WO2023182837A1 - Method for manufacturing fine metal mask - Google Patents

Method for manufacturing fine metal mask Download PDF

Info

Publication number
WO2023182837A1
WO2023182837A1 PCT/KR2023/003880 KR2023003880W WO2023182837A1 WO 2023182837 A1 WO2023182837 A1 WO 2023182837A1 KR 2023003880 W KR2023003880 W KR 2023003880W WO 2023182837 A1 WO2023182837 A1 WO 2023182837A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
exposure
plating
metal
plating resist
Prior art date
Application number
PCT/KR2023/003880
Other languages
French (fr)
Korean (ko)
Inventor
이상민
권용덕
유병욱
김기수
문종택
문승일
현다솜
Original Assignee
주식회사 그래핀랩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 그래핀랩 filed Critical 주식회사 그래핀랩
Publication of WO2023182837A1 publication Critical patent/WO2023182837A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/10Moulds; Masks; Masterforms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering

Definitions

  • the present invention relates to a method for manufacturing a fine metal mask, and more specifically, to a method for manufacturing a fine metal mask (FMM) using an electroplating method among metal mask manufacturing methods for OLED.
  • FMM fine metal mask
  • the electroplating method immerses the anode body and the cathode body in an electrolyte solution and applies power to electrodeposit a thin metal plate on the surface of the cathode body, thereby producing ultra-thin plates and expecting mass production.
  • the FMM (Fine Metal Mask) method is mainly used, which deposits organic materials at a desired location by attaching a thin metal mask (shadow mask) to the substrate.
  • the existing mask manufacturing method using plating involves preparing a substrate 4 ((a) in FIG. 1) and manufacturing a plating resist 3 having a predetermined pattern on the substrate 4. do.
  • the cross-sectional shape of the thin metal plate 3 is processed into a trapezoidal shape through a laser trimming process.
  • the plated mask 3 is attached to the substrate 4 (mother plate) with a predetermined adhesive force.
  • the substrate 4 mother plate
  • a laser trimming process is added to process the cross-sections of all cells of the FMM, which reduces mass productivity and causes an increase in manufacturing costs.
  • the present invention was created to solve the above problems, and its purpose is to provide an improved fine metal mask manufacturing method to facilitate separation of the substrate and the plating layer (mask) by improving the cross-sectional structure of the plating resist. There is.
  • the fine metal mask manufacturing method of the present invention to achieve the above object includes the steps of: a) patterning and forming a plating resist on a substrate; b) forming a metal plating layer on the substrate exposed between the patterned plating resists; c) removing the plating resist patterned after step b); d) separating the metal plating layer and the substrate; and in step a), the cross-sectional shape of the plating resist is formed into a trapezoidal shape by controlling the focus depth of light for exposure.
  • the FMM can be safely separated from the substrate to prevent deformation.
  • step a) includes depositing a plating resist on the substrate; exposing the deposited plating resist using a photoresist; and patterning the plating resist by removing portions other than those exposed in the exposure step.
  • the focus depth of the light for exposure is adjusted to a position lower than the substrate so that energy distribution during exposure is improved. It is better to control it so that it becomes wider as the distance from the photo resist increases.
  • the cross-sectional shape of the plating resist can be formed into a trapezoidal shape.
  • the exposure equipment used in the exposure step is preferably an LDI (Laser Direct Image) exposure machine.
  • LDI Laser Direct Image
  • the energy distribution during exposure can be expanded, so that the lateral direction of the plating resist is also exposed, so that the lower part of the position (pattern) to be plated can be narrowed.
  • step d) it is preferable to separate the metal plating layer from the substrate using an etching process that selectively etches the seed layer formed on the substrate.
  • the metal plating layer (FMM) can be easily separated from the substrate with minimal damage.
  • the seed layer is preferably formed of a metal different from the metal plating layer.
  • the metal plating layer can be easily separated from the substrate using a selective etching method.
  • the metal plating layer preferably includes INVAR, and the seed layer preferably includes Cu or Al.
  • the metal plating layer can be safely separated from the substrate by selectively etching the seed layer without damaging the metal plating layer.
  • the focus depth of the exposure light for patterning the plating resist is adjusted to widen the energy distribution during exposure and the lower part of the image, so that the cross-section of the plating resist can be formed into a trapezoid.
  • the cross-section of the metal plating layer, or FMM, after plating is plated in an inverted trapezoid, so there is no need to perform a laser trimming process when manufacturing OLED, and the shadow effect caused by FMM can be reduced.
  • the FMM can be separated from the substrate by a selective etching method, the FMM can be safely separated without damage compared to the prior art.
  • 1 is a diagram for explaining a conventional fine metal mask manufacturing method.
  • Figure 2 is a flowchart for explaining a fine metal mask manufacturing method according to an embodiment of the present invention.
  • Figure 3 is a configuration diagram for explaining a fine metal mask manufacturing method according to an embodiment of the present invention.
  • Figure 4 is a diagram for explaining the process of patterning the plating resist.
  • Figure 5 is a diagram to explain the process of separating the FMM from the substrate using a selective etching process.
  • Figure 6 is a graph showing the intensity distribution of steel on the surface of the substrate when laser light is irradiated based on the photoresist.
  • a fine metal mask manufacturing method includes forming a plating resist 20 by patterning a substrate 10 (S10), and forming the patterned plating resist 20 on a substrate 10.
  • the step (S10) is characterized in that the cross-sectional shape of the plating resist 20 is patterned into a trapezoidal shape by controlling the focus depth of light for exposure.
  • the cross section of the plating resist 20 can be patterned into an inverted trapezoid shape using exposure and development techniques.
  • the plating resist 20 is deposited on the substrate 10.
  • the deposited plating resist 20 is exposed using photo resist (PR).
  • PR photo resist
  • the light source used for exposure is LDI (Laser Direct Image) exposure equipment that uses laser light, and the focus depth of the laser light is adjusted to the substrate (10 ) is adjusted to be located in a lower position. Then, as the energy distribution during exposure widens, the exposed area, that is, the lower part of the image, widens.
  • LDI Laser Direct Image
  • the plating resist 20' is patterned by removing portions other than the exposed portion 21 exposed in the exposure step (FIG. 4(c)). Then, the pattern portion 23 of the patterned plating resist 20', that is, the lower part of the position where metal is to be plated, can be formed to gradually become narrower.
  • the exposure energy distribution situation when adjusting the focus depth using the LDI exposure equipment can be easily understood by referring to FIG. 5.
  • a metal layer is deposited on the top using electroplating to form the metal plating layer 30. Then, as shown in (b) of FIG. 3, the metal plating layer 30 is deposited on the pattern portion 23 of the plating resist 20' by a plating method, and its cross-sectional shape is formed as an inverted trapezoid.
  • the substrate 10 and the metal plating layer 30 are separated to obtain an FMM of the desired shape.
  • the cross-section is plated on the substrate 10 in an inverted trapezoid, so that the shadow effect caused by the FMM can be reduced without performing a laser trimming process when manufacturing OLED. . Therefore, the laser trimming process can be omitted, reducing FMM manufacturing costs and improving yield.
  • the FMM 30 when separating the FMM 30 from the substrate 10, it can be separated by a selective etching process rather than a physical separation method as in the prior art.
  • a seed layer 11 on the surface of the substrate 10, as shown in (a) of FIG. 5, by depositing a different type of metal material from the metal plating layer 30.
  • the metal plating layer 30 is formed by plating with an INVAR material, and the seed layer 11 is preferably formed with copper (Cu) or aluminum (Al).
  • the Ni:Cu etching ratio is at the level of 0.1:99.1. Therefore, as shown in Figures 5 (a) to 5 (d), even during the process of sequentially etching and removing the seed layer 11, almost no etching of the metal plating layer 30 occurs and the seed layer 11 ) is selectively etched and removed, so the metal plating layer 30, that is, FMM, can be safely separated by the etching process without applying physical force or impact.
  • the surface roughness of the seed layer 11 is adjusted to induce diffuse reflection of light for exposure, thereby forming the FMM with an inverted trapezoid in cross section. It can be manufactured to do this.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Disclosed is a method for manufacturing a fine metal mask, the method comprising the steps of: a) patterning a plated resist on a substrate; b) forming a metal plated layer on the substrate exposed through the patterned plated resist; c) removing the patterned plated resist after step b); and d) separating the metal plated layer and the substrate, wherein, in step a), the depth of focus of light for exposure is controlled so that the plated resist has a trapezoidal cross-sectional shape.

