WO2023185592A1 - 发动机罩外板的回弹控制方法、翻边模具及车辆 - Google Patents

发动机罩外板的回弹控制方法、翻边模具及车辆 Download PDF

Info

Publication number
WO2023185592A1
WO2023185592A1 PCT/CN2023/083118 CN2023083118W WO2023185592A1 WO 2023185592 A1 WO2023185592 A1 WO 2023185592A1 CN 2023083118 W CN2023083118 W CN 2023083118W WO 2023185592 A1 WO2023185592 A1 WO 2023185592A1
Authority
WO
WIPO (PCT)
Prior art keywords
flanging
outer panel
hood outer
area
engine hood
Prior art date
Application number
PCT/CN2023/083118
Other languages
English (en)
French (fr)
Inventor
许天宇
李天奇
Original Assignee
浙江极氪智能科技有限公司
浙江吉利控股集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江极氪智能科技有限公司, 浙江吉利控股集团有限公司 filed Critical 浙江极氪智能科技有限公司
Publication of WO2023185592A1 publication Critical patent/WO2023185592A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/10Die sets; Pillar guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D19/00Flanging or other edge treatment, e.g. of tubes
    • B21D19/08Flanging or other edge treatment, e.g. of tubes by single or successive action of pressing tools, e.g. vice jaws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/88Making other particular articles other parts for vehicles, e.g. cowlings, mudguards

