WO2023182690A1 - Thermally conductive composite material using hexagonal boron nitride - Google Patents

Thermally conductive composite material using hexagonal boron nitride Download PDF

Info

Publication number
WO2023182690A1
WO2023182690A1 PCT/KR2023/002784 KR2023002784W WO2023182690A1 WO 2023182690 A1 WO2023182690 A1 WO 2023182690A1 KR 2023002784 W KR2023002784 W KR 2023002784W WO 2023182690 A1 WO2023182690 A1 WO 2023182690A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
hexagonal boron
composite material
conductive composite
thermally conductive
Prior art date
Application number
PCT/KR2023/002784
Other languages
French (fr)
Korean (ko)
Inventor
좌용호
문형진
박지영
임민섭
조홍백
Original Assignee
한양대학교 에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220149134A external-priority patent/KR20230139295A/en
Application filed by 한양대학교 에리카산학협력단 filed Critical 한양대학교 에리카산학협력단
Publication of WO2023182690A1 publication Critical patent/WO2023182690A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Definitions

  • This relates to technology for manufacturing thermally conductive composite materials using hexagonal boron nitride.
  • heat dissipation materials are composite materials that are a mixture of high thermal conductivity filler materials such as carbon materials or ceramic materials and polymer materials.
  • Hexagonal boron nitride is boron nitride in which boron and nitrogen are hexagonally charged by strong covalent bonds and bonded by weak Walder Waals forces, and is a stable crystal form with a two-dimensional plate-like structure.
  • Hexagonal boron nitride has high thermal conductivity, is resistant to thermal shock, and has excellent chemical stability, so it is widely used to manufacture various heat dissipation materials.
  • the thermally conductive composite material of the present invention aims to improve the low axial thermal conductivity, which is a problem in existing heat dissipation materials using boron nitride, and to improve the problem of increased thermal resistance due to voids between boron nitride.
  • the thermally conductive composite material includes a polymer matrix formed to have an axial direction and one side perpendicular to the axial direction, first h-BN added to the polymer matrix, and added to the polymer matrix, and more than the first h-BN. It may include a second h-BN having a small size.
  • the first h-BN may be micro-sized and the second h-BN may be nano-sized.
  • the first h-BN may be formed to be vertically aligned on one surface.
  • the second h-BN may be located on the surface of the first h-BN or between the first h-BNs, such that the first h-BN may be vertically aligned on one side.
  • the second h-BN may be located on the surface of the first h-BN or between the first h-BNs.
  • the second h-BN may increase thermal conductivity by reducing the voids between the first h-BN.
  • the polymer matrix may be selected from the group consisting of PDMS, PE, PP, PMMA, PC, and mixtures thereof.
  • the content of the polymer matrix may be 40 vol% to 70 vol%.
  • the content ratio of the first h-BN and the second h-BN may be 1:1.
  • a method of manufacturing a thermally conductive composite material includes preparing a polymer matrix formed to have an axial direction and one side perpendicular to the axial direction, adding the first h-BN to the polymer matrix, and adding the first h-BN to the polymer matrix. It may include adding second h-BN having a size smaller than 1 h-BN.
  • the first h-BN may be micro-sized and the second h-BN may be nano-sized.
  • the first h-BN may be formed to be vertically aligned on one surface.
  • the second h-BN may be located on the surface of the first h-BN or between the first h-BNs, such that the first h-BN may be vertically aligned on one side.
  • the second h-BN is located on the surface of the first h-BN or between the first h-BNs, so that the second h-BN can reduce the gap between the first h-BNs. .
  • the polymer matrix may be selected from the group consisting of PDMS, PE, PP, PMMA, PC, and mixtures thereof.
  • the content of the polymer matrix may be 40 vol% to 70 vol%.
  • the content ratio of the first h-BN and the second h-BN may be 1:1.
  • the thermally conductive composite material proposed in the present invention can improve the low axial thermal conductivity of existing hexagonal boron nitride-based heat dissipation materials by using boron nitride of composite size.
  • the thermally conductive composite material according to an embodiment of the present invention can improve low axial thermal conductivity by including hexagonal boron nitride in a vertical orientation within the polymer matrix.
  • thermally conductive composite material reduces thermal resistance by reducing the voids between hexagonal boron nitride, and thus can improve low thermal conductivity.
  • Figure 1 is a diagram showing the structure of a thermally conductive composite material according to one embodiment.
  • Figure 2 is a crystal structure of hexagonal boron nitride according to one embodiment.
  • Figure 3 is a view showing micro-sized hexagonal boron nitride according to one embodiment.
  • Figure 4 shows the results of XRD analysis of boron nitride prepared according to one example.
  • Figure 5 shows the results of FTIR analysis of boron nitride prepared according to an example.
  • Figure 6 shows the results of SEM analysis of boron nitride prepared according to one embodiment.
  • Figure 7 is a TEM analysis result of boron nitride prepared according to an example.
  • Figure 8 shows the results of EDS analysis of boron nitride prepared according to an example.
  • Figure 9 shows the results of XPS analysis of boron nitride prepared according to an example.
  • Figure 10 is a diagram showing the structure of a thermally conductive composite material in which only micro-sized hexagonal boron nitride is added to a polymer matrix according to an embodiment.
  • Figure 11 is a view showing the fracture surface of a thermally conductive composite material in which only micro-sized hexagonal boron nitride was added to a polymer matrix according to an embodiment.
  • Figure 12 is a view showing the fracture surface of a thermally conductive composite material in which only nano-sized hexagonal boron nitride was added to a polymer matrix according to an embodiment.
  • Figure 13 is a diagram showing the structure of a thermally conductive composite material in which micro-sized and nano-sized hexagonal boron nitride is added to a polymer matrix according to an embodiment.
  • Figure 14 is a view showing the fracture surface of a thermally conductive composite material in which both micro- and nano-sized hexagonal boron nitride were added to a polymer matrix according to an embodiment.
  • Figure 15 is an enlarged view of the fracture surface of Figure 14.
  • Figure 16 shows the results of measuring the temperature change over time of each thermally conductive composite material using a thermal infrared camera according to an embodiment.
  • Figure 17 is a graph showing the temperature change over time for each thermally conductive composite material based on the results of Figure 16.
  • Figure 18 is a flowchart showing the manufacturing process of a thermally conductive composite material according to an embodiment.
  • first, second, and third are used to describe various components, but these components should not be limited by these terms. These terms are merely used to distinguish one component from another.
  • Each embodiment described and illustrated herein also includes its complementary embodiment. Additionally, in this specification, 'and/or' is used to mean including at least one of the components listed before and after.
  • connection is used to mean both indirectly connecting and directly connecting a plurality of components.
  • the present invention relates to a composite material with improved thermal conductivity using hexagonal boron nitride (hereinafter referred to as h-BN), and the existing heat dissipation material containing hexagonal boron nitride can be used to conduct axial thermoelectric conduction. It is a composite material that compensates for the disadvantage of low conductivity.
  • h-BN hexagonal boron nitride
  • a composite material containing hexagonal boron nitride of the present invention according to an embodiment will be referred to as a thermally conductive composite material (1).
  • the thermally conductive composite material 1 of the present invention may be formed by adding hexagonal boron nitride to a polymer matrix 10 formed to have an axial direction and one side perpendicular to the axial direction.
  • the axial direction may refer to a direction corresponding to the height
  • one side may refer to a side formed perpendicular thereto. That is, one surface may be a bottom surface perpendicular to the axial direction in a plate-shaped structure.
  • the hexagonal boron nitride used in the present invention is a compound containing boron and nitrogen in equal proportions, and has a hexagonal structure, so it has excellent chemical and thermal stability and can be stably added to polymer substrates.
  • the size of hexagonal boron nitride can be formed in micro and nano sizes.
  • hexagonal boron nitride has excellent thermal conductivity and is widely used as an additive in heat dissipation materials.
  • the thermally conductive composite material 1 of the present invention can be formed by adding a plurality of hexagonal boron nitrides having various sizes to the polymer matrix 10.
  • the thermally conductive composite material 1 of the present invention includes first hexagonal boron nitride 20 (hereinafter referred to as first h-BN) having a first size and a second size smaller than the first size. It may include second hexagonal boron nitride 30 (hereinafter referred to as second h-BN).
  • first size included in the thermally conductive composite material 1 may be micro size
  • the second size may be nano size.
  • the micro size may mean a size of 3 ⁇ m to 7 ⁇ m
  • the nano size may mean a size of 100 nm to 200 nm.
  • the size of each hexagonal boron nitride is not limited to the above examples and can be applied without limitation as long as it is a size to achieve the purpose of the present invention.
  • first hexagonal boron nitride 20 may be formed in a plate-like structure with a high aspect ratio.
  • the thermally conductive composite material (1) of the present invention can have improved axial thermal conductivity due to the vertical arrangement of the plurality of added hexagonal boron nitride.
  • hexagonal boron nitride included in the polymer matrix 10 formed to have one side perpendicular to the axial direction may be formed to be oriented perpendicular to the one side.
  • the existing heat dissipation material containing hexagonal boron nitride has the disadvantage of poor axial thermal conductivity in the direction perpendicular to one side because the hexagonal boron nitride of the plate-like structure is arranged horizontally with one side, whereas the present invention has a disadvantage.
  • the thermally conductive composite material (1) can improve axial thermal conductivity by facilitating heat transfer in the axial direction through hexagonal boron nitride arranged perpendicularly on one surface.
  • the vertical orientation of the hexagonal boron nitride of the thermally conductive composite material (1) of the present invention can be formed by including a plurality of complex-sized boron nitride.
  • the thermally conductive composite material (1) includes both the first hexagonal boron nitride (20) and the second hexagonal boron nitride (30)
  • the second hexagonal boron nitride (30) is the first hexagonal boron nitride (30). It may be distributed to be located between the surface of boron (20) and/or the first hexagonal boron nitride (20).
  • the first hexagonal boron nitride 20 can be oriented perpendicular to the one surface.
  • the vertical orientation of the first hexagonal boron nitride 20 is such that the smaller size of the second hexagonal boron nitride 30 is located in the gap 40 formed between the first hexagonal boron nitride 20, This may occur by reducing the horizontal arrangement on one side of the crystalline boron nitride (20).
  • the voids 40 refer to the polymer matrix 10 existing between the hexagonal boron nitride included in the thermally conductive composite material 1, and the polymer matrix 10 has relatively high thermal conductivity compared to the hexagonal boron nitride. Since is low, as the number of voids 40 in the material increases, thermal resistance increases, and the thermal conductivity of the material may decrease due to a decrease in the contact surface between hexagonal boron nitride.
  • a plurality of hexagonal boron nitrides of various sizes added to the thermally conductive composite material (1) of the present invention may be located in the voids 40 between each hexagonal boron nitride.
  • first hexagonal boron nitride 20 of a first size is added to the polymer matrix 10
  • second hexagonal boron nitride 30 of a second size smaller than the first size is further added. In this case, it may be located between the surface of the first hexagonal boron nitride (20) and the first hexagonal boron nitride (20).
  • the second hexagonal boron nitride (30) contained in the thermally conductive composite material (1) is formed to be located on the surface of the first hexagonal boron nitride (20) and is formed to be located on the surface of the first hexagonal boron nitride (20).
  • the voids 40 can be reduced, and by being located between the first hexagonal boron nitrides 20, the voids 40 can be reduced and the contact area between the boron nitrides can be increased.
  • the thermally conductive composite material 1 of the present invention can improve thermal conductivity by reducing the voids 40 due to the positional distribution of a plurality of hexagonal boron nitrides of various sizes contained therein.
  • the second hexagonal boron nitride 30 is located in the void 40 formed by the first hexagonal boron nitride 20 and serves to reduce the void 40, thereby forming the void 40. It can suppress the effect of increasing thermal resistance caused by oxidation, and increase thermal conductivity by strengthening the surface contact between boron nitride.
  • the thermally conductive composite material (1) of the present invention adjusts the content of the polymer matrix (10), the first hexagonal boron nitride (20), and the second hexagonal boron nitride (30) contained in the composite material.
  • Directional thermal conductivity can be improved.
  • the content of the polymer matrix 10 included in the thermally conductive composite material 1 may be 40% to 70%.
  • the content of the first hexagonal boron nitride (20) and the second hexagonal boron nitride (30) included in the thermally conductive composite material (1) may be 60% to 30%.
  • the thermal conductive composite material (1) of the present invention can improve thermal conductivity by adjusting the content ratio between a plurality of hexagonal boron nitrides having various sizes.
  • the content ratio of the first hexagonal boron nitride (20) and the second hexagonal boron nitride (30) included in the thermally conductive composite material (1) may be 70:30 to 30:70. .
  • thermally conductive composite material 1 using hexagonal boron nitride according to an embodiment will be described in detail with reference to the drawings.
  • Figure 1 is a diagram showing the structure of a thermally conductive composite material 1 according to an embodiment.
  • the thermally conductive composite material 1 of the present invention includes a polymer matrix 10, first hexagonal boron nitride 20 having a first size, and a second size smaller than the first size. It may include a second hexagonal boron nitride (30).
  • first hexagonal boron nitride 20 having a first size, and a second size smaller than the first size. It may include a second hexagonal boron nitride (30).
  • the polymer matrix 10, hexagonal boron nitride, and the thermally conductive composite material 1 composed thereof will be described in detail.
  • the polymer matrix 10 is a matrix formed based on various polymers and can serve as a substrate for the thermally conductive composite material 1.
  • the polymer as the base can be used alone or by blending thermoplastic resin and thermosetting resin polymer.
  • the polymer may be polydimethylsiloxane (PDMS).
  • the polymer may include at least one polymer that is singly or in combination with thermally conductive polymers such as polyethylene (PE), polypropylene (PP), polymethyl methacrylate (PMMA), and polycarbonate (PC). It may include more.
  • the polymer matrix 10 can be formed and utilized in a plate-like shape. That is, in the present invention, the polymer matrix 10 may be formed in a plate-like shape including an axial direction and one surface perpendicular to the axial direction. Due to this form of the polymer matrix 10, the thermally conductive composite material 1 of the present invention may have different axial thermal conductivity and horizontal thermal conductivity.
  • Hexagonal boron nitride will be described with reference to FIG. 2.
  • Figure 2 is a diagram showing the crystal structure of hexagonal boron nitride.
  • Hexagonal boron nitride has a hexagonal layered structure similar to graphite, forms a very hard bond, and has lubricity.
  • hexagonal boron nitride is a covalent material of elements with a low atomic number and has high thermal conductivity. It has no melting point and sublimates at about 3,000°C, so it has high stability at high temperatures. It has a very high electrical resistance, so it can be used in high temperature ranges exceeding 1,000°C. It has a resistance of 105 ⁇ , has high chemical stability because it has a very stable hexagonal surface bond, and has a true specific gravity of 2.26, which is very low among ceramics, so it has features that can lead to weight reduction of parts such as various materials.
  • hexagonal boron nitride that can be used in the present invention can be manufactured and utilized in micro and nano sizes.
  • Micro-sized hexagonal boron nitride may have an irregular plate-like morphology and may have an aspect ratio of about 31.
  • nano-sized hexagonal boron nitride may have the morphology of a disk and an aspect ratio of about 3. Due to these characteristics, micro-sized hexagonal boron nitride is more advantageous for heat transfer in one direction than nano-sized hexagonal boron nitride, and nano-sized hexagonal boron nitride has several advantages compared to micro-sized hexagonal boron nitride. It can be advantageous to transfer heat in this direction.
  • Figure 3 is a view showing micro-sized hexagonal boron nitride.
  • micro-sized hexagonal boron nitride can exhibit an irregular plate-like shape.
  • This may be a method of stirring to dissolve impurities, filtering them to precipitate them, and drying the powder from which impurities have been removed in an oven at 100°C.
  • Figure 4 shows the results of XRD (X-ray diffraction) analysis of boron nitride produced by the above production method.
  • XRD X-ray diffraction
  • Figure 5 shows the results of FTIR (Fourier transform infrared) analysis of boron nitride produced by the above production method.
  • FTIR Fastier transform infrared
  • Figure 6 is a SEM (Scanning Electron Microscope) analysis result of boron nitride prepared by the above manufacturing method
  • Figure 7 is a TEM (Transmission Electron Microscope) analysis result of the powder obtained by the above manufacturing method.
  • the nano-sized hexagonal boron nitride according to an embodiment of the present invention has a disk-shaped structure.
  • Figure 8 shows the results of EDS (Energy dispersive x-ray spectroscopy) analysis of the powder prepared by the above manufacturing method.
  • EDS Electronic x-ray spectroscopy
  • Figure 9 shows the results of XPS (X-ray photoelectron spectroscopy) analysis of the powder prepared by the above manufacturing method.
  • XPS X-ray photoelectron spectroscopy
  • the thermally conductive composite material 1 of the present invention can be formed by adding a plurality of hexagonal boron nitrides of various sizes to the polymer matrix 10.
  • the thermally conductive composite material 1 includes first hexagonal boron nitride 20 having a first size in a polymer matrix 10 and a second hexagonal boron nitride 20 having a second size smaller than the first size. It can be formed by adding boron nitride (30).
  • the first size may be a micro size
  • the second size may be a nano size. That is, the thermally conductive composite material 1 may be formed by adding first hexagonal boron nitride 20 having a micro size and second hexagonal boron nitride 30 having a nano size to the polymer matrix 10.
  • thermoly conductive composite material (1) containing hexagonal boron nitride of various sizes will be compared through Experimental Examples 1 to 3 below.
  • thermally conductive composite material 1 will be described when only micro-sized hexagonal boron nitride is added to the polymer matrix 10.
  • Figure 10 briefly shows the structure of the thermally conductive composite material (1) when only micro-sized hexagonal boron nitride is added to the polymer matrix (10), and the axial heat transfer and horizontal heat transfer processes through the thermally conductive composite material (1). It is clearly depicted.
  • the broken line shows the process of heat transfer in the axial direction
  • the solid line shows the process of heat transfer in the horizontal direction.
  • the plate-shaped micro-sized hexagonal boron nitride with a high aspect ratio contained in the thermally conductive composite material 1 is arranged in the same direction as the polymer matrix 10, forming voids 40, reducing the contact area, and forming a horizontal arrangement. This may result in low axial thermal conductivity.
  • the plate-shaped hexagonal boron nitride forms an angle A (21) with one side of the polymer matrix 10, and is horizontal to one side. You can see that they are arranged closely.
  • the horizontal arrangement of hexagonal boron nitride having this plate shape may cause the thermally conductive composite material 1 to have relatively low axial thermal conductivity.
  • Figure 11 shows a fracture surface of a composite material when only micro-sized hexagonal boron nitride is added to the polymer matrix 10 according to an embodiment. According to observation in FIG. 11, it can be seen that micro-sized hexagonal boron nitride is arranged close to one side of the polymer matrix 10 and horizontally.
  • Table 1 shows the axial direction of the thermally conductive composite material (1) according to each content ratio when PDMS is used as the polymer matrix (10) and only hexagonal boron nitride with an average size of 5 ⁇ m is added to PDMS and PDMS in different amounts.
  • This table shows the results of measuring thermal conductivity.
  • axial thermal conductivity was measured at room temperature on a specimen measuring 10 mm (width) x 10 mm (length) x 0.5 mm (thickness) using the laser flash method.
  • thermally conductive composite material 1 will be described when only nano-sized hexagonal boron nitride is added to the polymer matrix 10.
  • Figure 12 shows a fracture surface of a composite material when only nano-sized hexagonal boron nitride is added to the polymer matrix 10 according to an embodiment.
  • nano-sized hexagonal boron nitride is formed randomly oriented in a direction that is horizontal or perpendicular to one side of the polymer matrix 10. Due to this arrangement, the thermally conductive composite material (1) containing only nano-sized hexagonal boron nitride can exhibit higher axial thermal conductivity than the thermally conductive composite material (1) containing only micro-sized hexagonal boron nitride.
  • Table 2 shows the axial thermal conductivity of the thermally conductive composite material (1) according to each content ratio when PDMS was used as the polymer matrix (10) and only hexagonal boron nitride with a size of 150 nm was added to PDMS and PDMS in different amounts. This is a table showing the measurement results.
  • nano-sized hexagonal boron nitride has a lower aspect ratio than micro-sized hexagonal boron nitride, so when added into the polymer matrix 10, only micro-sized hexagonal boron nitride is added.
  • hexagonal boron nitride tends to be randomly arranged, which can also be seen as the result of a decrease in the anisotropy of the material.
  • a second hexagonal boron nitride (30) having a smaller size is further added to the thermally conductive composite material (1) in which first hexagonal boron nitride (20) is added to the polymer matrix (10).
  • the thermally conductive composite material 1 may form a structure as shown in FIG. 13.
  • Figure 13 shows the structure of the thermally conductive composite material (1) including the first hexagonal boron nitride (20) and the second hexagonal boron nitride (30), axial heat transfer and horizontal heat transfer through the thermally conductive composite material (1). The process is briefly shown. In Figure 13, the broken line shows the process of heat transfer in the axial direction, and the solid line shows the process of heat transfer in the horizontal direction.
  • the thermally conductive composite material 1 is composed of nano-sized second hexagonal boron nitride 30 and micro-sized first hexagonal boron nitride ( 20) It may be formed to fill the voids 40 by impregnating the surface and/or the voids 40 formed between them.
  • the thermally conductive composite material 1 is formed by filling the voids 40 formed by the second hexagonal boron nitride 30 with the first hexagonal boron nitride ( 20 forms an angle B (11) larger than the angle A (21) with one side on which the polymer matrix 10 is formed, and may be formed to be oriented perpendicularly to one side.
  • the first hexagonal boron nitride (20), which is vertically oriented by the second hexagonal boron nitride (30), can improve axial thermal conductivity by enabling lead transfer in the axial direction within the thermally conductive composite material (1).
  • the second hexagonal boron nitride (30) fills the voids (40) to reduce the voids (40) and thereby reduce the thermal resistance, allowing the thermally conductive composite material (1) to perform not only horizontal heat transfer but also axial heat transfer. It can be made easy.
  • thermally conductive composite material 1 to which hexagonal boron nitride of various sizes is added to the polymer matrix 10 will be described.
  • FIG. 15 is an enlarged observation of a partial cross-section of FIG. 14.
  • the nano-sized second hexagonal boron nitride 30 is formed on the surface of the first hexagonal boron nitride 20 or/and the first It can be seen that the voids 40 located between the hexagonal boron nitrides 20 are reduced, and the vertical arrangement of the first hexagonal boron nitride 20 is increased. Due to this reduction in the voids 40 and the vertical arrangement of the first hexagonal boron nitride 20, the thermally conductive composite material 1 containing a plurality of hexagonal boron nitrides having various sizes is replaced with the existing one-sized hexagonal boron nitride. Compared to the added heat dissipation material, it can exhibit higher axial thermal conductivity and thus have a higher heat dissipation effect.
  • Table 3 shows PDMS as the polymer matrix (10), and PDMS and PDMS with different contents of micro-sized first hexagonal boron nitride (20) and nano-sized second hexagonal boron nitride (30).
  • this is a table showing the results of measuring the axial thermal conductivity of the thermally conductive composite material (1) according to each content ratio.
  • the content of the first hexagonal boron nitride (20) and the second hexagonal boron nitride (30) added was set at a 1:1 ratio.
  • thermally conductive composite material (1) composed of 70% PDMS and 15% each of first and second hexagonal boron nitride (30), 1.11 W/mK, 60% PDMS and 20% each of 1.62W/Mk for the thermally conductive composite material (1) composed of hexagonal boron nitride (30), 50% PDMS and 25% each of first and second hexagonal boron nitride (30). 3.01 W/Mk for the conductive composite (1) and 4.81 W/mK for the thermally conductive composite (1) composed of 40% PDMS and 30% each of primary and secondary hexagonal boron nitride (30). It can be seen that it represents directional thermal conductivity.
  • Table 4 is a table showing the synthesis of Tables 1 to 3.
  • Micro-BN (5 ⁇ m) nano-BN (150nm)
  • thermoly conductive composite material (1) in which a plurality of hexagonal boron nitrides of various sizes are added to the polymer matrix (10) of the present invention, a heat dissipation material in which a single size of hexagonal boron nitride is added. Compared to , it can be confirmed that it has an axial thermal conductivity that is approximately 2 to 4 times higher.
  • Figure 16 shows a thermally conductive composite material (1) containing only the first hexagonal boron nitride (20), a thermally conductive composite material (1) containing only the second hexagonal boron nitride (30), and a first hexagonal boron nitride (30), respectively, according to one embodiment.
  • This is a time-dependent thermal infrared camera image of a thermally conductive composite material (1) containing both crystalline boron nitride (20) and secondary hexagonal boron nitride (30).
  • the temperature of the material was measured for each time period using a thermal infrared camera, and only the micro-sized first hexagonal boron nitride (20) was found.
  • the composite material included showed a temperature change of 36.1°C after 1 second, 48°C after 3 seconds, 57.8°C after 5 seconds, 67.1°C after 7 seconds, and 77.1°C after 10 seconds from an initial temperature of 30.1°C.
  • a composite material containing only nano-sized second hexagonal boron nitride (30) has an initial temperature of 30.5°C, 47.3°C after 1 second, 65.5°C after 3 seconds, 72.8°C after 5 seconds, 80.1°C after 7 seconds, and 10 seconds. Afterwards, a temperature change of 84.1°C was observed.
  • the initial temperature was 31.4°C, 53.2°C after 1 second, and 73.1°C after 3 seconds. °C, the temperature changed to 84.8°C after 5 seconds, 89.3°C after 7 seconds, and 93.6°C after 10 seconds.
  • Figure 17 graphically shows the measurement results of temperature change over time of the thermally conductive composite material (1).
  • thermal conductivity composite material (1) containing both the first hexagonal boron nitride (20) and the second hexagonal boron nitride (30) has the highest thermal conductivity. It can be understood that
  • the polymer matrix 10 included in the thermally conductive composite material 1 of the present invention may have a content of 40% to 70%. Accordingly, the hexagonal boron nitride added to the thermally conductive composite material 1 may have a content of 60% to 30%.
  • Table 5 shows the micro-sized first hexagonal boron nitride (20) and the nano-sized second hexagonal boron nitride (20) when PDMS included in the thermally conductive composite material (1) is used as the polymer matrix (10) and the content is set to 40%.
  • 60% of the total content of boron nitride (30) was added at the ratio of 100:0, 70:30, 50:50, 30:70, and 0:100, respectively, the axial heat conduction of each thermally conductive composite material (1) This is a table showing the results of measuring degrees.
  • Figure 18 is a flow chart showing the process of manufacturing the thermally conductive composite material (1) of the present invention.
  • the process of manufacturing the thermally conductive composite material 1 may include preparing the polymer matrix 10 (S100). Additionally, the process of manufacturing the thermally conductive composite material 1 may include adding first hexagonal boron nitride 20 to the polymer matrix 10 (S200). In addition, the process of manufacturing the thermally conductive composite material 1 may include adding second hexagonal boron nitride 30 of a smaller size than the first hexagonal boron nitride 20 (S300).
  • the thermally conductive composite material of the present invention has high industrial applicability because it can improve the low axial thermal conductivity of existing hexagonal boron nitride-based heat dissipation materials by using boron nitride of composite size.
  • the thermally conductive composite material of the present invention has high industrial applicability because it can improve low axial thermal conductivity by including hexagonal boron nitride in a vertical orientation within the polymer matrix.
  • the thermally conductive composite material of the present invention has high industrial applicability because it reduces thermal resistance by reducing the voids between hexagonal boron nitride contained therein, and through this, low thermal conductivity can be improved.

