WO2023185733A1 - 动态磁场控制方法、装置、计算机可读存储介质及磁疗设备 - Google Patents

动态磁场控制方法、装置、计算机可读存储介质及磁疗设备 Download PDF

Info

Publication number
WO2023185733A1
WO2023185733A1 PCT/CN2023/084073 CN2023084073W WO2023185733A1 WO 2023185733 A1 WO2023185733 A1 WO 2023185733A1 CN 2023084073 W CN2023084073 W CN 2023084073W WO 2023185733 A1 WO2023185733 A1 WO 2023185733A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
magnetic field
radio frequency
dynamic magnetic
field control
Prior art date
Application number
PCT/CN2023/084073
Other languages
English (en)
French (fr)
Inventor
商澎
王圣航
张孝通
蔡超
李潇
孙立磊
潘松
Original Assignee
深圳磁利晟科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210326911.8A external-priority patent/CN114844516B/zh
Priority claimed from CN202210323630.7A external-priority patent/CN114832237A/zh
Application filed by 深圳磁利晟科技有限公司 filed Critical 深圳磁利晟科技有限公司
Publication of WO2023185733A1 publication Critical patent/WO2023185733A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/02Magnetotherapy using magnetic fields produced by coils, including single turn loops or electromagnets

Definitions

  • the present application relates to the field of orthopedic magnetic therapy, and in particular to a dynamic magnetic field control method, device, computer-readable storage medium and magnetic therapy equipment.
  • This application proposes a dynamic magnetic field control method, device, computer-readable storage medium and magnetic therapy equipment, aiming to solve the technical problem of insufficient dynamic magnetic field control devices in generating stable and effective dynamic magnetic fields.
  • this application provides a dynamic magnetic field control method, which includes the following steps:
  • the initial parameter is adjusted so that the frequency of the initial radio frequency signal and the load coil is in a resonance state.
  • the initial parameters include: initial radio frequency signal frequency, preset frequency sweep bandwidth and preset frequency sweep points; the step of outputting the initial radio frequency signal to the load coil according to the initial parameters includes:
  • the preset frequency sweep bandwidth is divided into signal frequency bands with the same number as the preset frequency sweep points;
  • the step of adjusting the initial parameters according to the reflected signal so that the frequency of the initial radio frequency signal and the load coil is in a resonance state includes:
  • the initial parameter is adjusted so that the frequency of the initial radio frequency signal and the load coil is in a resonance state.
  • the step of determining the target reflection signal with the smallest voltage value among the reflection signals includes:
  • the voltage values of the respective signals are compared to determine the signal with the smallest voltage value among the reflected signals, and the signal with the smallest voltage value is used as the target reflected signal.
  • the step of adjusting the initial parameters according to the target reflection signal so that the frequency of the initial radio frequency signal and the load coil is in a resonance state includes:
  • the target radio frequency signal frequency is used as the initial parameter, and the initial radio frequency signal is output to the load coil according to the initial parameter, so that the frequency of the initial radio frequency signal and the load coil is in a resonance state.
  • the step of determining the target radio frequency signal in the initial radio frequency signal based on the target reflection signal includes:
  • the target reflection signal determine the target signal frequency band corresponding to the target reflection signal
  • the step of performing a fine scan in the target signal frequency band to determine the target radio frequency signal in the initial radio frequency signal includes:
  • the present application also provides a dynamic magnetic field control device, which includes a computer control terminal, a signal synchronization device, a signal excitation source, a power amplifier, a signal coupler, a signal monitoring device and a load coil. .
  • the input end of the signal synchronization device is connected to the first output end of the computer control end, and the first output end of the signal synchronization device is connected to the first input end of the signal excitation source.
  • the signal synchronization device The second output terminal is connected to the first input terminal of the signal monitoring device.
  • the second input end of the signal excitation source is connected to the second output end of the computer control end, and the output end of the signal excitation source is connected to the input end of the power amplifier; the power amplifier The output end is connected to the input end of the signal coupler.
  • the coupling end of the signal coupler is connected to the second input end of the signal monitoring device, and the output end of the signal coupler is connected to the load coil; the output end of the signal monitoring device Connected to the input terminal of the computer control terminal.
  • the computer control terminal, the signal excitation source, the signal synchronization device, the power amplifier, the signal coupler, the signal monitoring device and the load coil are connected through a coaxial cable connection;
  • the signal excitation source is used to output an original signal
  • the signal synchronization device is used to output a carrier wave
  • the carrier wave is used to form a modulated radio frequency signal with the original signal
  • the radio frequency signal is transmitted to the load coil through the signal excitation source, the power amplifier, and the signal coupler in sequence.
  • the dynamic magnetic field control device is configured to receive input preset signal parameters
  • the preset adaptive rules adjust the preset signal parameters to obtain target signal parameters
  • the target signal is output to obtain the peak current and peak power variation curves of the target signal with respect to time.
  • the present application also provides a magnetic therapy device, which includes a memory, a processor, and a dynamic magnetic field control program stored on the memory and executable on the processor, wherein : The steps of implementing the dynamic magnetic field control method as described above when the dynamic magnetic field control program is executed by the processor.
  • the present application also provides a computer-readable storage medium.
  • a dynamic magnetic field control program is stored on the computer-readable storage medium.
  • the dynamic magnetic field control program is executed by a processor, the above-mentioned methods are implemented. Steps of the dynamic magnetic field control method.
  • the dynamic magnetic field control method in this application includes the step of receiving input initial parameters and the step of outputting the initial radio frequency signal to the load coil according to the initial parameters, so that the signal generation module can send out ideal valid signals corresponding to each parameter according to each input parameter.
  • the signal generation module can send out ideal valid signals corresponding to each parameter according to each input parameter.
  • the reflected signal fed back by the load coil can be monitored and acquired in real time.
  • the signal generation module can dynamically and automatically adapt to the frequency of the load coil, thus making the letter
  • the frequency of the radio frequency signal emitted by the signal generator module is always in resonance with the frequency of the load coil. It can also greatly enhance the signal power output of the load coil and improve the radio frequency radiation effect on bone tissue lesions.
  • this application compared with the dynamic magnetic field control method used in traditional dynamic magnetic field control devices, this application is more efficient, more stable and safer in generating stable dynamic magnetic fields, ensuring that the dynamic magnetic field reaches the frequency required for orthopedic diseases. As a result, it has a good and effective therapeutic effect.
  • Figure 1 is a schematic diagram of the terminal structure of the hardware operating environment of the magnetic therapy equipment involved in the embodiment of the present application;
  • Figure 2 is a schematic flow chart of the first embodiment of the dynamic magnetic field control method of the present application.
  • Figure 3 is a schematic structural diagram of a magnetic field control device according to an embodiment of the dynamic magnetic field control device of the present application
  • FIG. 4 is a schematic diagram of the radio frequency signal transmission process involved in the dynamic magnetic field control device of this application.
  • Figure 5 is a schematic diagram of the frame structure of the virtual device involved in the dynamic magnetic field control method of the present application.
  • Figure 1 is a schematic diagram of the terminal structure of the hardware operating environment of the dynamic magnetic field control device involved in the embodiment of the present application.
  • the terminal may include: a processor 1001, such as a CPU, a network interface 1004, a user interface 1003, a memory 1005, and a communication bus 1002.
  • the communication bus 1002 is used to implement connection communication between these components.
  • the user interface 1003 may include a display (Display) and an input unit such as a control panel.
  • the user interface 1003 may also include a standard wired interface and a wireless interface.
  • the network interface 1004 may include standard wired interfaces and wireless interfaces (such as 5G interfaces).
  • the memory 1005 can be a high-speed RAM memory or a stable memory (non-volatile memory), such as a disk memory.
  • the memory 1005 may also be a storage device independent of the aforementioned processor 1001.
  • the dynamic magnetic field control program may be included in the memory 1005 as a computer storage medium.
  • the terminal may also include a microphone, a speaker, an RF (Radio Frequency, radio frequency) circuit, a sensor, an audio circuit, a wireless module, and the like.
  • sensors such as image sensors, distance sensors, acceleration sensors and other sensors will not be described in detail here.
  • terminal structure shown in FIG. 1 does not limit the terminal, and may include more or fewer components than shown, or combine certain components, or arrange different components.
  • Figure 2 is a schematic flow chart of the first embodiment of the dynamic magnetic field control method of the present application.
  • the dynamic magnetic field control method includes:
  • Step S10 receive the input initial parameters
  • Dynamic magnetic field controller with large magnetic field parameters.
  • the working principle of the dynamic magnetic field controller is to pass pulse current into the load coil to generate the required dynamic magnetic field around the load coil.
  • the dynamic magnetic field controller mainly consists of two parts, one is the load coil, and the other is the pulse large current generating circuit.
  • the natural frequency of the load coil needs to be obtained first.
  • the natural frequency of the load coil is used as part of the initial parameters, which is manually input by the relevant personnel or the load is obtained by the dynamic magnetic field control system.
  • the natural frequency of the coil is then automatically input to the parameter input module in the dynamic magnetic field control system.