Definitions

  • the invention relates to the technical field of vehicle body molding, and in particular to a springback control method for an hood outer panel, a flanging mold and a vehicle.
  • the hood outer panel is one of the main parts of the front of a passenger car; due to its strong shape and pedestrian protection attributes, it is also an important mid- and long-term covering part (especially the aluminum alloy hood outer panel). Long-lead parts at the end) are the key parts for CAS review and synchronous engineering work in the early stage of vehicle development.
  • stamping SE analysis in the CAS stage there is huge rebound in the outer panel of the hood, as shown in Figure 2; the maximum rebound at the rear is 27mm, the maximum rebound at both ends is -28mm, and the height difference reaches 55mm, which is different from the aluminum plate. related to material properties.
  • the springback problem of the hood outer panel is a common stamping quality problem, which is generally solved by springback compensation. Since the elastic modulus of the aluminum plate is 1/3 of the steel plate, if the above-mentioned springback problem is solved through springback compensation, because the local compensation amount is large and the compensation directions at both ends and the middle are opposite, the curvature of the processed die surface will be different from that of the product. Big changes, because the curvature of the hood outer panel is the main factor affecting the amount of springback, each time the compensated parts will produce new and different springback results, this is also the difficulty in rectifying the springback problem of the aluminum hood outer panel. location.
  • the purpose of the present invention is to provide a springback control method, a flanging mold and a vehicle for the hood outer panel, so as to improve the problem of huge rebound after the hood outer panel is flanged.
  • the present invention provides a rebound control method for an engine hood outer panel, which includes:
  • the flanging punch and the upper pressing plate are respectively used to press the area on the hood outer panel except for the flanging area, and the flanging concave die and the full circumferential press are respectively used.
  • the material plate compresses the flanging area on the outer panel of the engine hood, so that the material in the flanging area is clamped by the flanging die and the full-circumference press plate, and moves along the flange die and the full-circumference press plate.
  • the gap gradually flows into the flanging punch and the flanging die to form a flange.
  • it also includes using three-dimensional modeling software to analyze the curvature of the hood outer panel, and adjusting the curvature radius so that the curvature radius of any area on the hood outer panel is smaller than the first critical value, or make the diameter of the area on the hood outer plate with a curvature radius greater than the first critical value smaller than the preset value.
  • the first critical value is 9000mm; the preset value is 150mm.
  • the curvature radius of the area on the hood outer plate that is greater than the first critical value is less than the second critical value.
  • the second critical value is 10000mm.
  • it also includes providing a main ridge line and an auxiliary ridge line on the hood outer panel, and the main ridge lines are two and are about the longitudinal central axis of the hood outer panel. Arranged symmetrically, the auxiliary ridge line is located between the two main ridge lines.
  • the distance L1 between the two main ridge lines is ⁇ 900mm; there is one auxiliary ridge line, and the auxiliary ridge line is located in the longitudinal direction of the hood outer panel. On the central axis.
  • the distance L1 between the two main ridge lines is ⁇ 900mm; there are two auxiliary ridge lines, and the two auxiliary ridge lines are related to the hood outer panel
  • the longitudinal central axis is symmetrically arranged, and the distance L2 between the two auxiliary ridge lines is ⁇ 600mm.
  • the present invention also provides a flanging mold, which includes an upper mold and a lower mold;
  • the upper mold includes:
  • a flanging die is annular, and the contour shape of the flanging die is the same as the contour shape of the flanging area of the edge of the hood outer panel;
  • An upper pressing plate is located in the area surrounded by the flanging die.
  • the upper pressing plate has the same contour shape as the engine hood outer panel.
  • the upper pressing plate is relative to The concave mold is movable up and down;
  • the lower mold includes:
  • a flanging punch has the same contour shape as the hood outer panel;
  • a full-circumference press plate which is arranged around the edge of the flanging punch, and is movable up and down relative to the flanging punch;
  • a driving mechanism is used to drive the upper mold and the lower mold to perform relative opening and closing movements.
  • the flanging punch is fixedly connected to the lower mold base
  • the full-circumferential pressing plate is movably connected to the lower mold base
  • the upper mold and the lower mold are in a closed state.
  • the present invention also provides a vehicle, including:
  • An engine hood is installed above the engine compartment of the vehicle body, and the engine hood includes an outer panel and an inner panel;
  • the radius of curvature of any area on the outer panel of the hood is less than the first critical value, or the diameter of the area on the outer panel with a radius of curvature greater than the first critical value is less than the preset value;
  • the outer panel is provided with main ridge lines and auxiliary ridge lines.
  • the auxiliary ridge lines are located on the two main ridge lines. between;
  • a flange is provided on the edge of the outer panel, and the flange is formed using the following method: using a flanging punch and an upper pressing plate to press the area on the hood outer panel except for the flange area, and using The flanging die and the full-circumference press plate press the flange area on the outer panel of the engine hood, so that the material in the flange area is clamped by the flange die and the full-circumference press plate and moves along the flange.
  • the gap between the female mold and the circumference pressing plate gradually flows into the space between the flanging punch and the flanging female mold to form a flange.
  • the flanging mold structure of the present invention is designed as a full-circumference pressing flanging structure, so that the material-deficient and over-material flanging areas on the front and rear sides of the engine hood are flanged under the action of the full-circumference pressing plate to avoid free flanging.
  • the huge rebound caused by the release of transverse shear stress helps to improve the assembly accuracy of the engine hood, reduce the assembly gap, and improve the appearance quality of the entire vehicle; in addition, on the premise of ensuring the family characteristics of the styling, the present invention reduces the aluminum
  • the plan of increasing the curvature radius of the front window of the hood outer panel, increasing the ridge line, and heightening the height and range of the main ridge line can reduce the rebound amount to within the controllable risk range of the manufacturing end, and eliminate the wave problem near the main ridge line.
  • Figure 1 is a structural schematic diagram of an engine hood outer panel
  • Figure 2 is a schematic diagram of the rebound simulation of the engine hood outer panel shown in Figure 1.
  • the dark area in the figure represents the area with severe rebound, and the positive and negative rebound values indicate the rebound direction;
  • Figure 3 is a schematic diagram of the curvature radius distribution of an engine hood outer panel before structural optimization.
  • the dark area in the figure represents the area with a curvature radius greater than 9000mm;
  • Figure 4 is a schematic diagram of the curvature radius distribution of the engine hood outer panel after the mechanism is optimized according to the embodiment of the present invention.
  • the dark area in the figure represents the area with a curvature radius greater than 9000mm;
  • Figure 5 is a schematic structural diagram of an engine hood outer panel with auxiliary ridges provided by one embodiment of the present invention
  • Figure 6 is a schematic structural diagram of an engine hood outer panel with auxiliary ridges provided by another embodiment of the present invention.
  • Figure 7 is a schematic structural diagram of a flanging mold provided by an embodiment of the present invention. The figure only shows the flanging mold with the engine hood outer panel. The faces of the mold where they meet;
  • Figure 8 is a schematic diagram of the positioning structure of the hood outer panel flanging process provided by the embodiment of the present invention.
  • Figure 9 is a schematic diagram of the flanging mold provided by the embodiment of the present invention before mold closing;
  • Figure 10 is a schematic diagram of the partial area of the corner during the closing process of the flanging mold provided by the embodiment of the present invention.
  • Figure 11 is a schematic diagram of the partial area of the corner after the flanging mold is closed according to the embodiment of the present invention.
  • Figure 12 is a schematic diagram of the main ridge heightening area distribution provided by the embodiment of the present invention.
  • Fig. 13 is a cross-sectional view taken along line A-A in Fig. 11 .
  • the expressions indicating directions such as “longitudinal”, “transverse” and “vertical” have the same meanings as the general definitions of vehicle directions in this field.
  • the “longitudinal” refers to the direction of the vehicle.
  • the length direction is the X direction
  • the “transverse direction” It refers to the width direction of the vehicle, which is the Y direction
  • the “vertical direction” refers to the height direction of the vehicle, which is the Z direction.
  • the present invention provides a rebound control method for the hood outer panel 10.
  • the outline of the hood outer panel 10 used in this embodiment is as shown in Figure 1, and its edges are The outline includes a front arc area 101 located on the front side; a rear arc area 102 located on the rear side; front arc areas 103 located on both sides; and between the front arc area 103 and the rear arc area 102 The sharp point 104; and the lamp mouth 105 located between the front arc area 101 and the front arc area 103.
  • the present invention mainly improves from the following two aspects:
  • the flanging mold structure of the aluminum engine hood outer panel 10 is designed as a full-circumference press flanging structure; the material-deficient and over-material flanging areas 11 on the front and rear sides of the hood are turned under the action of the full-circumference press plate 32 To avoid free flanging, the release of transverse shear stress causes a huge amount of springback in the flanging process piece of the hood outer panel 10, reducing the amount of springback from 55mm to 10mm.
