WO2023185376A1 - 空数据物理层协议数据单元发送方法及装置 - Google Patents

空数据物理层协议数据单元发送方法及装置 Download PDF

Info

Publication number
WO2023185376A1
WO2023185376A1 PCT/CN2023/079621 CN2023079621W WO2023185376A1 WO 2023185376 A1 WO2023185376 A1 WO 2023185376A1 CN 2023079621 W CN2023079621 W CN 2023079621W WO 2023185376 A1 WO2023185376 A1 WO 2023185376A1
Authority
WO
WIPO (PCT)
Prior art keywords
ndp
field
ndpa frame
sensing
frame
Prior art date
Application number
PCT/CN2023/079621
Other languages
English (en)
French (fr)
Inventor
狐梦实
韩霄
于健
杜瑞
娜仁格日勒
辛岩
徐正勋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023185376A1 publication Critical patent/WO2023185376A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • Embodiments of the present application relate to the field of communications, and in particular to methods and devices for sending null data physical layer protocol data units.
  • sensing process In wireless local area network (WLAN) standards, such as 802.11bf, the sensing process is discussed.
  • the basically recognized sensing process includes the main links: sensing session setup (Sensing session setup), measurement setup (Measurement setup), and measurement entity (Measurement instance).
  • the WLAN device can send a null data PPDU announcement (null date PPDU announcement, NDPA) frame.
  • This NDPA frame is used to inform: After the NDPA frame, the WLAN device will send a null data PPDU (null date PPDU, NDP) .
  • PPDU refers to the physical layer protocol data unit (physical layer protocol data unit, PPDU).
  • a device that receives an NDPA frame can learn channel information by measuring the NDP after NDPA.
  • This application provides a method and device for sending empty data physical layer protocol data units, which can avoid using only one fixed physical layer version of NDP, and can flexibly and fully utilize the advantages of the first NDP and the second NDP, thereby improving the perception performance. .
  • a method for sending a null data physical layer protocol data unit is provided.
  • the method can be executed by the first device, or by a component of the first device, such as a processor, a chip, or a chip system, or the like. It is implemented by a logic module or software that can realize all or part of the functions of the first device.
  • the method includes: sending a sensing NDPA frame, the sensing NDPA frame being used to indicate that NDP will be sent. Send an NDP, the NDP being a first NDP or a second NDP, and the physical layer version of the first NDP and the physical layer version of the second NDP are different.
  • the first device sends the perceived NDPA, and then sends the first NDP or the second NDP accordingly, which avoids that the perceived NDPA only leads to one fixed NDP, or in other words, avoids that the perceived NDPA only corresponds to one fixed NDP, and can Flexibly and fully utilize the advantages of the first NDP and the second NDP to improve perception performance.
  • the first NDP satisfies at least one of the following: the bandwidth supported by the first NDP is greater than the first threshold, or the first NDP supports hole punching.
  • the second NDP satisfies at least one of the following: the second NDP supports secure long training field LTF, and the second NDP supports repeated LTF.
  • sending the first NDP can improve the perception accuracy because the larger bandwidth is greatly helpful to the accuracy of perception.
  • sending the first NDP can more effectively utilize bandwidth resources and improve resource utilization.
  • sending the second NDP can improve security performance.
  • the signal-to-noise ratio at the receiving end can be improved.
  • the NDP when the first condition is met, the NDP is the first NDP; or, when the first condition is not met, the NDP is the second NDP.
  • the first condition includes at least one of the following:
  • the bandwidth of the first physical layer protocol data unit PPDU is greater than the first threshold, and the first PPDU includes a sensing NDPA frame, Or, the first PPDU is NDP;
  • the first channel is used to transmit the first PPDU
  • the number of data streams supported by NDP is greater than or equal to the second threshold
  • the first resource is a resource unit that is not supported by the physical layer version corresponding to the second NDP.
  • the first resource is used to carry the sensing NDPA frame, or the first resource is a resource to be measured in the first channel.
  • the first NDP is sent when the first condition is met, and the second NDP is sent when the first condition is not met. It is possible to reasonably implement the sending of NDPs of different physical layer versions according to the first condition.
  • the perceptual NDPA frame includes a first field, and the first field is used to indicate that the bandwidth of the first PPDU is greater than the first threshold.
  • the perceptual NDPA frame includes a first site information field, the first site information field includes an association identification field, the value of the association identification field is a first specific value, and the first specific value is used to indicate that the There is an unavailable subchannel.
  • the first site information field also includes a second field, and the second field is used to indicate unavailable sub-channels.
  • the method further includes: sending a beacon frame, where the beacon frame includes first indication information, and the first indication information is used to indicate that there is an unavailable sub-channel in the first channel.
  • the unavailable subchannels overlap with the subchannel range corresponding to the transmission bandwidth of the NDP.
  • the preamble part of the first PPDU when the first PPDU includes a perceptual NDPA frame, the preamble part of the first PPDU includes a third field, and the third field is used to indicate that puncturing exists in the first PPDU.
  • the perceptual NDPA frame when the first resource is a resource to be measured in the first channel, the perceptual NDPA frame includes a site information field, and the site information field includes a fourth field, and the fourth field is used to indicate the first resource.
  • the perceptual NDPA frame includes a fifth field, and the fifth field is used to indicate whether the NDP is the first NDP or the second NDP.
  • the fifth field is located in each site information field of the sensing NDPA frame, or the fifth field is located in fields other than the site information field included in the sensing NDPA frame.
  • the NDP when the second station information field appears in the perceived NDPA frame, the NDP is the first NDP; or when the second station information field does not appear in the perceived NDPA frame, the NDP is the second NDP; where,
  • the second site information field includes an association identification field, and the value of the association identification field is a second specific value.
  • the method before sending the aware NDPA frame, the method further includes: sending a wireless frame, the wireless frame is used to indicate whether the NDP is the first NDP or the second NDP, and/or the wireless frame is used to indicate the aware NDPA The type of frame.
  • sending the NDP includes: sending the NDP in the measurement entity; when trigger-based detection and NDPA detection exist in the measurement entity, the NDP is the second NDP.
  • the sensing NDPA frame includes a probe conversation token field and a sixth field.
  • the probe conversation token field includes a first subfield.
  • the first subfield is used to indicate the first NDPA frame.
  • the sixth field is used to indicate the first NDPA frame. Instruct the sensing NDPA frame to reuse the first NDPA frame;
  • the first NDPA frame is one of a ranging NDPA frame, a very high throughput VHT NDPA frame, an efficient HE NDPA frame, or an ultra-high throughput EHT NDPA frame; or, sensing NDPA
  • the frame includes a frame control field, the frame control field includes a control frame extension field, and the control frame extension field is used to indicate the type of the perceived NDPA frame.
  • a method for receiving a null data physical layer protocol data unit is provided.
  • the method can be executed by a second device or by a component of the second device, such as a processor, a chip, or a chip system. It can also be executed by It is implemented by a logic module or software that can realize all or part of the functions of the second device.
  • the method includes: receiving an NDPA-aware frame, the NDPA-aware frame The frame is used to indicate that a null data physical layer protocol data unit NDP will be sent; an NDP is received, the NDP is a first NDP or a second NDP, and the physical layer version of the first NDP is different from the physical layer version of the second NDP.
  • the second device receives the perceived NDPA, and then receives the first NDP or the second NDP accordingly, which avoids that the perceived NDPA only leads to one fixed NDP, or in other words, avoids that the perceived NDPA only corresponds to one fixed NDP, and can Flexibly and fully utilize the advantages of the first NDP and the second NDP to improve perception performance.
  • the first NDP satisfies at least one of the following: the bandwidth supported by the first NDP is greater than the first threshold, or the first NDP supports hole punching.
  • the second NDP satisfies at least one of the following: the second NDP supports secure long training field LTF, and the second NDP supports repeated LTF.
  • the NDP when the first condition is met, the NDP is the first NDP; or, when the first condition is not met, the NDP is the second NDP.
  • the first condition includes at least one of the following:
  • the bandwidth of the first physical layer protocol data unit PPDU is greater than the first threshold, the first PPDU includes a perceptual NDPA frame, or the first PPDU is NDP;
  • the first channel is used to transmit the first PPDU
  • the number of data streams supported by NDP is greater than or equal to the second threshold
  • the first resource is a resource unit that is not supported by the physical layer version corresponding to the second NDP.
  • the first resource is used to carry the sensing NDPA frame, or the first resource is a resource to be measured in the first channel.
  • the perceptual NDPA frame includes a first field; the method further includes: when the first field indicates that the bandwidth of the first PPDU is greater than the first threshold, parse the NDP according to the format of the first NDP.
  • the perceptual NDPA frame includes a first site information field, and the first site information field includes an association identification field; the method also includes: when the value of the association identification field is a first specific value, according to the first NDP The format parses NDP, and the first specific value is used to indicate that there is an unavailable sub-channel in the first channel.
  • the first site information field also includes a second field.
  • the NDP is parsed according to the format of the first NDP, including: the value of the association identification field is the first When a specific value is specified and the second field indicates an unavailable subchannel, the NDP is parsed according to the format of the first NDP.
  • the method further includes: receiving a beacon frame, the beacon frame including first indication information; when the first indication information indicates that there are unavailable sub-channels in the first channel, according to the first NDP Format parsing NDP.
  • the unavailable subchannels overlap with the subchannel range corresponding to the transmission bandwidth of the NDP.
  • the method further includes: when the third field indicates that puncturing exists in the first PPDU, according to the first NDP The format parsed NDP.
  • the perceptual NDPA frame when the first resource is a resource to be measured in the first channel, the perceptual NDPA frame includes a site information field, and the site information field includes a fourth field; the method further includes: the first field indicated by the fourth field.
  • the resource is a resource unit that is not supported by the physical layer version corresponding to the second NDP, the NDP is parsed according to the format of the first NDP.
  • the perceptual NDPA frame includes a fifth field
  • the method further includes: when the fifth field indicates that the NDP is the first NDP, parsing the NDP according to the format of the first NDP; and the fifth field indicates that the NDP is the second NDP. , parse the NDP according to the format of the first NDP.
  • the fifth field is located in each site information field of the sensing NDPA frame, or the fifth field is located in fields other than the site information field included in the sensing NDPA frame.
  • the method when the second site information field appears in the NDPA frame, the method also includes: parsing the NDP according to the format of the first NDP; when it senses that the second site information field does not appear in the NDPA frame, parsing the NDP according to the second NDP Format parsing NDP.
  • the second site information field includes an association identification field, and the value of the association identification field is a second specific value.
  • the method before receiving the aware NDPA frame, the method further includes: receiving a wireless frame, the wireless frame is used to indicate whether the NDP is the first NDP or the second NDP, and/or the wireless frame is used to indicate the aware NDPA.
  • the type of frame is used to indicate whether the NDP is the first NDP or the second NDP.
  • sending the NDP includes: sending the NDP in the measurement entity; when trigger-based detection and NDPA detection exist in the measurement entity, the NDP is the second NDP.
  • the sensing NDPA frame includes a probe conversation token field and a sixth field.
  • the probe conversation token field includes a first subfield.
  • the first subfield is used to indicate the first NDPA frame.
  • the sixth field is used to indicate the first NDPA frame. Instruct the sensing NDPA frame to reuse the first NDPA frame;
  • the first NDPA frame is one of a ranging NDPA frame, a very high throughput VHT NDPA frame, an efficient HE NDPA frame, or an ultra-high throughput EHT NDPA frame; or, sensing NDPA
  • the frame includes a frame control field, the frame control field includes a control frame extension field, and the control frame extension field is used to indicate the type of the perceived NDPA frame.
  • a communication device for implementing the various methods mentioned above.
  • the communication device may be the first device of the first aspect, or a device included in the first device, such as a chip; or the communication device may be the second device of the second aspect, or a device included in the second device, Such as chips.
  • the communication device includes corresponding modules, units, or means (means) for implementing the above method.
  • the modules, units, or means can be implemented by hardware, software, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device may include a transceiver module. Further, the communication device may also include a processing module. This processing module can be used to implement the processing functions in any of the above aspects and any possible implementation manner thereof.
  • the transceiver module which may also be called a transceiver unit, is used to implement the sending and/or receiving functions in any of the above aspects and any possible implementation manner thereof.
  • the transceiver module can be composed of a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the transceiver module includes a sending module and a receiving module, respectively used to implement the sending and receiving functions in any of the above aspects and any possible implementation manner thereof.
  • a fourth aspect provides a communication device, including: a processor and a memory; the memory is used to store computer instructions, and when the processor executes the instructions, the communication device performs the method described in any of the above aspects.
  • the communication device may be the first device of the first aspect, or a device included in the first device, such as a chip; or the communication device may be the second device of the second aspect, or a device included in the second device, Such as chips.
  • a communication device including: a processor and a communication interface; the communication interface is used to communicate with modules external to the communication device; the processor is used to execute computer programs or instructions to enable the communication device Perform any of the methods described above.
  • the communication device may be the first device of the first aspect, or a device included in the first device, such as a chip; or the communication device may be the second device of the second aspect, or a device included in the second device, Such as chips.
  • a communication device including: a logic circuit and an interface circuit; the interface circuit is used to input information and/or output information; the logic circuit is used to perform the method described in any of the above aspects, according to the input Information is processed and/or output is generated.
  • the communication device may be the first device of the first aspect, or a device included in the first device, such as a chip; or the communication device may be the second device of the second aspect, or a device included in the second device, Such as chips.
  • a communication device including: an interface circuit and a processor.
  • the interface circuit is a code/data reading and writing interface circuit.
  • the interface circuit is used to receive computer execution instructions (computer execution instructions are stored in a memory, possibly Read directly from the memory, or possibly through other devices) and transmit it to the processor; the processor is used to execute computer execution instructions to cause the communication device to perform the method described in any of the above aspects.
  • the communication device may be the first device of the first aspect, Or a device included in the first device, such as a chip; alternatively, the communication device may be the second device in the second aspect, or a device included in the second device, such as a chip.
  • a communication device including: at least one processor; the processor is configured to execute a computer program or instructions, so that the communication device executes the method described in any of the above aspects.
  • the communication device may be the first device of the first aspect, or a device included in the first device, such as a chip; or the communication device may be the second device of the second aspect, or a device included in the second device, Such as chips.
  • the communication device includes a memory for storing necessary computer programs or instructions.
  • the memory may be coupled to the processor, or may be independent of the processor.
  • the communication device may be a chip or a system on a chip.
  • the chip system may include a chip or a chip and other discrete devices.
  • a computer-readable storage medium In a ninth aspect, a computer-readable storage medium is provided. Computer programs or instructions are stored in the computer-readable storage medium. When the computer program or instructions are executed by a processor, the method described in any of the above aspects is performed. implement.
  • a computer program product is provided.
  • the computer program product is executed by a processor, the method described in any of the above aspects is executed.
  • the communication device provided in any one of the third to tenth aspects is a chip
  • the above-mentioned sending action/function can be understood as outputting information
  • the above-mentioned receiving action/function can be understood as inputting information.
  • An eleventh aspect provides a communication system, which includes the first device described in the first aspect and the second device described in the second aspect.
  • Figure 1 is a schematic structural diagram of an NDPA frame provided by this application.
  • Figure 2 is a schematic structural diagram of another NDPA frame provided by this application.
  • FIG. 3 is a schematic structural diagram of a communication system provided by this application.
  • Figure 4 is a schematic structural diagram of a communication device provided by this application.
  • FIG. 5 is a schematic flow chart of an NDP sending and receiving method provided by this application.
  • Figure 6 is a schematic structural diagram of a first device provided by this application.
  • Figure 7 is a schematic structural diagram of a second device provided by this application.
  • Figure 8 is a schematic structural diagram of another communication device provided by this application.
  • A/B can mean A or B; "and/or” in this application only means It is an association relationship that describes associated objects. It means that there can be three relationships.
  • a and/or B can mean: A exists alone, A and B exist simultaneously, and B exists alone. Among them, A and B Can be singular or plural.
  • plural means two or more than two.
  • At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c can mean: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • the term "first”, “second” and other words distinguish the same or similar items with basically the same functions and effects. Those skilled in the art can understand that the words “first”, “second” and other words do not limit the quantity and order of execution. And the words “first” and “second” are not necessarily different.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or explanations. Any embodiment or design described as “exemplary” or “such as” in the embodiments of the present application is not to be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner that is easier to understand.
  • an embodiment means that a particular feature, structure, or characteristic associated with the embodiment is included in at least one embodiment of the present application. Therefore, various embodiments are not necessarily referred to the same embodiment throughout this specification. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments. It can be understood that in the various embodiments of the present application, the size of the sequence numbers of each process does not mean the order of execution. The execution order of each process should be determined by its functions and internal logic, and should not be determined by the execution order of the embodiments of the present application. The implementation process constitutes no limitation.
  • Perception initiator, perception responder, perception sender, perception receiver 1.
  • Sensing initiator The station (STA) that initiates the wireless local area network (WLAN) sensing process.
  • STA wireless local area network
  • Sensing responder A station that participates in the WLAN sensing process initiated by the sensing initiator.
  • Sensing transmitter A station that sends physical layer protocol data unit (PPDU) for sensing measurement during the sensing process.
  • PPDU physical layer protocol data unit
  • Sensing receiver A station that receives the PPDU sent by the sensing sender and performs sensing measurements during the sensing process.
  • the site can be an access point station (access point station, AP STA) or a non-access point station (non-access point station, non-AP STA).
  • access point station access point station
  • non-access point station non-access point station
  • the basically recognized sensing process in WLAN standards is mainly divided into the following five categories:
  • a sensing session can be understood as an agreement between two sites reached by a sensing initiator and a sensing responder.
  • a sensing initiator can maintain sensing sessions with multiple sensing responders.
  • This link is used for the sensing initiator and the sensing responder to exchange and unify certain parameters, attributes, etc. used in the sensing process.
  • the parameters may include the roles of the sensing initiator and the sensing responder (such as sensing transmitters or sensing receivers). terminal), measurement feedback type, etc.
  • each measurement setup is marked with an identifier (ID).
  • Perception measurement occurs in the measurement entity, and one measurement entity allows multiple sensing responders to join.
  • a measurement entity is marked with an identifier.
  • Measurement entities can be divided into trigger-based (TB) sensing measurement entities (TB sensing measurement instance) and non-trigger sensing measurement entities (Non-TB sensing measurement instance).
  • the trigger-based perception measurement entity may include the following stages: polling phase, null date PPDU announcement (NDPA) sounding phase (NDPA sounding phase), trigger frame (TF) Detection phase (TF sounding phase), reporting phase, etc. in:
  • the inquiry phase is used to confirm whether the inquired site can participate in the measurement and feedback of this measurement entity.
  • the sensing initiator can inform the sensing responder through the NDPA frame: After the NDPA frame, the sensing responder will send null data PPDU (null date PPDU, NDP).
  • the NDPA frame can indicate the sensing responder that needs to listen to NDP and other configuration information.
  • the sensing responder can learn channel information by measuring the NDP after NDPA.
  • the sensing initiator can trigger the sensing responder to send NDP through the trigger frame, and the sensing initiator measures the NDP to perform sensing.
  • the sensing responder can send sensing measurement related information, such as channel information, etc., to the sensing initiator through a feedback frame.
  • a measurement entity may include both the NDPA detection phase and the trigger frame detection phase; or it may include the NDPA detection phase and not include the trigger frame detection phase; or it may not include the NDPA detection phase and include the trigger frame. detection phase.
  • Measurement establishment termination is used to terminate the measurement establishment process corresponding to a certain sensing responder. That is, after the measurement establishment is terminated, the sensing responder is no longer bound to the corresponding measurement, but can still be in the sensing session.
  • Awareness session termination is used to terminate the awareness session. After the sensing session is terminated, the site no longer participates in processes such as sensing measurements.
  • VHT very high throughput
  • ranging Ranging
  • HE High Efficient
  • EHT extremely high throughput
  • the NDP corresponding to the above four variants are: VHT NDP (corresponding to VHT NDPA frame), HE ranging NDP (corresponding to Ranging NDPA frame), HE sounding NDP (corresponding to HE NDPA frame) and EHT NDP (corresponding to EHT NDPA frame) .
  • a VHT NDPA frame can be shown in Figure 1, including: a Frame Control field (field) with a length of 2 bytes, a duration (Duration) field with a length of 2 bytes, a length of 6-byte receive address (RA) field, 6-byte transmission address (TA) field, 1-byte Sounding Dialog Token (Sounding Dialog Token) field, length 2 Multiply the N-byte site information list (STA Info List) and the 4-byte length frame check sequence (frame check sequence, FCS) field.
  • the site information list may include N site information fields, and the length of each site information field is 2 bytes.
  • the structure of the HE NDPA frame, EHT NDPA frame, and Ranging NDPA frame can be shown in Figure 2, including: The length is 2-byte frame control field, 2-byte duration field, 6-byte RA field, 6-byte TA field, 1-byte probe conversation token field, N A 4-byte site information (STA Info) field and a 4-byte frame check sequence (FCS) field.
  • the length is 2-byte frame control field, 2-byte duration field, 6-byte RA field, 6-byte TA field, 1-byte probe conversation token field, N A 4-byte site information (STA Info) field and a 4-byte frame check sequence (FCS) field.
  • the above four NDPA variants can be distinguished by detecting the values of bit 0 (B0) and bit 1 (B1) in the conversation token.
  • bit 0 (B0) and bit 1 (B1) in the conversation token.
  • the NDPA variants corresponding to various values of B0 and B1 in the detection dialogue token can be as shown in Table 1 below.