Abstract

The present invention relates to a thermally conductive composite material using hexagonal boron nitride. The composite material may comprise: a polymer matrix, which is formed in the axial direction and has one side perpendicular to the axial direction; a first h-BN added to the polymer matrix; and a second h-BN, which is added to the polymer matrix and is smaller than the first h-BN.

Description

육방정계 질화붕소를 이용한 열전도성 복합소재Thermal conductive composite material using hexagonal boron nitride
육방정계 질화붕소를 이용하여 열전도성 있는 복합소재를 제조하는 기술에 관한 것이다.This relates to technology for manufacturing thermally conductive composite materials using hexagonal boron nitride.
최근 자동차, 휴대전화, 컴퓨터 등 전자기기의 경량화, 박형화, 소형화, 다기능화와 같은 성능 발달과 함께, 전자기기에 사용되는 소자의 고집적화로 인하여 발생하는 열이 문제되고 있다. 전자 소자에서 방출되는 열은 소자의 기능을 저하시킬 뿐만 아니라, 주변 소자의 오작동, 기판 열화 등의 원인이 되기에 때문에, 소자의 방출열을 외부로 전달하여 전자기기의 열을 낮추고, 제어하기 위한 방열소재에 관한 필요가 증대되고 있다.Recently, along with the performance development of electronic devices such as automobiles, mobile phones, and computers, such as weight reduction, thinning, miniaturization, and multi-functioning, heat generated due to the high integration of devices used in electronic devices has become a problem. The heat emitted from electronic devices not only deteriorates the functionality of the device, but also causes malfunction of surrounding devices and substrate deterioration. Therefore, it is necessary to transfer the heat emitted from the device to the outside to lower and control the heat of the electronic device. The need for heat dissipation materials is increasing.
현재, 방열 소재들은 탄소 재료 혹은 세라믹 소재 같은 고열전도성 필러 소재와 고분자 소재가 혼합된 복합소재가 많은 비중을 차지하고 있다. Currently, a large proportion of heat dissipation materials are composite materials that are a mixture of high thermal conductivity filler materials such as carbon materials or ceramic materials and polymer materials.
이에, 육방정계 질화붕소(h-BN)를 이용하여 방열소재를 제조하는 방안 또한 많이 연구되고 있다. 육방정계 질화붕소는 붕소 및 질소가 강한 공유 결합에 의해 육각형으로 충전되고, 약한 발데르발스 힘에 의해 결합된 질화붕소로, 2차원 판상구조를 가진 안정한 결정형태이다. 육방정계 질화붕소는 열전도율이 높고, 열충격에 강하며 화학적 안정성이 뛰어나 여러가지 방열소재를 제조하는데 다양하게 활용되고 있다.Accordingly, methods for manufacturing heat dissipation materials using hexagonal boron nitride (h-BN) are also being widely studied. Hexagonal boron nitride is boron nitride in which boron and nitrogen are hexagonally charged by strong covalent bonds and bonded by weak Walder Waals forces, and is a stable crystal form with a two-dimensional plate-like structure. Hexagonal boron nitride has high thermal conductivity, is resistant to thermal shock, and has excellent chemical stability, so it is widely used to manufacture various heat dissipation materials.
다만, 기존의 질화붕소를 이용한 방열소재는 수평 배향에 의한 낮은 축방향 열전도도 및 필러 사이의 접촉면 감소에 따른 계면 공극 발생으로 열저항이 증가하는 문제가 있다. However, existing heat dissipation materials using boron nitride have the problem of increased thermal resistance due to low axial thermal conductivity due to horizontal orientation and the generation of interfacial voids due to a decrease in the contact area between fillers.
본 발명의 열전도성 복합소재는 기존의 질화붕소를 이용한 방열소재에서 문제되는 낮은 축방향 열전도도를 개선하고, 질화붕소 사이의 공극에 의한 열저항 증가문제를 개선하고자 한다.The thermally conductive composite material of the present invention aims to improve the low axial thermal conductivity, which is a problem in existing heat dissipation materials using boron nitride, and to improve the problem of increased thermal resistance due to voids between boron nitride.
일 실시예에 따른 열전도성 복합소재는 축방향 및 축방향에 수직한 일 면을 갖도록 형성되는 고분자 매트릭스, 고분자 매트릭스에 첨가되는 제1 h-BN 및 고분자 매트릭스에 첨가되며, 제1 h-BN보다 작은 크기를 갖는 제2 h-BN을 포함할 수 있다.The thermally conductive composite material according to one embodiment includes a polymer matrix formed to have an axial direction and one side perpendicular to the axial direction, first h-BN added to the polymer matrix, and added to the polymer matrix, and more than the first h-BN. It may include a second h-BN having a small size.
또한, 일 실시예에 따라서, 제1 h-BN은 마이크로 크기이고, 제2 h-BN은 나노 크기일 수 있다.Additionally, according to one embodiment, the first h-BN may be micro-sized and the second h-BN may be nano-sized.
또한, 일 실시예에 따라서, 제1 h-BN이 일 면에 수직 배향하도록 형성되는 것을 특징으로 할 수 있다. Additionally, according to one embodiment, the first h-BN may be formed to be vertically aligned on one surface.
또한, 일 실시예에 따라서, 제2 h-BN은, 제1 h-BN 표면 또는 제1 h-BN간 사이에 위치하여, 제1 h-BN이 일 면에 수직 배향하도록 할 수 있다. Additionally, according to one embodiment, the second h-BN may be located on the surface of the first h-BN or between the first h-BNs, such that the first h-BN may be vertically aligned on one side.
또한, 일 실시예에 따라서, 제2 h-BN은, 제1 h-BN 표면 또는 제1 h-BN간 사이에 위치할 수 있다.Additionally, according to one embodiment, the second h-BN may be located on the surface of the first h-BN or between the first h-BNs.
또한, 일 실시예에 따라서, 제2 h-BN이 제1 h-BN간 공극을 감소시켜 열전도성을 높일 수 있다.Additionally, according to one embodiment, the second h-BN may increase thermal conductivity by reducing the voids between the first h-BN.
또한, 일 실시예에 따라서, 고분자 매트릭스는 PDMS, PE, PP, PMMA, PC 및 이들의 혼합으로 이루어진 군으로부터 선택될 수 있다.Additionally, according to one embodiment, the polymer matrix may be selected from the group consisting of PDMS, PE, PP, PMMA, PC, and mixtures thereof.
또한, 일 실시예에 따라서, 고분자 매트릭스의 함량이 40 vol% 내지 70 vol% 인 것을 특징으로 할 수 있다.Additionally, according to one embodiment, the content of the polymer matrix may be 40 vol% to 70 vol%.
또한, 일 실시예에 따라서, 제1 h-BN 및 제2 h-BN의 함량비가 1:1 인 것을 특징으로 할 수 있다.Additionally, according to one embodiment, the content ratio of the first h-BN and the second h-BN may be 1:1.
일 실시예에 따른 열전도성 복합소재의 제조방법은 축방향 및 축방향에 수직한 일면을 갖도록 형성되는 고분자 매트릭스를 준비하는 단계, 고분자 매트릭스에 제1 h-BN을 첨가하는 단계 및 고분자 매트릭스에 제1 h-BN보다 작은 크기를 갖는 제2 h-BN을 첨가하는 단계를 포함할 수 있다.A method of manufacturing a thermally conductive composite material according to an embodiment includes preparing a polymer matrix formed to have an axial direction and one side perpendicular to the axial direction, adding the first h-BN to the polymer matrix, and adding the first h-BN to the polymer matrix. It may include adding second h-BN having a size smaller than 1 h-BN.
또한, 일 실시예에 따라서, 제1 h-BN은 마이크로 크기이고, 제2 h-BN은 나노 크기일 수 있다.Additionally, according to one embodiment, the first h-BN may be micro-sized and the second h-BN may be nano-sized.
또한, 일 실시예에 따라서, 제1 h-BN이 일 면에 수직 배향하도록 형성되는 것을 특징으로 할 수 있다.Additionally, according to one embodiment, the first h-BN may be formed to be vertically aligned on one surface.
또한, 일 실시예에 따라서, 제2 h-BN은, 제1 h-BN 표면 또는 제1 h-BN간 사이에 위치하여, 제1 h-BN이 일 면에 수직 배향하도록 할 수 있다. Additionally, according to one embodiment, the second h-BN may be located on the surface of the first h-BN or between the first h-BNs, such that the first h-BN may be vertically aligned on one side.
또한, 일 실시예에 따라서, 제2 h-BN은, 제1 h-BN 표면 또는 제1 h-BN간 사이에 위치하여 제2 h-BN이 제1 h-BN간 공극을 감소시킬 수 있다. In addition, according to one embodiment, the second h-BN is located on the surface of the first h-BN or between the first h-BNs, so that the second h-BN can reduce the gap between the first h-BNs. .
또한, 일 실시예에 따라서, 고분자 매트릭스는, PDMS, PE, PP, PMMA, PC 및 이들의 혼합으로 이루어진 군으로부터 선택될 수 있다.Additionally, according to one embodiment, the polymer matrix may be selected from the group consisting of PDMS, PE, PP, PMMA, PC, and mixtures thereof.
또한, 일 실시예에 따라서, 고분자 매트릭스의 함량이 40 vol% 내지 70 vol% 인 것을 특징으로 할 수 있다.Additionally, according to one embodiment, the content of the polymer matrix may be 40 vol% to 70 vol%.
또한, 일 실시예에 따라서, 제1 h-BN 및 제2 h-BN의 함량비가 1:1 인 것을 특징으로 할 수 있다. Additionally, according to one embodiment, the content ratio of the first h-BN and the second h-BN may be 1:1.
본 발명에서 제안하는 열전도성 복합소재는 복합 크기의 질화붕소를 이용하여 기존 육방정계 질화붕소 기반의 방열소재가 갖고 있는 낮은 축방향 열전도도를 개선할 수 있다. The thermally conductive composite material proposed in the present invention can improve the low axial thermal conductivity of existing hexagonal boron nitride-based heat dissipation materials by using boron nitride of composite size.
본 발명의 실시예에 따른 열전도성 복합소재는 육방정계 질화붕소를 고분자 매트릭스 내에 수직 배향하도록 포함하여 낮은 축방향 열전도도를 개선할 수 있다.The thermally conductive composite material according to an embodiment of the present invention can improve low axial thermal conductivity by including hexagonal boron nitride in a vertical orientation within the polymer matrix.
또한, 본 발명의 실시예에 따른 열전도성 복합소재는 육방정계 질화붕소간 공극을 감소시켜 열저항을 감소시키고, 이에 따라 낮은 열전도도를 개선할 수 있다.In addition, the thermally conductive composite material according to an embodiment of the present invention reduces thermal resistance by reducing the voids between hexagonal boron nitride, and thus can improve low thermal conductivity.
도 1은 일 실시예에 따른 열전도성 복합소재 구조를 나타낸 도면이다.Figure 1 is a diagram showing the structure of a thermally conductive composite material according to one embodiment.
도 2는 일 실시예에 따른 육방정계 질화붕소의 결정 구조이다.Figure 2 is a crystal structure of hexagonal boron nitride according to one embodiment.
도 3은 일 실시예에 따라 마이크로 크기의 육방정계 질화붕소를 관찰한 도면이다.Figure 3 is a view showing micro-sized hexagonal boron nitride according to one embodiment.
도 4는 일 실시예에 따라 제조한 질화붕소의 XRD 분석 결과이다.Figure 4 shows the results of XRD analysis of boron nitride prepared according to one example.
도 5는 일 실시예에 따라 제조한 질화붕소의 FTIR 분석 결과이다.Figure 5 shows the results of FTIR analysis of boron nitride prepared according to an example.
도 6은 일 실시예에 따라 제조한 질화붕소의 SEM 분석 결과이다.Figure 6 shows the results of SEM analysis of boron nitride prepared according to one embodiment.
도 7은 일 실시예에 따라 제조한 질화붕소의 TEM 분석 결과이다.Figure 7 is a TEM analysis result of boron nitride prepared according to an example.
도 8은 일 실시예에 따라 제조한 질화붕소의 EDS 분석 결과이다.Figure 8 shows the results of EDS analysis of boron nitride prepared according to an example.
도 9는 일 실시예에 따라 제조한 질화붕소의 XPS 분석 결과이다.Figure 9 shows the results of XPS analysis of boron nitride prepared according to an example.
도 10은 일 실시예에 따라 고분자 매트릭스에 마이크로 크기의 육방정계 질화붕소만을 첨가한 열전도성 복합소재의 구조를 나타낸 도면이다. Figure 10 is a diagram showing the structure of a thermally conductive composite material in which only micro-sized hexagonal boron nitride is added to a polymer matrix according to an embodiment.
도 11은 일 실시예에 따라 고분자 매트릭스에 마이크로 크기의 육방정계 질화붕소만을 첨가한 열전도성 복합소재의 파단면을 관찰한 도면이다. Figure 11 is a view showing the fracture surface of a thermally conductive composite material in which only micro-sized hexagonal boron nitride was added to a polymer matrix according to an embodiment.
도 12는 일 실시예에 따라 고분자 매트릭스에 나노 크기의 육방정계 질화붕소만을 첨가한 열전도성 복합소재의 파단면을 관찰한 도면이다.Figure 12 is a view showing the fracture surface of a thermally conductive composite material in which only nano-sized hexagonal boron nitride was added to a polymer matrix according to an embodiment.
도 13은 일 실시예에 따라 고분자 매트릭스에 마이크로 크기 및 나노 크기의 육방정계 질화붕소를 첨가한 열전도성 복합소재의 구조를 나타낸 도면이다. Figure 13 is a diagram showing the structure of a thermally conductive composite material in which micro-sized and nano-sized hexagonal boron nitride is added to a polymer matrix according to an embodiment.
도 14는 일 실시예에 따라 고분자 매트릭스에 마이크로 크기 및 나노 크기의 육방정계 질화붕소 모두를 첨가한 열전도성 복합소재의 파단면을 관찰한 도면이다Figure 14 is a view showing the fracture surface of a thermally conductive composite material in which both micro- and nano-sized hexagonal boron nitride were added to a polymer matrix according to an embodiment.
도 15는 도 14의 파단면을 확대하여 나타낸 도면이다.Figure 15 is an enlarged view of the fracture surface of Figure 14.
도 16은 일 실시예에 따라 각 열전도성 복합소재의 시간에 따른 온도 변화를 열적외선 카메라를 이용해 측정한 결과이다.Figure 16 shows the results of measuring the temperature change over time of each thermally conductive composite material using a thermal infrared camera according to an embodiment.
도 17은 도 16의 결과를 기초로 각 열전도성 복합소재의 시간에 따른 온도 변화를 나타낸 그래프이다.Figure 17 is a graph showing the temperature change over time for each thermally conductive composite material based on the results of Figure 16.
도 18은 일 실시예에 따른 열전도성 복합소재의 제조과정을 나타낸 순서도이다.Figure 18 is a flowchart showing the manufacturing process of a thermally conductive composite material according to an embodiment.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily implement it. However, the present invention may be implemented in many different forms and is not limited to the embodiments described herein.
본 명세서에서, 어떤 구성요소가 다른 구성요소 상에 있다고 언급되는 경우에 그것은 다른 구성요소 상에 직접 형성될 수 있거나 또는 그들 사이에 제3의 구성요소가 개재될 수도 있다는 것을 의미한다. In this specification, when an element is referred to as being on another element, it means that it may be formed directly on the other element or that a third element may be interposed between them.
또한, 본 명세서의 다양한 실시예 들에서 제1, 제2, 제3 등의 용어가 다양한 구성요소들을 기술하기 위해서 사용되었지만, 이들 구성요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다. 여기에 설명되고 예시되는 각 실시예는 그것의 상보적인 실시예도 포함한다. 또한, 본 명세서에서 '및/혹은'은 전후에 나열한 구성요소들 중 적어도 하나를 포함하는 의미로 사용되었다.Additionally, in various embodiments of the present specification, terms such as first, second, and third are used to describe various components, but these components should not be limited by these terms. These terms are merely used to distinguish one component from another. Each embodiment described and illustrated herein also includes its complementary embodiment. Additionally, in this specification, 'and/or' is used to mean including at least one of the components listed before and after.
