WO2023184378A1 - 激光器、激光雷达及可移动平台 - Google Patents

激光器、激光雷达及可移动平台 Download PDF

Info

Publication number
WO2023184378A1
WO2023184378A1 PCT/CN2022/084496 CN2022084496W WO2023184378A1 WO 2023184378 A1 WO2023184378 A1 WO 2023184378A1 CN 2022084496 W CN2022084496 W CN 2022084496W WO 2023184378 A1 WO2023184378 A1 WO 2023184378A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
pad
energy storage
substrate
storage device
Prior art date
Application number
PCT/CN2022/084496
Other languages
English (en)
French (fr)
Inventor
庞云柯
詹亮
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2022/084496 priority Critical patent/WO2023184378A1/zh
Publication of WO2023184378A1 publication Critical patent/WO2023184378A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor

Definitions

  • the present invention relates to the field of laser technology, and specifically to a laser, a lidar and a movable platform.
  • lidar and laser ranging are developing towards miniaturization and high density. Due to the limitation of the emission frequency of a single laser, in order to increase the number of points in the FOV and improve the point cloud coverage, multiple lasers are generally integrated into the same unit. Lidar constitutes a multi-line lidar. Since optical components are the main factor restricting the volume of lidar and laser ranging, how to reduce the volume of lidar and laser ranging has become an urgent problem to be solved.
  • a first aspect of the embodiment of the present application provides a laser, where the laser includes:
  • the substrate including a first bonding pad and a second bonding pad
  • the laser diode array includes M laser diodes, wherein the M laser diodes share an N pole, and the N pole of the laser diode array is coupled to the first pad;
  • each of the energy storage devices includes a first electrode located on a first side, and a second electrode located on a second side opposite to the first side, and the first electrode of each energy storage device Both sides are coupled to the second pads, and the second electrodes of each of the energy storage devices are respectively connected to the P electrodes of a different laser diode;
  • the circuit board includes M charging circuits for charging each of the energy storage devices, and each of the charging circuits is electrically connected to a second electrode of a different energy storage device;
  • M is an integer greater than 1.
  • a second aspect of the embodiments of the present application provides a lidar.
  • the lidar includes an optical structure and the aforementioned laser, which is used to emit laser light;
  • a light sensing device is used to sense part of the light reflected by the target object.
  • the third aspect of the embodiment of the present application provides a movable platform, where the movable platform includes:
  • the removable platform body and
  • the laser radar is mechanically coupled to the movable platform body.
  • the laser, lidar and movable platform of this application can make the distance between the energy storage device and the corresponding laser diodes as short as possible and generally consistent by arranging the energy storage device and M laser diodes with a common N-pole on the substrate. This can make the laser emission loop smaller, obtain narrower pulse width and higher pulse width consistency, thereby enabling the laser to achieve higher peak power, obtain longer detection distance, and select the charging circuit to provide the corresponding storage It can charge the device to achieve individual control of each laser diode, so that the power of each laser diode can be controlled with the cooperation of peripheral circuits.
  • Figure 1 shows a front view of a laser in an embodiment provided by this application
  • Figure 2A shows a schematic diagram of the first surface of the substrate in an embodiment provided by this application
  • Figure 2B shows a schematic diagram of the second surface of the substrate in an embodiment provided by this application
  • Figure 3 shows a schematic diagram of the circuit principle of a laser in an embodiment provided by this application
  • FIG. 4 shows an exemplary block diagram of lidar in an embodiment provided by this application
  • Figure 5 shows a schematic diagram of a lidar in an embodiment provided by this application.
  • the first aspect of the embodiment of the present application provides a laser.
  • the laser includes:
  • the substrate 100 includes a first bonding pad 101 and a second bonding pad 102;
  • the laser diode array includes M laser diodes 110, wherein the M laser diodes 110 share an N pole, and the N pole of the laser diode array is coupled to the first pad 101;
  • Each energy storage device 120 includes a first electrode located on a first side, and a second electrode located on a second side opposite to the first side.
  • the first side of each energy storage device 120 is a third electrode.
  • the two pads 102 are coupled, and the second electrodes of each energy storage device 120 are respectively connected to the P electrodes of a different laser diode 110;
  • the circuit board 130 includes M charging circuits for charging each energy storage device 120, and each charging circuit is correspondingly electrically connected to the second electrode of a different energy storage device;
  • M is an integer greater than 1.
  • the laser, lidar and movable platform of this application can make the distance between the energy storage device and the corresponding laser diodes as short as possible and generally consistent by arranging the energy storage device and M laser diodes with a common N-pole on the substrate. This can make the laser emission loop smaller, obtain narrower pulse width and higher pulse width consistency, thereby enabling the laser to achieve higher peak power, obtain longer detection distance, and select the charging circuit to provide the corresponding storage It can charge the device to achieve individual control of each laser diode, so that the power of each laser diode can be controlled with the cooperation of peripheral circuits.
  • the substrate 100 includes a ceramic substrate.
  • the ceramic substrate includes but is not limited to a high-temperature co-fired multilayer ceramic substrate (HTCC), a low-temperature co-fired ceramic substrate (LTCC), Thick film ceramic substrate (TFC), direct copper plated ceramic substrate (DBC), direct copper plated ceramic substrate (DPC), etc.
  • the substrate 100 can be a directly copper-plated aluminum nitride ceramic substrate.
  • the directly copper-plated aluminum nitride ceramic substrate has higher flatness, stronger stiffness and lower thermal expansion coefficient, and can be used as a chip.
  • a good carrier on the other hand, because the laser diode array is small in size and generates high heat, and the printed circuit board (PCB) itself has poor thermal conductivity in the horizontal direction, aluminum nitride ceramic substrates with high thermal conductivity can be used. To expand the effective heat dissipation area, thereby improving the heat dissipation performance of the laser.
  • the substrate 100 includes a first surface and a second surface opposite to the first surface.
  • a plurality of bonding pads may be provided on the first surface of the substrate 100.
  • a first bonding pad 101 and a second bonding pad 102 are provided on the first surface of the substrate 100, wherein the first bonding pad 101 and the second bonding pad 102 are provided on the first surface of the substrate 100.
  • the bonding pad 101 can also be called a chip bonding pad and is used to install a laser diode array.
  • the second bonding pad 102 is used to install an energy storage device.
  • the second bonding pad includes a plurality of sub-pads, where the number of sub-pads can be determined according to the energy storage device. The number of devices is set appropriately.
  • the second pad 102 includes a first sub-pad P2 and a second sub-pad P3.
  • the positions of the first bonding pad 101 and the second bonding pad 102 on the first surface of the substrate can be reasonably set according to actual needs.
  • the first pad 101 may be located between the first sub-pad P2 and the second sub-pad P3, and the first sub-pad P2 and the second sub-pad P3 located on both sides of the first pad 101 are used for mounting Energy storage device 120.
  • the area of the chip pad may be larger than the area of the laser diode array, and the areas of the first sub-pad P2 and the second sub-pad P3 may also be larger than the area occupied by their respective corresponding energy storage devices 120, thereby facilitating Realize the electrical connection between the pad and the laser diode array or energy storage device thereon.
  • pads for connecting to different components may be isolated from each other.
  • the second surface of the substrate 100 is provided with a plurality of welding pads. These welding pads can be electrically connected to the welding pads provided on the first surface of the substrate.
  • the welding pads located on the first surface and those located on the third surface that need to be electrically connected The pads on the two surfaces are at least partially opposite to each other, thereby facilitating electrical connection between the two through conductive vias.
  • the second surface of the substrate 100 is provided with an electrical connection to the first pad 101 .
  • the third bonding pad is connected and the fourth bonding pad is electrically connected to the second bonding pad 102, wherein the first bonding pad 101 and the third bonding pad are electrically connected through the first conductive via 1051, and the second bonding pad 102 and the third bonding pad are electrically connected.
  • the four pads are electrically connected through the second conductive via 1052.
  • the first conductive through hole 1051 and the second conductive through hole 1052 are vertical interconnection holes.
  • the first conductive through hole 1051 penetrates through the substrate 100 and the second conductive through hole 1052 penetrates through the substrate 100 .
  • the fourth pad is grounded.
  • a ground wire is provided on the circuit board, and the fourth pad can be electrically connected to the ground wire.
  • the connection with the fourth pad can be realized. Grounding of electrically connected energy storage devices.
  • the laser of the present application also includes a laser diode array.
  • the laser diode array includes M laser diodes 110, wherein the M laser diodes 110 share an N pole (that is, a cathode).
  • the N pole of the laser diode array is connected to the N pole of the laser diode array.
  • a pad 101 is coupled, where M is an integer greater than 1, and the number of M can be reasonably set according to actual needs. For example, the number of M can be 2, 3, 4, 5, 6 or more. .
  • Laser Diode is essentially a semiconductor diode. According to whether the PN junction material is the same, laser diodes can be divided into homojunction, single heterojunction (SH), double heterojunction (DH) and quantum well (QW) laser diode. In one embodiment, the laser diode array includes four pulsed laser diodes (PLD).
  • PLD pulsed laser diodes
  • the laser diode array may be implemented using one or more bar laser diode array chips.
  • Each bar may include at least two laser diodes, and each bar may include an N-terminal of the laser diode. (also called N pole) are connected together through the metal layer, and the P terminals (also called P pole) of each laser diode are independent of each other.
  • the N terminal of the laser diode array may be connected to the substrate 100 through a conductive adhesive layer such as conductive glue, for example, to the first pad on the first surface of the substrate 100, or may be connected to the first pad in other suitable ways. , such as welding, etc.
  • an N-type substrate (such as a wafer) can be used during manufacturing.
  • the active layer can also be epitaxially grown using MOCVD and other methods, and then the active layer can be grown by photolithography, dissociation, etc.
  • laser diodes can be obtained with the N pole connected together and the P pole separated. Due to the high cleavage precision and photolithography precision, from an optical point of view, the light exit ports of the laser diodes on each bar are roughly distributed on a straight line at very precise intervals (pitch), so that higher various characteristics can be obtained.
  • the laser also includes M energy storage devices 120.
  • the energy storage devices 120 are used to store electric energy and release electric energy at appropriate times to provide electric energy for lighting for the laser diodes 110 connected to them.
  • Each energy storage device 120 The device 120 may include a first electrode located on a first side, and a second electrode located on a second side opposite to the first side, and the first side of each energy storage device 120 is coupled to the second pad 102, thereby achieving The first electrode of each energy storage device 120 is electrically connected to its corresponding second pad 102.
  • the second electrode of each energy storage device 120 is respectively connected to the P electrode (also called P terminal or anode) of a different laser diode.
  • the first electrode of the energy storage device 120 is mounted on the second pad 102 .
  • the first electrode of the energy storage device 120 is mounted on the second pad 102 through bonding.
  • the first electrode of the energy storage device 120 is bonded to the second pad 102 through conductive glue.
  • the second electrode of each energy storage device 120 is respectively connected to the P electrode of a different laser diode 110 through an electrical connection wire (such as a gold wire or other suitable metal wire).
  • the energy storage device 120 and the laser diode array are both disposed on the substrate 100.
  • the present application can make each energy storage device, such as a capacitor,
  • the corresponding laser diode has a shorter distance and better consistency. The shorter distance is conducive to achieving narrower pulse output and is more conducive to improving device integration and miniaturization.
  • the energy storage device 120 may include a capacitor, which may be any suitable type of capacitor.
  • the laser of this application is a common N-pole laser diode array
  • the other inactive laser diodes will bear the corresponding negative voltage.
  • voltage (ignoring the junction capacitance and conduction voltage drop of the laser diode).
  • the upper limit of this negative voltage tolerance depends on the reverse breakdown characteristics of the laser diode.
  • the capacitance value needs to be increased so that the energy storage device can store enough energy.
  • the pulse emitted by the laser diode can be simplified to the LC discharge model. It can be seen that due to the increase in capacitance, a narrower pulse width can be achieved by making the parasitic inductance of the laser emission loop smaller.
  • the energy storage device 120 includes a silicon capacitor or other capacitor with a suitable Q value.
  • Silicon capacitors are chip capacitors manufactured using MOS semiconductor technology. They have the characteristics of high capacitance density, high quality factor (i.e. Q value), and high withstand voltage. They can be used as energy storage capacitors for lasers.