  • B0 and B1 of the probe conversation token are called NDPA variant subfields in EHT and are called NDPA type subfields in the Ranging standard (802.11az). Although the names in different standards are different, it does not affect the device's interpretation of these two bits.
  • each site information field in the VHT NDPA frame is 2 bytes
  • the length of each site information field in the HE NDPA frame, EHT NDPA frame, and Ranging NDPA frame is 4 bytes.
  • the site information field is interpreted differently for different NDPA variants.
  • Each site information field in the HE NDPA frame, EHT NDPA frame, and Ranging NDPA frame includes an 11-bit (B0-B10) association identifier (AID) subfield.
  • Each site information field of the VHT NDPA frame includes a 12-bit (B0-B11) or 13-bit (B0-B12) AID subfield.
  • the AID subfield is used to indicate the AID of the site, or correspond to the AID of the site.
  • the site can parse the site information fields one by one.
  • the site information field is the field corresponding to the site, and the site can continue to parse.
  • the site information field obtains information.
  • the N site information fields in the NDPA frame can correspond to N sites one-to-one, and a certain site information field is used to carry the information required by its corresponding site.
  • the information required by different sites may be different, that is, the information carried by the information fields of different sites may be different.
  • the common fields (fields before the site information field) in the structure shown in Figure 2 may not be sufficient to carry the information required by each site. Therefore, in order to expand the common part that each station needs to read, an extended public field using a special AID identifier is added to the HE NDPA frame and Ranging NDPA frame. That is, the extended public field is a special site information field.
  • This special The value of the AID subfield of the site information field is a special value or special AID. For example, the corresponding meanings of various values of the AID subfield can be as shown in Table 2 below.
  • 2043, 2044, 2045, and 2047 can be understood as the above-mentioned special values or special AID.
  • NDPA variants can be considered as NDPA in non-802.11bf standards, and the corresponding NDP can be considered as NDP in non-802.11bf standards. Therefore, it is necessary to design NDPA and NDP in the 802.11bf standard.
  • this application provides an NDP sending method and designs a perceptual NDPA suitable for the 802.11bf standard. Based on the perceptual NDPA, the first NDP or the second NDP is derived, avoiding the use of only one fixed type of NDP and being able to flexibly , fully utilize the advantages of the first NDP and the second NDP, thereby improving the perception performance.
  • the embodiments of this application can be applied to wireless local area network (WLAN) scenarios, can be applied to the Institute of Electrical and Electronics Engineers (IEEE) 802.11bf standard, and can also be applied to other 802.11 system standards. , such as the 802.11a/b/g standard, the 802.11n standard, the 802.11ac standard, the 802.11ax standard, or its next generation, such as the 802.11be standard or its next generation standard.
  • the embodiments of this application may also be applied to wireless local area network systems such as Internet of Things (IoT) networks or Vehicle to X (V2X) networks.
  • IoT Internet of Things
  • V2X Vehicle to X
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX global interoperability for microwave access
  • 5G future fifth generation
  • the above-mentioned communication systems applicable to the present application are only examples.
  • the communication systems applicable to the present application are not limited to these and will be explained uniformly here, and will not be described in detail below.
  • the present application provides a WLAN communication system applicable to the embodiments of the present application.
  • the WLAN communication system includes a first device and a second device.
  • the first device and the second device may both be APs; or, one of the first device and the second device may be an AP, and the other may be a non-AP STA; or, the first device and the second device may be All are non-AP STAs.
  • Figure 3 shows an architecture diagram of the WLAN communication system provided by this application.
  • Figure 3 takes the WLAN communication system including AP1, AP2, non-AP STA1, non-APSTA2, and non-AP STA3 as an example. It should be understood that the number of APs and non-AP STAs in Figure 3 is only an example, and can be more or less.
  • AP1 may be the first device, and non-AP STA1 may be the second device. device; alternatively, AP1 may be the first device and AP2 may be the second device; or one of non-AP STA2 and non-AP STA3 may be the first device and the other may be the second device. It should be understood that there can be other combinations of APs and non-AP STAs in Figure 3 as the first device and the second device, without limitation.
  • the non-AP STA involved in the embodiment of this application may be a wireless communication chip, a wireless sensor or a wireless communication terminal.
  • user terminals user devices, access devices, subscriber stations, subscriber units, mobile stations, user agents, and user equipment that support wireless fidelity (WiFi) communication functions.
  • the user terminals may include various devices with wireless communication capabilities. Functional handheld devices, vehicle-mounted devices, wearable devices, Internet of things (IoT) devices, computing devices or other processing devices connected to wireless modems, as well as various forms of user equipment (UE), mobile Mobile non-AP STation (MS), terminal, terminal equipment, portable communications device, handheld computer, portable computing device, entertainment device, gaming device or system, global positioning system device or configured to Any other suitable equipment for network communications via wireless media, etc.
  • IoT Internet of things
  • MS mobile Mobile non-AP STation
  • non-AP STA can support 802.11bf standard.
  • Non-AP STA can also support 802.11be or the next generation standard of 802.11be, 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b and 802.11a and other WLAN standards.
  • the AP involved in the embodiment of this application can be a device deployed in a wireless communication network to provide wireless communication functions for its associated non-AP STAs. It is mainly deployed inside homes, buildings and campuses, with a typical coverage radius of tens of meters. Up to 100 meters, of course, it can also be deployed outdoors.
  • the AP is equivalent to a bridge connecting the wired network and the wireless network. Its main function is to connect various wireless network clients together and then connect the wireless network to the Ethernet.
  • the AP can be a base station with a WiFi chip, a router, a gateway, a repeater, a communication server, a switch or a bridge and other communication equipment.
  • the base station can include various forms of macro base stations, micro base stations, and relay stations. wait.
  • the AP can support the 802.11bf standard.
  • the AP can also support 802.11be or the next generation standard of 802.11be, 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b and 802.11a and other WLAN standards.
  • the AP and non-AP STAs involved in this application can be collectively referred to as WLAN equipment.
  • the WLAN equipment can adopt the composition structure shown in Figure 4, or include the components shown in Figure 4.
  • the WLAN device 400 can be a non-AP STA or a chip or a chip system (or a system on a chip) in a non-AP STA; also It can be an AP or a chip or a chip system (also called a system on a chip) in the AP.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the WLAN device 400 includes a processor 401 and a transceiver 402. Further, the WLAN device 400 may also include a memory 404. The processor 401, the memory 404 and the transceiver 402 may be connected through a communication line 403.
  • the processor 401 may be a central processing unit (CPU), a general-purpose processor, a network processor (NP), a digital signal processor (DSP), a microprocessor, or a microprocessor. Controller, programmable logic device (PLD) or any combination thereof.
  • the processor 401 can also be other devices with processing functions, such as circuits, devices or software modules, without limitation.
  • the processor 401 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 4 .
  • the WLAN device 400 may include multiple processors, for example, in addition to the processor 401 in FIG. 4, other processors may also be included (not shown in FIG. 4).
  • Transceiver 402 used to communicate with other devices or other communication networks.
  • the other communication network may be Ethernet, radio access network (RAN), WLAN, etc.
  • Transceiver 402 may be a module, a circuit, a transceiver, or any device capable of communicating.
  • the communication line 403 is used to transmit information between various components included in the WLAN device 400.
  • Memory 404 used to store instructions. Wherein, the instructions may be computer programs.
  • the memory 404 may be a read-only memory (ROM) or other type of static storage device that can store static information and/or instructions, or it may be a random access memory (random access memory, RAM) or a device that can store static information. and/or other types of dynamic storage devices for instructions, which can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) Or other optical disc storage, optical disc storage (including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, etc., are not restricted.
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • optical disc storage including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • the memory 404 may exist independently of the processor 401 or may be integrated with the processor 401.
  • the memory 404 can be used to store instructions or program codes or some data.
  • the memory 404 may be located within the WLAN device 400 or may be located outside the WLAN device 400 without limitation.
  • the processor 401 can execute instructions stored in the memory 404 to implement the methods provided by the following embodiments of the application.
  • the WLAN device 400 also includes an output device 405 and an input device 406.
  • the input device 406 is a device such as a keyboard, a mouse, a microphone, or a joystick
  • the output device 405 is a device such as a display screen, a speaker, or the like.
  • composition structure shown in Figure 4 does not constitute a limitation of the WLAN device.
  • the WLAN device may include more or less components than shown in the figure, or a combination of Certain parts, or different arrangements of parts.
  • NDP sending and receiving method includes the following steps:
  • the first device sends a sensing NDPA (Sensing NDPA) frame.
  • the second device receives the sensing NDPA frame from the first device.
  • the perceived NDPA frame is used to indicate that the first device will send NDP.
  • the perceived NDPA frame can be understood as a new NDPA variant provided by this application.
  • This new NDPA variant is distinguished from VHT NDPA frames, Ranging NDPA frames, HE NDPA frames, and EHT NDPA frames.
  • the name "aware NDPA frame” is only used to exemplarily distinguish the new NDPA variant provided by this application from the four variants shown in Table 1. This application does not specifically limit the name of the new NDPA variant. In practical applications, it can also have other names, such as measuring NDPA, etc.
  • the perceptual NDPA frame provided by this application can be adapted to the IEEE 802.11bf standard. Of course, it can also be applied to other 802.11 system standards, such as the 802.11be standard or next-generation standards.
  • the sensing NDPA frame can reuse the Ranging NDPA frame, or the VHT NDPA frame, HE NDPA frame, or EHT NDPA frame can be reused.
  • the NDPA frame includes a probing dialogue token field, and the first sub-frame in the probing dialogue token field Fields (B0 and B1) are used to indicate the first NDPA frame.
  • the first NDPA frame is one of a Ranging NDPA frame, a VHT NDPA frame, a HE NDPA frame, or an EHT NDPA frame.
  • the NDPA frame further includes an additional field A for indicating whether the NDPA frame is a perceptual NDPA frame or a first NDPA frame.
  • an additional field A for indicating whether the NDPA frame is a perceptual NDPA frame or a first NDPA frame.
  • the NDPA frame is a perceptual NDPA frame, or it indicates that the perceptual NDPA frame reuses the first NDPA frame.
  • the NDPA frame is Ranging NDPA frames.
  • the field A may be located in the common part of the NDPA frame, and the common part includes fields except the site information field; or, the field A may be located in each site information field, that is, each site information field includes the field A.
  • the length of field A may be 1 bit.
  • the first value may be 1 and the second value may be 0.
  • the first value may be 0 and the second value may be 1.
  • the length of field A can also be realized in other ways, such as being greater than 1 bit, etc., and is not limited.
  • the field A can be a reserved field in the public part or the site information field, or it can also be a newly added field in the public part or the site information field, which is not specifically limited in this application.
  • the second device can parse the field A. If field A indicates that the NDPA frame is perceptual NDPA, other fields of the perceptual NDPA frame can be parsed according to the perceptual NDPA format. If field A indicates that the NDPA frame is the first NDPA frame, other fields of the first NDPA frame may be parsed according to the format of the first NDPA frame.
  • field A may also be called the sixth field, and the two may be replaced with each other. This application does not specifically limit this.
  • a special site information field when a special site information field appears in the NDPA frame, it indicates that the NDPA frame is a perceptual NDPA frame, or indicates that the perceptual NDPA frame reuses the first NDPA frame.
  • the special station information field does not appear in the NDPA frame, it means that the NDPA frame is the first NDPA frame.
  • the special station information field when the special station information field appears in the NDPA frame, the NDPA frame is the first NDPA frame; when it does not appear, the NDPA frame is the perceptual NDPA frame.
  • the value of the association identification field included in the special site information field may be a preset specific value. This specific value is not the AID corresponding to a certain site, but can be an AID value reserved in existing standards, for example, it can be any value from 2008-2042.
  • the second device may determine that the NDPA frame is a sensing NDAP or a first NDPA frame based on whether the special site information field appears in the NDPA frame. If the special site information field appears in the NDPA frame, other fields of the aware NDPA frame can be parsed according to the format of the aware NDPA frame. If the special site information field does not appear in the NDPA frame, other fields of the first NDPA frame can be parsed according to the format of the first NDPA frame.
  • the sensing NDPA frame may also include a frame control field, a duration field, an RA field, a TA field, a site information list (or N site information) field, and a frame check sequence field. one or more items.
  • the first device may send a wireless frame.
  • the wireless frame is used to indicate the type of NDPA frame to be sent by the first device, or in other words, to indicate the type of NDPA variant. If the wireless frame indicates that the type of NDPA frame to be sent by the first device is a perceptual NDPA frame, the second device parses the NDPA frame received in step S501 according to the format of the perceptual NDPA frame. If the wireless frame indicates that the type of NDPA frame to be sent by the first device is the first NDPA frame, the second device parses the NDPA frame received in step S501 according to the format of the first NDPA frame.
  • the wireless frame is used to indicate the type of perceptual NDPA frame.
  • the aware NDPA frame may include a frame control field.
  • the frame control field may include a control frame extension (Control Frame Extension) field, and the control frame extension field may indicate the type of the perceptual NDPA frame, or in other words, the NDPA frame carrying the control frame extension field is the perceptual NDPA frame, or in other words, can indicate perception NDPA frame is a newly defined NDPA frame. That is to say, sensing NDPA and Ranging NDPA frames, VHT NDPA frames, HE NDPA frames, or EHT NDPA frames can be distinguished through the control frame extension field.
  • the second device can parse the control frame extension field, determine that the NDPA frame is a sensing NDPA frame based on the control frame, and then continue parsing according to the format of the sensing NDPA frame. Parse other fields of this aware NDPA frame.
  • the sensing NDPA frame may also include one or more of a duration field, an RA field, a TA field, a site information list (or N site information) field, and a frame check sequence field.
  • the first device sends NDP.
  • the second device receives the NDP from the first device.
  • the NDP is the first NDP or the second NDP.
  • the type of the first NDP and the type of the second NDP are different.
  • the different types of NDP in this application may include at least one of the following: different physical layer (PHY) versions (PHY) of NDP, different functions supported by NDP, or different formats of NDP.
  • PHY physical layer
  • physical layer versions may include but are not limited to: EHT, HE, VHT, etc.
  • the two NDPs can also be understood as different types of NDPs.
  • HE Ranging NDP and HE Sounding NDP have the same physical layer version, but support different functions. Therefore, HE Ranging NDP and HE Sounding NDP can be considered as different types of NDP.
  • the types of NDPs are different, which means that the physical layer versions of the NDPs are different, the physical layer versions of the first NDP and the physical layer versions of the second NDP are different.
  • the first NDP or the second NDP may be understood as an NDP induced by perceiving an NDPA frame, or an NDP corresponding to the perceiving NDPA frame.
  • the first NDP satisfies at least one of the following: the bandwidth supported by the first NDP is greater than the first threshold, or the first NDP supports puncture.
  • the first NDP may be the EHT NDP.
  • the first threshold may be the bandwidth of the PPDU including NDPA-aware or the maximum bandwidth of the NDP declared in the HE standard, such as 160 megahertz (MHz).
  • the second NDP meets at least one of the following: the second NDP supports safe long training field (LTF), or the second NDP supports repeated LTF.
  • the second NDP can be HE Ranging NDP, and the corresponding LTF is HE-LTF, that is, the second NDP supports secure HE-LTF or supports repeated HE-LTF.
  • the repeated LTF may refer to a certain LTF being repeated multiple times, or the second NDP may include multiple identical LTFs.
  • the first device sends the perceived NDPA and elicits the first NDP or the second NDP.
  • This avoids the perceived NDPA from eliciting only one fixed NDP. In other words, it avoids the perceived NDPA that only corresponds to one fixed NDP, which can be flexible and sufficient. Make full use of the advantages of the first NDP and the second NDP, thereby improving the perception performance.
  • sending the first NDP can improve the accuracy of perception because the larger bandwidth is greatly helpful to the accuracy of perception.
  • sending the first NDP can more effectively utilize bandwidth resources and improve resource utilization.
  • sending the second NDP can improve security performance.
  • the signal-to-noise ratio at the receiving end can be improved.
  • the NDP in step S502 is the first NDP; or, when the first condition is not met, the NDP in step S502 is the second NDP. That is to say, when the first condition is met, the first device sends the first NDP in step S502, and when the first condition is not met, the first device sends the second NDP in step S502.
  • the second device parses the received NDP according to the format of the first NDP.
  • the second device parses the received NDP according to the format of the second NDP.
  • the first condition includes at least one of the following:
  • the first device may send the first NDP, and the second device parses the received NDP according to the format of the first NDP.
  • the first device may send the second NDP, and the second device parses the received NDP according to the format of the second NDP.
  • the first PPDU includes the perceptual NDPA frame in the above step S501.
  • the first PPDU is a PPDU including a perceptual NDPA frame.
  • the first PPDU is the NDP in the above step S502. Since the NDP in step S502 is the first NDP when the first condition is satisfied, the first PPDU can also be considered to be the first NDP.
  • the bandwidth of the first PPDU may be the bandwidth declared by the first device for transmitting the first PPDU.
  • it may be the bandwidth declared by the first device in a beacon frame (the beacon frame is in step sent before S501), or the bandwidth indicated by the preamble part of the first PPDU.
  • the bandwidth of the first PPDU may also be the bandwidth actually occupied by the first PPDU.
  • the bandwidth declared by the first device for transmitting the first PPDU is 320MHz, but 80MHz of the 320MHz bandwidth is unavailable, and the actual bandwidth occupied by the first PPDU is 240MHz, then the above bandwidth of the first PPDU can be understood is 320MHz, or can be understood as 240MHz.
  • the first PPDU when the bandwidth of the first PPDU is greater than the first threshold, the first PPDU may be an EHT PPDU, or a non-high throughput (HT) duplicate PPDU, that is, a Non-HT duplicate PPDU.
  • the first PPDU may also be PPDU in other forms or types, which is not specifically limited in this application.
  • the second device may determine the bandwidth claimed in the beacon frame, or the bandwidth indicated in the first PPDU, or the detected bandwidth occupied by the first PPDU. Whether the bandwidth of the first PPDU is greater than the first threshold. If the bandwidth of the first PPDU is greater than the first threshold, determine that the NDP received in step S502 is the first NDP, and parse the NDP according to the format of the first NDP. If the first PPDU is not greater than the first threshold, determine that the NDP received in step S502 is the second NDP, and parse the NDP according to the format of the second NDP.
  • the second device can determine whether the bandwidth of the first PPDU is greater than the first threshold through the bandwidth indicated in the first PPDU, and based on the judgment result Perform corresponding processing; or, if the first threshold is 160 MHz, then when the bandwidth declared in the beacon frame is 320 MHz, the second device can determine that the bandwidth of the first PPDU is greater than the first threshold, and perform corresponding processing. For corresponding processing based on the judgment result, reference may be made to the relevant description when the first PPDU includes a perceived NDPA frame, which will not be described again here.
  • the perceptual NDPA frame may include a first field, where the first field is used to indicate whether the bandwidth of the first PPDU is greater than the first threshold. It can be understood that when the bandwidth of the first PPDU is greater than the first threshold, the first field is used to indicate that the bandwidth of the first PPDU is greater than the first threshold; when the bandwidth of the first PPDU is not greater than the first threshold, the first field Used to indicate that the bandwidth of the first PPDU is not greater than the first threshold.
  • the first threshold is 160 MHz
  • the commonly used bandwidth greater than 160 MHz is 320 MHz.
  • the first field is used to indicate whether the bandwidth of the first PPDU is 320 MHz.
  • the second device parses the received NDP according to the format of the first NDP.
  • the second device parses the received NDP according to the format of the second NDP.
  • the above condition 1) may also be that the bandwidth of the first PPDU is greater than or equal to the first threshold, that is, when the bandwidth of the first PPDU is equal to the first threshold, the first device may also send the first NDP, and accordingly, the second The device parses the received NDP according to the format of the first NDP.
  • the first channel is used to transmit the first PPDU.
  • the first PPDU may be a PPDU including a perceptual NDPA frame, or may be the NDP in step 502. Reference may be made to the relevant description in condition 1) above, which will not be described again here.
  • the first device may send the first NDP, and the second device parses the received NDP according to the format of the first NDP.
  • the first device may send the second NDP, and the second device parses the received NDP according to the format of the second NDP.
  • the bandwidth of a sub-channel may be 20MHz.
  • the first device can notify the second device that there are unavailable sub-channels in the first channel in the following two ways:
  • the perceptual NDPA frame may include the first station information field.
  • the first site information field includes an association identification field, and the value of the association identification field is a first specific value.
  • the first specific value is used to indicate that there is an unavailable sub-channel in the first channel.
  • the "unavailable sub-channel” in this application can also be called “not allowed sub-channel”, and the two can be replaced by each other, and this application does not specifically limit this.
  • the first specific value is not the AID corresponding to a certain site. It may be a value related to an unavailable sub-channel, such as 2047, or it may be an AID value reserved in an existing standard, such as 2008. A value in -2042, or the first specific value can be 2046.
  • the second device parses the sensing NDPA frame.
  • the second device parses the sensing NDPA frame received in step S502 according to the format of the first NDP. of NDP.
  • the second device may parse the NDP received in step 502 according to the format of the second NDP. .
  • the first site information field may be the site information field that appears for the first time in the sensing NDPA frame, that is, among all the site information fields included in the sensing NDPA frame, the first site information field is located first.
  • the first station information field may also appear at other locations in the sensing NDPA frame, and this application does not specifically limit this.
  • the first site information field may also include a second field.
  • the second field is used to indicate unavailable sub-channels in the first channel.
  • the first PPDU is NDP
  • the first channel is used to transmit NDP
  • the second field indicates that there are unavailable sub-channels in the channel used for NDP transmission.
  • the second field may be a Disallowed subchannel bitmap (Disallowed subchannel bitmap) subfield.
  • the disallowed sub-channel bitmap subfield may include M bits.
  • the M bits may correspond one-to-one to the M sub-channels included in the first channel.
  • the value of a certain bit is 1 (or 0), it may indicate that the sub-channel corresponding to the bit is an unavailable sub-channel.
  • the disallowed sub-channel bitmap subfield may include M/X bits, where one bit corresponds to X sub-channels of the first channel, in a certain When the value of a bit is 1 (or 0), it can indicate that the X sub-channels corresponding to the bit are all unavailable sub-channels.
  • the second field may be a field other than the disallowed subchannel bitmap used to indicate unavailable subchannels in the channel for NDP transmission.
  • the NDP received in step S502 is parsed according to the format of the first NDP.
