section 110.
  • the gas supply unit 120 has a first intake port 121 that supplies gas from the lower side in the vertical direction toward the space around the laser element 102 on the emission side of the laser beam 1 .
  • the gas exhaust section 130 has a first exhaust port 131 located at a position facing the first intake port 121 in the vertical direction.
  • the gas supplied from the vertically lower side to the emission side space of the laser element 102 via the first intake port 121 flows in a substantially straight line along the vertical direction to the first exhaust port 131 and is exhausted.
  • the gas flow is not obstructed by the rising air current caused by the heat generated by the gas 102.
  • the laser module and optical components will not vibrate due to the gas flow.
  • the accumulation of deposits can be suppressed without deteriorating the optical characteristics of the laser beam 1, and the reliability of the semiconductor laser device 100 is significantly improved.
  • the first intake port 121 and the first exhaust port 131 are provided in the housing portion 110.
  • the first intake port 121 is partially provided in the lower vertical region of the housing portion 110 corresponding to the emission side space of the laser element 102.
  • the area of the first intake port 121 is small compared to the case where the first intake port 121 is provided with a relatively large area such as a long hole shape extending in the traveling direction of the laser beam 1, the strength during gas supply is reduced. (Gas flow rate) becomes easier to secure above a certain level. Therefore, it is easy to keep contaminants away from the emission side space of the laser element 102. Furthermore, since the gas can be locally supplied to a specific position, it is possible to prevent the supply gas from colliding with each other and causing vibrations in the optical components 103 and the like within the module.
  • the semiconductor laser device 100 includes an optical component 104 through which the laser beam 1 passes.
  • the gas supply unit 120 has a second intake port 122 that supplies gas toward at least one of the entrance side space and the exit side space of the optical component 104 from the lower side in the vertical direction.
  • the gas exhaust section 130 has a second exhaust port 132 arranged at a position facing the second intake port 122 in the vertical direction.
  • the gas supplied to at least one of the incident side space and the incident side space of the optical component 104 from the vertically lower side via the second intake port 122 flows almost in a straight line along the vertical direction to the second intake port 122. It flows and is exhausted. Further, the gas flow is not obstructed by the rising air current caused by the heat generated by the optical component 104. Therefore, deposition of deposits on the optical component 104 can be suppressed. In addition, not only the contaminants generated around the laser element 102 but also the contaminants generated around the optical component 104 are smoothly exhausted, so that the accumulation of deposits on the emission end face 102a of the laser element 102 can be more effectively eliminated. can be suppressed to
  • the laser element 102 has a plurality of emitters that emit laser beams 1, and the plurality of laser beams 1 from the plurality of emitters are focused on the optical component 104.
  • the optical component 104 is a diffraction grating or an external resonant mirror on which a plurality of laser beams are focused, the energy density of the laser beam 1 becomes high in the optical component 104, so the amount of heat generated is large, and the optical component Deposits tend to accumulate on the incident end face and the outgoing end face of 104.
  • the optical component 104 is a diffraction grating or an external resonant mirror, the effect of suppressing the deposition of deposits on the optical component 104 is significant.
  • the wavelength of the laser beam 1 is 500 nm or less.
  • Siloxane is easily decomposed by energy in a wavelength range of 500 nm or less. Therefore, when the laser element 102 emits the laser beam 1 having a wavelength of 500 nm or less, a SiO x film caused by siloxane is likely to be generated on the emission end face of each element.
  • the laser element 102 is an element that emits the laser beam 1 having a wavelength of 500 nm or less, the effects of this embodiment are greatly beneficial.
  • a gas supply pipe may be arranged inside the housing section 110, and the first intake port 121 may be provided on the gas supply pipe. good.
  • first intake ports 121 and two second intake ports 122 are each provided, but three or more each may be provided.
  • first intake port 121 and one second intake port 122 may be provided.
  • the first intake port 121 is provided as a relatively large hole in a region of the bottom surface 113 extending from the vertically lower side of the emission side space of the laser element 102 to the vertically lower side of the emission side space of the optical component 103 in the module. You can leave it there.
  • the second air intake port 122 may be provided as a relatively large hole in a region of the bottom surface 113 extending from the vertically lower side of the incident side space of the optical component 104 to the vertically lower side of the output side space.
  • first exhaust port 131 and the second exhaust port 132 are also provided as relatively large holes so as to correspond to the first intake port 121 and the second intake port 122, which are formed as relatively large holes. Good too.
  • the second intake port 122 and the second exhaust port 132 may be provided not only for the optical component 104 but also for other optical components described above.
  • FIG. 3 is a schematic side view showing the inside of a semiconductor laser device 200 according to the second embodiment.
  • the semiconductor laser device 200 is, for example, an external resonance type laser processing device that combines a plurality of laser beams 1 from a plurality of laser modules 101 and outputs the synthesized laser beams to the outside.
  • the semiconductor laser device 200 includes a plurality of laser modules 101 and a plurality of optical components 105.
  • a diffraction grating is arranged on the positive side of the optical component 105 in the X-axis direction (downstream side in the traveling direction of the laser beam 1).
  • the diffraction grating is an element on which the laser beam 1 is focused after passing through the optical component 105.
  • components corresponding to the optical component 104 according to the first embodiment such as an external resonant mirror, are arranged.
  • the external resonant mirror is an element into which the laser beam 1 focused on the diffraction grating is incident.
  • the laser module 101 has the same laser element as the first embodiment.
  • the plurality of laser modules 101 are arranged along the side surface 111 so as not to overlap in the Z-axis direction and the X-axis direction.
  • adjacent laser modules 101 are spaced apart from each other by a predetermined distance to allow gas flow to pass therethrough. Therefore, the upward airflow and the flow of gas supplied from the first intake port 121 are less likely to be obstructed by the laser module 101 on the side closer to the top surface 112.
  • the three laser modules 101 are arranged closer to the top surface 112 on the positive side in the X-axis direction. Note that the plurality of laser modules 101 may be arranged closer to the top surface 112 on the negative side in the X-axis direction.
  • the optical component 105 is placed on the negative side of the diffraction grating in the X-axis direction.
  • the optical component 105 is, for example, a FAC (Fact Axis Collimation) lens that collimates the laser beam 1 in the fast direction.
  • FAC Fract Axis Collimation
  • three optical components 105 are provided corresponding to each of the three laser modules 101, and are arranged offset along the side surface 111 so as not to overlap in the Z-axis direction and the X-axis direction. . Similar to the laser module 101, adjacent optical components 105 are spaced apart from each other by a predetermined distance in the X-axis direction so that a gas flow can pass therethrough. Therefore, the upward airflow caused by heat generation of the optical component 105 and the flow of gas supplied from the second intake port 122 are less likely to be obstructed by the optical component 105 on the side closer to the top surface 112.
  • three first intake ports 121 are provided on the bottom surface of the housing section 110, corresponding to each of the three laser modules 101. Specifically, the first intake ports 121 are partially provided in the bottom surface 113 of the accommodating portion 110 in a region below the emission side space of the laser module 101 in the vertical direction. Therefore, gas is supplied toward the emission side space of the laser module 101 from the vertically lower side.
  • one first intake port 121 is provided for a set of the laser element 102 and the optical component 103 in the module, that is, one laser module 101.
  • the gas supplied from the first intake port 121 is supplied at least toward the emission side space of the corresponding laser element 102 .
  • the first intake port 121 may be provided corresponding to each of the laser element 102 and the in-module optical component 103 that constitute the laser module 101.
  • three second air intake ports 122 are arranged on the bottom surface 113 of the housing portion 110, corresponding to each of the three optical components 105.
  • the second intake ports 122 are partially provided in the bottom surface 113 of the accommodating portion 110 in a region below the incident side space of the laser module 101 in the vertical direction. Therefore, gas is supplied toward the incident side space of the optical component 105 from the vertically lower side.
  • three first exhaust ports 131 are arranged on the top surface 112 of the housing portion 110 in correspondence to the three first intake ports 121. Specifically, the first exhaust ports 131 are provided at positions facing the first intake ports 121 in the Z-axis direction. More specifically, the first exhaust port 131 is provided so as to be connected to the opposing first intake port 121 in a straight line via the emission side space of the laser module 101 .
  • the gas introduced into the accommodation section 110 to suppress the accumulation of deposits passes through the emission side space of each laser module 101 without being obstructed by the rising air current caused by the heat generation of the laser module 101, The air is exhausted to the outside of the section 110.
  • three second exhaust ports 132 are arranged on the top surface 112 of the housing section 110 in correspondence with the three second intake ports 122. Specifically, the second exhaust ports 132 are provided at positions facing the second intake ports 122 in the Z-axis direction. More specifically, the second exhaust port 132 is provided so as to be connected to the opposing second intake port 122 in a straight line via the incident side space of the optical component 105 .
  • the gas introduced into the storage section 110 to suppress the accumulation of deposits passes through the incident side space of each optical component 105 without being obstructed by the upward air current caused by the heat generation of the optical component 105, and the gas is contained in the storage section 110. The air is exhausted to the outside of the section 110.
  • the gas supply unit 120 may have one first intake port 121 in the shape of a long hole with a relatively large area.
  • the elongated hole-shaped first intake port 121 extends from the emission side space of the most positive side laser module 101 to the emission side space of the most negative side laser module 101 in the X-axis direction (progressing direction of the laser beam 1). It exists.
  • the first intake port 121 is provided for each laser module 101, it is easier to ensure the strength of the gas at the time of supply above a certain level, and the gas can be locally supplied to a specific position.
  • the second intake port 122 and the second exhaust port 132 may be provided not only for the optical component 105 but also for optical components such as a diffraction grating and an external resonant mirror. That is, the second intake port 122 may be provided at a position on the bottom surface 113 corresponding to at least one of the entrance side space and the output side space of an optical component such as a diffraction grating and an external resonant mirror. Similarly, the second exhaust port 132 may be provided on the top surface 112 at a position corresponding to at least one of the entrance side space and the exit side space of an optical component such as a diffraction grating and an external resonant mirror.
  • the semiconductor laser device 200 includes a plurality of laser modules 101 including laser elements, and the first intake port 121 and the first exhaust port 131 are connected to the plurality of laser modules 101. It is set up accordingly.
  • the gas introduced into the accommodation section 110 to suppress the accumulation of deposits passes through the laser beam emitting side space of each laser module 101 without being obstructed by the upward airflow near each laser module 101, and the gas enters the accommodation section 110. The air is exhausted to the outside of the section 110.
  • the accumulation of deposits on each laser module 101 can be suppressed without deteriorating the optical characteristics of the laser beam 1, and the reliability of the semiconductor laser device 200 is improved. Much improved.
  • the laser beam 1 emitted from one emitter has energy of about several watts.
  • Semiconductor laser devices for processing are required to output several hundred watts or more of laser light. Therefore, the semiconductor laser device 200 needs to have a plurality of laser modules 101 with a multi-emitter structure and to combine the plurality of laser beams emitted from the plurality of laser modules 101.
  • the housing part 110 has a vertical side surface 111 along the traveling direction of the laser beam 1, and the plurality of laser modules 101 are shifted along the side surface 111 so as not to overlap in the vertical direction and in the traveling direction of the laser beam. It is arranged as follows.
  • the flow of gas supplied from each first intake port 121, passing near each laser module 101, and heading toward each first exhaust port 131 is not obstructed by the adjacent laser module 101. Further, after the supply gas passes through the emission side space of the laser module 101 closest to the first intake port 121, it does not go to the emission side space of the laser module 101 closest to the first exhaust port 131. In this way, contaminants can be prevented from being carried into the emission side space of another laser module 101, so that the deposition rate of deposits on the laser module 101 can be further reduced. As a result, deposition of deposits on the laser module 101 can be further suppressed.