  • the first surface and the second surface (for example, the top surface and the bottom surface) of the silicon capacitor are respectively the two electrodes of the capacitor (corresponding to the first electrode and the second electrode respectively), wherein the first surface of the silicon capacitor is connected to the substrate through conductive glue. 100 connection, the second surface of the silicon capacitor is connected to the P electrode of a different laser diode through an electrical connection wire (such as a gold wire or other suitable metal wire).
  • silicon capacitors in the embodiments of the present application can not only store the energy required for laser emission; moreover, the silicon capacitors in the embodiments of the present application have high Q value and high capacitance density. Therefore, the volume occupied can be reduced, allowing everyone to The distance from a capacitor to its corresponding laser diode can be shorter and more consistent. The shorter distance is conducive to narrow pulse output; it can also increase the Q value and increase the peak power of the laser.
  • the laser further includes a circuit board 130 , for example, the second surface of the substrate 100 is disposed on the circuit board 130 .
  • the circuit board 130 includes but is not limited to a printed circuit board (PCB).
  • the PCB is made of different components and a variety of complex process technologies.
  • the structure of the PCB circuit board includes single-layer, double-layer, etc. Layers, multi-layer structures, different hierarchical structures have different production methods.
  • the printed circuit board mainly consists of pads, vias, mounting holes, wires, components, connectors, fills, electrical boundaries, etc.
  • the substrate 100 can be mounted on the circuit board 130 through surface mounting technology (SMT) through conductive materials such as conductive adhesive (including but not limited to solder paste).
  • SMT surface mounting technology
  • the second surface of the substrate 100 is mounted on the circuit board 130, and the third pad and the fourth pad of the substrate 100 are electrically connected to the corresponding pads on the circuit board 130, respectively, to realize the laser diode array and the circuit.
  • the circuit board 130 includes M charging circuits (not shown) for charging each energy storage device 120.
  • Each charging circuit is electrically connected to the second electrode of a different energy storage device 120.
  • Each charging circuit can Supply power to each energy storage device 120 separately, so that the electric energy stored in the energy storage device can be controlled by controlling the power supply to the energy storage device 120, so as to independently control the electric energy in each energy storage device to realize energy storage.
  • the device corresponds to the control of the emission power of the laser diode 110.
  • the charging circuit may be based on any suitable circuit capable of charging an energy storage device such as a capacitor.
  • each charging circuit may include one or more inductors and a switching circuit connected to the inductor.
  • the switching circuit may include, for example, one or more Switching tubes such as metal-oxide semiconductor field effect tubes (metal-oxide semiconductor field effect transistors, referred to as MOSFETs), MOSFETs can be NMOS or PMOS, the charging circuit can be connected to the power supply, the switching circuit can be connected to the control circuit, and the switching circuit can be controlled through the control circuit ( For example, the switching tube in the switching circuit is turned on or off to control the power supply to transmit electric energy to the inductor or the inductor to transfer the electric energy to the energy storage device.
  • the charging circuit may also include, for example, one or more resistors, one or more diodes, and the like.
  • the circuit board 130 is also provided with a switch, which is electrically connected to the P electrodes of the M laser diodes. When the switch is turned on, the energy storage device with electric energy inside is discharged to power the laser diodes connected to it. glow.
  • one or more switches can be provided on the circuit board, and each switch can be connected to the P pole of one or more laser diodes among the M laser diodes; optionally, the switch can include one or more MOSFETs, MOSFET can be NMOS or PMOS.
  • This application can drive the laser to emit laser through a small number of high-speed switches and high-speed drivers (such as 1-2 sets of high-speed switches and high-speed drivers). Therefore, the peripheral circuit is simple to implement, low in cost, takes up less area, and is more conducive to realizing narrow pulse width. .
  • the switch may include an NMOS.
  • an NMOS may be connected to an N pole shared by multiple laser diodes. Since the conduction speed of NMOS is faster than that of PMOS, compared with the solution of using PMOS as a switch, using NMOS can have It is beneficial to obtain a narrower pulse width, thereby increasing the peak power of the laser, which in turn can increase the range of the entire lidar equipped with the laser. Moreover, this application can be realized by using less NMOS, which can reduce the size of the laser and is more conducive to device integration and miniaturization.
  • each additional line usually requires an additional set of high-speed switches and high-speed drivers, resulting in high driving costs.
  • High-speed switches, high-speed drivers and their peripheral circuits occupy a large space, which results in a longer laser emission loop when the number of lines is large, making it difficult to achieve a narrow pulse width.
  • M laser diodes share the N pole, which can NMOS with lower cost and higher switching speed is used as the switch, and less NMOS can be used to drive the laser diode. Therefore, the cost is lower, the laser emission circuit is simplified, and it is conducive to achieving narrow pulse width. , and reduce the size of the laser.
  • the ultimate detection distance of laser ranging depends on the signal-to-noise ratio of the entire ranging system.
  • increasing the signal amplitude can improve the signal-to-noise ratio of the ranging system, that is Increase detection distance.
  • the maximum total power of the laser is usually fixed. Therefore, in this application, the pulse width of the laser is compressed to achieve a higher peak power, thereby increasing the detection distance of the laser.
  • the embodiments of the present application mainly take the equivalent circuit diagram (shown in Figure 3) of a laser including four laser diodes (four-line laser module) as an example to describe the working principle of the laser.
  • a laser including four laser diodes four-line laser module
  • laser solutions including other numbers of laser diodes fall within the scope of the present invention.
  • the part enclosed by the rectangular frame in the figure generally corresponds to the equivalent circuit of the substrate part of the present application, and the part outside the rectangular frame may be a peripheral circuit , the peripheral circuit includes switches and ground, etc.
  • the peripheral circuit is set on the circuit board.
  • the P poles (that is, the anodes) of the four laser diodes PLD1, PLD2, PLD3, and PLD4 of the laser can be connected to capacitors C1, C2, and C3 respectively.
  • each capacitor C1, C2, C3, and C4 is connected to a charging circuit Charge1 respectively.
  • Charge2, Charge3, Charge4 for example, there are charging pads on the circuit board. Each charging pad is connected to a charging circuit Charge1, Charge2, Charge3, Charge4, and the second electrode of each capacitor C1, C2, C3, C4.
  • the interconnection between the capacitor and the corresponding charging circuit can be achieved by electrically connecting the corresponding charging pad through electrical connecting wires such as gold wires or other suitable metal wires.
  • the first electrodes of the capacitors C1, C2, C3, and C4 are connected to the ground GND.
  • the first electrodes of the capacitors C1, C2, C3, and C4 are electrically connected to the second pad, for example, including the first sub-pad P2 and the second sub-pad P3.
  • the first sub-pad P2 and the second sub-pad P3 are electrically connected to the fourth pad on the second surface of the substrate through conductive via holes, and the fourth pad is grounded, so that the third pads of the capacitors C1, C2, C3, and C4 One electrode is grounded.
  • a switching tube FET is provided on the circuit board.
  • the switching tube FET can be NOMS.
  • the switching tube FET is electrically connected to the N electrodes of the four laser diodes.
  • the drain electrodes of the switching tube FET are electrically connected to the four N poles.
  • the N poles of the laser diodes PLD1, PLD2, PLD3, and PLD4 are electrically connected to the first pad P1 of the substrate through, for example, the N pole of the laser diode, and the first pad P1 is connected to the first pad P1 of the second surface of the substrate through a conductive via hole.
  • the three pads are electrically connected, and the switch FET is electrically connected through the third pad, thereby realizing the electrical connection between the N pole of the laser diode and the drain of the switch FET.
  • the source of the switch FET is grounded, and the switch FET The gate is connected to the control circuit to control the switching tube FET to be on or off through the control signal output by the control circuit.
  • the capacitor with electric energy can supply power to the connected laser diode, so that The laser diode emits light.
  • the capacitor corresponding to the laser diode that needs to be emitted can be charged and the switch on the low side (also called the low voltage side) can be controlled to be turned on to complete the process of discharging the capacitor to the laser diode that needs to be emitted.
  • the laser diode PLD1 emits light.
  • C1 can be charged through the charging circuit Charge1.
  • the switch FET is turned on, and the capacitor C1 will discharge the laser diode PLD1 to complete the emission process.
  • the emission process is basically the same as that of laser diode PLD1.
  • N single-tube lasers are packaged in one device In order to achieve optical focusing, the spacing between different lasers (left and right pitches) and the position accuracy in the front and rear directions are required to be very high, the packaging is very difficult, the yield is low, and the cost is high; in addition, the width of the single-tube laser itself + packaging reservation The chip spacing prevents the Pitch from being very small; (2) This packaging solution is a common P low-side driver.
  • Each additional line requires an additional set of high-speed switches and high-speed drivers, and the driving cost is high; high-speed switches and high-speed drivers and Its peripheral circuit occupies a large space, which causes the laser emission loop to be longer when the number of lines is large, making it difficult to achieve a narrow pulse width; (3)
  • the packaging requires the N-terminals of all lasers to be led out on the substrate, which requires high-precision chip mounting and welding. The substrate cost is higher because of the disk and more complex substrate circuits; (4) First complete the packaging and then mount. The dimensional accuracy of the substrate, the accuracy of the patterning on the substrate, and the mounting accuracy will all affect the final optical accuracy.
  • a total N low-side drive requires a set of energy storage capacitors for each line laser.
  • the capacitance value must be increased so that the energy storage capacitor can store enough energy.
  • peripheral ceramic capacitors as energy storage capacitors in conventional solutions, the capacitance density of high-Q value ceramic capacitors (MLCC) is not ideal enough. Piling up capacitors with large enough capacitance on the PCB to meet the emission energy demand will inevitably occupy a large number of chips. Area (this article can also be called Bom area), as the number of integrated lines increases, the contradictions between the laser emission loop area, the consistency of parasitic parameters of each line, and the total capacitance value of the capacitor will become more and more prominent.
  • the 1*M common N-pole laser diode bar can be individually controlled one by one.
  • silicon capacitors with high Q value and high capacitance density are used as energy storage devices, which reduces the volume of the integrated solution, makes the laser emission circuit smaller, can achieve narrower pulse width, and has higher pulse width consistency. It is beneficial to increase the peak power to achieve longer detection distance. And it can also meet the requirements of safety regulations to avoid harm to the human body when the laser is emitted.
  • the assembly process of the above-mentioned laser includes the following steps:
  • Step S1 Assemble the substrate 100 onto the circuit board through surface mounting technology
  • Step S3 Install the laser diode array onto the first pad 101 of the substrate 100 through conductive glue
  • Step S4 Perform high-temperature baking and cooling steps to solidify the conductive adhesive
  • Step S5 interconnect the P electrode of each laser diode 110 with the second electrode (which may be the P terminal) of the corresponding energy storage device 120 through an electrical connection line, and connect the second electrode of the energy storage device 120 through an electrical connection line. It is interconnected with corresponding charging pads on the circuit board. Each charging pad is electrically connected to a charging circuit. The charging circuit is used to provide electric energy to the energy storage device 120 electrically connected to it.
  • the laser diode array is positioned directly relative to the reference point on the circuit board, such as the PCB, so that the dimensional errors and mounting errors of the substrate 100 no longer have an impact, thereby achieving higher optical accuracy.
  • the laser diode array is positioned relative to the reference point on the PCB, and the laser diode array is installed to the corresponding position on the substrate using conductive glue.
  • the laser of this application can be assembled using a common packaging process (for example, in the form of Chips on Board (COB) packaging). It has the advantages of mature technology, low cost, high optical precision, simple process flow and low cost. Time is short, production difficulty is low, and yield is high.
  • COB Chips on Board
  • this application also provides a laser radar.
  • the lasers provided in various embodiments of this application can be applied to laser radar.
  • the lidar further includes a light sensing device for sensing part of the light reflected by the target object to sense external environmental information, such as distance information, orientation information, and reflection intensity information of the environmental target. , speed information, etc.
  • the lidar can detect the distance from the detection object to the lidar by measuring the time of light propagation between the lidar and the detection object, that is, Time-of-Flight (TOF).
  • TOF Time-of-Flight
  • lidar can also use other technologies to detect the distance from the detection object to lidar, such as a ranging method based on phase shift (phase shift) measurement, or a ranging method based on frequency shift (frequency shift) measurement, which will not be used here. Make restrictions.
  • the lidar uses the laser mentioned above.