  • the first device can send a beacon frame.
  • the beacon frame includes first indication information, and the first indication information is used to indicate that there is an unavailable sub-channel in the first channel.
  • the second device may receive the beacon frame from the first device.
  • the received NDP is parsed according to the format of the first NDP.
  • the second device parses the received message in the format of the second NDP. NDP.
  • the first device when the unavailable sub-channel in the first channel overlaps with the sub-channel range corresponding to the transmission bandwidth of the NDP, the first device sends the first NDP.
  • the first device may send the first NDP or the second NDP.
  • the actual bandwidth occupied by the PPDU including the perceived NDPA frame is 160 MHz.
  • the first device can send the first NDP, because the first NDP supports hole punching, even if the unavailable sub-channel corresponds to the transmission bandwidth of the NDP If the sub-channel ranges overlap, the first NDP with puncturing may also be sent.
  • the first device sends NDP can be the NDP specified in the standard or the default NDP. For example, if the standard stipulates that the first NDP is sent in this scenario, then the first device sends the first NDP, or if the standard stipulates that the second NDP is sent in this scenario. , then the first device sends the second NDP.
  • the first device may send the first NDP instead of the second NDP.
  • the sub-channel range corresponding to the transmission bandwidth of the NDP may be the same as the sub-channel range corresponding to the transmission bandwidth of the PPDU including the sensing NDPA frame. For example, based on the above example, when the sub-channel range corresponding to the transmission bandwidth of the PPDU including the sensing NDPA frame includes the first 80 MHz area and the second 80 MHz area, the sub-channel range corresponding to the NDP transmission bandwidth also includes the first 80 MHz area. 80MHz area and the second 80MHz area.
  • the first PPDU may be a PPDU including a perceptual NDPA frame, or may be an NDP in step 502. Reference may be made to the relevant description in condition 1) above, which will not be described again here.
  • the first device may send the first NDP, and the second device parses the received NDP according to the format of the first NDP.
  • the first device may send the second NDP, and the second device parses the received NDP according to the format of the second NDP.
  • the preamble part of the first PPDU may include a third field, and the third field may be used to indicate that puncturing exists in the first PPDU.
  • the second device parses the NDP received in step S502 according to the format of the first NDP.
  • the NDP received in step S502 is parsed according to the format of the second NDP.
  • the second device learns that there is puncturing in the PPDU including the aware NDPA frame. , it can also be learned that there is hole punching in the NDP induced by the perceived NDPA frame.
  • NDP The number of data flows supported by NDP is greater than or equal to the second threshold.
  • the first device may send the first NDP, The second device parses the received NDP according to the format of the first NDP.
  • the first device may send the second NDP, and the second device parses the received NDP according to the format of the second NDP.
  • the second threshold may be the number of data flows that the second NDP does not support.
  • the second threshold may be equal to 8.
  • the first device may carry field B in the sensing NDPA frame, where the field B is used to indicate whether the number of data streams supported by NDP derived from the sensing NDPA frame is greater than or equal to the second threshold.
  • the second device parses the received NDP according to the format of the first NDP. If field B indicates that the number of data streams supported by NDP is less than the second threshold, the second device parses the received NDP according to the format of the second NDP.
  • the field B can be a subfield of the number of space-time streams (NSTS), a subfield of the number of spatial streams (NSS), and a subfield of the number of columns (Nc). fields etc.
  • condition 4) may also be that the total number of LTFs supported by the NDP is greater than or equal to the third threshold.
  • the first resource is a resource unit that is not supported by the physical layer version corresponding to the second NDP.
  • the first resource is used to carry the sensing NDPA frame, or the first resource may be a resource to be measured in the first channel.
  • the first device may send the first NDP, and the second device parses the received NDP according to the format of the first NDP.
  • the first device may send the second NDP, and the second device parses the received NDP according to the format of the second NDP.
  • the resource units supported by the second NDP may be protocol-defined, so the second device can learn the resource units supported by the second NDP.
  • the second device can learn the first resource by receiving the sensing NDPA frame, and thereby determine whether the first resource is a resource unit that is not supported by the physical layer version corresponding to the second NDP.
  • the sensing NDPA frame may include a site information field, and the site information field may include a fourth field used to indicate the first resource.
  • the second device can learn the first resource according to the indication in the fourth field, thereby determining whether the first resource is a resource unit that is not supported by the physical layer version corresponding to the second NDP.
  • the fourth field may be a partial bandwidth information (Partial BW Info) subfield.
  • BW refers to bandwidth (band width, BW).
  • the fourth field can also be other subfields in the site information field, and this application does not impose specific restrictions on this.
  • the resource unit involved in this application may include a resource unit (resource unit, RU) and/or a multi-resource unit (Multi-RU, MRU).
  • resource unit resource unit
  • Multi-RU multi-resource unit
  • the perceptual NDPA frame may include a fifth field, which is used to indicate whether the NDP in step S502 is the first NDP or the second NDP.
  • the value of the fifth field is the third value, it indicates that the NDP is the first NDP.
  • the value of the fifth field is the fourth value, it indicates that the NDP is the second NDP.
  • the length of the fifth field may be 1 bit.
  • the third value may be 1, and the fourth value may be 0.
  • the third value may be 0 and the fourth value may be 1.
  • the length of the fifth field can also be realized in other ways, such as being greater than 1 bit, etc., without limitation.
  • the fifth field may be located in each site information field of the sensing NDPA frame, or the fifth field may be located in fields other than the site information field included in the sensing NDPA frame.
  • the second device parses the NDP according to the format of the first NDP. If the fifth field indicates that the NDP is the second NDP, the second device parses the NDP according to the format of the second NDP.
  • the NDP when the second station information field appears in the NDPA frame, the NDP is the first NDP. When the second station information field does not appear in the perceived NDPA frame, the NDP is the second NDP.
  • the second site information field includes an association identification field, and the value of the association identification field is a second specific value.
  • the second specific value may be one of 2046, 2047, and 2008-2042.
  • the second specific value is different from the first specific value.
  • the second device parses the NDP according to the format of the first NDP. If the second station information field does not appear in the perceived NDPA frame, the second device parses the NDP according to the format of the second NDP.
  • the first device may send a wireless frame.
  • the radio frame is used to indicate whether the NDP is the first NDP or the second NDP. If the wireless frame indicates that the NDP is the first NDP, the second device parses the NDP according to the format of the first NDP; if the wireless frame indicates that the NDP is the second NDP, the second device parses the NDP according to the format of the second NDP.
  • the wireless frame may be a beacon frame.
  • it may be a wireless frame in the perceptual measurement establishment process, such as a perceptual measurement establishment request frame or a perceptual measurement establishment response frame.
  • the first device may send NDP in the measurement entity.
  • the NDP can be the second NDP.
  • the first device may send a trigger frame to the second device to trigger the second device to send an NDP.
  • the format of the NDP elicited by the sensing NDPA frame may be determined by the format of the PPDU carrying the sensing NDPA frame. For example, if the PPDU carrying the perceived NDPA frame is an EHT PPDU, then the NDP derived from the perceived NDPA frame is the first NDP. If the PPDU carrying the perceived NDPA frame is not an EHT PPDU, then the NDP derived from the perceived NDPA frame is the second NDP.
  • the format of the NDP induced by the NDPA frame can be determined by whether the medium access control (medium access control, MAC) frame carries fields corresponding to a certain generation standard. For example, when the standard is the EHT standard, if the MAC frame carries the EHT Operation element, then the NDP induced by the NDPA frame is the first NDP, otherwise it is the second NDP.
  • medium access control medium access control
  • the first NDP or the second NDP is derived from a perceptual NDPA frame in one format for explanation.
  • the perceptual NDPA frame of the present application may have two formats, or in other words, there are two variants of the perceptual NDPA frame.
  • the NDP corresponding to the first format is the first NDP
  • the NDP corresponding to the second format is the second NDP.
  • the NDP corresponding to the first variant is the first NDP
  • the NDP corresponding to the second variant is the second NDP.
  • the above two formats of sensing NDPA frames can be implemented by reusing existing NDPA frames, or by defining new NDPA frames.
  • one of them can be realized by multiplexing the four NDPA frames shown in Table 1, and the other can be realized by the control frame extension field in the frame control field; or, the two formats of sensing NDPA can be realized by multiplexing Table 1
  • Different NDPA frames among the four NDPA frames shown are implemented; alternatively, two formats of perceived NDPA can be implemented by controlling two different values of the frame extension field.
  • the NDPA-aware frame structures of the above two formats may be different, or the meanings of some fields may be different. Likewise, this application does not specifically limit this.
  • whether the format of the perceived NDPA frame in step S501 is specifically the first format or the second format can be determined with reference to the above first condition. For example, when the first condition is met, the format of the perceived NDPA frame is the first format; when the first condition is not met, the format of the perceived NDPA frame is the second format.
  • the second device can determine the format of the NDP derived from the received perceived NDPA frame through the format of the received perceived NDPA frame, and thereby parse the received NDP according to the format of the NDP.
  • the methods and/or steps implemented by the first device can also be implemented by components (such as chips or circuits) that can be used in the first device; the methods and/or steps implemented by the second device can also be implemented by components (such as chips or circuits) that can be used in the first device. /or the steps may also be implemented by components (such as chips or circuits) that can be used in the second device.
  • this application also provides a communication device, which is used to implement the various methods mentioned above.
  • the communication device may be the first device in the above method embodiment, or a device including the above first device, or a component that can be used in the first device; or the communication device may be the second device in the above method embodiment. , or a device that includes the above-mentioned second device, or a component that can be used in the second device.
  • the communication device includes corresponding hardware structures and/or software modules for performing each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving the hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each specific application, but such implementations should not be considered beyond the scope of this application.
  • Embodiments of the present application can divide the communication device into functional modules according to the above method embodiments.
  • functional modules can be divided into corresponding functional modules, or two or more functions can be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic and is only a logical function division. In actual implementation, there may be other division methods.
  • FIG. 6 shows a schematic structural diagram of the first device 60.
  • the first device 60 includes a transceiver module 602 . Further, the first device 60 may also include a processing module 601.
  • the first device 60 may also include a storage module (not shown in Figure 6) for storing program instructions and data.
  • the transceiver module 602 which may also be called a transceiver unit, is used to implement sending and/or receiving functions.
  • the transceiver module 602 may be composed of a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the transceiver module 602 may include a receiving module and a sending module, respectively configured to perform the receiving and sending steps performed by the first device in the above method embodiments, and/or to support the steps described herein.
  • the processing module 601 can be used to perform steps of the processing class (such as generation, etc.) performed by the first device in the above method embodiments, and/or other processes used to support the technology described herein.
  • the processing module 601 is used to generate a perceptual NDPA frame and an NDP; the transceiver module 1602 is used to send a perceptual NDPA frame, and the perceptual NDPA frame is used to indicate that the NDP will be sent; the transceiver module 1602 is also used to send an NDP, and the NDP is The first NDP or the second NDP, the physical layer version of the first NDP and the physical layer version of the second NDP are different.
  • the transceiver module 602 is also configured to send a beacon frame, where the beacon frame includes first indication information, and the first indication information is used to indicate that there is an unavailable sub-channel in the first channel.
  • the transceiver module 602 is also configured to send a wireless frame, the wireless frame is used to indicate whether the NDP is the first NDP or the second NDP, and/or the wireless frame is used to indicate the type of the perceived NDPA frame.
  • the transceiver module 602 is used to send the NDP and includes: the transceiver module 602 is used to send the NDP in the measurement entity.
  • the NDP is the second NDP.
  • the first device 60 is presented in the form of dividing various functional modules in an integrated manner.
  • a “module” here may refer to an application-specific integrated circuit (ASIC), a circuit, a processor and memory that executes one or more software or firmware programs, an integrated logic circuit, and/or others that may provide the above functions. device.
  • ASIC application-specific integrated circuit
  • the first device 60 may take the form of the communication device 400 shown in FIG. 4 .
  • the function/implementation process of the processing module 601 in Figure 6 can be realized by the processor 401 in the communication device 400 shown in Figure 4 calling the computer execution instructions stored in the memory 404.
  • the transceiver module in Figure 6 The function/implementation process of 602 can be implemented by the transceiver 402 in the communication device 400 shown in FIG. 4 .
  • the function/implementation process of the transceiver module 602 can be implemented through the input and output interface (or communication interface) of the chip or chip system, and the processing module 601
  • the function/implementation process can be realized by the processor (or processing circuit) of the chip or chip system.
  • the first device 60 provided in this embodiment can perform the above method, the technical effects it can obtain can be referred to the above method embodiment, which will not be described again here.
  • FIG. 7 shows a schematic structural diagram of the second device 70.
  • the second device 70 includes a transceiver module 702 . Further, the second device 70 may also include a processing module 701.
  • the second device 70 may also include a storage module (not shown in Figure 7) for storing program instructions and data.
  • the transceiver module 702 which may also be called a transceiver unit, is used to implement sending and/or receiving functions.
  • the transceiver module 702 may be composed of a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the transceiver module 702 may include a receiving module and a sending module, respectively configured to perform the receiving and sending steps performed by the second device in the above method embodiments, and/or to support the steps described herein.
  • the processing module 701 can be used to perform steps of the processing class (such as parsing, etc.) performed by the second device in the above method embodiments, and/or other processes used to support the technology described herein.
  • the transceiver module 702 is used to receive the sensing null data physical layer protocol data unit declaration NDPA frame, and the sensing NDPA frame is used to indicate that the null data physical layer protocol data unit NDP will be sent; the transceiver module 702 is also used to receive the NDP, and the NDP is The first NDP or the second NDP, the physical layer version of the first NDP and the physical layer version of the second NDP are different.
  • the processing module 701 is configured to parse the NDP according to the format of the first NDP when the first field indicates that the bandwidth of the first PPDU is greater than the first threshold.
  • the processing module 701 is further configured to: when the value of the association identification field is a first specific value, according to the first The format of NDP parses NDP, and the first specific value is used to indicate that there is an unavailable sub-channel in the first channel.
  • the first site information field also includes a second field
  • the processing module 701 is specifically configured to perform the processing according to the first specific value when the value of the association identification field is a first specific value and the second field indicates an unavailable sub-channel.
  • An NDP format parses NDP.
  • the transceiver module 702 is also configured to receive a beacon frame, and the beacon frame includes the first indication information; the processing module 701 is also configured to, when the first indication information indicates that there is an unavailable sub-channel in the first channel, Parse the NDP according to the format of the first NDP.
  • the processing module 701 is further configured to: when the third field indicates that puncturing exists in the first PPDU, perform the processing according to the first The format of NDP parses NDP.
  • the sensing NDPA frame includes a site information field, and the site information field includes a fourth field; the processing module 701 is also used to detect the first resource indicated in the fourth field.
  • the NDP is parsed according to the format of the first NDP.
  • the perceptual NDPA frame includes a fifth field
  • the processing module 701 is configured to parse the NDP according to the format of the first NDP when the fifth field indicates that the NDP is the first NDP; or, the processing module 701 is configured to process the fifth field.
  • the processing module 701 is configured to process the fifth field.
  • the processing module 701 when sensing that the second site information field appears in the NDPA frame, the processing module 701 is also configured to parse the NDP according to the format of the first NDP; when sensing that the second site information field does not appear in the NDPA frame, the processing module 701 also It is used to parse the NDP according to the format of the second NDP; wherein the second site information field includes an association identification field, and the value of the association identification field is a second specific value.
  • the transceiver module 702 is also configured to receive a wireless frame.
  • the wireless frame is used to indicate whether the NDP is the first NDP or the second NDP, and/or the wireless frame is used to indicate the type of the perceived NDPA frame.
  • the transceiver module 702 is specifically configured to send an NDP in the measurement entity; when trigger-based detection and NDPA detection exist in the measurement entity, the NDP is the second NDP.
  • the second device 70 is presented in the form of dividing various functional modules in an integrated manner.
  • Module here may refer to ASICs, circuits, processors and memories that execute one or more software or firmware programs, integrated logic circuits, and/or other devices that can provide the above functions.
  • the second device 70 may take the form of the communication device 400 shown in FIG. 4 .
  • the function/implementation process of the processing module 701 in Figure 7 can be realized by the processor 401 in the communication device 400 shown in Figure 4 calling the computer execution instructions stored in the memory 404.
  • the transceiver module in Figure 7 The function/implementation process of 702 can be implemented by the transceiver 402 in the communication device 400 shown in FIG. 4 .
  • the function/implementation process of the transceiver module 702 can be implemented through the input and output interface (or communication interface) of the chip or chip system, and the processing module 701
  • the function/implementation process can be realized by the processor (or processing circuit) of the chip or chip system.
  • the second device 70 provided in this embodiment can perform the above method, the technical effects it can obtain can be referred to the above method embodiment, which will not be described again here.
  • the first device and the second device described in the embodiments of the present application can also be implemented using: one or more field programmable gate arrays (FPGA), A programmable logic device (PLD), controller, state machine, gate logic, discrete hardware components, any other suitable circuit, or any combination of circuits capable of performing the various functions described throughout this application.
  • FPGA field programmable gate arrays
  • PLD programmable logic device
  • state machine state machine
  • gate logic discrete hardware components
  • discrete hardware components any other suitable circuit, or any combination of circuits capable of performing the various functions described throughout this application.
  • the first device and the second device described in the embodiment of the present application can be implemented by a general bus architecture.
  • FIG. 8 is a schematic structural diagram of a communication device 800 provided by an embodiment of the present application.
  • the communication device 800 includes a processor 801 and a transceiver 802 .
  • the communication device 800 may be a first device or a second device, or a chip therein.
  • Figure 8 shows only the main components of the communication device 800.
  • the communication device may further include a memory 803 and an input and output device (not shown).
  • the processor 801 is mainly used to process communication protocols and communication data, control the entire communication device, execute software programs, and process data of the software programs.
  • Memory 803 is mainly used to store software programs and data.
  • the transceiver 802 may include a radio frequency circuit and an antenna.
  • the radio frequency circuit is mainly used for conversion of baseband signals and radio frequency signals and processing of radio frequency signals.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices, such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • the processor 801, the transceiver 802, and the memory 803 can be connected through a communication bus.
  • the processor 801 can read the software program in the memory 803, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor 801 performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal out in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 801.
  • the processor 801 converts the baseband signal into data and performs processing on the data. deal with.
  • the radio frequency circuit and antenna can be arranged independently of the processor that performs baseband processing.
  • the radio frequency circuit and antenna can be arranged remotely and independently of the communication device. .
  • embodiments of the present application further provide a communication device, which includes a processor and is configured to implement the method in any of the above method embodiments.
  • the communication device further includes a memory.
  • the memory is used to store necessary program instructions and data.
  • the processor can call the program code stored in the memory to instruct the communication device to execute the method in any of the above method embodiments.
  • the memory may not be in the communication device.
  • the communication device further includes an interface circuit, which is a code/data reading and writing interface circuit.
  • the interface circuit is used to receive computer execution instructions (computer execution instructions are stored in the memory and may be directly read from memory, or possibly through other devices) and transferred to the processor.
  • the communication device further includes a communication interface, which is used to communicate with modules external to the communication device.
  • the communication device may be a chip or a chip system.
  • the communication device may be composed of a chip or may include a chip and other discrete devices. This is not specifically limited in the embodiments of the present application.
  • This application also provides a computer-readable storage medium on which a computer program or instructions are stored. When the computer program or instructions are executed by a computer, the functions of any of the above method embodiments are implemented.
  • This application also provides a computer program product, which implements the functions of any of the above method embodiments when executed by a computer.
  • the systems, devices and methods described in this application can also be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system system, or some features can be ignored or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separate, that is, they may be located in one place, or they may be distributed to multiple network units. Components shown as units may or may not be physical units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, or each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • computer program instructions When computer program instructions are loaded and executed on a computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or include one or more data storage devices such as servers and data centers that can be integrated with the medium.
  • the available media may be magnetic media (eg, floppy disk, hard disk, tape), optical media (eg, DVD), or semiconductor media (eg, solid state drive (SSD)), etc.
  • the computer may include the aforementioned device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及WLAN技术领域,尤其涉及一种空数据物理层协议数据单元发送方法及装置,可应用于支持802.11be或EHT制式的无线通信***。该方法中,第一设备发送感知NDPA帧,该感知NDPA帧用于指示将发送NDP;之后,第一设备发送NDP,该NDP为第一NDP或第二NDP。其中,第一NDP的物理层版本和第二NDP的物理层版本不同。相应的,第二设备接收来自第一设备的感知NDPA帧和NDP。基于该方案,可以避免只使用一种固定物理层版本的NDP,能够灵活、充分地利用第一NDP和第二NDP的优势,从而提高感知性能。