  • the initial parameters include at least an initial radio frequency signal frequency, a preset frequency sweep bandwidth and a preset number of frequency sweep points, and the initial radio frequency signal frequency is equal to the natural frequency of the load coil.
  • the natural frequency of the load coil is the theoretical frequency of the load coil calculated based on coil parameters such as the shape of the load coil, the winding form, and the number of strands of the coil.
  • the coil parameters determine the signal frequency of the load coil.
  • the actual frequency after processing of the load coil will have a certain gap from the theoretical frequency in the coil simulation calculation.
  • the design of the load coil can be continuously improved according to the particularity of the surface and structure on which it acts. Therefore, after the traditional dynamic magnetic field control device is replaced with a new load coil, due to the signal generation module in the traditional dynamic magnetic field control device,
  • the generated frequency signal is a fixed frequency signal (theoretical frequency of the load coil), which may cause the frequency of the signal transmitted by the signal generation module to not completely match the frequency of the load coil, which will further cause the signal power of the load coil to be further lost.
  • the signal frequency of the load coil is very easily affected by other conditions such as the external magnetic field environment, causing the signal frequency of the load coil to always fluctuate, which leads to the failure of the load coil.
  • the loss of signal power is difficult to avoid, so there is an urgent need for this application to provide a method and corresponding device for automatically adapting to the signal frequency of the load coil.
  • Step S20 output an initial radio frequency signal to the load coil according to the initial parameters
  • the step S20 includes:
  • Step a according to the preset frequency sweep points, divide the preset frequency sweep bandwidth into signal frequency bands with the same number as the preset frequency sweep points;
  • Step b Coarsely scan the signal frequency band with the initial radio frequency signal frequency as the center to obtain the initial radio frequency signal;
  • Step c Output the initial radio frequency signal to the load coil.
  • preset sweep bandwidth and preset sweep points can be set and entered according to actual needs.
  • the preferred ranges corresponding to the initial parameters are:
  • the frequency range of the initial radio frequency signal frequency is: 0.1Hz ⁇ 3GHz;
  • the preset sweep bandwidth range is: 0.1Hz ⁇ 1GHz;
  • the preset frequency sweep point range is: 1 ⁇ 10000.
  • the preset sweep bandwidth range first divide the sweep bandwidth into signal frequency bands with the same number of sweep points according to the number of sweep points, and then use the frequency of the initial RF signal (theoretical frequency of the load coil) as the center frequency at the preset Sweep left and right within the frequency sweep bandwidth, and during the left and right sweep process, discontinuous initial radio frequency signals in the frequency range: 0.1Hz ⁇ 3GHz can be output.
  • the frequency of each adjacent signal band after segmentation is The demarcation point is the limit, and the output of the initial RF signal is not output or interrupted within a preset short period of time, so that the discontinuous initial RF signal can be output and visually presented to distinguish different signal frequency bands, which is helpful to determine when the load
  • the signal frequency band of the initial radio frequency signal corresponding to the minimum signal voltage reflected by the coil.
  • the initial RF signal is delivered to the load coil.
  • step S30 includes:
  • Step d determine the target reflection signal with the smallest voltage value among the reflection signals
  • Step e According to the target reflection signal, adjust the initial parameter so that the frequency of the initial radio frequency signal and the load coil is in a resonance state.
  • the reflected signal based on the feedback of the initial radio frequency signal also corresponds to a certain frequency range, that is, the reflected signal here is not a fixed frequency signal. But definitely A collection of individual signals in a frequency range.
  • the signal monitoring module can monitor the voltage value of each frequency signal in the reflected signal in real time, and compare the voltage values of each signal in the reflected signal set to determine the target reflected signal with the smallest voltage value in the reflected signal.
  • the step of determining the target reflection signal with the smallest voltage value among the reflection signals includes:
  • the voltage values of the respective signals are compared to determine the signal with the smallest voltage value among the reflected signals, and the signal with the smallest voltage value is used as the target reflected signal.
  • the target reflection signal with the smallest voltage value among the reflection signals it can be determined efficiently and cost-effectively whether the initial radio frequency signal and the frequency of the load coil are in a resonance state, and then the initial parameters are adjusted to achieve automatic
  • the initial radio frequency signal is adaptively fixed at the same frequency as the frequency of the load coil to minimize the loss of the load coil output power.
  • Step S30 obtain the reflected signal fed back by the load coil based on the initial radio frequency signal
  • the load coil When the initial RF signal reaches the load coil, the load coil will generate a dynamic magnetic field. Under normal circumstances, the load coil cannot completely absorb the initial RF signal, because the signal frequency of the load coil or the frequency of the dynamic magnetic field generated is different from the frequency of the initial RF signal. It is often inconsistent, so it will reflect part of the RF signal, that is, a reflected signal.
  • Step S40 According to the reflected signal, adjust the initial parameter so that the frequency of the initial radio frequency signal and the load coil is in a resonance state.
  • the radio frequency signal and the frequency of the load coil are in a resonance state, that is, equal matching between the frequency of the initial radio frequency signal and the frequency of the load coil is achieved.
  • the traditional dynamic magnetic field control device generally requires manual testing of the frequency of the input signal multiple times to reach the resonance state, further input of the generated signal parameters, and the need for an additional data monitoring device, which results in dynamic
  • the efficiency is relatively low and it is difficult to maintain a stable dynamic magnetic field state.
  • the dynamic magnetic field control method can be applied to the dynamic magnetic field control device.
  • the dynamic magnetic field control device in this application receives input preset signal parameters, where the preset signal parameters include: signal frequency range, frequency sweep bandwidth and frequency sweep points, and adjusts the steps according to the preset adaptive rules.
  • the above steps of presetting signal parameters to obtain target signal parameters can adapt to the output frequency of the coil load end, so that the overall system of dynamic magnetic field control is in a resonant state, thereby reducing the loss of signal power and ensuring the generation of a stable dynamic magnetic field.
  • a stable electrical signal required for the treatment of orthopedic diseases can be generated, and by outputting the target signal, the target signal can be obtained.
  • the steps of changing the peak current and peak power of the signal with respect to time, and the step of outputting the changing curve when receiving the preset data export instruction facilitate later statistical analysis of the data, thereby further upgrading and optimizing the equipment.
  • this application compared with the dynamic magnetic field control method used in traditional dynamic magnetic field control devices, this application is more efficient, more stable and safer in generating stable dynamic magnetic fields, ensuring that the dynamic magnetic field reaches the frequency required for orthopedic diseases. As a result, it has a good and effective therapeutic effect.
  • Figure 3 is a schematic structural diagram of a magnetic field control device according to an embodiment of the dynamic magnetic field control device of the present application.
  • the present application also proposes a dynamic magnetic field control device 100.
  • the dynamic magnetic field control device 100 includes:
  • Computer control terminal 1 signal synchronization device 2, signal excitation source 3, power amplifier 4, signal coupler 5, signal monitoring device 6 and load coil 7.
  • the computer control terminal 1 is used to receive various signal parameters input by relevant personnel, including signal frequency, band Width, duty cycle, sampling parameters, expected current and other parameters are transmitted to the signal synchronization device 2 and the signal excitation source 3.
  • the computer control terminal 1 can be installed with monitoring software matching the dynamic magnetic field control device 100, and the computer control terminal equipped with the monitoring software can be used as the control module of the dynamic magnetic field control device 100.
  • the signal synchronization device 2 is used to transmit the generated high-frequency carrier waves to the signal excitation source 3 and the signal monitoring device 6 respectively.
  • the high-frequency carrier waves have relatively high energy and can penetrate human bones.
  • the waveform of the carrier wave generated by the signal synchronization device 2 can be a rectangular wave, a sawtooth wave, a triangle wave, a peak wave, a staircase wave, etc., and the frequency is 0.1 Hz-3 GHz and can be adjusted through the computer control terminal 1 .
  • the signal excitation source 3 is used to generate the original signal, modulate it with the carrier wave generated by the signal synchronization device 2, and transmit the modulated radio frequency signal to the power amplifier 4.
  • the original signal waveform generated by the signal excitation source 3 can be an arbitrary waveform, with an adjustable frequency of 0.1Hz-3GHz, an adjustable duty cycle of 0-100%, and an adjustable peak current of 0-100A.
  • the frequency and peak current (amplitude) can be adjusted in combination to produce regular or irregular waveform signals with frequency and peak value.
  • the range of the above parameters can be adjusted through the computer control terminal 1.
  • the power amplifier 4 amplifies the signal power according to a preset ratio and transmits it to the signal coupler 5; the signal coupler 5 transmits the signal to the load coil 7, and at the same time collects a part of the signal and transmits it to the signal monitoring device 6.
  • the signal monitoring device 6 feeds back the monitoring results to the computer control terminal 1 .
  • the signal monitoring device 6 can be used as a data acquisition and monitoring module of the dynamic magnetic field control device 100 .
  • the computer control terminal 1, signal synchronization device 2, signal excitation source 3, power amplifier 4, signal coupler 5, signal monitoring device 6 and load coil 7 are electrically connected through coaxial cables.