  • the second intake port 122 and the second exhaust port 132 are provided corresponding to the plurality of optical components 105. Therefore, the gas introduced into the housing part 110 to suppress the accumulation of deposits passes through the space on the laser beam incident side of each optical component 105 without being obstructed by the upward airflow near each optical component 105. The air is exhausted to the outside of the housing section 110. Therefore, the accumulation of deposits on each optical component 105 can be further suppressed, and contaminants generated in the vicinity of each optical component 105 can be smoothly exhausted, and the accumulation of deposits on each laser module 101 can be further suppressed. can be suppressed.
  • the second intake port 122 and the second exhaust port 132 are arranged corresponding to optical components such as an external resonant mirror and a diffraction grating.
  • optical components condense a plurality of laser beams 1 emitted from a plurality of laser modules 101, and thus have a high energy density and a large amount of heat generation. That is, contaminants are likely to be generated near the optical component, and deposits are likely to accumulate on the optical component.
  • the laser module 101 has the first intake port 121 and the first exhaust port It may be arranged on a straight line connecting the mouth 131. In this case, the gas supplied from the first intake port 121 bypasses the laser module 101 and heads toward the first exhaust port 131.
  • the laser module 101 may be arranged on a straight line connecting the exhaust port 132. In this case, the gas supplied from the second intake port 122 bypasses the optical components 105 and heads toward the second exhaust port 132.
  • the optical component is It may be arranged on a straight line connecting the second intake port 122 and the second exhaust port 132.
  • the laser module 101 may be arranged such that its emission end face faces the negative side (bottom face 113) in the Z-axis direction.
  • the first intake port 121 and the first exhaust port 131 longer than the laser module 101 in the direction perpendicular to the traveling direction of the laser light emitted from the laser module 101 (X-axis direction)
  • the intake ports 121 and 122 are formed on the side (lower side) in which gravity acts with respect to the laser module 101, and the exhaust ports 131 and 132 are formed at positions corresponding to the intake ports 121 and 122 in the vertical direction. This is because the supply gas is not hindered by the upward airflow caused by heat generation of the laser module 101.
  • the laser module 101 may be arranged such that its emission end face is inclined at a predetermined angle with respect to the YZ plane (a vertical plane perpendicular to the traveling direction of the laser beam 1).
  • the gas supplied from the first intake port 121 is , when it reaches the vicinity of the emission end face of the laser module 101, it bypasses the laser module 101 and heads toward the first exhaust port 131.
  • FIG. 4 is a schematic side view showing the inside of a semiconductor laser device 300 according to the third embodiment.
  • the three laser modules 101 are arranged closer to the top surface 112 on the negative side of the laser beam 1 in the X-axis direction.
  • a gas supply pipe 123 is provided for each of the three laser modules 101.
  • the gas supply pipe 123 is an auxiliary nozzle that supplies gas into the housing section 110.
  • the gas supply pipe 123 is introduced into the housing section 110 from the side surface 119 of the housing section 110.
  • the side surface 119 is a side surface of the housing part 110 on the negative side in the X-axis direction along the YZ plane (a vertical plane perpendicular to the traveling direction of the laser beam 1).
  • the gas supply pipe 123 extends in the X-axis direction within the housing section 110, and the tip end 124 is directed toward the emission side space of the corresponding laser module 101.
  • a first intake port 125 is provided at the distal end portion 124 of the gas supply pipe 123, and gas is supplied to the emission side space of the corresponding laser module 101 via the first intake port 125.
  • a plurality of gas supply pipes 123 do not necessarily have to be provided.
  • the gas supply pipe 123 may have a configuration in which a plurality of tip portions 124 are branched from the pipe main body, and each tip portion 124 may be directed toward the emission side space of the corresponding laser module 101.
  • a plurality of first intake ports 125 may be formed on the circumferential surface of one gas supply pipe 123.
  • the gas supply section 120 has the gas supply pipe 123 that introduces gas into the storage section 110, and the first intake port 125 is provided in the gas supply pipe 123. ing.
  • the plurality of laser modules 101 having the laser elements 102 are arranged so that the higher the vertical direction, the more upstream in the traveling direction of the laser beam 1. Furthermore, the gas supply pipe 123 extends in the traveling direction of the laser beam 1, and the distal end portion 124 of the gas supply pipe 123 is located near the emission side space of the corresponding laser module 101, and the first intake port 125 is provided at the tip portion 124.
  • a gas supply means separate from the first intake port 121 on the bottom surface 113 of the housing portion 110 is provided. Therefore, the amount of gas supplied to the emission side space of the laser module 101 can be increased, and contaminants can be exhausted more efficiently. Further, the plurality of laser modules 101 and gas supply pipes 123 are arranged so as not to impede the flow of gas passing through the emission side space of the laser module 101 toward the first exhaust port 131 and the upward airflow.
  • the plurality of gas supply pipes 123 may be introduced into the housing section 110 from a side other than the side surface 119 of the housing section 110, for example, from a side surface opposite to the side surface 111 on which the mounting board is arranged. Alternatively, it may be introduced into the housing section 110 from the side surface 111. In this case, the distal end portion 124 of the gas supply pipe 123 is located on the negative side of the module 101 in the Z-axis direction, and supplies gas to the negative side of the module 101 in the Z-axis direction.
  • the gas supply pipe 123 may be provided only for one laser module 101.
  • the gas supply pipe 123 may be provided only for the laser module 101 located furthest upstream in the traveling direction of the laser beam 1.
  • the first intake port 121 may not be provided on the bottom surface 113, and gas may be supplied to the emission side space of each laser module 101 only by the gas supply pipe 123.
  • the semiconductor laser device 300 may be separately provided with a gas supply pipe that supplies gas toward at least one of the incident side space and the output side space of each optical component 105.
  • FIG. 5 is a schematic side view showing the inside of a semiconductor laser device 400 according to the fourth embodiment.
  • the accommodating portion 110 is a cylindrical body that does not have a top surface 112 and a bottom surface 113 and whose upper and lower parts are all open.
  • the gas supply section 120 has an intake side hollow body 126, and a first intake port 127 and a second intake port 128 are provided in the upper part of the intake side hollow body 126.
  • the intake-side hollow body 126 is arranged below the housing part 110 in the vertical direction, and its upper part is fitted into the housing part 110. That is, the lower opening of the housing portion 110 is closed by the upper surface of the intake-side hollow body 126.
  • Gas supplied from outside the semiconductor laser device 400 flows into the intake-side hollow body 126.
  • the supplied gas is supplied into the housing part 110 via the first intake port 127 and the second intake port 128.
  • the first intake port 127 extends from the emission side space of the laser module 101 on the most negative side in the X-axis direction to the emission side space of the laser module 101 on the most positive side. Therefore, gas is supplied toward the emission side space of each laser module 101 from the vertically lower side.
  • the second intake port 128 extends from the entrance side space of the optical component 105 on the most negative side in the X-axis direction to the entrance side space of the optical component 105 on the most positive side. Therefore, gas is supplied toward the incident side space of each optical component 105 from the vertically lower side.
  • the first intake port 127 and the second intake port 128 are each a slit portion in which a plurality of slits extending in the Y-axis direction are spaced apart in the X-axis direction. Therefore, since the gas is supplied into the housing part 110 through the narrow-area slit, the gas can be supplied to the emission side space of the laser module 101 and the input side space of the optical component 105 with an intensity above a certain level. Can be done.
  • the gas exhaust section 130 has an exhaust side hollow body 136, and a first exhaust port 137 and a second exhaust port 138 are provided at the lower part of the exhaust side hollow body 136.
  • the exhaust-side hollow body 136 is arranged above the accommodating part 110 in the vertical direction, and its lower part is fitted into the accommodating part 110. In other words, the lower surface of the exhaust-side hollow body 136 closes the upper opening of the housing portion 110 .
  • the gas in the housing part 110 is exhausted into the exhaust side hollow body 136 through the first exhaust port 137 and the second exhaust port 138.
  • the first exhaust port 137 and the second exhaust port 138 are provided in regions facing the first intake port 127 and the second intake port 128, respectively, in the Z-axis direction. More specifically, the first exhaust port 137 extends from the emission side space of the laser module 101 on the most negative side in the X-axis direction to the emission side space of the laser module 101 on the most positive side. Further, the second exhaust port 138 extends from the entrance side space of the optical component 105 on the most negative side in the X-axis direction to the entrance side space of the optical component 105 on the most positive side.
  • the first exhaust port 137 and the second exhaust port 138 are each a slit portion in which a plurality of slits extending in the Y-axis direction are spaced apart in the X-axis direction.
  • first intake port 127 and the second intake port 128 of this embodiment may be disposed between the intake-side hollow body 126 and the accommodating portion 110. Therefore, for example, the housing portion 110 may have a bottom surface, and the first intake port 127 and the second intake port 128 may be provided on the bottom surface. Further, the first exhaust port 137 and the second exhaust port 138 only need to be arranged between the exhaust side hollow body 136 and the accommodating part 110. For example, if the accommodating part 110 has a top surface, A first exhaust port 137 and a second exhaust port 138 may be provided.
  • the inlet may be formed continuously from the first inlet 127 to the second inlet 128.
  • the exhaust port may be formed continuously from the first exhaust port 137 to the second exhaust port 138.
  • the semiconductor laser device 400 may have only one laser module 101 and only one optical component 105.
  • the gas supply section 120 has the intake side hollow body 126 disposed vertically below the housing section 110, and the first intake port 127 is located on the intake side. It is arranged between the hollow body 126 and the housing part 110. Further, the gas exhaust section 130 has an exhaust side hollow body 136 disposed above the accommodation section 110 in the vertical direction, and the first exhaust port 137 is disposed between the accommodation section 110 and the exhaust side hollow body 136. has been done.
  • the gas supplied into the intake-side hollow body 126 from the outside of the semiconductor laser device 400 is supplied into the housing section 110 from the vertically lower side as a wide-ranging airflow in the XY plane.
  • the gas supplied into the housing section 110 is supplied to the emission side space of each laser module 101 and the input side space of each optical component 105, and heads toward the first exhaust port 137 and the second exhaust port 138 almost in a straight line.
  • the structures of the intake system (for example, piping, etc.) of the gas supply section 120 and the exhaust system of the gas exhaust section 130 can be simplified.
  • FIG. 6 is a schematic side view showing the inside of a semiconductor laser device 500 according to the fifth embodiment.
  • FIG. 7 is a schematic plan view showing the inside of a semiconductor laser device 500 according to the fifth embodiment.
  • the accommodating portion 110 has a bottom surface 113 along the XY plane (that is, the horizontal plane).
  • a mounting board on which the laser module 101 and the optical component 105 are mounted is arranged on the bottom surface 113.
  • three laser modules 101 are arranged so as to overlap each other when viewed from the side along the ZX plane (vertical plane along the traveling direction of the laser beam 1). . Further, the three laser modules 101 are arranged shifted in the Y-axis direction so as not to overlap each other in the X-axis direction (see FIG. 7).
  • Three optical components 105 are arranged corresponding to the three laser modules 101. Similar to the laser module 101, the three optical components 105 are arranged so as to overlap each other when viewed from the side along the ZX plane (a vertical plane along the traveling direction of the laser beam 1). Further, the three optical components 105 are arranged shifted in the Y-axis direction so as not to overlap each other in the X-axis direction (see FIG. 7).
  • Three first intake ports 127 are provided on the bottom surface 113 of the accommodating portion 110 in correspondence with the three laser modules 101. Specifically, the first intake port 127 is provided below the emission side space of the corresponding laser module 101 in the vertical direction, and extends in the Y-axis direction (see FIG. 7). Therefore, gas is supplied from the intake-side hollow body 126 to the emission-side space of each laser module 101 via each first intake port 127 .