  • the lidar can be a solid-state lidar.
  • the solid-state lidar can directly emit a pulse laser that can cover the detection area in a short time, and then use a highly sensitive area array APD chip to receive the echo signal. Through a camera-like photo-taking mode, the detection and perception of distance information of the surrounding environment are completed.
  • solid-state lidar has smaller size, lower cost, more stable performance, excellent reliability, and is easier to pass vehicle regulations.
  • lidar 400 may include a laser 401 , an optical structure 402 and a light sensing device 403 .
  • the laser 401 may be implemented as the laser in the previous embodiments, and may emit a sequence of light pulses (eg, a sequence of laser pulses).
  • the light sensing device 403 can sense part of the light reflected by the target object.
  • the light sensing device includes a receiver.
  • the receiver receives the light pulse sequence emitted by the laser 401 and the light pulse sequence reflected by the object to be detected.
  • the receiver can It includes a photodiode for receiving the return light signal reflected by the target object when the light pulse sequence emitted by the laser 401 is reflected, converting the return light signal into an electrical signal, and outputting a time signal based on the electrical signal.
  • the optical structure 402 may include a scanning module for changing the propagation direction of at least one light pulse sequence (eg, laser pulse sequence) emitted by the laser 401 to scan the field of view.
  • the lidar can also include an arithmetic circuit and a control circuit.
  • the arithmetic circuit can determine the distance between the lidar and the detected object (also referred to as the target object herein) based on the time signal.
  • the control circuit can control other circuits. , for example, you can control the working time of each circuit and/or set parameters for each circuit, etc.
  • the distance and orientation detected by lidar can be used for remote sensing, obstacle avoidance, mapping, modeling, navigation, etc., for example, to realize the perception of the surrounding environment and conduct two-dimensional or three-dimensional mapping of the external environment.
  • the lidar according to the implementation of the present application can be applied to a movable platform.
  • LiDAR uses the aforementioned laser, so it has all the advantages of the aforementioned laser, which will not be described again here.
  • Coaxial light paths can be used in lidar, that is, the light beam emitted by lidar and the reflected light beam share at least part of the optical path within lidar.
  • the lidar can also use an off-axis optical path, that is, the light beam emitted by the lidar and the reflected light beam are transmitted along different optical paths in the lidar.
  • Figure 5 shows a schematic diagram of an embodiment in which the laser radar of the present application adopts a coaxial optical path.
  • Lidar 200 includes a ranging module 210, which includes a transmitter 203 (the transmitter can be implemented based on the laser of the previous embodiment), a collimating element 204, a light sensing device such as a receiver 205 and an optical path changing element 206 , the receiver 205 may include a photodiode array chip, a signal processing unit, an arithmetic circuit, etc., and the ranging module 210 is used to emit light beams, receive return light, and convert the return light into electrical signals.
  • the transmitter 203 can be used to transmit a sequence of light pulses. In one embodiment, transmitter 203 may emit a sequence of laser pulses.
  • the laser beam emitted by the emitter 203 is a narrow-bandwidth beam with a wavelength outside the visible light range.
  • the collimating element 204 is disposed on the output optical path of the emitter, and is used to collimate the light beam emitted from the emitter 203, and collimate the light beam emitted from the emitter 203 into parallel light and emit it to the scanning module.
  • the collimating element is also used to condense at least part of the return light reflected by the detection object.
  • the collimating element 204 can be a collimating lens or other element capable of collimating light beams.
  • the light path changing element 206 is used to merge the transmitting light path and the receiving light path in the lidar before the collimating element 204 , so that the transmitting light path and the receiving light path can share the same collimating element, making the light path more precise. compact.
  • the transmitter 203 and the receiver 205 may respectively use their own collimating elements, and the optical path changing element 206 is disposed on the optical path after the collimating elements.
  • the light path changing element can use a small-area reflector to transmit the light.
  • the optical path and the receiving optical path are merged.
  • the optical path changing element may also be a reflector with a through hole, where the through hole is used to transmit the emitted light from the emitter 203 , and the reflector is used to reflect the return light to the receiver 205 . This can reduce the blocking of the return light by the bracket of the small reflector when using a small reflector.
  • the optical path changing element is offset from the optical axis of the collimating element 204 .
  • the optical path changing element can also be located on the optical axis of the collimating element 204 .
  • LiDAR 200 also includes optical structures such as scanning module 202 .
  • the scanning module 202 is placed on the output optical path of the ranging module 210.
  • the scanning module 202 is used to change the transmission direction of the collimated beam 219 emitted by the collimating element 204 and project it to the external environment, and project the return light to the collimating element 204. .
  • the returned light is condensed onto the receiver 205 through the collimating element 204 .
  • the scanning module 202 may include at least one optical element for changing the propagation path of the light beam, wherein the optical element may change the propagation path of the light beam by reflecting, refracting, diffracting, etc., such as
  • the optical element includes at least one light refractive element having non-parallel exit and entrance surfaces.
  • the scanning module 202 includes a lens, a mirror, a prism, a galvanometer, a grating, a liquid crystal, an optical phased array (Optical Phased Array), or any combination of the above optical elements.
  • at least part of the optical element is movable, for example, by driving the at least part of the optical element to move through a driving module.
  • the moving optical element can reflect, refract or diffract the light beam to different directions at different times.
  • multiple optical elements of the scanning module 202 may rotate or vibrate about a common axis 209, with each rotating or vibrating optical element serving to continuously change the propagation direction of the incident light beam.
  • multiple optical elements of the scanning module 202 may rotate at different rotational speeds or vibrate at different speeds.
  • at least some of the optical elements of scanning module 202 may rotate at substantially the same rotational speed.
  • multiple optical elements of the scanning module may also rotate around different axes.
  • the multiple optical elements of the scanning module may also rotate in the same direction, or rotate in different directions; or vibrate in the same direction, or vibrate in different directions, which is not limited here.
  • the scanning module 202 includes a first optical element 214 and a driver 216 connected to the first optical element 214.
  • the driver 216 is used to drive the first optical element 214 to rotate around the rotation axis 209 to cause the first optical element 214 to change The direction of the collimated beam 219.
  • the first optical element 214 projects the collimated beam 219 into different directions.
  • the angle between the direction of the collimated beam 219 changed by the first optical element and the rotation axis 209 changes as the first optical element 214 rotates.
  • the first optical element 214 includes an opposing, non-parallel pair of surfaces through which the collimated beam 219 passes.
  • the first optical element 214 includes a prism whose thickness varies in at least one radial direction.
  • the first optical element 214 includes a wedge prism that refracts the collimated light beam 219 .
  • the scanning module 202 further includes a second optical element 215 that rotates around the rotation axis 209 , and the rotation speed of the second optical element 215 is different from the rotation speed of the first optical element 214 .
  • the second optical element 215 is used to change the direction of the light beam projected by the first optical element 214.
  • the second optical element 215 is connected to another driver 217, and the driver 217 drives the second optical element 215 to rotate.
  • the first optical element 214 and the second optical element 215 can be driven by the same or different drivers, so that the rotation speed and/or steering of the first optical element 214 and the second optical element 215 are different, thereby projecting the collimated beam 219 into the external space. Different directions can scan a larger spatial range.
  • controller 218 controls drivers 216 and 217 to drive first optical element 214 and second optical element 215 respectively.
  • the rotation speeds of the first optical element 214 and the second optical element 215 can be determined according to the area and pattern expected to be scanned in practical applications.
  • Drivers 216 and 217 may include motors or other drives.
  • the rotation directions (also referred to as rotations herein) of the first optical element 214 and the second optical element 215 are the same, or the rotation directions of the first optical element and the second optical element are different.
  • the second optical element 215 includes an opposing, non-parallel pair of surfaces through which the light beam passes. In one embodiment, the second optical element 215 includes a prism whose thickness varies in at least one radial direction. In one embodiment, the second optical element 215 includes a wedge prism.
  • the scanning module 202 further includes a third optical element (not shown) and a driver for driving the movement of the third optical element.
  • the third optical element includes a pair of opposing non-parallel surfaces through which the light beam passes.
  • the third optical element includes a prism whose thickness varies in at least one radial direction.
  • the third optical element includes a wedge prism. At least two of the first, second and third optical elements rotate at different rotational speeds and/or rotations.
  • the scanning module includes two or three photorefractive elements arranged sequentially on the output light path of the light pulse sequence.
  • at least two of the photorefractive elements in the scanning module rotate during the scanning process to change the direction of the light pulse sequence.
  • the scanning paths of the scanning module are different at least partially at different times.
  • the rotation of each optical element in the scanning module 202 can project light to different directions, such as the direction of the projected light 211 and the direction 213 , thus affecting the surroundings of the laser radar 200 . Scan the space.
  • the detection object that is, the target object
  • part of the light is reflected by the detection object 201 to the lidar 200 in the opposite direction to the projected light 211.
  • the return light 212 reflected by the detection object 201 passes through the scanning module 202 and then enters the collimating element 204 .
  • the receiver 205 and the transmitter 203 are placed on the same side of the collimating element 204, and the receiver 205 is used to convert at least part of the return light passing through the collimating element 204 into an electrical signal.
  • each optical element is coated with an antireflection coating.
  • the thickness of the anti-reflection coating is equal to or close to the wavelength of the light beam emitted by the emitter 203, which can increase the intensity of the transmitted light beam.
  • the surface of an element in the laser radar located on the beam propagation path is coated with a filter layer, or a filter is provided on the beam propagation path to at least transmit the wavelength band of the beam emitted by the emitter and reflect other bands to reduce the noise brought by ambient light to the receiver.
  • the lidar 200 includes a measurement circuit, such as a TOF unit 207 , which can be used to measure TOF to measure the distance of the detection object 201 .
  • the lidar 200 can determine the time t based on the time difference between the transmitter 203 emitting the light beam and the detector 205 receiving the return light, and further determine the distance D.
  • the lidar 200 can also detect the position of the detection object 201 on the lidar 200 .
  • the emitter 203 may include the aforementioned laser, and a laser diode of the laser emits nanosecond-level laser pulses.
  • the laser pulse reception time can be determined, for example, by detecting the rising edge time and/or falling edge time of the electrical signal pulse.
  • the TOF unit 207 of the lidar 200 can calculate the TOF using the pulse reception time information and the pulse emission time information, thereby determining the distance from the detection object 201 to the lidar 200 .
  • the distance and orientation detected by LiDAR 200 can be used for remote sensing, obstacle avoidance, surveying, modeling, navigation, etc.
  • this application also provides a movable platform, in which the aforementioned lidar can be applied to the movable platform, and the lidar can be mechanically coupled with the movable platform body of the movable platform.
  • the movable platform includes at least one of an unmanned aerial vehicle, a car, a remote control car, a robot, and a camera.
  • the movable platform body is the fuselage of the unmanned aerial vehicle.
  • the movable platform body is the body of the car.
  • the car can be an autonomous vehicle or a semi-autonomous vehicle, and there is no restriction here.
  • the movable platform body is the body of the remote control car.
  • the movable platform body is the robot.
  • the movable platform body is the body of the camera.
  • the movable platform may further include a power system for driving the movable platform body to move.
  • the power system can be an engine inside the vehicle, which will not be listed here.
  • the movable platform may further include a pan/tilt, which is disposed on the movable platform body and used to carry the laser radar.
  • the lidar and movable platform of the present application include the aforementioned laser, they have substantially the same advantages as the aforementioned laser.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another device, or some features can be ignored, or not implemented.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种激光器、激光雷达和可移动平台,其中,激光器包括:基板,基板包括第一焊盘和第二焊盘;激光二极管阵列,激光二极管阵列包括M个激光二极管,其中,M个激光二极管共用N极,激光器阵列的N极与第一焊盘耦合;M个储能装置,各个储能装置包括位于第一侧的第一电极,以及位于与第一侧相背的第二侧的第二电极,各个储能装置的第一侧均与第二焊盘耦合,各个储能装置的第二电极分别对应连接一个不同的激光二极管的P极;电路板,包括M个充电电路,用于为各个储能装置充电,各个充电电路分别对应电连接一个不同的储能装置的第二电极;其中,M为大于1的整数,该激光器能够发射具有窄脉冲宽度的光,从而可以提高峰值功率。