  • the present invention uses three-dimensional modeling software to perform curvature analysis on the hood outer panel 10, and adjusts the curvature radius so that the curvature radius of any area on the hood outer panel is less than the first critical value. , or make the diameter of the area on the hood outer panel 10 with a curvature radius greater than the first critical value smaller than the preset value.
  • the hood outer panel 10 is generally designed to be large and flat, especially near the front windshield at the rear, which has a large profile and radius of curvature.
  • the radius of curvature Rx at the rear and both sides , Ry is generally 10000mm-30000mm.
  • the radius of curvature of the hood outer panel 10 is the main factor that affects the generation of rebound.
  • the hood outer panel 10 should be designed with a smaller curvature radius as much as possible, especially the position of the rear windshield; as shown in the figure As shown in 4, the ideal curvature standard of the hood outer panel 10 parts defined in the present invention is as follows:
  • the diameter of the area that does not meet condition (1) is less than 150mm; at the same time, these areas
  • the curvature radius of the domain Rx and Ry ⁇ 10000mm is optimal.
  • the outline of the above-mentioned area that does not meet condition (1) is not necessarily a standard circle.
  • the diameter of the area described in the present invention should be understood as the diameter of a virtual circular area that roughly covers the area, for example. Can be the smallest circumscribed circle diameter of the area in the vertical projection direction.
  • main ridge lines 12 and auxiliary ridge lines 13 are provided on the hood outer panel 10. There are two main ridge lines 12 and they are related to the hood outer panel 10. The longitudinal central axis is arranged symmetrically, and the auxiliary ridge line 13 is located between the two main ridge lines 12 .
  • auxiliary ridge line 13 separates the large curvature profile at the rear of the hood outer panel 10; at the same time, because the curvature radius of the ridge line is very small, the formed ridge area has good rigidity and has a good supporting effect on the nearby profile. , thus improving the profile springback problem in the above area.
  • the auxiliary ridge line 13 scheme defined by the present invention is as follows:
  • Double auxiliary ridge line 13 scheme Two auxiliary ridge lines 13 symmetrical about the
  • the height and width of the ridge design are also a factor that affects the nearby profile.
  • the optimization of the profile curvature radius solves the main springback problem, but the profiles on both sides of the main ridge 12 and the middle X-axis profile form profile waves: the ridge and X-axis positions are high points, and the two sides of the ridge are If the product's positioning reference point is improperly set, it can easily cause the constraint rebound wave to intensify. This small-scale wave problem will cause new waves during rebound compensation, affecting the surface quality of the entire cover outer panel.
  • the wave problem on both sides of the main ridge line 12 of the present invention is solved by increasing the height and range of the ridge line, as shown in Figures 11 and 12:
  • the heightening area is at the wave position at the rear of the ridge, and the front ridge height transitions smoothly.
  • the height of the ridge line should be increased by 1.5-2.5mm on the original basis, and the critical value should not produce obvious slip lines.
  • the width of the ridge line is also increased accordingly, making the influence range of the ridge line larger and improving the overall rigidity of the part.
  • the rebound value of the aluminum hood outer panel 10 in the modeling stage can be reduced to (-3,3), which not only ensures the main ridge line 12, curvature and other family characteristics of the modeling, but also avoids the problems caused by the aluminum alloy engine.
  • the hood outer panel 10 is of great importance at the manufacturing end. Quality risk.
  • the flanging punch 31 and the upper pressing plate 21 are used to separate the hood outer panel 10 except for the flanging area 11.
  • the area is pressed, and the flanging area 11 on the engine hood outer panel 10 is pressed using the flanging die 22 and the full-circumference press plate 32 respectively.
  • the material of the flanging area 11 gradually flows from the gap between the flanging female mold 22 and the full-circumferential pressing plate 32 to between the flanging male mold 31 and the flanging female mold 22 to form a flange.
  • the front bumper and rear windshield of the engine hood outer panel 10 product are designed as a large arc area with short straight areas on both sides.
  • the flanging height of the aluminum engine hood outer panel 10 before lamination is only 10mm, the lack of material on the front and rear sides and the release of transverse shear stress after the multi-material flanging caused a huge backlash in the flanging process of the hood outer panel 10. Ammunition.
  • the solution of the present invention is to add pressing plates all around the lower flanging die 30 with a pressing force of 20T and a stroke of 20mm.
  • the full-circumference clamping plate 32 enables the material to be flanged in a clamped state, and controls the radial stretching and transverse shear deformation of the material.
  • the amount of springback after flanging is reduced from the original (-28,27) to (-5,7.5), which is a great improvement.
  • the flanging punch 31 is fixedly connected to the lower mold base (not shown), the circumferential pressing plate 32 is movably connected to the lower mold base, and the upper mold When the lower mold is closed, there is a gap of 1-2 mm between the bottom surface of the full-circumference pressing plate 32 and the top surface of the lower mold base.
  • the main function of the full-circumferential pressing plate 32 is to During the flanging and bending process, the material flow in the flanging area 11 is controlled.
  • the material 11 in the flanging area gradually flows into the flanging die 22 under the clamping of the circumferential press plate 32 between the flanging punch 32 and the mold closed state, the sheet material 11 is completely separated from the all-circumferential press plate 32.
  • the existence of the gap can ensure that after the all-circumferential press plate 32 is separated from the material 11, there is a certain safe gap with the lower mold 30. .
  • the present invention provides a flanging mold, including an upper mold 20 and a lower mold 30; the upper mold 20 includes: a flanging female mold 22.
  • the concave mold 22 is annular, and the contour shape of the flanging concave mold 22 is the same as the contour shape of the flanging area 11 on the edge of the hood outer panel 10; an upper pressing plate 21 is located on the turning surface.
  • the upper pressing plate 21 has the same outline shape as the hood outer panel 10, and the upper pressing plate 21 is movable up and down relative to the concave mold;
  • the mold 30 includes: a flanging punch 31, which has the same outline shape as the hood outer panel 10; and a full-circumferential pressing plate 32, which surrounds the flanging. The edge of the punch 31 is set, and the full-circumference pressing plate 32 is set up and down movable relative to the flanging punch 31 .
  • the hood outer panel 10 is placed on the lower mold 30 and fixed with the positioning block 40; the upper mold 20 is driven by the driving mechanism (such as a press) as a whole Go down until you press up
  • the material plate 21 and the flanging punch 31 are closed.
  • elastic components such as nitrogen gas springs
  • the flanging die 22 and the flanging punch 31 can flange the hood outer panel 10
  • the material in area 11 exerts longitudinal tension, and the flange area 11 begins to bend downward.
  • the arc-shaped areas 101, 102, and 105 of the bending area generate transverse shear forces.
  • the flange area 11 is clamped on the flange.
  • the two can control the material in the flanging area 11 to gradually flow into the space between the female flanging die 22 and the convex flanging die 31, eliminating the influence of transverse shear force and closing the mold.
  • the sheet material 11 is completely separated from the circumference pressing plate 32.
  • the flange formed in this way can greatly reduce the rebound; finally, the upper mold 20 is driven upward by the press, and the lower mold 30 is separated from the upper mold 20. The hood outer panel 10 is removed from the flanging punch 31, and the flanging process is completed.
  • the present invention also provides a vehicle, including a vehicle body and an engine hood; the engine hood is installed above the engine compartment of the vehicle body, and the engine hood includes an outer panel and an inner panel;
  • the diameter of the area on the outer plate with a curvature radius greater than the first critical value is smaller than the preset value;
  • the outer plate is provided with main ridge lines 12 and auxiliary ridge lines 13, and the main ridge lines 12 are two and are about the engine.
  • the longitudinal central axis of the outer panel 10 of the cover is symmetrically arranged, and the auxiliary ridge line 13 is located between the two main ridge lines 12; a flange is provided on the edge of the outer panel, and the flange is formed using the following method: using flanges respectively.
  • the edge punch 31 and the upper pressing plate 21 press the area on the engine hood outer panel 10 except the flanging area 11, and the flanging die 22 and the full circumferential pressing plate 32 are used to press the engine hood.
  • the flanging area 11 on the outer panel 10 is pressed tightly, so that the material of the flanging area 11 is clamped by the flanging die 22 and the full-circumference press plate 32, and moves along the flange die 22 and the full-circumference press plate 32.
  • the gap gradually flows into the flanging male mold 31 and the flanging female mold 32 to form a flanging.
  • the hood outer panel 10 of the vehicle has an anti-rebound design, which can effectively reduce the vehicle body assembly gap and improve the overall appearance quality of the vehicle.
  • the flanging mold structure of the present invention is designed as a full-circumference press flanging structure, so that the material-deficient and over-material flanging areas 11 on the front and rear sides of the engine hood are flanged under the action of the full-circumfer press plate 32 to avoid free
  • the huge rebound caused by the release of the transverse shear stress of the flange helps to improve the assembly accuracy of the engine hood, reduce the assembly gap, and improve the appearance quality of the entire vehicle; in addition, on the premise of ensuring the family characteristics of the styling, the present invention reduces the The plan of increasing the curvature radius of the small aluminum hood outer panel 10 at the position of the front windshield, increasing the ridge line, and heightening the height and range of the main ridge line 12 can reduce the rebound amount to within the controllable range of risks at the manufacturing end, and eliminate the main ridge Wave problem near line 12. Therefore, the present invention effectively overcomes some practical problems in the prior art and has high utilization value and usage significance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Superstructure Of Vehicle (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