  • three second air intake ports 128 are provided on the bottom surface 113 of the housing portion 110, corresponding to the three optical components 105. Specifically, the second air intake port 128 is provided below the exit side space of the corresponding optical component 105 in the vertical direction, and extends in the Y-axis direction (see FIG. 7). Therefore, gas is supplied from the intake-side hollow body 126 to the exit-side space of each optical component 105 via each first intake port 127 .
  • the first intake port 127 and the second intake port 128 are each a slit portion in which a plurality of slits extending in the X-axis direction are spaced apart in the Y-axis direction.
  • the emission side space of each laser module 101 and the emission side space of each optical component 105 are It is easy to ensure that the strength of the gas supplied to the side space is above a certain level, and the gas can be locally supplied to a specific position. Therefore, pollutants can be exhausted more efficiently than in the fourth embodiment.
  • Three first exhaust ports 137 are arranged on the top surface 112 of the housing portion 110 in correspondence with the three first intake ports 127.
  • the first exhaust port 137 is provided for each first intake port 127 at a position facing the first intake port 127 in the Z-axis direction, and extends in the Y-axis direction. Therefore, contaminants generated in the emission side space of each laser module 101 are exhausted to the exhaust side hollow body 136 via each first exhaust port 137.
  • three second exhaust ports 138 are arranged on the top surface 112 of the housing portion 110 in correspondence with the three second air intake ports 128.
  • the second exhaust port 138 is provided for each second intake port 128 at a position facing the second intake port 128 in the Z-axis direction, and extends in the Y-axis direction. Therefore, contaminants generated in the output side space of each optical component 105 are exhausted to the exhaust side hollow body 136 via each second exhaust port 138.
  • the first exhaust port 137 and the second exhaust port 138 are each a slit portion in which a plurality of slits extending in the X-axis direction are spaced apart in the Y-axis direction.
  • the housing section 110 has a horizontal bottom surface 113, and the plurality of laser modules 101 are arranged on the bottom surface 113 in the traveling direction (X-axis direction) of the laser beam 1. They are arranged shifted in the Y-axis direction so as not to overlap.
  • the semiconductor laser device 500 may include only one laser module 101 and only one optical component 105.
  • FIG. 8 is a schematic side view showing the inside of a semiconductor laser device 600 according to the sixth embodiment. Note that the semiconductor laser device 600 in FIG. 8 employs a method in which a cooling water channel is introduced from the bottom surface of the laser module 101.
  • an intake side hollow body 626a On the lower side of the bottom surface 113, an intake side hollow body 626a, an intake side hollow body 626b, and an element cooling block 650 are arranged.
  • the gas supply section 120 has an intake-side hollow body 626a and an intake-side hollow body 626b that are smaller than those in the fifth embodiment.
  • the intake-side hollow body 626a and the intake-side hollow body 626b are arranged below the bottom surface 113.
  • the intake side hollow body 626a is arranged vertically below the emission side space of the laser module 101, and extends from the emission side space of the most positive side laser module 101 to the most negative side laser module 101 in the Y-axis direction. It extends to the exit side space. Therefore, gas is supplied from the intake side hollow body 626a to the emission side space of each laser module 101 via each first intake port 127.
  • the intake side hollow body 626b is arranged vertically below the output side space of the optical component 105, and extends from the output side space of the most positive side optical component 105 to the most negative side optical component 105 in the Y-axis direction. It extends to the exit side space. Therefore, gas is supplied from the intake side hollow body 626b to the output side space of each optical component 105 via each second intake port 128.
  • the element cooling block 650 is a block that constitutes a water-cooled cooling system.
  • the element cooling block 650 is disposed below the bottom surface 113 and directly below the plurality of laser modules 101 in the vertical direction. Since the element cooling block 650 is in contact with the bottom surface 113, it is possible to cool the plurality of laser modules 101 via the bottom surface 113.
  • an active cooling method or a passive cooling method may be employed as the cooling system.
  • the active cooling method is a cooling method in which a water channel is formed within the laser module 101.
  • the passive cooling method is a cooling method in which no water channel is formed within the laser module 101.
  • the semiconductor laser device 600 may have support blocks 660 and 670.
  • the support block 660 is arranged between the intake side hollow body 626a and the intake side hollow body 626b.
  • the support block 670 is arranged on the positive side of the intake-side hollow body 626b in the X-axis direction.
  • the housing portion 110 is supported by support blocks 660 and 670.
  • the semiconductor laser device 600 also includes an element cooling block 650.
  • the element cooling block 650 is disposed on the lower side of the housing section 110 in the vertical direction and at a position different from the first intake port 127, and cools the plurality of laser modules 101 via the bottom surface 113.
  • gas can be effectively supplied into the housing section 110 while cooling the plurality of laser modules 101 in a relatively narrow space. Therefore, it is possible to suppress the accumulation of deposits without deteriorating the optical characteristics of the laser beam 1 to the plurality of laser modules 101, and the reliability of the semiconductor laser device 100 is significantly improved.
  • laser module 101 can be cooled.
  • the water channel of the cooling system may be introduced into the interior of the housing section 110 from the side surface 119 of the housing section 110.
  • the side surface 119 is a surface on the negative side in the X-axis direction along the YZ plane.
  • FIG. 9 is a schematic side view showing the inside of a laser device 700 according to Modification 1.
  • the housing section 110 of the laser device 700 has a plurality of internal spaces S1 and S2. Three laser modules 101 are arranged in the internal space S1 so as not to overlap in the Z-axis direction and the X-axis direction.
  • Each laser module 101 emits laser light 1.
  • the plurality of laser beams 1 are condensed by a condensing element such as a diffraction grating (not shown).
  • the light generated by condensing the plurality of laser beams 1 is the condensed laser beam LC.
  • three first intake ports 121 are provided on the bottom surface 113 of the housing section 110, corresponding to each of the three laser modules 101. Additionally, three first exhaust ports 131 are arranged on the top surface 112 of the housing portion 110 in correspondence with the three first intake ports 121 .
  • an optical component 501 is arranged in the internal space S1.
  • the optical component 501 is an optical component through which the condensed laser beam LC passes.
  • an optical component 502 may be placed on a wall that partitions the interior space S1 and the interior space S2.
  • the optical component 502 is an optical component that guides the focused laser beam LC into the internal space S2.
  • optical components 503, 504, and 505 are arranged in the internal space S2.
  • the condensed laser beam LC has its traveling direction changed by an optical component 503, passes through an optical component 504, and is further changed in its traveling direction by an optical component 505.
  • the focused laser beam LC may be output to the outside of the housing section 110 by an optical component 506 provided on the positive side surface of the housing section 110 in the X-axis direction.
  • the accommodating part 110 has the internal spaces S1 and S2, the optical components 501, 503 to 505 arranged in each internal space, and the optical components arranged at the boundary of the internal spaces S1 and S2. 502, the second intake port 122 and the second exhaust port 132 are arranged on the bottom surface 113 and the top surface 112.
  • the second intake port 122 is arranged on the vertically lower side of the space on the incident end face side and the space on the output end face side of the optical component 501, and the second exhaust port 132 is arranged on the vertically upper side. Similarly, the second air intake port 122 is arranged vertically below the space on the incident end face side and the space on the exit end face side of the optical component 502, and the second exhaust port 132 is arranged above the space in the vertical direction.
  • a second intake port 122 and a second exhaust port 132 are arranged vertically below and above the optical components 503 to 505, respectively.
  • the gas supplied from the two second intake ports 122 bypasses the optical component 503 and is supplied to the space on the reflective end surface side of the optical component 503.
  • the gas passes through the space on the incident end surface side of the optical component 504, detours around the optical component 504, and reaches the space on the output end surface side of the optical component 504.
  • the gas then reaches the space on the reflective end surface side of the optical component 505, bypasses the optical component 505, heads toward the two second exhaust ports 132, and is exhausted to the outside of the housing section 110 from the two second exhaust ports 132. be done.
  • a plurality of second intake ports 122 and a plurality of second exhaust ports 132 are provided for each of the optical components 503 to 505.
  • the optical components 503 to 505 instead of the plurality of second intake ports 122, one intake port 122 extending in the X-axis direction is provided, and instead of the plurality of second exhaust ports 132, one One second exhaust port 132 extending in the axial direction may be provided.
  • the second intake port 122 and the second exhaust port 132 are arranged such that the length of the second intake port 122 and the second exhaust port 132 in the X-axis direction is longer than the length of the projected portion of the optical components 503 to 505 with respect to the X-axis. It is sufficient if the second exhaust port 132 is formed.
  • FIG. 10 is a schematic side view showing the inside of a semiconductor laser device 800 according to Modification Example 2.
  • FIG. 10 is a schematic side view showing the inside of a semiconductor laser device 800 according to Modification Example 2.
  • each laser module 101 is arranged such that the laser light emitting end face 101a is inclined with respect to a vertical plane (YZ plane). That is, in the semiconductor laser device 800, the laser beam 1 is emitted in a direction inclined at a predetermined angle with respect to the X-axis direction.
  • the gas supply section 120 has an intake side hollow body 126, and a first intake port 127 is provided at the upper part of the intake side hollow body 126.
  • the gas exhaust section 130 has an exhaust side hollow body 136, and a first exhaust port 137 is provided at the lower part of the exhaust side hollow body 136.
  • the first intake port 127 and the first exhaust port 137 extend in the X-axis direction to the extent that they cover at least the projected portions of the three laser modules 101 with respect to the X-axis.
  • the gas supply section 120 has a gas supply pipe 123. That is, in the second modification, gas is supplied to each laser module 101 not only from the first intake port 127 but also from the gas supply pipe 123.
  • the gas supply section 120 has three gas supply pipes 123 corresponding to the three laser modules 101.
  • Each gas supply pipe 123 supplies gas from the first intake port 125 of its tip 124 toward the space on the emission end surface 101a side of the laser module 101.
  • the tip portion 124 extends parallel to the output end surface 101a, and the gas supplied from the gas supply pipe 123 is supplied so as to flow parallel to the output end surface 101a. Good too.
  • the emission end surface 101a of the laser module 101 is arranged so as to be inclined with respect to the vertical plane (YZ plane), the first intake port 127 and the second exhaust port 138 By arranging them below and above the laser module 101 in the vertical direction, the accumulation of deposits on the laser module 101 can be suppressed.
  • the semiconductor laser device 800 can further suppress the accumulation of deposits on the laser module 101.
  • the semiconductor laser device 800 does not need to have the intake side hollow body 126 and the exhaust side hollow body 136. Instead, the first intake port 121 and the first exhaust port 131 may be provided as elongated holes extending in the X-axis direction on the bottom and top surfaces of the accommodating portion 110 of the semiconductor laser device 800.
  • the second intake port 122 and the second exhaust port 132 are arranged vertically above and below at least one of the entrance side space and the exit side space of the optical component 105, respectively. All you have to do is stay there.
  • the second intake port 122 and the second exhaust port 132 may be arranged vertically above and below, respectively, the space on the end surface where deposits tend to accumulate, of the entrance end surface and the exit end surface of the optical component 105. good.
  • optical components such as a diffraction grating on which the laser beam 1 is focused and an external resonant mirror may be provided.
  • the second intake port 122 and the second exhaust port 132 are arranged vertically above and below at least one of the incident side space and the output side space of the diffraction grating. Good too.
  • the second intake port 122 and the second exhaust port 132 may be arranged vertically above and below at least one of the entrance side space and the exit side space of the external resonant mirror.
  • the laser element 102 may be an element having only one emitter. Further, the laser element 102 may be an element that emits the laser beam 1 with a wavelength longer than 500 nm.
  • the present disclosure can be suitably applied to a semiconductor laser device including a semiconductor laser element.
  • the present invention can be suitably applied to a semiconductor laser device including a laser element that has an exposed end face structure and emits laser light of a short wavelength (blue band).

