WO2023182051A1 - 電子部品 - Google Patents

電子部品 Download PDF

Info

Publication number
WO2023182051A1
WO2023182051A1 PCT/JP2023/009641 JP2023009641W WO2023182051A1 WO 2023182051 A1 WO2023182051 A1 WO 2023182051A1 JP 2023009641 W JP2023009641 W JP 2023009641W WO 2023182051 A1 WO2023182051 A1 WO 2023182051A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal electrode
electrode
semiconductor substrate
internal
electronic component
Prior art date
Application number
PCT/JP2023/009641
Other languages
English (en)
French (fr)
Inventor
翔太 安藤
俊幸 中磯
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023182051A1 publication Critical patent/WO2023182051A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 

Definitions

  • the present invention relates to an electronic component that includes a semiconductor substrate and is configured by providing a capacitor or the like on the semiconductor substrate.
  • Patent Document 1 discloses the configuration of a MOS capacitor used in an internal voltage generation circuit of a semiconductor memory.
  • FIG. 6(A) and FIG. 6(B) illustrate an example in a simplified manner.
  • This MOS type capacitor includes a P-type semiconductor substrate 11, an N-type well 12, an N+ diffusion layer 13, an SiO 2 layer 104 for isolation, a gate insulating film 15, a gate 106 made of polycrystalline silicon or metal, and an interlayer insulating film 113. , a wiring layer 108, a protective layer 115, and a contact hole 116.
  • This capacitor is formed between the gate 106 and the surface of the N-type well 12 with the gate insulating film 15 in between, like a normal MOS type capacitor.
  • a parasitic capacitance may be formed between the wiring layer 108 and the N-type well 12 or the semiconductor substrate 11, or a parasitic resistance component or a parasitic inductance component may be generated in the wiring layer 108 itself.
  • FIG. 7 is an equivalent circuit diagram of the MOS capacitor shown in FIGS. 6(A) and 6(B).
  • the terminals T1 and T2 shown in FIG. 7 correspond to the electrodes to which the wiring layer 108 of the electronic component shown in FIGS. 6(A) and 6(B) is connected, and the capacitor C0 shown in FIG. It is a capacitor that The capacitor C1 shown in FIG. 7 is the above parasitic capacitance.
  • the inductor L1 shown in FIG. 7 is the parasitic inductance component, and the resistor R1 is the parasitic resistance component.
  • An object of the present invention is to provide an electronic component in which a low parasitic impedance capacitor is formed on a semiconductor substrate.
  • An electronic component as an example of the present disclosure includes: a semiconductor substrate; an insulator layer formed on the surface layer side of the semiconductor substrate; an internal electrode formed within the insulator layer; a dielectric layer formed on the surface side of the semiconductor substrate; an extraction electrode that is electrically connected to the internal electrode on the surface side of the internal electrode; an external electrode that is electrically connected to the extraction electrode on the surface side of the extraction electrode; Equipped with
  • the internal electrode includes a first internal electrode electrically connected to the semiconductor substrate and a second internal electrode formed on the surface side of the dielectric layer,
  • the extraction electrode is configured to include a first extraction electrode electrically connected to the first internal electrode, and a second extraction electrode electrically connected to the second internal electrode,
  • the external electrode is configured to include a first external electrode electrically connected to the first extraction electrode, and a second external electrode electrically connected to the second extraction electrode,
  • the second extraction electrode is formed inside the second internal electrode when viewed in a direction perpendicular to the surface of the semiconductor substrate. It is characterized by
  • an electronic component in which a low parasitic impedance capacitor is formed on a semiconductor substrate can be obtained.
  • FIG. 1(A) is a plan view of an electronic component 101 according to the first embodiment
  • FIG. 1(B) is a cross-sectional view taken along the line BB in FIG. 1(A)
  • FIG. is a sectional view taken along the line CC in FIG. 1(A).
  • 2(A) is a plan view of the electronic component 102 according to the second embodiment
  • FIG. 2(B) is a sectional view taken along the line BB in FIG. 2(A)
  • FIG. is a sectional view taken along the line CC in FIG. 2(A).