一种发动机罩外板(10)的回弹控制方法,该方法包括:利用翻边凸模(31)和上压料板(21)将所述发动机罩外板上除翻边区域(11)以外的区域压紧,并分别利用翻边凹模(22)和全周压料板(32)将所述发动机罩外板上的翻边区域压紧,使所述发动机罩外板翻边区域在被夹持的状态下完成翻边过程、避免圆弧区域自由翻边释放的横向剪切应力造成巨大的回弹。以及实施该方法的翻边模具和具有由该方法制得的发动机罩外板的车辆。该方法通过调整曲率半径和设置辅助棱线,并加高主棱线高度和范围,使回弹量减小到制造端风险可控范围内,并能消除主棱线附近波浪问题,解决了发动机罩在工业化阶段产生的巨大回弹问题,有助于提高发动机罩的装配精度,减小装配缝隙,提高整车外观质量。

Description

发动机罩外板的回弹控制方法、翻边模具及车辆 技术领域
本发明涉及车身成型技术领域,具体涉及一种发动机罩外板的回弹控制方法、翻边模具及车辆。
背景技术
发动机罩外板是乘用车前部主要零件之一;因其强相关造型和行人保护等属性值,同时也作为重要的中长周期覆盖件(尤其是铝合金的发动机罩外板,是制造端的长周期零件),是整车开发前期CAS评审和同步工程工作的重点关注零件。
但CAS阶段的冲压SE分析:发动机罩外板存在巨大的回弹,如图2所示;后部回弹最大值27mm、两端回弹最大值-28mm,高度差达到55mm,这与铝板的材料特性相关。
发动机罩外板的回弹问题是常见的冲压质量问题,一般采用回弹补偿的方案去解决。由于铝板材的弹性模量是钢板材的1/3,如果通过回弹补偿去解决上述回弹问题,因为局部补偿量大、同时两端与中间的补偿方向相反,造成加工模面曲率与产品较大的变化,因发动机罩外板的曲率是影响回弹量的主要因素,每次补偿后的零件都会产生新的不同的回弹结果,这也是铝发动机罩外板回弹问题整改的难点所在。实际调试过程中、发生上述回弹量随机变化的问题,多次回弹补偿调试零件仍然无法达到验收标准。发动机罩外板压合到内板形成总成后,发动机罩外板的尺寸超差问题有改善、能装车,但是内外板间隙不均匀、影响内外板减震胶涂胶、造成溢胶等质量问题。
发明内容
鉴于以上现有技术的缺点,本发明的目的在于提供一种发动机罩外板的回弹控制方法、翻边模具及车辆,以改善发动机罩外板翻边后产生巨大回弹的问题。
为实现上述目的及其它相关目的,本发明提供一种发动机罩外板的回弹控制方法,包括:
发动机罩外板翻边成型过程中,分别利用翻边凸模和上压料板将所述发动机罩外板上除翻边区域以外的区域压紧,并分别利用翻边凹模和全周压料板将所述发动机罩外板上的翻边区域压紧,使所述翻边区域材料在翻边凹模和全周压料板夹持下、沿翻边凹模和全周压料板之间的缝隙逐渐流入到翻边凸模与翻边凹模之间而形成翻边。
在本发明的一可选实施例中,还包括采用三维建模软件对发动机罩外板进行曲率分析,并调整曲率半径,使所述发动机罩外板上任意区域的曲率半径均小于第一临界值,或者使所述发动机罩外板上曲率半径大于第一临界值的区域的直径小于预设值。
在本发明的一可选实施例中,所述第一临界值为9000mm;所述预设值为150mm。
在本发明的一可选实施例中,所述发动机罩外板上曲率半径大于第一临界值的区域的曲率半径小于第二临界值。
在本发明的一可选实施例中,所述第二临界值为10000mm。
在本发明的一可选实施例中,还包括在所述发动机罩外板上设置主棱线和辅助棱线,所述主棱线为两条且关于所述发动机罩外板的纵向中轴线对称设置,所述辅助棱线位于两条所述主棱线之间。
在本发明的一可选实施例中,两条所述主棱线之间的距离L1<900mm;所述辅助棱线设有一条,且所述辅助棱线位于所述发动机罩外板的纵向中轴线上。
在本发明的一可选实施例中,两条所述主棱线之间的距离L1<900mm;所述辅助棱线设有两条,两条所述辅助棱线关于所述发动机罩外板的纵向中轴线对称设置,两条所述辅助棱线之间的距离L2<600mm。
为实现上述目的及其它相关目的,本发明还提供一种翻边模具,包括上模和下模;
所述上模包括:
翻边凹模,所述翻边凹模为环形,所述翻边凹模的轮廓形状与发动机罩外板边缘的翻边区域的轮廓形状相同;
上压料板,所述上压料板位于所述翻边凹模围成的区域内,所述上压料板与所述发动机罩外板的轮廓形状相同,所述上压料板相对于所述凹模上下活动设置;
所述下模包括:
翻边凸模,所述翻边凸模与所述发动机罩外板的轮廓形状相同;
全周压料板,所述全周压料板围绕所述翻边凸模的边缘设置,所述全周压料板相对于所述翻边凸模上下活动设置;
驱动机构,用于驱动所述上模和所述下模做相对开合动作。
在本发明的一可选实施例中,所述翻边凸模与下模座固接,所述全周压料板与下模座活动连接,所述上模与所述下模合模状态下,所述全周压料板的底面与所述下模座的顶面之间设有1-2mm的间隙。
为实现上述目的及其它相关目的,本发明还提供一种车辆,包括:
车体;
发动机罩,安装在所述车体的发动机舱上方,所述发动机罩包括外板和内板;
所述发动机罩外板上任意区域的曲率半径均小于第一临界值,或者所述外板上曲率半径大于第一临界值的区域的直径小于预设值;
所述外板上设置主棱线和辅助棱线,所述主棱线为两条且关于所述发动机罩外板的纵向中轴线对称设置,所述辅助棱线位于两条所述主棱线之间;
所述外板边缘设置翻边,所述翻边采用如下方法成型:分别利用翻边凸模和上压料板将所述发动机罩外板上除翻边区域以外的区域压紧,并分别利用翻边凹模和全周压料板将所述发动机罩外板上的翻边区域压紧,使所述翻边区域材料在翻边凹模和全周压料板夹持下、沿翻边凹模和全周压料板之间的缝隙逐渐流入到翻边凸模与翻边凹模之间而形成翻边。
综上所述,本发明翻边模具结构设计为全周压料翻边结构,使发动机罩前后侧的缺料和多料翻边区域在全周压料板作用下翻边、避免自由翻边横向剪切应力释放造成的巨大的回弹,有助于提高了发动机罩的装配精度,减小装配缝隙,提高整车外观质量;另外本发明在保证造型家族特征的前提下,通过减小铝发动机罩外板前风窗位置曲率半径、增加棱线、加高主棱线高度和范围的方案,使回弹量减小到制造端风险可控范围内、并能消除主棱线附近波浪问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是一种发动机罩外板的结构示意图;
图2是图1所示发动机罩外板的回弹仿真示意图,图中深色区域表示回弹严重的区域,回弹数值的正负表示回弹方向;