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

半導体レーザ装置は、レーザ光を出射する少なくとも1つのレーザ素子と、前記少なくとも1つのレーザ素子を内部に収容する収容部と、前記収容部の外部からガスを供給するガス供給部と、前記収容部の内部のガスを前記収容部の外部に排気するガス排気部と、を備え、前記ガス供給部は、鉛直方向下側から前記少なくとも1つのレーザ素子の周囲のうちのレーザ光出射側の空間に向けてガスを供給する少なくとも1つの第1吸気口を有し、前記ガス排気部は、鉛直方向において前記少なくとも1つの第1吸気口と対向する位置に配置されている少なくとも1つの第1排気口を有する。

Description

半導体レーザ装置
 本開示は、半導体レーザ装置に関する。
 近年、レーザ装置が様々な製品の加工に用いられており、加工品質の向上が求められている。この種のレーザ装置は、高出力のレーザ光を出射可能であり、光源として半導体レーザ素子を有している。
 レーザ装置においては、半導体レーザ素子のレーザ発振により、レーザ光の出射端面に汚染物質が付着し、堆積物として堆積することが知られている。汚染物質としては、例えば、大気中に含まれるケイ素及び酸素を骨格とする化合物、より具体的には、Si-O-Si結合を有する化合物であるシロキサン(siroxane)が挙げられる。半導体レーザ素子の出射端面における汚染物質由来の堆積物(以下、単に「堆積物」と称す。)の堆積は、レーザ光の光学特性の劣化、ひいては、レーザ装置の出力特性の低下(信頼性の低下)を招く。堆積物の堆積量は、レーザ装置の動作時間が長くなるほど増加するので、レーザ光の光学特性は経時的に劣化する。
 特許文献1-3には、上述の堆積物の問題点を改善するための技術が提案されている。特に、特許文献3には、半導体レーザ素子のレーザ光出射端面にガスを吹き付け、汚染物質の付着、ひいては、堆積物の堆積を抑制することが開示されている。
特開2020-155652号公報 特開2008-270375号公報 国際公開第2020/054593号
 本開示の一態様に係る半導体レーザ装置は、
 レーザ光を出射する少なくとも1つのレーザ素子と、
 前記少なくとも1つのレーザ素子を内部に収容する収容部と、
 前記収容部の外部からガスを供給するガス供給部と、
 前記収容部の内部のガスを前記収容部の外部に排気するガス排気部と、
 を備え、
 前記ガス供給部は、鉛直方向下側から前記少なくとも1つのレーザ素子の周囲のうちのレーザ光出射側の空間に向けてガスを供給する少なくとも1つの第1吸気口を有し、
 前記ガス排気部は、鉛直方向において前記少なくとも1つの第1吸気口と対向する位置に配置されている少なくとも1つの第1排気口を有する。
図1は、第1実施形態に係る半導体レーザ装置の斜視図であり、半導体レーザ装置の内部を透視して示す図である。 図2は、第1実施形態に係る半導体レーザ装置の内部を示す側面視模式図である。 図3は、第2実施形態に係る半導体レーザ装置の内部を示す側面視模式図である。 図4は、第3実施形態に係る半導体レーザ装置の内部を示す側面視模式図である。 図5は、第4実施形態に係る半導体レーザ装置の内部を示す側面視模式図である。 図6は、第5実施形態に係る半導体レーザ装置の内部を示す側面視模式図である。 図7は、第5実施形態に係る半導体レーザ装置の内部を示す平面視模式図である。 図8は、第6実施形態に係る半導体レーザ装置の内部を示す側面視模式図である。 図9は、変形例1に係る半導体レーザ装置の内部を示す側面視模式図である。 図10は、変形例2に係る半導体レーザ装置の内部を示す側面視模式図である。 図11は、流体解析結果を示す図であり、吹き付けガスの体積分率の位置依存性を示すグラフである。 図12は、吹き付けガスの体積分率と吹付口の位置とガス流量の関係性を示すグラフである。
 (経緯)
 以下、本開示に至った経緯を詳細に説明する。上述したように堆積物の問題点を改善するために、特許文献3では、半導体レーザ素子のレーザ光出射端面にガスを吹き付けて、堆積物の堆積を抑制する。
 しかしながら、レーザ光出射側の空間(以下、「レーザ光出射側空間」と称する)では、レーザ発振による半導体レーザ素子の発熱に伴う上昇気流が発生する。吹き付けガスは、上昇気流によって妨げられ、所望の抑制効果を発揮できない虞がある。よって、堆積物の堆積を抑制するためには、ある程度の吹付量が必要である。
 一方、ガスの吹付量が大きい場合、半導体レーザ素子の振動やモジュールとして半導体レーザ素子と一体化されている光学部品の振動が誘発される。半導体レーザ素子と光学部品は、位置関係がマイクロメートルオーダーの寸法精度で接着剤等を用いて固定されているので、ガスが強く吹き付けられた場合、それらの位置関係が適正位置からずれてしまう。その結果、半導体レーザ素子から出射されるレーザ光の特性に光学部品の振動に起因する微小な振動成分が生じ、レーザ光の光学特性が変化してしまう。
 また、特許文献3のレーザ装置では、吹き付けガスの排気口と吹き付けガスの吹付口との位置関係が検討されていない。特許文献3のレーザ装置では、吹き付けガスにより汚染物質をレーザ装置の外部に円滑に排気できず、レーザ装置内部でガスの滞留が起こりやすい配置となっている。このガスの滞留により半導体レーザ素子やレーザ装置内の他の光学部品に堆積物が堆積してしまう可能性が高い。
 発明者らは、マルチエミッター構造を有する半導体レーザ素子に対するドライガスの吹き付け効果について流体解析を実施した。この流体解析は、半導体レーザ素子のレーザ光出射側空間中央部の上方に吹付口が設けられた半導体レーザ装置をモデルとして実施された。その結果、吹付口からガスが拡散し、半導体レーザ素子のレーザ光出射側空間において、出射端面の中心部から離れるほどガスの体積分布が小さくなることが分かった。
 図11は、流体解析結果を示すグラフであり、吹き付けガスの体積分率の位置依存性を示す。図11の縦軸は、吹き付けガスの体積分率を示し、横軸は、半導体レーザ素子が有するエミッターの配列方向における位置を示す。なお、中心位置とは、半導体レーザ素子のレーザ光出射端面の中心位置を意味する。
 図11によれば、中心部から離れるにしたがってガスの体積分率が低下し、端部では吹き付けガスの影響が相対的に小さかった。また、レーザ装置の排気口の位置によって、中心位置を基準とする体積分率の分布が非対称となることが判明した。
 これらの結果から、発明者らは、吹き付けガスの体積分率は、吹付口の高さ(すなわち、レーザ光出射端面と吹付口との距離)、ガスの流量、半導体レーザ素子の発熱による上昇気流の影響を受けると考えた。
 発明者らは、吹き付けガスの体積分率、吹付口の高さ、ガスの流量、及び、半導体レーザ素子の発熱による上昇気流の関係性について、系統的に解析した結果、図12の結果を得た。図12は、吹き付けガスの体積分率と吹付口の位置とガス流量の関係性を示すグラフである。図12では、ガス流量の3つの水準について、吹付口の位置(レーザ光出射端面からの高さ)を横軸、及び、吹き付けガスの体積分率を縦軸として、吹付口の位置に対する体積分率がプロットされている。また、図12では、ガス流量が小さい順に、一点鎖線L1、破線L2、実線L3で解析結果が示されている。
 図12によれば、ガス流量が小さいほど、体積分率が小さくなることが分かった。吹き付けガスのガス流が上昇気流に押し負け、レーザ光出射側空間に到達しにくくなるためと考えられる。また、堆積物の堆積を防止する体積分率の目安が60%以上であると考えると、相応の大きさの流量が必要であることが分かった。また、60%以上の体積分率を実現するためには、ガス流量を大きくしつつ、吹付口の位置を一定の領域内に配置する必要があることが分かった。
 一方、60%以上の体積分率を実現可能な流量でガスを吹き付ける場合、上述のレーザ光の光学特性の変動が生じる。これより、発明者らは、単純に吹き付けガスの流量を増大させるのではなく、レーザ光の光学特性の変動を考慮して吹き付けガスの流量を制御することが重要であるという課題を見出した。
 以上の事項を鑑み、発明者らは、半導体レーザ素子のレーザ光出射端面に対する堆積物の堆積を防止するためには、下記(A)及び(B)が有効であることを見出した。
(A)吹き付けガスのガス流がレーザ素子の発熱に伴う上昇気流によって阻害されない。(B)吹付口から排気口まで円滑にガスが流れるようにガスを整流する。
 本開示は、レーザ光の光学特性が低下することなく汚染物質由来の堆積物の堆積を抑制できる信頼性の高い半導体レーザ装置を提供することを目的としている。
 以下、本開示の各実施形態及び変形例について、図面を参照しながら説明する。なお、以下に説明する各実施形態及び変形例は、いずれも本開示の一具体例を示すものである。従って、以下の各実施形態及び変形例で示される、数値、形状、材料、構成要素、及び、構成要素の配置位置や接続形態などは、一例であって本開示を限定する主旨では記載されていない。また、各図は模式的に示す図であり、必ずしも厳密に図示されたものではない。従って、各図において縮尺等は必ずしも一致していない。なお、各図において、実質的に同一の構成要素に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。
 本明細書では、鉛直上向きをZ軸方向正側、レーザ光出射方向をX軸方向正側とする右手座標系を用いて説明する。
 (第1実施形態)
 図1は、第1実施形態に係る半導体レーザ装置100の斜視図であり、半導体レーザ装置100の内部を透視して示している。図2は、半導体レーザ装置100の内部を示す側面視模式図である。図2の黒太矢印は各素子や部品の発熱に伴う上昇気流を示し、白矢印は、供給ガスまたは排気ガスの流れを示す。なお、以下の説明において、各素子や部品の発熱に伴う上昇気流のことを単に「上昇気流」と称することがある。
 半導体レーザ装置100は、例えば、複数のレーザ光1を合成して外部に出力する外部共振型のレーザ加工装置である。半導体レーザ装置100は、収容部110、レーザモジュール101、光学部品104、ガス供給部120、及び、ガス排気部130を備えている。
 収容部110は、レーザ素子102及び光学部品104を収容する中空体であり、例えば、筐体である。収容部110の内部空間は、ZX面(レーザ光1の進行方向に沿う鉛直面)に沿うY軸方向正側の側面111を含む4つの側面、天面112、及び、底面113に囲まれている。側面111には、レーザ素子102及び光学部品104が実装された実装基板が配置されている。
 詳細は後述するが、底面113には、第1吸気口121及び第2吸気口122が設けられ、天面112には、第1排気口131及び第2排気口132が設けられている。半導体レーザ装置100は、対向する吸気口及び排気口を結ぶ線がZ軸方向に沿うように配置された状態で使用される。
 収容部110の内部空間は、例えば、大気で充填されており、酸素、水素、窒素、アルゴン、ハロゲン系ガスのうち少なくとも1種を含む。なお、内部空間は、大気から水分が取り除かれたドライエアーで充填されてもよい。
 レーザモジュール101は、半導体レーザ素子(以下、単に「レーザ素子」と称することもある。)102、及び、モジュール内光学部品103等を備えている。
 レーザ素子102は、例えば、複数のエミッターが形成されている半導体レーザアレイである。各エミッターからは、レーザ光1が出射される。本実施形態では、レーザ素子102は、窒化物系半導体レーザ素子であり、500nm以下の波長帯(青色から紫外線帯)のレーザ光を出射する。
 モジュール内光学部品103は、レーザ素子102のレーザ光1の出射側に配置されており、図示されていないブロックや接着剤を介してレーザ素子102に接続されている。モジュール内光学部品103は、レーザ光1をコリメートして平行光にする機能、レーザ光1の伝搬方向に垂直な面におけるレーザ光1の断面形状を回転させる機能、及び、レーザ光を分離する機能の少なくともの1つを有する光学部品である。モジュール内光学部品103は、例えば、複数のレンズにより構成されたビームツイスターユニットである。
 また、図示されていないが、レーザモジュール101は、レーザ素子102が実装される母材、電流を半導体レーザ素子102に流す複数の電極、及び、レーザ素子102を冷却する冷却ブロック等を備えている。
 光学部品104は、レーザモジュール101から出射された複数のレーザ光1が、半導体レーザ装置100の外部に出射される過程で入射する部品である。光学部品104は、エネルギー密度が高くなる部品であり、外部共振ミラーなどである。外部共振ミラーは、回折格子に集光された後のレーザ光1が入射する部品である。図1及び図2には、光学部品として、光学部品104のみ示されているが、半導体レーザ装置100において、光学部品104とは別に、別の光学部品が、光学部品104よりもレーザ光1の進行方向上流側に配置されていてもよい。例えば、別の光学部品とは、回折格子等である。
 ガス供給部120は、第1吸気口121及び第2吸気口122を有し、収容部110の内部の特定部位に向けて鉛直上方(Z軸方向正側)にガスを噴出する。第1吸気口121及び第2吸気口122には、例えば、配管を介して、ガス供給ポンプが接続され、ガス供給ポンプから送出されたガスが、第1吸気口121及び第2吸気口122を介して収容部110の内部に供給されるようになっている。
 供給されるガス(以下、「供給ガス」と称することもある。)は、例えば、大気から水分が取り除かれたドライエアー、すなわち、窒素と酸素とを含むガスである。供給ガスは、酸素に加えて、窒素、水素、ヘリウム、アルゴン、ハロゲン系ガス、及び、ハロゲン化合物ガスのうちの少なくとも1種を含むガスであればよい。
 本実施形態では、レーザ素子102及びモジュール内光学部品103のそれぞれに対応して、収容部110の底面113に2つの第1吸気口121が配置されている。具体的には、第1吸気口121は、収容部110の底面113において、レーザ素子102のレーザ光出射側空間及びモジュール内光学部品103のレーザ光出射側空間の鉛直方向下側の領域にそれぞれ部分的に設けられている。よって、鉛直方向下側から、レーザ素子102のレーザ光出射側空間及びモジュール内光学部品103のレーザ光出射側空間に向けてガスが供給される。なお、部分的に設けられているとは、吸気口が比較的狭い面積の穴として設けられていることを意味する。また、以下の説明において、レーザ光出射側空間を単に「出射側空間」と称することもある。
 本実施形態では、光学部品104に対応して、収容部110の底面113に2つの第2吸気口122が配置されている。具体的には、収容部110の底面113において、光学部品104のレーザ光入射側空間及びレーザ光出射側空間の鉛直方向下側の領域にそれぞれ部分的に設けられている。よって、鉛直方向下側から、光学部品104のレーザ光入射側空間及びレーザ光出射側空間に向けてガスが供給される。なお、以下の説明において、レーザ光入射側空間を単に「入射側空間」と称することもある。
 ガス排気部130は、第1排気口131及び第2排気口132を有し、収容部110の内部のガスを排気する。第1排気口131及び第2排気口132には、例えば、配管が接続される。なお、配管にガス排気ポンプが接続され、収容部110内のガスを強制的に吸い上げる構成となっていてもよい。