  • 3(A) is a plan view of the electronic component 103 according to the third embodiment
  • FIG. 3(B) is a sectional view taken along the line BB in FIG. 3(A)
  • 3(C) is a sectional view taken along the line BB in FIG. is a sectional view taken along the line CC in FIG. 3(A).
  • 4(A) is a plan view of the electronic component 104 according to the fourth embodiment
  • FIG. 4(B) is a sectional view taken along the line BB in FIG. 4(A)
  • FIG. 4(C) is a sectional view taken along the line BB in FIG. is a sectional view taken along the line CC in FIG. 4(A).
  • 5(A) is a plan view of the electronic component 105 according to the fifth embodiment
  • FIG. 5(B) is a sectional view taken along the line BB in FIG. 5(A)
  • FIGS. 6A and 6B are simplified diagrams of a MOS capacitor used in an internal voltage generation circuit of a semiconductor memory described in Patent Document 1.
  • FIG. 7 is an equivalent circuit diagram of the MOS capacitor shown in FIGS. 6(A) and 6(B).
  • FIG. 1(A) is a plan view of an electronic component 101 according to the first embodiment
  • FIG. 1(B) is a cross-sectional view taken along the line BB in FIG. 1(A)
  • FIG. is a sectional view taken along the line CC in FIG. 1(A).
  • FIG. 1A is a plan view in a state before formation of a protective film 10, which will be described later.
  • This electronic component 101 includes a semiconductor substrate 1, an insulator layer 2 formed on the surface side of the semiconductor substrate 1, first internal electrodes 3A1 and 3A2 formed in the insulator layer 2, and an insulator layer 2. a second internal electrode 3B formed inside, a dielectric layer 4 made of a thermal oxide film formed on the surface side of the semiconductor substrate 1, and first internal electrodes 3A1, 3A2 on the surface side from the first internal electrodes 3A1, 3A2.
  • the first extraction electrodes 5A1, 5A2 are electrically connected to the second internal electrode 3B, and the second extraction electrodes 5B1, 5B2 are electrically connected to the second internal electrode 3B on the surface side of the second internal electrode 3B.
  • the semiconductor substrate 1 is, for example, a substrate made of an impurity semiconductor such as a carrier-doped silicon substrate
  • the insulator layer 2 is, for example, a SiN film
  • the dielectric layer 4 is, for example, a thermally oxidized SiO 2 film of the semiconductor substrate 1.
  • the first internal electrodes 3A1, 3A2 and the second internal electrode 3B are, for example, Al films
  • the first extraction electrodes 5A1, 5A2 and the second extraction electrodes 5B1, 5B2 are, for example, Cu films.
  • the first external electrode 6A and the second external electrode 6B are, for example, metal films with a Ni base and an Au surface.
  • the protective film 10 is, for example, an organic insulating film such as a solder resist.
  • the second internal electrode 3B constitutes a capacitor electrode formed on the dielectric layer 4. Since the semiconductor substrate 1 is a substrate made of an impurity semiconductor such as a carrier-doped silicon substrate, it has conductivity. Therefore, the semiconductor substrate 1, dielectric layer 4, and second internal electrode 3B constitute the main part of the capacitor.
  • the first external electrode 6A, the first extraction electrodes 5A1, 5A2, and the first internal electrodes 3A1, 3A2 are electrically connected to the semiconductor substrate 1, and the second external electrode 6B and the second extraction electrodes 5B1, 5B2 are electrically connected to the second internal electrode 3B. do.
  • the first external electrode 6A and the second external electrode 6B are used, for example, as connection pads such as wire bonding pads or surface mounting pads. Therefore, this electronic component 101 acts as a capacitor having the first external electrode 6A and the second external electrode 6B.
  • the capacitor formed in the electronic component 101 of this embodiment uses a silicon semiconductor substrate as one electrode and a silicon thermal oxide film as a dielectric layer, so a highly accurate capacitance can be set.
