WO2023182478A1 - Glass-fiber-reinforced sheet - Google Patents

Glass-fiber-reinforced sheet Download PDF

Info

Publication number
WO2023182478A1
WO2023182478A1 PCT/JP2023/011712 JP2023011712W WO2023182478A1 WO 2023182478 A1 WO2023182478 A1 WO 2023182478A1 JP 2023011712 W JP2023011712 W JP 2023011712W WO 2023182478 A1 WO2023182478 A1 WO 2023182478A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass fiber
less
reinforced sheet
fiber reinforced
volume
Prior art date
Application number
PCT/JP2023/011712
Other languages
French (fr)
Japanese (ja)
Inventor
弘章 望月
健一 松村
寛 谷口
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Publication of WO2023182478A1 publication Critical patent/WO2023182478A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/229Composite material consisting of a mixture of organic and inorganic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a glass fiber reinforced sheet.
  • batteries such as lithium ion batteries
  • in-vehicle batteries there is a risk that the battery may undergo thermal runaway and ignite due to shocks such as those caused by a vehicle accident, resulting in a fire in the vehicle.
  • the cover that covers the battery it is necessary for the cover that covers the battery to make it difficult to transmit the heat of the battery that has become abnormally high due to thermal runaway to the surroundings, and to make it difficult to transmit the flame and heat generated by the battery's ignition to the outside.
  • Patent Document 1 describes a transparent noncombustible sheet formed by laminating a thermoplastic resin film on the surface of glass cloth via an adhesive layer, and the adhesive layer is polychlorinated. Compositions containing vinyl and a plasticizer are disclosed. Further, for example, Patent Document 2 discloses a tarpaulin sheet having a structure in which the surface of a polyvinyl chloride sheet is covered with glass cloth.
  • JP2019-162831A Japanese Patent Application Publication No. 2011-36355
  • An object of the present invention is to provide a glass fiber reinforced sheet that has high transparency and sufficient strength and can suppress a decrease in bending strength after contact with flame.
  • the present disclosure (1) contains a chlorinated vinyl chloride resin and glass fiber, has a void ratio of 10% by volume or less as measured in accordance with JIS K7075, and has a fiber volume occupancy ( Vf) is 10 volume % or more and 65 volume % or less.
  • Vf fiber volume occupancy
  • the ratio of the refractive index of the chlorinated vinyl chloride resin to the refractive index of the glass fiber (refractive index of the chlorinated vinyl chloride resin/refractive index of the glass fiber) is 0.8 or more and 1.2.
  • the glass fiber reinforced sheet of the present disclosure (1) is as follows.
  • the present disclosure (3) is the glass fiber reinforced sheet of the present disclosure (1) or (2), which has a total light transmittance of 50% or more.
  • the present disclosure (4) provides a glass fiber reinforced sheet in any combination with any of the present disclosures (1) to (3), which has a bending strength reduction rate of 50% or less before and after being exposed to a burner flame for 30 seconds. It is.
  • the present disclosure (5) provides any combination with any of the present disclosures (1) to (4), in which the heating loss rate excluding the glass fiber content after heating at 500° C. for 5 hours is 10% by mass or more. It is a glass fiber reinforced sheet.
  • the present disclosure (6) is a glass fiber reinforced sheet in any combination with any of the present disclosures (1) to (5), which is a cover material for a lithium ion battery. The present invention will be explained in detail below.
  • a glass fiber reinforced sheet containing chlorinated vinyl chloride resin and glass fiber and having a void ratio of 10% by volume or less has high transparency and sufficient strength, and It was discovered that the decrease in bending strength after flames can be suppressed, and the present invention was completed.
  • the glass fiber reinforced sheet contains a chlorinated vinyl chloride resin.
  • a chlorinated vinyl chloride resin By containing the chlorinated vinyl chloride resin, both flame retardancy and transparency can be achieved.
  • the chlorine content of the chlorinated vinyl chloride resin is preferably 57% by mass or more, more preferably 60% by mass or more, preferably 75% by mass or less, and more preferably 73% by mass or less.
  • the chlorine content can be measured, for example, by a method based on JIS K 7229.
  • the average degree of polymerization of the chlorinated vinyl chloride resin is preferably 400 or more, more preferably 600 or more, preferably 3000 or less, and more preferably 2000 or less. When the average degree of polymerization is within the above range, thermal decomposition products are less likely to scatter during combustion, and flame blocking performance can be maintained at a high level.
  • the above average degree of polymerization can be measured, for example, by a method based on JIS K 6720-2:1999.
  • the above-mentioned chlorinated vinyl chloride resin usually has the following structural units (a) to (c).
  • the ratio of the structural unit (a) to the total number of moles of the structural units (a), (b), and (c) is preferably 5.2 mol% or more, and 30.1 mol % or more, more preferably 35.1 mol% or more, preferably 89.8 mol% or less, and more preferably 59.8 mol% or less.
  • the ratio of the structural unit (b) to the total number of moles of the structural units (a), (b), and (c) is preferably 5.1 mol% or more, and 15.
  • the content is more preferably 2 mol% or more, preferably 39.8 mol% or less, more preferably 30.0 mol% or less, and even more preferably 24.9 mol% or less.
  • the ratio of the structural unit (c) to the total number of moles of the structural units (a), (b), and (c) is preferably 5.3 mol% or more, and 25. It is more preferably 2 mol% or more, preferably 54.8 mol% or less, and even more preferably 39.9 mol% or less.
  • the molar ratio of the structural units (a), (b) and (c) can be measured by molecular structure analysis using NMR. NMR analysis was carried out by R. A. Komoroski, R. G. Parker, J. P. It can be carried out according to the method described in Shocker, Macromolecules, 1985, 18, 1257-1265.
  • the oxygen index of the chlorinated vinyl chloride resin is preferably 20 or more, more preferably 22 or more, preferably 90 or less, and more preferably 70 or less. When the oxygen index is within the above range, excellent flame blocking performance can be exhibited.
  • the oxygen index is the minimum oxygen concentration (volume %) required for the material to sustain combustion, and is determined in accordance with, for example, JIS K7201-2:2007.
  • the glass transition temperature of the chlorinated vinyl chloride resin is preferably 0°C or higher, more preferably 20°C or higher, even more preferably 40°C or higher, preferably 300°C or lower, more preferably 250°C or lower, and 200°C or lower. More preferred.
  • the glass transition temperature can be measured, for example, by a method based on JIS K 7121.
  • the refractive index of the chlorinated vinyl chloride resin is preferably 1.2 or more, more preferably 1.3 or more, even more preferably 1.4 or more, preferably 1.9 or less, more preferably 1.8 or less, It is more preferably 1.7 or less. By setting it as the said range, sufficient transparency can be ensured.
  • the refractive index of the above-mentioned chlorinated vinyl chloride resin can be measured by a method based on JIS K 7142 (Method A) and ASTM D542. Note that the refractive index can be adjusted by adjusting the degree of chlorination (chlorine content) and weight average molecular weight of the chlorinated vinyl chloride resin.
  • the refractive index of the molded product obtained by drying the filtrate extracted with tetrahydrofuran and pressing is 1.2 or more. , more preferably 1.3 or more, still more preferably 1.4 or more, preferably 1.9 or less, more preferably 1.8 or less, and 1.7 or less. More preferably. By setting it as the said range, sufficient transparency can be ensured.
  • the above refractive index can be measured by a method based on JIS K 7142 (Method A) and ASTM D542.
  • the weight average molecular weight of the chlorinated vinyl chloride resin is preferably 1,000 or more, more preferably 3,000 or more, preferably 1,000,000 or less, and more preferably 950,000 or less.
  • the weight average molecular weight (Mw) can be measured, for example, by a method based on ASTM D2503.
  • the above-mentioned chlorinated vinyl chloride resin is a resin obtained by chlorinating vinyl chloride resin (PVC).
  • the above-mentioned vinyl chloride resins include vinyl chloride homopolymers, copolymers of vinyl chloride monomers and monomers having unsaturated bonds that can be copolymerized with vinyl chloride monomers, and graft polymers obtained by graft copolymerizing vinyl chloride monomers onto polymers. Polymers and the like can be used. These polymers may be used alone or in combination of two or more.
  • Examples of monomers having unsaturated bonds copolymerizable with the vinyl chloride monomer include ⁇ -olefins, vinyl esters, vinyl ethers, (meth)acrylic esters, aromatic vinyls, vinyl halides, Examples include N-substituted maleimides, and one or more of these may be used.
  • Examples of the ⁇ -olefins include ethylene, propylene, butylene, and the like.
  • the vinyl esters include vinyl acetate and vinyl propionate.
  • Examples of the vinyl ethers include butyl vinyl ether, cetyl vinyl ether, and the like.
  • Examples of the (meth)acrylic acid esters include methyl (meth)acrylate, ethyl (meth)acrylate, butyl acrylate, phenyl methacrylate, and the like.
  • Examples of the aromatic vinyls include styrene, ⁇ -methylstyrene, and the like.
  • Examples of the vinyl halides include vinylidene chloride and vinylidene fluoride.
  • Examples of the N-substituted maleimides include N-phenylmaleimide and N-cyclohexylmaleimide.
  • the polymer to be graft-copolymerized with vinyl chloride is not particularly limited as long as it can be graft-polymerized with vinyl chloride.
  • Examples include ethylene copolymer, acrylonitrile-butadiene copolymer, polyurethane, chlorinated polyethylene, and chlorinated polypropylene. These may be used alone or in combination of two or more.
  • Examples of the ethylene copolymers include ethylene-vinyl acetate copolymer, ethylene-vinyl acetate-carbon monoxide copolymer, ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate-carbon monoxide copolymer, and ethylene-vinyl acetate copolymer. Examples include methyl methacrylate copolymer and ethylene-propylene copolymer.
  • the average degree of polymerization of the PVC is not particularly limited, and is preferably from 400 to 3,000, which is commonly used, and more preferably from 600 to 2,000.
  • the average degree of polymerization can be measured by the method described in JIS K 6720-2:1999.
  • the method for polymerizing the PVC is not particularly limited, and conventionally known methods such as water suspension polymerization, bulk polymerization, solution polymerization, and emulsion polymerization can be used.
  • the content of the chlorinated vinyl chloride resin in the glass fiber reinforced sheet is preferably 10% by mass or more, more preferably 20% by mass or more, even more preferably 25% by mass or more, preferably 80% by mass or less, and 70% by mass or more. It is more preferably at most 60% by mass, even more preferably at most 60% by mass. By setting it as the said range, transparency and flame retardance can be compatible.
  • the content of the chlorinated vinyl chloride resin in the glass fiber reinforced sheet is preferably 20 volume% or more, more preferably 30 volume% or more, even more preferably 35 volume% or more, preferably 80 volume% or less, and 70 volume% or more. % or less is more preferable, and even more preferably 65 volume % or less.
  • the glass fiber reinforced sheet may contain thermoplastic resins other than chlorinated vinyl chloride resins, synthetic resins such as thermosetting resins, elastomers, and the like.
  • thermoplastic resin examples include vinyl chloride resin (PVC), polyolefins such as polyethylene and polypropylene, polystyrene (PS), acrylonitrile-styrene copolymer (AS resin), and acrylonitrile-butadiene-styrene copolymer (ABS resin).
  • PVVC vinyl chloride resin
  • PS polystyrene
  • AS resin acrylonitrile-styrene copolymer
  • ABS resin acrylonitrile-butadiene-styrene copolymer
  • acrylic resins such as polymethyl methacrylate, polyamide, polycarbonate, polysulfone (PSU resin), polyphenylsulfone (PPSU), polyethersulfone (PES resin), polyetherimide (PEI resin), polyphenylene sulfide (PPS resin)
  • polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyacetals, polyimides, polyphenylene ethers, polyether ether ketones, liquid crystal polymers, and the like.
  • thermosetting resin examples include polyurethane, phenol resin, epoxy resin, urea resin, melamine resin, silicone resin, unsaturated polyester resin, alkyd resin, thermosetting polyimide, and the like.
  • thermoplastic elastomers such as olefin elastomers, styrene elastomers, ester elastomers, amide elastomers, and vinyl chloride elastomers.
  • the glass fiber reinforced sheet contains glass fibers. By containing glass fiber, the strength after combustion can be improved.
  • the glass fiber include E glass, C glass, S glass, and T glass.
  • the refractive index of the glass fiber is preferably 1.2 or more, more preferably 1.3 or more, even more preferably 1.4 or more, preferably 1.9 or less, more preferably 1.8 or less, and 1.7 or less. is even more preferable. By setting it within the above range, sufficient transparency can be ensured.
  • the refractive index of the glass fiber can be measured by a method based on STM C1648 or ASTM E1967-19.
  • the ratio of the refractive index of the chlorinated vinyl chloride resin to the refractive index of the glass fiber is preferably 0.8 or more, and 0.8 or more. It is more preferably 9 or more, preferably 1.2 or less, and even more preferably 1.1 or less. By setting it as the said range, scattering and refraction of incident light can be suppressed and transparency can be ensured.
  • the ratio of the refractive index of the molded article to the refractive index of the glass fiber is preferably 0.8 or more, more preferably 0.9 or more, and 1.2 or less. is preferable, and 1.1 or less is more preferable.
  • the average fiber diameter of the glass fibers is preferably 2 ⁇ m or more, more preferably 3 ⁇ m or more, preferably 30 ⁇ m or less, and more preferably 26 ⁇ m or less.
  • the above-mentioned glass fibers may be discontinuous fibers in which the fibers are intermittently divided, or may be continuous fibers in which the fibers are not divided.
  • the average fiber length of the glass fibers is preferably 2 mm or more, more preferably 4 mm or more, preferably 100 mm or less, and more preferably 80 mm or less.
  • the specific gravity of the glass fiber is preferably 1.5 or more, more preferably 1.7 or more, even more preferably 2.0 or more, preferably 3.0 or less, more preferably 2.7 or less, and 2.6 or less. More preferred.
  • the specific gravity can be measured using, for example, an electronic hydrometer.
  • the form of the glass fiber is not particularly limited, and examples thereof include fibrous, woven, knitted, and nonwoven sheet forms.
  • the basis weight of the glass fiber is preferably 100 g/m 2 or more, more preferably 350 g/m 2 or more, preferably 1000 g/m 2 or less, and more preferably 650 g/m 2 or less. . By setting it as the said range, transparency and physical properties can be made compatible.
  • the content of the glass fiber in the glass fiber reinforced sheet is preferably 10% by mass or more, more preferably 20% by mass or more, even more preferably 25% by mass or more, preferably 80% by mass or less, and more preferably 70% by mass or less. It is preferably 60% by mass or less, and more preferably 60% by mass or less. Within the above range, the mechanical strength of the glass fiber reinforced sheet can be sufficiently increased.
  • the content of the glass fiber in the glass fiber reinforced sheet is preferably 20 volume% or more, more preferably 30 volume% or more, even more preferably 35 volume% or more, preferably 80 volume% or less, and more preferably 70 volume% or less. Preferably, 65% by volume or less is more preferable.
  • the glass fiber reinforced sheet may contain reinforcing fibers such as carbon fibers, metal fibers, organic fibers, and inorganic fibers, if necessary.
  • the carbon fibers include PAN-based carbon fibers, pitch-based carbon fibers, cellulose-based carbon fibers, vapor-grown carbon fibers, and the like.
  • the metal fibers include fibers made of metals such as iron, gold, silver, copper, aluminum, brass, and stainless steel.
  • the organic fibers include fibers made of organic materials such as aramid, polybenzoxazole (PBO), polyphenylene sulfide, polyester, polyamide, and polyethylene.
  • the above-mentioned inorganic fibers include fibers made of inorganic materials such as basalt, silicon carbide, and silicon nitride.
  • the glass fiber reinforced sheet has a fiber volume occupancy (Vf) of 10 vol% or more, preferably 15 vol% or more, more preferably 20 vol% or more, as measured in accordance with JIS K7075. , more preferably 30 volume% or more, even more preferably 35 volume% or more, 65 volume% or less, preferably 60 volume% or less, and more preferably 55 volume% or less.
  • Vf fiber volume occupancy
  • the content is preferably 50% by volume or less, and more preferably 50% by volume or less. By setting it as the said range, transparency and physical properties can be made compatible.
  • the glass fiber reinforced sheet preferably contains a heat stabilizer.
  • heat stabilizers include organotin heat stabilizers, lead heat stabilizers, calcium-zinc heat stabilizers, barium-zinc heat stabilizers, and cadmium-barium heat stabilizers.
  • organotin-based heat stabilizer include salts of alkyltins such as methyl, butyl, and octyl, preferably dialkyltins of aliphatic monocarboxylic acids such as lauric acid, or salts of dicarboxylic acids such as maleic acid and phthalic acid. Examples include salt.
  • alkyltin mercaptides such as dibutyltin dilaurylate, dioctyltin laurate, dibutyltin maleate, dibutyltin phthalate, dimethyltin bis(2-ethylhexylthioglycolate), dibutyltin mercaptide, dimethyltin mercaptide, etc.
  • the lead-based heat stabilizer include lead stearate, dibasic lead phosphite, and tribasic lead sulfate. The above heat stabilizers may be used alone or in combination of two or more.
  • the content of the heat stabilizer in the glass fiber reinforced sheet is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, preferably 30.0% by mass or less, and 10.0% by mass or less. More preferred. Further, the content of the heat stabilizer in the glass fiber reinforced sheet is preferably 0.1 parts by mass or more, more preferably 0.8 parts by mass or more, based on 100 parts by weight of the chlorinated vinyl chloride resin. It is preferably 30.0 parts by mass or less, more preferably 15.0 parts by mass or less.
  • the glass fiber reinforced sheet may further contain additives such as lubricants, impact modifiers, inorganic fillers, pigments, flame retardants, antioxidants, processing aids, ultraviolet absorbers, and light stabilizers. .
  • the glass fiber reinforced sheet preferably has a voidage ratio of 10% by volume or less as measured in accordance with JIS K7075. By setting it as the said range, a fall in the bending strength after flame contact can be suppressed.
  • the void ratio is preferably 0.1 volume% or more, more preferably 0.2 volume% or more, even more preferably 0.3 volume% or more, preferably 10.0 volume% or less, and 9.0 volume% or less. It is more preferably 8.0% by volume or less.
  • the above-mentioned void ratio means the volume ratio occupied by cavities (voids) in the glass fiber reinforced sheet, and can be adjusted by press molding time, press molding temperature, amount of solvent used during molding, amount of plasticizer added, etc. I can do it.
  • the resin composition volume ratio (Vr) in the glass fiber reinforced sheet is preferably 25% by volume or more, more preferably 30% by volume or more, even more preferably 35% by volume or more, It is even more preferably 40 volume% or more, preferably 80 volume% or less, more preferably 75 volume% or less, even more preferably 70 volume% or less, and even more preferably 65 volume% or less. Even more preferred.
  • the glass fiber reinforced sheet preferably has a heating loss rate of 10% by mass or more after heating at 500° C. for 5 hours, excluding the glass fiber component. By setting it as the said range, rigidity can be ensured while ensuring transparency.
  • the heating loss rate is more preferably 10% by mass or more, still more preferably 15% by mass or more, preferably 95% by mass or less, and more preferably 85% by mass or less.
  • the glass fiber reinforced sheet preferably has a total light transmittance of 50% or more. By setting it as the said range, transparency can be ensured.
  • the total light transmittance is more preferably 50% or more, more preferably 60% or more, preferably 100% or less, more preferably 99% or less, and even more preferably 98% or less.
  • the above-mentioned total light transmittance can be measured by a method based on JIS K7361-1.
  • the bending strength of the glass fiber reinforced sheet is preferably 100 MPa or more, more preferably 110 MPa or more, preferably 300 MPa or less, and more preferably 280 MPa or less.
  • the above bending strength can be measured by a method based on JIS K7171.
  • the bending strength of the glass fiber reinforced sheet before and after being exposed to a burner flame for 30 seconds is preferably 80 MPa or more, more preferably 90 MPa or more, preferably 300 MPa or less, and 280 MPa or less. It is more preferable that there be.
  • the above bending strength is determined by fixing a glass fiber reinforced sheet to a jig so that the thickness direction is perpendicular, heating it from below to 800°C with a distance between the glass fiber reinforced sheet and a burner of 20 mm. After heating in this state for 30 seconds, the bending strength of the heated glass fiber reinforced sheet can be measured by a method based on JIS K7171.
  • the glass fiber reinforced sheet preferably has a bending strength reduction rate of 50% or less before and after being exposed to burner flame for 30 seconds. By setting it as the said range, sufficient strength can be ensured after flame contact.
  • the bending strength reduction rate is preferably 5% or more, more preferably 7% or more, even more preferably 10% or more, more preferably 75% or less, and even more preferably 60% or less.
  • the tensile strength of the glass fiber reinforced sheet is preferably 100 MPa or more, more preferably 120 MPa or more, preferably 300 MPa or less, and more preferably 280 MPa or less.
  • the above tensile strength can be measured by a method based on ASTM D638.
  • the thickness of the glass fiber reinforced sheet is preferably 0.2 mm or more, more preferably 0.4 mm or more, preferably 10 mm or less, and more preferably 7 mm or less.
  • a resin solution is prepared by dissolving the above-mentioned chlorinated vinyl chloride resin and other additives in a solvent, and then a sheet-like glass fiber is further impregnated with the resin solution.
  • An example of this method is to dry the solvent in a dryer and then mold the product.
  • the molding method include hand lay-up molding, spray-up molding, resin transfer molding, press molding, bag molding, injection molding, extrusion molding, and stamping molding. .
  • the press temperature is preferably 130°C or higher, and preferably 140°C or lower.
  • the pressing time is preferably 10 seconds or more, and preferably 30 minutes or less.
  • the press pressure is preferably 0.1 MPa or more, and preferably 30.0 MPa or less.
  • the above-mentioned glass fiber reinforced sheet has high transparency and can suppress a decrease in bending strength after being exposed to flame, so it can be suitably used as a member for a transportation machine, a member for a battery device, or a building material. Further, it can be suitably used as a drone component such as a casing for a small camera mounted on a drone.
  • Examples of the above-mentioned transportation vehicles include automobiles such as gasoline vehicles, hybrid vehicles, electric vehicles, and fuel cell vehicles, motorcycles such as gasoline motorcycles, hybrid motorcycles, and electric motorcycles, bicycles such as electrically assisted bicycles, railway vehicles, ships, and aircraft. It will be done.
  • examples of the above-mentioned members for the transport device include mechanical members, interior members, exterior members, window glass, light covers, and the like.
  • examples of the mechanical members include cooling pipes, airbag covers, air ducts, heater units, and the like.
  • Examples of the interior components include a ceiling, an instrument panel, a console box, an armrest, a seatbelt buckle, switches, a door trim, and the like.
  • Examples of the exterior member include an emblem, a license plate housing, a bumper core material, an undercover, and the like.
  • the above battery devices include primary batteries such as nickel-manganese batteries, lithium batteries, and zinc-air batteries, secondary batteries such as nickel-hydrogen batteries, lithium-ion batteries, and lead-acid batteries, silicon solar cells, dye-sensitized solar cells, and perovskite solar cells.
  • primary batteries such as nickel-manganese batteries, lithium batteries, and zinc-air batteries
  • secondary batteries such as nickel-hydrogen batteries, lithium-ion batteries, and lead-acid batteries
  • silicon solar cells dye-sensitized solar cells, and perovskite solar cells.
  • solar cells such as solar cells, fuel cells such as polymer electrolyte fuel cells, alkaline fuel cells, phosphoric acid fuel cells, and solid oxide fuel cells.
  • the members for the battery device include a battery cover, a battery cooling water jacket, a hydrogen tank cover, a connector, an insulating sheet, and the like.
  • the above-mentioned glass fiber reinforced sheet can be suitably used as a cover material for lithium-ion batteries, and furthermore, it has high transparency and can suppress the decrease in bending strength after flame contact, so it can be used for automotive batteries. It can be suitably used as a cover material.
  • the above building materials include lighting panels for entrances, dome roofs, etc., ceiling materials for carports, bicycle parking lots, bus stops, solariums, etc., translucent sound insulation boards for roads, railways, factory areas, etc., corrugated boards, industrial boards, etc. It will be done.
  • the present invention it is possible to provide a glass fiber reinforced sheet that has high transparency and sufficient strength and can suppress a decrease in bending strength after contact with flame.
  • the refractive index of the glass fiber was measured in accordance with ASTM C1648.
  • the intrinsic viscosity [ ⁇ ] is a value calculated by measuring the specific viscosity [ ⁇ sp ] at each solution concentration [C] (g/dl) and using the following formula.
  • Example 1 A resin solution was prepared by mixing 90 parts by mass of a chlorinated vinyl chloride resin, 10 parts by mass of a heat stabilizer (manufactured by Nitto Kasei Co., Ltd., organic tin-based heat stabilizer "TVS #1380") and 400 parts by mass of a solvent. Next, the sheet-shaped glass fibers were impregnated with the resin solution using a hand lay-up method. The above steps were repeated seven times to laminate seven layers of glass fibers. Thereafter, the solvent was evaporated and dried using a drier, and a glass fiber reinforced sheet with a thickness of 2 mm was obtained by hot pressing (press molding time: 2 minutes, press molding temperature: 200° C., press molding pressure 10 MPa).
  • the obtained glass fiber reinforced sheet was dissolved in 3 L of tetrahydrofuran, insoluble matter was removed by filtration, and the filtrate was dried to remove the solvent component to obtain a resin composition.
  • the obtained resin composition was pressed to produce a plate-shaped molded product with a thickness of 0.5 mm.
  • the refractive index of the obtained molded article was measured by a method based on JIS K 7142 (Method A).
  • Example 2 90 parts by mass of a chlorinated vinyl chloride resin and 10 parts by mass of a heat stabilizer (manufactured by Nitto Kasei Co., Ltd., organic tin-based heat stabilizer "TVS #1380") were roll-kneaded, and the resulting kneaded product was press-molded. A resin film was obtained.
  • a heat stabilizer manufactured by Nitto Kasei Co., Ltd., organic tin-based heat stabilizer "TVS #1380”
  • Example 3 A glass fiber reinforced sheet was obtained in the same manner as in Example 1, except that the types and contents of the chlorinated vinyl chloride resin and glass fiber were as shown in Table 1.
  • Example 2 A glass fiber reinforced sheet was obtained in the same manner as in Example 1, except that the types and contents of the chlorinated vinyl chloride resin and glass fiber were as shown in Table 1.
  • Example 4 Example 1 except that the resin components shown in Table 1 were used instead of the chlorinated vinyl chloride resin, and the content of the resin components, the content of the heat stabilizer, and the type and content of the glass fiber were as shown in Table 1. A glass fiber reinforced sheet was obtained in the same manner.
  • Fiber volume occupancy (Vf) The fiber volume occupancy (Vf) of the obtained sheet was measured by a method based on JIS K7075 (combustion method). Specifically, the measurement was performed under the following conditions. Test piece shape: length 10.0mm x width 10.0mm x thickness 2mm
  • Total light transmittance The total light transmittance of the obtained sheet was measured using a hazemeter (Hazemeter NDH2000, manufactured by Nippon Denshoku Kogyo Co., Ltd.) under the following conditions. Sample size: 100mm x 100mm x thickness 2mm Light source: halogen lamp 5V, 2A
  • the obtained sheet was fixed to a jig so that the thickness direction was perpendicular, and heated from below at 800° C. for 30 seconds with a distance between the sheet and the burner of 20 mm.
  • the bending strength of the heated sheet was measured in the same manner. Furthermore, the bending strength reduction rate was calculated based on the bending strength before and after contact with the flame.
  • the present invention it is possible to provide a glass fiber reinforced sheet that has high transparency and sufficient strength and can suppress a decrease in bending strength after contact with flame.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