Description

파인 메탈 마스크 제조방법Fine metal mask manufacturing method
본 발명은 파인 메탈 마스크 제조방법에 관한 것으로서, 보다 상세하게는 OLED용 메탈 마스크 제조방법 중 전주 도금방식을 이용한 파인 메탈 마스크(FMM;Fine Metal Mask) 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a fine metal mask, and more specifically, to a method for manufacturing a fine metal mask (FMM) using an electroplating method among metal mask manufacturing methods for OLED.
최근에 박판 제조에 있어서 전주 도금(Electroforming) 방법에 대한 연구가 진행되고 있다. 전주 도금 방법은 전해액에 양극체, 음극체를 침지하고, 전원을 인가하여 음극체의 표면상에 금속박판을 전착시키므로, 극박판을 제조할 수 있으며, 대량 생산을 기대할 수 있는 방법이다.Recently, research has been conducted on electroforming methods in sheet metal manufacturing. The electroplating method immerses the anode body and the cathode body in an electrolyte solution and applies power to electrodeposit a thin metal plate on the surface of the cathode body, thereby producing ultra-thin plates and expecting mass production.
한편, OLED 제조 공정에서 화소를 형성하는 기술로, 박막의 금속 마스크(Shadow Mask)를 기판에 밀착시켜서 원하는 위치에 유기물을 증착하는 FMM(Fine Metal Mask) 법이 주로 사용된다.Meanwhile, as a technology for forming pixels in the OLED manufacturing process, the FMM (Fine Metal Mask) method is mainly used, which deposits organic materials at a desired location by attaching a thin metal mask (shadow mask) to the substrate.
도 1을 참조하면, 도금을 이용한 기존의 마스크 제조 방법은, 기판(4)[도 1의 (a)]을 준비하고, 기판(4) 상에 소정의 패턴을 가지는 도금 레지스트(3)를 제조한다.Referring to FIG. 1, the existing mask manufacturing method using plating involves preparing a substrate 4 ((a) in FIG. 1) and manufacturing a plating resist 3 having a predetermined pattern on the substrate 4. do.
이어서, 도 1의 (b)와 같이, 기판(4) 상에 도금을 수행하여 금속 박판(2)을 형성한다. 이어서, 도금 레지스트(3)를 제거하고[도 1의 (c)], 기판(4)으로부터 패턴(P)이 형성된 마스크(3)[또는, 금속 박판(3)]을 분리한다[도 1의 (d)].Next, as shown in Figure 1 (b), plating is performed on the substrate 4 to form a thin metal plate 2. Next, the plating resist 3 is removed [Figure 1(c)], and the mask 3 (or thin metal plate 3) on which the pattern P is formed is separated from the substrate 4 [Figure 1 (d)].
이어서, 레이저 트리밍(Laser Trimming) 공정을 거쳐서 금속박판(3)의 단면형상을 사다리꼴 형상으로 가공한다.Next, the cross-sectional shape of the thin metal plate 3 is processed into a trapezoidal shape through a laser trimming process.
위와 같은 종래의 FMM 제조 과정에서, 도금된 마스크(3)는 기판(4)[모판(mother plate)]과 소정의 접착력을 가지고 붙어있게 된다. 기판(4)으로부터 마스크(3)를 물리적인 힘을 가하여 분리하는 과정에서, 마스크(3)에 주름이 생기거나, 마스크 패턴(P)의 변형이 생기는 문제점이 있었다.In the above conventional FMM manufacturing process, the plated mask 3 is attached to the substrate 4 (mother plate) with a predetermined adhesive force. In the process of separating the mask 3 from the substrate 4 by applying physical force, there was a problem in that wrinkles appeared in the mask 3 or the mask pattern P was deformed.
또한, 쉐도우 효과(Shadow effect)를 방지하기 위해서 레이저 트리밍(Laser Trimming) 공정을 추가하여 FMM의 모든 셀(cell)의 단면을 가공하고 있어 양산성이 떨어지며, 제조비용의 상승의 원인이 된다.In addition, in order to prevent the shadow effect, a laser trimming process is added to process the cross-sections of all cells of the FMM, which reduces mass productivity and causes an increase in manufacturing costs.
또한, 도금시 마스크(3)의 두께를 20㎛ 이하로 제작하여 쉐도우 효과를 최소화하려는 시도를 할 경우, 핸들링(handling)에 취약하여 양산성이 떨어지고 비용 상승의 원인되는 되는 문제점이 있다.In addition, if an attempt is made to minimize the shadow effect by manufacturing the mask 3 to a thickness of 20㎛ or less during plating, there is a problem in that it is vulnerable to handling, reduces mass production, and causes an increase in cost.
본 발명은 상기와 같은 문제점을 해결하기 위하여 창안된 것으로서, 도금 레지스트의 단면 구조를 개선하여 기판과 도금층(마스크)의 분리가 용이하게 이루어질 수 있도록 개선된 파인 메탈 마스크 제조방법을 제공하는 데 그 목적이 있다.The present invention was created to solve the above problems, and its purpose is to provide an improved fine metal mask manufacturing method to facilitate separation of the substrate and the plating layer (mask) by improving the cross-sectional structure of the plating resist. There is.