  • the second extraction electrodes 5B1, 5B2 are formed inside the second internal electrode 3B when viewed in the direction perpendicular to the surface of the semiconductor substrate 1, the second extraction electrodes 5B1, 5B2 The parasitic capacitance between the semiconductor substrate 1 and the semiconductor substrate 1 can be reduced. Further, since the second external electrode 6B that is electrically connected to the second extraction electrodes 5B1 and 5B2 is formed on the second extraction electrodes 5B1 and 5B2, parasitic inductance and parasitic resistance caused by the second extraction electrodes 5B1 and 5B2 can be suppressed.
  • first extraction electrodes 5A1, 5A2 are formed on the first internal electrodes 3A1, 3A2, and a first external electrode 6A electrically connected to the first extraction electrodes 5A1, 5A2 is formed on the first extraction electrodes 5A1, 5A2. Therefore, parasitic inductance and parasitic resistance due to the first extraction electrodes 5A1 and 5A2 can also be suppressed.
  • FIG. 2(A) is a plan view of the electronic component 102 according to the second embodiment
  • FIG. 2(B) is a sectional view taken along the line BB in FIG. 2(A)
  • FIG. is a sectional view taken along the line CC in FIG. 2(A).
  • FIG. 2(A) is a plan view in a state before the protective film 10 is formed.
  • This electronic component 102 includes a semiconductor substrate 1, an insulator layer 2 formed on the surface side of the semiconductor substrate 1, first internal electrodes 3A1 and 3A2 formed in the insulator layer 2, and an insulator layer 2. a second internal electrode 3B formed inside, a dielectric layer 4 made of a thermal oxide film formed on the surface side of the semiconductor substrate 1, and first internal electrodes 3A1, 3A2 on the surface side from the first internal electrodes 3A1, 3A2.
  • the first extraction electrodes 5A1, 5A2 are electrically connected to the second internal electrode 3B, and the second extraction electrodes 5B1, 5B2 are electrically connected to the second internal electrode 3B on the surface side of the second internal electrode 3B.
  • the semiconductor substrate 1 is, for example, a substrate made of an impurity semiconductor such as a carrier-doped silicon substrate
  • the insulator layer 2 is, for example, a SiN film
  • the dielectric layer 4 is, for example, a thermally oxidized SiO 2 film of the semiconductor substrate 1.
  • the first internal electrodes 3A1, 3A2 and the second internal electrode 3B are, for example, Al films
  • the first extraction electrodes 5A1, 5A2 and the second extraction electrodes 5B1, 5B2 are, for example, Cu films.
  • the first external electrode 6A and the second external electrode 6B are, for example, metal films with a Ni base and an Au surface.
  • the protective film 10 is, for example, an organic insulating film such as a solder resist.
  • the shapes of the first internal electrodes 3A1, 3A2, the second internal electrode 3B, and the dielectric layer 4 are different from the electronic component 101 shown in FIGS. 1(A), 1(B), and 1(C).
  • the dielectric layer 4 has a concave shape when viewed in a direction perpendicular to the surface of the semiconductor substrate 1.
  • the second internal electrode 3B also has a concave shape.
  • the overall shape of the first internal electrodes 3A1, 3A2 is convex, and the facing portions of the first internal electrodes 3A1, 3A2 and the second internal electrode 3B face each other in an uneven manner.
  • the first internal electrode 3A1 has a linear portion extending toward the second external electrode 6B, and the second internal electrode 3B is arranged so as to surround the extended portion. Furthermore, as can be seen from FIG. 2A, the distance between the sides of the first internal electrode 3A1 and the second internal electrode 3B is constant in the area where the first internal electrode 3A1 and the second internal electrode 3B face each other. The first internal electrode 3A1 and the second internal electrode 3B are formed such that the distance between the two sides is constant.
  • the second internal electrode 3B constitutes a capacitor electrode formed on the dielectric layer 4.
  • the semiconductor substrate 1, dielectric layer 4, and second internal electrode 3B constitute the main part of the capacitor.
  • the other configurations are similar to the electronic component 101 shown in the first embodiment.
  • the average path length of the current flowing laterally through the semiconductor substrate 1 is shortened.
  • the area of the conductive portion between the first internal electrode 3A1 and the semiconductor substrate 1 can be made smaller, so a capacitor with higher capacitance density can be formed.