The present invention provides a glass-fiber-reinforced sheet which has high transparency and sufficient strength, and for which a reduction in bending strength after exposure to flames is suppressed. This present invention is a glass-fiber-reinforced sheet that contains a chlorinated vinyl chloride resin and glass fibers, that has a void content as determined according to JIS K7075 of 10 vol% or less, and that has a fiber volume content (Vf) as determined according to JIS K7075 of 10 to 65 vol%.

Description

ガラス繊維強化シートglass fiber reinforced sheet
本発明は、ガラス繊維強化シートに関する。 The present invention relates to a glass fiber reinforced sheet.
リチウムイオン電池等の各種バッテリーは、内部短絡等によってバッテリーが熱暴走し、発火する危険性がある。特に車載用バッテリーでは、車両事故等の衝撃によってバッテリーが熱暴走して発火し、車両火災の原因となるおそれがある。このため、バッテリーを覆うカバーには、熱暴走により異常高温になったバッテリーの熱を周囲に伝え難くしたり、バッテリーの発火により生じる炎や熱を外部に伝え難くしたりすることが必要となる。 Various types of batteries, such as lithium ion batteries, are at risk of thermal runaway due to internal short circuits and the like, resulting in a fire. Particularly in the case of in-vehicle batteries, there is a risk that the battery may undergo thermal runaway and ignite due to shocks such as those caused by a vehicle accident, resulting in a fire in the vehicle. For this reason, it is necessary for the cover that covers the battery to make it difficult to transmit the heat of the battery that has become abnormally high due to thermal runaway to the surroundings, and to make it difficult to transmit the flame and heat generated by the battery's ignition to the outside. .
このようなバッテリー用の筐体の材料としては、火炎などの高温環境下でも発熱しにくいため、ガラス繊維シートが用いられている。
このようなガラス繊維シートとして、例えば、特許文献1には、ガラスクロスの表面に接着層を介して熱可塑性樹脂フィルムを積層してなる透明不燃性シートが記載されており、接着層がポリ塩化ビニルと可塑剤とを含有する構成が開示されている。
また、例えば、特許文献2には、ガラスクロスでポリ塩化ビニルシートの表面を被覆した構成を有するターポリンシートが開示されている。
Glass fiber sheets are used as a material for such battery casings because they do not easily generate heat even in high-temperature environments such as flames.
As such a glass fiber sheet, for example, Patent Document 1 describes a transparent noncombustible sheet formed by laminating a thermoplastic resin film on the surface of glass cloth via an adhesive layer, and the adhesive layer is polychlorinated. Compositions containing vinyl and a plasticizer are disclosed.
Further, for example, Patent Document 2 discloses a tarpaulin sheet having a structure in which the surface of a polyvinyl chloride sheet is covered with glass cloth.
特開2019-162831号公報JP2019-162831A 特開2011-36355号公報Japanese Patent Application Publication No. 2011-36355
また、従来の電気自動車用リチウムイオンバッテリー用の筐体はボルトにより締結、密閉されるため、異常が発生したときや検査を行うときに締結部を開放する必要があり、作業に手間がかかったり、解放後にリチウムイオンバッテリーが異常発熱して作業者に危険が及ぶおそれがある。
例えば、特許文献1及び2に記載のようなシートをリチウムイオンバッテリー用カバーとして用いた場合、透明性は高いものの、加熱することで曲げ強度が著しく低下してしまうという問題がある。
In addition, conventional casings for lithium-ion batteries for electric vehicles are fastened and sealed with bolts, which requires opening the fastened parts when an abnormality occurs or when performing inspections, which can be time-consuming and time-consuming. , the lithium-ion battery may generate abnormal heat after being released, posing a danger to workers.
For example, when sheets such as those described in Patent Documents 1 and 2 are used as a cover for a lithium ion battery, although the transparency is high, there is a problem in that the bending strength is significantly reduced by heating.
本発明は、高い透明性及び充分な強度を有し、接炎後の曲げ強度の低下を抑制できるガラス繊維強化シートを提供することを目的とする。 An object of the present invention is to provide a glass fiber reinforced sheet that has high transparency and sufficient strength and can suppress a decrease in bending strength after contact with flame.
本開示(1)は、塩素化塩化ビニル系樹脂及びガラス繊維を含み、JIS K7075に準拠して測定した空洞率が10体積%以下であり、JIS K7075に準拠して測定した繊維体積占有率(Vf)が10体積%以上65体積%以下である、ガラス繊維強化シートである。
本開示(2)は、塩素化塩化ビニル系樹脂の屈折率とガラス繊維の屈折率との比(塩素化塩化ビニル系樹脂の屈折率/ガラス繊維の屈折率)が0.8以上1.2以下である、本開示(1)のガラス繊維強化シートである。
本開示(3)は、全光線透過率が50%以上である、本開示(1)又は(2)のガラス繊維強化シートである。
本開示(4)は、バーナー火炎で30秒接炎した前後での曲げ強度減少率が50%以下である、本開示(1)~(3)の何れかとの任意の組み合わせのガラス繊維強化シートである。
本開示(5)は、500℃で5時間加熱した後のガラス繊維分を除いた加熱減量率が10質量%以上である、本開示(1)~(4)の何れかとの任意の組み合わせのガラス繊維強化シートである。
本開示(6)は、リチウムイオンバッテリー用カバー用材料である、本開示(1)~(5)の何れかとの任意の組み合わせのガラス繊維強化シートである。
以下、本発明を詳述する。
The present disclosure (1) contains a chlorinated vinyl chloride resin and glass fiber, has a void ratio of 10% by volume or less as measured in accordance with JIS K7075, and has a fiber volume occupancy ( Vf) is 10 volume % or more and 65 volume % or less.
In the present disclosure (2), the ratio of the refractive index of the chlorinated vinyl chloride resin to the refractive index of the glass fiber (refractive index of the chlorinated vinyl chloride resin/refractive index of the glass fiber) is 0.8 or more and 1.2. The glass fiber reinforced sheet of the present disclosure (1) is as follows.
The present disclosure (3) is the glass fiber reinforced sheet of the present disclosure (1) or (2), which has a total light transmittance of 50% or more.
The present disclosure (4) provides a glass fiber reinforced sheet in any combination with any of the present disclosures (1) to (3), which has a bending strength reduction rate of 50% or less before and after being exposed to a burner flame for 30 seconds. It is.
The present disclosure (5) provides any combination with any of the present disclosures (1) to (4), in which the heating loss rate excluding the glass fiber content after heating at 500° C. for 5 hours is 10% by mass or more. It is a glass fiber reinforced sheet.
The present disclosure (6) is a glass fiber reinforced sheet in any combination with any of the present disclosures (1) to (5), which is a cover material for a lithium ion battery.
The present invention will be explained in detail below.
本発明者らは、鋭意検討した結果、塩素化塩化ビニル系樹脂及びガラス繊維を含み、空洞率を10体積%以下としたガラス繊維強化シートは、高い透明性及び充分な強度を有し、接炎後の曲げ強度の低下を抑制できることを見出し、本発明を完成させるに至った。 As a result of intensive studies, the present inventors found that a glass fiber reinforced sheet containing chlorinated vinyl chloride resin and glass fiber and having a void ratio of 10% by volume or less has high transparency and sufficient strength, and It was discovered that the decrease in bending strength after flames can be suppressed, and the present invention was completed.
上記ガラス繊維強化シートは、塩素化塩化ビニル系樹脂を含有する。
塩素化塩化ビニル系樹脂を含有することで、難燃性と透明性を両立することができる。
The glass fiber reinforced sheet contains a chlorinated vinyl chloride resin.
By containing the chlorinated vinyl chloride resin, both flame retardancy and transparency can be achieved.
上記塩素化塩化ビニル系樹脂の塩素含有量は、57質量%以上が好ましく、60質量%以上がより好ましく、75質量%以下が好ましく、73質量%以下がより好ましい。
上記塩素含有量が上記範囲であると、ガラス繊維強化シートの耐熱性及び成形性を向上できる。
上記塩素含有量は、例えば、JIS K 7229に準拠した方法により測定することができる。
The chlorine content of the chlorinated vinyl chloride resin is preferably 57% by mass or more, more preferably 60% by mass or more, preferably 75% by mass or less, and more preferably 73% by mass or less.
When the chlorine content is within the above range, the heat resistance and moldability of the glass fiber reinforced sheet can be improved.
The chlorine content can be measured, for example, by a method based on JIS K 7229.
上記塩素化塩化ビニル系樹脂の平均重合度は、400以上が好ましく、600以上がより好ましく、3000以下が好ましく、2000以下がより好ましい。
上記平均重合度が上記範囲であると、燃焼時に熱分解物が飛散し難く、遮炎性能を高く維持できる。
上記平均重合度は、例えば、JIS K 6720-2:1999に準拠した方法により測定することができる。
The average degree of polymerization of the chlorinated vinyl chloride resin is preferably 400 or more, more preferably 600 or more, preferably 3000 or less, and more preferably 2000 or less.
When the average degree of polymerization is within the above range, thermal decomposition products are less likely to scatter during combustion, and flame blocking performance can be maintained at a high level.
The above average degree of polymerization can be measured, for example, by a method based on JIS K 6720-2:1999.
上記塩素化塩化ビニル系樹脂は、通常、下記構成単位(a)~(c)を有する。
上記塩素化塩化ビニル系樹脂における、上記構成単位(a)、(b)及び(c)の合計モル数に対する構成単位(a)の割合は、5.2モル%以上が好ましく、30.1モル%以上がより好ましく、35.1モル%以上が更に好ましく、89.8モル%以下が好ましく、59.8モル%以下がより好ましい。
また、上記塩素化塩化ビニル系樹脂における、上記構成単位(a)、(b)及び(c)の合計モル数に対する構成単位(b)の割合は、5.1モル%以上が好ましく、15.2モル%以上がより好ましく、39.8モル%以下が好ましく、30.0モル%以下がより好ましく、24.9モル%以下が更に好ましい。
更に、上記塩素化塩化ビニル系樹脂における、上記構成単位(a)、(b)及び(c)の合計モル数に対する構成単位(c)の割合は、5.3モル%以上が好ましく、25.2モル%以上がより好ましく、54.8モル%以下が好ましく、39.9モル%以下がより好ましい。
The above-mentioned chlorinated vinyl chloride resin usually has the following structural units (a) to (c).
In the chlorinated vinyl chloride resin, the ratio of the structural unit (a) to the total number of moles of the structural units (a), (b), and (c) is preferably 5.2 mol% or more, and 30.1 mol % or more, more preferably 35.1 mol% or more, preferably 89.8 mol% or less, and more preferably 59.8 mol% or less.
Further, in the chlorinated vinyl chloride resin, the ratio of the structural unit (b) to the total number of moles of the structural units (a), (b), and (c) is preferably 5.1 mol% or more, and 15. The content is more preferably 2 mol% or more, preferably 39.8 mol% or less, more preferably 30.0 mol% or less, and even more preferably 24.9 mol% or less.
Further, in the chlorinated vinyl chloride resin, the ratio of the structural unit (c) to the total number of moles of the structural units (a), (b), and (c) is preferably 5.3 mol% or more, and 25. It is more preferably 2 mol% or more, preferably 54.8 mol% or less, and even more preferably 39.9 mol% or less.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
上記構成単位(a)、(b)及び(c)のモル比は、NMRを用いた分子構造解析により測定することができる。NMR分析は、R.A.Komoroski,R.G.Parker,J.P.Shocker,Macromolecules,1985,18,1257-1265に記載の方法に準拠して行うことができる。 The molar ratio of the structural units (a), (b) and (c) can be measured by molecular structure analysis using NMR. NMR analysis was carried out by R. A. Komoroski, R. G. Parker, J. P. It can be carried out according to the method described in Shocker, Macromolecules, 1985, 18, 1257-1265.
上記塩素化塩化ビニル系樹脂の酸素指数は、20以上が好ましく、22以上がより好ましく、90以下が好ましく、70以下がより好ましい。
上記酸素指数が上記範囲であると、優れた遮炎性能を発揮できる。
上記酸素指数は、材料が燃焼を持続するのに必要な最低酸素濃度(体積%)であり、例えば、JIS K7201-2:2007に準拠して決定される。
The oxygen index of the chlorinated vinyl chloride resin is preferably 20 or more, more preferably 22 or more, preferably 90 or less, and more preferably 70 or less.
When the oxygen index is within the above range, excellent flame blocking performance can be exhibited.
The oxygen index is the minimum oxygen concentration (volume %) required for the material to sustain combustion, and is determined in accordance with, for example, JIS K7201-2:2007.
上記塩素化塩化ビニル系樹脂のガラス転移温度は、0℃以上が好ましく、20℃以上がより好ましく、40℃以上が更に好ましく、300℃以下が好ましく、250℃以下がより好ましく、200℃以下が更に好ましい。
上記ガラス転移温度は、例えば、JIS K 7121に準拠した方法により測定することができる。