  • the dynamic magnetic field control device in this embodiment has the advantages of large power, fast dynamic response, and high accuracy.
  • the dynamic magnetic field control device is used to generate a dynamic magnetic field and combine it with an external static magnetic field, and can be used for orthopedic treatment. It can produce controllable physical effects such as vibration, sound waves, and electric current in the area to be treated inside the bone to promote bone reconstruction and bone repair.
  • connection relationship between the above-mentioned various devices that make up the dynamic magnetic field control device 100 is:
  • the input terminal 11 of the signal synchronization device 2 is connected to the first output terminal 9 of the computer control terminal 1.
  • the first output terminal 13 of the signal synchronization device 2 is connected to the first input terminal 15 of the signal excitation source 3.
  • the two output terminals 12 are connected to the first input terminal 24 of the signal monitoring device 6 .
  • the second input terminal 14 of the signal excitation source 3 is connected to the second output terminal 10 of the computer control terminal 1, the output terminal 16 of the signal excitation source 3 is connected to the input terminal 17 of the power amplifier 4; the output terminal 18 of the power amplifier 4 Connected to the input terminal 19 of the signal coupler 5 .
  • the coupling end 21 of the signal coupler 5 is connected to the second input end 22 of the signal monitoring device 6, the output end 20 of the signal coupler 5 is connected to the load coil 7; the output end 23 of the signal monitoring device 6 is connected to the input of the computer control end 1 Connect terminal 8.
  • Figure 4 is a schematic diagram of the radio frequency signal transmission process involved in the dynamic magnetic field control device of the present application. As shown in the figure, the process from generation to conversion of the radio frequency signal used for the load coil to generate the dynamic magnetic field into the dynamic magnetic field is in accordance with the serial number. The order is:
  • the signal synchronization device 2 and the signal excitation source 3 coordinate and coordinate to generate a modulated radio frequency signal, and transmit the radio frequency signal to the power amplifier 4; the part of the carrier generated by the signal synchronization device 2 will be transmitted to the signal monitoring device 6;
  • the power amplifier 4 amplifies the power of the radio frequency signal according to the preset ratio and transmits the amplified radio frequency signal to the signal coupler 5;
  • the signal coupler 5 couples the amplified RF signal to distribute the RF signal power, and finally transmits the coupled RF signal to the load coil 7;
  • the load coil 7 generates a dynamic magnetic field from the radio frequency signal based on the principle of electromagnetic induction; in actual circumstances, the load coil 7 will reflect part of the radio frequency signal, and this part of the reflected signal is transmitted to the signal monitoring device 6 through the signal coupler.
  • the dynamic magnetic field control device 100 needs to automatically adapt to the load coil 7 so that the entire dynamic magnetic field control device 100 is in a resonance state, that is, the frequency at which the load coil 7 generates the dynamic magnetic field (the load coil 7 The frequency of the medium RF signal) is close to or the same as the frequency of the RF signal.
  • the process of adaptive frequency of the dynamic magnetic field control device 100 can be further explained with reference to the above-mentioned process of generating and converting the radio frequency signal of the dynamic magnetic field generated by the load coil into a dynamic magnetic field and the dynamic magnetic field control method:
  • the reflected signal fed back by the load coil will be monitored in real time through the signal monitoring device 6.
  • the voltage value of the reflected signal can be monitored and transmitted to the computer control terminal 1.
  • the voltage When the value is zero or close to zero, it indicates that the dynamic magnetic field control device 100 is in a resonant state and retains the radio frequency signal of the current frequency without requiring a dynamic magnetic field.
  • it is necessary to first scan the frequency sweep bandwidth entered at the beginning into a preset number of segments, and quickly determine the corresponding value of the voltage value to zero or close to zero through the dichotomy method.
  • the signal excitation source 3 only generates a radio frequency signal of this signal frequency, so that when the radio frequency signal is transmitted to the load coil 7, a stable dynamic magnetic field can be generated, which can cooperate with the external static magnetic field to treat human orthopedic diseases.
  • the real-time frequency will be displayed on the computer control terminal, and the final fixed frequency will be displayed after the dynamic magnetic field ends.
  • the signals monitored and collected by the signal monitoring device 6 can be exported through the computer control terminal 1.
  • the exported form is not limited to discrete points, tables, and spectrograms. , histogram, etc.
  • the dynamic magnetic field control device in this embodiment, you only need to input relevant signal parameters into the computer software interface to control the dynamic magnetic field control device to perform dynamic magnetic field and generate the expected required current signal.
  • the current signal is collected and monitored in real time, and the current signal can be collected and monitored at the end of the information collection.
  • the collected information is exported in the form of discrete points to facilitate later statistical analysis of data.
  • the dynamic magnetic field control device in this application can adaptively and stably work, flexibly adjust parameters, and quickly respond to parameters to generate a dynamic magnetic field, which has good therapeutic effects and high efficiency on patients with orthopedic diseases.
  • the frequency scan display window of the monitoring software displays the frequency scan results in real time.
  • 6Input parameters such as target signal pulse width, target signal duty cycle, target running time, and target peak current in sequence in the control module interface of the monitoring software, and then click the parameter confirmation button;
  • the exported data exists in the form of discrete points, including collection points, real-time peak current and real-time peak power. According to the needs, the obtained data can be statistically analyzed; after the data collection and export are completed, click the Cancel Collection button, and then click the Stop Test button to exit the monitoring software program. Finally, the relevant equipment of the dynamic magnetic field control device 100 is shut down or the entire dynamic magnetic field control device 100 is shut down directly through the computer control terminal 1 .
  • the dynamic magnetic field control device used for orthopedic treatment in this application only needs to input relevant parameters in the computer software control interface, and then the dynamic magnetic field control device can control the dynamic magnetic field and generate the expected output current signal, and at the same time, the output current signal can be collected and monitored in real time. After the information collection is completed, the collected information can be exported in the form of discrete points to facilitate later statistical analysis of data.
  • the dynamic magnetic field control device can work stably, flexibly adjust parameters, and respond quickly.
  • Figure 5 is a schematic structural diagram of the virtual device framework involved in the dynamic magnetic field control method of the present application.
  • This application also proposes a dynamic magnetic field control device, which includes:
  • Control module A10 used to receive input preset signal parameters
  • the frequency adaptation module A20 is used to obtain the signal to be corrected according to the target signal parameters, and adjust the signal to be corrected to determine the target signal; according to the preset adaptation rules, adjust the preset signal parameters to obtain the target signal parameters;
  • the data output module A30 is used to output the target signal to obtain the change curve of the peak current and peak power of the target signal with respect to time; when receiving a preset data export instruction, output the change curve.
  • the frequency adaptation module A20 is also used to:
  • the target signal frequency is input into the preset signal parameters, and the signal frequency range, sweep bandwidth and frequency sweep points in the preset signal parameters are masked to obtain the target signal parameters.
  • the frequency adaptation module A20 is also used to:
  • the input target signal pulse width, target signal duty cycle and target peak current are received, and the signal to be corrected is adjusted according to the target signal pulse width, the target signal duty cycle and the target peak current to determine the target signal.
  • the specific implementation of the dynamic magnetic field control device of the present application is basically the same as the above-mentioned embodiments of the dynamic magnetic field control method, and will not be described again here.
  • the magnetic therapy device includes a memory, a processor, and a dynamic magnetic field control program stored in the memory and executable on the processor.
  • the processor executes the dynamic magnetic field control.
  • the program implements the steps of the dynamic magnetic field control method as described in the above embodiments.
  • the specific implementation of the magnetic therapy equipment of the present application is basically the same as the above-mentioned embodiments of the dynamic magnetic field control method, and will not be described again here.
  • this application also proposes a computer-readable storage medium, wherein the computer-readable storage medium includes a dynamic magnetic field control program.
  • the dynamic magnetic field control program is executed by a processor, the dynamic magnetic field control program as described in the above embodiments is implemented. Steps of the control method.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM) as mentioned above. , magnetic disk, optical disk), including several instructions to cause a terminal device (which can be a television, a mobile phone, a computer, a dynamic magnetic field control device, a vehicle, or a network device, etc.) to execute the steps described in various embodiments of the present application. method.
  • references to the terms “one embodiment,” “some embodiments,” “an example,” “specific examples,” or “some examples” or the like means that specific features are described in connection with the embodiment or example. , structures, materials or features are included in at least one embodiment or example of the present application. In this specification, the schematic expressions of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine different embodiments or examples and features of different embodiments or examples described in this specification unless they are inconsistent with each other.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Treatment Devices (AREA)