명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다. 또한, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 배제하는 것으로 이해되어서는 안 된다. 또한, 본 명세서에서 "연결"은 복수의 구성 요소를 간접적으로 연결하는 것, 및 직접적으로 연결하는 것을 모두 포함하는 의미로 사용된다.In the specification, singular expressions include plural expressions unless the context clearly dictates otherwise. In addition, terms such as "include" or "have" are intended to designate the presence of features, numbers, steps, components, or a combination thereof described in the specification, but are not intended to indicate the presence of one or more other features, numbers, steps, or components. It should not be understood as excluding the possibility of the presence or addition of elements or combinations thereof. Additionally, in this specification, “connection” is used to mean both indirectly connecting and directly connecting a plurality of components.
또한, 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.Additionally, in the following description of the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description will be omitted.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.The advantages and features of the present invention and methods for achieving them will become clear with reference to the embodiments described below along with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below and may be implemented in various different forms. The present embodiments are merely provided to ensure that the disclosure of the present invention is complete and to be understood by those skilled in the art. It is provided to fully inform those who have the scope of the invention, and the present invention is only defined by the scope of the claims.
본 발명은 육방정계 질화붕소(Hexagonal Boron Nitride, 이하 h-BN으로 표시될 수 있음)를 이용하여 열전도성을 향상시킨 복합소재에 관한 것으로, 기존의 육방정계 질화붕소를 포함한 방열소재가 축방향 열전도성이 낮다는 단점을 보완한 복합소재이다. 이하, 설명의 편의를 위해 일 실시예에 따른 본 발명의 육방정계 질화붕소가 포함된 복합소재를 열전도성 복합소재(1)라 한다.The present invention relates to a composite material with improved thermal conductivity using hexagonal boron nitride (hereinafter referred to as h-BN), and the existing heat dissipation material containing hexagonal boron nitride can be used to conduct axial thermoelectric conduction. It is a composite material that compensates for the disadvantage of low conductivity. Hereinafter, for convenience of explanation, a composite material containing hexagonal boron nitride of the present invention according to an embodiment will be referred to as a thermally conductive composite material (1).
본 발명의 열전도성 복합소재(1)는 축방향 및 축방향에 수직한 일 면을 갖도록 형성되는 고분자 매트릭스(10)에 육방정계 질화붕소가 첨가되어 형성될 수 있다. 여기서 축방향은, 고분자 매트릭스(10)가 판상형으로 형성된다고 하였을 때, 높이에 해당하는 방향을 의미할 수 있고, 일 면은 이에 수직하게 형성되는 면을 의미할 수 있다. 즉, 일 면은 판상형 구조에서 상기 축방향과 수직이 되는 밑면이 될 수 있다. The thermally conductive composite material 1 of the present invention may be formed by adding hexagonal boron nitride to a polymer matrix 10 formed to have an axial direction and one side perpendicular to the axial direction. Here, assuming that the polymer matrix 10 is formed in a plate shape, the axial direction may refer to a direction corresponding to the height, and one side may refer to a side formed perpendicular thereto. That is, one surface may be a bottom surface perpendicular to the axial direction in a plate-shaped structure.
본 발명에서 활용되는 육방정계 질화붕소는 동일한 비율의 붕소와 질소를 함유하는 화합물로, 육방정 구조를 갖고 있어 화학적 및 열적 안정성이 우수하여 고분자 기판에 안정되게 첨가될 수 있다. 육방정계 질화붕소의 크기는 마이크로 및 나노 크기로 형성될 수 있다. 또한, 육방정계 질화붕소는 열전도도가 뛰어나 방열소재의 첨가물로 많이 이용된다.The hexagonal boron nitride used in the present invention is a compound containing boron and nitrogen in equal proportions, and has a hexagonal structure, so it has excellent chemical and thermal stability and can be stably added to polymer substrates. The size of hexagonal boron nitride can be formed in micro and nano sizes. In addition, hexagonal boron nitride has excellent thermal conductivity and is widely used as an additive in heat dissipation materials.
본 발명의 열전도성 복합소재(1)는 고분자 매트릭스(10)에 다양한 크기를 갖는 복수의 육방정계 질화붕소를 첨가하여 형성될 수 있다. 본 발명의 열전도성 복합소재(1)는 제1 크기를 갖는 제1 육방정계 질화붕소(20)(이하 제1 h-BN으로 표시될 수 있음) 및 제1 크기보다 작은 크기인 제2 크기를 갖는 제2 육방정계 질화붕소(30)(이하 제2 h-BN으로 표시될 수 있음)를 포함할 수 있다. 일 실시예에 따르면, 열전도성 복합소재(1)에 포함되는 제1 크기는 마이크로 크기일 수 있으며, 제2 크기는 나노 크기일 수 있다. 여기서 마이크로 크기는 3μm 내지 7μm의 크기를 의미할 수 있으며, 나노 크기는 100nm 내지 200nm의 크기를 의미할 수 있다. 각 육방정계 질화붕소의 크기는 위의 예시에 한정되지 않고 본 발명의 목적을 달성하기 위한 크기라면 제한 없이 적용될 수 있다.The thermally conductive composite material 1 of the present invention can be formed by adding a plurality of hexagonal boron nitrides having various sizes to the polymer matrix 10. The thermally conductive composite material 1 of the present invention includes first hexagonal boron nitride 20 (hereinafter referred to as first h-BN) having a first size and a second size smaller than the first size. It may include second hexagonal boron nitride 30 (hereinafter referred to as second h-BN). According to one embodiment, the first size included in the thermally conductive composite material 1 may be micro size, and the second size may be nano size. Here, the micro size may mean a size of 3 μm to 7 μm, and the nano size may mean a size of 100 nm to 200 nm. The size of each hexagonal boron nitride is not limited to the above examples and can be applied without limitation as long as it is a size to achieve the purpose of the present invention.
또한, 제1 육방정계 질화붕소(20)는 높은 종횡비를 갖는 판상형 구조로 형성될 수 있다. Additionally, the first hexagonal boron nitride 20 may be formed in a plate-like structure with a high aspect ratio.
본 발명의 열전도성 복합소재(1)는 첨가된 복수의 육방정계 질화붕소의 수직배열로 인해 축방향 열전도도가 향상될 수 있다. 일 실시예에 따르면, 축방향에 수직한 일 면을 갖도록 형성된 고분자 매트릭스(10) 내에 포함되는 육방정계 질화붕소는 상기 일 면에 수직 배향되도록 형성될 수 있다. 기존의 육방정계 질화붕소를 포함한 방열소재는 판상형 구조의 육방정계 질화붕소가 상기 일 면과 수평이 되도록 배열되어 일 면과 수직하는 방향인 축방향 열전도도가 좋지 못한 단점이 존재하였는데 반해, 본 발명의 열전도성 복합소재(1)는 상기 일 면에 수직하게 배열된 육방정계 질화붕소를 통해 축방향으로 열전달을 용이하게 하도록 하여 축방향 열전도도가 개선될 수 있다.The thermally conductive composite material (1) of the present invention can have improved axial thermal conductivity due to the vertical arrangement of the plurality of added hexagonal boron nitride. According to one embodiment, hexagonal boron nitride included in the polymer matrix 10 formed to have one side perpendicular to the axial direction may be formed to be oriented perpendicular to the one side. The existing heat dissipation material containing hexagonal boron nitride has the disadvantage of poor axial thermal conductivity in the direction perpendicular to one side because the hexagonal boron nitride of the plate-like structure is arranged horizontally with one side, whereas the present invention has a disadvantage. The thermally conductive composite material (1) can improve axial thermal conductivity by facilitating heat transfer in the axial direction through hexagonal boron nitride arranged perpendicularly on one surface.
본 발명의 열전도성 복합소재(1)의 육방정계 질화붕소의 수직 배향은, 복수의 복합크기 질화붕소를 포함함으로 인하여 형성될 수 있다. 열전도성 복합소재(1)가 상기 제1 육방정계 질화붕소(20) 및 상기 제2 육방정계 질화붕소(30)를 모두 포함하는 경우, 제2 육방정계 질화붕소(30)는 제1 육방정계 질화붕소(20) 표면 및/혹은 제1 육방정계 질화붕소(20)간 사이에 위치하도록 분포될 수 있다.The vertical orientation of the hexagonal boron nitride of the thermally conductive composite material (1) of the present invention can be formed by including a plurality of complex-sized boron nitride. When the thermally conductive composite material (1) includes both the first hexagonal boron nitride (20) and the second hexagonal boron nitride (30), the second hexagonal boron nitride (30) is the first hexagonal boron nitride (30). It may be distributed to be located between the surface of boron (20) and/or the first hexagonal boron nitride (20).
제2 육방정계 질화붕소(30)의 이러한 위치분포로 인해 제1 육방정계 질화붕소(20)는 상기 일 면에 수직이 되는 형태로 배향될 수 있다. 제1 육방정계 질화붕소(20)의 수직 배향 형태는, 보다 작은 크기의 제2 육방정계 질화붕소(30)가 제1 육방정계 질화붕소(20)간 생기는 공극(40)에 위치하며 제1 육방정계 질화붕소(20)의 일 면에 수평이 되는 배열을 감소시키며 발생할 수 있다. 여기서 공극(40)은 열전도성 복합소재(1)에 포함되는 육방정계 질화붕소 사이에 존재하는 고분자 매트릭스(10)를 의미하는 것으로, 고분자 매트릭스(10)는 육방정계 질화붕소에 비하여 상대적으로 열전도도가 낮기 때문에 소재 내에 공극(40)이 많을수록 열저항이 증가하고, 육방정계 질화붕소간 접촉면의 감소로 인하여 소재의 열전도성이 저하될 수 있다. Due to this positional distribution of the second hexagonal boron nitride 30, the first hexagonal boron nitride 20 can be oriented perpendicular to the one surface. The vertical orientation of the first hexagonal boron nitride 20 is such that the smaller size of the second hexagonal boron nitride 30 is located in the gap 40 formed between the first hexagonal boron nitride 20, This may occur by reducing the horizontal arrangement on one side of the crystalline boron nitride (20). Here, the voids 40 refer to the polymer matrix 10 existing between the hexagonal boron nitride included in the thermally conductive composite material 1, and the polymer matrix 10 has relatively high thermal conductivity compared to the hexagonal boron nitride. Since is low, as the number of voids 40 in the material increases, thermal resistance increases, and the thermal conductivity of the material may decrease due to a decrease in the contact surface between hexagonal boron nitride.
본 발명의 열전도성 복합소재(1)에 첨가되는 다양한 크기의 복수의 육방정계 질화붕소는 각 육방정계 질화붕소 사이의 공극(40)에 위치할 수 있다. 일 실시예에 따르면, 제1 크기의 제1 육방정계 질화붕소(20)가 고분자 매트릭스(10)에 첨가되고, 제1 크기 보다 작은 제2 크기의 제2 육방정계 질화붕소(30)가 더 첨가되는 경우, 상기 제1 육방정계 질화붕소(20) 표면 및 상기 제1 육방정계 질화붕소(20)간 사이에 위치할 수 있다. 예를 들어, 열전도성 복합소재(1)에 포함된 제2 육방정계 질화붕소(30)는 제1 육방정계 질화붕소(20) 표면에 위치하도록 형성되어 제1 육방정계 질화붕소(20)로 인한 공극(40)을 감소시킬 수 있고, 제1 육방정계 질화붕소(20)간 사이에 위치하여 공극(40) 감소 및 질화붕소간 접촉면적을 늘릴 수도 있다. A plurality of hexagonal boron nitrides of various sizes added to the thermally conductive composite material (1) of the present invention may be located in the voids 40 between each hexagonal boron nitride. According to one embodiment, first hexagonal boron nitride 20 of a first size is added to the polymer matrix 10, and second hexagonal boron nitride 30 of a second size smaller than the first size is further added. In this case, it may be located between the surface of the first hexagonal boron nitride (20) and the first hexagonal boron nitride (20). For example, the second hexagonal boron nitride (30) contained in the thermally conductive composite material (1) is formed to be located on the surface of the first hexagonal boron nitride (20) and is formed to be located on the surface of the first hexagonal boron nitride (20). The voids 40 can be reduced, and by being located between the first hexagonal boron nitrides 20, the voids 40 can be reduced and the contact area between the boron nitrides can be increased.
또한, 본 발명의 열전도성 복합소재(1)는 그에 포함된 다양한 크기의 복수의 육방정계 질화붕소의 위치분포로 인하여 공극(40)을 감소시켜 열전도도를 향상시킬 수 있다. 일 실시예에 따르면, 제2 육방정계 질화붕소(30)는 제1 육방정계 질화붕소(20)가 형성하는 공극(40)에 위치하여 공극(40)을 감소시키는 역할을 함으로써 공극(40)에 의해 발생하는 열저항 증가 효과를 억제시킬 수 있고, 질화붕소간 표면접촉을 강화시켜 열전도도를 증가시킬 수 있다. In addition, the thermally conductive composite material 1 of the present invention can improve thermal conductivity by reducing the voids 40 due to the positional distribution of a plurality of hexagonal boron nitrides of various sizes contained therein. According to one embodiment, the second hexagonal boron nitride 30 is located in the void 40 formed by the first hexagonal boron nitride 20 and serves to reduce the void 40, thereby forming the void 40. It can suppress the effect of increasing thermal resistance caused by oxidation, and increase thermal conductivity by strengthening the surface contact between boron nitride.
또한, 본 발명의 열전도성 복합소재(1)는, 복합소재 내에 포함된 고분자 매트릭스(10), 제1 육방정계 질화붕소(20) 및 제2 육방정계 질화붕소(30)의 함량을 조절하여 축방향 열전도도를 향상시킬 수 있다. 일 실시예에 따르면, 열전도성 복합소재(1)에 포함되는 고분자 매트릭스(10)의 함량을 40% 내지 70%로 할 수 있다. 이에 따라 열전도성 복합소재(1)에 포함되는 제1 육방정계 질화붕소(20) 및 제2 육방정계 질화붕소(30)의 함량은 60% 내지 30%로 할 수 있다. In addition, the thermally conductive composite material (1) of the present invention adjusts the content of the polymer matrix (10), the first hexagonal boron nitride (20), and the second hexagonal boron nitride (30) contained in the composite material. Directional thermal conductivity can be improved. According to one embodiment, the content of the polymer matrix 10 included in the thermally conductive composite material 1 may be 40% to 70%. Accordingly, the content of the first hexagonal boron nitride (20) and the second hexagonal boron nitride (30) included in the thermally conductive composite material (1) may be 60% to 30%.
또한, 본 발명의 열전도성 복합소재(1)는 포함되는 다양한 크기를 갖는 복수의 육방정계 질화붕소간 함량 비율을 조절하여 열전도도를 향상시킬 수 있다. 일 실시예에 따르면, 열전도성 복합소재(1)에 포함되는 제1 육방정계 질화붕소(20) 및 제2 육방정계 질화붕소(30)의 함량비를 70:30 내지 30:70으로 할 수 있다. In addition, the thermal conductive composite material (1) of the present invention can improve thermal conductivity by adjusting the content ratio between a plurality of hexagonal boron nitrides having various sizes. According to one embodiment, the content ratio of the first hexagonal boron nitride (20) and the second hexagonal boron nitride (30) included in the thermally conductive composite material (1) may be 70:30 to 30:70. .