The glass transition temperature of the chlorinated vinyl chloride resin is preferably 0°C or higher, more preferably 20°C or higher, even more preferably 40°C or higher, preferably 300°C or lower, more preferably 250°C or lower, and 200°C or lower. More preferred.
The glass transition temperature can be measured, for example, by a method based on JIS K 7121.
上記塩素化塩化ビニル系樹脂の屈折率は、1.2以上が好ましく、1.3以上がより好ましく、1.4以上が更に好ましく、1.9以下が好ましく、1.8以下がより好ましく、1.7以下が更に好ましい。
上記範囲とすることで、充分な透明性を確保することができる。
上記塩素化塩化ビニル系樹脂の屈折率は、JIS K 7142(A法)、ASTM D542に準拠した方法により測定することができる。
なお、屈折率は塩素化塩化ビニル系樹脂の塩素化度(塩素含有量)、重量平均分子量により調整できる。
The refractive index of the chlorinated vinyl chloride resin is preferably 1.2 or more, more preferably 1.3 or more, even more preferably 1.4 or more, preferably 1.9 or less, more preferably 1.8 or less, It is more preferably 1.7 or less.
By setting it as the said range, sufficient transparency can be ensured.
The refractive index of the above-mentioned chlorinated vinyl chloride resin can be measured by a method based on JIS K 7142 (Method A) and ASTM D542.
Note that the refractive index can be adjusted by adjusting the degree of chlorination (chlorine content) and weight average molecular weight of the chlorinated vinyl chloride resin.
また、上記ガラス繊維強化シートは、テトラヒドロフランで抽出したろ液を乾燥し、プレスした成形品の屈折率(以下、単に「成形品の屈折率」ともいう)が1.2以上であることが好ましく、1.3以上であることがより好ましく、1.4以上であることが更に好ましく、1.9以下であることが好ましく、1.8以下であることがより好ましく、1.7以下であることが更に好ましい。
上記範囲とすることで、充分な透明性を確保することができる。
上記屈折率は、JIS K 7142(A法)、ASTM D542に準拠した方法により測定することができる。
より具体的には、上記ガラス繊維強化シート500gをテトラヒドロフラン3Lに溶解させ、不溶分をろ過して取り除き、ろ液を乾燥させて溶剤成分を取り除いて得られる樹脂組成物をプレスして厚さ0.5mmの平板状に成形して成形品を作製し、得られた成形品について上記方法により屈折率を測定する方法を用いることができる。
Further, in the above-mentioned glass fiber reinforced sheet, it is preferable that the refractive index of the molded product obtained by drying the filtrate extracted with tetrahydrofuran and pressing (hereinafter also simply referred to as "the refractive index of the molded product") is 1.2 or more. , more preferably 1.3 or more, still more preferably 1.4 or more, preferably 1.9 or less, more preferably 1.8 or less, and 1.7 or less. More preferably.
By setting it as the said range, sufficient transparency can be ensured.
The above refractive index can be measured by a method based on JIS K 7142 (Method A) and ASTM D542.
More specifically, 500 g of the above glass fiber reinforced sheet is dissolved in 3 L of tetrahydrofuran, insoluble matter is filtered out, the filtrate is dried to remove the solvent component, and the resulting resin composition is pressed to a thickness of 0. A method can be used in which a molded article is produced by molding into a flat plate shape of .5 mm, and the refractive index of the obtained molded article is measured by the above method.
上記塩素化塩化ビニル系樹脂の重量平均分子量は、1,000以上が好ましく、3,000以上がより好ましく、1,000,000以下が好ましく、950,000以下がより好ましい。上記重量平均分子量(Mw)は、例えば、ASTM D2503に準拠した方法により測定することができる。 The weight average molecular weight of the chlorinated vinyl chloride resin is preferably 1,000 or more, more preferably 3,000 or more, preferably 1,000,000 or less, and more preferably 950,000 or less. The weight average molecular weight (Mw) can be measured, for example, by a method based on ASTM D2503.
上記塩素化塩化ビニル系樹脂は、塩化ビニル樹脂(PVC)が塩素化されてなる樹脂である。
上記塩化ビニル樹脂としては、塩化ビニル単独重合体、塩化ビニルモノマーと共重合可能な不飽和結合を有するモノマーと塩化ビニルモノマーとの共重合体、重合体に塩化ビニルモノマーをグラフト共重合したグラフト共重合体等を用いることができる。これら重合体は単独で用いられてもよいし、2種以上が併用されてもよい。
The above-mentioned chlorinated vinyl chloride resin is a resin obtained by chlorinating vinyl chloride resin (PVC).
The above-mentioned vinyl chloride resins include vinyl chloride homopolymers, copolymers of vinyl chloride monomers and monomers having unsaturated bonds that can be copolymerized with vinyl chloride monomers, and graft polymers obtained by graft copolymerizing vinyl chloride monomers onto polymers. Polymers and the like can be used. These polymers may be used alone or in combination of two or more.
上記塩化ビニルモノマーと共重合可能な不飽和結合を有するモノマーとしては、例えば、α-オレフィン類、ビニルエステル類、ビニルエーテル類、(メタ)アクリル酸エステル類、芳香族ビニル類、ハロゲン化ビニル類、N-置換マレイミド類等が挙げられ、これらの1種若しくは2種以上が使用される。
上記α-オレフィン類としては、エチレン、プロピレン、ブチレン等が挙げられる。
上記ビニルエステル類としては、酢酸ビニル、プロピオン酸ビニル等が挙げられる。
上記ビニルエーテル類としては、ブチルビニルエーテル、セチルビニルエーテル等が挙げられる。
上記(メタ)アクリル酸エステル類としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチルアクリレート、フェニルメタクリレート等が挙げられる。
上記芳香族ビニル類としては、スチレン、α-メチルスチレン等が挙げられる。
上記ハロゲン化ビニル類としては、塩化ビニリデン、フッ化ビニリデン等が挙げられる。
上記N-置換マレイミド類としては、N-フェニルマレイミド、N-シクロヘキシルマレイミド等が挙げられる。
Examples of monomers having unsaturated bonds copolymerizable with the vinyl chloride monomer include α-olefins, vinyl esters, vinyl ethers, (meth)acrylic esters, aromatic vinyls, vinyl halides, Examples include N-substituted maleimides, and one or more of these may be used.
Examples of the α-olefins include ethylene, propylene, butylene, and the like.
Examples of the vinyl esters include vinyl acetate and vinyl propionate.
Examples of the vinyl ethers include butyl vinyl ether, cetyl vinyl ether, and the like.
Examples of the (meth)acrylic acid esters include methyl (meth)acrylate, ethyl (meth)acrylate, butyl acrylate, phenyl methacrylate, and the like.
Examples of the aromatic vinyls include styrene, α-methylstyrene, and the like.
Examples of the vinyl halides include vinylidene chloride and vinylidene fluoride.
Examples of the N-substituted maleimides include N-phenylmaleimide and N-cyclohexylmaleimide.
上記塩化ビニルをグラフト共重合する重合体としては、塩化ビニルをグラフト重合させるものであれば特に限定されない。例えば、エチレン共重合体、アクリロニトリル-ブタジエン共重合体、ポリウレタン、塩素化ポリエチレン、塩素化ポリプロピレン等が挙げられる。これらは単独で用いられてもよいし、2種以上が併用されてもよい。
上記エチレン共重合体としては、エチレン-酢酸ビニル共重合体、エチレン-酢酸ビニル-一酸化炭素共重合体、エチレン-エチルアクリレート共重合体、エチレン-ブチルアクリレート-一酸化炭素共重合体、エチレン-メチルメタクリレート共重合体、エチレン-プロピレン共重合体等が挙げられる。
The polymer to be graft-copolymerized with vinyl chloride is not particularly limited as long as it can be graft-polymerized with vinyl chloride. Examples include ethylene copolymer, acrylonitrile-butadiene copolymer, polyurethane, chlorinated polyethylene, and chlorinated polypropylene. These may be used alone or in combination of two or more.
Examples of the ethylene copolymers include ethylene-vinyl acetate copolymer, ethylene-vinyl acetate-carbon monoxide copolymer, ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate-carbon monoxide copolymer, and ethylene-vinyl acetate copolymer. Examples include methyl methacrylate copolymer and ethylene-propylene copolymer.
上記PVCの平均重合度は、特に限定されず、通常用いられる400~3000のものが好ましく、より好ましくは600~2000である。平均重合度は、JIS K 6720-2:1999に記載の方法より測定することができる。
上記PVCの重合方法は、特に限定されず、従来公知の水懸濁重合、塊状重合、溶液重合、乳化重合等を用いることができる。
The average degree of polymerization of the PVC is not particularly limited, and is preferably from 400 to 3,000, which is commonly used, and more preferably from 600 to 2,000. The average degree of polymerization can be measured by the method described in JIS K 6720-2:1999.
The method for polymerizing the PVC is not particularly limited, and conventionally known methods such as water suspension polymerization, bulk polymerization, solution polymerization, and emulsion polymerization can be used.
上記ガラス繊維強化シートにおける上記塩素化塩化ビニル系樹脂の含有量は、10質量%以上が好ましく、20質量%以上がより好ましく、25質量%%以上が更に好ましく、80質量%以下が好ましく、70質量%以下がより好ましく、60質量%以下が更に好ましい。
上記範囲とすることで、透明性と難燃性を両立することができる。
The content of the chlorinated vinyl chloride resin in the glass fiber reinforced sheet is preferably 10% by mass or more, more preferably 20% by mass or more, even more preferably 25% by mass or more, preferably 80% by mass or less, and 70% by mass or more. It is more preferably at most 60% by mass, even more preferably at most 60% by mass.
By setting it as the said range, transparency and flame retardance can be compatible.
上記ガラス繊維強化シートにおける上記塩素化塩化ビニル系樹脂の含有量は、20体積%以上が好ましく、30体積%以上がより好ましく、35体積%以上が更に好ましく、80体積%以下が好ましく、70体積%以下がより好ましく、65体積%以下が更に好ましい。 The content of the chlorinated vinyl chloride resin in the glass fiber reinforced sheet is preferably 20 volume% or more, more preferably 30 volume% or more, even more preferably 35 volume% or more, preferably 80 volume% or less, and 70 volume% or more. % or less is more preferable, and even more preferably 65 volume % or less.
上記ガラス繊維強化シートは、塩素化塩化ビニル系樹脂以外の熱可塑性樹脂、熱硬化性樹脂等の合成樹脂、エラストマー等を含有していてもよい。 The glass fiber reinforced sheet may contain thermoplastic resins other than chlorinated vinyl chloride resins, synthetic resins such as thermosetting resins, elastomers, and the like.
上記熱可塑性樹脂としては、例えば、塩化ビニル樹脂(PVC)、ポリエチレンやポリプロピレン等のポリオレフィン、ポリスチレン(PS)、アクリロニトリル-スチレン共重合体(AS樹脂)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリメチルメタクリレート等のアクリル樹脂、ポリアミド、ポリカーボネート、ポリスルフォン(PSU樹脂)、ポリフェニルスルフォン(PPSU)、ポリエーテルスルフォン(PES樹脂)、ポリエーテルイミド(PEI樹脂)、ポリフェニレンスルファイド(PPS樹脂)、ポリエチレンテレフタレートやポリブチレンテレフタレート等のポリエステル樹脂、ポリアセタール、ポリイミド、ポリフェニレンエーテル、ポリエーテルエーテルケトン、液晶ポリマー等が挙げられる。 Examples of the thermoplastic resin include vinyl chloride resin (PVC), polyolefins such as polyethylene and polypropylene, polystyrene (PS), acrylonitrile-styrene copolymer (AS resin), and acrylonitrile-butadiene-styrene copolymer (ABS resin). ), acrylic resins such as polymethyl methacrylate, polyamide, polycarbonate, polysulfone (PSU resin), polyphenylsulfone (PPSU), polyethersulfone (PES resin), polyetherimide (PEI resin), polyphenylene sulfide (PPS resin) ), polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyacetals, polyimides, polyphenylene ethers, polyether ether ketones, liquid crystal polymers, and the like.
上記熱硬化性樹脂としては、例えば、ポリウレタン、フェノール樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂、シリコーン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、熱硬化性ポリイミド等が挙げられる。 Examples of the thermosetting resin include polyurethane, phenol resin, epoxy resin, urea resin, melamine resin, silicone resin, unsaturated polyester resin, alkyd resin, thermosetting polyimide, and the like.
上記エラストマーとしては、例えば、オレフィン系エラストマー、スチレン系エラストマー、エステル系エラストマー、アミド系エラストマー、塩化ビニル系エラストマー等の熱可塑性エラストマー等が挙げられる。 Examples of the elastomer include thermoplastic elastomers such as olefin elastomers, styrene elastomers, ester elastomers, amide elastomers, and vinyl chloride elastomers.
上記ガラス繊維強化シートは、ガラス繊維を含有する。
ガラス繊維を含有することで、燃焼後の強度を向上できる。
上記ガラス繊維としては、例えば、Eガラス、Cガラス、Sガラス、Tガラス等が挙げられる。
The glass fiber reinforced sheet contains glass fibers.
By containing glass fiber, the strength after combustion can be improved.
Examples of the glass fiber include E glass, C glass, S glass, and T glass.
上記ガラス繊維の屈折率は、1.2以上が好ましく、1.3以上がより好ましく、1.4以上が更に好ましく、1.9以下が好ましく、1.8以下がより好ましく、1.7以下が更に好ましい。
上記範囲とすることで、充分な透明性を確保とすることができる。
上記ガラス繊維の屈折率は、STM C1648またはASTM E1967-19に準拠した方法により測定することができる。
The refractive index of the glass fiber is preferably 1.2 or more, more preferably 1.3 or more, even more preferably 1.4 or more, preferably 1.9 or less, more preferably 1.8 or less, and 1.7 or less. is even more preferable.