상기 목적을 달성하기 위한 본 발명의 파인 메탈 마스크 제조방법은, 가) 기판상에 도금 레지스트를 패턴닝하여 형성하는 단계; 나) 상기 패터닝된 도금 레지스트 사이로 노출된 기판상에 금속 도금층을 형성하는 단계; 다) 상기 나)단계 이후 패터닝된 도금 레지스트를 제거하는 단계; 라) 상기 금속 도금층과 상기 기판을 분리하는 단계;를 포함하며, 상기 가)단계에서는 노광을 위한 광의 포커스 심도를 제어하여 상기 도금 레지스트의 단면형상을 사다리꼴 형상으로 형성하는 것을 특징으로 한다.The fine metal mask manufacturing method of the present invention to achieve the above object includes the steps of: a) patterning and forming a plating resist on a substrate; b) forming a metal plating layer on the substrate exposed between the patterned plating resists; c) removing the plating resist patterned after step b); d) separating the metal plating layer and the substrate; and in step a), the cross-sectional shape of the plating resist is formed into a trapezoidal shape by controlling the focus depth of light for exposure.
이로써, FMM을 기판으로부터 변형이 발생하지 않도록 안전하게 분리시킬 수 있다.As a result, the FMM can be safely separated from the substrate to prevent deformation.
여기서, 상기 가)단계는, 상기 기판에 도금 레지스트를 증착하는 단계; 상기 증착된 도금 레지스트를 포토 레지스트를 이용하여 노광하는 단계; 및 상기 노광단계에서 노광된 부분 이외의 부분을 제거하여 도금 레지스트를 패터닝하는 단계;를 포함하며, 상기 노광하는 단계에서는 노광을 위한 광의 포커스 깊이를 상기 기판보다 낮은 위치로 조절하여 노광시 에너지분포가 상기 포토 레지스트에서 멀어질수록 넓어지도록 제어하는 것이 좋다.Here, step a) includes depositing a plating resist on the substrate; exposing the deposited plating resist using a photoresist; and patterning the plating resist by removing portions other than those exposed in the exposure step. In the exposing step, the focus depth of the light for exposure is adjusted to a position lower than the substrate so that energy distribution during exposure is improved. It is better to control it so that it becomes wider as the distance from the photo resist increases.
이로써, 도금 레지스트의 단면형상을 사다리꼴 형상으로 형성할 수 있다.As a result, the cross-sectional shape of the plating resist can be formed into a trapezoidal shape.
또한, 상기 노광단계에서 사용되는 노광장비는 LDI(Laser Direct Image) 노광기인 것이 좋다.Additionally, the exposure equipment used in the exposure step is preferably an LDI (Laser Direct Image) exposure machine.
이처럼, 노광을 위한 광의 포커스 깊이를 조절하여 노광시 에너지 분포를 확장시켜서 도금 레지스트의 측면방향으로도 노광되어 도금하고자 하는 위치(패턴)의 하부가 좁아지게 조절할 수 있다.In this way, by adjusting the focus depth of the light for exposure, the energy distribution during exposure can be expanded, so that the lateral direction of the plating resist is also exposed, so that the lower part of the position (pattern) to be plated can be narrowed.
또한, 상기 라)단계는 상기 기판상에 형성된 시드층을 선택적으로 에칭하는 에칭공정을 이용하여 상기 금속 도금층을 상기 기판으로부터 분리하는 것이 좋다.In addition, in step d), it is preferable to separate the metal plating layer from the substrate using an etching process that selectively etches the seed layer formed on the substrate.
이로써, 기판으로부터 금속 도금층(FMM)을 손상을 최소화하면서 용이하게 분리할 수 있다.As a result, the metal plating layer (FMM) can be easily separated from the substrate with minimal damage.
또한, 상기 시드층은 상기 금속 도금층과 다른 금속으로 형성되는 것이 좋다.Additionally, the seed layer is preferably formed of a metal different from the metal plating layer.
이로써, 선택적 에칭방법으로 금속 도금층을 기판으로부터 용이하게 분리할 수 있다.As a result, the metal plating layer can be easily separated from the substrate using a selective etching method.
또한, 상기 금속 도금층은 INVAR를 포함하고, 상기 시드층은 Cu 또는 Al인 것이 좋다.Additionally, the metal plating layer preferably includes INVAR, and the seed layer preferably includes Cu or Al.
이로써, 금속 도금층의 손상 없이 시드층을 선택적으로 에칭하여 기판으로부터 금속 도금층을 안전하게 분리할 수 있다.As a result, the metal plating layer can be safely separated from the substrate by selectively etching the seed layer without damaging the metal plating layer.
본 발명의 파인 메탈 마스크 제조방법에 의하면, 도금 레지스트의 패터닝을 위한 노광 광의 포커스 깊이를 조절하여 노광시 에너지 분포가 넓어지면서 이미지의 하부가 넓어지도록 하여 도금 레지스트의 단면을 사다리꼴로 형성할 수 있다.According to the fine metal mask manufacturing method of the present invention, the focus depth of the exposure light for patterning the plating resist is adjusted to widen the energy distribution during exposure and the lower part of the image, so that the cross-section of the plating resist can be formed into a trapezoid.