图3是一种发动机罩外板进行结构优化前的曲率半径分布示意图,图中深色区域表示曲率半径大于9000mm的区域;
图4是本发明的实施例所提供的进行机构优化后的发动机罩外板的曲率半径分布示意图,图中深色区域表示曲率半径大于9000mm的区域;
图5是本发明的其中一实施例所提供的带有辅助棱线的发动机罩外板的结构示意图;
图6是本发明的另一实施例所提供的带有辅助棱线的发动机罩外板的结构示意图;
图7是本发明的实施例所提供的翻边模具的结构示意图,图中仅示出了与发动机罩外板 相接处的模具的面;
图8是本发明的实施例所提供的发动机罩外板翻边过程的定位结构示意图;
图9是本发明的实施例所提供的翻边模具合模前的原理图;
图10是本发明的实施例所提供的翻边模具合模过程中边角局部区域的原理图;
图11是本发明的实施例所提供的翻边模具合模后边角局部区域的原理图;
图12是本发明的实施例所提供的主棱线加高区域分布示意图;
图13是图11的A-A剖视图。
元件标号说明:
10、发动机罩外板;101、前端圆弧区;102、后端圆弧区;103、前侧圆弧区;104、尖点;105、灯口;11、翻边区域;12、主棱线;13、辅助棱线;20、上模;21、上压料板;22、翻边凹模;30、下模;31、翻边凸模;32、全周压料板;40、定位块。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其它优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。还应当理解,本发明实施例中使用的术语是为了描述特定的具体实施方案,而不是为了限制本发明的保护范围。下列实施例中未注明具体条件的试验方法,通常按照常规条件,或者按照各制造商所建议的条件。
请参阅图1至图12。须知,本说明书附图所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容所能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等的用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
在本发明的表述中,所述“纵向”、“横向”、“垂向”等指示方向的表述,其含义与本领域中对车辆各方向的一般定义一致,所述“纵向”是指车辆的长度方向即X向,所述“横向” 是指车辆的宽度方向即Y向,所述“垂向”是指车辆的高度方向即Z向。
当实施例给出数值范围时,应理解,除非本发明另有说明,每个数值范围的两个端点以及两个端点之间任何一个数值均可选用。除非另外定义,本发明中使用的所有技术和科学术语与本技术领域的技术人员对现有技术的掌握及本发明的记载,还可以使用与本发明实施例中所述的方法、设备、材料相似或等同的现有技术的任何方法、设备和材料来实现本发明。
请参阅图4-12所示,本发明提供一种发动机罩外板10的回弹控制方法,需要说明的是,本实施例采用的发动机罩外板10的轮廓如图1所示,其边缘轮廓包括位于前侧的前端圆弧区101;位于后侧的后端圆弧区102;位于两侧的前侧圆弧区103;位于前侧圆弧区103与后端圆弧区102之间的尖点104;以及位于前端圆弧区101与前侧圆弧区103之间的灯口105。为解决翻边后的回弹问题,本发明主要从以下两方面进行改进:
工艺设计上:铝发动机罩外板10的翻边模具结构设计为全周压料翻边结构;使发动机罩前后侧的缺料和多料翻边区域11在全周压料板32作用下翻边、避免自由翻边横向剪切应力释放造成了发动机罩外板10翻边工序件产生巨大的回弹量,使回弹量由55mm减小到10mm。
产品设计上:在保证造型家族特征的前提下,通过减小铝发动机罩外板10前风窗位置曲率半径、加高主棱线12高度和范围的方案,使回弹量由10mm减小到制造端风险可控范围内、并能消除主棱线12附近波浪问题。
具体的:
请参阅图3、4所示,本发明采用三维建模软件对发动机罩外板10进行曲率分析,并调整曲率半径,使所述发动机罩外板上任意区域的曲率半径均小于第一临界值,或者使所述发动机罩外板10上曲率半径大于第一临界值的区域的直径小于预设值。
可以理解的是,发动机罩外板10一般设计的大而平坦,尤其是后部的前风窗附近位置型面、曲率半径很大,如图3所示,后部和两侧的曲率半径Rx、Ry一般为10000mm-30000mm。但从拉延件成形角度,曲率半径小,材料应变值越大、塑性变形越充分、零件刚性越好,拉延和翻边后的回弹值就越小。发动机罩外板10的曲率半径是影响回弹产生的主要因素,在保证造型特征的前提下,发动机罩外板10尽量设计较小的曲率半径、尤其是后部的前风窗位置;如图4所示,本发明定义的发动机罩外板10零件理想的曲率标准如下:
(1)大部分区域(即图4中的浅色区域)的曲率半径Rx、Ry<9000mm;
(2)不满足条件(1)的区域(即图4中的深色区域)的直径小于150mm;同时这些区 域的曲率半径Rx、Ry<10000mm最佳。
需要说明的是,上述不满足条件(1)的区域的轮廓并不一定是标准的圆形,本发明所述该区域的直径应当理解为大致涵盖该区域的一个虚拟圆形区域的直径,例如可以是该区域在竖直投影方向上的一个最小外接圆直径。
请参阅图5、6所示,本发明在所述发动机罩外板10上设置主棱线12和辅助棱线13,所述主棱线12为两条且关于所述发动机罩外板10的纵向中轴线对称设置,所述辅助棱线13位于两条所述主棱线12之间。
可以理解的是,作为重要的造型特征,发动机罩外板10两侧都会设计明显的棱线,一般称之为主棱线12;本发明增加的棱线设计在两条主棱线12的中间位置,因其在造型和视觉效果上都要弱于主棱线12、因此称之为辅助棱线13。辅助棱线13将发动机罩外板10后部大曲率型面分割开;同时,因棱线曲率半径很小、成形后棱线区域有很好的刚性,对附近型面有很好的支撑作用,因而改善了上述区域的型面回弹问题。本发明定义的辅助棱线13方案如下:
(1)双辅助棱线13方案;关于X轴对称的两条辅助棱线13,如图6所示;主棱线12距离L1建议<900mm、辅助棱线13距离L2建议<600mm。
(2)单辅助棱线13方案;与X轴重合的辅助棱线13,如图5所示,主棱线12距离L1建议<900mm。