By setting it within the above range, sufficient transparency can be ensured.
The refractive index of the glass fiber can be measured by a method based on STM C1648 or ASTM E1967-19.
また、上記塩素化塩化ビニル系樹脂の屈折率と上記ガラス繊維の屈折率との比(塩素化塩化ビニル系樹脂の屈折率/ガラス繊維の屈折率)は、0.8以上が好ましく、0.9以上がより好ましく、1.2以下が好ましく、1.1以下がより好ましい。
上記範囲とすることで、入射光の散乱、屈折を抑制して透明性を確保することができる。
The ratio of the refractive index of the chlorinated vinyl chloride resin to the refractive index of the glass fiber (refractive index of the chlorinated vinyl chloride resin/refractive index of the glass fiber) is preferably 0.8 or more, and 0.8 or more. It is more preferably 9 or more, preferably 1.2 or less, and even more preferably 1.1 or less.
By setting it as the said range, scattering and refraction of incident light can be suppressed and transparency can be ensured.
上記成形品の屈折率と上記ガラス繊維の屈折率との比(成形品の屈折率/ガラス繊維の屈折率)は、0.8以上が好ましく、0.9以上がより好ましく、1.2以下が好ましく、1.1以下がより好ましい。 The ratio of the refractive index of the molded article to the refractive index of the glass fiber (refractive index of molded article/refractive index of glass fiber) is preferably 0.8 or more, more preferably 0.9 or more, and 1.2 or less. is preferable, and 1.1 or less is more preferable.
上記ガラス繊維の平均繊維径は、2μm以上が好ましく、3μm以上がより好ましく、30μm以下が好ましく、26μm以下がより好ましい。 The average fiber diameter of the glass fibers is preferably 2 μm or more, more preferably 3 μm or more, preferably 30 μm or less, and more preferably 26 μm or less.
上記ガラス繊維は、繊維が断続的に分断された非連続繊維であってもよく、分断されていない連続繊維であってもよい。
上記ガラス繊維が非連続繊維である場合、上記ガラス繊維の平均繊維長は、2mm以上が好ましく、4mm以上がより好ましく、100mm以下が好ましく、80mm以下がより好ましい。
The above-mentioned glass fibers may be discontinuous fibers in which the fibers are intermittently divided, or may be continuous fibers in which the fibers are not divided.
When the glass fibers are discontinuous fibers, the average fiber length of the glass fibers is preferably 2 mm or more, more preferably 4 mm or more, preferably 100 mm or less, and more preferably 80 mm or less.
上記ガラス繊維の比重は、1.5以上が好ましく、1.7以上がより好ましく、2.0以上がさらに好ましく、3.0以下が好ましく、2.7以下がより好ましく、2.6以下が更に好ましい。
上記比重は、例えば、電子比重計等を用いて測定することができる。
The specific gravity of the glass fiber is preferably 1.5 or more, more preferably 1.7 or more, even more preferably 2.0 or more, preferably 3.0 or less, more preferably 2.7 or less, and 2.6 or less. More preferred.
The specific gravity can be measured using, for example, an electronic hydrometer.
上記ガラス繊維の形態は、特に限定されないが、例えば、繊維状、織物、編物、不織布のシート状等が挙げられる。
上記ガラス繊維がシート状である場合、上記ガラス繊維の目付は、100g/m以上が好ましく、350g/m以上がより好ましく、1000g/m以下が好ましく、650g/m以下がより好ましい。
上記範囲とすることで、透明性と物性を両立することができる。
The form of the glass fiber is not particularly limited, and examples thereof include fibrous, woven, knitted, and nonwoven sheet forms.
When the glass fiber is in the form of a sheet, the basis weight of the glass fiber is preferably 100 g/m 2 or more, more preferably 350 g/m 2 or more, preferably 1000 g/m 2 or less, and more preferably 650 g/m 2 or less. .
By setting it as the said range, transparency and physical properties can be made compatible.
上記ガラス繊維強化シートにおける上記ガラス繊維の含有量は、10質量%以上が好ましく、20質量%以上がより好ましく、25質量%以上が更に好ましく、80質量%以下が好ましく、70質量%以下がより好ましく、60質量%以下が更に好ましい。
上記範囲であると、ガラス繊維強化シートの機械的強度を充分に高めることができる。
The content of the glass fiber in the glass fiber reinforced sheet is preferably 10% by mass or more, more preferably 20% by mass or more, even more preferably 25% by mass or more, preferably 80% by mass or less, and more preferably 70% by mass or less. It is preferably 60% by mass or less, and more preferably 60% by mass or less.
Within the above range, the mechanical strength of the glass fiber reinforced sheet can be sufficiently increased.
上記ガラス繊維強化シートにおける上記ガラス繊維の含有量は、20体積%以上が好ましく、30体積%以上がより好ましく、35体積%以上が更に好ましく、80体積%以下が好ましく、70体積%以下がより好ましく、65体積%以下が更に好ましい。 The content of the glass fiber in the glass fiber reinforced sheet is preferably 20 volume% or more, more preferably 30 volume% or more, even more preferably 35 volume% or more, preferably 80 volume% or less, and more preferably 70 volume% or less. Preferably, 65% by volume or less is more preferable.
上記ガラス繊維強化シートは、上記塩素化塩化ビニル系樹脂及びガラス繊維の他、必要に応じて、炭素繊維、金属繊維、有機繊維、無機繊維等の強化繊維を含んでいてもよい。
上記炭素繊維としては、例えば、PAN系炭素繊維、ピッチ系炭素繊維、セルロース系炭素繊維、気相成長系炭素繊維等が挙げられる。
上記金属繊維としては、例えば、鉄、金、銀、銅、アルミニウム、黄銅、ステンレス等の金属からなる繊維が挙げられる。
上記有機繊維としては、例えば、アラミド、ポリベンゾオキサゾール(PBO)、ポリフェニレンスルフィド、ポリエステル、ポリアミド、ポリエチレン等の有機材料からなる繊維が挙げられる。
上記無機繊維としては、例えば、バサルト、シリコンカーバイト、シリコンナイトライド等の無機材料からなる繊維が挙げられる。
In addition to the chlorinated vinyl chloride resin and glass fibers, the glass fiber reinforced sheet may contain reinforcing fibers such as carbon fibers, metal fibers, organic fibers, and inorganic fibers, if necessary.
Examples of the carbon fibers include PAN-based carbon fibers, pitch-based carbon fibers, cellulose-based carbon fibers, vapor-grown carbon fibers, and the like.
Examples of the metal fibers include fibers made of metals such as iron, gold, silver, copper, aluminum, brass, and stainless steel.
Examples of the organic fibers include fibers made of organic materials such as aramid, polybenzoxazole (PBO), polyphenylene sulfide, polyester, polyamide, and polyethylene.
Examples of the above-mentioned inorganic fibers include fibers made of inorganic materials such as basalt, silicon carbide, and silicon nitride.
上記ガラス繊維強化シートは、JIS K7075に準拠して測定した繊維体積占有率(Vf)が10体積%以上であり、15体積%以上であることが好ましく、20体積%以上であることがより好ましく、30体積%以上であることが更に好ましく、35体積%以上があることが更により好ましく、65体積%以下であり、60体積%以下であることが好ましく、55体積%以下であることがより好ましく、50体積%以下であることが更に好ましい。
上記範囲とすることで、透明性と物性を両立することができる。
The glass fiber reinforced sheet has a fiber volume occupancy (Vf) of 10 vol% or more, preferably 15 vol% or more, more preferably 20 vol% or more, as measured in accordance with JIS K7075. , more preferably 30 volume% or more, even more preferably 35 volume% or more, 65 volume% or less, preferably 60 volume% or less, and more preferably 55 volume% or less. The content is preferably 50% by volume or less, and more preferably 50% by volume or less.
By setting it as the said range, transparency and physical properties can be made compatible.
上記ガラス繊維強化シートは、熱安定剤を含有することが好ましい。
上記熱安定剤としては、例えば、有機錫系熱安定剤、鉛系熱安定剤、カルシウム-亜鉛系熱安定剤、バリウム-亜鉛系熱安定剤及びカドミウム-バリウム系熱安定剤等が挙げられる。
上記有機錫系熱安定剤としては、例えば、メチル、ブチル、オクチル等のアルキル錫、好ましくはジアルキル錫のラウリン酸等の脂肪族モノカルボン酸の塩、或いはマレイン酸、フタル酸等のジカルボン酸の塩等が挙げられる。具体的には例えば、ジブチル錫ジラウリレート、ジオクチル錫ラウレート、ジブチル錫マレート、ジブチル錫フタレート、ジメチル錫ビス(2-エチルへキシルチオグリコレート)、ジブチル錫メルカプタイド、ジメチル錫メルカプタイド等のアルキル錫メルカプタイド等が挙げられる。
上記鉛系熱安定剤としては、ステアリン酸鉛、二塩基性亜燐酸鉛及び三塩基性硫酸鉛等が挙げられる。
上記熱安定剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
The glass fiber reinforced sheet preferably contains a heat stabilizer.
Examples of the above heat stabilizers include organotin heat stabilizers, lead heat stabilizers, calcium-zinc heat stabilizers, barium-zinc heat stabilizers, and cadmium-barium heat stabilizers.
Examples of the organotin-based heat stabilizer include salts of alkyltins such as methyl, butyl, and octyl, preferably dialkyltins of aliphatic monocarboxylic acids such as lauric acid, or salts of dicarboxylic acids such as maleic acid and phthalic acid. Examples include salt. Specifically, for example, alkyltin mercaptides such as dibutyltin dilaurylate, dioctyltin laurate, dibutyltin maleate, dibutyltin phthalate, dimethyltin bis(2-ethylhexylthioglycolate), dibutyltin mercaptide, dimethyltin mercaptide, etc. Can be mentioned.
Examples of the lead-based heat stabilizer include lead stearate, dibasic lead phosphite, and tribasic lead sulfate.
The above heat stabilizers may be used alone or in combination of two or more.
上記ガラス繊維強化シートにおける上記熱安定剤の含有量は、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、30.0質量%以下が好ましく、10.0質量%以下がより好ましい。
また、上記ガラス繊維強化シートにおける上記熱安定剤の含有量は、上記塩素化塩化ビニル系樹脂100重量部に対して、0.1質量部以上が好ましく、0.8質量部以上がより好ましく、30.0質量部以下が好ましく、15.0質量部以下がより好ましい。
The content of the heat stabilizer in the glass fiber reinforced sheet is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, preferably 30.0% by mass or less, and 10.0% by mass or less. More preferred.
Further, the content of the heat stabilizer in the glass fiber reinforced sheet is preferably 0.1 parts by mass or more, more preferably 0.8 parts by mass or more, based on 100 parts by weight of the chlorinated vinyl chloride resin. It is preferably 30.0 parts by mass or less, more preferably 15.0 parts by mass or less.
上記ガラス繊維強化シートは、更に、滑剤、衝撃改質剤、無機充填材、顔料、難燃剤、酸化防止剤、加工助剤、紫外線吸収剤、光安定剤等の添加剤を含んでいてもよい。 The glass fiber reinforced sheet may further contain additives such as lubricants, impact modifiers, inorganic fillers, pigments, flame retardants, antioxidants, processing aids, ultraviolet absorbers, and light stabilizers. .
上記ガラス繊維強化シートは、JIS K7075に準拠して測定した空洞率が10体積%以下であることが好ましい。
上記範囲とすることで、接炎後の曲げ強度の低下を抑制できる。
上記空洞率は、0.1体積%以上が好ましく、0.2体積%以上がより好ましく、0.3体積%以上が更に好ましく、10.0体積%以下が好ましく、9.0体積%以下がより好ましく、8.0体積%以下が更に好ましい。
上記空洞率は、ガラス繊維強化シート中の空洞(空隙)の占める体積の割合を意味し、プレス成形時間、プレス成形温度、成形時に用いる溶剤の添加量、可塑剤の添加量等により調整することができる。
The glass fiber reinforced sheet preferably has a voidage ratio of 10% by volume or less as measured in accordance with JIS K7075.
By setting it as the said range, a fall in the bending strength after flame contact can be suppressed.
The void ratio is preferably 0.1 volume% or more, more preferably 0.2 volume% or more, even more preferably 0.3 volume% or more, preferably 10.0 volume% or less, and 9.0 volume% or less. It is more preferably 8.0% by volume or less.
The above-mentioned void ratio means the volume ratio occupied by cavities (voids) in the glass fiber reinforced sheet, and can be adjusted by press molding time, press molding temperature, amount of solvent used during molding, amount of plasticizer added, etc. I can do it.
また、上記ガラス繊維強化シートにおける樹脂組成物体積比率(Vr)は、25体積%以上であることが好ましく、30体積%以上であることがより好ましく、35体積%以上であることが更に好ましく、40体積%以上であることが更により好ましく、80体積%以下であることが好ましく、75体積%以下であることがより好ましく、70体積%以下であることが更に好ましく、65体積%以下であることが更により好ましい。
なお、上記樹脂組成物体積比率(Vr)は、上記ガラス繊維強化シート全体の体積から上記繊維体積占有率(Vf)及び空洞率を除いたものであり、以下の式により算出できる。
 樹脂組成物体積比率(Vr)=100-Vf-空洞率
Further, the resin composition volume ratio (Vr) in the glass fiber reinforced sheet is preferably 25% by volume or more, more preferably 30% by volume or more, even more preferably 35% by volume or more, It is even more preferably 40 volume% or more, preferably 80 volume% or less, more preferably 75 volume% or less, even more preferably 70 volume% or less, and even more preferably 65 volume% or less. Even more preferred.
The resin composition volume ratio (Vr) is obtained by removing the fiber volume occupancy (Vf) and the void ratio from the entire volume of the glass fiber reinforced sheet, and can be calculated by the following formula.
Resin composition volume ratio (Vr) = 100 - Vf - void ratio