Description

激光器、激光雷达及可移动平台
说明书
技术领域
本发明涉及激光器技术领域,具体而言涉及一种激光器、激光雷达及可移动平台。
背景技术
在激光雷达、激光测距等领域,由于产品直接在现实生活场景中使用,而激光存在直接射入人眼的风险,因此规定了激光发射不能超过安全规定的能量值,从而保证即使激光入射人眼的时候也不会造成人体的伤害。因此在对激光发射的方案进行设计时,在小于安规限制的前提下,需要尽可能地增大出光峰值功率,以便实现更远的探测距离。
目前激光雷达与激光测距都在向着小型化、高密度发展,由于单个激光器发射频率的限制,要想增加FOV内点的数量,提高点云覆盖率,一般会将多个激光器集成到同一台激光雷达中构成多线激光雷达,由于光学器件是制约激光雷达与激光测距体积的主要因素,如何减小激光雷达、激光测距的体积已成为亟待解决的问题。
发明内容
在发明内容部分中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明。本发明的发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
本申请实施例第一方面提供一种激光器,所述激光器包括:
基板,所述基板包括第一焊盘和第二焊盘;
激光二极管阵列,所述激光二极管阵列包括M个激光二极管,其中,所述M个激光二极管共用N极,所述激光二极管阵列的所述N极与所述第一焊盘耦合;
M个储能装置,各个所述储能装置包括位于第一侧的第一电极,以及位于与所述第一侧相背的第二侧的第二电极,各个所述储能装置的第一侧均所 述第二焊盘耦合,各个所述储能装置的第二电极分别对应连接一个不同的所述激光二极管的P极;
电路板,包括M个充电电路,用于为各个所述储能装置充电,各个所述充电电路分别对应电连接一个不同的所述储能装置的第二电极;
其中,M为大于1的整数。
本申请实施例第二方面提供一种激光雷达,所述激光雷达包括光学结构,前文所述的激光器,用于发射激光;以及
光感测装置,用于感测所述激光被目标物体反射的部分光线。
本申请实施例第三方面提供一种可移动平台,所述可移动平台包括:
可移动平台本体;以及
如前文所述的激光雷达,所述激光雷达与所述可移动平台本体机械耦合。
本申请的激光器、激光雷达和可移动平台,通过将储能装置和共N极的M个激光二极管设置于基板上,可以使得储能装置和对应的激光二极管的距离尽可能短且大体一致,从而可以使得激光发射回路更小,以获得更窄的脉宽和更高脉宽一致性,进而使激光器实现更高的峰值功率,获取更远的探测距离,且通过选择充电电路给对应的储能装置充电,实现对每个激光二极管的单独可控,从而可以在***电路的配合下可以实现各个激光二极管的功率可控。
附图说明
本发明的下列附图在此作为本发明的一部分用于理解本发明。附图中示出了本发明的实施例及其描述,用来解释本发明的原理。
附图中:
图1示出本申请提供的一实施例中激光器的主视图;
图2A示出本申请提供的一实施例中基板第一表面的示意图;
图2B示出本申请提供的一实施例中基板第二表面的示意图;
图3示出本申请提供的一实施例中激光器的电路原理示意图;
图4示出本申请提供的一实施例中激光雷达的示例性框图;
图5示出本申请提供的一实施例中的激光雷达的示意图。
具体实施方式
为了使得本申请的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本申请的示例实施例。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是本申请的全部实施例,应理解,本申请不受这里描述的示例实施例的限制。基于本申请中描述的本申请实施例,本领域技术人员在没有付出创造性劳动的情况下所得到的所有其它实施例都应落入本申请的保护范围之内。
在下文的描述中,给出了大量具体的细节以便提供对本申请更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本申请可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本申请发生混淆,对于本领域公知的一些技术特征未进行描述。
应当理解的是,本申请能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本申请的范围完全地传递给本领域技术人员。
在此使用的术语的目的仅在于描述具体实施例并且不作为本申请的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
为了彻底理解本申请,将在下列的描述中提出详细的结构,以便阐释本申请提出的技术方案。本申请的可选实施例详细描述如下,然而除了这些详细描述外,本申请还可以具有其他实施方式。
本申请实施例第一方面提供一种激光器,如图1所示,激光器包括:
基板100,基板100包括第一焊盘101和第二焊盘102;
激光二极管阵列,激光二极管阵列包括M个激光二极管110,其中,M个激光二极管110共用N极,激光二极管阵列的N极与第一焊盘101耦合;
M个储能装置120,各个储能装置120包括位于第一侧的第一电极,以及位于与第一侧相背的第二侧的第二电极,各个储能装置120的第一侧均第二焊盘102耦合,各个储能装置120的第二电极分别对应连接一个不同的激光二极管110的P极;
电路板130,包括M个充电电路,用于为各个储能装置120充电,各个充电电路分别对应电连接一个不同的储能装置的第二电极;
其中,M为大于1的整数。
本申请的激光器、激光雷达和可移动平台,通过将储能装置和共N极的M个激光二极管设置于基板上,可以使得储能装置和对应的激光二极管的距离尽可能短且大体一致,从而可以使得激光发射回路更小,以获得更窄的脉宽和更高脉宽一致性,进而使激光器实现更高的峰值功率,获取更远的探测距离,且通过选择充电电路给对应的储能装置充电,实现对每个激光二极管的单独可控,从而可以在***电路的配合下可以实现各个激光二极管的功率可控。
在一个实施例中,如图1、图2A和图2B所示,基板100包括陶瓷基板,陶瓷基板包括但不限于高温共烧多层陶瓷基板(HTCC)、低温共烧陶瓷基板(LTCC)、厚膜陶瓷基板(TFC)、直接敷铜陶瓷基板(DBC)、直接镀铜陶瓷基板(DPC)等。较佳地,基板100可以采用直接镀铜氮化铝陶瓷基板,一方面,直接镀铜氮化铝陶瓷基板拥有较高的平面度、较强的刚度以及较低的热膨胀系数,可以作为芯片的良好载体;另一方面,由于激光二极管阵列体积小、发热大,且印制电路板(PCB)本身在水平方向上的导热能力较差,因此具有较高导热系数的氮化铝陶瓷基板可以起到扩大有效散热面积的作用,从而改善激光器的散热性能。
示例性地,基板100包括第一表面和与第一表面相背的第二表面。其中,基板100的第一表面上可以设置有多个焊盘,例如,如图2A所示,基板100的第一表面上设置有第一焊盘101和第二焊盘102,其中,第一焊盘101也可以称为芯片焊盘,用于安装激光二极管阵列,第二焊盘102用于安装储能装置,第二焊盘包括多个子焊盘,其中子焊盘的数量可以根据储能装置的数量合理设定,例如,如图2A所示,本申请实施例中,第二焊盘102包括第一子焊盘P2和第二子焊盘P3。
第一焊盘101和第二焊盘102在基板的第一表面的位置可以根据实际需要合理设定,例如,当第二焊盘102包括第一子焊盘P2和第二子焊盘P3时,第一焊盘101可以位于第一子焊盘P2和第二子焊盘P3的之间,位于第一焊盘101两侧的第一子焊盘P2和第二子焊盘P3用于安装储能装置120。可选地,芯片焊盘的面积可以大于激光二极管阵列的面积,第一子焊盘P2和第二子焊盘P3的面积也可以大于其各自对应的储能装置120占用的面积,从而有 利于实现焊盘和其上的激光二极管阵列或储能装置的电连接。
在一些实施例中,用于和不同的元器件连接的焊盘之间可以是彼此隔离绝缘的。
相应的,基板100的第二表面设置有多个焊盘,该些焊盘可以对应电连接设置于基板的第一表面上的焊盘,位于第一表面的焊盘和需要电连接的位于第二表面的焊盘之间至少部分的相对,从而便于通过导电通孔实现两者之间的电连接,例如,如图2B所示,基板100的第二表面设置有与第一焊盘101电连接的第三焊盘以及与第二焊盘102电连接的第四焊盘,其中,第一焊盘101和第三焊盘通过第一导电通孔1051电连接,第二焊盘102和第四焊盘通过第二导电通孔1052电连接。其中,第一导电通孔1051和第二导电通孔1052采用垂直互连孔,第一导电通孔1051贯穿基板100,第二导电通孔1052贯穿基板100。进一步,第四焊盘接地,例如当基板设置于电路板时,电路板上设置有地线,第四焊盘可以电连接该地线,通过第四焊盘接地,可以实现和第四焊盘电连接的储能装置的接地。
如图1所示,本申请的激光器还包括激光二极管阵列,激光二极管阵列包括M个激光二极管110,其中,M个激光二极管110共用N极(也即阴极),激光二极管阵列的N极与第一焊盘101耦合,其中M为大于1的整数,其中M的数量可以根据实际需要合理设定,例如M的数量可以是2个、3个、4个、5个、6个或者更多个。
激光二极管(Laser Diode,LD))本质上是一个半导体二极管,按照PN结材料是否相同,可以把激光二极管分为同质结、单异质结(SH)、双异质结(DH)和量子阱(QW)激光二极管。在一个实施例中,激光二极管阵列包括四个脉冲激光二极管(Pulsed Laser Diode,简称PLD)。