이 경우 도금 후 금속 도금층 즉, FMM의 단면은 역 사다리꼴로 도금되므로, OLED 제작시 레이저 트리밍 공정을 진행하지 않아도 되고, FMM에 의한 쉐도우 효과를 줄일 수 있다.In this case, the cross-section of the metal plating layer, or FMM, after plating is plated in an inverted trapezoid, so there is no need to perform a laser trimming process when manufacturing OLED, and the shadow effect caused by FMM can be reduced.
또한, 레이저 트리밍 공정을 생략할 수 있으므로, 제조단가를 줄이고, 수율을 향상시킬 수 있다.Additionally, since the laser trimming process can be omitted, manufacturing costs can be reduced and yields can be improved.
또한, 선택적 에칭방법에 의해서 기판으로부터 FMM을 분리할 수 있으므로, 종래기술에 비하여 FMM을 손상없이 안전하게 분리할 수 있다.Additionally, since the FMM can be separated from the substrate by a selective etching method, the FMM can be safely separated without damage compared to the prior art.
도 1은 종래의 파인 메탈 마스크 제조방법을 설명하기 위한 도면이다.1 is a diagram for explaining a conventional fine metal mask manufacturing method.
도 2는 본 발명의 실시예에 따른 파인 메탈 마스크 제조방법을 설명하기 위한 흐름도이다.Figure 2 is a flowchart for explaining a fine metal mask manufacturing method according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 파인 메탈 마스크 제조방법을 설명하기 위한 구성도이다.Figure 3 is a configuration diagram for explaining a fine metal mask manufacturing method according to an embodiment of the present invention.
도 4는 도금 레지스트를 패터닝하는 과정을 설명하기 위한 도면이다.Figure 4 is a diagram for explaining the process of patterning the plating resist.
도 5는 선택적 에칭 공정을 이용하여 FMM을 기판으로부터 분리하는 과정을 설명하기 위한 도면이다.Figure 5 is a diagram to explain the process of separating the FMM from the substrate using a selective etching process.
도 6은 포토 레지스트를 기준으로 레이저 광을 조사할 때 기판의 표면에서의 강의 강도분포를 도시한 그래프이다.Figure 6 is a graph showing the intensity distribution of steel on the surface of the substrate when laser light is irradiated based on the photoresist.
이상의 본 발명의 목적들, 다른 목적들, 특징들 및 이점들은 첨부된 도면과 관련된 이하의 바람직한 실시 예들을 통해서 쉽게 이해될 것이다. 그러나 본 발명은 여기서 설명되는 실시 예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시 예들은 게시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.The above objects, other objects, features and advantages of the present invention will be easily understood through the following preferred embodiments related to the attached drawings. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, the embodiments introduced herein are provided to ensure that the published content is thorough and complete and that the spirit of the present invention can be sufficiently conveyed to those skilled in the art.
본 명세서에서, 어떤 구성요소가 다른 구성요소 상에 있다고 언급되는 경우에 그것은 다른 구성요소 상에 직접 형성될 수 있거나 그들 사이에 제3의 구성요소가 개재될 수도 있다는 것을 의미한다. 또한, 도면들에 있어서, 구성요소들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다.In this specification, when an element is referred to as being on another element, it means that it may be formed directly on the other element or that a third element may be interposed between them. Additionally, in the drawings, the thickness of components is exaggerated for effective explanation of technical content.
본 명세서에서 제1, 제2 등의 용어가 구성요소들을 기술하기 위해서 사용된 경우, 이들 구성요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다. 여기에 설명되고 예시되는 실시 예들은 그것의 상보적인 실시 예들도 포함한다.In this specification, when terms such as first, second, etc. are used to describe components, these components should not be limited by these terms. These terms are merely used to distinguish one component from another. Embodiments described and illustrated herein also include complementary embodiments thereof.
이하 첨부된 도면을 참조하여 본 발명의 실시예에 따른 파인 메탈 마스크 제조방법을 자세히 설명하기로 한다.Hereinafter, a fine metal mask manufacturing method according to an embodiment of the present invention will be described in detail with reference to the attached drawings.
도 2 내지 도 6을 참조하면, 본 발명의 실시예에 따른 파인 메탈 마스크 제조방법은, 기판(10)상에 도금 레지스트(20)를 패턴닝하여 형성하는 단계(S10)와, 상기 패터닝된 도금 레지스트(20') 사이로 노출된 기판(10)상에 금속 도금층(30)을 형성하는 단계(S11)와, 상기 단계(S11) 이후 패터닝된 도금 레지스트(20')를 제거하는 단계(S12)와, 상기 금속 도금층(30)과 상기 기판(10)을 분리하는 단계(S13)를 포함하며,2 to 6, a fine metal mask manufacturing method according to an embodiment of the present invention includes forming a plating resist 20 by patterning a substrate 10 (S10), and forming the patterned plating resist 20 on a substrate 10. A step (S11) of forming a metal plating layer 30 on the substrate 10 exposed between the resists 20', and a step (S12) of removing the plating resist 20' patterned after the step S11. , comprising a step (S13) of separating the metal plating layer 30 and the substrate 10,