上記ガラス繊維強化シートは、500℃で5時間加熱した後のガラス繊維分を除いた加熱減量率が10質量%以上であることが好ましい。
上記範囲とすることで、透明性を確保しながら剛性を確保することができる。
上記加熱減量率は、10質量%以上がより好ましく、15質量%以上が更に好ましく、95質量%以下が好ましく、85質量%以下がより好ましい。
The glass fiber reinforced sheet preferably has a heating loss rate of 10% by mass or more after heating at 500° C. for 5 hours, excluding the glass fiber component.
By setting it as the said range, rigidity can be ensured while ensuring transparency.
The heating loss rate is more preferably 10% by mass or more, still more preferably 15% by mass or more, preferably 95% by mass or less, and more preferably 85% by mass or less.
上記ガラス繊維強化シートは、全光線透過率が50%以上であることが好ましい。
上記範囲とすることで、透明性を確保することができる。
上記全光線透過率は、50%以上がより好ましく、60%以上がより好ましく、100%以下が好ましく、99%以下がより好ましく、98%以下が更に好ましい。
上記全光線透過率は、JIS K7361-1に準拠した方法により測定することができる。
The glass fiber reinforced sheet preferably has a total light transmittance of 50% or more.
By setting it as the said range, transparency can be ensured.
The total light transmittance is more preferably 50% or more, more preferably 60% or more, preferably 100% or less, more preferably 99% or less, and even more preferably 98% or less.
The above-mentioned total light transmittance can be measured by a method based on JIS K7361-1.
上記ガラス繊維強化シートの曲げ強度は、100MPa以上が好ましく、110MPa以上がより好ましく、300MPa以下が好ましく、280MPa以下がより好ましい。
上記曲げ強度は、JIS K7171に準拠した方法により測定することができる。
The bending strength of the glass fiber reinforced sheet is preferably 100 MPa or more, more preferably 110 MPa or more, preferably 300 MPa or less, and more preferably 280 MPa or less.
The above bending strength can be measured by a method based on JIS K7171.
上記ガラス繊維強化シートは、バーナー火炎で30秒接炎した前後での曲げ強度が、80MPa以上であることが好ましく、90MPa以上であることがより好ましく、300MPa以下であることが好ましく、280MPa以下であることがより好ましい。
上記曲げ強度は、具体的には、ガラス繊維強化シートを厚み方向が垂直方法となるように治具に固定し、ガラス繊維強化シートとバーナーとの距離を20mmとして下方から加熱して800℃の状態で30秒間加熱した後、加熱後のガラス繊維強化シートの曲げ強度をJIS K7171に準拠した方法により測定することができる。
The bending strength of the glass fiber reinforced sheet before and after being exposed to a burner flame for 30 seconds is preferably 80 MPa or more, more preferably 90 MPa or more, preferably 300 MPa or less, and 280 MPa or less. It is more preferable that there be.
Specifically, the above bending strength is determined by fixing a glass fiber reinforced sheet to a jig so that the thickness direction is perpendicular, heating it from below to 800°C with a distance between the glass fiber reinforced sheet and a burner of 20 mm. After heating in this state for 30 seconds, the bending strength of the heated glass fiber reinforced sheet can be measured by a method based on JIS K7171.
上記ガラス繊維強化シートは、バーナー火炎で30秒接炎した前後での曲げ強度減少率が50%以下であることが好ましい。
上記範囲とすることで、接炎後に充分な強度を確保することができる。
上記曲げ強度減少率は、5%以上が好ましく、7%以上がより好ましく、10%以上が更に好ましく、75%以下がより好ましく、60%以下が更に好ましい。
The glass fiber reinforced sheet preferably has a bending strength reduction rate of 50% or less before and after being exposed to burner flame for 30 seconds.
By setting it as the said range, sufficient strength can be ensured after flame contact.
The bending strength reduction rate is preferably 5% or more, more preferably 7% or more, even more preferably 10% or more, more preferably 75% or less, and even more preferably 60% or less.
上記ガラス繊維強化シートの引張強度は、100MPa以上が好ましく、120MPa以上がより好ましく、300MPa以下が好ましく、280MPa以下がより好ましい。
上記引張強度は、ASTM D638に準拠した方法より測定することができる。
The tensile strength of the glass fiber reinforced sheet is preferably 100 MPa or more, more preferably 120 MPa or more, preferably 300 MPa or less, and more preferably 280 MPa or less.
The above tensile strength can be measured by a method based on ASTM D638.
上記ガラス繊維強化シートの厚さは、0.2mm以上が好ましく、0.4mm以上がより好ましく、10mm以下が好ましく、7mm以下がより好ましい。 The thickness of the glass fiber reinforced sheet is preferably 0.2 mm or more, more preferably 0.4 mm or more, preferably 10 mm or less, and more preferably 7 mm or less.
上記ガラス繊維強化シートを製造する方法としては、例えば、上記塩素化塩化ビニル系樹脂及びその他の添加剤を溶剤に溶解して樹脂溶液を作製し、更に、シート状のガラス繊維に樹脂溶液を含浸させて乾燥機により溶剤を乾燥させて成形する方法が挙げられる。
また、成形する方法としては、例えば、ハンドレイアップ成形法、スプレーアップ成形法、レジントランスファーモールディング成形法、プレス成形法、バッグ成形法、射出成形法、押出成形法、スタンピング成形法等が挙げられる。
As a method for manufacturing the above-mentioned glass fiber reinforced sheet, for example, a resin solution is prepared by dissolving the above-mentioned chlorinated vinyl chloride resin and other additives in a solvent, and then a sheet-like glass fiber is further impregnated with the resin solution. An example of this method is to dry the solvent in a dryer and then mold the product.
Examples of the molding method include hand lay-up molding, spray-up molding, resin transfer molding, press molding, bag molding, injection molding, extrusion molding, and stamping molding. .
特にプレス成形法を用いる場合、プレス温度は、130℃以上が好ましく、140℃以下が好ましい。
また、プレス時間は、10秒以上が好ましく、30分以下が好ましい。
更に、プレス圧力は、0.1MPa以上が好ましく、30.0MPa以下が好ましい。
In particular, when using a press molding method, the press temperature is preferably 130°C or higher, and preferably 140°C or lower.
Further, the pressing time is preferably 10 seconds or more, and preferably 30 minutes or less.
Furthermore, the press pressure is preferably 0.1 MPa or more, and preferably 30.0 MPa or less.
上記ガラス繊維強化シートは、高い透明性を有し、接炎後の曲げ強度の低下を抑制できることから、輸送機用部材、電池装置用部材、建材として好適に用いることができる。また、ドローン搭載用小型カメラ等の筐体等のドローン部品として好適に用いることができる。 The above-mentioned glass fiber reinforced sheet has high transparency and can suppress a decrease in bending strength after being exposed to flame, so it can be suitably used as a member for a transportation machine, a member for a battery device, or a building material. Further, it can be suitably used as a drone component such as a casing for a small camera mounted on a drone.
上記輸送機としては、ガソリン自動車、ハイブリッド自動車、電気自動車、燃料電池自動車等の自動車、ガソリンバイク、ハイブリッドバイク、電動バイク等のバイク、電動アシスト自転車等の自転車、鉄道車両、船舶、航空機等が挙げられる。
また、上記輸送機用の部材としては、機構部材、内装部材、外装部材、窓ガラス、ライトカバー等が挙げられる。
上記機構部材としては、冷却パイプ、エアバッグカバー、エアーダクト、ヒーターユニット等が挙げられる。
上記内装部材としては、天井、インストルメンタルパネル、コンソールボックス、アームレスト、シートベルトバックル、スイッチ類、ドアトリム等が挙げられる。
上記外装部材としては、エンブレム、ナンバープレートハウジング、バンパー芯材、アンダーカバー等が挙げられる。
Examples of the above-mentioned transportation vehicles include automobiles such as gasoline vehicles, hybrid vehicles, electric vehicles, and fuel cell vehicles, motorcycles such as gasoline motorcycles, hybrid motorcycles, and electric motorcycles, bicycles such as electrically assisted bicycles, railway vehicles, ships, and aircraft. It will be done.
Further, examples of the above-mentioned members for the transport device include mechanical members, interior members, exterior members, window glass, light covers, and the like.
Examples of the mechanical members include cooling pipes, airbag covers, air ducts, heater units, and the like.
Examples of the interior components include a ceiling, an instrument panel, a console box, an armrest, a seatbelt buckle, switches, a door trim, and the like.
Examples of the exterior member include an emblem, a license plate housing, a bumper core material, an undercover, and the like.
上記電池装置としては、ニッケルマンガン電池、リチウム電池、空気亜鉛電池等の一次電池、ニッケル水素電池、リチウムイオン電池、鉛蓄電池等の二次電池、シリコン系太陽電池、色素増感太陽電池、ペロブスカイト型太陽電池等の太陽電池、固体高分子型燃料電池、アルカリ型燃料電池、リン酸型燃料電池、固体酸化物型燃料電池等の燃料電池等が挙げられる。
上記電池装置用の部材としては、バッテリー用カバー、バッテリー冷却用ウォータージャケット、水素タンクカバー、コネクタ、絶縁シート等が挙げられる。
特に、上記ガラス繊維強化シートは、リチウムイオンバッテリー用カバー用材料として好適に用いることができ、更に、高い透明性を有し、接炎後の曲げ強度の低下を抑制できることから、車載用バッテリー用カバー用材料として好適に用いることができる。
The above battery devices include primary batteries such as nickel-manganese batteries, lithium batteries, and zinc-air batteries, secondary batteries such as nickel-hydrogen batteries, lithium-ion batteries, and lead-acid batteries, silicon solar cells, dye-sensitized solar cells, and perovskite solar cells. Examples include solar cells such as solar cells, fuel cells such as polymer electrolyte fuel cells, alkaline fuel cells, phosphoric acid fuel cells, and solid oxide fuel cells.
Examples of the members for the battery device include a battery cover, a battery cooling water jacket, a hydrogen tank cover, a connector, an insulating sheet, and the like.
In particular, the above-mentioned glass fiber reinforced sheet can be suitably used as a cover material for lithium-ion batteries, and furthermore, it has high transparency and can suppress the decrease in bending strength after flame contact, so it can be used for automotive batteries. It can be suitably used as a cover material.
上記建材としては、エントランス、ドーム屋根等の採光パネル、カーポート、駐輪場、バス停、サンルーム等の天井材、道路、鉄道、工場周辺等の透光性遮音板、波板、工業板等が挙げられる。 The above building materials include lighting panels for entrances, dome roofs, etc., ceiling materials for carports, bicycle parking lots, bus stops, solariums, etc., translucent sound insulation boards for roads, railways, factory areas, etc., corrugated boards, industrial boards, etc. It will be done.
本発明によれば、高い透明性及び充分な強度を有し、接炎後の曲げ強度の低下を抑制できるガラス繊維強化シートを提供できる。 According to the present invention, it is possible to provide a glass fiber reinforced sheet that has high transparency and sufficient strength and can suppress a decrease in bending strength after contact with flame.
以下、実施例を挙げて本発明を更に詳しく説明する。本発明は以下の実施例のみに限定されない。 Hereinafter, the present invention will be explained in more detail with reference to Examples. The present invention is not limited only to the following examples.
実施例及び比較例では以下の材料を用いた。
<塩素化塩化ビニル系樹脂>
HA-05K:徳山積水工業社製、平均重合度500、塩素含有量67.3質量%、屈折率1.54
HA-28K:徳山積水工業社製、平均重合度700、塩素含有量67.3質量%、屈折率1.54
HA-58K:徳山積水工業社製、平均重合度1000、塩素含有量67.3質量%、屈折率1.58
HA-27F:徳山積水工業社製、平均重合度700、塩素含有量64.8質量%、屈折率1.48
HA-31N:徳山積水工業社製、平均重合度800、塩素含有量70質量%、屈折率1.62
<他の樹脂>
塩化ビニル樹脂 TS-1000R:徳山積水工業社製、平均重合度1000、屈折率1.48
ポリカーボネート ユピゼータPCZ-200:三菱ガス化学社製、粘度平均分子量21,500、屈折率1.58
<溶剤>
THF:テトラヒドロフラン
<ガラス繊維>
チョップドストランドマット:日東紡社製「MC450A-104SS」、屈折率1.52、平均繊維径7μm、目付450g/m
コンティニュアスフィラメントマット:オーウェンスコーニング社製、屈折率1.52、平均繊維径10μm、目付450g/m
なお、塩素化塩化ビニル系樹脂、塩化ビニル樹脂、ポリカーボネートの屈折率は、JIS K 7142(A法)に準拠した方法により測定した。また、ガラス繊維の屈折率はASTM C1648に準拠して測定した。
粘度平均分子量[Mv]は、溶媒としてメチレンクロライドを使用し、ウベローデ粘度計を用いて温度20℃での極限粘度[η](単位dl/g)を求め、Schnellの粘度式、すなわち、η=1.23×10-4×Mv0.83から算出した。また、極限粘度[η]は、各溶液濃度[C](g/dl)での比粘度[ηsp]を測定し、下記式により算出した値である。
Figure JPOXMLDOC01-appb-M000002
The following materials were used in the Examples and Comparative Examples.
<Chlorinated vinyl chloride resin>
HA-05K: manufactured by Tokuyama Sekisui Kogyo Co., Ltd., average degree of polymerization 500, chlorine content 67.3% by mass, refractive index 1.54
HA-28K: manufactured by Tokuyama Sekisui Kogyo Co., Ltd., average degree of polymerization 700, chlorine content 67.3% by mass, refractive index 1.54
HA-58K: manufactured by Tokuyama Sekisui Kogyo Co., Ltd., average degree of polymerization 1000, chlorine content 67.3% by mass, refractive index 1.58
HA-27F: manufactured by Tokuyama Sekisui Kogyo Co., Ltd., average degree of polymerization 700, chlorine content 64.8% by mass, refractive index 1.48