  • the third embodiment exemplifies an electronic component in which the configurations of internal electrodes and dielectric layers are different from those shown in the first and second embodiments.
  • FIG. 3(A) is a plan view of the electronic component 103 according to the third embodiment
  • FIG. 3(B) is a sectional view taken along the line BB in FIG. 3(A)
  • FIG. 3(C) is a sectional view taken along the line BB in FIG. is a sectional view taken along the line CC in FIG. 3(A).
  • FIG. 3(A) is a plan view in a state before the protective film 10 is formed.
  • This electronic component 103 includes a semiconductor substrate 1, an insulator layer 2 formed on the surface side of the semiconductor substrate 1, first internal electrodes 3A1 and 3A2 formed in the insulator layer 2, and an insulator layer 2. a second internal electrode 3B formed inside, a dielectric layer 4 made of a thermal oxide film formed on the surface side of the semiconductor substrate 1, and first internal electrodes 3A1, 3A2 on the surface side from the first internal electrodes 3A1, 3A2.
  • the first extraction electrodes 5A1, 5A2 are electrically connected to the second internal electrode 3B, and the second extraction electrodes 5B1, 5B2 are electrically connected to the second internal electrode 3B on the surface side of the second internal electrode 3B.
  • the shapes of the first internal electrodes 3A1, 3A2 and the dielectric layer 4 are different from the electronic component 102 shown in FIGS. 2(A), 2(B), and 2(C).
  • the dielectric layer 4 is also formed on the lower surface of the first internal electrode 3A2 when viewed in the direction perpendicular to the surface of the semiconductor substrate 1. Further, the first internal electrode 3A1 is formed within the opening of the dielectric layer 4.
  • the second internal electrode 3B constitutes a capacitor electrode formed on the dielectric layer 4.
  • the semiconductor substrate 1, dielectric layer 4, and second internal electrode 3B constitute the main part of the capacitor.
  • the other configurations are similar to the electronic component 102 shown in the second embodiment.
  • the dielectric layer 4 below the first internal electrode 3A2 acts as a height adjustment layer for the first internal electrode 3A2. That is, in the step of forming the first internal electrode 3A2, the first internal electrode 3A2 is prevented from sagging toward the semiconductor substrate 1 side. As a result, the heights of the first external electrode 6A and the second external electrode 6B tend to be the same. As a result, the accuracy of wire bonding to the first external electrode 6A and the second external electrode 6B when wire bonding the electronic component 103 can be improved. Alternatively, it is possible to prevent impact from being concentrated on one external electrode when the electronic component 103 is surface mounted.
  • the portion that constitutes the height adjustment layer of the first internal electrode 3A2 for making the heights of the first external electrode 6A and the second external electrode 6B equal, and the portion that constitutes the main part of the capacitor are made of dielectric material. They may be formed so that the layer 4 is a separate body.
  • FIG. 4(A) is a plan view of the electronic component 104 according to the fourth embodiment
  • FIG. 4(B) is a sectional view taken along the line BB in FIG. 4(A)
  • FIG. 4(C) is a sectional view taken along the line BB in FIG. is a sectional view taken along the line CC in FIG. 4(A).
  • FIG. 4A is a plan view in a state before the protective film 10 is formed.
  • the dielectric layer 4 and the second internal electrode 3B are formed in a planar shape on the top of the semiconductor substrate 1, but in the electronic component 104 of the fourth embodiment, A plurality of trenches are formed in the upper part of the semiconductor substrate 1.
  • the trench in this example is not groove-like but cylindrical.
  • a dielectric layer 4 is formed on the inner surface of these trenches, and a portion of the second internal electrode 3B is buried therein.
  • the opposing area between the second internal electrode 3B and the semiconductor substrate 1 via the dielectric layer 4 can be increased, so the planar area of the capacitor formation region can be saved.
  • the fifth embodiment exemplifies an electronic component in which the configurations of internal electrodes and dielectric layers are different from those shown in the first and second embodiments.