상기 단계(S10)에서는 노광을 위한 광의 포커스 심도를 제어하여 상기 도금 레지스트(20)의 단면형상을 사다리꼴 형상으로 패터닝 하는 것에 특징이 있다.The step (S10) is characterized in that the cross-sectional shape of the plating resist 20 is patterned into a trapezoidal shape by controlling the focus depth of light for exposure.
구체적으로 살펴보면, 상기 단계(S10)에서는 도금 레지스트(20)의 단면을 노광 및 현상기술을 이용하여 역사다리꼴 모양으로 패터닝하여 제작할 수 있다.Specifically, in the step (S10), the cross section of the plating resist 20 can be patterned into an inverted trapezoid shape using exposure and development techniques.
즉, 도 4에 도시된 바와 같이, 우선 기판(10) 상에 도금 레지스트(20)를 증착한다.That is, as shown in FIG. 4, first, the plating resist 20 is deposited on the substrate 10.
이어서, 증착된 도금 레지스트(20)를 포토 레지스트(PR)를 이용하여 노광한다. 이때, 도 4의 (b)와 같이, 상기 기판(10)에서 노광을 위한 레이저 광을 조사하되 기판(10) 보다 낮은 위치에 포커스 깊이가 유지되도록 조절하게 되면, 도금 레지스트(20)의 노광부(21)의 노광면적을 깊이에 비례하여 넓게 증가시킬 수 있다.Next, the deposited plating resist 20 is exposed using photo resist (PR). At this time, as shown in Figure 4 (b), when the laser light for exposure is irradiated on the substrate 10 and the focus depth is adjusted to be maintained at a lower position than the substrate 10, the exposed portion of the plating resist 20 The exposure area of (21) can be increased widely in proportion to the depth.
즉, 노광부(21)가 깊어질수록 면적이 확장되도록 하기 위해서는, 노광에 사용되는 광원이 레이저 광을 사용하는 LDI(Laser Direct Image) 노광장비를 사용하게 되며, 레이저 광의 포커스 깊이가 기판(10) 보다 낮은 위치에 위치하도록 조절하게 된다. 그러면, 노광시의 에너지 분포가 넓어지면서 노광부 즉, 이미지(Image)의 하부가 넓어지게 된다.That is, in order for the area to expand as the exposure portion 21 becomes deeper, the light source used for exposure is LDI (Laser Direct Image) exposure equipment that uses laser light, and the focus depth of the laser light is adjusted to the substrate (10 ) is adjusted to be located in a lower position. Then, as the energy distribution during exposure widens, the exposed area, that is, the lower part of the image, widens.
다음으로, 상기 노광단계에서 노광된 노광부(21) 이외의 부분을 제거하여 도금 레지스트(20')를 패터닝한다[도 4의 (c)]. 그러면, 패터닝 된 도금 레지스트(20')의 패턴부(23)즉, 금속으로 도금하고자 하는 위치의 하부가 점진적으로 좁아지도록 형성할 수 있게 된다.Next, the plating resist 20' is patterned by removing portions other than the exposed portion 21 exposed in the exposure step (FIG. 4(c)). Then, the pattern portion 23 of the patterned plating resist 20', that is, the lower part of the position where metal is to be plated, can be formed to gradually become narrower.
상기 LDI 노광장비를 이용하여 포커스 깊이를 조절할 때의 노광에너지의 분포상황은 도 5를 참조하면 쉽게 이해될 수 있다.The exposure energy distribution situation when adjusting the focus depth using the LDI exposure equipment can be easily understood by referring to FIG. 5.
즉, 도 6의 (a)에 도시된 바와 같이, 포토 레지스트(PR)를 기준으로 하여 레이저 광을 조사할 경우, 포토 레지스트(PR)의 패턴공의 폭(d)을 기준으로 하여 깊이가 증가할수록 노광에너지의 넓이(R)가 확장됨을 알 수 있다. 이는 도 6의 (b)와 같이, 포토 레지스트(P)에 대한 광의 강도는 일정하더라도 그 포커스 깊이(f)에 따라서 기판(10)의 표면에서의 강의 강도분포는 점진적으로 넓어지는 것을 통해 이해될 수 있다[도 5의 (c)].That is, as shown in (a) of FIG. 6, when laser light is irradiated based on the photo resist (PR), the depth increases based on the width (d) of the pattern hole of the photo resist (PR). It can be seen that the area (R) of exposure energy expands as it increases. This can be understood through the fact that, as shown in Figure 6 (b), even though the intensity of light to the photo resist (P) is constant, the intensity distribution of the steel on the surface of the substrate 10 gradually widens according to the focus depth (f). [Figure 5(c)].
한편, 상기와 같이 도금 레지스트(20')를 패터닝한 후에, 그 상부에 금속층을 전주도금 방식으로 증착하여 금속 도금층(30)을 형성한다. 그러면, 도 3의 (b)와 같이, 도금 레지스트(20')의 패턴부(23)에 금속 도금층(30)이 도금방법에 의해 증착되어 형성되며, 그 단면 형상은 역사다리꼴로 형성된다.Meanwhile, after patterning the plating resist 20' as described above, a metal layer is deposited on the top using electroplating to form the metal plating layer 30. Then, as shown in (b) of FIG. 3, the metal plating layer 30 is deposited on the pattern portion 23 of the plating resist 20' by a plating method, and its cross-sectional shape is formed as an inverted trapezoid.