HA-31N: manufactured by Tokuyama Sekisui Kogyo Co., Ltd., average degree of polymerization 800, chlorine content 70% by mass, refractive index 1.62
<Other resins>
Vinyl chloride resin TS-1000R: manufactured by Tokuyama Sekisui Kogyo Co., Ltd., average degree of polymerization 1000, refractive index 1.48
Polycarbonate Iupizeta PCZ-200: manufactured by Mitsubishi Gas Chemical Co., Ltd., viscosity average molecular weight 21,500, refractive index 1.58
<Solvent>
THF: Tetrahydrofuran <Glass fiber>
Chopped strand mat: "MC450A-104SS" manufactured by Nittobo, refractive index 1.52, average fiber diameter 7 μm, basis weight 450 g/m 2
Continuous filament mat: manufactured by Owens Corning, refractive index 1.52, average fiber diameter 10 μm, basis weight 450 g/m 2
Note that the refractive index of the chlorinated vinyl chloride resin, vinyl chloride resin, and polycarbonate was measured by a method based on JIS K 7142 (Method A). Further, the refractive index of the glass fiber was measured in accordance with ASTM C1648.
The viscosity average molecular weight [Mv] is determined by using methylene chloride as a solvent and using an Ubbelohde viscometer to determine the intrinsic viscosity [η] (unit: dl/g) at a temperature of 20°C, and using Schnell's viscosity formula, that is, η= Calculated from 1.23×10 −4 ×Mv 0.83 . Moreover, the intrinsic viscosity [η] is a value calculated by measuring the specific viscosity [η sp ] at each solution concentration [C] (g/dl) and using the following formula.
Figure JPOXMLDOC01-appb-M000002
(実施例1)
塩素化塩化ビニル系樹脂90質量部、熱安定剤(日東化成社製、有機錫系熱安定剤「TVS#1380」)10質量部を溶剤400質量部と混合して、樹脂溶液を作製した。
次に、シート状のガラス繊維にハンドレイアップ法を用いて樹脂溶液を含浸させた。上記工程を7回繰り返してガラス繊維7層を積層させた。その後、乾燥機により溶剤を蒸発乾燥させ、加熱プレス(プレス成形時間:2分、プレス成形温度:200℃、プレス成形圧力10MPa)することにより厚さ2mmのガラス繊維強化シートを得た。
更に、得られたガラス繊維強化シート500gをテトラヒドロフラン3Lに溶解させ、不溶分をろ過にて取り除いたろ液を乾燥させて溶剤成分を取り除いて樹脂組成物を得た。得られた樹脂組成物をプレスして厚さ0.5mmの平板状の成形品を作製した。得られた成形品について、JIS K 7142(A法)に準拠した方法により屈折率を測定した。
(Example 1)
A resin solution was prepared by mixing 90 parts by mass of a chlorinated vinyl chloride resin, 10 parts by mass of a heat stabilizer (manufactured by Nitto Kasei Co., Ltd., organic tin-based heat stabilizer "TVS #1380") and 400 parts by mass of a solvent.
Next, the sheet-shaped glass fibers were impregnated with the resin solution using a hand lay-up method. The above steps were repeated seven times to laminate seven layers of glass fibers. Thereafter, the solvent was evaporated and dried using a drier, and a glass fiber reinforced sheet with a thickness of 2 mm was obtained by hot pressing (press molding time: 2 minutes, press molding temperature: 200° C., press molding pressure 10 MPa).
Furthermore, 500 g of the obtained glass fiber reinforced sheet was dissolved in 3 L of tetrahydrofuran, insoluble matter was removed by filtration, and the filtrate was dried to remove the solvent component to obtain a resin composition. The obtained resin composition was pressed to produce a plate-shaped molded product with a thickness of 0.5 mm. The refractive index of the obtained molded article was measured by a method based on JIS K 7142 (Method A).
(実施例2)
塩素化塩化ビニル系樹脂90質量部、熱安定剤(日東化成社製、有機錫系熱安定剤「TVS#1380」)10質量部をロール混錬し、得られた混錬物をプレス成形し樹脂フィルムを得た。
表1に示すガラス繊維を用い、ガラス繊維/樹脂フィルム/ガラス繊維/樹脂フィルム/ガラス繊維/樹脂フィルム/ガラス繊維/樹脂フィルム/ガラス繊維/樹脂フィルム/ガラス繊維/樹脂フィルム/ガラス繊維の順で積層し加熱プレス(プレス成形時間:5分、プレス成形温度:210℃、プレス成形圧力20MPa)することにより厚さ2mmのガラス繊維強化シートを得た。
(Example 2)
90 parts by mass of a chlorinated vinyl chloride resin and 10 parts by mass of a heat stabilizer (manufactured by Nitto Kasei Co., Ltd., organic tin-based heat stabilizer "TVS #1380") were roll-kneaded, and the resulting kneaded product was press-molded. A resin film was obtained.
Using the glass fibers shown in Table 1, in the order of glass fiber/resin film/glass fiber/resin film/glass fiber/resin film/glass fiber/resin film/glass fiber/resin film/glass fiber/resin film/glass fiber. A glass fiber reinforced sheet with a thickness of 2 mm was obtained by laminating and hot pressing (press molding time: 5 minutes, press molding temperature: 210° C., press molding pressure 20 MPa).
(実施例3~8)
塩素化塩化ビニル系樹脂、ガラス繊維の種類及び含有量を表1の通りとした以外は、実施例1と同様にしてガラス繊維強化シートを得た。
(Examples 3 to 8)
A glass fiber reinforced sheet was obtained in the same manner as in Example 1, except that the types and contents of the chlorinated vinyl chloride resin and glass fiber were as shown in Table 1.
(比較例1)
ガラス繊維を用いず、樹脂溶液を乾燥させた後、加熱プレスすることで厚さ2mmの樹脂シートを得た。
(Comparative example 1)
A resin sheet with a thickness of 2 mm was obtained by drying the resin solution without using glass fibers and then hot pressing.
(比較例2)
塩素化塩化ビニル系樹脂、ガラス繊維の種類及び含有量を表1の通りとした以外は、実施例1と同様にしてガラス繊維強化シートを得た。
(Comparative example 2)
A glass fiber reinforced sheet was obtained in the same manner as in Example 1, except that the types and contents of the chlorinated vinyl chloride resin and glass fiber were as shown in Table 1.
(比較例3)
塩素化塩化ビニル系樹脂に代えて表1の樹脂成分を用い、樹脂成分の含有量、熱安定剤の含有量、ガラス繊維の種類及び含有量を表1の通りとし、プレス成形温度を280℃とした以外は、実施例1と同様にしてガラス繊維強化シートを得た。
(Comparative example 3)
The resin components shown in Table 1 were used instead of the chlorinated vinyl chloride resin, the content of the resin components, the content of the heat stabilizer, and the type and content of glass fiber were as shown in Table 1, and the press molding temperature was 280°C. A glass fiber reinforced sheet was obtained in the same manner as in Example 1 except for the following.
(比較例4)
塩素化塩化ビニル樹脂に代えて表1の樹脂成分を用い、樹脂成分の含有量、熱安定剤の含有量、ガラス繊維の種類及び含有量を表1の通りとした以外は、実施例1と同様にしてガラス繊維強化シートを得た。
(Comparative example 4)
Example 1 except that the resin components shown in Table 1 were used instead of the chlorinated vinyl chloride resin, and the content of the resin components, the content of the heat stabilizer, and the type and content of the glass fiber were as shown in Table 1. A glass fiber reinforced sheet was obtained in the same manner.
(評価)
実施例、比較例で得られた積層体について、以下の評価を行った。結果を表1に示した。
(evaluation)
The following evaluations were performed on the laminates obtained in Examples and Comparative Examples. The results are shown in Table 1.
(1)繊維体積占有率(Vf)
得られたシートについて、JIS K7075(燃焼法)に準拠した方法により、繊維体積占有率(Vf)を測定した。
具体的には、以下の条件で測定した。
試験片形状:長さ10.0mm×幅10.0mm×厚さ2mm
(1) Fiber volume occupancy (Vf)
The fiber volume occupancy (Vf) of the obtained sheet was measured by a method based on JIS K7075 (combustion method).
Specifically, the measurement was performed under the following conditions.
Test piece shape: length 10.0mm x width 10.0mm x thickness 2mm
(2)空洞率
得られたシートについて、JIS K7075(燃焼法)に準拠した方法により、空洞率を測定した。
具体的には、以下の条件で測定した。
試験片形状:長さ10.0mm×幅10.0mm×厚さ2mm
(2) Void ratio The void ratio of the obtained sheet was measured by a method based on JIS K7075 (combustion method).
Specifically, the measurement was performed under the following conditions.
Test piece shape: length 10.0mm x width 10.0mm x thickness 2mm
(3)樹脂組成物体積比率(Vr)
Vf及び空洞率から得られたシートにおける樹脂組成物体積比率を下記式により算出した。
Vr=100-Vf-空洞率
(3) Resin composition volume ratio (Vr)
The volume ratio of the resin composition in the sheet obtained from the Vf and void ratio was calculated using the following formula.
Vr=100-Vf-voidage ratio
(4)全光線透過率
得られたシートについて、ヘイズメーター(日本電色工業社製、Hazemeter NDH2000)を用いて、以下の条件で全光線透過率を測定した。
サンプルサイズ:100mm×100mm×厚さ2mm
光源:ハロゲンランプ5V、2A
(4) Total light transmittance The total light transmittance of the obtained sheet was measured using a hazemeter (Hazemeter NDH2000, manufactured by Nippon Denshoku Kogyo Co., Ltd.) under the following conditions.
Sample size: 100mm x 100mm x thickness 2mm
Light source: halogen lamp 5V, 2A
(5)曲げ強度
得られたシートについて、ORIENTEC社製「テンシロン」を使用して、JIS K7171に準拠して、以下の条件で曲げ強度を測定した。
試験片形状:長さ80mm×幅10mm×厚さ2mm
支点間距離:16×(試験片厚さ)
温度:23℃
試験速度:10mm/min
サンプルカット方法:丸東製作所製複合材切断機(AC-300CF)
状態調整:上記切断機によりサンプルカット後、100℃で3時間乾燥を実施し、その後、23℃で24時間以上静置した後、測定を実施
(5) Bending strength The bending strength of the obtained sheet was measured using "Tensilon" manufactured by ORIENTEC under the following conditions in accordance with JIS K7171.
Test piece shape: length 80mm x width 10mm x thickness 2mm
Distance between fulcrums: 16 x (test piece thickness)
Temperature: 23℃
Test speed: 10mm/min
Sample cutting method: Maruto Seisakusho composite material cutting machine (AC-300CF)
Condition adjustment: After cutting the sample using the cutting machine mentioned above, dry it at 100°C for 3 hours, then let it stand at 23°C for more than 24 hours before taking measurements.
また、得られたシートを厚み方向が垂直方向となるように治具に固定し、シートとバーナーとの距離を20mmとして下方から加熱して800℃の状態で30秒間加熱した。加熱後のシートについて、同様にして曲げ強度を測定した。
更に、接炎前後の曲げ強度に基づいて、曲げ強度減少率を算出した。
Further, the obtained sheet was fixed to a jig so that the thickness direction was perpendicular, and heated from below at 800° C. for 30 seconds with a distance between the sheet and the burner of 20 mm. The bending strength of the heated sheet was measured in the same manner.
Furthermore, the bending strength reduction rate was calculated based on the bending strength before and after contact with the flame.
(6)引張強度
得られたシートについて、ORIENTEC社製「テンシロン」を用いて、ASTM D638に準拠した方法により、以下の条件で引張強度を測定した。
サンプル作成方法:ウォータージェット切断機による切削加工
試験速度:5mm/min
状態調整:上記切断機によりサンプルカット後、100℃で3時間乾燥を実施し、その後、23℃で24時間以上静置した後、測定を実施
(6) Tensile strength The tensile strength of the obtained sheet was measured under the following conditions using "Tensilon" manufactured by ORIENTEC by a method based on ASTM D638.
Sample preparation method: Cutting test using water jet cutting machine Speed: 5mm/min
Condition adjustment: After cutting the sample using the cutting machine mentioned above, dry it at 100°C for 3 hours, then let it stand at 23°C for more than 24 hours before taking measurements.
(7)加熱減量率
実施例、比較例について、ガラス繊維を用いずにシートを作製した。得られたシートについて、以下の条件として熱重量測定装置(セイコーインスツルメント社製、TG/DTA6200)を用いて500℃で5時間加熱した後の加熱減量率を測定した。
測定温度:50~500℃
昇温速度:10℃/min
測定雰囲気:窒素ガス雰囲気下
(7) Heating loss rate In Examples and Comparative Examples, sheets were produced without using glass fiber. The resulting sheet was heated at 500° C. for 5 hours under the following conditions using a thermogravimetric measuring device (TG/DTA6200, manufactured by Seiko Instruments), and then the heating loss rate was measured.
Measurement temperature: 50-500℃
Temperature increase rate: 10℃/min
Measurement atmosphere: Under nitrogen gas atmosphere
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
本発明によれば、高い透明性及び充分な強度を有し、接炎後の曲げ強度の低下を抑制できるガラス繊維強化シートを提供できる。 According to the present invention, it is possible to provide a glass fiber reinforced sheet that has high transparency and sufficient strength and can suppress a decrease in bending strength after contact with flame.