  • FIG. 5(A) is a plan view of the electronic component 105 according to the fifth embodiment
  • FIG. 5(B) is a sectional view taken along the line BB in FIG. 5(A)
  • FIG. 5(C) is a sectional view taken along the line BB in FIG. is a cross-sectional view taken along the line CC in FIG. 5(A).
  • FIG. 5A is a plan view in a state before the protective film 10 is formed.
  • This electronic component 105 includes a semiconductor substrate 1, an insulator layer 2 formed on the surface side of the semiconductor substrate 1, first internal electrodes 3A1 and 3A2 formed in the insulator layer 2, and an insulator layer 2. a second internal electrode 3B formed inside, a dielectric layer 4 made of a thermal oxide film formed on the surface side of the semiconductor substrate 1, and first internal electrodes 3A1, 3A2 on the surface side from the first internal electrodes 3A1, 3A2.
  • the first extraction electrodes 5A1, 5A2 are electrically connected to the second internal electrode 3B, and the second extraction electrodes 5B1, 5B2 are electrically connected to the second internal electrode 3B on the surface side of the second internal electrode 3B.
  • the dielectric layer 4 and the second internal electrode 3B have a concave shape when viewed in the direction perpendicular to the surface of the semiconductor substrate 1.
  • the overall shape of the first internal electrodes 3A1 and 3A2 was convex, but in the electronic component 105 according to the fifth embodiment, the dielectric layer 4 and the second internal electrode 3B are convex, and the first internal electrode 3A1 and 3A2 have a convex shape.
  • the overall shape of the electrodes 3A1 and 3A2 is concave.
  • the facing portions of the first internal electrodes 3A1 and 3A2 and the second internal electrode 3B face each other in an uneven manner.
  • the second internal electrode 3B extends linearly toward the first external electrode 6A, and the second internal electrode 3B is arranged so that the first internal electrode 3A1 surrounds the extended part of the second internal electrode 3B. has been done. Further, in the region where the first internal electrode 3A1 and the second internal electrode 3B face each other, the distance between the sides is constant (the distance between the facing sides of the first internal electrode 3A1 and the second internal electrode 3B is constant). The first internal electrode 3A1 and the second internal electrode 3B are formed in this manner.
  • an electronic component including a capacitor and an inductor is shown as a passive component, but the present invention can be similarly applied to an electronic component including an active component as well as a passive component.