Abstract

本申请公开了一种动态磁场控制方法,包括步骤:接收输入的初始参数;根据所述初始参数,输出初始射频信号至负载线圈;获取所述负载线圈基于所述初始射频信号反馈的反射信号;根据所述反射信号,调整所述初始参数以使所述初始射频信号和所述负载线圈的频率处于谐振状态。本申请还公开了一种动态磁场控制装置、计算机可读存储介质及磁疗设备。

Description

动态磁场控制方法、装置、计算机可读存储介质及磁疗设备
优先权信息
本申请要求于2022年3月30日申请的、申请号为202210323630.7、202210326911.8的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及骨科磁疗领域,尤其涉及一种动态磁场控制方法、装置、计算机可读存储介质及磁疗设备。
背景技术
近年来,动态电磁场由于其优越的非热效应在生物医学工程领域成为国内外的研究热点,它是一项将脉冲功率技术和生物医学工程相结合的前景广阔的技术。其中,相比于动态电场,动态磁场可以不通过电极针的引导而直接耦合进体内,实现了非接触式的治疗,成为一种非介入、无创治疗骨科疾病的新手段。磁场用于骨修复与治疗已有多年历史,并在临床中得到了广泛的应用。大量基础实验和临床研究显示,磁场对骨折不愈合、骨质疏松以及口腔正畸等均有良好的作用效果。为了实现动态磁场治疗骨科疾病的效果,就需要一台工作稳定的动态磁场控制装置。然而,目前市面上的各种动态磁场控制装置在产生稳定有效的动态磁场方面有较大不足,从而导致对骨科疾病的治疗效果亟需提高。
发明内容
本申请提出的一种动态磁场控制方法、装置、计算机可读存储介质及磁疗设备,旨在解决动态磁场控制装置在产生稳定、有效的动态磁场方面尚有不足的技术问题。
为实现上述目的,本申请提供一种动态磁场控制方法,包括以下步骤:
接收输入的初始参数;
根据所述初始参数,输出初始射频信号至负载线圈;
获取所述负载线圈基于所述初始射频信号反馈的反射信号;
根据所述反射信号,调整所述初始参数以使所述初始射频信号和所述负载线圈的频率处于谐振状态。
在一实施例中,所述初始参数包括:初始射频信号频率、预设扫频带宽和预设扫频点数;所述根据所述初始参数,输出初始射频信号至负载线圈的步骤,包括:
根据所述预设扫频点数,将所述预设扫频带宽划分为与所述预设扫频点数数量相同的信号频段;
以所述初始射频信号频率为中心对所述信号频段粗扫描以得到初始射频信号;
输出所述初始射频信号至负载线圈。
在一实施例中,所述根据所述反射信号,调整所述初始参数以使所述初始射频信号和所述负载线圈的频率处于谐振状态的步骤,包括:
确定所述反射信号中电压值最小的目标反射信号;
根据所述目标反射信号,调整所述初始参数以使所述初始射频信号和所述负载线圈的频率处于谐振状态。
在一实施例中,所述确定所述反射信号中电压值最小的目标反射信号的步骤,包括:
获取所述反射信号中各个信号的电压值;
对所述各个信号的电压值进行数值大小比较以确定反射信号中电压值最小的信号,将所述电压值最小的信号作为目标反射信号。
在一实施例中,所述根据所述目标反射信号,调整所述初始参数以使所述初始射频信号和所述负载线圈的频率处于谐振状态的步骤,包括:
根据所述目标反射信号,确定所述初始射频信号中的目标射频信号;
确定所述目标射频信号对应的目标射频信号频率;
将所述目标射频信号频率作为所述初始参数,根据所述初始参数,输出所述初始射频信号至所述负载线圈,以使所述初始射频信号和所述负载线圈的频率处于谐振状态。
在一实施例中,所述根据所述目标反射信号,确定所述初始射频信号中的目标射频信号的步骤,包括:
根据所述目标反射信号,确定所述目标反射信号对应的目标信号频段;
在所述目标信号频段进行细扫描,以确定所述初始射频信号中的目标射频信号。
在一实施例中,所述在所述目标信号频段进行细扫描,以确定所述初始射频信号中的目标射频信号的步骤,包括:
在所述目标信号频段进行细扫描,根据信号单调性规则确定所述初始射频信号中的目标射频信号。
此外,为实现上述目的,本申请还提供一种动态磁场控制装置,所述动态磁场控制装置包括电脑控制端、信号同步装置、信号激励源、功率放大器、信号耦合器、信号监测装置以及负载线圈。
在一实施例中,所述信号同步装置的输入端与电脑控制端的第一输出端相连,所述信号同步装置的第一输出端与信号激励源的第一输入端相连,所述信号同步装置的第二输出端与信号监测装置的第一输入端相连。
在一实施例中,所述信号激励源的第二输入端与所述电脑控制端的第二输出端相连,所述信号激励源的输出端与所述功率放大器的输入端相连;所述功率放大器的输出端与所述信号耦合器的输入端相连。
在一实施例中,所述信号耦合器的耦合端和所述信号监测装置的第二输入端相连,所述信号耦合器的输出端和所述负载线圈相连;所述信号监测装置的输出端与所述电脑控制端的输入端相连。
在一实施例中,所述电脑控制端、所述信号激励源、所述信号同步装置、所述功率放大器、所述信号耦合器、所述信号监测装置以及所述负载线圈之间通过同轴电缆线连接;
所述信号激励源用于输出原始信号,所述信号同步装置用于输出载波,所述载波用于与所述原始信号形成调制后的射频信号;
所述射频信号依次通过所述信号激励源、所述功率放大器、所述信号耦合器传输至所述负载线圈。
在一实施例中,所述动态磁场控制装置用于接收输入的预设信号参数;
根据预设自适应规则,调整所述预设信号参数以得到目标信号参数;
根据目标信号参数得到待校正信号,并调整所述待校正信号以确定目标信号;
输出所述目标信号,以得到所述目标信号的峰值电流和峰值功率关于时间的变化曲线。
此外,为实现上述目的,本申请还提供一种磁疗设备,所述磁疗设备包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的动态磁场控制程序,其中:所述动态磁场控制程序被所述处理器执行时实现如上所述的动态磁场控制方法的步骤。
此外,为实现上述目的,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有动态磁场控制程序,所述动态磁场控制程序被处理器执行时实现如上所述的动态磁场控制方法的步骤。
本申请中的动态磁场控制方法接收输入的初始参数的步骤以及根据所述初始参数,输出初始射频信号至负载线圈的步骤,能够使信号发生模块按照输入的各个参数发出与各个参数对应的理想有规律的射频信号,通过获取所述负载线圈基于所述初始射频信号反馈的反射信号的步骤,能够对负载线圈反馈的反射信号进行实时地监控和获取。通过根据所述反射信号,调整所述初始参数以使所述初始射频信号和所述负载线圈的频率处于谐振状态的步骤,能够使信号发生模块动态地自动地对负载线圈的频率进行适应匹配,从而使得信 号发生模块发出的射频信号的频率与负载线圈的频率始终处于谐振的状态,还可以大幅增强负载线圈的信号功率输出,提升对骨组织病变部位的射频辐射效果。整体来看,本申请相较于传统的动态磁场控制装置所应用的动态磁场控制方法,产生稳定的动态磁场更加地高效,也更加地稳定、安全,确保达到骨科疾病所需频率的动态磁场,从而具备了良好有效的治疗效果。
附图说明
图1为本申请实施例方案涉及的磁疗设备的硬件运行环境的终端结构示意图;
图2为本申请动态磁场控制方法第一实施例的流程示意图;
图3为本申请动态磁场控制装置一实施例的磁场控制装置结构示意图;
图4为本申请动态磁场控制装置涉及的射频信号传递过程示意图;
图5为本申请动态磁场控制方法涉及的虚拟装置的框架结构示意图;
附图标号说明:
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
如图1所示,图1是本申请实施例方案涉及的动态磁场控制装置的硬件运行环境的终端结构示意图。
如图1所示,该终端可以包括:处理器1001,例如CPU,网络接口1004,用户接口1003,存储器1005,通信总线1002。通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示器(Display)、输入单元比如控制面板,用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可以包括标准的有线接口、无线接口(如5G接口)。存储器1005可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器1005还可以是独立于前述处理器1001的存储装置。作为一种计算机存储介质的存储器1005中可以包括动态磁场控制程序。
在一实施例中,终端还可以包括麦克风、扬声器、RF(Radio Frequency,射频)电路,传感器、音频电路、无线模块等等。其中,传感器比如图像传感器、距离传感器、加速度传感器以及其他传感器,在此不再赘述。