Description

空数据物理层协议数据单元发送方法及装置
本申请要求于2022年04月02日提交国家知识产权局、申请号为202210346893.X、申请名称为“空数据物理层协议数据单元发送方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,尤其涉及空数据物理层协议数据单元发送方法及装置。
背景技术
在无线局域网(wireless local area network,WLAN)标准,例如802.11bf中,展开了对感知过程的讨论。其中被基本认可的感知流程包括的主要环节有:感知会话建立(Sensing session setup)、测量建立(Measurement setup)、测量实体(Measurement instance)。
在测量实体环节中,WLAN设备可以发送空数据PPDU声明(null date PPDU announcement,NDPA)帧,该NDPA帧用于告知:在NDPA帧之后该WLAN设备将发送空数据PPDU(null date PPDU,NDP)。其中,PPDU指物理层协议数据单元(physical layer protocol data unit,PPDU)。收到NDPA帧的设备可以通过测量NDPA之后的NDP来获知信道信息等。
发明内容
本申请提供一种空数据物理层协议数据单元发送方法及装置,可以避免只使用一种固定物理层版本的NDP,能够灵活、充分地利用第一NDP和第二NDP的优势,从而提高感知性能。
第一方面,提供了一种空数据物理层协议数据单元发送方法,该方法可以由第一设备执行,也可以由第一设备的部件,例如处理器、芯片、或芯片***等执行,还可以由能实现全部或部分第一设备功能的逻辑模块或软件实现。该方法包括:发送感知NDPA帧,该感知NDPA帧用于指示将发送NDP。发送NDP,所述NDP为第一NDP或第二NDP,所述第一NDP的物理层版本和第二NDP的物理层版本不同。
基于该方案,第一设备发送感知NDPA,之后相应的发送第一NDP或第二NDP,避免了感知NDPA仅引出一种固定的NDP,或者说,避免感知NDPA仅对应一种固定的NDP,能够灵活、充分地利用第一NDP和第二NDP的优势,从而提高感知性能。
在一种可能的设计中,第一NDP满足以下至少一项:第一NDP支持的带宽大于第一阈值、或第一NDP支持打孔。第二NDP满足以下至少一项:第二NDP支持安全的长训练字段LTF、第二NDP支持重复的LTF。
基于该可能的设计,在第一NDP支持的带宽大于第一阈值时,由于更大的带宽对于感知的准确性有极大帮助,因此发送第一NDP可以提高感知准确性。在第一NDP支持打孔时,发送第一NDP可以更有效地利用带宽资源,提高资源利用率。在第二NDP支持安全的LTF时,发送第二NDP可以提高安全性能。在第二NDP支持重复的LTF时,可以提高接收端的信噪比。
在一种可能的设计中,在第一条件满足时,NDP为第一NDP;或者,在第一条件不满足时,NDP为第二NDP。其中,第一条件包括以下至少一项:
第一物理层协议数据单元PPDU的带宽大于第一阈值,第一PPDU包括感知NDPA帧, 或者,第一PPDU为NDP;
第一PPDU存在打孔;
第一信道中存在不可用的子信道,第一信道用于传输第一PPDU;
NDP支持的数据流数大于或等于第二阈值;
第一资源是第二NDP对应的物理层版本不支持的资源单元,第一资源用于承载感知NDPA帧,或者,第一资源为第一信道中待测量的资源。
基于该可能的设计,在第一条件满足时发送第一NDP,在第一条件不满足时发送第二NDP,能够根据第一条件合理地实现不同物理层版本的NDP的发送。
在一种可能的设计中,感知NDPA帧包括第一字段,第一字段用于指示第一PPDU的带宽大于第一阈值。
在一种可能的设计中,感知NDPA帧包括第一站点信息字段,第一站点信息字段包括关联标识字段,关联标识字段的值为第一特定值,第一特定值用于指示第一信道中存在不可用的子信道。
在一种可能的设计中,第一站点信息字段还包括第二字段,第二字段用于指示不可用的子信道。
在一种可能的设计中,该方法还包括:发送信标帧,信标帧包括第一指示信息,第一指示信息用于指示第一信道中存在不可用的子信道。
在一种可能的设计中,不可用的子信道与NDP的传输带宽对应的子信道范围存在重叠。
在一种可能的设计中,第一PPDU包括感知NDPA帧时,第一PPDU的前导码部分包括第三字段,第三字段用于指示第一PPDU存在打孔。
在一种可能的设计中,第一资源为第一信道中待测量的资源时,感知NDPA帧包括站点信息字段,站点信息字段包括第四字段,第四字段用于指示第一资源。
在一种可能的设计中,感知NDPA帧包括第五字段,第五字段用于指示NDP为第一NDP还是第二NDP。
在一种可能的设计中,第五字段位于感知NDPA帧的每个站点信息字段中,或者,第五字段位于感知NDPA帧包括的除站点信息字段外的字段中。
在一种可能的设计中,感知NDPA帧中出现第二站点信息字段时,NDP为第一NDP;或者,感知NDPA帧中不出现第二站点信息字段时,NDP为第二NDP;其中,第二站点信息字段包括关联标识字段,关联标识字段的值为第二特定值。
在一种可能的设计中,在发送感知NDPA帧之前,该方法还包括:发送无线帧,无线帧用于指示NDP为第一NDP还是第二NDP,和/或,无线帧用于指示感知NDPA帧的类型。
在一种可能的设计中,发送NDP包括:在测量实体中发送NDP;测量实体中存在基于触发的探测和NDPA探测时,NDP为第二NDP。
在一种可能的设计中,感知NDPA帧包括探测对话令牌字段和第六字段,探测对话令牌字段包括第一子字段,第一子字段用于指示第一NDPA帧,第六字段用于指示感知NDPA帧重用第一NDPA帧;第一NDPA帧为测距NDPA帧、甚高吞吐量VHT NDPA帧、高效HE NDPA帧、或超高吞吐量EHT NDPA帧中的一种;或者,感知NDPA帧包括帧控制字段,帧控制字段包括控制帧扩展字段,控制帧扩展字段用于指示感知NDPA帧的类型。
第二方面,提供了一种空数据物理层协议数据单元接收方法,该方法可以由第二设备执行,也可以由第二设备的部件,例如处理器、芯片、或芯片***等执行,还可以由能实现全部或部分第二设备功能的逻辑模块或软件实现。该方法包括:接收感知NDPA帧,该感知NDPA 帧用于指示将发送空数据物理层协议数据单元NDP;接收NDP,该NDP为第一NDP或第二NDP,第一NDP的物理层版本和第二NDP的物理层版本不同。
基于该方案,第二设备接收感知NDPA,之后相应的接收第一NDP或第二NDP,避免了感知NDPA仅引出一种固定的NDP,或者说,避免感知NDPA仅对应一种固定的NDP,能够灵活、充分地利用第一NDP和第二NDP的优势,从而提高感知性能。
在一种可能的设计中,第一NDP满足以下至少一项:第一NDP支持的带宽大于第一阈值、或第一NDP支持打孔。第二NDP满足以下至少一项:第二NDP支持安全的长训练字段LTF、第二NDP支持重复的LTF。
在一种可能的设计中,在第一条件满足时,NDP为第一NDP;或者,在第一条件不满足时,NDP为第二NDP。其中,第一条件包括以下至少一项:
第一物理层协议数据单元PPDU的带宽大于第一阈值,第一PPDU包括感知NDPA帧,或者,第一PPDU为NDP;
第一PPDU存在打孔;
第一信道中存在不可用的子信道,第一信道用于传输第一PPDU;
NDP支持的数据流数大于或等于第二阈值;
第一资源是第二NDP对应的物理层版本不支持的资源单元,第一资源用于承载感知NDPA帧,或者,第一资源为第一信道中待测量的资源。
在一种可能的设计中,感知NDPA帧包括第一字段;该方法还包括:第一字段指示第一PPDU的带宽大于第一阈值时,按照第一NDP的格式解析NDP。
在一种可能的设计中,感知NDPA帧包括第一站点信息字段,第一站点信息字段包括关联标识字段;该方法还包括:关联标识字段的值为第一特定值时,按照第一NDP的格式解析NDP,第一特定值用于指示第一信道中存在不可用的子信道。
在一种可能的设计中,第一站点信息字段还包括第二字段,关联标识字段的值为第一特定值时,按照第一NDP的格式解析NDP,包括:关联标识字段的值为第一特定值时,且第二字段指示了不可用的子信道时,按照第一NDP的格式解析NDP。
在一种可能的设计中,该方法还包括:接收信标帧,信标帧包括第一指示信息;在第一指示信息指示第一信道中存在不可用的子信道时,按照第一NDP的格式解析NDP。
在一种可能的设计中,不可用的子信道与NDP的传输带宽对应的子信道范围存在重叠。
在一种可能的设计中,第一PPDU包括感知NDPA帧时,第一PPDU的前导码部分包括第三字段,该方法还包括:第三字段指示第一PPDU存在打孔时,按照第一NDP的格式解析NDP。
在一种可能的设计中,第一资源为第一信道中待测量的资源时,感知NDPA帧包括站点信息字段,站点信息字段包括第四字段;该方法还包括:第四字段指示的第一资源是第二NDP对应的物理层版本不支持的资源单元时,按照第一NDP的格式解析NDP。
在一种可能的设计中,感知NDPA帧包括第五字段,该方法还包括:第五字段指示NDP为第一NDP时,按照第一NDP的格式解析NDP;第五字段指示NDP为第二NDP时,按照第一NDP的格式解析NDP。
在一种可能的设计中,第五字段位于感知NDPA帧的每个站点信息字段中,或者,第五字段位于感知NDPA帧包括的除站点信息字段外的字段中。
在一种可能的设计中,感知NDPA帧中出现第二站点信息字段时,该方法还包括:按照第一NDP的格式解析NDP;感知NDPA帧中不出现第二站点信息字段时,按照第二NDP的 格式解析NDP。其中,第二站点信息字段包括关联标识字段,关联标识字段的值为第二特定值。
在一种可能的设计中,在接收感知NDPA帧之前,该方法还包括:接收无线帧,无线帧用于指示NDP为第一NDP还是第二NDP,和/或,无线帧用于指示感知NDPA帧的类型。
在一种可能的设计中,发送NDP包括:在测量实体中发送NDP;测量实体中存在基于触发的探测和NDPA探测时,NDP为第二NDP。
在一种可能的设计中,感知NDPA帧包括探测对话令牌字段和第六字段,探测对话令牌字段包括第一子字段,第一子字段用于指示第一NDPA帧,第六字段用于指示感知NDPA帧重用第一NDPA帧;第一NDPA帧为测距NDPA帧、甚高吞吐量VHT NDPA帧、高效HE NDPA帧、或超高吞吐量EHT NDPA帧中的一种;或者,感知NDPA帧包括帧控制字段,帧控制字段包括控制帧扩展字段,控制帧扩展字段用于指示感知NDPA帧的类型。
第三方面,提供了一种通信装置用于实现上述各种方法。该通信装置可以为第一方面的第一设备,或者第一设备中包括的装置,比如芯片;或者,该通信装置可以为第二方面中的第二设备,或者第二设备中包括的装置,比如芯片。所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
在一些可能的设计中,该通信装置可以包括收发模块。进一步的,该通信装置还可以包括处理模块。该处理模块,可以用于实现上述任一方面及其任意可能的实现方式中的处理功能。该收发模块,也可以称为收发单元,用以实现上述任一方面及其任意可能的实现方式中的发送和/或接收功能。该收发模块可以由收发电路,收发机,收发器或者通信接口构成。
在一种可能的设计中,收发模块包括发送模块和接收模块,分别用于实现上述任一方面及其任意可能的实现方式中的发送和接收功能。
第四方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机指令,当该处理器执行该指令时,以使该通信装置执行上述任一方面所述的方法。该通信装置可以为第一方面的第一设备,或者第一设备中包括的装置,比如芯片;或者,该通信装置可以为第二方面中的第二设备,或者第二设备中包括的装置,比如芯片。
第五方面,提供一种通信装置,包括:处理器和通信接口;该通信接口,用于与该通信装置之外的模块通信;所述处理器用于执行计算机程序或指令,以使该通信装置执行上述任一方面所述的方法。该通信装置可以为第一方面的第一设备,或者第一设备中包括的装置,比如芯片;或者,该通信装置可以为第二方面中的第二设备,或者第二设备中包括的装置,比如芯片。
第六方面,提供一种通信装置,包括:逻辑电路和接口电路;该接口电路,用于输入信息和/或输出信息;该逻辑电路用于执行上述任一方面所述的方法,根据输入的信息进行处理和/或生成输出的信息。该通信装置可以为第一方面的第一设备,或者第一设备中包括的装置,比如芯片;或者,该通信装置可以为第二方面中的第二设备,或者第二设备中包括的装置,比如芯片。
第七方面,提供了一种通信装置,包括:接口电路和处理器,该接口电路为代码/数据读写接口电路,该接口电路用于接收计算机执行指令(计算机执行指令存储在存储器中,可能直接从存储器读取,或可能经过其他器件)并传输至该处理器;处理器用于执行计算机执行指令以使该通信装置执行上述任一方面所述的方法。该通信装置可以为第一方面的第一设备, 或者第一设备中包括的装置,比如芯片;或者,该通信装置可以为第二方面中的第二设备,或者第二设备中包括的装置,比如芯片。
第八方面,提供了一种通信装置,包括:至少一个处理器;所述处理器用于执行计算机程序或指令,以使该通信装置执行上述任一方面所述的方法。该通信装置可以为第一方面的第一设备,或者第一设备中包括的装置,比如芯片;或者,该通信装置可以为第二方面中的第二设备,或者第二设备中包括的装置,比如芯片。
在一些可能的设计中,该通信装置包括存储器,该存储器,用于保存必要的计算机程序或指令。该存储器可以与处理器耦合,或者,也可以独立于该处理器。
在一些可能的设计中,该通信装置可以是芯片或芯片***。该装置是芯片***时,芯片***可以包括芯片,也可以包含芯片和其他分立器件。
第九方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被处理器执行时,使得上述任一方面所述的方法被执行。
第十方面,提供了一种计算机程序产品,当该计算机程序产品被处理器执行时,使得上述任一方面所述的方法被执行。
可以理解的是,第三方面至第十方面中任一方面提供的通信装置是芯片时,上述的发送动作/功能可以理解为输出信息,上述的接收动作/功能可以理解为输入信息。
其中,第三方面至第十方面中任一种设计方式所带来的技术效果可参见上述第一方面或第二方面中不同设计方式所带来的技术效果,在此不再赘述。
第十一方面,提供一种通信***,该通信***包括上述第一方面所述的第一设备和第二方面所述的第二设备。
附图说明
图1为本申请提供的一种NDPA帧的结构示意图;
图2为本申请提供的另一种NDPA帧的结构示意图;
图3为本申请提供的一种通信***的结构示意图;
图4为本申请提供的一种通信装置的结构示意图;
图5为本申请提供的一种NDP发送、接收方法的流程示意图;
图6为本申请提供的一种第一设备的结构示意图;
图7为本申请提供的一种第二设备的结构示意图;
图8为本申请提供的另一种通信装置的结构示意图。
具体实施方式
在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。
在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第 一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
可以理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。可以理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
可以理解,本申请实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,比如其当前所基于的方案,而独立实施,解决相应的技术问题,达到相应的效果,也可以在某些场景下,依据需求与其他特征进行结合。相应的,本申请实施例中给出的装置也可以相应的实现这些特征或功能,在此不予赘述。
本申请中,除特殊说明外,各个实施例之间相同或相似的部分可以互相参考。在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。以下所述的本申请实施方式并不构成对本申请保护范围的限定。
为了方便理解本申请实施例的技术方案,首先给出本申请相关技术的简要介绍如下。
1、感知发起端、感知响应端、感知发送端、感知接收端:
感知发起端(Sensing initiator):发起无线局域网(wireless local area network,WLAN)感知过程的站点(station,STA)。
感知响应端(Sensing responder):参与由感知发起端发起的WLAN感知过程的站点。
感知发送端(Sensing transmitter):在感知过程内发送用于感知测量的物理层协议数据单元(physical layer protocol data unit,PPDU)的站点。
感知接收端(Sensing receiver):在感知过程内接收感知发送端发送的PPDU且进行感知测量的站点。
本申请中,站点可以为接入点站点(access point station,AP STA)或非接入点站点(non-access point station,non-AP STA)。为描述方便,本申请下述实施例将AP STA简称为AP。
2、感知过程:
WLAN标准中被基本认可的感知流程主要分为以下5类环节:
1)、感知会话建立(Sensing session setup):
表示站点间建立感知会话,相关的参数可以在该环节中交互(具体参数待定)。一个感知会话可以理解为一个感知发起端和一个感知响应端达成的两站点间的协议。一个感知发起端可以与多个感知响应端保持感知会话。
2)、测量建立(Measurement setup):
该环节用于感知发起端与感知响应端交换和统某些在感知过程中使用的参数、属性等,该参数例如可以包括感知发起端和感知响应端的角色(例如为感知发送端、或感知接收端)、测量反馈类型等。
为了清晰识别各个测量建立,目前的标准讨论中采用为测量建立进行标号的方式区分,即每个测量建立使用标识(identifier,ID)进行标记。
3)、测量实体(Measurement instance):
感知测量在测量实体中发生,一个测量实体中允许多个感知响应端的加入。一个测量实体用标识进行标记。
测量实体可以分为基于触发(trigger based,TB)的感知测量实体(TB sensing measurement instance)与非触发的感知测量实体(Non-TB sensing measurement instance)。示例性的,基于触发的感知测量实体可以包括如下阶段:询问阶段(polling phase)、空数据PPDU声明(null date PPDU announcement,NDPA)探测阶段(NDPA sounding phase)、触发帧(trigger frame,TF)探测阶段(TF sounding phase)、报告阶段等。其中:
询问阶段用于确认被询问的站点是否可以参与本次测量实体中的测量与反馈。
NDPA探测阶段中,感知发起端可以通过NDPA帧来告知感知响应端:在NDPA帧之后感知响应端将发送空数据PPDU(null date PPDU,NDP)。NDPA帧中可以指示需要侦听NDP的感知响应端以及其他配置信息,感知响应端可以通过测量NDPA之后的NDP来获知信道信息等。
触发帧探测阶段中,感知发起端可以通过触发帧来触发感知响应端发送NDP,由感知发起端测量NDP从而进行感知。
报告阶段中,感知响应端可以通过反馈(feedback)帧向感知发起端发送感知测量的相关信息,例如信道信息等。
可选的,在一个测量实体中可以既包括NDPA探测阶段,又包括触发帧探测阶段;或者,可以包括NDPA探测阶段,不包括触发帧探测阶段;或者,可以不包括NDPA探测阶段,包括触发帧探测阶段。
4)、测量建立终止(Measurement setup termination):
测量建立终止用于终止某个感知响应端对应的测量建立过程,即测量建立终止后,该感知响应端不再与对应的测量建立绑定,但是仍然可以处于感知会话中。
5)、感知会话终止(Sensing session termination):
感知会话终止用于终止感知会话。感知会话终止后,站点不再参与感知测量等过程。
3、NDPA的变种:
目前,NDPA存在以下四个变种:甚高吞吐量(very high throughput,VHT)NDPA帧、测距(Ranging)NDPA帧、高效(High Efficient,HE)NDPA帧、超高吞吐量(extremely high throughput,EHT)NDPA帧。
相应的,上述四个变种对应的NDP分别为:VHT NDP(对应VHT NDPA帧)、HE ranging NDP(对应Ranging NDPA帧)、HE sounding NDP(对应HE NDPA帧)和EHT NDP(对应EHT NDPA帧)。
示例性的,VHT NDPA帧的结构可以如图1所示,包括:长度为2字节的帧控制(Frame Control)字段(field)、长度为2字节的持续时间(Duration)字段、长度为6字节的接收地址(receive address,RA)字段、长度为6字节的发送地址(transmission address,TA)字段、长度为1字节的探测对话令牌(Sounding Dialog Token)字段、长度为2乘N字节的站点信息列表(STA Info List)、以及长度为4字节的帧校验序列(frame check sequence,FCS)字段。其中,站点信息列表可以包括N个站点信息字段,每个站点信息字段的长度为2字节。
HE NDPA帧、EHT NDPA帧、Ranging NDPA帧的结构可以如图2所示,包括:长度为 2字节的帧控制字段、长度为2字节的持续时间字段、长度为6字节的RA字段、长度为6字节的TA字段、长度为1字节的探测对话令牌字段、N个长度为4字节的站点信息(STA Info)字段、以及长度为4字节的帧校验序列(frame check sequence,FCS)字段。
需要说明的是,本申请中各个字段的长度仅是示例性说明,本申请不对字段的长度进行具体限制,实际应用中还可以有其他取值。
上述四个NDPA变种,可以通过探测对话令牌中的比特0(B0)和比特1(B1)的取值区分。示例性的,探测对话令牌中的B0和B1的各种取值对应的NDPA变种可以如下表1所示。
表1
探测对话令牌的B0和B1在EHT中被称为NDPA变种子字段,在Ranging标准(802.11az)中被称为NDPA类型子字段。虽然在不同标准中的名称不同,但不影响设备对这两个比特的解读。
需要注意的是,VHT NDPA帧中每个站点信息字段的长度为2字节,HE NDPA帧、EHT NDPA帧、Ranging NDPA帧中每个站点信息字段的长度为4字节。此外,对于不同NDPA变种,站点信息字段的解读方式也不同。
HE NDPA帧、EHT NDPA帧、Ranging NDPA帧中的每个站点信息字段包括11比特(B0-B10)的关联标识(association identifier,AID)子字段。VHT NDPA帧的每个站点信息字段包括12比特(B0-B11)或13比特(B0-B12)的AID子字段。
其中,AID子字段用于指示站点的AID,或者说与站点的AID对应。站点在接收NDPA帧后,可以逐一解析站点信息字段,当站点信息字段中的AID子字段指示的AID为该站点的AID时,该站点信息字段即为该站点对应的字段,该站点可以继续解析该站点信息字段获取信息。
NDPA帧中的N个站点信息字段可以与N个站点一一对应,某个站点信息字段用于承载其对应的站点所需的信息。不同站点所需的信息可以不同,即不同站点信息字段承载的信息可以不同。
对于HE NDPA帧和Ranging NDPA帧,图2所示结构中的公共字段(站点信息字段之前的字段)可能不足以承载各个站点所需的信息。因此,为了拓展各个站点均需读取的公共部分,在HE NDPA帧和Ranging NDPA帧中,增加了使用特殊AID标识的拓展公共字段,即该拓展公共字段为特殊的站点信息字段,该特殊的站点信息字段的AID子字段的值为特殊值或特殊AID。示例性的,AID子字段的各种取值对应的含义可以如下表2所示。
表2