Claims (6)

  1. 塩素化塩化ビニル系樹脂及びガラス繊維を含み、
    JIS K7075に準拠して測定した空洞率が10体積%以下であり、
    JIS K7075に準拠して測定した繊維体積占有率(Vf)が10体積%以上65体積%以下である、
    ガラス繊維強化シート。
    Contains chlorinated vinyl chloride resin and glass fiber,
    The voidage ratio measured in accordance with JIS K7075 is 10% by volume or less,
    The fiber volume occupancy (Vf) measured in accordance with JIS K7075 is 10 volume% or more and 65 volume% or less,
    Glass fiber reinforced sheet.
  2. 塩素化塩化ビニル系樹脂の屈折率とガラス繊維の屈折率との比(塩素化塩化ビニル系樹脂の屈折率/ガラス繊維の屈折率)が0.8以上1.2以下である、請求項1に記載のガラス繊維強化シート。 Claim 1, wherein the ratio of the refractive index of the chlorinated vinyl chloride resin to the refractive index of the glass fiber (refractive index of the chlorinated vinyl chloride resin/refractive index of the glass fiber) is 0.8 or more and 1.2 or less. Glass fiber reinforced sheet described in.
  3. 全光線透過率が50%以上である、請求項1又は2に記載のガラス繊維強化シート。 The glass fiber reinforced sheet according to claim 1 or 2, having a total light transmittance of 50% or more.
  4. バーナー火炎で30秒接炎した前後での曲げ強度減少率が50%以下である、請求項1~3の何れかに記載のガラス繊維強化シート。 The glass fiber reinforced sheet according to any one of claims 1 to 3, which has a bending strength reduction rate of 50% or less before and after being exposed to a burner flame for 30 seconds.
  5. 500℃で5時間加熱した後のガラス繊維分を除いた加熱減量率が10質量%以上である、請求項1~4の何れかに記載のガラス繊維強化シート。 The glass fiber reinforced sheet according to any one of claims 1 to 4, which has a heating loss rate of 10% by mass or more after heating at 500°C for 5 hours, excluding the glass fiber content.
  6. リチウムイオンバッテリー用カバー用材料である、請求項1~5の何れかに記載のガラス繊維強化シート。 The glass fiber reinforced sheet according to any one of claims 1 to 5, which is a cover material for a lithium ion battery.
PCT/JP2023/011712 2022-03-25 2023-03-24 Glass-fiber-reinforced sheet WO2023182478A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022050099 2022-03-25
JP2022-050099 2022-03-25