다음으로, 상기 도금 레지스트(20)를 제거하면, 도 3의 (c)와 같이, 기판(10) 상에 금속 도금층(30) 즉, FMM만 남게 된다.Next, when the plating resist 20 is removed, only the metal plating layer 30, that is, FMM, remains on the substrate 10, as shown in (c) of FIG. 3.
이어서, 도 3의 (d)와 같이, 기판(10)과 금속 도금층(30)을 분리하여 원하는 형상의 FMM을 얻을 수 있게 된다.Subsequently, as shown in (d) of FIG. 3, the substrate 10 and the metal plating layer 30 are separated to obtain an FMM of the desired shape.
이처럼, FMM(30)을 제조하는 과정에서 그 단면을 역사다리꼴로 기판(10) 상에 도금되도록 함으로써, OLED 제작시 레이저 트리밍(Laser Trimming) 공정을 진행하지 않아도 FMM에 의한 쉐도우 효과를 줄일 수 있다. 따라서 레이저 트리밍 공정을 생략할 수 있으므로, FMM 제조비용을 줄이고 수율을 향상시킬 수 있다.In this way, in the process of manufacturing the FMM 30, the cross-section is plated on the substrate 10 in an inverted trapezoid, so that the shadow effect caused by the FMM can be reduced without performing a laser trimming process when manufacturing OLED. . Therefore, the laser trimming process can be omitted, reducing FMM manufacturing costs and improving yield.
또한, FMM(30)을 기판(10)으로부터 분리함에 있어서, 종래와 같이 물리적인 분리방법이 아니고, 선택적 에칭공정에 의해 분리할 수 있다.Additionally, when separating the FMM 30 from the substrate 10, it can be separated by a selective etching process rather than a physical separation method as in the prior art.
이를 위해서, 도 5의 (a)와 같이, 기판(10)의 표면에 시드층(11)을 형성하되, 금속 도금층(30)과는 다른 종류의 금속재질로 증착하여 형성하는 것이 좋다. 바람직하게는 상기 금속 도금층(30)은 INVAR 재질로 도금하여 형성하고, 시드층(11)은 구리(Cu) 또는 알루미늄(Al)으로 형성하는 것이 좋다.For this purpose, it is better to form a seed layer 11 on the surface of the substrate 10, as shown in (a) of FIG. 5, by depositing a different type of metal material from the metal plating layer 30. Preferably, the metal plating layer 30 is formed by plating with an INVAR material, and the seed layer 11 is preferably formed with copper (Cu) or aluminum (Al).
이때, 시트 에칭 공정에서는 암모니아 알칼리 에칭을 이용하는 것이 좋다. 이 경우 Ni : Cu의 에칭비율은 0.1 : 99.1의 수준이 된다. 따라서 도 5의 (a) 내지 도 5의 (d)에 도시된 바와 같이, 순차적으로 시드층(11)을 에칭하여 제거하는 공정 중에도 금속 도금층(30)의 에칭이 거의 발생하지 않고 시드층(11)만 선택적으로 에칭되어 제거되므로, 금속 도금층(30) 즉, FMM을 물리적인 힘이나 충격을 가하지 않고 에칭공정에 의해 안전하게 분리할 수 있게 된다.At this time, it is recommended to use ammonia alkaline etching in the sheet etching process. In this case, the Ni:Cu etching ratio is at the level of 0.1:99.1. Therefore, as shown in Figures 5 (a) to 5 (d), even during the process of sequentially etching and removing the seed layer 11, almost no etching of the metal plating layer 30 occurs and the seed layer 11 ) is selectively etched and removed, so the metal plating layer 30, that is, FMM, can be safely separated by the etching process without applying physical force or impact.
한편, 상기와 같이 기판(10) 상에 시드층(11)을 형성하여 FMM을 제조하는 경우에는 시드층(11)의 표면 거칠기를 조절하여 노광을 위한 광의 난반사를 유도하여 FMM을 단면이 역 사다리꼴이 되도록 제작할 수 있다.Meanwhile, when manufacturing an FMM by forming the seed layer 11 on the substrate 10 as described above, the surface roughness of the seed layer 11 is adjusted to induce diffuse reflection of light for exposure, thereby forming the FMM with an inverted trapezoid in cross section. It can be manufactured to do this.
발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Those skilled in the art to which the invention pertains will understand that the present invention can be implemented in other specific forms without changing its technical idea or essential features. Therefore, the embodiments described above should be understood in all respects as illustrative and not restrictive. The scope of the present invention is indicated by the claims described below rather than the detailed description above, and all changes or modified forms derived from the meaning and scope of the claims and their equivalent concepts should be interpreted as being included in the scope of the present invention. do.