이하 설명에 있어서 동일한 기능이나 동작을 수행하는 구성은 동일한 도면기호를 부여하며, 특별한 설명이 없는 한, 동일한 도면기호를 가진 구성의 기능, 동작, 제조방법, 실험결과는 동일함을 이해하여야 한다.In the following description, components that perform the same function or operation are given the same drawing symbol, and unless otherwise specified, it should be understood that the function, operation, manufacturing method, and experimental results of the components with the same drawing symbol are the same.
이하 도면을 참조하여 일 실시예에 따른 육방정계 질화붕소를 이용한 열전도성 복합소재(1)에 대하여 자세히 설명하도록 한다. Hereinafter, a thermally conductive composite material 1 using hexagonal boron nitride according to an embodiment will be described in detail with reference to the drawings.
도 1은 일 실시예에 따른 열전도성 복합소재(1) 구조를 나타낸 도면이다.Figure 1 is a diagram showing the structure of a thermally conductive composite material 1 according to an embodiment.
도 1의 구조에 따르면, 본 발명의 열전도성 복합소재(1)는 고분자 매트릭스(10), 제1크기를 갖는 제1 육방정계 질화붕소(20) 및 제1 크기보다 작은 크기의 제2 크기를 갖는 제2 육방정계 질화붕소(30)를 포함할 수 있다. 이하 고분자 매트릭스(10), 육방정계 질화붕소 및 이들로 구성된 열전도성 복합소재(1)에 관하여 구체적으로 설명하도록 한다.According to the structure of FIG. 1, the thermally conductive composite material 1 of the present invention includes a polymer matrix 10, first hexagonal boron nitride 20 having a first size, and a second size smaller than the first size. It may include a second hexagonal boron nitride (30). Hereinafter, the polymer matrix 10, hexagonal boron nitride, and the thermally conductive composite material 1 composed thereof will be described in detail.
고분자 매트릭스(10)는 다양한 고분자를 기반으로 하여 형성되는 매트릭스로, 열전도성 복합소재(1)의 기판이 되는 역할을 할 수 있다. 여기서 기반이 되는 고분자는 열가소성 수지 및 열경화성 수지 고분자를 단독 또는 이종이상 블렌딩하여 사용할 수 있다. 예를 들어, 상기 고분자는, 폴리디메틸실록산(PDMS)일 수 있다. 다른 예를 들어, 상기 고분자는, 폴리에틸렌(PE), 폴리프로필렌(PP), 폴리메틸메타크릴레이트(PMMA), 폴리카보네이트(PC) 등의 열전도성을 가지는 고분자를 단독 또는 복합화한 고분자를 적어도 하나 이상 포함할 수 있다.The polymer matrix 10 is a matrix formed based on various polymers and can serve as a substrate for the thermally conductive composite material 1. Here, the polymer as the base can be used alone or by blending thermoplastic resin and thermosetting resin polymer. For example, the polymer may be polydimethylsiloxane (PDMS). For another example, the polymer may include at least one polymer that is singly or in combination with thermally conductive polymers such as polyethylene (PE), polypropylene (PP), polymethyl methacrylate (PMMA), and polycarbonate (PC). It may include more.
본 발명에서 고분자 매트릭스(10)는 판상형의 형태로 형성되어 활용될 수 있다. 즉, 본 발명에서 고분자 매트릭스(10)는 축방향과 축방향에 수직한 일면을 포함하는 판상형의 형태로 형성될 수 있다. 고분자 매트릭스(10)의 이러한 형태로 인하여 본 발명의 열전도성 복합소재(1)는 축방향 열전도도 및 수평방향 열전도도를 각기 다르게 가질 수 있다. In the present invention, the polymer matrix 10 can be formed and utilized in a plate-like shape. That is, in the present invention, the polymer matrix 10 may be formed in a plate-like shape including an axial direction and one surface perpendicular to the axial direction. Due to this form of the polymer matrix 10, the thermally conductive composite material 1 of the present invention may have different axial thermal conductivity and horizontal thermal conductivity.
도 2를 참조하여 육방정계 질화붕소에 대하여 설명하도록 한다.Hexagonal boron nitride will be described with reference to FIG. 2.
도 2는 육방정계 질화붕소의 결정구조를 나타낸 도면이다. Figure 2 is a diagram showing the crystal structure of hexagonal boron nitride.
육방정계 질화붕소는 흑연과 유사한 육각방면의 적층 구조를 가져 매우 단단한 결합을 형성하며, 윤활성을 갖는다. 또한 육방정계 질화붕소는 원자 번호가 낮은 원소의 공유결합 물질로서 높은 열전도성을 가지며, 융점을 가지지 않고 약 3,000℃에서 승화되므로 고온에서 높은 안정성을 가지고, 전기 저항이 매우 높아 1,000℃를 넘는 고온 영역에서 105Ω의 저항을 가지며, 매우 안정한 육각면의 결합을 가지므로 높은 화학적 안정성을 가지고, 진비중이 2.26으로서 세라믹 중에서는 매우 낮은 편이므로 여러 재료 등의 부품 경량화를 유도할 수 있는 특징이 존재한다.Hexagonal boron nitride has a hexagonal layered structure similar to graphite, forms a very hard bond, and has lubricity. In addition, hexagonal boron nitride is a covalent material of elements with a low atomic number and has high thermal conductivity. It has no melting point and sublimates at about 3,000℃, so it has high stability at high temperatures. It has a very high electrical resistance, so it can be used in high temperature ranges exceeding 1,000℃. It has a resistance of 105Ω, has high chemical stability because it has a very stable hexagonal surface bond, and has a true specific gravity of 2.26, which is very low among ceramics, so it has features that can lead to weight reduction of parts such as various materials.
일 실시예에 의하면, 본 발명에서 활용될 수 있는 육방정계 질화붕소는 마이크로 크기 및 나노 크기로 제조되어 활용될 수 있다. 마이크로 크기의 육방정계 질화붕소는 불규칙한 판상형의 모폴로지를 가질 수 있고, 약 31의 종횡비를 가질 수 있다. 반면, 나노 크기의 육방정계 질화붕소는 원반 디스크의 모폴로지를 가질 수 있고, 약 3의 종횡비를 가질 수 있다. 이와 같은 특성으로 인해, 마이크로 크기의 육방정계 질화붕소는 나노 크기의 육방정계 질화붕소에 비하여 일방향으로의 열전달에 더 유리하고, 나노 크기의 육방정계 질화붕소는 마이크로 크기의 육방정계 질화붕소에 비하여 여러 방향으로 열을 전달하는 것에 유리할 수 있다.According to one embodiment, hexagonal boron nitride that can be used in the present invention can be manufactured and utilized in micro and nano sizes. Micro-sized hexagonal boron nitride may have an irregular plate-like morphology and may have an aspect ratio of about 31. On the other hand, nano-sized hexagonal boron nitride may have the morphology of a disk and an aspect ratio of about 3. Due to these characteristics, micro-sized hexagonal boron nitride is more advantageous for heat transfer in one direction than nano-sized hexagonal boron nitride, and nano-sized hexagonal boron nitride has several advantages compared to micro-sized hexagonal boron nitride. It can be advantageous to transfer heat in this direction.
도 3은 마이크로 크기의 육방정계 질화붕소를 관찰한 도면이다. Figure 3 is a view showing micro-sized hexagonal boron nitride.
도 3에 도시된 바와 같이 마이크로 크기의 육방정계 질화붕소는 불규칙한 판상형의 형상을 나타낼 수 있다. As shown in FIG. 3, micro-sized hexagonal boron nitride can exhibit an irregular plate-like shape.
도 4 내지 도 9를 참조하여 나노 크기의 육방정계 질화붕소의 구성원소 및 결정구조를 확인하도록 한다. 4 to 9 to confirm the constituent elements and crystal structure of nano-sized hexagonal boron nitride.
일 실시예에 따라 본발명에서 활용되는 나노 크기의 육방정계 질화붕소 제조방법은, 산화붕소와 멜라민을 산화붕소 : 멜라민 = 3 : 2의 비율로 혼합 후 얻어진 혼합물을 질소 분위기 하에서 1500℃에서 1시간 가량 교반하여 불순물을 녹인 후 필터에 걸러 침전시키고, 불순물을 제거한 분말을 100℃ 오븐에 건조하는 방법일 수 있다.According to one embodiment, the nano-sized hexagonal boron nitride manufacturing method used in the present invention includes mixing boron oxide and melamine in a ratio of boron oxide: melamine = 3: 2, and then heating the resulting mixture at 1500°C for 1 hour under a nitrogen atmosphere. This may be a method of stirring to dissolve impurities, filtering them to precipitate them, and drying the powder from which impurities have been removed in an oven at 100°C.
도 4는 상기 제조방법으로 제조한 질화붕소의 XRD(X-ray diffraction) 분석 결과를 나타낸 것이다. 도 4의 XRD 분석 결과에서 확인할 수 있듯이, 상기 분말은 질화붕소의 육방정계 구조의 상이 형성된 것을 확인할 수 있다. 또한 상기 분말은 육방정계 외 다른 피크가 관찰되지 않은 것으로 보아 불순물이 없는 고순도의 육방정계 질화붕소가 합성된 것임을 확인할 수 있다. Figure 4 shows the results of XRD (X-ray diffraction) analysis of boron nitride produced by the above production method. As can be seen from the XRD analysis results in FIG. 4, it can be confirmed that the powder has a hexagonal structure phase of boron nitride. In addition, since no peaks other than the hexagonal phase were observed in the powder, it can be confirmed that high-purity hexagonal boron nitride without impurities was synthesized.
도 5는 상기 제조방법으로 제조한 질화붕소의 FTIR(Fourier transform infrared) 분석 결과를 나타낸 것이다. 도 5의 FTIR 분석에서는 750 및 1350cm-1에서 B-N bending, B-N stretching peak가 각각 관찰되어 질화붕소의 구조체를 형성하고 있는 것을 알 수 있다. Figure 5 shows the results of FTIR (Fourier transform infrared) analysis of boron nitride produced by the above production method. In the FTIR analysis of Figure 5, B-N bending and B-N stretching peaks were observed at 750 and 1350 cm-1, respectively, showing that a boron nitride structure was formed.
도 6은 상기 제조방법으로 제조한 질화붕소의 SEM(Scanning electron microscope) 분석 결과이고, 도 7은 상기 제조방법으로 얻은 분말의 TEM(Transmission electron microscope) 분석 결과이다. 도 6 및 도 7에 나타난 SEM 및 TEM의 분석 결과에서 알 수 있듯이, 본 발명의 실시예에 따른 나노 크기의 육방정계 질화붕소는 원반 디스크 형태의 구조를 가지고 있는 것을 알 수 있다.Figure 6 is a SEM (Scanning Electron Microscope) analysis result of boron nitride prepared by the above manufacturing method, and Figure 7 is a TEM (Transmission Electron Microscope) analysis result of the powder obtained by the above manufacturing method. As can be seen from the SEM and TEM analysis results shown in FIGS. 6 and 7, the nano-sized hexagonal boron nitride according to an embodiment of the present invention has a disk-shaped structure.
도 8은 상기 제조방법으로 제조한 분말의 EDS(Energy dispersive x-ray spectroscopy) 분석 결과를 나타낸 것이다. 도 8의 EDS mapping에서 알 수 있듯이, 붕소 및 질소 원소가 존재하는 것으로 보아 질화붕소가 합성된 결과를 확인할 수 있다.Figure 8 shows the results of EDS (Energy dispersive x-ray spectroscopy) analysis of the powder prepared by the above manufacturing method. As can be seen from the EDS mapping of FIG. 8, the presence of boron and nitrogen elements confirms the results of boron nitride synthesis.
도 9는 상기 제조방법으로 제조한 분말의 XPS(X-ray photoelectron spectroscopy) 분석 결과를 나타낸 것이다. 도 9의 XPS 분석 결과에서 알 수 있듯이, B-N bonding 및 미반응 혹은 질화붕소 말단에 B-O group이 존재하는 결과를 통해 질화붕소 구조를 확인할 수 있다. Figure 9 shows the results of XPS (X-ray photoelectron spectroscopy) analysis of the powder prepared by the above manufacturing method. As can be seen from the XPS analysis results in Figure 9, the boron nitride structure can be confirmed through B-N bonding and the presence of unreacted or B-O groups at the terminals of boron nitride.
본 발명의 열전도성 복합소재(1)는 고분자 매트릭스(10)에 다양한 크기의 복수의 육방정계 질화붕소를 첨가함으로써 형성될 수 있다. 일 실시예에 따르면, 열전도성 복합소재(1)는 고분자 매트릭스(10)에 제1 크기를 갖는 제1 육방정계 질화붕소(20) 및 상기 제1 크기보다 작은 제2 크기를 갖는 제2 육방정계 질화붕소(30)를 첨가하여 형성될 수 있다. 또 다른 실시예에 따르면, 여기서 제1 크기는 마이크로 크기일 수 있고, 제2 크기는 나노 크기일 수 있다. 즉 열전도성 복합소재(1)는 고분자 매트릭스(10)에 마이크로 크기를 갖는 제1 육방정계 질화붕소(20) 및 나노 크기를 갖는 제2 육방정계 질화붕소(30)를 첨가하여 형성될 수 있다. The thermally conductive composite material 1 of the present invention can be formed by adding a plurality of hexagonal boron nitrides of various sizes to the polymer matrix 10. According to one embodiment, the thermally conductive composite material 1 includes first hexagonal boron nitride 20 having a first size in a polymer matrix 10 and a second hexagonal boron nitride 20 having a second size smaller than the first size. It can be formed by adding boron nitride (30). According to another embodiment, the first size may be a micro size, and the second size may be a nano size. That is, the thermally conductive composite material 1 may be formed by adding first hexagonal boron nitride 20 having a micro size and second hexagonal boron nitride 30 having a nano size to the polymer matrix 10.
이하 실험예 1 내지 3을 통해 다양한 크기의 육방정계 질화붕소를 포함한 열전도성 복합소재(1)의 축방향 열전도도를 비교하도록 한다.The axial thermal conductivity of the thermally conductive composite material (1) containing hexagonal boron nitride of various sizes will be compared through Experimental Examples 1 to 3 below.
<실험예 1><Experimental Example 1>
도 10 및 도 11을 참조하여 고분자 매트릭스(10)에 마이크로 크기를 갖는 육방정계 질화붕소만을 첨가한 경우의 열전도성 복합소재(1)에 관하여 설명하도록 한다.With reference to FIGS. 10 and 11 , the thermally conductive composite material 1 will be described when only micro-sized hexagonal boron nitride is added to the polymer matrix 10.
도 10은 고분자 매트릭스(10)에 마이크로 크기를 갖는 육방정계 질화붕소만을 첨가한 경우의 열전도성 복합소재(1) 구조, 열전도성 복합소재(1)를 통한 축방향 열전달 및 수평방향 열전달 과정을 간략하게 도시하고 있다. 도 10에서 파선은 축방향으로 열전달이 일어나는 과정을 도시한 것이고, 실선은 수평방향으로 열전달이 일어나는 과정을 도시한 것이다. 이러한 경우, 열전도성 복합소재(1)에 포함된 높은 종횡비를 갖는 판상형의 마이크로 크기 육방정계 질화붕소는 고분자 매트릭스(10)와 같은 방향으로 배열되어, 공극(40) 형성, 접촉면 감소 및 수평배열로 인해 낮은 축방향 열전도도를 갖게 될 수 있다. Figure 10 briefly shows the structure of the thermally conductive composite material (1) when only micro-sized hexagonal boron nitride is added to the polymer matrix (10), and the axial heat transfer and horizontal heat transfer processes through the thermally conductive composite material (1). It is clearly depicted. In Figure 10, the broken line shows the process of heat transfer in the axial direction, and the solid line shows the process of heat transfer in the horizontal direction. In this case, the plate-shaped micro-sized hexagonal boron nitride with a high aspect ratio contained in the thermally conductive composite material 1 is arranged in the same direction as the polymer matrix 10, forming voids 40, reducing the contact area, and forming a horizontal arrangement. This may result in low axial thermal conductivity.
도 10에 도시된 일 실시예의 열전도성 복합소재(1)의 구조에 따르면, 판상형의 육방정계 질화붕소는 고분자 매트릭스(10)의 일 면과 각 A(21)를 형성하며, 일 면과 수평에 가깝게 배열되어 있는 모습을 확인할 수 있다. 이러한 판상형을 갖는 육방정계 질화붕소의 수평 배열은 열전도성 복합소재(1)가 상대적으로 낮은 축방향 열전도도를 갖게 하는 원인이 될 수 있다. According to the structure of the thermally conductive composite material 1 of an embodiment shown in FIG. 10, the plate-shaped hexagonal boron nitride forms an angle A (21) with one side of the polymer matrix 10, and is horizontal to one side. You can see that they are arranged closely. The horizontal arrangement of hexagonal boron nitride having this plate shape may cause the thermally conductive composite material 1 to have relatively low axial thermal conductivity.