请参阅图11、12所示,棱线设计的高度和宽度也是影响附近型面的一个因素。型面曲率半径的优化解决了主要的回弹问题、但是主棱线12两侧型面和中间X轴型面形成了型面波浪:棱线和X轴位置是高点、棱线两侧是的凹坑,如果产品的定位基准点设置不当、很容易造成约束回弹波浪加剧。这种小范围内的波浪问题、回弹补偿时会造成新的波浪、影响整个机盖外板的面品。本发明主棱线12两侧的波浪问题通过增加棱线的高度和范围解决,如图11、12所示:
1)加高区在棱线后部的波浪位置,前部棱线高度光顺过渡。
2)棱线整体向上偏移,保持原有棱线的夹角和棱线圆角不变,避免滑移线的产生。
3)棱线的高度在原有基础上加高1.5-2.5mm,以不产生明显滑移线为临界值。
4)棱线宽度也相应加大,使棱线影响范围更大、提高零件整体刚性。
采用本发明的方法优化后,铝发动机罩外板10在造型阶段的回弹值可以减少到(-3,3),既保证主棱线12、曲率等造型的家族特征,又规避铝合金发动机罩外板10在制造端的重大 质量风险。
请参阅图7-11所示,所述发动机罩外板10翻边成型过程中,分别利用翻边凸模31和上压料板21将所述发动机罩外板10上除翻边区域11以外的区域压紧,并分别利用翻边凹模22和全周压料板32将所述发动机罩外板10上的翻边区域11压紧,在翻边凹模22和全周压料板32的夹持下,使所述翻边区域11材料从翻边凹模22和全周压料板32之间的缝隙逐渐流入到翻边凸模31与翻边凹模22之间而形成翻边。
如图7-11所示,发动机罩外板10产品前端保险杠和后端前风窗位置均设计为范围较大的圆弧区域、两侧有较短的直线区域。铝发动机罩外板10压合前的翻边高度虽然只有10mm、但前后侧的缺料和多料翻边后的横向剪切应力释放造成了发动机罩外板10翻边工序件产生巨大的回弹量。为了控制回弹,需要控制翻边过程中的材料流动、避免材料自由状态下翻边,本发明的方案是翻边下模30全周增加压料板,压料力20T、行程20mm。全周压料板32能够使材料在被夹持的状态下完成翻边,控制材料的径向拉伸和横向剪切变形。翻边后的回弹量由原来的(-28,27)减小到(-5,7.5),改善效果很大。
进一步的,如图10、11所示,所述翻边凸模31与下模座(图未示出)固接,所述全周压料板32与下模座活动连接,所述上模与所述下模合模状态下,所述全周压料板32的底面与所述下模座的顶面之间设有1-2mm的间隙,全周压料板32的主要作用是在翻边弯折过程中控制翻边区域11的材料流动,随着翻边凹模22的下行,使翻边区域材料11在全周压料板32的夹持下、逐渐流入翻边凹模22和翻边凸模32之间、合模状态板料11与全周压料板32完全分离,间隙的存在能够保证全周压料板32与材料11分离后、与下模30存在一定安全间隙。
请参阅7-11所示,基于上述翻边过程,本发明提供的一种翻边模具,包括上模20和下模30;所述上模20包括:翻边凹模22,所述翻边凹模22为环形,所述翻边凹模22的轮廓形状与发动机罩外板10边缘的翻边区域11的轮廓形状相同;上压料板21,所述上压料板21位于所述翻边凹模22围成的区域内,所述上压料板21与所述发动机罩外板10的轮廓形状相同,所述上压料板21相对于所述凹模上下活动设置;所述下模30包括:翻边凸模31,所述翻边凸模31与所述发动机罩外板10的轮廓形状相同;全周压料板32,所述全周压料板32围绕所述翻边凸模31的边缘设置,所述全周压料板32相对于所述翻边凸模31上下活动设置。
结合图7-11对翻边模具的具体工作过程进行详细说明:首先将发动机罩外板10放置在下模30上,并用定位块40固定;上模20在驱动机构(如压机)驱动下整体下行,直至上压 料板21与翻边凸模31合拢,需要说明的是,上压料板21与上模20座之间以及全周压料板32与下模30座之间应当设置弹性部件(如氮气弹簧等),保证翻边凸模31与上压料板21合拢时、翻边凹模22还能够继续下行,此时翻边凹模22和翻边凸模31对发动机罩外板10的翻边区域11材料施加纵向的拉力、翻边区域11开始向下弯折,弯折区域的弧形区域101、102和105产生了横向剪切力,与此同时翻边区域11被夹持在翻边凹模22与全周压料板32之间,两者能够控制翻边区域11的材料逐渐流进翻边凹模22和翻边凸模31之间、消除横向剪切力的影响,合模阶段板料11与全周压料板32完全分离,采用这种方式成型的翻边能够大幅度减小回弹;最后上模20在压机驱动上行,下模30与上模20分离,将发动机罩外板10从翻边凸模31上取下,翻边工序结束。
基于上述发动机罩外板10,本发明还提供一种车辆,包括车体和发动机罩;所述发动机罩安装在所述车体的发动机舱上方,所述发动机罩包括外板和内板;所述外板上曲率半径大于第一临界值的区域的直径小于预设值;所述外板上设置主棱线12和辅助棱线13,所述主棱线12为两条且关于所述发动机罩外板10的纵向中轴线对称设置,所述辅助棱线13位于两条所述主棱线12之间;所述外板边缘设置翻边,所述翻边采用如下方法成型:分别利用翻边凸模31和上压料板21将所述发动机罩外板10上除翻边区域11以外的区域压紧,并分别利用翻边凹模22和全周压料板32将所述发动机罩外板10上的翻边区域11压紧,使所述翻边区域11材料在翻边凹模22和全周压料板32夹持下,沿翻边凹模22和全周压料板32之间的缝隙逐渐流入到翻边凸模31与翻边凹模32之间而形成翻边。可以理解的是,车辆的发动机罩外板10经过防回弹设计,能够有效减小车身装配间隙,提高车辆整体外观质量。
综上所述,本发明翻边模具结构设计为全周压料翻边结构,使发动机罩前后侧的缺料和多料翻边区域11在全周压料板32作用下翻边、避免自由翻边横向剪切应力释放造成的巨大的回弹,有助于提高了发动机罩的装配精度,减小装配缝隙,提高整车外观质量;另外本发明在保证造型家族特征的前提下,通过减小铝发动机罩外板10前风窗位置曲率半径、增加棱线和加高主棱线12高度和范围的方案,使回弹量减小到制造端风险可控范围内、并能消除主棱线12附近波浪问题。所以,本发明有效克服了现有技术中的一些实际问题从而有很高的利用价值和使用意义。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等 效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