其中,2043、2044、2045、2047可以理解为上述的特殊值或特殊AID。
上述NDPA变种可以认为是非802.11bf标准中的NDPA,相应的NDP可以认为是非802.11bf标准中的NDP。因此,有必要对802.11bf标准中的NDPA和NDP进行设计。
基于此,本申请提供一种NDP发送方法,设计了一种适用于802.11bf标准的感知NDPA,基于该感知NDPA引出第一NDP或第二NDP,避免只使用一种固定类型的NDP,能够灵活、充分地利用第一NDP和第二NDP的优势,从而提高感知性能。
本申请实施例可以适用于无线局域网(wireless local area network,WLAN)的场景,可以适用于电气及电子工程师学会(institute of electrical and electronics engineers,IEEE)802.11bf标准,还可以适用于其他802.11***标准,例如802.11a/b/g标准、802.11n标准、802.11ac标准、802.11ax标准,或其下一代,例如802.11be标准或更下一代的标准中。或者,本申请实施例也可以适用于物联网(internet of things,IoT)网络或车联网(vehicle to X,V2X)网络等无线局域网***中。当然,本申请实施例还可以适用于其他可能的通信***,例如,长期演进(long term evolution,LTE)***、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD)、通用移动通信***(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信***、以及未来的第五代(5th generation,5G)通信***等。
其中,上述适用本申请的通信***仅是举例说明,适用本申请的通信***不限于此,在此统一说明,以下不再赘述。
首先,本申请提供一种本申请实施例适用的WLAN通信***,该WLAN通信***包括第一设备和第二设备。
可选的,第一设备和第二设备可以均为AP;或者,第一设备和第二设备中的一个可以为AP,另一个为non-AP STA;或者,第一设备和第二设备可以均为non-AP STA。
作为一种示例,请参见图3,示出了本申请提供的WLAN通信***的架构图。图3以该WLAN通信***包括AP1、AP2,non-AP STA1、non-APSTA2、以及non-AP STA3为例。应理解,图3中的AP和non-AP STA的数量仅是举例,还可以更多或者更少。
示例性的,在图3所示的通信***中,AP1可以为第一设备,non-AP STA1可以为第二 设备;或者,AP1可以为第一设备,AP2为第二设备;或者,non-AP STA2和non-AP STA3中的一个为第一设备,另一个为第二设备。应理解,图3中的AP和non-AP STA还可以有其他组合作为第一设备和第二设备,不予限制。
本申请实施例涉及的non-AP STA可以为无线通讯芯片、无线传感器或无线通信终端。例如支持无线保真(wireless fidelity,WiFi)通讯功能的用户终端、用户装置,接入装置,订户站,订户单元,移动站,用户代理,用户装备,其中,用户终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、物联网(internet of things,IoT)设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(user equipment,UE),移动台(mobile non-AP STAtion,MS),终端(terminal),终端设备(terminal equipment),便携式通信设备,手持机,便携式计算设备,娱乐设备,游戏设备或***,全球定位***设备或被配置为经由无线介质进行网络通信的任何其他合适的设备等。此外,non-AP STA可以支持802.11bf制式。non-AP STA也可以支持802.11be或者802.11be的下一代制式、802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等多种WLAN制式。
本申请实施例涉及的AP可以为一种部署在无线通信网络中为其关联的non-AP STA提供无线通信功能的装置,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。AP相当于一个连接有线网和无线网的桥梁,主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。具体的,AP可以是带有WiFi芯片的基站、路由器、网关、中继器,通信服务器,交换机或网桥等通信设备,其中,所述基站可以包括各种形式的宏基站,微基站,中继站等。此外,AP可以支持802.11bf制式。AP也可以支持802.11be或者802.11be的下一代制式、802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等WLAN制式。
在一些实施例中,本申请涉及的AP和non-AP STA可以统称为WLAN设备,具体实现时,WLAN设备可以采用图4所示的组成结构,或者包括图4所示的部件。
参见图4,为本申请实施例提供的一种WLAN设备400的组成示意图,该WLAN设备400可以为non-AP STA或者non-AP STA中的芯片或者芯片***(或称为片上***);也可以为AP或者AP中的芯片或者芯片***(或称为片上***)。本申请实施例中,芯片***可以由芯片构成,也可以包括芯片和其他分立器件。
如图4所示,该WLAN设备400包括处理器401和收发器402。进一步的,该WLAN设备400还可以包括存储器404。其中,处理器401,存储器404以及收发器402之间可以通过通信线路403连接。
可选的,处理器401可以是中央处理器(central processing unit,CPU)、通用处理器网络处理器(network processor,NP)、数字信号处理器(digital signal processing,DSP)、微处理器、微控制器、可编程逻辑器件(programmable logic device,PLD)或它们的任意组合。处理器401还可以是其它具有处理功能的装置,例如电路、器件或软件模块,不予限制。
在一种示例中,处理器401可以包括一个或多个CPU,例如图4中的CPU0和CPU1。WLAN设备400可以包括多个处理器,例如,除图4中的处理器401之外,还可以包括其他处理器(图4中未示出)。
收发器402,用于与其他设备或其它通信网络进行通信。该其它通信网络可以为以太网,无线接入网(radio access network,RAN),WLAN等。收发器402可以是模块、电路、收发器或者任何能够实现通信的装置。
通信线路403,用于在WLAN设备400所包括的各部件之间传送信息。
存储器404,用于存储指令。其中,指令可以是计算机程序。存储器404可以是只读存储器(read-only memory,ROM)或可存储静态信息和/或指令的其他类型的静态存储设备,也可以是随机存取存储器(random access memory,RAM)或可存储信息和/或指令的其他类型的动态存储设备,还可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或其他磁存储设备等,不予限制。
需要指出的是,存储器404可以独立于处理器401存在,也可以和处理器401集成在一起。存储器404可以用于存储指令或者程序代码或者一些数据等。存储器404可以位于WLAN设备400内,也可以位于WLAN设备400外,不予限制。处理器401,可以执行存储器404中存储的指令,以实现本申请下述实施例提供的方法。
作为一种可选的实现方式,WLAN设备400还包括输出设备405和输入设备406。示例性地,输入设备406是键盘、鼠标、麦克风或操作杆等设备,输出设备405是显示屏、扬声器(speaker)等设备。
可以理解的是,图4中示出的组成结构并不构成对该WLAN设备的限定,除图4所示部件之外,该WLAN设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面将对本申请实施例提供的方法进行展开说明。可以理解的,本申请实施例中,执行主体可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。
参见图5,为本申请提供的一种NDP发送、接收方法的流程示意图,该NDP发送、接收方法包括如下步骤:
S501、第一设备发送感知NDPA(Sensing NDPA)帧。相应的,第二设备接收来自第一设备的感知NDPA帧。其中,该感知NDPA帧用于指示第一设备将发送NDP。
可选的,该感知NDPA帧可以理解为本申请提供的一种新的NDPA变种。该新的NDPA变种区别于VHT NDPA帧、Ranging NDPA帧、HE NDPA帧、和EHT NDPA帧。
需要说明的是,名称“感知NDPA帧”仅用于示例性的区分本申请提供的新的NDPA变种与表1所示的四个变种,本申请对该新的NDPA变种的名称不作具体限定。实际应用中,还可以有其他名称,例如测量(measuring)NDPA等。此外,本申请提供的感知NDPA帧可以适用于IEEE 802.11bf标准。当然,还可以适用于其他802.11***标准,例如802.11be标准或更下一代的标准中。
在一些实施场景中,该感知NDPA帧可以重用Ranging NDPA帧,或者,可以重用VHT NDPA帧、HE NDPA帧、或EHT NDPA帧。
可选的,在重用上述四种NDPA帧中的一种时,本申请提供一种新的NDPA帧结构,该NDPA帧包括探测对话令牌字段,且该探测对话令牌字段中的第一子字段(B0和B1)用于指示第一NDPA帧。该第一NDPA帧为Ranging NDPA帧、VHT NDPA帧、HE NDPA帧、或EHT NDPA帧中的一种。例如,在第一NDPA帧为Ranging NDPA时,第一子字段可以设置为B0=1,B1=0;在第一NDPA帧为VHT NDPA帧时,第一子字段可以设置为B0=0,B1=0;在第一NDPA帧为HE NDPA帧时,第一子字段可以设置为B0=0,B1=1;在第一NDPA帧为EHT NDPA帧时,第一子字段可以设置为B0=1,B1=1。
作为一种可能的实现,进一步的,该NDPA帧中还包括额外的字段A用于指示该NDPA帧为感知NDPA帧还是第一NDPA帧。例如,在字段A的取值为第一数值时,该NDPA帧为感知NDPA帧,或者说指示感知NDPA帧重用第一NDPA帧,在字段A的取值为第二数值时,该NDPA帧为Ranging NDPA帧。
示例性的,该字段A可以位于NDPA帧的公共部分,该公共部分包括除站点信息字段外的字段;或者,该字段A可以位于每个站点信息字段中,即每个站点信息字段均包括字段A。
示例性的,字段A的长度可以为1比特。第一数值可以为1,第二数值可以为0。或者,第一数值可以为0,第二数值可以为1。当然,字段A的长度还可以有其他实现,例如大于1比特等,不予限制。
示例性的,该字段A可以为公共部分或站点信息字段中的预留字段,或者,也可以为在公共部分或站点信息字段中新增的字段,本申请对此不作具体限定。
可选的,第二设备收到第一设备发送的NDPA帧后,可以解析该字段A。若字段A指示该NDPA帧为感知NDPA,可以按照感知NDPA的格式继续解析该感知NDPA帧的其他字段。若字段A指示该NDPA帧为第一NDPA帧,可以按照第一NDPA帧的格式继续解析该第一NDPA帧的其他字段。
其中,在本申请实施例中,字段A也可以称为第六字段,二者可以相互替换,本申请对此不作具体限定。
作为另一种可能的实现,进一步的,该NDPA帧中出现特殊站点信息字段时,表示该NDPA帧为感知NDPA帧,或者说指示感知NDPA帧重用第一NDPA帧。该NDPA帧中不出现该特殊站点信息字段时,表示该NDPA帧为第一NDPA帧。或者,该NDPA帧中出现特殊站点信息字段时该NDPA帧为第一NDPA帧,不出现时该NDPA帧为感知NDPA帧。其中,该特殊站点信息字段包括的关联标识字段的取值可以为预设的特定值。该特定值不为某个站点对应的AID,可以为现有标准中预留的AID值,例如,可以为2008-2042中的任一数值。
可选的,第二设备收到第一设备发送的NDPA帧后,可以根据该NDPA帧中是否出现该特殊站点信息字段确定该NDPA帧为感知NDAP或第一NDPA帧。若该NDPA帧中出现该特殊站点信息字段,可以按照感知NDPA的格式继续解析该感知NDPA帧的其他字段。若该NDPA帧中不出现该特殊站点信息字段,可以按照第一NDPA帧的格式继续解析该第一NDPA帧的其他字段。
此外,在上述两种可能的实现中,该感知NDPA帧还可以包括帧控制字段、持续时间字段、RA字段、TA字段、站点信息列表(或N个站点信息)字段、帧校验序列字段中的一项或多项。
作为又一种可能的实现,第一设备发送感知NDPA帧之前,可以发送无线帧。该无线帧用于指示第一设备将发送的NDPA帧的类型,或者说,用于指示NDPA变种的类型。若该无线帧指示第一设备将发送的NDPA帧的类型为感知NDPA帧时,第二设备按照感知NDPA帧的格式解析步骤S501中收到的NDPA帧。若该无线帧指示第一设备将发送的NDPA帧的类型为第一NDPA帧时,第二设备按照第一NDPA帧的格式解析步骤S501中收到的NDPA帧。
可以理解的,第一设备在步骤S501中发送感知NDPA帧的场景下,也可以认为该无线帧用于指示感知NDPA帧的类型。
在另一些实施场景中,该感知NDPA帧可以包括帧控制字段。该帧控制字段中可以包括控制帧扩展(Control Frame Extension)字段,该控制帧扩展字段可以指示感知NDPA帧的类型,或者说,携带该控制帧扩展字段的NDPA帧为感知NDPA帧,或者说,可以指示感知 NDPA帧为新定义的NDPA帧。也就是说,可以通过控制帧扩展字段区分感知NDPA与Ranging NDPA帧、VHT NDPA帧、HE NDPA帧、或EHT NDPA帧。
可选的,第二设备收到该第一设备发送的NDPA帧后,可以解析该控制帧扩展字段,并根据该控制帧确定该NDPA帧为感知NDPA帧,再按照感知NDPA帧的格式解析继续解析该感知NDPA帧的其他字段。
此外,在该实施场景中,该感知NDPA帧还可以包括持续时间字段、RA字段、TA字段、站点信息列表(或N个站点信息)字段、帧校验序列字段中的一项或多项。
S502、第一设备发送NDP。相应的,第二设备接收来自第一设备的NDP。
其中,该NDP为第一NDP或第二NDP。该第一NDP的类型和第二NDP的类型不同。
可选的,本申请中NDP的类型不同可以包括以下至少一项:NDP的物理层(physical layer,PHY)版本(PHY version)不同、NDP支持的功能不同、或NDP的格式不同。示例性的,物理层版本可以包括但不限于:EHT、HE、VHT等。
示例性的,两个NDP的物理层版本相同,但支持的功能不同时,这两个NDP也可以理解为不同类型的NDP。例如,HE Ranging NDP和HE Sounding NDP的物理层版本相同,但支持的功能不同,因此,HE Ranging NDP和HE Sounding NDP可以认为是不同类型的NDP。
示例性的,在NDP的类型不同指NDP的物理层版本不同时,该第一NDP的物理层版本和第二NDP的物理层版本不同。
可选的,该第一NDP或第二NDP可以理解为感知NDPA帧引出的NDP,或者为感知NDPA帧对应的NDP。
可选的,第一NDP满足以下至少一项:第一NDP支持的带宽大于第一阈值,或,第一NDP支持打孔(puncture)。例如,第一NDP可以为EHT NDP。第一阈值可以为HE标准中宣称的包括感知NDPA的PPDU的带宽或NDP的最大带宽,例如160兆赫兹(MHz)。
可选的,第二NDP满足以下至少一项:第二NDP支持安全的长训练字段(long training field,LTF),或,第二NDP支持重复的LTF。例如,第二NDP可以为HE Ranging NDP,相应的LTF为HE-LTF,即第二NDP支持安全的HE-LTF或支持重复的HE-LTF。其中,重复的LTF可以指某一LTF重复多次,或者说,第二NDP可以包括多个相同的LTF。
基于该方案,第一设备发送感知NDPA,引出第一NDP或第二NDP,避免了感知NDPA仅引出一种固定的NDP,或者说,避免感知NDPA仅对应一种固定的NDP,能够灵活、充分地利用第一NDP和第二NDP的优势,从而提高感知性能。
进一步的,在第一NDP支持的带宽大于第一阈值时,由于更大的带宽对于感知的准确性有极大帮助,因此发送第一NDP可以提高感知准确性。在第一NDP支持打孔时,发送第一NDP可以更有效地利用带宽资源,提高资源利用率。在第二NDP支持安全的LTF时,发送第二NDP可以提高安全性能。在第二NDP支持重复的LTF时,可以提高接收端的信噪比。
以上,对本申请提供的NDP发送、接收方法的整体流程进行了说明。下面,对上述步骤S502中选择第一NDP或第二NDP的规则进行说明。
可选的,在第一条件满足时,上述步骤S502中的NDP为第一NDP;或者,在第一条件不满足时,上述步骤S502中的NDP为第二NDP。也就是说,在第一条件满足时,上述步骤S502中第一设备发送第一NDP,在第一条件不满足时,上述步骤S502中第一设备发送第二NDP。
相应的,在第一条件满足时,第二设备按照第一NDP的格式解析收到的NDP。在第一条件不满足时,第二设备按照第二NDP的格式解析收到的NDP。
可选的,第一条件包括以下至少一项:
1)第一PPDU的带宽大于第一阈值。
可选的,在第一PPDU的带宽大于第一阈值时,第一设备可以发送第一NDP,第二设备按照第一NDP的格式解析收到的NDP。在第一PPDU的带宽不大于第一阈值时,第一设备可以发送第二NDP,第二设备按照第二NDP的格式解析收到的NDP。
作为一种可能的实现,第一PPDU包括上述步骤S501中的感知NDPA帧。或者说,第一PPDU为包括感知NDPA帧的PPDU。
作为另一种可能的实现,第一PPDU为上述步骤S502中的NDP。由于在第一条件满足时,步骤S502中的NDP为第一NDP,因此,也可以认为该第一PPDU为第一NDP。
可选的,第一PPDU的带宽可以为第一设备宣称的用于传输第一PPDU的带宽,例如,可以为第一设备在信标(beacon)帧中宣称的带宽(该信标帧在步骤S501之前发送),或者为第一PPDU的前导码部分指示的带宽。或者,第一PPDU的带宽也可以为第一PPDU实际占用的带宽。
示例性的,假设第一设备宣称的用于传输第一PPDU的带宽为320MHz,但是该320MHz带宽中存在80MHz不可用,第一PPDU实际占用的带宽为240MHz,那么上述第一PPDU的带宽可以理解为320MHz,或者可以理解为240MHz。
可选的,在第一PPDU的带宽大于第一阈值时,该第一PPDU可以为EHT PPDU,或者为非高吞吐率(high throughput,HT)重复PPDU,即Non-HT duplicate PPDU。当然,该第一PPDU还可以为其他形式或类型的PPDU,本申请对此不作具体限定。
作为一种可能的实现,在第一PPDU包括感知NDPA帧时,第二设备可以通过信标帧中宣称的带宽,或第一PPDU中指示的带宽,或检测到的第一PPDU占用的带宽确定第一PPDU的带宽是否大于第一阈值。若第一PPDU的带宽大于第一阈值,确定步骤S502中收到的NDP为第一NDP,并按照第一NDP的格式解析该NDP。若第一PPDU不大于第一阈值,确定步骤S502中收到的NDP为第二NDP,并按照第二NDP的格式解析该NDP。
作为另一种可能的实现,在第一PPDU为上述步骤S502中的NDP时,第二设备可以通过第一PPDU中指示的带宽,确定第一PPDU的带宽是否大于第一阈值,并根据判断结果进行相应处理;或者,若第一阈值为160MHz,那么信标帧中宣称的带宽为320MHz时,第二设备可以确定第一PPDU的带宽大于第一阈值,并进行相应处理。根据判断结果进行的相应处理可参考第一PPDU包括感知NDPA帧时的相关描述,在此不再赘述。
作为又一种可能的实现,感知NDPA帧中可以包括第一字段,该第一字段用于指示第一PPDU的带宽是否大于第一阈值。可以理解的,在第一PPDU的带宽大于第一阈值时,该第一字段用于指示第一PPDU的带宽大于第一阈值;在第一PPDU的带宽不大于第一阈值时,该第一字段用于指示第一PPDU的带宽不大于第一阈值。
示例性的,在第一阈值为160MHz时,通常使用的大于160MHz的带宽为320MHz,此时,也可以认为第一字段用于指示第一PPDU的带宽是否为320MHz。
可选的,该可能的实现中,在第一字段指示第一PPDU的带宽大于第一阈值时,第二设备按照第一NDP的格式解析收到的NDP。在第一字段指示第二PPDU的带宽不大于第一阈值时,第二设备按照第二NDP的格式解析收到的NDP。
可选的,上述条件1)也可以为第一PPDU的带宽大于或等于第一阈值,即第一PPDU的带宽等于第一阈值时,第一设备也可以发送第一NDP,相应的,第二设备按照第一NDP的格式解析收到的NDP。
2)第一信道中存在不可用的子信道。
其中,第一信道用于传输第一PPDU,第一PPDU可以为包括感知NDPA帧的PPDU,或者可以为步骤502中的NDP,可参考上述条件1)中的相关描述,在此不再赘述。
可选的,在第一信道中存在不可用的子信道时,第一设备可以发送第一NDP,第二设备按照第一NDP的格式解析收到的NDP。在第一信道中不存在不可用的子信道时,第一设备可以发送第二NDP,第二设备按照第二NDP的格式解析收到的NDP。示例性的,一个子信道的带宽可以为20MHz。
可选的,第一设备可以通过下述两种方式告知第二设备,第一信道中存在不可用的子信道:
方式一,感知NDPA帧可以包括第一站点信息字段。该第一站点信息字段包括关联标识字段,该关联标识字段的值为第一特定值。该第一特定值用于指示第一信道中存在不可用的子信道。
需要说明的是,本申请中“不可用的子信道”也可以称为“不允许的子信道”,二者可以相互替换,本申请对此不作具体限定。
示例性的,该第一特定值不是某个站点对应的AID,可以是与不可用子信道相关的值,例如2047,或者,可以是现有标准中预留的AID值,例如,可以为2008-2042中的值,或者第一特定值可以为2046。
可选的,第二设备收到感知NDPA帧后解析该感知NDPA帧,在第一站点信息字段的关联标识字段的值为第一特定值时,按照第一NDP的格式解析步骤S502中收到的NDP。在该NDPA帧不包括第一站点信息字段,或第一站点信息字段的关联标识字段的值不为第一特定值时,第二设备可以按照第二NDP的格式解析步骤502中收到的NDP。
可选的,第一站点信息字段可以是感知NDPA帧中首次出现的站点信息字段,即在感知NDPA帧包括的所有站点信息字段中,第一站点信息字段位于首位。当然,第一站点信息字段也可以出现在感知NDPA帧中的其他位置,本申请对此不作具体限定。
进一步的,第一站点信息字段还可以包括第二字段。该第二字段用于指示第一信道中不可用的子信道。在第一PPDU为NDP时,第一信道用于传输NDP,该第二字段即指示用于NDP传输的信道中存在不可用的子信道。
作为一种示例,该第二字段可以为不允许的子信道比特图(Disallowed subchannel bitmap)子字段。例如,在第一信道包括的子信道的总数为M时,该不允许的子信道比特图子字段可以包括M个比特。该M个比特可以和第一信道包括的M个子信道一一对应,在某个比特的取值为1(或0)时,可以表示该比特对应的子信道为不可用的子信道。或者,在第一信道包括的子信道的总数为M时,该不允许的子信道比特图子字段可以包括M/X个比特,其中,一个比特对应第一信道的X个子信道,在某个比特的取值为1(或0)时,可以表示该比特对应的X个子信道均为不可用的子信道。