도 11은 일 실시예에 따라 고분자 매트릭스(10)에 마이크로 크기의 육방정계 질화붕소만을 첨가한 경우의 복합소재 파단면을 도시한 것이다. 도 11에서 관찰한 바에 의하면, 마이크로 크기의 육방정계 질화붕소가 고분자 매트릭스(10)의 일 면과 수평에 가깝게 배열되어 있는 모습을 확인할 수 있다.Figure 11 shows a fracture surface of a composite material when only micro-sized hexagonal boron nitride is added to the polymer matrix 10 according to an embodiment. According to observation in FIG. 11, it can be seen that micro-sized hexagonal boron nitride is arranged close to one side of the polymer matrix 10 and horizontally.
표 1은 PDMS를 고분자 매트릭스(10)로 하여, PDMS 및 PDMS에 평균 5μm 크기를 갖는 육방정계 질화붕소만을 함량을 다르게 하여 첨가한 경우, 각 함량비에 따른 열전도성 복합소재(1)의 축방향 열전도도를 측정한 결과값을 나타낸 테이블이다. 이하의 실시예에서 축방향 열전도도는 laser flash method를 이용하여 10mm(가로) X 10mm(세로) X 0.5mm(두께) 크기의 시편을 상온으로 측정하는 방법으로 측정하였다.Table 1 shows the axial direction of the thermally conductive composite material (1) according to each content ratio when PDMS is used as the polymer matrix (10) and only hexagonal boron nitride with an average size of 5 μm is added to PDMS and PDMS in different amounts. This table shows the results of measuring thermal conductivity. In the following examples, axial thermal conductivity was measured at room temperature on a specimen measuring 10 mm (width) x 10 mm (length) x 0.5 mm (thickness) using the laser flash method.
PDMS(vol%)PDMS(vol%) micro-BN(5μm)micro-BN (5μm) 축방향 열전도도(W/mK)Axial thermal conductivity (W/mK)
100100 -- 0.190.19
7070 3030 0.270.27
6060 4040 0.370.37
5050 5050 1.081.08
4040 6060 1.201.20
표 1에 따르면, PDMS 100%로 구성된 복합소재의 경우 0.19W/mK, 70% PDMS 및 30% micro-BN으로 구성된 복합소재의 경우 0.27W/mK, 60% PDMS 및 40% micro-BN로 구성된 복합소재의 경우 0.37W/mK, 50% PDMS 및 50% micro-BN로 구성된 복합소재의 경우 1.08W/mK, 40% PDMS 및 60% micro-BN로 구성된 복합소재의 경우 1.20W/mK의 축방향 열전도도를 나타냄을 알 수 있다.According to Table 1, 0.19 W/mK for the composite composed of 100% PDMS, 0.27 W/mK for the composite composed of 70% PDMS and 30% micro-BN, and 0.27 W/mK for the composite composed of 60% PDMS and 40% micro-BN. Axis of 0.37 W/mK for composite, 1.08 W/mK for composite composed of 50% PDMS and 50% micro-BN, and 1.20 W/mK for composite composed of 40% PDMS and 60% micro-BN. It can be seen that it represents directional thermal conductivity.
위의 결과에 따라, 고분자 매트릭스(10)에 마이크로 크기의 육방정계 질화붕소가 첨가된 열전도성 복합소재(1)의 경우, 첨가된 육방정계 질화붕소의 함량에 비례하여 열전도도가 증가함을 알 수 있다.According to the above results, in the case of the thermally conductive composite material (1) in which micro-sized hexagonal boron nitride was added to the polymer matrix (10), it was found that the thermal conductivity increased in proportion to the content of the added hexagonal boron nitride. You can.
<실험예 2><Experimental Example 2>
도 12를 참조하여 고분자 매트릭스(10)에 나노 크기를 갖는 육방정계 질화붕소만을 첨가한 경우의 열전도성 복합소재(1)에 관하여 설명하도록 한다.Referring to FIG. 12, the thermally conductive composite material 1 will be described when only nano-sized hexagonal boron nitride is added to the polymer matrix 10.
도 12는 일 실시예에 따라 고분자 매트릭스(10)에 나노 크기의 육방정계 질화붕소만을 첨가한 경우의 복합소재 파단면을 도시한 것이다. 도 12의 복합소재 파단면에 따르면, 나노 크기의 육방정계 질화붕소는 고분자 매트릭스(10)의 일 면과 수평 혹은 수직이 되는 방향으로 랜덤하게 배향되어 형성되어 있는 것을 확인할 수 있다. 이러한 배열로 인하여, 나노 크기의 육방정계 질화붕소만을 포함한 열전도성 복합소재(1)는 마이크로 크기의 육방정계 질화붕소만을 포함한 열전도성 복합소재(1)보다 높은 축방향 열전도도를 나타낼 수 있다.Figure 12 shows a fracture surface of a composite material when only nano-sized hexagonal boron nitride is added to the polymer matrix 10 according to an embodiment. According to the fracture surface of the composite material in FIG. 12, it can be seen that nano-sized hexagonal boron nitride is formed randomly oriented in a direction that is horizontal or perpendicular to one side of the polymer matrix 10. Due to this arrangement, the thermally conductive composite material (1) containing only nano-sized hexagonal boron nitride can exhibit higher axial thermal conductivity than the thermally conductive composite material (1) containing only micro-sized hexagonal boron nitride.
표 2는 PDMS를 고분자 매트릭스(10)로 하여 PDMS 및 PDMS에 150nm 크기를 갖는 육방정계 질화붕소만을 함량을 다르게 하여 첨가한 경우, 각 함량비에 따른 열전도성 복합소재(1)의 축방향 열전도도를 측정한 결과값을 나타낸 테이블이다.Table 2 shows the axial thermal conductivity of the thermally conductive composite material (1) according to each content ratio when PDMS was used as the polymer matrix (10) and only hexagonal boron nitride with a size of 150 nm was added to PDMS and PDMS in different amounts. This is a table showing the measurement results.
PDMS(vol%)PDMS(vol%) nano-BN(150nm)nano-BN (150nm) 축방향 열전도도(W/mK)Axial thermal conductivity (W/mK)
100100 -- 0.190.19
7070 3030 0.580.58
6060 4040 0.980.98
5050 5050 1.681.68
4040 6060 2.402.40
표 2에 따르면, PDMS 100%로 구성된 복합소재의 경우 0.19W/mK, 70% PDMS 및 30% nano-BN로 구성된 복합소재의 경우 0.58W/mK, 60% PDMS 및 40% nano-BN로 구성된 복합소재의 경우 0.98W/mK, 50% PDMS 및 50% nano-BN로 구성된 복합소재의 경우 1.68W/mK, 40% PDMS 및 60% nano-BN로 구성된 복합소재의 경우 2.40W/mK의 축방향 열전도도를 나타냄을 알 수 있다. According to Table 2, 0.19 W/mK for the composite composed of 100% PDMS, 0.58 W/mK for the composite composed of 70% PDMS and 30% nano-BN, and 0.58 W/mK for the composite composed of 60% PDMS and 40% nano-BN. Axis of 0.98 W/mK for the composite, 1.68 W/mK for the composite composed of 50% PDMS and 50% nano-BN, and 2.40 W/mK for the composite composed of 40% PDMS and 60% nano-BN. It can be seen that it represents directional thermal conductivity.
위의 결과로 고분자 매트릭스(10)에 나노 크기의 육방정계 질화붕소가 첨가된 열전도성 복합소재(1)의 경우, 첨가된 육방정계 질화붕소의 함량에 비례하여 열전도도가 증가함을 알 수 있다. 또한, 표 1의 마이크로 크기의 육방정계 질화붕소가 첨가된 경우와 비교해 보았을 때, 나노 크기의 육방정계 질화붕소가 첨가된 경우가 축방향 열전도도가 더 높은 것을 확인할 수 있다. 이는 나노 크기의 육방정계 질화붕소만 포함된 경우, 마이크로 크기의 육방정계 질화붕소만 포함된 경우에 비해 수직 배향 증가 및 공극(40) 감소의 영향으로 인한 것으로 볼 수 있다. 또한, 나노 크기의 육방정계 질화붕소는 앞서 설명한 바와 같이 마이크로 크기의 육방정계 질화붕소에 비하여 낮은 종횡비를 갖고 있어 고분자 매트릭스(10) 내에 첨가되는 경우, 마이크로 크기의 육방정계 질화붕소만 첨가되는 경우에 비해 육방정계 질화붕소가 랜덤하게 배열되는 경향을 보이며 소재의 이방성이 감소한 영향으로 인한 것으로도 볼 수 있다.As a result of the above results, in the case of the thermally conductive composite material (1) in which nano-sized hexagonal boron nitride was added to the polymer matrix (10), it can be seen that the thermal conductivity increases in proportion to the content of the added hexagonal boron nitride. . In addition, when compared to the case in Table 1 where micro-sized hexagonal boron nitride was added, it can be seen that the axial thermal conductivity is higher in the case where nano-sized hexagonal boron nitride is added. This can be seen as due to the effect of increased vertical orientation and decreased voids 40 when only nano-sized hexagonal boron nitride is included compared to when only micro-sized hexagonal boron nitride is included. In addition, as described above, nano-sized hexagonal boron nitride has a lower aspect ratio than micro-sized hexagonal boron nitride, so when added into the polymer matrix 10, only micro-sized hexagonal boron nitride is added. In comparison, hexagonal boron nitride tends to be randomly arranged, which can also be seen as the result of a decrease in the anisotropy of the material.
<실험예 3><Experimental Example 3>
일 실시예에 따라, 고분자 매트릭스(10)에 제1 육방정계 질화붕소(20)를 첨가한 열전도성 복합소재(1)에 그보다 작은 크기를 갖는 제2 육방정계 질화붕소(30)를 더 첨가한 경우, 열전도성 복합소재(1)는 도 13에서 도시한 바와 같은 구조를 형성할 수 있다.According to one embodiment, a second hexagonal boron nitride (30) having a smaller size is further added to the thermally conductive composite material (1) in which first hexagonal boron nitride (20) is added to the polymer matrix (10). In this case, the thermally conductive composite material 1 may form a structure as shown in FIG. 13.
도 13은 제1 육방정계 질화붕소(20) 및 제2 육방정계 질화붕소(30)를 포함한 열전도성 복합소재(1)의 구조, 열전도성 복합소재(1)를 통한 축방향 열전달 및 수평방향 열전달 과정을 간략하게 도시하고 있다. 도 13에서 파선은 축방향으로 열전달이 일어나는 과정을 도시한 것이고, 실선은 수평방향으로 열전달이 일어나는 과정을 도시한 것이다. Figure 13 shows the structure of the thermally conductive composite material (1) including the first hexagonal boron nitride (20) and the second hexagonal boron nitride (30), axial heat transfer and horizontal heat transfer through the thermally conductive composite material (1). The process is briefly shown. In Figure 13, the broken line shows the process of heat transfer in the axial direction, and the solid line shows the process of heat transfer in the horizontal direction.
도 13의 일 실시예에 의한 열전도성 복합소재(1) 구조에 따르면, 열전도성 복합소재(1)는 나노 크기의 제2 육방정계 질화붕소(30)가 마이크로 크기의 제1 육방정계 질화붕소(20) 표면 및/혹은 그 사이에 생기는 공극(40)에 함침하여 공극(40)을 채우는 형태로 형성될 수 있다. According to the structure of the thermally conductive composite material 1 according to an embodiment of FIG. 13, the thermally conductive composite material 1 is composed of nano-sized second hexagonal boron nitride 30 and micro-sized first hexagonal boron nitride ( 20) It may be formed to fill the voids 40 by impregnating the surface and/or the voids 40 formed between them.
또 다른 실시예에 따르면, 열전도성 복합소재(1)는 제2 육방정계 질화붕소(30)가 제1육방정계 질화붕소로 인해 형성되는 공극(40)을 채움으로써 상기 제1 육방정계 질화붕소(20)가 고분자 매트릭스(10)가 형성된 일 면과 각 A(21)보다 큰 각 B(11)를 형성하며, 일 면과 수직 배향하도록 형성될 수 있다.According to another embodiment, the thermally conductive composite material 1 is formed by filling the voids 40 formed by the second hexagonal boron nitride 30 with the first hexagonal boron nitride ( 20 forms an angle B (11) larger than the angle A (21) with one side on which the polymer matrix 10 is formed, and may be formed to be oriented perpendicularly to one side.
제2 육방정계 질화붕소(30)에 의하여 수직 배향된 제1 육방정계 질화붕소(20)는 열전도성 복합소재(1) 내에서 축방향으로 연전달을 가능케하여 축방향 열전도도를 개선할 수 있다. 또한, 제2 육방정계 질화붕소(30)는 공극(40)을 채워 공극(40)을 감소시키고 이를 통해 열저항을 감소시켜 열전도성 복합소재(1)가 수평 방향의 열전달뿐만 아니라 축방향 열전달 또한 용이하도록 할 수 있다.The first hexagonal boron nitride (20), which is vertically oriented by the second hexagonal boron nitride (30), can improve axial thermal conductivity by enabling lead transfer in the axial direction within the thermally conductive composite material (1). . In addition, the second hexagonal boron nitride (30) fills the voids (40) to reduce the voids (40) and thereby reduce the thermal resistance, allowing the thermally conductive composite material (1) to perform not only horizontal heat transfer but also axial heat transfer. It can be made easy.
도 14 내지 도 15를 참조하여 고분자 매트릭스(10)에 다양한 크기를 갖는 육방정계 질화붕소가 첨가된 열전도성 복합소재(1)에 대하여 설명하도록 한다. With reference to FIGS. 14 and 15 , the thermally conductive composite material 1 to which hexagonal boron nitride of various sizes is added to the polymer matrix 10 will be described.
도 14 내지 도 15는 일 실시예에 따라 고분자 매트릭스(10)에 마이크로 크기의 제1 육방정계 질화붕소(20) 및 나노 크기의 제2 육방정계 질화붕소(30)를 모두 첨가한 경우의 열전도성 복합소재(1) 파단면을 도시한 것이다. 14 to 15 show thermal conductivity when both micro-sized first hexagonal boron nitride (20) and nano-sized second hexagonal boron nitride (30) are added to the polymer matrix 10 according to an embodiment. This shows the fracture surface of composite material (1).
도 14의 열전도성 복합소재(1) 파단면에 따르면, 마이크로 크기의 제1 육방정계 질화붕소(20)의 수평배열이 다소 감소한 것을 확인할 수 있다. 또한, 제1 육방정계 질화붕소(20)의 수직배열이 증가한 것을 확인할 수 있다.According to the fractured surface of the thermally conductive composite material 1 in FIG. 14, it can be seen that the horizontal arrangement of the micro-sized first hexagonal boron nitride 20 is somewhat reduced. In addition, it can be seen that the vertical arrangement of the first hexagonal boron nitride 20 has increased.
도 15는 도 14의 일부 단면을 확대하여 관찰한 것으로, 도 15를 참조하면, 나노 크기의 제2 육방정계 질화붕소(30)가 제1 육방정계 질화붕소(20)의 표면 혹은/및 제1 육방정계 질화붕소(20)간 사이에 위치하여 공극(40)이 감소하고, 제1 육방정계 질화붕소(20)의 수직배열을 형성이 증가 한 것을 확인할 수 있다. 이러한 공극(40) 감소 및 제1 육방정계 질화붕소(20)의 수직 배열로 인해 다양한 크기를 갖는 복수의 육방정계 질화붕소를 첨가한 열전도성 복합소재(1)는 기존의 일 크기의 육방정계를 첨가한 방열소재에 비하여 높은 축방향 열전도도를 나타낼 수 있고, 이에 따라 더 높은 방열효과를 가질 수 있다.FIG. 15 is an enlarged observation of a partial cross-section of FIG. 14. Referring to FIG. 15, the nano-sized second hexagonal boron nitride 30 is formed on the surface of the first hexagonal boron nitride 20 or/and the first It can be seen that the voids 40 located between the hexagonal boron nitrides 20 are reduced, and the vertical arrangement of the first hexagonal boron nitride 20 is increased. Due to this reduction in the voids 40 and the vertical arrangement of the first hexagonal boron nitride 20, the thermally conductive composite material 1 containing a plurality of hexagonal boron nitrides having various sizes is replaced with the existing one-sized hexagonal boron nitride. Compared to the added heat dissipation material, it can exhibit higher axial thermal conductivity and thus have a higher heat dissipation effect.
표 3은 PDMS를 고분자 매트릭스(10)로 하여, PDMS 및 PDMS에 마이크로 크기의 제1 육방정계 질화붕소(20) 및 나노 크기를 갖는 제2 육방정계 질화붕소(30)를 함량을 다르게하여 첨가한 경우, 각 함량비에 따른 열전도성 복합소재(1)의 축방향 열전도도를 측정한 결과값을 나타낸 테이블이다. 여기서 첨가되는 제1 육방정계 질화붕소(20) 및 제2 육방정계 질화붕소(30)의 함량은 1:1 비율로 하였다.Table 3 shows PDMS as the polymer matrix (10), and PDMS and PDMS with different contents of micro-sized first hexagonal boron nitride (20) and nano-sized second hexagonal boron nitride (30). In this case, this is a table showing the results of measuring the axial thermal conductivity of the thermally conductive composite material (1) according to each content ratio. Here, the content of the first hexagonal boron nitride (20) and the second hexagonal boron nitride (30) added was set at a 1:1 ratio.