 本実施形態では、収容部110の天面112に2つの第1排気口131が配置されている。具体的には、第1排気口131は、Z軸方向において、第1吸気口121と対向する位置に設けられている。より具体的には、一方の第1排気口131は、対向する第1吸気口121と、レーザ素子102の出射側空間を介して直線で結ばれるように設けられている。また、他方の第1排気口131は、対向する第1吸気口121と、モジュール内光学部品103の出射側空間を介して直線で結ばれるように設けられている。
 本実施形態では、収容部110の天面112に2つの第2排気口132が配置されている。具体的には、第2排気口132は、Z軸方向において、第2吸気口122と対向する位置に設けられている。より具体的には、一方の第2排気口132は、対向する第2吸気口122と、光学部品104の入射側空間を介して直線で結ばれるように設けられている。他方の第2排気口132は、対向する第2吸気口122と、光学部品104の出射側空間を介して直線で結ばれるように設けられている。
 <ガスの整流>
 レーザ光1により、内部空間内のガスに含まれる汚染物質が分解され、その汚染物質がレーザ素子102の出射端面102a、並びに、モジュール内光学部品103、及び、光学部品104の入射端面及び出射端面に付着し、化学変化を起こし、堆積物として堆積してしまう。汚染物質は、例えば、シロキサンであり、堆積物は、例えば、Si有機化合物や炭化水素化合物である。
 また、レーザ素子102の出射側空間、モジュール内光学部品103、及び、光学部品104の入射側空間及び出射側空間それぞれに対応する位置において、各素子や部品の発熱に伴い、上昇気流が発生する。
 本実施形態に係る半導体レーザ装置100では、堆積物の堆積を抑制するために収容部110に導入されたガスが、上昇気流によって阻害されないように、収容部110の外部に排気されるようになっている。
 具体的には、吸気口121、122及び排気口131、132は、鉛直方向に対向して配置されている。このため、ガス供給部120によって導入されたガスは、レーザ素子102の出射側空間等を通過する際、上昇気流によって流れを阻害されることなく、円滑に排気口から排気される。したがって、堆積物の堆積を効果的に抑制することができる。
 なお、第2吸気口122及び第2排気口132は、底面113及び天面112における、光学部品104の入射側空間及び出射側空間の少なくともいずれかに対応する位置に設けられていればよい。例えば、第2吸気口122及び第2排気口132は、光学部品104の入射端面及び出射端面のうち、堆積物が堆積しやすい端面側空間の鉛直方向下側及び鉛直方向上側にそれぞれ設けられていてもよい。
 以上、説明した通り、第1実施形態によれば、半導体レーザ装置100は、レーザ光1を出射するレーザ素子102と、レーザ素子102を内部に収容する収容部110と、収容部110の外部からガスを供給するガス供給部120と、収容部110の内部のガスを収容部110の外部に排気するガス排気部130と、を備える。ガス供給部120は、鉛直方向下側からレーザ素子102の周囲のうちのレーザ光1の出射側の空間に向けてガスを供給する第1吸気口121を有する。ガス排気部130は、鉛直方向において第1吸気口121と対向する位置に配置されている第1排気口131を有する。
 よって、第1吸気口121を介して鉛直方向下側からレーザ素子102の出射側空間に供給されたガスは、鉛直方向に沿って第1排気口131までほぼ一直線に流れて排気され、レーザ素子102の発熱に伴う上昇気流によってガスの流れを阻害されることもない。
 したがって、レーザ素子102のレーザ光出射端面側の空間において汚染物質が発生しても、ガス流に乗せて円滑に排気されるので、レーザ素子102の出射端面102aにおける堆積物の堆積を効果的に抑制することができる。
 また、必要以上に強くガスを吹き付ける必要はないので、ガス流によってレーザモジュールや光学部品が振動することはない。
 したがって、レーザ光1の光学特性が低下することなく堆積物の堆積を抑制することができ、半導体レーザ装置100の信頼性が格段に向上する。
 第1吸気口121及び第1排気口131は、収容部110に設けられている。
 よって、収容部110の内部にガス供給管を配置してガスを供給する場合と比べて、簡易な構成で汚染物質を円滑に排気できる。
 第1吸気口121は、収容部110において、レーザ素子102の出射側空間に対応する鉛直方向下側の領域に部分的に設けられている。
 よって、レーザ光1の進行方向に延在する長穴形状のように第1吸気口121を比較的大きい面積で設ける場合と比べて第1吸気口121の面積が小さいので、ガス供給時の強度(ガス流量)を一定以上に確保しやすくなる。したがって、レーザ素子102の出射側空間から汚染物質を遠ざけやすい。また、特定の位置に局所的にガスを供給できるので、供給ガスが衝突してモジュール内光学部品103等に振動が生じるのを防止できる。
 半導体レーザ装置100は、レーザ光1が透過する光学部品104を備える。ガス供給部120は、鉛直方向下側から光学部品104の入射側空間及び出射側空間の少なくとも一方に向けてガスを供給する第2吸気口122を有する。また、ガス排気部130は、鉛直方向において第2吸気口122と対向する位置に配置されている第2排気口132を有する。
 よって、第2吸気口122を介して鉛直方向下側から光学部品104の入射側空間及び入射側空間の少なくとも一方に供給されたガスは、鉛直方向に沿って第2吸気口122までほぼ一直線に流れて排気される。また、光学部品104の発熱に伴う上昇気流によってガスの流れが阻害されることもない。したがって、光学部品104に対する堆積物の堆積を抑制することができる。また、レーザ素子102の周辺で発生する汚染物質だけでなく、光学部品104の周辺で発生する汚染物質も円滑に排気されるので、レーザ素子102の出射端面102aにおける堆積物の堆積をさらに効果的に抑制することができる。
 レーザ素子102は、レーザ光1を出射するエミッターを複数有し、複数のエミッターからの複数のレーザ光1は、光学部品104に集光される。
 このように、光学部品104が、複数のレーザ光が集光される回折格子や外部共振ミラーである場合、光学部品104においてレーザ光1のエネルギー密度が高くなるため、発熱量が大きく、光学部品104の入射端面や出射端面に堆積物が堆積しやすい。
 このため、光学部品104が、回折格子や外部共振ミラーである場合、光学部品104に対する堆積物の堆積抑制効果の恩恵が大きい。
 本実施形態では、レーザ光1の波長は、500nm以下である。
 シロキサンは、500nm以下の波長帯のエネルギーで容易に分解される。このため、レーザ素子102が500nm以下の波長を有するレーザ光1を出射する場合、シロキサンに起因するSiO膜が各素子の出射端面に生成されやすい。
 よって、レーザ素子102が500nm以下の波長を有するレーザ光1を出射する素子である場合、本実施形態の効果による恩恵が大きい。
 なお、ガス供給部120は、底面113に第1吸気口121が設けられる代わりに、収容部110の内部にガス供給管を配置し、ガス供給管に第1吸気口121が設けられていてもよい。
 本実施形態では、第1吸気口121及び第2吸気口122がそれぞれ2つ設けられているが、それぞれ3つ以上設けられていてもよい。
 また、第1吸気口121及び第2吸気口122がそれぞれ1つ設けられていてもよい。その場合、第1吸気口121が、レーザ素子102の出射側空間の鉛直方向下側からモジュール内光学部品103の出射側空間の鉛直方向下側にわたる底面113の領域に比較的大きい穴として設けられていてもよい。
 また、第2吸気口122が、光学部品104の入射側空間の鉛直方向下側から出射側空間の鉛直方向下側にわたる底面113の領域に比較的大きい穴として設けられていてもよい。
 さらに、第1排気口131及び第2排気口132も、比較的大きい穴として形成された第1吸気口121及び第2吸気口122それぞれと対応するように、比較的大きい穴として設けられていてもよい。
 なお、光学部品104に対してだけでなく、上述の別の光学部品に対しても、第2吸気口122及び第2排気口132が設けられてもよい。
 (第2実施形態)
 以下、第2実施形態について、主に第1実施形態と異なる点を説明する。図3は、第2実施形態に係る半導体レーザ装置200の内部を示す側面視模式図である。
 半導体レーザ装置200は、例えば、複数のレーザモジュール101からの複数のレーザ光1を合成して外部に出力する外部共振型のレーザ加工装置である。半導体レーザ装置200は、複数のレーザモジュール101と、複数の光学部品105とを備えている。
 図示されていないが、光学部品105よりもX軸方向正側(レーザ光1の進行方向における下流側)に、回折格子が配置されている。回折格子は、レーザ光1が光学部品105を透過した後に集光される素子である。また、外部共振ミラー等の第1実施形態に係る光学部品104に相当する部品が配置されている。外部共振ミラーは、回折格子に集光されたレーザ光1が入射する素子である。
 レーザモジュール101は、第1実施形態と同じレーザ素子を有する。複数のレーザモジュール101は、側面111に沿って、Z軸方向及びX軸方向に重ならないようにずれて配置されている。特に、X軸方向においては、隣接するレーザモジュール101が所定間隔だけ離間して配置されており、ガス流が通過できるようになっている。よって、上昇気流や第1吸気口121から供給されるガスの流れが、天面112に近い側のレーザモジュール101によって妨げられにくい。
 図3では、3つのレーザモジュール101が、天面112に近いほど、X軸方向正側に配置されている。なお、複数のレーザモジュール101は、天面112に近いほど、X軸方向負側に配置されてもよい。
 光学部品105は、回折格子よりもX軸方向負側に配置される。光学部品105は、例えば、レーザ光1をファスト方向にコリメートするFAC(Fact Axis Collimation)レンズである。
 図3では、3つの光学部品105が、3つのレーザモジュール101それぞれに対応して設けられており、側面111に沿って、Z軸方向及びX軸方向に重ならないようにずれて配置されている。レーザモジュール101と同様、X軸方向においては、隣接する光学部品105が所定間隔だけ離間して配置されており、ガス流が通過できるようになっている。よって、光学部品105の発熱に起因する上昇気流や第2吸気口122から供給されるガスの流れが、天面112に近い側の光学部品105によって妨げられにくい。
 本実施形態では、3つのレーザモジュール101それぞれに対応して、収容部110の底面に3つの第1吸気口121が設けられている。具体的には、第1吸気口121は、収容部110の底面113において、レーザモジュール101の出射側空間の鉛直方向下側の領域にそれぞれ部分的に設けられている。よって、鉛直方向下側から、レーザモジュール101の出射側空間に向けてガスが供給される。
 本実施形態では、レーザ素子102及びモジュール内光学部品103の組、すなわち、1つのレーザモジュール101に対して1つの第1吸気口121が設けられている。第1吸気口121から供給されたガスは、少なくとも、対応するレーザ素子102の出射側空間に向かうように供給される。なお、第1実施形態と同様に、レーザモジュール101を構成するレーザ素子102及びモジュール内光学部品103のそれぞれに対応して、第1吸気口121を設けるようにしてもよい。
 本実施形態では、3つの光学部品105それぞれに対応して、収容部110の底面113に3つの第2吸気口122が配置されている。具体的には、第2吸気口122は、収容部110の底面113において、レーザモジュール101の入射側空間の鉛直方向下側の領域にそれぞれ部分的に設けられている。よって、鉛直方向下側から、光学部品105の入射側空間に向けてガスが供給される。
 本実施形態では、3つの第1吸気口121に対応して、収容部110の天面112に3つの第1排気口131が配置されている。具体的には、第1排気口131は、Z軸方向において、第1吸気口121と対向する位置にそれぞれ設けられている。より具体的には、第1排気口131は、対向する第1吸気口121と、レーザモジュール101の出射側空間を介して直線で結ばれるように設けられている。
 よって、堆積物の堆積を抑制するために収容部110に導入されたガスは、レーザモジュール101の発熱に起因する上昇気流によって阻害されることなく各レーザモジュール101の出射側空間を通過し、収容部110の外部に排気される。
 本実施形態では、3つの第2吸気口122に対応して、収容部110の天面112に3つの第2排気口132が配置されている。具体的には、第2排気口132は、Z軸方向において、第2吸気口122と対向する位置にそれぞれ設けられている。より具体的には、第2排気口132は、対向する第2吸気口122と、光学部品105の入射側空間を介して直線で結ばれるように設けられている。
 よって、堆積物の堆積を抑制するために収容部110に導入されたガスは、光学部品105の発熱に起因する上昇気流によって阻害されることなく各光学部品105の入射側空間を通過し、収容部110の外部に排気される。
 なお、ガス供給部120は、複数の第1吸気口121に替えて、比較的面積が大きい長穴形状の第1吸気口121を1つ有していてもよい。長穴形状の第1吸気口121は、X軸方向(レーザ光1の進行方向)において、最も正側のレーザモジュール101の出射側空間から、最も負側のレーザモジュール101の出射側空間にかけて延在するものである。
 ただし、レーザモジュール101毎に第1吸気口121が設けられていた方が、供給時のガスの強度を一定以上に確保しやすく、特定の位置に局所的にガスを供給できる。
 また、第2吸気口122及び第2排気口132が、光学部品105に対して設けられるだけでなく、回折格子及び外部共振ミラー等の光学部品に対して設けられていてもよい。すなわち、第2吸気口122が、底面113における、回折格子及び外部共振ミラー等の光学部品の入射側空間及び出射側空間の少なくとも一方に対応する位置に設けられていてもよい。同様に、第2排気口132が、天面112における、回折格子及び外部共振ミラー等の光学部品の入射側空間及び出射側空間の少なくとも一方の空間に対応する位置に設けられていてもよい。
 以上、説明した通り、第2実施形態によれば、半導体レーザ装置200は、レーザ素子を含むレーザモジュール101を複数備え、第1吸気口121及び第1排気口131は、複数のレーザモジュール101に対応して設けられている。
 よって、堆積物の堆積を抑制するために収容部110に導入されたガスは、各レーザモジュール101近傍の上昇気流によって阻害されることなく各レーザモジュール101のレーザ光出射側空間を通過し、収容部110の外部に排気される。
 したがって、複数のレーザモジュール101を有する半導体レーザ装置200において、レーザ光1の光学特性が低下することなく各レーザモジュール101に対する堆積物の堆積を抑制することができ、半導体レーザ装置200の信頼性が格段に向上する。