作为另一种示例,第一PPDU为NDP时,该第二字段可以为不允许的子信道比特图之外的其他用于指示NDP传输的信道中不可用的子信道的字段。
可选的,该场景下,第二设备在第一站点信息字段的关联标识字段的值为第一特定值,并且该第一站点信息字段中的第二字段指示了不可用的子信道时,按照第一NDP的格式解析步骤S502中收到的NDP。
方式二,第一设备可以发送信标帧。其中,该信标帧包括第一指示信息,该第一指示信息用于指示第一信道中存在不可用的子信道。
相应的,第二设备可以接收来自第一设备的信标帧。在该信标帧中的第一指示信息指示第一信道中存在不可用的子信道时,按照第一NDP的格式解析收到的NDP。
可选的,在信标帧中不存在第一指示信息,或第一指示信息用于指示第一信道中不存在不可用的子信道时,第二设备按照第二NDP的格式解析收到的NDP。
进一步的,在上述两种方式中,第一信道中的不可用的子信道与NDP的传输带宽对应的子信道范围重叠时,第一设备发送第一NDP。第一信道中存在不可用的子信道,但该不可用的子信道不与NDP的传输带宽对应的子信道范围重叠时,第一设备可以发送第一NDP,也可以发送第二NDP。
示例性的,假设第一信道的带宽为320MHz,划分为4个80MHz的区域,假设第4个80MHz的区域不可用,包括感知NDPA帧的PPDU实际占用的带宽为160MHz。该场景下:
无论不可用的子信道与NDP的传输带宽对应的子信道范围是否重叠,第一设备均可以发送第一NDP,因为第一NDP支持打孔,即使不可用的子信道与NDP的传输带宽对应的子信道范围重叠,也可以发送存在打孔的第一NDP。
若不可用的子信道与NDP的传输带宽对应的子信道范围不重叠,例如NDP的传输带宽对应的子信道范围包括第1个80MHz的区域以及第2个80MHz的区域,那么第一设备发送的NDP可以是标准中规定的或者默认的NDP,例如,若标准中规定在该场景下发送第一NDP,那么第一设备发送第一NDP,或者,若标准中规定在该场景下发送第二NDP,那么第一设备发送第二NDP。
若不可用的子信道与NDP的传输带宽对应的子信道范围存在重叠,例如NDP的传输带宽对应的子信道范围包括第3个80MHz的区域以及第4个80MHz的区域,那么由于第4个80MHz对应的子信道范围不可用,那么第一设备可以发送第一NDP,而不发送第二NDP。
其中,NDP的传输带宽对应的子信道范围可以和包括感知NDPA帧的PPDU的传输带宽对应的子信道范围相同。例如,基于上述示例,包括感知NDPA帧的PPDU的传输带宽对应的子信道范围包括第1个80MHz的区域以及第2个80MHz的区域时,NDP的传输带宽对应的子信道范围也包括第1个80MHz的区域以及第2个80MHz的区域。
3)第一PPDU存在打孔。其中,第一PPDU可以为包括感知NDPA帧的PPDU,或者可以为步骤502中的NDP,可参考上述条件1)中的相关描述,在此不再赘述。
可选的,在第一PPDU存在打孔时,第一设备可以发送第一NDP,第二设备按照第一NDP的格式解析收到的NDP。在第一PPDU不存在打孔时,第一设备可以发送第二NDP,第二设备按照第二NDP的格式解析收到的NDP。
可选的,在第一PPDU包括感知NDPA帧时,第一PPDU的前导码部分可以包括第三字段,该第三字段可以用于指示第一PPDU存在打孔。
相应的,第二设备收到第一PPDU后,在第三字段指示第一PPDU存在打孔时,按照第一NDP的格式解析步骤S502中收到的NDP。在第一PPDU的前导码部分不包括第三字段,或第三字段指示第一PPDU不存在打孔时,按照第二NDP的格式解析步骤S502中收到的NDP。
可选的,在第一PPDU为NDP时,由于通常情况下包括感知NDPA帧的PPDU和该感知NDPA引出的NDP的传输位置相同,因此,在第二设备获知包括感知NDPA帧的PPDU存在打孔时,也可以获知该感知NDPA帧引出的NDP存在打孔。
4)NDP支持的数据流数大于或等于第二阈值。
可选的,在NDP支持的数据流数大于或等于第二阈值时,第一设备可以发送第一NDP, 第二设备按照第一NDP的格式解析收到的NDP。在NDP支持的数据流数小于第二阈值时,第一设备可以发送第二NDP,第二设备按照第二NDP的格式解析收到的NDP。
可选的,该第二阈值可以为第二NDP不支持数据流数。示例性的,第二阈值可以等于8。
可选的,第一设备可以在感知NDPA帧中携带字段B,该字段B用于指示该感知NDPA帧引出的NDP支持的数据流数是否大于或等于第二阈值。第二设备收到感知NDPA帧后,若字段B指示NDP支持的数据流数大于或等于第二阈值,第二设备按照第一NDP的格式解析收到的NDP。若字段B指示NDP支持的数据流数小于第二阈值,第二设备按照第二NDP的格式解析收到的NDP。示例性的,该字段B可以为空时流数目(number of space-time streams,NSTS)子字段、空间流数目(number of spatial streams,NSS)子字段、列数目(number of columns,Nc)子字段等。
在一些实施场景下,该条件4)也可以为NDP支持的LTF的总数目大于或等于第三阈值。
5)第一资源是第二NDP对应的物理层版本不支持的资源单元。
其中,第一资源用于承载感知NDPA帧,或者,第一资源可以为第一信道中待测量的资源。
可选的,在第一资源是第二NDP对应的物理层版本不支持的资源单元时,第一设备可以发送第一NDP,第二设备按照第一NDP的格式解析收到的NDP。在第一资源不是第二NDP对应的物理层版本不支持的资源单元时,第一设备可以发送第二NDP,第二设备按照第二NDP的格式解析收到的NDP。
可选的,第二NDP支持的资源单元可以是协议定义的,因此第二设备可以获知第二NDP支持的资源单元。
在第一资源用于承载感知NDPA帧时,第二设备通过接收感知NDPA帧,可以获知第一资源,从而可以确定第一资源是否为第二NDP对应的物理层版本不支持的资源单元。
在第一资源为第一信道中待测量的资源时,感知NDPA帧可以包括站点信息字段,该站点信息字段可以包括用于指示第一资源的第四字段。第二设备收到感知NDPA帧后,可以根据第四字段的指示获知第一资源,从而可以确定第一资源是否为第二NDP对应的物理层版本不支持的资源单元。
示例性的,第四字段可以为部分带宽信息(Partial BW Info)子字段。其中,BW指带宽(band width,BW)。当然,第四字段也可以为站点信息字段中的其他子字段,本申请对此不作具体限制。
可选的,本申请涉及的资源单元可以包括资源单元(resource unit,RU)和/或多资源单元(Multi-RU,MRU)。
以上,对上述步骤S502中选择第一NDP或第二NDP的规则进行了说明,其中涉及的感知NDPA帧的设计、信标帧的设计等,可以理解为对第一NDP和第二NDP的隐式指示。此外,本申请还提供如下几种显式或隐式指示第一NDP或第二NDP的方式:
作为一种可能的实现方式,感知NDPA帧可以包括第五字段,该第五字段用于指示步骤S502中的NDP为第一NDP还是第二NDP。该第五字段的取值为第三数值时,指示该NDP为第一NDP,该第五字段的取值为第四数值时,指示该NDP为第二NDP。
可选的,第五字段的长度可以为1比特。第三数值可以为1,第四数值可以为0。或者,第三数值可以为0,第四数值可以为1。当然,第五字段的长度还可以有其他实现,例如大于1比特等,不予限制。
可选的,第五字段可以位于感知NDPA帧的每个站点信息字段中,或者,第五字段可以位于感知NDPA帧包括的除站点信息字段外的字段中。
可选的,第二设备收到感知NDPA帧后,若第五字段指示该NDP为第一NDP,第二设备按照第一NDP的格式解析该NDP。若第五字段指示该NDP为第二NDP,第二设备按照第二NDP的格式解析该NDP。
作为另一种可能的实现方式,感知NDPA帧中出现第二站点信息字段时,该NDP为第一NDP。该感知NDPA帧中不出现第二站点信息字段时,该NDP为第二NDP。其中,第二站点信息字段包括关联标识字段,该关联标识字段的值为第二特定值。示例性的,第二特定值可以为2046、2047、2008-2042中的一个。可选的,第二特定值和第一特定值不同。
可选的,第二设备收到感知NDPA帧后,若该感知NDPA帧中出现第二站点信息字段,第二设备按照第一NDP的格式解析该NDP。若该感知NDPA帧中不出现第二站点信息字段时,第二设备按照第二NDP的格式解析该NDP。
作为又一种可能的实现方式,第一设备发送感知NDPA帧之前,可以发送无线帧。该无线帧用于指示NDP为第一NDP还是第二NDP。若该无线帧指示该NDP是第一NDP,第二设备按照第一NDP的格式解析该NDP;若该无线帧指示该NDP是第二NDP,第二设备按照第二NDP的格式解析该NDP。
可选的,该无线帧可以为信标帧。或者,可以为感知测量建立环节中的无线帧,例如感知测量建立请求帧,或感知测量建立响应帧。
作为又一种可能的实现方式,上述步骤S502中,第一设备可以在测量实体中发送NDP。当该测量实体中存在基于触发的探测(Trigger based sounding)和NDPA探测时,该NDP可以为第二NDP。其中,在基于触发的探测中,第一设备可以向第二设备发送触发帧,以触发第二设备发送NDP。
作为又一种可能的实现方式,感知NDPA帧引出的NDP的格式可以通过携带该感知NDPA帧的PPDU的格式确定。例如,若携带该感知NDPA帧的PPDU为EHT PPDU,那么该感知NDPA帧引出的NDP为第一NDP。若携带该感知NDPA帧的PPDU不为EHT PPDU,那么该感知NDPA帧引出的NDP为第二NDP。
作为又一种可能的实现方式,感知NDPA帧引出的NDP的格式可以由介质接入控制(medium access control,MAC)帧中是否携带与某代标准相应的字段确定。例如,该标准为EHT标准时,若MAC帧中携带EHT运行元素(EHT Operation element),那么感知NDPA帧引出的NDP为第一NDP,否则为第二NDP。
上述实施例以一种格式的感知NDPA帧引出第一NDP或第二NDP为了进行说明。在一些实施例中,本申请的感知NDPA帧可以有两种格式,或者说,该感知NDPA帧存在两个变种。该两种格式中,第一格式对应的NDP为第一NDP,第二格式对应的NDP为第二NDP。或者说,第一变种对应的NDP为第一NDP,第二变种对应的NDP为第二NDP。
可选的,上述两种格式的感知NDPA帧,可以通过重用现有的NDPA帧实现,或者可以通过定义新的NDPA帧实现。例如,其中一种可以通过复用表1所示的四种NDPA帧实现,另一种可以通过帧控制字段中的控制帧扩展字段实现;或者,两种格式的感知NDPA可以通过复用表1所示的四种NDPA帧中的不同NDPA帧实现;或者,两种格式的感知NDPA可以通过控制帧扩展字段的两种不同取值实现。可参考上述步骤S501中的相关说明,在此不再赘述。
可选的,上述两种格式的感知NDPA的帧结构可以不同,或者,部分字段的含义可以不 同,本申请对此不作具体限定。
可选的,上述步骤S501中的感知NDPA帧的格式具体为第一格式还是第二格式,可以参考上述第一条件决定。例如,在第一条件满足时,该感知NDPA帧的格式为第一格式;在第一条件不满足时,该感知NDPA帧的格式为第二格式。
可选的,存在两种格式的感知NDPA帧时,第二设备可以通过收到的感知NDPA帧的格式确定该感知NDPA帧引出的NDP的格式,从而按照该NDP的格式解析收到的NDP。
需要说明的是,上述隐式指示第一NDP或第二NDP的方式,和显式指示第一NDP或第二NDP的方式可以单独使用,也可以结合使用,本申请对此不作具体限定。
可以理解的是,以上各个实施例中,由第一设备实现的方法和/或步骤,也可以由可用于该第一设备的部件(例如芯片或者电路)实现;由第二设备实现的方法和/或步骤,也可以由可用于该第二设备的部件(例如芯片或者电路)实现。
上述主要从各个设备之间交互的角度对本申请提供的方案进行了介绍。相应的,本申请还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的第一设备,或者包含上述第一设备的装置,或者为可用于第一设备的部件;或者,该通信装置可以为上述方法实施例中的第二设备,或者包含上述第二设备的装置,或者为可用于第二设备的部件。
可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在一种实施场景下,以通信装置为上述方法实施例中的第一设备为例,图6示出了一种第一设备60的结构示意图。该第一设备60包括收发模块602。进一步的,该第一设备60还可以包括处理模块601。
在一些实施例中,该第一设备60还可以包括存储模块(图6中未示出),用于存储程序指令和数据。
在一些实施例中,收发模块602,也可以称为收发单元用以实现发送和/或接收功能。该收发模块602可以由收发电路,收发机,收发器或者通信接口构成。
在一些实施例中,收发模块602,可以包括接收模块和发送模块,分别用于执行上述方法实施例中由第一设备执行的接收和发送类的步骤,和/或用于支持本文所描述的技术的其它过程;处理模块601,可以用于执行上述方法实施例中由第一设备执行的处理类(例如生成等)的步骤,和/或用于支持本文所描述的技术的其它过程。
其中,处理模块601,用于生成感知NDPA帧和NDP;收发模块1602,用于发送感知NDPA帧,该感知NDPA帧用于指示将发送NDP;收发模块1602,还用于发送NDP,该NDP为第一NDP或第二NDP,第一NDP的物理层版本和第二NDP的物理层版本不同。
可选的,收发模块602,还用于发送信标帧,信标帧包括第一指示信息,第一指示信息用于指示第一信道中存在不可用的子信道。
可选的,收发模块602,还用于发送无线帧,该无线帧用于指示NDP为第一NDP还是第二NDP,和/或,该无线帧用于指示感知NDPA帧的类型。
可选的,收发模块602,用于发送NDP包括:收发模块602,用于在测量实体中发送NDP。测量实体中存在基于触发的探测和NDPA探测时,NDP为第二NDP。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本申请中,该第一设备60以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定专用集成电路(application-specific integrated circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
在一些实施例中,在硬件实现上,本领域的技术人员可以想到该第一设备60可以采用图4所示的通信装置400的形式。
作为一种示例,图6中的处理模块601的功能/实现过程可以通过图4所示的通信装置400中的处理器401调用存储器404中存储的计算机执行指令来实现,图6中的收发模块602的功能/实现过程可以通过图4所示的通信装置400中的收发器402来实现。
在一些实施例中,当图6中的第一设备60是芯片或芯片***时,收发模块602的功能/实现过程可以通过芯片或芯片***的输入输出接口(或通信接口)实现,处理模块601的功能/实现过程可以通过芯片或芯片***的处理器(或者处理电路)实现。
由于本实施例提供的第一设备60可执行上述方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
在一种实施场景下,以通信装置为上述方法实施例中的第二设备为例,图7示出了一种第二设备70的结构示意图。该第二设备70包括收发模块702。进一步的,该第二设备70还可以包括处理模块701。
在一些实施例中,该第二设备70还可以包括存储模块(图7中未示出),用于存储程序指令和数据。
在一些实施例中,收发模块702,也可以称为收发单元用以实现发送和/或接收功能。该收发模块702可以由收发电路,收发机,收发器或者通信接口构成。
在一些实施例中,收发模块702,可以包括接收模块和发送模块,分别用于执行上述方法实施例中由第二设备执行的接收和发送类的步骤,和/或用于支持本文所描述的技术的其它过程;处理模块701,可以用于执行上述方法实施例中由第二设备执行的处理类(例如解析等)的步骤,和/或用于支持本文所描述的技术的其它过程。
其中,收发模块702,用于接收感知空数据物理层协议数据单元声明NDPA帧,感知NDPA帧用于指示将发送空数据物理层协议数据单元NDP;收发模块702,还用于接收NDP,NDP为第一NDP或第二NDP,第一NDP的物理层版本和第二NDP的物理层版本不同。
可选的,感知NDPA帧包括第一字段时,处理模块701,用于在第一字段指示第一PPDU的带宽大于第一阈值时,按照第一NDP的格式解析NDP。
可选的,感知NDPA帧包括第一站点信息字段,第一站点信息字段包括关联标识字段的情况下,处理模块701,还用于在关联标识字段的值为第一特定值时,按照第一NDP的格式解析NDP,第一特定值用于指示第一信道中存在不可用的子信道。
可选的,第一站点信息字段还包括第二字段,处理模块701,具体用于在关联标识字段的值为第一特定值时,且第二字段指示了不可用的子信道时,按照第一NDP的格式解析NDP。
可选的,收发模块702,还用于接收信标帧,信标帧包括第一指示信息;处理模块701,还用于在第一指示信息指示第一信道中存在不可用的子信道时,按照第一NDP的格式解析NDP。
可选的,第一PPDU包括感知NDPA帧,第一PPDU的前导码部分包括第三字段的情况下,处理模块701,还用于在第三字段指示第一PPDU存在打孔时,按照第一NDP的格式解析NDP。
可选的,第一资源为第一信道中待测量的资源时,感知NDPA帧包括站点信息字段,站点信息字段包括第四字段;处理模块701,还用于在第四字段指示的第一资源是第二NDP对应的物理层版本不支持的资源单元时,按照第一NDP的格式解析NDP。
可选的,感知NDPA帧包括第五字段,处理模块701,用于在第五字段指示NDP为第一NDP时,按照第一NDP的格式解析NDP;或者,处理模块701,用于第五字段指示NDP为第二NDP时,按照第一NDP的格式解析NDP。
可选的,感知NDPA帧中出现第二站点信息字段时,处理模块701,还用于按照第一NDP的格式解析NDP;感知NDPA帧中不出现第二站点信息字段时,处理模块701,还用于按照第二NDP的格式解析NDP;其中,第二站点信息字段包括关联标识字段,关联标识字段的值为第二特定值。
可选的,收发模块702,还用于接收无线帧,无线帧用于指示NDP为第一NDP还是第二NDP,和/或,无线帧用于指示感知NDPA帧的类型。
可选的,收发模块702,具体用于在测量实体中发送NDP;测量实体中存在基于触发的探测和NDPA探测时,NDP为第二NDP。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本申请中,该第二设备70以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
在一些实施例中,在硬件实现上,本领域的技术人员可以想到该第二设备70可以采用图4所示的通信装置400的形式。
作为一种示例,图7中的处理模块701的功能/实现过程可以通过图4所示的通信装置400中的处理器401调用存储器404中存储的计算机执行指令来实现,图7中的收发模块702的功能/实现过程可以通过图4所示的通信装置400中的收发器402来实现。
在一些实施例中,当图7中的第二设备70是芯片或芯片***时,收发模块702的功能/实现过程可以通过芯片或芯片***的输入输出接口(或通信接口)实现,处理模块701的功能/实现过程可以通过芯片或芯片***的处理器(或者处理电路)实现。
由于本实施例提供的第二设备70可执行上述方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
作为一种可能的产品形态,本申请实施例所述的第一设备和第二设备,还可以使用下述来实现:一个或多个现场可编程门阵列(field programmable gate array,FPGA)、可编程逻辑器件(programmable logic device,PLD)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
作为另一种可能的产品形态,本申请实施例所述的第一设备和第二设备,可以由一般性的总线体系结构来实现。为了便于说明,参见图8,图8是本申请实施例提供的通信装置800的结构示意图,该通信装置800包括处理器801和收发器802。该通信装置800可以为第一设备或第二设备,或其中的芯片。图8仅示出了通信装置800的主要部件。除处理器801和收发器802之外,所述通信装置还可以进一步包括存储器803、以及输入输出装置(图未示意)。
其中,处理器801主要用于对通信协议以及通信数据进行处理,以及对整个通信装置进行控制,执行软件程序,处理软件程序的数据。存储器803主要用于存储软件程序和数据。收发器802可以包括射频电路和天线,射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
其中,处理器801、收发器802、以及存储器803可以通过通信总线连接。
当通信装置开机后,处理器801可以读取存储器803中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器801对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器801,处理器801将基带信号转换为数据并对该数据进行处理。
在另一种实现中,所述的射频电路和天线可以独立于进行基带处理的处理器而设置,例如在分布式场景中,射频电路和天线可以与独立于通信装置,呈拉远式的布置。
在一些实施例中,本申请实施例还提供一种通信装置,该通信装置包括处理器,用于实现上述任一方法实施例中的方法。
作为一种可能的实现方式,该通信装置还包括存储器。该存储器,用于保存必要的程序指令和数据,处理器可以调用存储器中存储的程序代码以指令该通信装置执行上述任一方法实施例中的方法。当然,存储器也可以不在该通信装置中。
作为另一种可能的实现方式,该通信装置还包括接口电路,该接口电路为代码/数据读写接口电路,该接口电路用于接收计算机执行指令(计算机执行指令存储在存储器中,可能直接从存储器读取,或可能经过其他器件)并传输至该处理器。
作为又一种可能的实现方式,该通信装置还包括通信接口,该通信接口用于与该通信装置之外的模块通信。
可以理解的是,该通信装置可以是芯片或芯片***,该通信装置是芯片***时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序或指令,该计算机程序或指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
本领域普通技术人员可以理解,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
可以理解,本申请中描述的***、装置和方法也可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系 统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。作为单元显示的部件可以是或者也可以不是物理单元。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state drive,SSD))等。本申请实施例中,计算机可以包括前面所述的装置。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (43)