在一些实施例中,激光二极管阵列可以使用一个或多个巴(bar)条激光二极管阵列芯片来实现,每个巴条可以包括至少两个激光二极管,每个巴条包括的激光二极管的N端(也称N极)通过金属层连接在一起,各个激光二极管的P端(也称P极)彼此独立。激光二极管阵列的N端可以通过例如导电胶的导电粘接层和基板100连接,例如和基板100的第一表面的第一焊盘连接,或者还可以通过其他适合的方式和第一焊盘连接,例如焊接等。
对于共N极的bar条,其可以在制造时,采用N型衬底(例如晶圆),还可以采用MOCVD等方式外延生长有源层,然后通过光刻、解离等方式将有源的P极分开,晶元解理成bar条时,可以得到N极连在一起,P极分开 的1*N(N>=2的正整数)个激光二极管。由于解理精度和光刻精度很高,所以从光学角度看,每个巴条上的激光二极管的出光口以很精确的间隔(pitch)大体分布在一条直线上,从而可以获得较高的各线出光方向一致性,有利于激光器的发射对焦和与激光器配套的接收对焦。并且,利用光刻工艺可以使得间隔很小,相比于使用多个独立的激光二极管通过封装工资组装得到的激光二极管阵列,其得到的间隔要更小,激光器对于芯片面积利用率相较于单管更高,成本更低,这有利于器件的集成和小型化,且对于激光器的高精度贴装只需要一次,封装成本低。
针对上述M个激光二极管110,激光器还包括M个储能装置120,储能装置120用于存储电能并在适合的时机释放电能为和其连接的激光二极管110提供发光用的电能,各个储能装置120可以包括位于第一侧的第一电极,以及位于与第一侧相背的第二侧的第二电极,各个储能装置120的第一侧均和第二焊盘102耦合,从而实现各个储能装置120的第一电极和其对应的第二焊盘102的电连接,各个储能装置120的第二电极分别对应连接一个不同的激光二极管的P极(也称P端或阳极),通过上述连接方式,可以实现将具有M个激光二极管110的激光二极管阵列的N极和对应储能装置的电连接,以及储能装置可以通过第二焊盘102和***电路电连接。
示例性地,储能装置120的第一电极贴装于第二焊盘102。具体地,储能装置120的第一电极通过键合方式贴装于第二焊盘102,例如,储能装置120的第一电极通过导电胶粘接于第二焊盘102。再例如,各个储能装置120的第二电极分别通过电连接线(例如金线或其他适合的金属线)对应连接一个不同的激光二极管110的P极。本申请一些实施例中,将储能装置120和激光二极管阵列均设置在基板100上,相比储能装置设置于***的电路板上的方式,本申请可以使每一个储能装置例如电容到其对应的激光二极管的距离更短且一致性更好,而更短的距离有利于实现更窄的脉冲输出,且更有利于提高器件的集成度和小型化。
可选地,储能装置120可以包括电容器,该电容器可以选用任意适合类型的电容器。
本申请的申请人发现,由于本申请的激光器是共N极激光二极管阵列,那么当其中的任意一线的储能装置例如电容器上存在电压时,其他未激活的激光二极管都将会承受对应的负压(忽略激光二极管结电容与导通压降),这个负压的耐受上限取决于激光二极管的反相击穿特性。当电容电压受到限制 时,为了获得足够的出光功率,需要提升电容容值,储能装置才可能储存足够的能量。激光二极管发光的脉冲可以简化为LC放电的模型,可见由于电容的增大,通过将激光发射回路的寄生电感做的更小可以达到更窄的脉冲宽度。
此外,由于高品质因数(Q值)的陶瓷电容(MLCC)容值密度不够理想,在电路板(PCB)上堆积足够大的容值的电容满足发射能量需求则可能会占用大量的芯片面积,随着集成线数的增多,激光发射回路面积、各线寄生参数一致性、电容总容值的矛盾会越来越突出,激光发射回路的所占的面积会显著的影响到其寄生参数,进而影响到其脉宽。
鉴于上述问题的存在,在一些实施例中,储能装置120包括硅电容或其他具有适合的Q值的电容器。硅电容是使用MOS半导体工艺制造的芯片电容器,具有高容值密度,高品质因数(也即Q值),高耐压等特点,可以用作激光器的储能电容。硅电容的第一表面和第二表面(例如,顶面和底面)分别为电容的两个电极(分别对应第一电极和第二电极),其中,硅电容的第一表面通过导电胶与基板100连接,硅电容的第二表面通过电连接线(例如金线或其他适合的金属线)对应连接一个不同的激光二极管的P极。
在本申请的实施例中采用硅电容,不仅可以储存激光器发射所需的能量;并且,本申请实施例的硅电容具有高Q值,高容值密度,因此,可以减小体积占用,让每一只电容到其对应的激光二极管的距离可以更短且一致性更好,更短的距离有利于窄脉冲输出;并且可以提高Q值,提高激光器的峰值功率。
进一步,继续参考图1,激光器还包括电路板130,例如基板100的第二表面设置于电路板130上。
在一个实施例中,电路板130包括但不限于印刷电路板(PCB),PCB由不同的元器件和多种复杂的工艺技术处理等制作而成,其中PCB线路板的结构有单层、双层、多层结构,不同的层次结构其制作方式是不同的。可选地,印刷电路板主要由焊盘、过孔、安装孔、导线、元器件、接插件、填充、电气边界等组成。
在一些实施例中,可以通过导电材料例如导电胶(包括但不局限于锡膏)通过表面封装技术(Surface Mounted Technology,SMT)将基板100贴装在电路板130上。具体地,基板100的第二表面贴装至电路板130上,而基板100的第三焊盘和第四焊盘分别和电路板130上对应的焊盘电连接,以实现激光二极管阵列与电路板130上器件(例如开关)的电连接,以及实现储能 装置120例如电容器和电路板130上的***电路例如地线等的电连接。
进一步,电路板130包括M个充电电路(未示出),用于为各个储能装置120充电,各个充电电路分别对应电连接一个不同的储能装置120的第二电极,通过各个充电电路可以给每个储能装置120分别供电,从而可以通过控制给储能装置120的供电来控制储能装置所存储的电能,以便对每个储能装置中的电能的独立控制,以实现对储能装置对应的激光二极管110的发射功率的控制。
充电电路可以基于任意适合的能够对例如电容器的储能装置进行充电的电路,例如,每个充电电路可以包括一个或多个电感以及和电感连接的开关电路,开关电路可以包括例如一个或多个金属氧化物半导体场效应管(metal-oxide semiconductor FET,简称MOSFET)等的开关管,MOSFET可以为NMOS或者PMOS,充电电路可以连接电源,开关电路可以连接控制电路,通过控制电路可以控制开关电路(例如开关电路中的开关管)的导通或截止,以控制电源向电感上传输电能或电感将电能转移至储能装置中。可选地,充电电路还可以包括例如一个或多个电阻、一个或多个二极管等。
在一个实施例中,电路板130还设置有开关,开关与M个激光二极管的P极电连接,当开关导通时,内部具有电能的储能装置放电为与其连接的激光二极管供电以使其发光。可选地,电路板上可以设置有一个或多个开关,每个开关可以连接M个激光二极管中的一个或多个激光二极管的P极;可选地,开关可以包括一个或多个MOSFET,MOSFET可以为NMOS或者PMOS。本申请可以通过少量的高速开关与高速驱动器(例如1-2组高速开关与高速驱动器)驱动激光器发射激光,因此其***电路实现简单,成本低,占用面积更小,更有利于实现窄脉冲宽度。
可选地,开关可以包括NMOS,例如可以是一个NMOS连接多个激光二极管共用的N极,由于NMOS的导通速度要快于PMOS,因此,相比使用PMOS作为开关的方案,使用NMOS可以有利于获得更窄的脉冲宽度,从而提高激光器的峰值功率,进而可以提高整个具有该激光器的激光雷达的量程。并且,本申请中可以通过使用较少的NMOS来实现,可以减小激光器的体积,更有利于器件的集成和小型化。
对于一些常见的多个激光二极管共用P极的激光器,其通常每增加一线就需要增加一组高速开关与高速驱动器,驱动成本较高。高速开关与高速驱动器及其***电路占用较大空间,这导致线数较多时其激光发射回路会较长, 难以实现窄脉宽,而本申请的方案中M个激光二极管共用N极,其可以使用成本较低,且开关速度较高的NMOS作为开关,且可以使用较少的NMOS即可实现对激光二极管的驱动,因此,其成本更低,简化了激光发射回路,有利于实现窄脉宽,以及减小了激光器的体积。
利用激光器进行激光测距的极限探测距离取决于整个测距***的信噪比,对于脉冲ToF测距,在噪声一定的前提下,增大信号幅值可以提升测距***的信噪比,即提升探测距离。由于安规限制,通常激光器出光的总功率最大值是固定的,因此本申请中通过压缩激光器的脉宽,从而实现更高的峰值功率,从而提升激光器的探测距离。
为了便于理解本申请实施例的技术方案,本申请实施例中主要以包括四个激光二极管的激光器(四线激光器模块)的等效电路图(如图3所示)为例,对激光器的工作原理进行说明,然而,本领域技术人员可以了解,在不脱离本实用新型的精神和基本原理的基础上,包括其他数量的激光二极管的激光器的方案均落入本发明的保护范围。
在一个具体示例中,对于具有4个激光二极管的激光器,如图3所示,图中矩形框所包围的部分大体对应本申请的基板部分的等效电路,而矩形框外部分可以为***电路,该***电路中包括开关以及地等,***电路设置于电路板上,激光器的4个激光二极管PLD1,PLD2,PLD3,PLD4的P极(也即阳极)可以分别连接电容器C1,C2,C3,C4,例如通过电连接线例如金线或其他适合的金属线分别和连接电容器C1,C2,C3,C4的第二电极,而每个电容器C1,C2,C3,C4则分别连接一个充电电路Charge1,Charge2,Charge3,Charge4,例如电路板上还设置有充电焊盘,每个充电焊盘分别连接一个充电电路Charge1,Charge2,Charge3,Charge4,每个电容C1,C2,C3,C4的第二电极可以通过电连接线例如金线或其他适合的金属线和对应的充电焊盘电连接,从而实现电容器和对应充电电路的互连。电容器C1,C2,C3,C4的第一电极接地GND,例如,电容器C1,C2,C3,C4的第一电极电连接第二焊盘例如包括第一子焊盘P2和第二子焊盘P3,而第一子焊盘P2和第二子焊盘P3通过导电通孔电连接基板的第二表面的第四焊盘,第四焊盘接地,从而使得电容器C1,C2,C3,C4的第一电极接地。