本领域技术人员可以理解,图1中示出的终端结构并不构成对终端的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图2所示,图2是本申请动态磁场控制方法第一实施例的流程示意图,在本实施例中,所述动态磁场控制方法包括:
步骤S10,接收输入的初始参数;
为了实现动态磁场治疗骨科疾病的效果,就需要一台工作稳定、参数范围灵活可调、 磁场参数大的动态磁场控制器。动态磁场控制器的工作原理主要是将脉冲电流通入负载线圈,在负载线圈周围产生所需的动态磁场。动态磁场控制器主要包括2个部分,一是负载线圈,二是脉冲大电流的产生电路。
就负载线圈而言,在接收相关人员输入的初始参数之前,需要先获取负载线圈的固有频率,将负载线圈的固有频率作为初始参数的部分参数由相关人员手动输入或由动态磁场控制***获取负载线圈的固有频率之后自动输入至动态磁场控制***中的参数输入模块。
其中,初始参数至少包括初始射频信号频率、预设扫频带宽和预设扫频点数,初始射频信号频率等于负载线圈的固有频率。需要说明的是,负载线圈的固有频率是根据负载线圈的形状、绕制形式以及线圈的股数等线圈参数计算获取得到的负载线圈的理论频率。
线圈参数决定着负载线圈的信号频率,负载线圈加工后的实际频率会与线圈仿真计算中的理论频率有一定差距,同时,在实际应用环境中也会有差异。这是导致来自信号发生模块根据负载线圈的理论频率发出的的射频信号在传输到负载线圈时负载线圈的信号功率会产生大量损耗的根本原因。
一方面,负载线圈可以根据其所作用的表面及结构的特殊性不断改进设计,从而在传统的动态磁场控制装置更换了新式的负载线圈之后,由于传统的动态磁场控制装置中的信号发生模块所产生的频率信号是一个固定频率信号(负载线圈的理论频率),这会造成信号发生模块发射信号的频率与负载线圈的频率有可能不能完全匹配,进而导致负载线圈的信号功率进一步被损耗。
另一方面,即使不更换新的负载线圈,负载线圈的信号频率也是非常容易受到外界磁场环境等其他条件的影响,造成负载线圈的信号频率总是处于波动的状态,这就导致了负载线圈的信号功率的损耗难以避免,因此亟需本申请提供一种自动适应负载线圈的信号频率的方法和对应的装置。
步骤S20,根据所述初始参数,输出初始射频信号至负载线圈;
具体地,所述步骤S20,包括:
步骤a,根据所述预设扫频点数,将所述预设扫频带宽划分为与所述预设扫频点数数量相同的信号频段;
步骤b,以所述初始射频信号频率为中心对所述信号频段粗扫描以得到初始射频信号;
步骤c,输出所述初始射频信号至负载线圈。
需要说明的是预设扫频带宽和预设扫频点数可以根据实际需要进行设置和输入。初始参数分别对应的优选的范围为:
初始射频信号频率的频率范围为:0.1Hz~3GHz;
预设扫频带宽范围为:0.1Hz~1GHz;
预设扫频点数范围为:1~10000个。
在预设扫频带宽范围内,先按照扫频点数将扫频带宽划分为与扫频点数相同数量的信号频段,然后以初始射频信号的频率(负载线圈的理论频率)为中心频率在预设扫频带宽范围内进行左右扫频,并且在左右扫频的过程中可以输出不连续的在频率范围为:0.1Hz~3GHz的初始射频信号,具体地,以分段后的每段相邻信号频段的分界点为界限,在该界限上预设的短时间内不输出或者中断初始射频信号的输出,从而可以输出并直观地呈现不连续的初始射频信号以区分不同的信号频段,有利于判断当负载线圈反射的信号电压最小时对应的初始射频信号的信号频段。最后将初始射频信号传递至至负载线圈。
在一实施例中,所述步骤S30,包括:
步骤d,确定所述反射信号中电压值最小的目标反射信号;
步骤e,根据所述目标反射信号,调整所述初始参数以使所述初始射频信号和所述负载线圈的频率处于谐振状态。
在这一实施例中,因为初始射频信号对应一定的频率范围,所以基于初始射频信号反馈的反射信号也对应一定的频率范围,即这里的反射信号并不固定频率的信号。而是一定 频率范围的各个信号的集合。
可以通过信号监测模块对反射信号中的各个频率的信号的电压值进行实时的监控,对反射信号集合中各个信号电压值进行数值的大小比较,从而确定反射信号中电压值最小的目标反射信号。
即具体地,所述确定所述反射信号中电压值最小的目标反射信号的步骤,包括:
获取所述反射信号中各个信号的电压值;
对所述各个信号的电压值进行数值大小比较以确定反射信号中电压值最小的信号,将所述电压值最小的信号作为目标反射信号。
因为反射功率大小和监控到反射信号的电压值呈正相关,通过一定算法得到两者的拟合关系,确定反射信号中的电压值最小的目标反射信号可以使得负载线圈最大化吸收初始射频信号的全部信号功率,也即负载线圈的频率与初始射频信号的频率处于谐振状态。
在这一实施例中,通过确定反射信号中电压值最小的目标反射信号,就能够高效且低成本地确定初始射频信号和所述负载线圈的频率是否处于谐振状态,进而调整初始参数以实现自适应地将初始射频信号固定在和所述负载线圈的频率相同的频率,最大限度地减少负载线圈输出功率的损耗。
步骤S30,获取所述负载线圈基于所述初始射频信号反馈的反射信号;
在初始射频信号到达负载线圈时,负载线圈会产生动态磁场,在一般情况下,负载线圈并不能将初始射频信号完全吸收,因为负载线圈的信号频率或者产生动态磁场的频率与初始射频信号的频率往往不一致,所以会反射部分射频信号,即反射信号。
步骤S40,根据所述反射信号,调整所述初始参数以使所述初始射频信号和所述负载线圈的频率处于谐振状态。
确定反射信号中电压值最小的目标反射信号,从而追根溯源再确定产生反射信号的初始射频信号对应的输出频率,将这一输出频率作为新的初始参数并保持这一初始参数,就能够将初始射频信号和所述负载线圈的频率处于谐振状态,也即实现了初始射频信号的频率与负载线圈的频率的相等的匹配。
就脉冲大电流的产生电路而言,传统的动态磁场控制装置一般需要人工多次测试输入信号的频率以达到谐振状态,进一步输入发生信号参数,还需另设数据监测装置,这就导致了动态磁场要达到比较理想的人体骨科疾病治疗状态就需要耗费大量的时间进行调试,效率较为低下且难以保持稳定的动态磁场状态。
在本实施例中,动态磁场控制方法可以应用于动态磁场控制装置。
本申请中的动态磁场控制装置通过接收输入的预设信号参数,其中,所述预设信号参数包括:信号频率范围、扫频带宽以及扫频点数的步骤以及根据预设自适应规则,调整所述预设信号参数以得到目标信号参数的步骤,能够自适应线圈负载端的输出频率,从而使得动态磁场控制的整体***处于谐振状态,进而减少信号功率的损失,保证产生稳定的动态磁场。通过根据目标信号参数得到待校正信号,并调整所述待校正信号以确定目标信号的步骤,能够产生稳定且为治疗骨科疾病所需的电信号,通过输出所述目标信号,以得到所述目标信号的峰值电流和峰值功率关于时间的变化曲线的步骤以及当接收到预设的数据导出指令,输出所述变化曲线的步骤,便于后期进行数据统计分析,从而对设备进一步升级和优化。整体来看,本申请相较于传统的动态磁场控制装置所应用的动态磁场控制方法,产生稳定的动态磁场更加地高效,也更加地稳定、安全,确保达到骨科疾病所需频率的动态磁场,从而具备了良好有效的治疗效果。
此外,如图3所示,图3为本申请动态磁场控制装置一实施例的磁场控制装置结构示意图,本申请还提出一种动态磁场控制装置100,所述动态磁场控制装置100包括:
电脑控制端1、信号同步装置2、信号激励源3、功率放大器4、信号耦合器5、信号监测装置6以及负载线圈7。
其中,所述电脑控制端1用于接收相关人员输入的各种信号参数,包括信号频率、带 宽、占空比、采样参数、预期电流等参数,将各种信号参数传输到信号同步装置2以及信号激励源3。电脑控制端1可以安装与动态磁场控制装置100配套的监测软件,并将配置了监测软件的电脑控制端作为动态磁场控制装置100的控制模块。
信号同步装置2用于将产生的高频载波分别传输到信号激励源3和信号监测装置6,高频载波具有较高能量,可以穿透人体骨骼。具体地,信号同步装置2产生的载波的波形可以为矩形波、锯齿波、三角波、尖峰波、阶梯波等,频率为0.1Hz-3GHz可通过电脑控制端1调节。
信号激励源3用于产生原始信号,并与信号同步装置2产生的载波进行调制,将调制后的射频信号传输到功率放大器4中。其中,信号激励源3产生的原始信号波形可以为任意波形,频率为0.1Hz-3GHz可调,占空比为0-100%可调,峰值电流0-100A可调。频率与峰值电流(幅值)可组合调节,产生频率与峰值规则或不规则的波形信号。上述参数的范围可通过电脑控制端1调节。
功率放大器4将信号功率按照预设比率进行放大并传输到信号耦合器5;信号耦合器5将该信号传输到负载线圈7,同时采集一部分信号传输到信号监测装置6。
信号监测装置6将监测结果反馈到电脑控制端1。信号监测装置6可以作为动态磁场控制装置100的数据采集监测模块。
电脑控制端1、信号同步装置2、信号激励源3、功率放大器4、信号耦合器5、信号监测装置6以及负载线圈7之间通过同轴电缆线进行电连接。