  1. 一种空数据物理层协议数据单元发送方法,其特征在于,所述方法包括:
    发送感知空数据物理层协议数据单元声明NDPA帧,所述感知NDPA帧用于指示将发送空数据物理层协议数据单元NDP;
    发送NDP,所述NDP为第一NDP或第二NDP,所述第一NDP的物理层版本和所述第二NDP的物理层版本不同。
  2. 根据权利要求1所述的方法,其特征在于,所述第一NDP满足以下至少一项:所述第一NDP支持的带宽大于第一阈值、或所述第一NDP支持打孔;
    所述第二NDP满足以下至少一项:所述第二NDP支持安全的长训练字段LTF、所述第二NDP支持重复的LTF。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一NDP为超高吞吐量EHT NDP,所述第二NDP为高效测距HE Ranging NDP。
  4. 根据权利要求2或3所述的方法,其特征在于,在第一条件满足时,所述NDP为所述第一NDP;或者,在所述第一条件不满足时,所述NDP为所述第二NDP;
    其中,所述第一条件包括以下至少一项:
    第一物理层协议数据单元PPDU的带宽大于所述第一阈值,所述第一PPDU包括所述感知NDPA帧,或者,所述第一PPDU为所述NDP;
    所述第一PPDU存在打孔;
    第一信道中存在不可用的子信道,所述第一信道用于传输所述第一PPDU;
    所述NDP支持的数据流数大于或等于第二阈值;
    第一资源是所述第二NDP对应的物理层版本不支持的资源单元,所述第一资源用于承载所述感知NDPA帧,或者,所述第一资源为所述第一信道中待测量的资源。
  5. 根据权利要求4所述的方法,其特征在于,所述感知NDPA帧包括第一字段,所述第一字段用于指示所述第一PPDU的带宽大于所述第一阈值。
  6. 根据权利要求4或5所述的方法,其特征在于,所述第一PPDU包括指示信息,所述指示信息用于指示所述第一PPDU的带宽。
  7. 根据权利要求4-6任一项所述的方法,其特征在于,所述第一阈值为160兆赫兹MHz。
  8. 根据权利要求4-7任一项所述的方法,其特征在于,所述感知NDPA帧包括第一站点信息字段,所述第一站点信息字段包括关联标识字段,所述关联标识字段的值为第一特定值,所述第一特定值用于指示所述第一信道中存在不可用的子信道。
  9. 根据权利要求8所述的方法,其特征在于,所述第一站点信息字段还包括第二字段,所述第二字段用于指示所述不可用的子信道。
  10. 根据权利要求4-7任一项所述的方法,其特征在于,所述方法还包括:
    发送信标帧,所述信标帧包括第一指示信息,所述第一指示信息用于指示所述第一信道中存在不可用的子信道。
  11. 根据权利要求8-10任一项所述的方法,其特征在于,所述不可用的子信道与所述NDP的传输带宽对应的子信道范围存在重叠。
  12. 根据权利要求4-7任一项所述的方法,其特征在于,所述第一PPDU包括所述感知NDPA帧时,所述第一PPDU的前导码部分包括第三字段,所述第三字段用于指示所述第一PPDU存在打孔。
  13. 根据权利要求4-12任一项所述的方法,其特征在于,所述第一资源为所述第一信道 中待测量的资源时,所述感知NDPA帧包括站点信息字段,所述站点信息字段包括第四字段,所述第四字段用于指示所述第一资源。
  14. 根据权利要求1所述的方法,其特征在于,若第一PPDU的带宽等于320MHz,所述NDP为所述第一NDP,所述第一NDP为EHT NDP;
    若第一PPDU的带宽小于或等于160MHz,所述NDP为所述第二NDP,所述第二NDP为HE Ranging NDP。
  15. 根据权利要求1-14任一项所述的方法,其特征在于,所述感知NDPA帧包括第五字段,所述第五字段用于指示所述NDP为所述第一NDP还是所述第二NDP。
  16. 根据权利要求15所述的方法,其特征在于,所述第五字段位于所述感知NDPA帧的每个站点信息字段中,或者,所述第五字段位于所述感知NDPA帧包括的除站点信息字段外的字段中。
  17. 根据权利要求1-14任一项所述的方法,其特征在于,所述感知NDPA帧中出现第二站点信息字段时,所述NDP为所述第一NDP;或者,所述感知NDPA帧中不出现所述第二站点信息字段时,所述NDP为所述第二NDP;
    其中,所述第二站点信息字段包括关联标识字段,所述关联标识字段的值为第二特定值。
  18. 根据权利要求1-14任一项所述的方法,其特征在于,在发送所述感知NDPA帧之前,所述方法还包括:
    发送无线帧,所述无线帧用于指示所述NDP为所述第一NDP还是所述第二NDP,和/或,所述无线帧用于指示所述感知NDPA帧的类型。
  19. 根据权利要求1-3任一项所述的方法,其特征在于,所述发送NDP包括:在测量实体中发送所述NDP;所述测量实体中存在基于触发的探测和NDPA探测时,所述NDP为所述第二NDP。
  20. 根据权利要求1-19任一项所述的方法,其特征在于,
    所述感知NDPA帧包括探测对话令牌字段和第六字段,所述探测对话令牌字段包括第一子字段,所述第一子字段用于指示第一NDPA帧,所述第六字段用于指示所述感知NDPA帧重用所述第一NDPA帧;所述第一NDPA帧为测距NDPA帧、甚高吞吐量VHT NDPA帧、高效HE NDPA帧、或超高吞吐量EHT NDPA帧中的一种;
    或者,所述感知NDPA帧包括帧控制字段,所述帧控制字段包括控制帧扩展字段,所述控制帧扩展字段用于指示所述感知NDPA帧的类型。
  21. 根据权利要求1-19任一项所述的方法,其特征在于,所述感知NDPA帧包括字段A,所述字段A用于指示所述NDPA帧为感知NDPA帧或者测距NDPA帧。
  22. 根据权利要求21所述的方法,其特征在于,所述感知NDPA帧还包括站点信息字段,所述站点信息字段包括所述字段A。
  23. 一种空数据物理层协议数据单元的接收方法,其特征在于,所述方法包括:
    接收感知空数据物理层协议数据单元声明NDPA帧,所述感知NDPA帧用于指示将发送空数据物理层协议数据单元NDP;
    接收NDP,所述NDP为第一NDP或第二NDP,所述第一NDP的物理层版本和所述第二NDP的物理层版本不同。
  24. 根据权利要求23所述的方法,其特征在于,所述第一NDP满足以下至少一项:所述第一NDP支持的带宽大于第一阈值、或所述第一NDP支持打孔;
    所述第二NDP满足以下至少一项:所述第二NDP支持安全的长训练字段LTF、所述第 二NDP支持重复的LTF。
  25. 根据权利要求23或24所述的方法,其特征在于,所述第一NDP为超高吞吐量EHT NDP,所述第二NDP为高效测距HE Ranging NDP。
  26. 根据权利要求24或25所述的方法,其特征在于,在第一条件满足时,所述NDP为所述第一NDP;或者,在所述第一条件不满足时,所述NDP为所述第二NDP;
    其中,所述第一条件包括以下至少一项:
    第一物理层协议数据单元PPDU的带宽大于所述第一阈值,所述第一PPDU包括所述感知NDPA帧,或者,所述第一PPDU为所述NDP;
    所述第一PPDU存在打孔;
    第一信道中存在不可用的子信道,所述第一信道用于传输所述第一PPDU;
    所述NDP支持的数据流数大于或等于第二阈值;
    第一资源是所述第二NDP对应的物理层版本不支持的资源单元,所述第一资源用于承载所述感知NDPA帧,或者,所述第一资源为所述第一信道中待测量的资源。
  27. 根据权利要求26所述的方法,其特征在于,所述感知NDPA帧包括第一字段;所述方法还包括:
    所述第一字段指示所述第一PPDU的带宽大于所述第一阈值时,按照所述第一NDP的格式解析所述NDP。
  28. 根据权利要求26或27所述的方法,其特征在于,所述第一PPDU包括指示信息,所述指示信息用于指示所述第一PPDU的带宽。
  29. 根据权利要求26-28任一项所述的方法,其特征在于,所述第一阈值为160兆赫兹MHz。
  30. 根据权利要求26-29任一项所述的方法,其特征在于,所述感知NDPA帧包括第一站点信息字段,所述第一站点信息字段包括关联标识字段;所述方法还包括:
    所述关联标识字段的值为第一特定值时,按照所述第一NDP的格式解析所述NDP,所述第一特定值用于指示所述第一信道中存在不可用的子信道。
  31. 根据权利要求30所述的方法,其特征在于,所述第一站点信息字段还包括第二字段,所述关联标识字段的值为第一特定值时,按照所述第一NDP的格式解析所述NDP,包括:
    所述关联标识字段的值为第一特定值,且所述第二字段指示了所述不可用的子信道时,按照所述第一NDP的格式解析所述NDP。
  32. 根据权利要求26-29任一项所述的方法,其特征在于,所述方法还包括:
    接收信标帧,所述信标帧包括第一指示信息;
    在所述第一指示信息指示所述第一信道中存在不可用的子信道时,按照所述第一NDP的格式解析所述NDP。
  33. 根据权利要求30-32任一项所述的方法,其特征在于,所述不可用的子信道与所述NDP的传输带宽对应的子信道范围存在重叠。
  34. 根据权利要求26-29任一项所述的方法,其特征在于,所述第一PPDU包括感知所述NDPA帧时,所述第一PPDU的前导码部分包括第三字段,所述方法还包括:
    所述第三字段指示所述第一PPDU存在打孔时,按照所述第一NDP的格式解析所述NDP。
  35. 根据权利要求26-34任一项所述的方法,其特征在于,所述第一资源为所述第一信道中待测量的资源时,所述感知NDPA帧包括站点信息字段,所述站点信息字段包括第四字段;所述方法还包括:
    所述第四字段指示的所述第一资源是所述第二NDP对应的物理层版本不支持的资源单元时,按照所述第一NDP的格式解析所述NDP。
  36. 根据权利要求23所述的方法,其特征在于,若第一PPDU的带宽等于320MHz,所述NDP为所述第一NDP,所述第一NDP为EHT NDP;
    若第一PPDU的带宽小于或等于160MHz,所述NDP为所述第二NDP,所述第二NDP为HE Ranging NDP。
  37. 根据权利要求23-36任一项所述的方法,其特征在于,所述感知NDPA帧包括字段A,所述字段A用于指示所述NDPA帧为感知NDPA帧或者测距NDPA帧。
  38. 根据权利要求37所述的方法,其特征在于,所述感知NDPA帧还包括站点信息字段,所述站点信息字段包括所述字段A。
  39. 一种通信装置,其特征在于,所述通信装置包括:处理器;
    所述处理器用于执行计算机执行指令,以使如权利要求1-22中任一项所述的方法被实现,或者,以使如权利要求23-38中任一项所述的方法被实现。
  40. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令在通信装置上运行时,以使如权利要求1-22中任一项所述的方法被实现,或者,以使如权利要求23-38中任一项所述的方法被实现。
  41. 一种计算机程序产品,其特征在于,当所述计算机程序产品在通信装置上运行时,如权利要求1-22任一项所述的方法被实现,或者如权利要求23-38任一项所述的方法被实现。
  42. 一种通信***,其特征在于,所述通信***包括第一设备和第二设备,所述第一设备用于执行如权利要求1-22任一项所述的方法,所述第二设备用于执行如权利要求23-38任一项所述的方法。
  43. 一种芯片,其特征在于,包括:
    存储器,用于存储计算机程序指令;
    处理器,用于执行所述计算机程序指令,使得包括所述芯片的通信装置执行如权利要求1-38中任一项所述的方法。
PCT/CN2023/079621 2022-04-02 2023-03-03 空数据物理层协议数据单元发送方法及装置 WO2023185376A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210346893.XA CN116939895A (zh) 2022-04-02 2022-04-02 空数据物理层协议数据单元发送方法及装置
CN202210346893.X 2022-04-02