继续参考图3,电路板上设置有一个开关管FET,该开关管FET可以为NOMS,开关管FET与4个激光二极管的N极电连接,具体地,开关管FET的漏极电连接4个激光二极管PLD1,PLD2,PLD3,PLD4的N极,例如通过 激光二极管的N极和基板的第一焊盘P1电连接,并通过导电通孔将第一焊盘P1和基板的第二表面的第三焊盘电连接,而通过第三焊盘则电连接开关管FET,从而实现激光二极管的N极和开关管FET的漏极的电连接,开关管FET的源极接地,而开关管FET的栅极接控制电路,以通过控制电路输出的控制信号,控制开关管FET导通或截止,通过开关管FET的导通或截止,以实现具有电能的电容器对其连接的激光二极管的供电,使激光二极管发光。例如,可以向需要发射的激光二极管对应的电容器中充电并控制低侧(也可称低压侧)的开关导通完成电容器对需要发射的激光二极管的放电的过程,具体地,以激光二极管PLD1发光为例,若需要下一时刻激光二极管PLD1发光,则可以通过充电电路Charge1对C1充电,充电完成后打开开关FET,电容器C1将对激光二极管PLD1进行放电,完成发射过程,对于其他的激光二极管的发射过程和激光二极管PLD1基本相同。
目前相关技术中,将“单个激光器、储能电容、高速开关”的组合结构复制N份变成N线发射,这种激光器主要存在以下缺点:(1)将N个单管激光器封装在一个器件内,为了实现光学对焦,要求不同激光器之间的间距(左右pitch)以及前后方向的位置精度很高,封装难度很大,良率低,成本高;此外单管激光器本身的宽度+封装预留的芯片间距导致其Pitch无法做到非常小;(2)该封装方案属于共P低侧驱动,每增加一线就需要增加一组高速开关与高速驱动器,驱动成本较高;高速开关与高速驱动器及其***电路占用较大空间,这导致线数较多时其激光发射回路会较长,难以实现窄脉宽;(3)封装需要在基板上引出所有激光器的N端,需要高精度的装片焊盘以及较为复杂的基板线路,基板成本较高;(4)先完成封装后进行贴装,基板的尺寸精度,基板上图形化的精度,贴装精度都会影响到最终的光学精度。
针对上述问题,考虑采用共N低侧驱动方案,然而共N低侧驱动,需要给每一线激光器配一组储能电容。而当电容电压受到限制时,为了获得足够的出光功率,必须提升电容容值,储能电容才能储存足够的能量。常规方案中使用***的陶瓷电容作为储能电容时,高Q值的陶瓷电容(MLCC)容值密度不够理想,在PCB上堆积足够大的容值的电容满足发射能量需求必然会占用大量的芯片面积(本文也可以称Bom面积),随着集成线数的增多,激光发射回路面积、各线寄生参数一致性、电容总容值的矛盾会越来越突出。
因此,在本申请的实施例中,通过实现1*M的集成储能电容的M线激光器,可以以较低的成本、较小的体积实现多线窄脉冲输出,在***电路的 配合下可以实现功率可控。具体地,通过选择给对应储能装置例如储能电容充电,1*M的共N极的激光二极管bar条实现逐个激光二极管单独可控。并且使用了高Q值,高容值密度的硅电容作为储能装置,减小了集成方案的体积,使得激光发射回路更小,可以实现更窄的脉宽,脉宽一致性更高,有利于提高峰值功率,以便实现更远的探测距离。且还可以同时满足安规的要求,避免激光器发射时造成人体的伤害。
在一个实施例中,上述激光器的组装过程包括以下步骤:
步骤S1:通过表面贴装技术将基板100装配到电路板上;
步骤S2:通过导电胶将储能装置120安装到基板100的第二焊盘102上;
步骤S3:通过导电胶将激光二极管阵列安装到基板100的第一焊盘101上;
步骤S4:执行高温烘烤及冷却步骤,以固化导电胶;
步骤S5:通过电连接线将每个激光二极管110的P极与对应的储能装置120的第二电极(可以是P端)互连,以及通过电连接线将储能装置120的第二电极与电路板上对应的充电焊盘互连,每个充电焊盘分别电连接一个充电电路,充电电路用于给与其电连接的储能装置120提供电能。
在上述组装过程中,激光二极管阵列直接相对于电路板例如PCB上的参考点进行定位,让基板100的尺寸误差与贴装误差不再产生影响,以此可以获得更高的光学精度。在将激光二极管阵列安装到基板100的第一焊盘的过程中,相对于PCB上的参考点进行定位,使用导电胶将激光二极管阵列安装到基板上对应位置。
本申请的激光器可以使用通用的封装工艺(例如采用板上芯片封装(Chips on Board,COB)的形式进行封装)进行组装,具有工艺成熟,成本低,光学精度高等优势,且工艺流程简单,耗时短,生产难度低,良率高。
进一步,本申请还提供了一种激光雷达,本申请各个实施例提供的激光器可以应用于激光雷达。在一种实施方式中,激光雷达还包括光感测装置,用于感测激光被目标物体反射的部分光线,以感测外部环境信息,例如,环境目标的距离信息、方位信息、反射强度信息、速度信息等。一种实现方式中,激光雷达可以通过测量激光雷达和探测物之间光传播的时间,即光飞行时间(Time-of-Flight,TOF),来探测探测物到激光雷达的距离。或者,激光雷达也可以通过其他技术来探测探测物到激光雷达的距离,例如基于相位移 动(phase shift)测量的测距方法,或者基于频率移动(frequency shift)测量的测距方法,在此不做限制。
激光雷达采用了前文的激光器,激光雷达可以为固态激光雷达,固态激光雷达可以短时间直接发射出可以覆盖探测区域的脉冲激光,再以高度灵敏的面阵APD芯片,进行回波信号的接收,通过类似相机拍照的模式,完成对周围环境距离信息的探测和感知。相较于机械扫描式激光雷达,固态激光雷达有着更小的尺寸、更低的成本的、更稳定的性能、优异的可靠性,更容易过车规。
为了便于理解,以下将参考图4的激光雷达对测距的工作流程进行举例描述。
如图4所示,激光雷达400可以包括激光器401、光学结构402和光感测装置403。
激光器401可以实现为前述实施例中的激光器,其可以发射光脉冲序列(例如激光脉冲序列)。光感测装置403可以感测被目标物体反射的部分光线,例如光感测装置包括接收器,通过接收器接收激光器401出射的光脉冲序列经过被探测物反射的光脉冲序列,例如接收器可以包括光电二极管,用于接收激光器401出射的光脉冲序列经过目标物体被反射的回光信号,并将所述回光信号转换为电信号,以及基于该电信号输出时间信号。光学结构402可以包括扫描模块,用于将激光器401出射的至少一路光脉冲序列(例如激光脉冲序列)改变传播方向出射,以对视场进行扫描。
可选地,该激光雷达还可以包括运算电路和控制电路,运算电路可以基于时间信号确定激光雷达与被探测物(本文也称目标物体)之间的距离,控制电路可以实现对其他电路的控制,例如,可以控制各个电路的工作时间和/或对各个电路进行参数设置等。
激光雷达探测到的距离和方位可以用于遥感、避障、测绘、建模、导航等,例如,实现对周围环境的感知,对外部环境进行二维或三维的测绘。在一种实施方式中,本申请实施方式的激光雷达可应用于可移动平台。
激光雷达采用了前文激光器,因此具有前述的激光器的所有优点,在此不再赘述。
激光雷达中可以采用同轴光路,也即激光雷达出射的光束和经反射回来 的光束在激光雷达内共用至少部分光路。例如,激光器出射的至少一路激光脉冲序列经扫描模块改变传播方向出射后,经探测物反射回来的激光脉冲序列经过扫描模块后入射至光感测装置。或者,激光雷达也可以采用异轴光路,也即激光雷达出射的光束和经反射回来的光束在激光雷达内分别沿不同的光路传输。图5示出了本申请的激光雷达采用同轴光路的一种实施例的示意图。
激光雷达200包括测距模块210,测距模块210包括发射器203(该发射器可以基于前述实施例的激光器来实现)、准直元件204、光感测装置例如接收器205和光路改变元件206,接收器205其可以包括光电二极管阵列芯片、信号处理单元和运算电路等,测距模块210用于发射光束,且接收回光,将回光转换为电信号。其中,发射器203可以用于发射光脉冲序列。在一个实施例中,发射器203可以发射激光脉冲序列。可选的,发射器203发射出的激光束为波长在可见光范围之外的窄带宽光束。准直元件204设置于发射器的出射光路上,用于准直从发射器203发出的光束,将发射器203发出的光束准直为平行光出射至扫描模块。准直元件还用于会聚经探测物反射的回光的至少一部分。该准直元件204可以是准直透镜或者是其他能够准直光束的元件。
在图5所示实施例中,通过光路改变元件206来将激光雷达内的发射光路和接收光路在准直元件204之前合并,使得发射光路和接收光路可以共用同一个准直元件,使得光路更加紧凑。在其他的一些实现方式中,也可以是发射器203和接收器205分别使用各自的准直元件,将光路改变元件206设置在准直元件之后的光路上。
在图5所示实施例中,由于发射器203出射的光束的光束孔径较小,激光雷达所接收到的回光的光束孔径较大,所以光路改变元件可以采用小面积的反射镜来将发射光路和接收光路合并。在其他的一些实现方式中,光路改变元件也可以采用带通孔的反射镜,其中该通孔用于透射发射器203的出射光,反射镜用于将回光反射至接收器205。这样可以减小采用小反射镜的情况中小反射镜的支架会对回光的遮挡。