  1. 一种发动机罩外板的回弹控制方法,其特征在于,包括:
    发动机罩外板翻边成型过程中,分别利用翻边凸模和上压料板将所述发动机罩外板上除翻边区域以外的区域压紧,并分别利用翻边凹模和全周压料板将所述发动机罩外板上的翻边区域压紧,使所述翻边区域材料在翻边凹模和全周压料板夹持下,沿翻边凹模和全周压料板之间的缝隙逐渐流入到翻边凸模与翻边凹模之间而形成翻边。
  2. 根据权利要求1所述的发动机罩外板的回弹控制方法,其特征在于,还包括采用三维建模软件对发动机罩外板进行曲率分析,并调整曲率半径,使所述发动机罩外板上任意区域的曲率半径均小于第一临界值,或者使所述发动机罩外板上曲率半径大于第一临界值的区域的直径小于预设值。
  3. 根据权利要求2所述的发动机罩外板的回弹控制方法,其特征在于,所述第一临界值为9000mm;所述预设值为150mm。
  4. 根据权利要求3所述的发动机罩外板的回弹控制方法,其特征在于,所述发动机罩外板上曲率半径大于第一临界值的区域的曲率半径小于第二临界值。
  5. 根据权利要求4所述的发动机罩外板的回弹控制方法,其特征在于,所述第二临界值为10000mm。
  6. 根据权利要求1或2所述的发动机罩外板的回弹控制方法,其特征在于,还包括在所述发动机罩外板上设置主棱线和辅助棱线,所述主棱线为两条且关于所述发动机罩外板的纵向中轴线对称设置,所述辅助棱线位于两条所述主棱线之间。
  7. 根据权利要求6所述的发动机罩外板的回弹控制方法,其特征在于,两条所述主棱线之间的距离L1<900mm;所述辅助棱线设有一条,且所述辅助棱线位于所述发动机罩外板的纵向中轴线上;或者所述辅助棱线设有两条,两条所述辅助棱线关于所述发动机罩外板的纵向中轴线对称设置,两条所述辅助棱线之间的距离L2<600mm。
  8. 一种翻边模具,其特征在于,包括上模和下模;
    所述上模包括:
    翻边凹模,所述翻边凹模为环形,所述翻边凹模的轮廓形状与发动机罩外板边缘的翻边 区域的轮廓形状相同;
    上压料板,所述上压料板位于所述翻边凹模围成的区域内,所述上压料板与所述发动机罩外板的轮廓形状相同,所述上压料板相对于所述凹模上下活动设置;
    所述下模包括:
    翻边凸模,所述翻边凸模与所述发动机罩外板的轮廓形状相同;
    全周压料板,所述全周压料板围绕所述翻边凸模的边缘设置,所述全周压料板相对于所述翻边凸模上下活动设置;
    驱动机构,用于驱动所述上模和所述下模做相对开合动作。
  9. 根据权利要求8所述的翻边模具,其特征在于,所述翻边凸模与下模座固接,所述全周压料板与下模座活动连接,所述上模与所述下模合模状态下,所述全周压料板的底面与所述下模座的顶面之间设有1-2mm的间隙。
  10. 一种车辆,其特征在于,包括:由权利要求1-7任一所述发动机罩外板的回弹控制方法制得的发动机罩外板。
PCT/CN2023/083118 2022-03-31 2023-03-22 发动机罩外板的回弹控制方法、翻边模具及车辆 WO2023185592A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210331983.1A CN114871336A (zh) 2022-03-31 2022-03-31 发动机罩外板的回弹控制方法、翻边模具及车辆
CN202210331983.1 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023185592A1 true WO2023185592A1 (zh) 2023-10-05