PDMS(vol%)PDMS(vol%) Micro-BN(5μm)Micro-BN (5μm) nano-BN(150nm)nano-BN (150nm) 축방향 열전도도(W/mK)Axial thermal conductivity (W/mK)
7070 1515 1515 1.111.11
6060 2020 2020 1.621.62
5050 2525 2525 3.013.01
4040 3030 3030 4.814.81
표 3에 따르면, 70% PDMS 및 15%씩의 제1, 제2 육방정계 질화붕소(30)로 구성된 열전도성 복합소재(1)의 경우 1.11W/mK, 60% PDMS 및 20%씩의 제1, 제2 육방정계 질화붕소(30)로 구성된 열전도성 복합소재(1)의 경우 1.62W/Mk, 50% PDMS 및 25%씩의 제1, 제2 육방정계 질화붕소(30)로 구성된 열전도성 복합소재(1)의 경우 3.01W/Mk, 40% PDMS 및 30%씩의 제1, 제2 육방정계 질화붕소(30)로 구성된 열전도성 복합소재(1)의 경우 4.81W/mK의 축방향 열전도도를 나타냄을 알 수 있다.According to Table 3, for the thermally conductive composite material (1) composed of 70% PDMS and 15% each of first and second hexagonal boron nitride (30), 1.11 W/mK, 60% PDMS and 20% each of 1.62W/Mk for the thermally conductive composite material (1) composed of hexagonal boron nitride (30), 50% PDMS and 25% each of first and second hexagonal boron nitride (30). 3.01 W/Mk for the conductive composite (1) and 4.81 W/mK for the thermally conductive composite (1) composed of 40% PDMS and 30% each of primary and secondary hexagonal boron nitride (30). It can be seen that it represents directional thermal conductivity.
표 4는 표 1 내지 표 3을 종합하여 나타낸 테이블이다.Table 4 is a table showing the synthesis of Tables 1 to 3.
PDMS(vol%)PDMS(vol%) Micro-BN(5μm)Micro-BN (5μm) nano-BN(150nm)nano-BN (150nm) 축방향 열전도도(W/mK)Axial thermal conductivity (W/mK)
7070 3030 -- 0.270.27
1515 1515 1.111.11
-- 3030 0.580.58
6060 4040 -- 0.370.37
2020 2020 1.621.62
-- 4040 0.980.98
5050 5050 -- 1.081.08
2525 2525 3.013.01
-- 5050 1.681.68
4040 6060 -- 1.201.20
3030 3030 4.814.81
-- 6060 2.402.40
표 4를 참조하면, 본 발명의 고분자 매트릭스(10)에 다양한 크기를 갖는 복수의 육방정계 질화붕소를 첨가한 열전도성 복합소재(1)의 경우, 단일 크기의 육방정계 질화붕소를 첨가한 방열소재에 비하여, 대략 2배 내지 4배가량 높은 축방향 열전도도를 갖는 것을 확인할 수 있다.Referring to Table 4, in the case of the thermally conductive composite material (1) in which a plurality of hexagonal boron nitrides of various sizes are added to the polymer matrix (10) of the present invention, a heat dissipation material in which a single size of hexagonal boron nitride is added. Compared to , it can be confirmed that it has an axial thermal conductivity that is approximately 2 to 4 times higher.
도 16은 각각 일 실시예에 따라 제1 육방정계 질화붕소(20)만을 포함한 열전도성 복합소재(1), 제2 육방정계 질화붕소(30)만을 포함한 열전도성 복합소재(1), 제1 육방정계 질화붕소(20) 및 제2 육방정계 질화붕소(30)를 모두 포함한 열전도성 복합소재(1)의 시간에 따른 열적외선 카메라 이미지이다. Figure 16 shows a thermally conductive composite material (1) containing only the first hexagonal boron nitride (20), a thermally conductive composite material (1) containing only the second hexagonal boron nitride (30), and a first hexagonal boron nitride (30), respectively, according to one embodiment. This is a time-dependent thermal infrared camera image of a thermally conductive composite material (1) containing both crystalline boron nitride (20) and secondary hexagonal boron nitride (30).
도 16에 따르면, 일 실시예에서 각각의 복합소재에 10초동안 열을 가하였을 때, 시간대별로 소재의 온도를 열적외선 카메라로 측정한 결과, 마이크로 크기의 제1 육방정계 질화붕소(20)만을 포함한 복합소재는 초기온도 30.1℃에서 1초 후 36.1℃, 3초 후 48℃, 5초 후 57.8℃,7초 후 67.1℃, 10초 후 77.1℃의 온도 변화를 나타내었다. 또한, 나노 크기의 제2 육방정계 질화붕소(30)만을 포함한 복합소재는 초기온도 30.5℃에서 1초 후 47.3℃, 3초 후 65.5℃, 5초 후 72.8℃, 7초 후 80.1℃, 10초 후 84.1℃의 온도 변화를 나타내었다. 반면, 마이크로 크기의 제1 육방정계 질화붕소(20) 및 나노크기의 제2 육방정계 질화붕소(30)를 모두 포함한 복합소재의 경우, 초기온도 31.4℃에서 1초 후 53.2℃, 3초 후 73.1℃, 5초 후 84.8℃, 7초 후 89.3℃, 10초 후 93.6℃의 온도 변화를 나타내었다. According to Figure 16, in one embodiment, when heat was applied to each composite material for 10 seconds, the temperature of the material was measured for each time period using a thermal infrared camera, and only the micro-sized first hexagonal boron nitride (20) was found. The composite material included showed a temperature change of 36.1°C after 1 second, 48°C after 3 seconds, 57.8°C after 5 seconds, 67.1°C after 7 seconds, and 77.1°C after 10 seconds from an initial temperature of 30.1°C. In addition, a composite material containing only nano-sized second hexagonal boron nitride (30) has an initial temperature of 30.5°C, 47.3°C after 1 second, 65.5°C after 3 seconds, 72.8°C after 5 seconds, 80.1°C after 7 seconds, and 10 seconds. Afterwards, a temperature change of 84.1°C was observed. On the other hand, in the case of a composite material containing both micro-sized first hexagonal boron nitride (20) and nano-sized second hexagonal boron nitride (30), the initial temperature was 31.4°C, 53.2°C after 1 second, and 73.1°C after 3 seconds. ℃, the temperature changed to 84.8℃ after 5 seconds, 89.3℃ after 7 seconds, and 93.6℃ after 10 seconds.
도 17은 상기 열전도성 복합소재(1)의 시간에 따른 온도 변화 측정 결과를 그래프로 나타낸 것이다. Figure 17 graphically shows the measurement results of temperature change over time of the thermally conductive composite material (1).
도 16 및 도 17에 따르면, 일 실시예에 따라 각각의 복합소재에 열을 가하였을 때, 온도의 변화는 마이크로 크기의 제1 육방정계 질화붕소(20)만을 포함한 복합소재에서 가장 작았고, 나노 크기의 제2 육방정계 질화붕소(30)만을 포함한 복합소재가 다음으로 온도 변화가 작았으며, 제1 육방정계 질화붕소(20) 및 제2 육방정계 질화붕소(30)를 모두 포함한 열전도성 복합소재(1)에서 온도 변화가 가장 큰 것을 알 수 있다. 온도 변화가 클수록 열전달이 용이하다는 것을 의미하므로 이는 곧 제1 육방정계 질화붕소(20) 및 제2 육방정계 질화붕소(30)를 모두 포함한 열전도성 복합소재(1)의 열전도도가 가장 높다는 것을 의미하는 것으로 이해할 수 있다. According to Figures 16 and 17, when heat was applied to each composite material according to one embodiment, the change in temperature was smallest in the composite material containing only micro-sized first hexagonal boron nitride (20), and nano-sized The composite material containing only the second hexagonal boron nitride (30) had the next smallest temperature change, and the thermally conductive composite material containing both the first hexagonal boron nitride (20) and the second hexagonal boron nitride (30) ( It can be seen that the temperature change is the largest in 1). The larger the temperature change, the easier the heat transfer, which means that the thermal conductivity composite material (1) containing both the first hexagonal boron nitride (20) and the second hexagonal boron nitride (30) has the highest thermal conductivity. It can be understood that
즉, 상술한 다양한 크기를 갖는 복수의 육방정계 질화붕소를 첨가한 열전도성 복합소재(1)는, 질화붕소간 공극(40)의 감소 및 제1 육방정계 질화붕소(20)의 수직 배향으로 인해, 기존 방열소재에 비하여 높은 축방향 열전도도 및 높은 방열효과를 갖는다는 것을 확인할 수 있다.That is, the thermally conductive composite material 1 to which a plurality of hexagonal boron nitrides having various sizes as described above is added due to the reduction of the voids 40 between boron nitrides and the vertical orientation of the first hexagonal boron nitride 20. , it can be confirmed that it has high axial thermal conductivity and high heat dissipation effect compared to existing heat dissipation materials.
일 실시예에 따르면, 본 발명의 열전도성 복합소재(1)에 포함되는 고분자 매트릭스(10)는 40% 내지 70%의 함량을 가질 수 있다. 이에 따라 열전도성 복합소재(1)에 첨가되는 육방정계 질화붕소는 60% 내지 30%의 함량을 가질 수 있다. According to one embodiment, the polymer matrix 10 included in the thermally conductive composite material 1 of the present invention may have a content of 40% to 70%. Accordingly, the hexagonal boron nitride added to the thermally conductive composite material 1 may have a content of 60% to 30%.
<실험예 4> <Experimental Example 4>
PDMS(vol%)PDMS(vol%) Micro-BN(5μm)Micro-BN (5μm) Nano-BN(150nm)Nano-BN (150nm) 축방향 열전도도(w/mk)Axial thermal conductivity (w/mk)
4040 6060 -- 1.211.21
4040 4242 1818 2.232.23
4040 3030 3030 4.844.84
4040 1818 4242 3.393.39
4040 -- 6060 2.442.44
표 5는 열전도성 복합소재(1)에 포함되는 PDMS를 고분자 매트릭스(10)로 하여 함량을 40%로 한 경우, 마이크로 크기의 제1 육방정계 질화붕소(20) 및 나노 크기의 제2 육방정계 질화붕소(30)의 총 함량 60%를 각각 100:0, 70:30, 50:50, 30:70, 0:100의 비율로 첨가하였을 때, 각 열전도성 복합소재(1)의 축방향 열전도도를 측정한 결과값을 나타낸 테이블이다. Table 5 shows the micro-sized first hexagonal boron nitride (20) and the nano-sized second hexagonal boron nitride (20) when PDMS included in the thermally conductive composite material (1) is used as the polymer matrix (10) and the content is set to 40%. When 60% of the total content of boron nitride (30) was added at the ratio of 100:0, 70:30, 50:50, 30:70, and 0:100, respectively, the axial heat conduction of each thermally conductive composite material (1) This is a table showing the results of measuring degrees.
표 5를 참조하여 설명하면, 40%의 PDMS 및 60%의 제1 육방정계 질화붕소(20)로 구성된 복합소재의 경우 1.21W/mK, 40%의 PDMS, 42%의 제1 육방정계 질화붕소(20) 및 18%의 제2 육방정계 질화붕소(30)로 구성된 복합소재의 경우 2.23W/mK, 40%의 PDMS, 30%의 제1 육방정계 질화붕소(20) 및 30%의 제2 육방정계 질화붕소(30)로 구성된 복합소재의 경우 4.84W/mK, 40%의 PDMS, 18%의 제1 육방정계 질화붕소(20) 및 42%의 제2 육방정계 질화붕소(30)로 구성된 복합소재의 경우 3.39W/mK, 40%의 PDMS 및 60%의 제2 육방정계 질화붕소(30)로 구성된 복합소재의 경우 2.44W/mK의 축방향 열전도도를 나타내었다. Referring to Table 5, for a composite material composed of 40% PDMS and 60% hexagonal boron nitride (20), 1.21 W/mK, 40% PDMS, 42% hexagonal boron nitride (20). 2.23 W/mK for a composite consisting of (20) and 18% hexagonal secondary boron nitride (30), 40% PDMS, 30% primary hexagonal boron nitride (20) and 30% secondary. 4.84 W/mK for a composite material composed of hexagonal boron nitride (30), 40% PDMS, 18% first hexagonal boron nitride (20), and 42% second hexagonal boron nitride (30). The axial thermal conductivity was 3.39 W/mK for the composite material, and 2.44 W/mK for the composite material composed of 40% PDMS and 60% hexagonal boron nitride (30).
이를 통해 PDMS가 40% 함량된 열전도성 복합소재(1)의 경우, 제1 육방정계 질화붕소(20) 및 제2 육방정계 질화붕소(30)가 1:1의 함량비로 첨가되었을 때 축방향 열전도도가 가장 높음을 알 수 있다.Through this, in the case of a thermally conductive composite material (1) containing 40% PDMS, when the first hexagonal boron nitride (20) and the second hexagonal boron nitride (30) are added at a content ratio of 1:1, axial heat conduction It can be seen that the degree is the highest.
위 실험예 1 내지 4에 따르면, 열전도성 복합소재(1)의 육방정계 질화붕소의 총함량이 증가할수록 축방향 열전도도가 높아지는 것을 확인할 수 있다. 또한, 제1 육방정계 질화붕소(20) 및 제2 육방정계 질화붕소(30)의 함량비의 경우 1:1의 비율로 첨가되었을 경우 축방향 열전도도가 가장 높은 것을 확인할 수 있다. According to Experimental Examples 1 to 4 above, it can be seen that as the total content of hexagonal boron nitride in the thermally conductive composite material (1) increases, the axial thermal conductivity increases. In addition, it can be seen that the axial thermal conductivity is the highest when the first hexagonal boron nitride (20) and the second hexagonal boron nitride (30) are added at a ratio of 1:1.
도 18을 참조하여 본 발명의 열전도성 복합소재(1)를 제조하는 방법에 관하여 설명하도록 한다.The method of manufacturing the thermally conductive composite material 1 of the present invention will be described with reference to FIG. 18.
도 18은 본 발명의 열전도성 복합소재(1)를 제조하는 과정을 나타내는 순서도이다.Figure 18 is a flow chart showing the process of manufacturing the thermally conductive composite material (1) of the present invention.
열전도성 복합소재(1)를 제조하는 과정은 고분자 매트릭스(10)를 준비하는 단계(S100)를 포함할 수 있다. 또한, 열전도성 복합소재(1)를 제조하는 과정은 고분자 매트릭스(10)에 제1 육방정계 질화붕소(20)를 첨가하는 단계(S200)를 포함할 수 있다. 또한, 열전도성 복합소재(1)를 제조하는 과정은 제1 육방정계 질화붕소(20)보다 작은 크기의 제2 육방정계 질화붕소(30)를 더 첨가하는 단계(S300)를 포함할 수 있다.The process of manufacturing the thermally conductive composite material 1 may include preparing the polymer matrix 10 (S100). Additionally, the process of manufacturing the thermally conductive composite material 1 may include adding first hexagonal boron nitride 20 to the polymer matrix 10 (S200). In addition, the process of manufacturing the thermally conductive composite material 1 may include adding second hexagonal boron nitride 30 of a smaller size than the first hexagonal boron nitride 20 (S300).
이상 첨부된 도면을 참조하여 본 발명의 실시예들을 설명하였으나 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.Although embodiments of the present invention have been described above with reference to the attached drawings, those skilled in the art will recognize that the present invention can be implemented in other specific forms without changing its technical idea or essential features. You will understand. Therefore, the embodiments described above should be understood in all respects as illustrative and not restrictive.
본 발명의 열전도성 복합소재는 복합 크기의 질화붕소를 이용하여 기존 육방정계 질화붕소 기반의 방열소재가 갖고 있는 낮은 축방향 열전도도를 개선할 수 있으므로 산업상 이용가능성이 높다.The thermally conductive composite material of the present invention has high industrial applicability because it can improve the low axial thermal conductivity of existing hexagonal boron nitride-based heat dissipation materials by using boron nitride of composite size.
또한, 본 발명의 열전도성 복합소재는 육방정계 질화붕소를 고분자 매트릭스 내에 수직 배향하도록 포함하여 낮은 축방향 열전도도를 개선할 수 있으므로 산업상 이용가능성이 높다.In addition, the thermally conductive composite material of the present invention has high industrial applicability because it can improve low axial thermal conductivity by including hexagonal boron nitride in a vertical orientation within the polymer matrix.
또한, 본 발명의 열전도성 복합소재는 내부에 포함하는 육방정계 질화붕소간 공극을 감소시켜 열저항을 감소시키고, 이를 통해 낮은 열전도도를 개선할 수 있으므로 산업상 이용가능성이 높다. In addition, the thermally conductive composite material of the present invention has high industrial applicability because it reduces thermal resistance by reducing the voids between hexagonal boron nitride contained therein, and through this, low thermal conductivity can be improved.