在图5所示实施例中,光路改变元件偏离了准直元件204的光轴。在其他的一些实现方式中,光路改变元件也可以位于准直元件204的光轴上。
激光雷达200还包括光学结构例如扫描模块202。扫描模块202放置于 测距模块210的出射光路上,扫描模块202用于改变经准直元件204出射的准直光束219的传输方向并投射至外界环境,并将回光投射至准直元件204。回光经准直元件204汇聚到接收器205上。
在一个实施例中,扫描模块202可以包括至少一个光学元件,用于改变光束的传播路径,其中,该光学元件可以通过对光束进行反射、折射、衍射等等方式来改变光束传播路径,例如所述光学元件包括至少一个具有非平行的出射面和入射面的光折射元件。例如,扫描模块202包括透镜、反射镜、棱镜、振镜、光栅、液晶、光学相控阵(Optical Phased Array)或上述光学元件的任意组合。一个示例中,至少部分光学元件是运动的,例如通过驱动模块来驱动该至少部分光学元件进行运动,该运动的光学元件可以在不同时刻将光束反射、折射或衍射至不同的方向。在一些实施例中,扫描模块202的多个光学元件可以绕共同的轴209旋转或振动,每个旋转或振动的光学元件用于不断改变入射光束的传播方向。在一个实施例中,扫描模块202的多个光学元件可以以不同的转速旋转,或以不同的速度振动。在另一个实施例中,扫描模块202的至少部分光学元件可以以基本相同的转速旋转。在一些实施例中,扫描模块的多个光学元件也可以是绕不同的轴旋转。在一些实施例中,扫描模块的多个光学元件也可以是以相同的方向旋转,或以不同的方向旋转;或者沿相同的方向振动,或者沿不同的方向振动,在此不作限制。
在一个实施例中,扫描模块202包括第一光学元件214和与第一光学元件214连接的驱动器216,驱动器216用于驱动第一光学元件214绕转动轴209转动,使第一光学元件214改变准直光束219的方向。第一光学元件214将准直光束219投射至不同的方向。在一个实施例中,准直光束219经第一光学元件改变后的方向与转动轴209的夹角随着第一光学元件214的转动而变化。在一个实施例中,第一光学元件214包括相对的非平行的一对表面,准直光束219穿过该对表面。在一个实施例中,第一光学元件214包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第一光学元件214包括楔角棱镜,对准直光束219进行折射。
在一个实施例中,扫描模块202还包括第二光学元件215,第二光学元件215绕转动轴209转动,第二光学元件215的转动速度与第一光学元件214的转动速度不同。第二光学元件215用于改变第一光学元件214投射的光束 的方向。在一个实施例中,第二光学元件215与另一驱动器217连接,驱动器217驱动第二光学元件215转动。第一光学元件214和第二光学元件215可以由相同或不同的驱动器驱动,使第一光学元件214和第二光学元件215的转速和/或转向不同,从而将准直光束219投射至外界空间不同的方向,可以扫描较大的空间范围。在一个实施例中,控制器218控制驱动器216和217,分别驱动第一光学元件214和第二光学元件215。第一光学元件214和第二光学元件215的转速可以根据实际应用中预期扫描的区域和样式确定。驱动器216和217可以包括电机或其他驱动器。可选地,所述第一光学元件214和所述第二光学元件215的旋转方向(本文也称转向)相同,或者,所述第一光学元件和所述第二光学元件的旋转方向不同。
在一个实施例中,第二光学元件215包括相对的非平行的一对表面,光束穿过该对表面。在一个实施例中,第二光学元件215包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第二光学元件215包括楔角棱镜。
一个实施例中,扫描模块202还包括第三光学元件(图未示)和用于驱动第三光学元件运动的驱动器。可选地,该第三光学元件包括相对的非平行的一对表面,光束穿过该对表面。在一个实施例中,第三光学元件包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第三光学元件包括楔角棱镜。第一、第二和第三光学元件中的至少两个光学元件以不同的转速和/或转向转动。
在一个实施例中,所述扫描模块包括在所述光脉冲序列的出射光路上依次排布的2个或3个所述光折射元件。可选地,所述扫描模块中的至少2个所述光折射元件在扫描过程中旋转,以改变所述光脉冲序列的方向。
所述扫描模块在至少部分不同时刻的扫描路径不同,扫描模块202中的各光学元件旋转可以将光投射至不同的方向,例如投射的光211的方向和方向213,如此对激光雷达200周围的空间进行扫描。当扫描模块202投射出的光211打到探测物(也即目标物体)201时,一部分光被探测物201沿与投射的光211相反的方向反射至激光雷达200。探测物201反射的回光212经过扫描模块202后入射至准直元件204。
接收器205与发射器203放置于准直元件204的同一侧,接收器205用于将穿过准直元件204的至少部分回光转换为电信号。
一个实施例中,各光学元件上镀有增透膜。可选的,增透膜的厚度与发射器203发射出的光束的波长相等或接近,能够增加透射光束的强度。
一个实施例中,激光雷达中位于光束传播路径上的一个元件表面上镀有滤光层,或者在光束传播路径上设置有滤光器,用于至少透射发射器所出射的光束所在波段,反射其他波段,以减少环境光给接收器带来的噪音。
在一些实施例中,激光雷达200包括测量电路,例如TOF单元207,可以用于测量TOF,来测量探测物201的距离。例如,TOF单元207可以通过公式t=2D/c来计算距离,其中,D表示激光雷达和探测物之间的距离,c表示光速,t表示光从激光雷达投射到探测物和从探测物返回到激光雷达所花的总时间。激光雷达200可以根据发射器203发射光束和探测器205接收到回光的时间差,确定时间t,进而可以确定距离D。激光雷达200还可以探测探测物201在激光雷达200的方位。
在一些实施例中,发射器203可以包括前述的激光器,通过激光器的激光二极管发射纳秒级别的激光脉冲。进一步地,可以确定激光脉冲接收时间,例如,通过探测电信号脉冲的上升沿时间和/或下降沿时间确定激光脉冲接收时间。如此,激光雷达200的TOF单元207可以利用脉冲接收时间信息和脉冲发出时间信息计算TOF,从而确定探测物201到激光雷达200的距离。激光雷达200探测到的距离和方位可以用于遥感、避障、测绘、建模、导航等。
基于此,本申请还提供了一种可移动平台,其中前文的激光雷达可应用于可移动平台,激光雷达可与可移动平台的可移动平台本体机械耦合。
在某些实施方式中,可移动平台包括无人飞行器、汽车、遥控车、机器人、相机中的至少一种。当激光雷达应用于无人飞行器时,可移动平台本体为无人飞行器的机身。当激光雷达应用于汽车时,可移动平台本体为汽车的车身。该汽车可以是自动驾驶汽车或者半自动驾驶汽车,在此不做限制。当激光雷达应用于遥控车时,可移动平台本体为遥控车的车身。当激光雷达应用于机器人时,可移动平台本体为机器人。当激光雷达应用于相机时,可移动平台本体为相机的机身。
其中,可移动平台还可以进一步包括动力***,用于驱动可移动平台本体移动。例如当可移动平台为车辆时,动力***可以为车辆内部的发动机,在此不再一一列举。
其中,可移动平台还可以进一步包括云台,云台设置于可移动平台本体上,用于承载激光雷达。
综上所述,由于本申请的激光雷达和可移动平台包括前述的激光器,因此具有和前述的激光器大体相同的优点。
尽管这里已经参考附图描述了示例实施例,应理解上述示例实施例仅仅是示例性的,并且不意图将本申请的范围限制于此。本领域普通技术人员可以在其中进行各种改变和修改,而不偏离本申请的范围和精神。所有这些改变和修改意在被包括在所附权利要求所要求的本申请的范围之内。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个设备,或一些特征可以忽略,或不执行。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本申请并帮助理解各个发明方面中的一个或多个,在对本申请的示例性实施例的描述中,本申请的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该本申请的方法解释成反映如下意图:即所要求保护的本申请要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如相应的权利要求书所反映的那样,其发明点在于可以用少于某个公开的单个实施例的所有特征的特征来解决相应的技术问题。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本申请的单独实施例。
本领域的技术人员可以理解,除了特征之间相互排斥之外,可以采用任 何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
应该注意的是上述实施例对本申请进行说明而不是对本申请进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
以上所述,仅为本申请的具体实施方式或对具体实施方式的说明,本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。本申请的保护范围应以权利要求的保护范围为准。