本实施例中的动态磁场控制装置具有功率大、动态响应快、准确度高的优点。该动态磁场控制装置用于产生动态磁场,并与外部静态磁场复合,可用于骨科治疗。可在骨骼内部待治疗区域产生振动、声波、电流等可控的物理效应,促进骨重建和骨修复。
具体地,在一实施例中,组成动态磁场控制装置100的上述各种装置之间的连接关系为:
信号同步装置2的输入端11与电脑控制端1的第一输出端9相连,信号同步装置2的第一输出端13与信号激励源3的第一输入端15相连,信号同步装置2的第二输出端12与信号监测装置6的第一输入端24相连。
信号激励源3的第二输入端14与所述电脑控制端1的第二输出端10相连,信号激励源3的输出端16与功率放大器4的输入端17相连;功率放大器4的输出端18与信号耦合器5的输入端19相连。
信号耦合器5的耦合端21和信号监测装置6的第二输入端22相连,信号耦合器5的输出端20和负载线圈7相连;信号监测装置6的输出端23与电脑控制端1的输入端8相连。
其中,可以参照图4,图4为本申请动态磁场控制装置涉及的射频信号传递过程示意图,如图所示,用于负载线圈产生动态磁场的射频信号从产生到转化为动态磁场的过程按照序号顺序依次为:
①通过电脑控制端1的监测软件输入信号的各种参数,将各种信号参数传递给信号同步装置2以及信号激励源3;
②信号同步装置2以及信号激励源3协同调和产生调制后的射频信号,将射频信号传输给功率放大器4;信号同步装置2产生部分载波会传输到信号监测装置6;
③功率放大器4按照预设比率等比放大射频信号的功率,将放大后的射频信号传输至信号耦合器5;
④信号耦合器5对放大后的射频信号进行耦合分配射频信号功率,将耦合后的射频信号最后传输给负载线圈7;
⑤负载线圈7将射频信号根据电磁感应原理产生动态磁场;在实际情况下,负载线圈7会将其中的一部分射频信号反射出来,这部分反射信号通过信号耦合器传递到信号监测装置6。
需要说明的是,动态磁场控制装置100为了能产生稳定的动态磁场,需要自动适应负载线圈7,使动态磁场控制装置100整体处于谐振的状态,即负载线圈7产生动态磁场的频率(负载线圈7中射频信号的频率)与射频信号的频率接近或相同。
动态磁场控制装置100自适应频率的过程可以参照上述负载线圈产生动态磁场的射频信号从产生到转化为动态磁场的过程以及动态磁场控制方法作进一步说明:
在动态磁场控制装置100刚启动时会根据相关人员输入至电脑控制端1各种信号参数产生不稳定的动态磁场,此时就会启动电脑控制端1的监测软件中的动态磁场功能。
具体来说,在动态磁场开始之后,会通过信号监测装置6实时监测负载线圈反馈的反射信号,具体地,可以监测到反射信号的电压值并将电压值传输到电脑控制端1,当该电压值为零或接近零时说明动态磁场控制装置100处于谐振状态保留当前频率的射频信号不需要动态磁场。而当该电压值与零电压值差距较大时,就需要先将刚开始输入的扫频带宽进行分段扫描,划分为预设段数,通过二分法快速确定该电压值为零或接近零对应的分段,再在该分段通过确认信号单调性的方法,确定不具有单调性的信号频率,保留该信号频率,并通过电脑控制端1将该信号频率传递到信号激励源3,从而使信号激励源3只产生该信号频率的射频信号,从而在该射频信号传输到负载线圈7时就能够产生稳定的动态磁场,与外部静态磁场配合,展开对人体骨科疾病的治疗。
在动态磁场过程中在电脑控制端会显示实时频率,待动态磁场结束后会显示最终得到的固定频率。
另外,在动态磁场控制装置100内部传递信号和产生动态磁场的过程中,可以将信号监测装置6监测采集的信号通过电脑控制端1进行数据导出,导出的形式不限于离散点、表格、频谱图、柱状图等。
本实施例只需在电脑的软件界面输入相关信号参数,便可控制动态磁场控制装置进行动态磁场,并产生预期所需的电流信号,同时对电流信号进行实时采集监测,并可在信息采集结束后,将采集到的信息以离散点等形式导出,便于后期进行数据统计分析。通过本申请中的动态磁场控制装置能够自适应地稳定工作,并灵活地调节参数,快速响应参数产生动态磁场,对骨科疾病患者的治疗效果好且效率高。
为了便于对本申请动态磁场控制方法以及动态磁场控制装置的理解和应用,在此提供一种简要但完整的动态磁场控制装置的工作流程实施例:
①启动电脑控制端1,便可以自动启动动态磁场控制装置100内的其他相关设备;
②在电脑控制端1打开所述监测软件;
③将动态磁场控制装置100的信号耦合器5的耦合端21置空,信号耦合器隔离端(用于传递负载线圈反馈的反射信号,未标出)与信号监测装置6相连;
④在监测软件的动态磁场功能界面依次输入动态磁场控制装置100的负载线圈7的信号频率范围、扫频带宽和扫频点数等参数,然后点击频率自适应按钮,进行频率自适应。在频率自适应过程中,监测软件的频率扫描显示窗口实时显示频率扫描结果。
⑤待频率自适应结束,将动态磁场控制装置100的信号耦合器的耦合端21与信号监测装置6相连,隔离端置空;
⑥在监测软件的控制模块界面依次输入目标信号脉宽、目标信号占空比、目标运行时间和目标峰值电流等参数,再点击参数确认按钮;
⑦在监测软件的控制模块界面实时峰值电流窗口观测电流值,点击电流增加或电流减小按钮调节当前电流,以达到目标峰值电流,最后再点击电流确认按钮;
⑧在监测软件的数据采集监测模块界面点击输出采集按钮,可以实时观测到峰值电流和峰值功率关于时间的变化曲线;
⑨在监测软件数据采集监测模块界面点击鼠标右键,再点击导出按钮,可选择不同的数据导出方式,导出数据;
⑩导出的数据以离散点的形式存在,包含采集点、实时峰值电流和实时峰值功率等数 据,可根据需求,对所得数据进行统计分析;待数据采集、导出完成,点击取消采集按钮,再点击停止测试按钮,退出监测软件程序。最后关闭动态磁场控制装置100的相关设备或直接通过电脑控制端1关闭动态磁场控制装置100整体。
本申请用于骨科治疗的动态磁场控制装置只需在电脑软件控制界面输入相关参数,便可控制动态磁场控制装置进行动态磁场,并产生预期输出电流信号,同时对输出电流信号进行实时采集监测,并可在信息采集结束后,将采集到的信息以离散点的形式导出,便于后期进行数据统计分析。通过本申请软件的控制,动态磁场控制装置能够稳定工作,并灵活地调节参数,快速响应。
此外,如图5所示,图5为本申请动态磁场控制方法涉及的虚拟装置框架结构示意图。本申请还提出一种动态磁场控制装置,所述动态磁场控制装置包括:
控制模块A10,用于接收输入的预设信号参数;
频率自适应模块A20,用于根据目标信号参数得到待校正信号,并调整所述待校正信号以确定目标信号;根据预设自适应规则,调整所述预设信号参数以得到目标信号参数;
数据输出模块A30,用于输出所述目标信号,以得到所述目标信号的峰值电流和峰值功率关于时间的变化曲线;当接收到预设的数据导出指令,输出所述变化曲线。
在一实施例中,所述频率自适应模块A20,还用于:
根据所述预设信号参数输出初始信号,并获取与所述初始信号对应的反射信号;
确定所述反射信号中电压值最小的特定信号,确定所述特定信号对应的目标信号频率;
将所述目标信号频率输入至所述预设信号参数中,并屏蔽所述预设信号参数中的信号频率范围、扫频带宽以及扫频点数以得到目标信号参数。
在一实施例中,所述频率自适应模块A20,还用于:
接收输入的目标信号脉宽、目标信号占空比以及目标峰值电流,根据所述目标信号脉宽、所述目标信号占空比和所述目标峰值电流调整所述待校正信号以确定目标信号。
本申请动态磁场控制装置具体实施方式与上述动态磁场控制方法各实施例基本相同,在此不再赘述。
此外,本申请还提出一种磁疗设备,所述磁疗设备包括存储器、处理器及存储在存储器上并可在处理器上运行的动态磁场控制程序,所述处理器执行所述动态磁场控制程序时实现如以上实施例所述的动态磁场控制方法的步骤。
本申请磁疗设备具体实施方式与上述动态磁场控制方法各实施例基本相同,在此不再赘述。
此外,本申请还提出一种计算机可读存储介质,其中,所述计算机可读存储介质包括动态磁场控制程序,所述动态磁场控制程序被处理器执行时实现如以上实施例所述的动态磁场控制方法的步骤。
本申请计算机可读存储介质具体实施方式与上述动态磁场控制方法各实施例基本相同,在此不再赘述。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是电视机,手机,计算机,动态磁场控制装置,车机,或者网络设备等)执行本申请各个实施例所述的方法。
在本申请中,术语“第一”“第二”“第三”“第四”“第五”仅用于描述的目的,而不能理解为指示或暗示相对重要性,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,本申请保护的范围并不局限于此,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改和替换,这些变化、修改和替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (15)