Claims (17)

  1. 축방향 및 축방향에 수직한 일 면을 갖도록 형성되는 고분자 매트릭스;A polymer matrix formed to have an axial direction and one side perpendicular to the axial direction;
    상기 고분자 매트릭스에 첨가되는 제1 h-BN; 및First h-BN added to the polymer matrix; and
    상기 고분자 매트릭스에 첨가되며, 상기 제1 h-BN보다 작은 크기를 갖는 제2 h-BN;A second h-BN added to the polymer matrix and having a smaller size than the first h-BN;
    을 포함하는 열전도성 복합소재.A thermally conductive composite material containing.
  2. 제1항에 있어서,According to paragraph 1,
    상기 제1 h-BN은 마이크로 크기이고, 상기 제2 h-BN은 나노 크기인 열전도성 복합소재.The first h-BN is micro-sized, and the second h-BN is nano-sized.
  3. 제1항에 있어서,According to paragraph 1,
    상기 제1 h-BN이 상기 일 면에 수직 배향하도록 형성되는 것을 특징으로 하는Characterized in that the first h-BN is formed to be oriented perpendicularly to the one surface.
    열전도성 복합소재.Thermal conductive composite material.
  4. 제3항에 있어서,According to paragraph 3,
    상기 제2 h-BN은,The second h-BN is,
    상기 제1 h-BN 표면 또는 상기 제1 h-BN간 사이에 위치하여, 상기 제1 h-BN이 상기 일 면에 수직 배향하도록 하는 Located on the surface of the first h-BN or between the first h-BNs, so that the first h-BN is aligned perpendicular to the one surface.
    열전도성 복합소재.Thermal conductive composite material.
  5. 제1항에 있어서,According to paragraph 1,
    상기 제2 h-BN은,The second h-BN is,
    상기 제1 h-BN 표면 또는 상기 제1 h-BN간 사이에 위치하는 Located between the first h-BN surface or the first h-BN
    열전도성 복합소재.Thermal conductive composite material.
  6. 제5항에 있어서,According to clause 5,
    상기 제2 h-BN이 상기 제1 h-BN간 공극을 감소시켜 열전도성을 높이는 열전도성 복합소재.A thermally conductive composite material in which the second h-BN increases thermal conductivity by reducing voids between the first h-BN.
  7. 제1항에 있어서,According to paragraph 1,
    상기 고분자 매트릭스는,The polymer matrix is,
    PDMS, PE, PP, PMMA, PC 및 이들의 혼합으로 이루어진 군으로부터 선택되는selected from the group consisting of PDMS, PE, PP, PMMA, PC and mixtures thereof
    열전도성 복합소재.Thermal conductive composite material.
  8. 제1항에 있어서,According to paragraph 1,
    상기 고분자 매트릭스의 함량이 40 vol% 내지 70 vol% 인 것을 특징으로 하는 열전도성 복합소재.A thermally conductive composite material, characterized in that the content of the polymer matrix is 40 vol% to 70 vol%.
  9. 제8항에 있어서,According to clause 8,
    상기 제1 h-BN 및 상기 제2 h-BN의 함량비가 1:1 인 것을 특징으로 하는 열전도성 복합소재.A thermally conductive composite material, characterized in that the content ratio of the first h-BN and the second h-BN is 1:1.
  10. 축방향 및 축방향에 수직한 일 면을 갖도록 형성되는 고분자 매트릭스를 준비하는 단계;Preparing a polymer matrix formed to have an axial direction and one side perpendicular to the axial direction;
    상기 고분자 매트릭스에 제1 h-BN을 첨가하는 단계; 및Adding first h-BN to the polymer matrix; and
    상기 고분자 매트릭스에 상기 제1 h-BN보다 작은 크기의 제2 h-BN을 첨가하는 단계; 를 포함하는 Adding second h-BN of a smaller size than the first h-BN to the polymer matrix; containing
    열전도성 복합소재 제조방법.Method for manufacturing thermally conductive composite materials.
  11. 제10항에 있어서,According to clause 10,
    상기 제1 h-BN은 마이크로 크기이고, 제2 h-BN은 나노 크기인 The first h-BN is micro-sized, and the second h-BN is nano-sized.
    열전도성 복합소재 제조방법.Method for manufacturing thermally conductive composite materials.
  12. 제10항에 있어서,According to clause 10,
    상기 제1 h-BN이 상기 일 면에 수직 배향하도록 형성되는 것을 특징으로 하는Characterized in that the first h-BN is formed to be oriented perpendicularly to the one surface.
    열전도성 복합소재 제조방법.Method for manufacturing thermally conductive composite materials.
  13. 제12항에 있어서,According to clause 12,
    상기 제2 h-BN은,The second h-BN is,
    상기 제1 h-BN 표면 또는 상기 제1 h-BN간 사이에 위치하여, 상기 제1 h-BN이 상기 일 면에 수직 배향하도록 하는 Located on the surface of the first h-BN or between the first h-BNs, so that the first h-BN is aligned perpendicular to the one surface.
    열전도성 복합소재 제조방법.Method for manufacturing thermally conductive composite materials.
  14. 제10항에 있어서,According to clause 10,
    상기 제2 h-BN은,The second h-BN is,
    상기 제1 h-BN 표면 또는 상기 제1 h-BN간 사이에 위치하여Located between the first h-BN surface or the first h-BN
    상기 제2 h-BN이 상기 제1 h-BN간 공극을 감소시키는 The second h-BN reduces the gap between the first h-BN
    열전도성 복합소재 제조방법.Method for manufacturing thermally conductive composite materials.
  15. 제10항에 있어서,According to clause 10,
    상기 고분자 매트릭스는,The polymer matrix is,
    PDMS, PE, PP, PMMA, PC 및 이들의 혼합으로 이루어진 군으로부터 선택되는selected from the group consisting of PDMS, PE, PP, PMMA, PC and mixtures thereof
    열전도성 복합소재 제조방법.Method for manufacturing thermally conductive composite materials.
  16. 제10항에 있어서,According to clause 10,
    상기 고분자 매트릭스의 함량이 40 vol% 내지 70 vol% 인 것을 특징으로 하는 열전도성 복합소재 제조방법.A method of manufacturing a thermally conductive composite material, characterized in that the content of the polymer matrix is 40 vol% to 70 vol%.
  17. 제16항에 있어서,According to clause 16,
    상기 제1 h-BN 및 상기 제2 h-BN의 함량비가 1:1 인 것을 특징으로 하는 열전도성 복합소재 제조방법.A method of manufacturing a thermally conductive composite material, characterized in that the content ratio of the first h-BN and the second h-BN is 1:1.
PCT/KR2023/002784 2022-03-25 2023-02-28 Thermally conductive composite material using hexagonal boron nitride WO2023182690A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220037234 2022-03-25
KR10-2022-0037234 2022-03-25
KR1020220149134A KR20230139295A (en) 2022-03-25 2022-11-10 Thermoconductive Composite Material Using Hexagonal Boron Nitride
KR10-2022-0149134 2022-11-10