Publications (1)

Publication Number Publication Date
WO2023182478A1 true WO2023182478A1 (en) 2023-09-28

Family

ID=88101640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011712 WO2023182478A1 (en) 2022-03-25 2023-03-24 Glass-fiber-reinforced sheet

Country Status (2)

Country Link
TW (1) TW202402895A (en)
WO (1) WO2023182478A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06335920A (en) * 1993-05-27 1994-12-06 Sekisui Chem Co Ltd Manufacture of fiber composite body
JP2001261910A (en) * 2000-03-15 2001-09-26 Sekisui Chem Co Ltd Chlorinated vinyl chloride resin composition and molded product thereof
JP2006062099A (en) * 2004-08-24 2006-03-09 Mitsubishi Plastics Ind Ltd Thermoplastic resin molded product and its manufacturing method
JP2011031513A (en) * 2009-08-03 2011-02-17 Takiron Co Ltd Laminate
JP2016030822A (en) * 2014-07-30 2016-03-07 積水化学工業株式会社 Reinforced fiber resin composite and method for producing structure reinforced using the same
WO2020203835A1 (en) * 2019-03-29 2020-10-08 積水化学工業株式会社 Chlorinated vinyl chloride-based resin

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06335920A (en) * 1993-05-27 1994-12-06 Sekisui Chem Co Ltd Manufacture of fiber composite body
JP2001261910A (en) * 2000-03-15 2001-09-26 Sekisui Chem Co Ltd Chlorinated vinyl chloride resin composition and molded product thereof
JP2006062099A (en) * 2004-08-24 2006-03-09 Mitsubishi Plastics Ind Ltd Thermoplastic resin molded product and its manufacturing method
JP2011031513A (en) * 2009-08-03 2011-02-17 Takiron Co Ltd Laminate
JP2016030822A (en) * 2014-07-30 2016-03-07 積水化学工業株式会社 Reinforced fiber resin composite and method for producing structure reinforced using the same
WO2020203835A1 (en) * 2019-03-29 2020-10-08 積水化学工業株式会社 Chlorinated vinyl chloride-based resin

Also Published As

Publication number Publication date
TW202402895A (en) 2024-01-16

Similar Documents

Publication Publication Date Title
US20230339207A1 (en) Laminate and method for using laminate
ES2781831T3 (en) Carbon fiber reinforced polypropylene sheet and molded article with it
WO2020203835A1 (en) Chlorinated vinyl chloride-based resin
WO2013108811A1 (en) Fiber reinforced polypropylene resin composition, molding material and prepreg
WO2020203858A1 (en) Chlorinated vinyl chloride resin
JP2013166923A (en) Prepreg
WO2023182478A1 (en) Glass-fiber-reinforced sheet
US20240217224A1 (en) Laminate
WO2022210368A1 (en) Laminate
WO2024142544A1 (en) Laminate
JP2018024762A (en) Prepreg
JP7016992B1 (en) Chlorinated vinyl chloride resin
KR102496348B1 (en) Battery pack case for electric car including continuous fiber inclusion section and discontinuous fiber inclusion section
JP7221396B2 (en) Chlorinated vinyl chloride resin
US20230128429A1 (en) Chlorinated vinyl chloride-based resin
JP2023052832A (en) Chlorinated vinyl chloride-based resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23775071

Country of ref document: EP

Kind code of ref document: A1