Claims (6)

  1. 가) 기판상에 도금 레지스트를 패턴닝하여 형성하는 단계;A) patterning and forming a plating resist on a substrate;
    나) 상기 패터닝된 도금 레지스트 사이로 노출된 기판상에 금속 도금층을 형성하는 단계;b) forming a metal plating layer on the substrate exposed between the patterned plating resists;
    다) 상기 나)단계 이후 패터닝된 도금 레지스트를 제거하는 단계;c) removing the plating resist patterned after step b);
    라) 상기 금속 도금층과 상기 기판을 분리하는 단계;를 포함하며,d) separating the metal plating layer and the substrate,
    상기 가)단계에서는 노광을 위한 광의 포커스 심도를 제어하여 상기 도금 레지스트의 단면형상을 사다리꼴 형상으로 형성하는 것을 특징으로 하는 파인 메탈 마스크 제조방법. In step a), a fine metal mask manufacturing method is characterized in that the cross-sectional shape of the plating resist is formed into a trapezoidal shape by controlling the focus depth of light for exposure.
  2. 제1항에 있어서, 상기 가)단계는,The method of claim 1, wherein step a) is:
    상기 기판에 도금 레지스트를 증착하는 단계;depositing a plating resist on the substrate;
    상기 증착된 도금 레지스트를 포토 레지스트를 이용하여 노광하는 단계; 및exposing the deposited plating resist using a photoresist; and
    상기 노광단계에서 노광된 부분 이외의 부분을 제거하여 도금 레지스트를 패터닝하는 단계;를 포함하며,A step of patterning the plating resist by removing portions other than those exposed in the exposure step,
    상기 노광하는 단계에서는 노광을 위한 광의 포커스 깊이를 상기 기판보다 낮은 위치로 조절하여 노광시 에너지분포가 상기 포토 레지스트에서 멀어질수록 넓어지도록 제어하는 것을 특징으로 하는 파인 메탈 마스크 제조방법.In the exposing step, the focus depth of the light for exposure is adjusted to a lower position than the substrate to control the energy distribution during exposure to become wider as the distance from the photoresist increases.
  3. 제2항에 있어서,According to paragraph 2,
    상기 노광단계에서 사용되는 노광장비는 LDI(Laser Direct Image) 노광기인 것을 특징으로 하는 파인 메탈 마스크 제조방법.A fine metal mask manufacturing method, characterized in that the exposure equipment used in the exposure step is an LDI (Laser Direct Image) exposure machine.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,According to any one of claims 1 to 3,
    상기 라)단계는 상기 기판상에 형성된 시드층을 선택적으로 에칭하는 에칭 공정을 이용하여 상기 금속 도금층을 상기 기판으로부터 분리하는 것을 특징으로 하는 파인 메탈 마스크 제조방법.Step d) is a fine metal mask manufacturing method, characterized in that the metal plating layer is separated from the substrate using an etching process that selectively etches the seed layer formed on the substrate.
  5. 제4항에 있어서,According to clause 4,
    상기 시드층은 상기 금속층과 다른 금속으로 형성되는 것을 특징으로 하는 파인 메탈 마스크 제조방법.A fine metal mask manufacturing method, wherein the seed layer is formed of a metal different from the metal layer.
  6. 제5항에 있어서,According to clause 5,
    상기 금속층은 INVAR를 포함하고, 상기 시드층은 Cu 또는 Al인 것을 특징으로 하는 파인 메탈 마스크 제조방법.A fine metal mask manufacturing method, wherein the metal layer includes INVAR, and the seed layer is Cu or Al.
PCT/KR2023/003880 2022-03-24 2023-03-23 Method for manufacturing fine metal mask WO2023182837A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0036652 2022-03-24
KR1020220036652A KR102442666B1 (en) 2022-03-24 2022-03-24 A method for manufacturing fine metal mask