 通常、1つのエミッターから出射されるレーザ光1は、数ワット程度のエネルギーを有する。加工用の半導体レーザ装置は、数百ワット以上のレーザ光の出力が要求される。よって、半導体レーザ装置200は、マルチエミッター構造のレーザモジュール101を複数有し、複数のレーザモジュール101から出射される複数のレーザ光を合成する必要がある。
 本実施形態によれば、レーザ光1の光学特性を低下させることなく、各レーザモジュール101に対して堆積物の堆積を抑制可能な加工用のレーザ装置を実現できる。
 また、収容部110は、レーザ光1の進行方向に沿う鉛直な側面111を有し、複数のレーザモジュール101は、側面111に沿って、鉛直方向及びレーザ光の進行方向に重ならないようにずれて配置されている。
 よって、各第1吸気口121から供給され、各レーザモジュール101の近傍を通過して各第1排気口131に向かうガスの流れは、隣接するレーザモジュール101によって阻害されない。また、供給ガスが、第1吸気口121に最も近いレーザモジュール101の出射側空間を通過した後、第1排気口131に近い側のレーザモジュール101の出射側空間に向かうことはない。このように、汚染物質が別のレーザモジュール101の出射側空間に運ばれることを回避できるので、レーザモジュール101に対する堆積物の堆積速度をより一層低下させることができる。ひいては、レーザモジュール101に対する堆積物の堆積をより一層抑制できる。
 また、第2吸気口122及び第2排気口132は、複数の光学部品105に対応して設けられている。よって、堆積物の堆積を抑制するために収容部110に導入されたガスは、各光学部品105近傍の上昇気流によって阻害されることなく、各光学部品105のレーザ光入射側空間を通過し、収容部110の外部に排気される。よって、各光学部品105に対する堆積物の堆積をより一層抑制することができるとともに、各光学部品105近傍で発生した汚染物質を円滑に排気し、各レーザモジュール101に対する堆積物の堆積をより一層効果的に抑制できる。
 また、本実施形態では、外部共振ミラー及び回折格子等の光学部品に対応して第2吸気口122及び第2排気口132が配置されている。これらの光学部品は、複数のレーザモジュール101から出射される複数のレーザ光1が集光されるので、エネルギー密度が高く、発熱量が大きい。すなわち、当該光学部品近傍で汚染物質が発生しやすく、当該光学部品は、堆積物が堆積しやすい。本実施形態によれば、堆積物が堆積しやすい光学部品に対する堆積物の堆積を抑制できるとともに、当該光学部品近傍で発生した汚染物質を円滑に排気し、各レーザモジュール101に対する堆積物の堆積をより一層効果的に抑制できる。
 なお、第1吸気口121及び第1排気口131のX軸方向における長さが、レーザモジュール101のX軸方向における長さよりも長い場合、レーザモジュール101は、第1吸気口121と第1排気口131とを結ぶ直線上に配置されていてもよい。この場合、第1吸気口121から供給されたガスは、レーザモジュール101を迂回して第1排気口131に向かう。
 同様に、第2吸気口122及び第2排気口132のX軸方向における長さが、光学部品105のX軸方向における長さよりも長い場合、レーザモジュール101は、第2吸気口122と第2排気口132とを結ぶ直線上に配置されていてもよい。この場合、第2吸気口122から供給されたガスは、光学部品105をそれぞれ迂回して第2排気口132に向かう。同様に、第2吸気口122及び第2排気口132のX軸方向における長さが、回折格子や外部共振ミラー等の光学部品のX軸方向における長さよりも長い場合、当該光学部品は、第2吸気口122と第2排気口132とを結ぶ直線上に配置されていてもよい。
 さらに、レーザモジュール101は、その出射端面がZ軸方向負側(底面113)を向くように配置されていてもよい。この場合、レーザモジュール101から出射されるレーザ光の進行方向に垂直な方向(X軸方向)において、レーザモジュール101よりも第1吸気口121及び第1排気口131を長くすることで、第1吸気口121から供給されたガスは、レーザモジュール101の出射端面近傍に達すると、レーザモジュール101を迂回して第1排気口131に向かうようになる。
 このように、吸気口121、122から供給されたガスが迂回して排気口131、132に向かう場合であっても、汚染物質を排気することができる。その理由は、吸気口121、122がレーザモジュール101に対して重力が働く方向側(下側)に形成され、排気口131、132が鉛直方向において吸気口121、122と対応する位置に形成されているので、供給ガスがレーザモジュール101の発熱に起因する上昇気流に妨げられないからである。
 また、レーザモジュール101は、その出射端面がYZ面(レーザ光1の進行方向に垂直な鉛直面)を基準として所定角度傾くように配置されていてもよい。
 この場合も、X軸方向において、レーザモジュール101のX軸に対する射影部分の長さよりも第1吸気口121及び第1排気口131を長くすることで、第1吸気口121から供給されたガスは、レーザモジュール101の出射端面近傍に達すると、レーザモジュール101を迂回して第1排気口131に向かうようになる。
 (第3実施形態)
 以下、第3実施形態について、主に第2実施形態と異なる点を説明する。図4は、第3実施形態に係る半導体レーザ装置300の内部を示す側面視模式図である。
 第3実施形態では、3つのレーザモジュール101が、天面112に近いほど、レーザ光1のX軸方向負側に配置されている。
 また、第3実施形態では、3つのレーザモジュール101それぞれに対して、ガス供給管123が設けられている。
 ガス供給管123は、収容部110内にガスを供給する補助ノズルである。ガス供給管123は、収容部110の側面119から収容部110内に導入されている。側面119は、収容部110の側面のうち、YZ面(レーザ光1の進行方向に垂直な鉛直面)に沿うX軸方向負側の側面である。また、ガス供給管123は、収容部110内においてX軸方向に延在し、かつ、先端部124が、対応するレーザモジュール101の出射側空間に向けられている。ガス供給管123の先端部124には、第1吸気口125が設けられており、第1吸気口125を介して、対応するレーザモジュール101の出射側空間にガスが供給される。
 なお、半導体レーザ装置300において、ガス供給管123が必ずしも複数設けられていなくてもよい。例えば、ガス供給管123は、配管本体から複数の先端部124が分岐されている構成を有し、各先端部124が対応するレーザモジュール101の出射側空間に向けられていてもよい。また、1本のガス供給管123の周面に複数の第1吸気口125が形成されていてもよい。
 以上、説明した通り、第3実施形態によれば、ガス供給部120は、収容部110にガスを導入するガス供給管123を有し、第1吸気口125は、ガス供給管123に設けられている。
 また、レーザ素子102を有する複数のレーザモジュール101は、鉛直方向上側ほど、レーザ光1の進行方向における上流側に配置されている。さらに、ガス供給管123は、レーザ光1の進行方向に延在し、ガス供給管123の先端部124は、対応するレーザモジュール101の出射側の空間の近傍に位置し、第1吸気口125は、先端部124に設けられている。
 すなわち、収容部110の底面113の第1吸気口121とは別のガス供給手段が設けられている。よって、レーザモジュール101の出射側空間に供給されるガス量を増やし、より効率的に汚染物質を排気できる。また、複数のレーザモジュール101及びガス供給管123は、レーザモジュール101の出射側空間を通過して第1排気口131に向かうガスの流れ、及び、上昇気流を妨げないように配置されている。
 したがって、汚染物質を収容部110の外部により効率的に排気できる。
 なお、複数のガス供給管123は、収容部110の側面119以外、例えば、実装基板が配置された側面111と対向する側面から収容部110内に導入されてもよい。また、側面111から収容部110内に導入されてもよい。この場合、ガス供給管123の先端部124は、モジュール101に対してZ軸方向負側に位置しており、モジュール101のZ軸方向負側にガスを供給している。
 また、1つのレーザモジュール101に対してのみ、ガス供給管123が設けられてもよい。例えば、レーザ光1の進行方向において最も上流側に位置するレーザモジュール101に対してのみ、ガス供給管123が設けられてもよい。
 さらに、底面113に第1吸気口121が設けられず、ガス供給管123のみにより、各レーザモジュール101の出射側空間にガスが供給されてもよい。
 なお、半導体レーザ装置300には、各光学部品105の入射側空間及び出射側空間の少なくとも一方に向けてガスを供給するガス供給管が別途設けられていてもよい。
 (第4実施形態)
 以下、第4実施形態について、主に第2実施形態と異なる点を説明する。図5は、第4実施形態に係る半導体レーザ装置400の内部を示す側面視模式図である。
 本実施形態に係る収容部110は、天面112及び底面113を有しておらず、上部及び下部の全部が開口している筒体である。
 ガス供給部120は、吸気側中空体126を有し、吸気側中空体126の上部には、第1吸気口127及び第2吸気口128が設けられている。
 吸気側中空体126は、収容部110の鉛直方向下側に配置されており、上部が収容部110にはめ込まれている。つまり、吸気側中空体126の上面によって、収容部110の下部開口が閉塞されている。
 吸気側中空体126には、半導体レーザ装置400の外部から供給されたガスが流入する。供給されたガスは、第1吸気口127及び第2吸気口128を介して収容部110の内部に供給される。
 第1吸気口127は、X軸方向における最も負側のレーザモジュール101の出射側空間から最も正側のレーザモジュール101の出射側空間まで延在している。よって、鉛直方向下側から、各レーザモジュール101の出射側空間に向けてガスが供給される。
 また、第2吸気口128は、X軸方向における最も負側の光学部品105の入射側空間から最も正側の光学部品105の入射側空間まで延在している。よって、鉛直方向下側から、各光学部品105の入射側空間に向けてガスが供給される。
 第1吸気口127及び第2吸気口128は、それぞれ、Y軸方向に延びる複数のスリットがX軸方向に離間して配置されたスリット部である。よって、狭い面積のスリットを介してガスが収容部110内に供給されるので、レーザモジュール101の出射側空間及び光学部品105の入射側空間に対して、ガスを一定以上の強度で供給することができる。
 ガス排気部130は、排気側中空体136を有し、排気側中空体136の下部には、第1排気口137及び第2排気口138が設けられている。
 排気側中空体136は、収容部110の鉛直方向上側に配置され、下部が収容部110にはめ込まれている。つまり、排気側中空体136の下面によって、収容部110の上部開口が閉塞されている。
 収容部110内のガスは、第1排気口137及び第2排気口138を介して排気側中空体136内に排気される。
 第1排気口137及び第2排気口138は、Z軸方向において、それぞれ第1吸気口127及び第2吸気口128と対向する領域に設けられている。より具体的には、第1排気口137は、X軸方向における最も負側のレーザモジュール101の出射側空間から最も正側のレーザモジュール101の出射側空間まで延在している。また、第2排気口138は、X軸方向における最も負側の光学部品105の入射側空間から最も正側の光学部品105の入射側空間まで延在している。
 第1排気口137及び第2排気口138は、それぞれ、Y軸方向に延びる複数のスリットがX軸方向に離間して配置されたスリット部である。
 なお、本実施形態の第1吸気口127及び第2吸気口128は、吸気側中空体126と収容部110との間に配置されていればよい。したがって、例えば、収容部110が底面を有し、底面に第1吸気口127及び第2吸気口128が設けられていてもよい。また、第1排気口137及び第2排気口138は、排気側中空体136と収容部110との間に配置されていればよく、例えば、収容部110が天面を有し、天面に第1排気口137及び第2排気口138が設けられていてもよい。
 また、半導体レーザ装置400において、第1吸気口127から第2吸気口128にわたって吸気口が連続的に形成されてもよい。同様に、第1排気口137から第2排気口138にわたって排気口が連続的に形成されてもよい。
 さらに、半導体レーザ装置400は、レーザモジュール101及び光学部品105をそれぞれ1つのみ有していてもよい。
 以上、説明した通り、第4実施形態によれば、ガス供給部120は、収容部110の鉛直方向下側に配置されている吸気側中空体126を有し、第1吸気口127が吸気側中空体126と収容部110との間に配置されている。また、ガス排気部130は、収容部110の鉛直方向上側に配置されている排気側中空体136を有し、第1排気口137は、収容部110と排気側中空体136との間に配置されている。
 よって、半導体レーザ装置400の外部から吸気側中空体126内に供給されたガスは、XY面内において広範囲にわたる気流として、鉛直方向下側から収容部110内に供給される。収容部110内に供給されたガスは、各レーザモジュール101の出射側空間及び各光学部品105の入射側空間にそれぞれ供給され、ほぼ一直線に第1排気口137及び第2排気口138に向かう。
 これにより、レーザモジュール101の出射側空間及び光学部品105の入射側空間近傍で汚染物質が発生したとしても、収容部110外にガス流に乗せて汚染物質をより効率的かつ速やかに排気できる。よって、各レーザモジュール101や各光学部品105に対する堆積物の堆積をより一層抑制できる。また、ガス供給部120の吸気系統(例えば配管等)及びガス排気部130における排気系統の構造を簡素化することができる。
 (第5実施形態)
 以下、第5実施形態について、主に第4実施形態と異なる点を説明する。図6は、第5実施形態に係る半導体レーザ装置500の内部を示す側面視模式図である。図7は、第5実施形態に係る半導体レーザ装置500の内部を示す平面視模式図である。
 収容部110は、XY面(すなわち、水平面)に沿う底面113を有している。底面113には、レーザモジュール101及び光学部品105が実装された実装基板が配置されている。
 具体的には、図6に示されているように、ZX面(レーザ光1の進行方向に沿う鉛直面)に沿う側面から見て、3つのレーザモジュール101が互いに重なるように配置されている。また、3つのレーザモジュール101は、X軸方向において互いに重ならないようにY軸方向にずれて配置されている(図7参照)。
 3つのレーザモジュール101に対応して、3つの光学部品105が配置されている。3つの光学部品105は、レーザモジュール101と同様、ZX面(レーザ光1の進行方向に沿う鉛直面)に沿う側面から見て、互いに重なるように配置されている。また、3つの光学部品105は、X軸方向において互いに重ならないようにY軸方向にずれて配置されている(図7参照)。
 収容部110の底面113には、3つのレーザモジュール101に対応して、3つの第1吸気口127が設けられている。具体的には、第1吸気口127は、対応するレーザモジュール101の出射側空間の鉛直方向下側に設けられており、Y軸方向に延在している(図7参照)。よって、吸気側中空体126から、各第1吸気口127を介して各レーザモジュール101の出射側空間に向けてガスが供給される。