Publications (1)

Publication Number Publication Date
WO2023185376A1 true WO2023185376A1 (zh) 2023-10-05

Family

ID=88198953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079621 WO2023185376A1 (zh) 2022-04-02 2023-03-03 空数据物理层协议数据单元发送方法及装置

Country Status (2)

Country Link
CN (1) CN116939895A (zh)
WO (1) WO2023185376A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112469088A (zh) * 2019-09-09 2021-03-09 华为技术有限公司 正交频分多址接入ofdma混合传输方法和装置
CN112748425A (zh) * 2019-10-31 2021-05-04 华为技术有限公司 感知方法及装置
CN112888016A (zh) * 2019-11-29 2021-06-01 联发科技(新加坡)私人有限公司 无线网络中传输数据的装置和方法
US20210288779A1 (en) * 2020-06-03 2021-09-16 Claudio Da Silva Wireless local area network sensing sounding
CN113747576A (zh) * 2020-05-29 2021-12-03 华为技术有限公司 发送/接收空数据分组声明帧的方法及装置
CN113938166A (zh) * 2020-06-29 2022-01-14 三星电子株式会社 用于基于增强型空数据分组声明的无线通信的设备和方法
WO2022039669A1 (en) * 2020-08-18 2022-02-24 Panasonic Intellectual Property Corporation Of America Communication apparatus and communication method for wireless local area network sensing
US20220070710A1 (en) * 2020-09-03 2022-03-03 Lg Electronics Inc. Grouping of wireless apparatus performing sensing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112469088A (zh) * 2019-09-09 2021-03-09 华为技术有限公司 正交频分多址接入ofdma混合传输方法和装置
CN112748425A (zh) * 2019-10-31 2021-05-04 华为技术有限公司 感知方法及装置
CN112888016A (zh) * 2019-11-29 2021-06-01 联发科技(新加坡)私人有限公司 无线网络中传输数据的装置和方法
CN113747576A (zh) * 2020-05-29 2021-12-03 华为技术有限公司 发送/接收空数据分组声明帧的方法及装置
US20210288779A1 (en) * 2020-06-03 2021-09-16 Claudio Da Silva Wireless local area network sensing sounding
CN113938166A (zh) * 2020-06-29 2022-01-14 三星电子株式会社 用于基于增强型空数据分组声明的无线通信的设备和方法
WO2022039669A1 (en) * 2020-08-18 2022-02-24 Panasonic Intellectual Property Corporation Of America Communication apparatus and communication method for wireless local area network sensing
US20220070710A1 (en) * 2020-09-03 2022-03-03 Lg Electronics Inc. Grouping of wireless apparatus performing sensing

Also Published As

Publication number Publication date
CN116939895A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
US11758427B2 (en) WLAN sensing frame exchange protocol
EP3528395B1 (en) Channel state information measurement method and device
WO2020182071A1 (zh) 用于无线通信***的信息传输方法、信息接收方法和装置
KR20160075617A (ko) 무선 네트워크들에서 응답 표시 지연을 동적으로 셋팅하기 위한 시스템들, 방법들 및 디바이스들
WO2021239143A1 (zh) 发送/接收空数据分组声明帧的方法及装置
WO2021175124A1 (zh) 信道探测方法和装置
KR20170134458A (ko) 제어 프레임 어그리게이션 프레임
WO2017036257A1 (zh) 一种无线局域网中触发帧传输的方法和装置
TWI834354B (zh) 一種天線通道探測方法、裝置和儲存介質
WO2022121861A1 (zh) 信道探测方法及相关装置
US11838848B2 (en) Multi-link device probing method and communication apparatus
WO2023185376A1 (zh) 空数据物理层协议数据单元发送方法及装置
KR20230170090A (ko) 통신 방법 및 장치
WO2021134593A1 (zh) Wi-Fi信道测量方法、装置和***
WO2023142975A1 (zh) 一种信道探测方法及装置
WO2023078203A1 (zh) 感知方法、装置及***
WO2024131655A1 (zh) 一种信息指示的方法和通信装置
EP3909139A1 (en) Cooperative beamforming in wireless network
WO2024087711A1 (zh) 基于多链路的感知方法、装置、存储介质及芯片***
WO2022228131A1 (zh) 非同时收发能力的指示方法、装置及***
US20240073794A1 (en) Repurposed Trigger-Frame Response
US20240080660A1 (en) Reconfigured Trigger-Frame Response
WO2023240422A1 (zh) 感知测量方法、装置、设备及存储介质
WO2023160331A1 (zh) 一种天线模式切换方法及相关装置
WO2023231707A1 (zh) 一种用于感知的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23777754

Country of ref document: EP

Kind code of ref document: A1