Publications (1)

Publication Number Publication Date
WO2023182837A1 true WO2023182837A1 (en) 2023-09-28

Family

ID=83286766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/003880 WO2023182837A1 (en) 2022-03-24 2023-03-23 Method for manufacturing fine metal mask

Country Status (2)

Country Link
KR (1) KR102442666B1 (en)
WO (1) WO2023182837A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102442666B1 (en) * 2022-03-24 2022-09-13 주식회사 그래핀랩 A method for manufacturing fine metal mask

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120085042A (en) * 2011-01-21 2012-07-31 (주)에스이피 Method for manufacturing shadow mask for forming a thin layer
KR20180028868A (en) * 2016-09-09 2018-03-19 주식회사 티지오테크 Mother plate and producing method of the same, and producing method of the same
KR20180049778A (en) * 2016-11-03 2018-05-11 주식회사 티지오테크 Producing method of mother plate and mask, and deposition method of oled picture element
KR20190050680A (en) * 2017-11-03 2019-05-13 (주) 영진아스텍 Menufacturing method for three-dimensional shape metal mask using electroforming
KR20200042163A (en) * 2018-10-15 2020-04-23 주식회사 코윈디에스티 Mask Apparatus and Method of Manufacturing the Same
KR102442666B1 (en) * 2022-03-24 2022-09-13 주식회사 그래핀랩 A method for manufacturing fine metal mask

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020532652A (en) 2017-09-04 2020-11-12 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated FMM processing for high resolution FMM

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120085042A (en) * 2011-01-21 2012-07-31 (주)에스이피 Method for manufacturing shadow mask for forming a thin layer
KR20180028868A (en) * 2016-09-09 2018-03-19 주식회사 티지오테크 Mother plate and producing method of the same, and producing method of the same
KR20180049778A (en) * 2016-11-03 2018-05-11 주식회사 티지오테크 Producing method of mother plate and mask, and deposition method of oled picture element
KR20190050680A (en) * 2017-11-03 2019-05-13 (주) 영진아스텍 Menufacturing method for three-dimensional shape metal mask using electroforming
KR20200042163A (en) * 2018-10-15 2020-04-23 주식회사 코윈디에스티 Mask Apparatus and Method of Manufacturing the Same
KR102442666B1 (en) * 2022-03-24 2022-09-13 주식회사 그래핀랩 A method for manufacturing fine metal mask

Also Published As

Publication number Publication date
KR102442666B1 (en) 2022-09-13

Similar Documents

Publication Publication Date Title
WO2023182837A1 (en) Method for manufacturing fine metal mask
WO2018066844A1 (en) Alloy metal foil to be used as deposition mask, deposition mask, manufacturing methods therefor, and organic light emitting device manufacturing method using same
WO2023182819A1 (en) Method for manufacturing fine metal mask
US8597490B2 (en) Method of manufacturing a gas electron multiplier
EP0470232A1 (en) Three dimensional plating or etching process and masks therefor
CN108617104B (en) Method for manufacturing printed circuit board with thickened copper local pattern
WO2018097559A1 (en) Mother plate, method for manufacturing mother plate, and method for manufacturing mask
WO2018186697A1 (en) Method for manufacturing fine metal mask
CN109830511B (en) Mask plate manufacturing method and mask plate
WO2010140725A1 (en) Method for forming a thin film metal conductive line
KR20010072343A (en) Method for producing etched circuits
WO2019109445A1 (en) Fabrication method for tft array substrate and fabrication method for display device
WO2010035976A1 (en) Method of patterning transparent electrode using laser and method of forming touch panel signal cable
KR20210095515A (en) Method of manufacturing the fine metal mask for OLED panel using one-step wet etching technology
WO2018188142A1 (en) Method for improving efficiency of mask stripping of array substrate, array substrate and display panel
WO2021091010A1 (en) Lens spacer, lens module comprising same, and manufacturing method therefor
CN101169589A (en) Method for manufacturing light guide plate cavity
WO2020231172A1 (en) Method for manufacturing mold for manufacturing fine metal mask, and method for manufacturing fine metal mask
US10224349B1 (en) Method of manufacturing TFT array substrate and display device
WO2019035501A1 (en) Gravure offset roll for printed electronics and method for manufacturing micropatterns
KR100917774B1 (en) Method of pitch control in printed circuit board
KR20000005556A (en) Method of making color screens for fed and other cathodoluminscent displays
CN118099286A (en) Etching method of photovoltaic silicon wafer battery
KR20230041541A (en) Half etching processing using an external electric field as an external charged body
CN1177949C (en) Zone-selecting polymer film-coating method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23775332

Country of ref document: EP

Kind code of ref document: A1