Publications (1)

Publication Number Publication Date
WO2023182690A1 true WO2023182690A1 (en) 2023-09-28

Family

ID=88101372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/002784 WO2023182690A1 (en) 2022-03-25 2023-02-28 Thermally conductive composite material using hexagonal boron nitride

Country Status (1)

Country Link
WO (1) WO2023182690A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020002257A (en) * 2000-06-29 2002-01-09 캐롤린 에이. 베이츠 Thermally conductive sheet and method of producing the same
KR20140121161A (en) * 2013-04-05 2014-10-15 한국화학연구원 Electrically insulating and thermally conducting polymer compositions and methods for preparing the same, and mold product using the same
KR20140141456A (en) * 2013-05-31 2014-12-10 닛토덴코 가부시키가이샤 Thermally-conductive pressure-sensitive adhesive sheet
CN109280332A (en) * 2018-08-03 2019-01-29 吉林大学 A kind of preparation method of boron nitride/epoxy resin heat conductive insulating composite material
KR20200069912A (en) * 2018-12-07 2020-06-17 한국과학기술연구원 Highly thermal conductive polymer composite material and method for preparing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020002257A (en) * 2000-06-29 2002-01-09 캐롤린 에이. 베이츠 Thermally conductive sheet and method of producing the same
KR20140121161A (en) * 2013-04-05 2014-10-15 한국화학연구원 Electrically insulating and thermally conducting polymer compositions and methods for preparing the same, and mold product using the same
KR20140141456A (en) * 2013-05-31 2014-12-10 닛토덴코 가부시키가이샤 Thermally-conductive pressure-sensitive adhesive sheet
CN109280332A (en) * 2018-08-03 2019-01-29 吉林大学 A kind of preparation method of boron nitride/epoxy resin heat conductive insulating composite material
KR20200069912A (en) * 2018-12-07 2020-06-17 한국과학기술연구원 Highly thermal conductive polymer composite material and method for preparing the same

Similar Documents

Publication Publication Date Title
WO2015012427A1 (en) Heat-radiating sheet using graphene/graphite nanoplate/carbon nanotube/nanometal complex, and manufacturing method therefor
US10508035B2 (en) Aluminum nitride powders
KR20190033021A (en) Tape casting slurry composition for manufacturing silicon nitride sintered body
WO2012122731A1 (en) Printed circuit board with radiating structure and machining method thereof
WO2023182690A1 (en) Thermally conductive composite material using hexagonal boron nitride
US20210206971A1 (en) Silicone composite for high temperature applications
EP3496139A1 (en) Heat dissipation structure for electric circuit device
WO2015057019A1 (en) Thermoelectric material and method for manufacturing same
WO2020141925A1 (en) Method for manufacturing heat dissipation sheet
WO2015093825A1 (en) High-heat dissipation ceramic composite, method for manufacturing same, and use thereof
WO2021015580A1 (en) Thermal dissipation composite material and manufacturing method thereof
KR20190032966A (en) Tape casting slurry composition for manufacturing silicon nitride sintered body
WO2019112287A1 (en) Method for preparing heat-radiating paste composition using waste carbon fibers, method for manufacturing heat-radiating thin film using same, and heat-radiating thin film comprising same
EP4036173A1 (en) Hybrid silicone composite for high temperature application
WO2017188752A1 (en) Coating composition having improved heat dissipation characteristics, and method for forming coating film by using same
US11548829B2 (en) Dense composite material, method for producing the same, joined body, and member for semiconductor manufacturing device
US11715661B2 (en) Composite sintered body and method of manufacturing composite sintered body
CN109968756B (en) Directional high-thermal-conductivity carbon-based composite film for flexible display high-efficiency thermal management
JPS6221764A (en) Manufacture of aluminum nitride
KR100867961B1 (en) Alpha;type sic- beta; type sic combined reaction sintering sic material and manufacture method and plasma chamber cathode that use it
WO2020256394A1 (en) Method for manufacturing composite material, and composite material
WO2020005014A1 (en) Composite
KR20230139295A (en) Thermoconductive Composite Material Using Hexagonal Boron Nitride
JP7223917B2 (en) Laminate, heat dissipation structure and semiconductor module
KR102449297B1 (en) Substrate for power electronic module comprising organic-inorganic composite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23775188

Country of ref document: EP

Kind code of ref document: A1