 また、収容部110の底面113には、3つの光学部品105に対応して、3つの第2吸気口128が設けられている。具体的には、第2吸気口128は、対応する光学部品105の出射側空間の鉛直方向下側に設けられており、Y軸方向に延在している(図7参照)。よって、吸気側中空体126から、各第1吸気口127を介して各光学部品105の出射側空間に向けてガスが供給される。
 第1吸気口127及び第2吸気口128は、それぞれ、X軸方向に延びる複数のスリットがY軸方向に離間して配置されたスリット部である。
 このように、レーザモジュール101毎に第1吸気口127が設けられ、光学部品105毎に第2吸気口128が設けられているので、各レーザモジュール101の出射側空間及び各光学部品105の出射側空間に供給されるガスの強度を一定以上に確保しやすく、特定の位置に局所的にガスを供給できる。よって、第4実施形態よりも効率的に汚染物質を排気できる。
 収容部110の天面112には、3つの第1吸気口127に対応して、3つの第1排気口137が配置されている。第1排気口137は、第1吸気口127毎に、Z軸方向において第1吸気口127と対向する位置に設けられ、Y軸方向に延在している。よって、各レーザモジュール101の出射側空間で発生した汚染物質は、各第1排気口137を介して排気側中空体136に排気される。
 また、収容部110の天面112には、3つの第2吸気口128に対応して、3つの第2排気口138が配置されている。第2排気口138は、第2吸気口128毎に、Z軸方向において第2吸気口128と対向する位置に設けられ、Y軸方向に延在している。よって、各光学部品105の出射側空間で発生した汚染物質は、各第2排気口138を介して排気側中空体136に排気される。
 第1排気口137及び第2排気口138は、それぞれ、X軸方向に延びる複数のスリットがY軸方向に離間して配置されたスリット部である。
 以上、説明した通り、第5実施形態によれば、収容部110は、水平な底面113を有し、複数のレーザモジュール101は、底面113に、レーザ光1の進行方向(X軸方向)に重ならないようにY軸方向にずれて配置されている。
 このように、複数のレーザモジュール101が底面113に並べて配置されている半導体レーザ装置500においても、第4実施形態と同様の効果が得られる。
 なお、半導体レーザ装置500は、レーザモジュール101及び光学部品105をそれぞれ1つのみ有していてもよい。
 (第6実施形態)
 以下、第6実施形態について、主に第5実施形態と異なる点を説明する。図8は、第6実施形態に係る半導体レーザ装置600の内部を示す側面視模式図である。なお、図8の半導体レーザ装置600には、冷却用の水路がレーザモジュール101の底面から導入される方式が採用されている。
 底面113の下側には、吸気側中空体626a、吸気側中空体626b、及び、素子用冷却ブロック650が配置されている。
 第6実施形態では、ガス供給部120は、第5実施形態よりも小型の吸気側中空体626a及び吸気側中空体626bを有している。吸気側中空体626a及び吸気側中空体626bは、底面113の下側に配置されている。
 吸気側中空体626aは、レーザモジュール101の出射側空間の鉛直方向下側に配置されており、Y軸方向において、最も正側のレーザモジュール101の出射側空間から最も負側のレーザモジュール101の出射側空間にかけて延在している。よって、吸気側中空体626aから、各第1吸気口127を介して各レーザモジュール101の出射側空間に向けてガスが供給される。
 吸気側中空体626bは、光学部品105の出射側空間の鉛直方向下側に配置されており、Y軸方向において、最も正側の光学部品105の出射側空間から最も負側の光学部品105の出射側空間にかけて延在している。よって、吸気側中空体626bから、各第2吸気口128を介して各光学部品105の出射側空間に向けてガスが供給される。
 素子用冷却ブロック650は、水冷式冷却システムを構成するブロックである。素子用冷却ブロック650は、底面113の下側における、複数のレーザモジュール101の鉛直方向直下に配置されている。素子用冷却ブロック650は、底面113に接しているので、底面113を介して複数のレーザモジュール101を冷却することができる。
 なお、冷却システムとして、アクティブクーリング方式が採用されてもよいし、パッシブクーリング方式が採用されてもよい。なお、アクティブクーリング方式は、レーザモジュール101内に水路を形成する冷却方式である。これに対して、パッシブクーリング方式は、レーザモジュール101内に水路を形成しない冷却方式である。
 半導体レーザ装置600は、支持ブロック660、670を有していてもよい。支持ブロック660は、吸気側中空体626a及び吸気側中空体626bの間に配置される。支持ブロック670は、X軸方向において、吸気側中空体626bよりも正側に配置されている。収容部110は、支持ブロック660、670で支持される。
 以上説明した通り、第6実施形態によれば、第5実施形態と同様の効果が得られる。また、半導体レーザ装置600は、素子用冷却ブロック650を備えている。素子用冷却ブロック650は、収容部110の鉛直方向下側、かつ、第1吸気口127とは異なる位置に配置されており、底面113を介して複数のレーザモジュール101を冷却する。
 よって、比較的狭いスペースで、複数のレーザモジュール101を冷却しつつ、ガスを収容部110内に効果的に供給できる。よって、複数のレーザモジュール101に対するレーザ光1の光学特性が低下することなく堆積物の堆積を抑制することができ、半導体レーザ装置100の信頼性が格段に向上することに加え、効果的に複数のレーザモジュール101を冷却することができる。
 なお、冷却システムの水路は、収容部110の側面119から収容部110内部に導入されてもよい。なお、側面119は、上述したように、YZ面に沿うX軸方向負側の面である。
 (変形例1)
 以下、変形例1に係るレーザ装置700について、主に第2実施形態と異なる点を説明する。
 図9は、変形例1に係るレーザ装置700の内部を示す側面視模式図である。
 レーザ装置700の収容部110は、複数の内部空間S1、S2を有する。内部空間S1には、3つのレーザモジュール101がZ軸方向及びX軸方向に重ならないようにずれて配置されている。
 各レーザモジュール101は、レーザ光1を出射する。なお、複数のレーザ光1は、図示されていない回折格子等の集光素子で集光される。複数のレーザ光1が集光されて生成された光が、集光レーザ光LCである。
 第2実施形態と同様、3つのレーザモジュール101それぞれに対応して、収容部110の底面113に3つの第1吸気口121が設けられている。また、3つの第1吸気口121に対応して、収容部110の天面112に3つの第1排気口131が配置されている。
 また、内部空間S1には、例えば、光学部品501が配置されている。光学部品501は、集光レーザ光LCが透過する光学部品である。
 図9に示されているように、内部空間S1及び内部空間S2を仕切る壁部には、光学部品502が配置されてもよい。光学部品502は、集光レーザ光LCを内部空間S2に導光する光学部品である。
 内部空間S2には、例えば、光学部品503、504、505が配置されている。集光レーザ光LCは、光学部品503で進行方向が変更され、光学部品504を透過し、さらに、光学部品505で進行方向が変更される。なお、集光レーザ光LCは、収容部110のX軸方向正側の面に設けられた光学部品506によって、収容部110の外部に出力されてもよい。
 このように、収容部110が内部空間S1、S2を有する場合、それぞれの内部空間に配置されている光学部品501、503~505、並びに、内部空間S1、S2の境界に配置されている光学部品502に対応するように、第2吸気口122及び第2排気口132を底面113及び天面112に配置する。
 具体的には、光学部品501の入射端面側の空間及び出射端面側の空間の鉛直方向下側に第2吸気口122が配置され、鉛直方向上側に第2排気口132がそれぞれ配置されている。同様に、光学部品502の入射端面側の空間及び出射端面側の空間の鉛直方向下側に第2吸気口122が配置され、鉛直方向上側に第2排気口132がそれぞれ配置されている。
 よって、光学部品501及び光学部品502に対する堆積物の堆積を抑制できる。
 また、光学部品503~505の鉛直方向下側及び上側にそれぞれ、第2吸気口122及び第2排気口132が配置されている。これにより、2つの第2吸気口122から供給されたガスは、光学部品503を迂回して光学部品503の反射端面側の空間に供給される。そして、そのガスは、光学部品504の入射端面側の空間を経由し、光学部品504を迂回し、光学部品504の出射端面側の空間に達する。そして、そのガスは、光学部品505の反射端面側の空間に達し、光学部品505を迂回し、2つの第2排気口132に向かい、2つの第2排気口132から収容部110の外部に排気される。
 よって、内部空間S2内の光学部品503~505に対する堆積物の堆積を抑制できる。
 変形例1によれば、第1~第2実施形態と同様の効果が得られる。また、内部空間S1、S2それぞれの底面113及び天面112に第2吸気口122及び第2排気口132を配置することで、内部空間S1、S2内の光学部品501、503~505、並びに、内部空間S1、S2の境界に配置されている光学部品502に対する堆積物の堆積を抑制できる。
 なお、上述の変形例1では、光学部品503~505に対して、第2吸気口122及び第2排気口132をそれぞれ複数個設けられている。しかしながら、光学部品503~505に対して、複数の第2吸気口122に替えて、X軸方向に延在する1つの吸気口122が設けられ、複数の第2排気口132に替えて、X軸方向に延在する1つの第2排気口132が設けられていてもよい。
 具体的には、第2吸気口122及び第2排気口132のX軸方向における長さが、X軸に対する光学部品503~505の射影部分の長さよりも長くなるように第2吸気口122及び第2排気口132が形成されればよい。
 (変形例2)
 以下、変形例2に係る半導体レーザ装置800について、主に第3実施形態と異なる点を説明する。図10は、変形例2に係る半導体レーザ装置800の内部を示す側面視模式図である。
 図10では、収容部110には、3つのレーザモジュール101が配置されている。また、各レーザモジュール101は、レーザ光出射端面101aが、鉛直面(YZ面)に対して傾いて配置されている。すなわち、半導体レーザ装置800において、レーザ光1はX軸方向に対して所定角傾いた方向に出射される。
 第4実施形態と同様、ガス供給部120は、吸気側中空体126を有し、吸気側中空体126の上部には、第1吸気口127が設けられている。また、ガス排気部130は、排気側中空体136を有し、排気側中空体136の下部には、第1排気口137が設けられている。第1吸気口127及び第1排気口137は、少なくとも、3つのレーザモジュール101のX軸に対する射影部分をカバーする程度に、X軸方向に延在している。
 変形例2では、ガス供給部120は、ガス供給管123を有している。すなわち、変形例2では、各レーザモジュール101に対して、第1吸気口127だけでなく、ガス供給管123からもガスを供給する。
 図10では、ガス供給部120は、3つのレーザモジュール101に対応して3つのガス供給管123を有している。各ガス供給管123は、その先端部124の第1吸気口125からレーザモジュール101の出射端面101a側の空間に向けてガスを供給する。
 図10に示されているように、先端部124が出射端面101aと平行となるように延在し、ガス供給管123から供給されるガスが、出射端面101aに平行に流れるように供給されてもよい。
 以上説明した通り、変形例2によれば、レーザモジュール101の出射端面101aが、鉛直面(YZ面)に対して傾くように配置された場合でも、第1吸気口127及び第2排気口138をレーザモジュール101の鉛直方向の下側及び上側にそれぞれ配置することで、レーザモジュール101に対する堆積物の堆積を抑制できる。
 また、半導体レーザ装置800は、ガス供給管123を備えることで、レーザモジュール101に対する堆積物の堆積をより一層抑制できる。
 なお、半導体レーザ装置800は、吸気側中空体126及び排気側中空体136を有さなくてもよい。その代わり、半導体レーザ装置800の収容部110の底面及び天面に、X軸方向に延在する長穴として、第1吸気口121及び第1排気口131が設けられていてもよい。
 (その他の変形例)
 第2から第6実施形態において、第2吸気口122及び第2排気口132は、光学部品105の入射側空間及び出射側空間のうちの少なくともいずれかの鉛直方向上側及び下側にそれぞれ配置されていればよい。
 また、第2吸気口122及び第2排気口132は、光学部品105の入射端面及び出射端面のうち、堆積物が堆積しやすい端面側空間の鉛直方向上側及び下側にそれぞれ配置されていてもよい。
 第3から第6実施形態において、レーザ光1が集光する回折格子及び外部共振ミラーなどの光学部品が設けられていてもよい。また、第3から第6実施形態において、第2吸気口122及び第2排気口132は、回折格子の入射側空間及び出射側空間の少なくともいずれかの鉛直方向上側及び下側に配置されていてもよい。同様に、第2吸気口122及び第2排気口132は、外部共振ミラーの入射側空間及び出射側空間の少なくともいずれかの鉛直方向上側及び下側に配置されていてもよい。
 上述の各実施形態において、レーザ素子102は、エミッターを1つのみ有する素子であってもよい。また、レーザ素子102は、500nmよりも長い波長のレーザ光1を出射する素子であってもよい。
 上記各実施形態及び変形例に対して当業者が思いつく各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で上記各実施形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。
 本開示によれば、レーザ光の光学特性が低下することなく汚染物質由来の堆積物の堆積を抑制できる信頼性の高い半導体レーザ装置を提供することができる。
 本開示は、半導体レーザ素子を備える半導体レーザ装置に好適に適用できる。特に、端面露出構造、かつ、短波長(青色帯域)のレーザ光を出射するレーザ素子を備える半導体レーザ装置に好適に適用できる。
 1 レーザ光
 100、200、300、400、500、600 半導体レーザ装置
 101 レーザモジュール
 102 レーザ素子
 103 モジュール内光学部品
 104 光学部品
 110 収容部
 111、119 側面
 112 天面
 113 底面
 120 ガス供給部
 121、125、127s 第1吸気口
 122、128 第2吸気口
 123 ガス供給管
 124 先端部
 126、626a、626b 吸気側中空体
 130 ガス排気部
 131、137 第1排気口
 132、138 第2排気口
 136 排気側中空体
 650 素子用冷却ブロック
 626a、626b 吸気側中空体
 660、670 支持ブロック