Claims (17)

  1. 一种激光器,特征在于,所述激光器包括:
    基板,所述基板包括第一焊盘和第二焊盘;
    激光二极管阵列,所述激光二极管阵列包括M个激光二极管,其中,所述M个激光二极管共用N极,所述激光器阵列的所述N极与所述第一焊盘耦合;
    M个储能装置,各个所述储能装置包括位于第一侧的第一电极,以及位于与所述第一侧相背的第二侧的第二电极,各个所述储能装置的第一侧均与所述第二焊盘耦合,各个所述储能装置的第二电极分别对应连接一个不同的所述激光二极管的P极;
    电路板,包括M个充电电路,用于为各个所述储能装置充电,各个所述充电电路分别对应电连接一个不同的所述储能装置的第二电极;
    其中,M为大于1的整数。
  2. 如权利要求1所述的激光器,其特征在于,所述电路板还设置有开关,所述开关与M个所述激光二极管的N极电连接,当所述开关导通时,内部具有电能的所述储能装置放电为与其连接的所述激光二极管供电以使其发光。
  3. 如权利要求1所述的激光器,其特征在于,所述基板包括第一表面和与所述第一表面相背的第二表面,其中,所述第一焊盘及所述第二焊盘设置于所述第一表面,所述电路板设置于所述第二表面。
  4. 如权利要求3所述的激光器,其特征在于,所述基板的所述第二表面设置有与所述第一焊盘电连接的第三焊盘以及与所述第二焊盘电连接的第四焊盘。
  5. 如权利要求4所述的激光器,其特征在于,所述第一焊盘和所述第三焊盘通过第一导电通孔电连接,所述第二焊盘和所述第四焊盘通过第二导电通孔电连接,其中,所述第一导电通孔贯穿所述基板,所述第二导电通孔贯穿所述基板。
  6. 如权利要求4所述的激光器,其特征在于,所述第四焊盘接地。
  7. 如权利要求1-6任一项所述的激光器,其特征在于,所述第二焊盘包括第一子焊盘和第二子焊盘,其中,所述M个储能装置中的第一部分储能装置设置于所述第一焊盘,所述M个储能装置中的至少一部分分别设置于所述第一子焊盘及第二子焊盘。
  8. 如权利要求7所述的激光器,其特征在于,所述第一子焊盘和所述第二子焊盘分别位于所述第一焊盘的两侧。
  9. 如权利要求1-8任一项所述的激光器,其特征在于,所述储能装置的第一电极贴装于所述第二焊盘。
  10. 如权利要求9所述的激光器,其特征在于,所述储能装置的第一电极通过导电胶粘接于所述第二焊盘。
  11. 如权利要求9所述的激光器,其特征在于,所述储能装置的第一电极通过键合方式贴装于所述第二焊盘。
  12. 如权利要求1至11任一项所述的激光器,其特征在于,所述基板为氮化铝陶瓷基板。
  13. 如权利要求1至11任一项所述的激光器,其特征在于,所述储能装置为电容器。
  14. 如权利要求13所述的激光器,其特征在于,所述电容器为硅电容。
  15. 一种激光雷达,其特征在于,所述激光雷达包括
    光学结构;
    如权利要求1-14任一项所述的激光器,用于发射激光;以及
    光感测装置,用于感测所述激光被目标物体反射的部分光线。
  16. 一种可移动平台,其特征在于,包括:
    可移动平台本体;以及
    如权利要求15所述的激光雷达,所述激光雷达与所述可移动平台本体机械耦合。
  17. 如权利要求16所述的可移动平台,其特征在于,所述可移动平台还包括云台,设置于所述可移动平台本体;所述云台承载所述激光雷达。
PCT/CN2022/084496 2022-03-31 2022-03-31 激光器、激光雷达及可移动平台 WO2023184378A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/084496 WO2023184378A1 (zh) 2022-03-31 2022-03-31 激光器、激光雷达及可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/084496 WO2023184378A1 (zh) 2022-03-31 2022-03-31 激光器、激光雷达及可移动平台

Publications (1)

Publication Number Publication Date
WO2023184378A1 true WO2023184378A1 (zh) 2023-10-05

Family

ID=88198726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084496 WO2023184378A1 (zh) 2022-03-31 2022-03-31 激光器、激光雷达及可移动平台

Country Status (1)

Country Link
WO (1) WO2023184378A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210142193U (zh) * 2018-12-07 2020-03-13 深圳市大疆创新科技有限公司 一种测距装置、移动平台
CN112731350A (zh) * 2021-01-27 2021-04-30 复旦大学 一种激光雷达的扫描驱动电路及控制方法
CN112821191A (zh) * 2020-12-31 2021-05-18 中国电子科技集团公司第十三研究所 半导体激光器驱动电路、多线激光器及多线激光雷达
CN112970198A (zh) * 2018-10-30 2021-06-15 埃赛力达加拿大有限公司 高速开关电路配置
WO2021140160A1 (de) * 2020-01-07 2021-07-15 Elmos Semiconductor Se Lichtmodul und lidar-vorrichtung mit mindestens einem derartigen lichtmodul

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112970198A (zh) * 2018-10-30 2021-06-15 埃赛力达加拿大有限公司 高速开关电路配置
CN210142193U (zh) * 2018-12-07 2020-03-13 深圳市大疆创新科技有限公司 一种测距装置、移动平台
WO2021140160A1 (de) * 2020-01-07 2021-07-15 Elmos Semiconductor Se Lichtmodul und lidar-vorrichtung mit mindestens einem derartigen lichtmodul
CN112821191A (zh) * 2020-12-31 2021-05-18 中国电子科技集团公司第十三研究所 半导体激光器驱动电路、多线激光器及多线激光雷达
CN112731350A (zh) * 2021-01-27 2021-04-30 复旦大学 一种激光雷达的扫描驱动电路及控制方法

Similar Documents

Publication Publication Date Title
US20210281040A1 (en) Laser diode packaging module, distance detection device, and electronic device
CN211265963U (zh) 激光二极管封装模块及距离探测装置、电子设备
US20210333362A1 (en) Light emitting device, distance measuring device and mobile platform
WO2021128587A1 (zh) 一种可调的深度测量装置及测量方法
US11862929B2 (en) Laser diode packaging module, distance detection device, and electronic device
US20210075186A1 (en) Laser diode module, transmitter, ranging device and electronic device
US20230023489A1 (en) Light module and lidar apparatus having at least one light module of this type
WO2020142947A1 (zh) 一种光发射装置及测距装置、移动平台
US20220120899A1 (en) Ranging device and mobile platform
CN110244279A (zh) 光线接收模块和激光雷达
CN111146690B (zh) 一种激光器模组及其制备方法
US20210389468A1 (en) Abstandsmesseinheit
CN111670376B (zh) 一种测距装置及移动平台
WO2023184378A1 (zh) 激光器、激光雷达及可移动平台
JP2018004372A (ja) 光走査装置および距離計測装置
WO2021072752A1 (zh) 激光二极管封装模块及距离探测装置、电子设备
JP7430886B2 (ja) 距離測定装置、レーザレーダ及び移動ロボット
CN214473916U (zh) 一种收发一体式的光路结构、激光雷达和光学***
WO2023070442A1 (zh) 激光二极管芯片的封装结构及方法、测距装置、可移动平台
US20240057257A1 (en) Printed circuit board and optoelectronic module providing different chip orientation
CN113567999A (zh) 一种激光装置和激光雷达***及其控制方法
WO2023070443A1 (zh) 二极管芯片的封装结构及方法、测距装置、可移动平台
US20210333395A1 (en) Ranging device
EP4027165B1 (en) Electronic module for generating light pulses for lidar applications and method for manufacturing the electronic module
WO2022061909A1 (zh) 测距模块及测距装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934218

Country of ref document: EP

Kind code of ref document: A1