  1. 一种动态磁场控制方法,其中,所述动态磁场控制方法包括以下步骤:
    接收输入的初始参数;
    根据所述初始参数,输出初始射频信号至负载线圈;
    获取所述负载线圈基于所述初始射频信号反馈的反射信号;
    根据所述反射信号,调整所述初始参数以使所述初始射频信号和所述负载线圈的频率处于谐振状态。
  2. 如权利要求1所述的动态磁场控制方法,其中,所述初始参数包括:初始射频信号频率、预设扫频带宽和预设扫频点数;所述根据所述初始参数,输出初始射频信号至负载线圈的步骤,包括:
    根据所述预设扫频点数,将所述预设扫频带宽划分为与所述预设扫频点数数量相同的信号频段;
    以所述初始射频信号频率为中心对所述信号频段粗扫描以得到初始射频信号;
    输出所述初始射频信号至负载线圈。
  3. 如权利要求2所述的动态磁场控制方法,其中,所述根据所述反射信号,调整所述初始参数以使所述初始射频信号和所述负载线圈的频率处于谐振状态的步骤,包括:
    确定所述反射信号中电压值最小的目标反射信号;
    根据所述目标反射信号,调整所述初始参数以使所述初始射频信号和所述负载线圈的频率处于谐振状态。
  4. 如权利要求3所述的动态磁场控制方法,其中,所述确定所述反射信号中电压值最小的目标反射信号的步骤,包括:
    获取所述反射信号中各个信号的电压值;
    对所述各个信号的电压值进行数值大小比较以确定反射信号中电压值最小的信号,将所述电压值最小的信号作为目标反射信号。
  5. 如权利要求3所述的动态磁场控制方法,其中,所述根据所述目标反射信号,调整所述初始参数以使所述初始射频信号和所述负载线圈的频率处于谐振状态的步骤,包括:
    根据所述目标反射信号,确定所述初始射频信号中的目标射频信号;
    确定所述目标射频信号对应的目标射频信号频率;
    将所述目标射频信号频率作为所述初始参数,根据所述初始参数,输出所述初始射频信号至所述负载线圈,以使所述初始射频信号和所述负载线圈的频率处于谐振状态。
  6. 如权利要求5所述的动态磁场控制方法,其中,所述根据所述目标反射信号,确定所述初始射频信号中的目标射频信号的步骤,包括:
    根据所述目标反射信号,确定所述目标反射信号对应的目标信号频段;
    在所述目标信号频段进行细扫描,以确定所述初始射频信号中的目标射频信号。
  7. 如权利要求6所述的动态磁场控制方法,其中,所述在所述目标信号频段进行细扫描,以确定所述初始射频信号中的目标射频信号的步骤,包括:
    在所述目标信号频段进行细扫描,根据信号单调性规则确定所述初始射频信号中的目标射频信号。
  8. 一种动态磁场控制装置,其中,所述动态磁场控制装置包括电脑控制端、信号同步装置、信号激励源、功率放大器、信号耦合器、信号监测装置以及所述负载线圈。
  9. 如权利要求8所述的动态磁场控制装置,其中,所述信号同步装置的输入端与电脑控制端的第一输出端相连,所述信号同步装置的第一输出端与信号激励源的第一输入端相连,所述信号同步装置的第二输出端与信号监测装置的第一输入端相连。
  10. 如权利要求9所述的动态磁场控制装置,其中,所述信号激励源的第二输入端与所述电脑控制端的第二输出端相连,所述信号激励源的输出端与所述功率放大器的输入端相连;所述功率放大器的输出端与所述信号耦合器的输入端相连。
  11. 如权利要求10所述的动态磁场控制装置,其中,所述信号耦合器的耦合端和所述信号监测装置的第二输入端相连,所述信号耦合器的输出端和所述负载线圈相连;所述信号监测装置的输出端与所述电脑控制端的输入端相连。
  12. 如权利要求8所述的动态磁场控制装置,其中,所述电脑控制端、所述信号激励源、所述信号同步装置、所述功率放大器、所述信号耦合器、所述信号监测装置以及所述负载线圈之间通过同轴电缆线连接;
    所述信号激励源用于输出原始信号,所述信号同步装置用于输出载波,所述载波用于与所述原始信号形成调制后的射频信号;
    所述射频信号依次通过所述信号激励源、所述功率放大器、所述信号耦合器传输至所述负载线圈。
  13. 如权利要求12所述的动态磁场控制装置,其中,所述动态磁场控制装置用于接收输入的预设信号参数;
    根据预设自适应规则,调整所述预设信号参数以得到目标信号参数;
    根据目标信号参数得到待校正信号,并调整所述待校正信号以确定目标信号;
    输出所述目标信号,以得到所述目标信号的峰值电流和峰值功率关于时间的变化曲线。
  14. 一种磁疗设备,其中,所述磁疗设备包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的动态磁场控制程序,其中:所述动态磁场控制程序被所述处理器执行时实现如权利要求1至7中任一项所述的动态磁场控制方法的步骤。
  15. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有动态磁场控制程序,所述动态磁场控制程序被处理器执行时实现如权利要求1至7中任一项所述的动态磁场控制方法的步骤。
PCT/CN2023/084073 2022-03-30 2023-03-27 动态磁场控制方法、装置、计算机可读存储介质及磁疗设备 WO2023185733A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210326911.8A CN114844516B (zh) 2022-03-30 2022-03-30 频率自适应控制方法、***、磁疗设备及可读存储介质
CN202210326911.8 2022-03-30
CN202210323630.7 2022-03-30
CN202210323630.7A CN114832237A (zh) 2022-03-30 2022-03-30 动态磁场发生方法、装置、设备及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2023185733A1 true WO2023185733A1 (zh) 2023-10-05