Claims (14)

  1.  レーザ光を出射する少なくとも1つのレーザ素子と、
     前記少なくとも1つのレーザ素子を内部に収容する収容部と、
     前記収容部の外部からガスを供給するガス供給部と、
     前記収容部の内部のガスを前記収容部の外部に排気するガス排気部と、
     を備え、
     前記ガス供給部は、鉛直方向下側から前記少なくとも1つのレーザ素子の周囲のうちのレーザ光出射側の空間に向けてガスを供給する少なくとも1つの第1吸気口を有し、
     前記ガス排気部は、鉛直方向において前記少なくとも1つの第1吸気口と対向する位置に配置されている少なくとも1つの第1排気口を有する、
     半導体レーザ装置。
  2.  前記少なくとも1つのレーザ素子は、複数の前記レーザ素子を備え、
     前記少なくとも1つの第1吸気口は、複数の第1吸気口を備え、
     前記少なくとも1つの第1排気口は、複数の第1排気口を備え、
     前記複数の第1吸気口及び前記複数の第1排気口は、前記複数のレーザ素子に対応して設けられている、
     請求項1に記載の半導体レーザ装置。
  3.  前記少なくとも1つの第1吸気口及び前記少なくとも1つの第1排気口は、前記収容部に設けられている、
     請求項1または2に記載の半導体レーザ装置。
  4.  前記少なくとも1つの第1吸気口は、前記収容部において、前記少なくとも1つのレーザ素子のレーザ光出射側の空間に対応する鉛直方向下側の領域に部分的に設けられている、
     請求項3に記載の半導体レーザ装置。
  5.  前記収容部は、前記レーザ光の進行方向に沿う鉛直な側面を有し、
     前記複数のレーザ素子は、前記側面に沿って、鉛直方向及び前記レーザ光の進行方向に重ならないようにずれて配置されている、
     請求項2に記載の半導体レーザ装置。
  6.  前記ガス供給部は、前記収容部にガスを導入する複数のガス供給管を有し、
     前記複数の第1吸気口は、前記複数のガス供給管にそれぞれ設けられている、
     請求項5に記載の半導体レーザ装置。
  7.  前記複数のレーザ素子は、鉛直方向上側ほど、前記レーザ光の進行方向における上流側に配置され、
     前記複数のガス供給管は、前記レーザ光の進行方向に延在し、
     前記複数のガス供給管は、複数の先端部を有し、
     前記複数の先端部は、前記複数のレーザ素子のうちの対応する前記レーザ素子の前記レーザ光出射側の前記空間の近傍に位置し、
     前記複数の第1吸気口は、前記複数の先端部にそれぞれ設けられている、
     請求項6に記載の半導体レーザ装置。
  8.  前記収容部は、水平な底面を有し、
     前記複数のレーザ素子は、前記底面に、前記レーザ光の進行方向に重ならないようにずれて配置されている、
     請求項2に記載の半導体レーザ装置。
  9.  前記収容部の鉛直方向下側、かつ、前記複数の第1吸気口とは異なる位置に配置されており、前記底面を介して前記複数のレーザ素子を冷却する冷却ブロックを備える、
     請求項8に記載の半導体レーザ装置。
  10.  前記ガス供給部は、前記収容部の鉛直方向下側に配置されている吸気側中空体を有し、
     前記少なくとも1つの第1吸気口は、前記吸気側中空体と前記収容部との間に配置されており、
     前記ガス排気部は、前記収容部の鉛直方向上側に配置されている排気側中空体を有し、
     前記少なくとも1つの第1排気口は、前記収容部と前記排気側中空体との間に配置されている、
     請求項1から9のいずれかに記載の半導体レーザ装置。
  11.  前記レーザ光が透過する光学部品をさらに備え、
     前記ガス供給部は、鉛直方向下側から前記光学部品のレーザ光入射側及び前記光学部品のレーザ光出射側の少なくとも一方の空間に向けてガスを供給する第2吸気口を有し、
     前記ガス排気部は、鉛直方向において前記第2吸気口と対向する位置に配置されている第2排気口を有する、
     請求項1から10のいずれかに記載の半導体レーザ装置。
  12.  前記レーザ素子は、前記レーザ光を出射するエミッターを複数有し、
     複数の前記エミッターからの複数の前記レーザ光は、前記光学部品に集光される、
     請求項11に記載の半導体レーザ装置。
  13.  前記少なくとも1つのレーザ素子は、複数の前記レーザ素子を備え、
     前記光学部品は、前記複数のレーザ素子から出射される複数の前記レーザ光が集光される回折格子または外部共振ミラーである、
     請求項11または12に記載の半導体レーザ装置。
  14.  前記レーザ光の波長は、500nm以下である、
     請求項1から13のいずれかに記載の半導体レーザ装置。
PCT/JP2022/043314 2022-03-30 2022-11-24 半導体レーザ装置 WO2023188534A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022056327 2022-03-30
JP2022-056327 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023188534A1 true WO2023188534A1 (ja) 2023-10-05

Family

ID=88199941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043314 WO2023188534A1 (ja) 2022-03-30 2022-11-24 半導体レーザ装置

Country Status (1)

Country Link
WO (1) WO2023188534A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54145492A (en) * 1978-05-06 1979-11-13 Toshiba Corp Laser unit
JPH0366490A (ja) * 1989-08-03 1991-03-22 Topcon Corp レーザ装置
JP2000347234A (ja) * 1999-06-08 2000-12-15 Sony Corp 紫外線光学装置
US20020017514A1 (en) * 2000-08-04 2002-02-14 Martin Lambert Laser processor with scavenging of optical element
JP2002329928A (ja) * 2001-02-27 2002-11-15 Ricoh Co Ltd 光通信システム
JP2004126001A (ja) * 2002-09-30 2004-04-22 Fuji Photo Film Co Ltd レーザ装置
JP2007088066A (ja) * 2005-09-20 2007-04-05 Aisin Seiki Co Ltd レーザ光源装置
JP2012049315A (ja) * 2010-08-26 2012-03-08 Sae Magnetics(H.K.)Ltd 回路基板
WO2013042193A1 (ja) * 2011-09-20 2013-03-28 Necディスプレイソリューションズ株式会社 光源装置及び投写型表示装置
JP2016157906A (ja) * 2015-02-26 2016-09-01 ファナック株式会社 放熱フィンを有するl字状熱伝導部材を備えた空冷式レーザ装置
JP2016219779A (ja) * 2015-05-20 2016-12-22 日亜化学工業株式会社 発光装置
WO2020054593A1 (ja) * 2018-09-13 2020-03-19 パナソニック株式会社 光学装置
US20210119411A1 (en) * 2019-10-16 2021-04-22 Panasonic intellectual property Management co., Ltd Siloxane mitigation for laser systems

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54145492A (en) * 1978-05-06 1979-11-13 Toshiba Corp Laser unit
JPH0366490A (ja) * 1989-08-03 1991-03-22 Topcon Corp レーザ装置
JP2000347234A (ja) * 1999-06-08 2000-12-15 Sony Corp 紫外線光学装置
US20020017514A1 (en) * 2000-08-04 2002-02-14 Martin Lambert Laser processor with scavenging of optical element
JP2002329928A (ja) * 2001-02-27 2002-11-15 Ricoh Co Ltd 光通信システム
JP2004126001A (ja) * 2002-09-30 2004-04-22 Fuji Photo Film Co Ltd レーザ装置
JP2007088066A (ja) * 2005-09-20 2007-04-05 Aisin Seiki Co Ltd レーザ光源装置
JP2012049315A (ja) * 2010-08-26 2012-03-08 Sae Magnetics(H.K.)Ltd 回路基板
WO2013042193A1 (ja) * 2011-09-20 2013-03-28 Necディスプレイソリューションズ株式会社 光源装置及び投写型表示装置
JP2016157906A (ja) * 2015-02-26 2016-09-01 ファナック株式会社 放熱フィンを有するl字状熱伝導部材を備えた空冷式レーザ装置
JP2016219779A (ja) * 2015-05-20 2016-12-22 日亜化学工業株式会社 発光装置
WO2020054593A1 (ja) * 2018-09-13 2020-03-19 パナソニック株式会社 光学装置
US20210119411A1 (en) * 2019-10-16 2021-04-22 Panasonic intellectual property Management co., Ltd Siloxane mitigation for laser systems

Similar Documents

Publication Publication Date Title
CN1179817C (zh) 光加工装置
US7050149B2 (en) Exposure apparatus and exposure method
US7061573B2 (en) Contamination prevention in optical system
US7423724B2 (en) Exposure apparatus and device manufacturing method
KR100805142B1 (ko) 노광방법 및 노광장치
US20020023907A1 (en) Laser correction method and apparatus
JP4289906B2 (ja) 露光装置
JP2007005363A (ja) 露光装置及びデバイス製造方法
KR20010053391A (ko) 마이크로리소그래피-투사 조명 장치의 세정방법
JP2022553942A (ja) レーザシステム用シロキサン改善
JP7494364B2 (ja) 光学装置
WO2023188534A1 (ja) 半導体レーザ装置
JP6660179B2 (ja) 露光装置、および物品の製造方法
JP2005150533A (ja) 露光装置
US20080259303A1 (en) Projection exposure apparatus for microlithography
TWI344582B (en) Lithographic apparatus and method for conditioning an interior space of a device manufacturing apparatus
JP2009099917A (ja) レーザーアニール装置
CN111326945B (zh) 光学谐振腔
EP1536458A1 (en) Exposure system and exposure method
TWM637550U (zh) 氣體雷射裝置
US20050150882A1 (en) Laser machining system
JP5648734B1 (ja) 光照射装置
JPH0899187A (ja) レーザ加工装置用レンズカバー
US20190239328A1 (en) Euv generating device
JP4380273B2 (ja) 紫外線照射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935663

Country of ref document: EP

Kind code of ref document: A1