Family

ID=82669094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083118 WO2023185592A1 (zh) 2022-03-31 2023-03-22 发动机罩外板的回弹控制方法、翻边模具及车辆

Country Status (2)

Country Link
CN (1) CN114871336A (zh)
WO (1) WO2023185592A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114871336A (zh) * 2022-03-31 2022-08-09 浙江极氪智能科技有限公司 发动机罩外板的回弹控制方法、翻边模具及车辆

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002066638A (ja) * 2000-08-23 2002-03-05 Kawasaki Steel Corp スプリングバックの小さい金属板のプレス加工方法およびプレス補助型
WO2008095151A1 (en) * 2007-02-01 2008-08-07 Gm Global Technology Operations, Inc. Method and apparatus for hemming panels together
CN208083194U (zh) * 2018-03-13 2018-11-13 马鞍山钢铁股份有限公司 一种防回弹翻边模具
CN208696081U (zh) * 2018-07-23 2019-04-05 泊头市兴达汽车模具制造有限公司 克服汽车外板覆盖件翻边回弹的模具结构
CN111112454A (zh) * 2019-12-31 2020-05-08 中国第一汽车股份有限公司 一种翼子板制件回弹尺寸控制方法
JP2020075258A (ja) * 2018-11-06 2020-05-21 Jfeスチール株式会社 プレス成形方法
CN111842590A (zh) * 2020-06-18 2020-10-30 中国第一汽车股份有限公司 一种高强度钢板翻边工序的回弹控制方法
CN112588916A (zh) * 2020-11-23 2021-04-02 中国第一汽车股份有限公司 一种用于改善发罩外板回弹的浮动压料机构
CN113399566A (zh) * 2021-06-24 2021-09-17 东风汽车集团股份有限公司 一种发动机罩外板复合翻边模具及使用方法
CN114871336A (zh) * 2022-03-31 2022-08-09 浙江极氪智能科技有限公司 发动机罩外板的回弹控制方法、翻边模具及车辆

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002066638A (ja) * 2000-08-23 2002-03-05 Kawasaki Steel Corp スプリングバックの小さい金属板のプレス加工方法およびプレス補助型
WO2008095151A1 (en) * 2007-02-01 2008-08-07 Gm Global Technology Operations, Inc. Method and apparatus for hemming panels together
CN208083194U (zh) * 2018-03-13 2018-11-13 马鞍山钢铁股份有限公司 一种防回弹翻边模具
CN208696081U (zh) * 2018-07-23 2019-04-05 泊头市兴达汽车模具制造有限公司 克服汽车外板覆盖件翻边回弹的模具结构
JP2020075258A (ja) * 2018-11-06 2020-05-21 Jfeスチール株式会社 プレス成形方法
CN111112454A (zh) * 2019-12-31 2020-05-08 中国第一汽车股份有限公司 一种翼子板制件回弹尺寸控制方法
CN111842590A (zh) * 2020-06-18 2020-10-30 中国第一汽车股份有限公司 一种高强度钢板翻边工序的回弹控制方法
CN112588916A (zh) * 2020-11-23 2021-04-02 中国第一汽车股份有限公司 一种用于改善发罩外板回弹的浮动压料机构
CN113399566A (zh) * 2021-06-24 2021-09-17 东风汽车集团股份有限公司 一种发动机罩外板复合翻边模具及使用方法
CN114871336A (zh) * 2022-03-31 2022-08-09 浙江极氪智能科技有限公司 发动机罩外板的回弹控制方法、翻边模具及车辆

Also Published As

Publication number Publication date
CN114871336A (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
JP6281670B1 (ja) プレス部品の製造方法および製造装置
JP6119929B1 (ja) プレス部品の製造方法および製造装置
CN110293167B (zh) Suv汽车后背门外板拉延工艺面造型方法
WO2023185592A1 (zh) 发动机罩外板的回弹控制方法、翻边模具及车辆
CN111112454A (zh) 一种翼子板制件回弹尺寸控制方法
JP2013027894A (ja) フレーム部品の製造方法及びフレーム部品
JP2014028379A (ja) アウタパネルのプレス成形方法
CN112371805B (zh) 一种翻边面设计方法、翻边加工模具和方法、以及零件
CN107855413A (zh) 铝制车门外板冲压成形模具及回弹控制方法
KR101999944B1 (ko) 자동차 차체용 프레스 성형 부품 및 그 제조 방법
CN110756689B (zh) 一种细长条类c形截面钣金件的成型方法及成型装置
CN113118287A (zh) 一种新能源汽车电池盒冲压成形工艺
WO2015064175A1 (ja) プレス成形方法
CN111822591B (zh) 汽车后纵支臂的成型工艺
US20210023601A1 (en) Method of designing press-formed product, press-forming die, press-formed product, and method of producing press-formed product
CN112007970A (zh) 一种控制后门外板b柱侧整形质量的工艺方法
KR101834850B1 (ko) 프레스 성형 방법, 및 프레스 성형 부품의 제조 방법
CN113579046A (zh) 汽车前侧围外板拉延工艺面造型方法
CN111842635B (zh) 汽车前下控制臂的成型工艺
CN205417785U (zh) 一种乘用车发动机盖
JP7063429B1 (ja) プレス成形品の製造方法、及びプレスライン
CN113926902B (zh) 大尺寸一体式侧围外板的成型方法
WO2024042593A1 (ja) プレス成形品の製造方法及びブランク
WO2021241024A1 (ja) プレス成形方法
CN113695459B (zh) 汽车覆盖件的冲压工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23777962

Country of ref document: EP

Kind code of ref document: A1