Family

ID=88199371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084073 WO2023185733A1 (zh) 2022-03-30 2023-03-27 动态磁场控制方法、装置、计算机可读存储介质及磁疗设备

Country Status (1)

Country Link
WO (1) WO2023185733A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090082614A1 (en) * 2007-09-26 2009-03-26 Peter Feucht Apparatus for producing fields for treatment of bodily parts of living organisms for healing purposes
CN102626539A (zh) * 2012-04-18 2012-08-08 广州三业科技有限公司 便携式理疗仪
CN103893915A (zh) * 2014-03-13 2014-07-02 天津大学 一种生物自反馈的睡眠监护磁疗仪
CN112827066A (zh) * 2021-02-23 2021-05-25 江西脑调控技术发展有限公司 一种多功能经颅刺激磁疗装置
CN113893458A (zh) * 2021-09-18 2022-01-07 西安天通数字科技有限公司 一种信号调控装置以及射频美容仪
CN114844516A (zh) * 2022-03-30 2022-08-02 深圳磁利晟科技有限公司 频率自适应控制方法、***、磁疗设备及可读存储介质
CN114832237A (zh) * 2022-03-30 2022-08-02 深圳磁利晟科技有限公司 动态磁场发生方法、装置、设备及计算机可读存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090082614A1 (en) * 2007-09-26 2009-03-26 Peter Feucht Apparatus for producing fields for treatment of bodily parts of living organisms for healing purposes
CN102626539A (zh) * 2012-04-18 2012-08-08 广州三业科技有限公司 便携式理疗仪
CN103893915A (zh) * 2014-03-13 2014-07-02 天津大学 一种生物自反馈的睡眠监护磁疗仪
CN112827066A (zh) * 2021-02-23 2021-05-25 江西脑调控技术发展有限公司 一种多功能经颅刺激磁疗装置
CN113893458A (zh) * 2021-09-18 2022-01-07 西安天通数字科技有限公司 一种信号调控装置以及射频美容仪
CN114844516A (zh) * 2022-03-30 2022-08-02 深圳磁利晟科技有限公司 频率自适应控制方法、***、磁疗设备及可读存储介质
CN114832237A (zh) * 2022-03-30 2022-08-02 深圳磁利晟科技有限公司 动态磁场发生方法、装置、设备及计算机可读存储介质

Similar Documents

Publication Publication Date Title
CN103529291B (zh) 用于测量高频医疗设备产生的信号的频率的***和方法
CN114832237A (zh) 动态磁场发生方法、装置、设备及计算机可读存储介质
EP2289451B1 (en) Microwave ablation with tissue temperature monitoring
US11458327B2 (en) High-power pulsed electromagnetic field applicator system
CN105213174A (zh) 一种微波针灸治疗仪
CN107317484A (zh) 通用型有源手术器械功率发生器及其控制方法
CN107748522A (zh) 一种超短波治疗仪
WO2023083390A1 (zh) 一种微波理疗穴灸器及其使用方法
CN106730426B (zh) 一种相控阵高强度聚焦超声驱动电路
WO2023185733A1 (zh) 动态磁场控制方法、装置、计算机可读存储介质及磁疗设备
CN104434300A (zh) 用于提高电外科发生器效率的***和方法
CN105615992B (zh) 用于多频询问电外科仪器的寄生参数的电外科***
CN114844516B (zh) 频率自适应控制方法、***、磁疗设备及可读存储介质
CN209137767U (zh) 一种微波功率源和治疗设备
CN109091760A (zh) 一种微波功率源、治疗设备及微波信号生成方法
CN108697891B (zh) 利用微波信号的脑刺激装置及方法
CN213249640U (zh) 多通道射频消融器
CN115568931A (zh) 一种生物组织焊接***
CN110179489A (zh) 高压发生电路及电子计算机断层扫描设备
CN205145091U (zh) 一种微波针灸治疗仪
CN205514893U (zh) 电极控制装置和电磁刀手术***
CN210044701U (zh) 一种电子针灸治疗仪
CN208297615U (zh) 一种微波产品辐射测试装置
CN113456216B (zh) 一种基于微波加热的快速止血方法和***
CN101837169B (zh) 浅表组织超声热疗***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778100

Country of ref document: EP

Kind code of ref document: A1