  • the opposing portions of the second internal electrode 3B and the first internal electrodes 3A1 and 3A2 when viewed in a direction perpendicular to the surface of the semiconductor substrate 1, are electronic components that face each other in an uneven manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

電子部品(102)は、半導体基板(1)と、半導体基板(1)の表層側に形成された絶縁体層(2)と、絶縁体層(2)内に形成された内部電極(3A1,3A2,3B)と、半導体基板(1)の表層側に形成された熱酸化膜による誘電体層(4)と、内部電極(3A1,3A2)より表層側で内部電極(3A1,3A2)に導通する引出電極(5A1,5A2)と、内部電極(3B)より表層側で内部電極(3B)に導通する引出電極(5B1,5B2)と、引出電極(5A1,5A2)より表層側で引出電極(5A1,5A2)に導通する外部電極(6A)と、引出電極(5B1,5B2)より表層側で引出電極(5B1,5B2)に導通する外部電極(6B)と、を備える。半導体基板の面に対する垂直方向に視て、前記第2引出電極は前記第2内部電極の内側に形成されている。

Description

電子部品
 本発明は、半導体基板を備えて、この半導体基板にキャパシタ等を設けることにより構成される電子部品に関する。
 特許文献1には、半導体メモリの内部電圧発生回路に用いられるMOS型キャパシタの構成が示されている。図6(A)、図6(B)はその一例を簡易化して表している。このMOS型キャパシタは、P型の半導体基板11、N型のウェル12、N+拡散層13、アイソレーション用のSiO2 104、ゲート絶縁膜15、多結晶シリコン又は金属によるゲート106、層間絶縁膜113、配線層108、保護層115、コンタクト孔116を備える。このキャパシタは、通常のMOS型キャパシタと同じように、ゲート絶縁膜15をはさんで、ゲート106とN型のウェル12の表面との間に形成される。
特開2003-110030号公報
 特許文献1に示されている構造のMOS型キャパシタでは、少なくない寄生インピーダンスが発生する。例えば、配線層108とN型のウェル12や半導体基板11との間に寄生容量が形成されたり、配線層108自体に寄生抵抗成分や寄生インダクタンス成分が生じたりする。
 図7は図6(A)、図6(B)に示したMOS型キャパシタの等価回路図である。図7に示す端子T1,T2は、図6(A)、図6(B)に示した電子部品の配線層108の接続先の電極に対応し、図7に示すキャパシタC0は本来の目的とするキャパシタである。図7に示すキャパシタC1は上記寄生容量である。図7に示すインダクタL1は上記寄生インダクタンス成分、抵抗R1は上記寄生抵抗成分である。
 本発明の目的は半導体基板に低寄生インピーダンスのキャパシタが形成された電子部品を提供することにある。
 本開示の一例としての電子部品は、
 半導体基板と、
 前記半導体基板の表層側に形成された絶縁体層と、
 前記絶縁体層内に形成された内部電極と、
 前記半導体基板の表層側に形成された誘電体層と、
 前記内部電極より表層側で前記内部電極に導通する引出電極と、
 前記引出電極より表層側で前記引出電極に導通する外部電極と、
 を備え、
 前記内部電極は、前記半導体基板に導通する第1内部電極と、前記誘電体層の表層側に形成された第2内部電極と、を含んで構成され、
 前記引出電極は、前記第1内部電極に導通する第1引出電極と、前記第2内部電極に導通する第2引出電極と、を含んで構成され、
 前記外部電極は、前記第1引出電極に導通する第1外部電極と、前記第2引出電極に導通する第2外部電極と、を含んで構成され、
 前記半導体基板の面に対する垂直方向に視て、前記第2引出電極は前記第2内部電極の内側に形成されている、
 ことを特徴とする。
 本発明によれば、半導体基板に低寄生インピーダンスのキャパシタが形成された電子部品が得られる。
図1(A)は第1の実施形態に係る電子部品101の平面図であり、図1(B)は図1(A)におけるB-B部分での断面図であり、図1(C)は図1(A)におけるC-C部分での断面図である。 図2(A)は第2の実施形態に係る電子部品102の平面図であり、図2(B)は図2(A)におけるB-B部分での断面図であり、図2(C)は図2(A)におけるC-C部分での断面図である。 図3(A)は第3の実施形態に係る電子部品103の平面図であり、図3(B)は図3(A)におけるB-B部分での断面図であり、図3(C)は図3(A)におけるC-C部分での断面図である。 図4(A)は第4の実施形態に係る電子部品104の平面図であり、図4(B)は図4(A)におけるB-B部分での断面図であり、図4(C)は図4(A)におけるC-C部分での断面図である。 図5(A)は第5の実施形態に係る電子部品105の平面図であり、図5(B)は図5(A)におけるB-B部分での断面図であり、図5(C)は図5(A)におけるC-C部分での断面図である。 図6(A)、図6(B)は特許文献1に記載の半導体メモリの内部電圧発生回路に用いられるMOS型キャパシタを簡易化して表した図である。 図7は図6(A)、図6(B)に示したMOSキャパシタの等価回路図である。
 以降、図を参照して幾つかの具体的な例を挙げて、本発明を実施するための複数の形態を示す。各図中には同一箇所に同一符号を付している。要点の説明又は理解の容易性を考慮して、実施形態を説明の便宜上、複数の実施形態に分けて示すが、異なる実施形態で示した構成の部分的な置換又は組み合わせは可能である。第2の実施形態以降では第1の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
《第1の実施形態》
 図1(A)は第1の実施形態に係る電子部品101の平面図であり、図1(B)は図1(A)におけるB-B部分での断面図であり、図1(C)は図1(A)におけるC-C部分での断面図である。ただし、図1(A)は後に述べる保護膜10の形成前の状態での平面図である。
 この電子部品101は、半導体基板1と、この半導体基板1の表層側に形成された絶縁体層2と、絶縁体層2内に形成された第1内部電極3A1,3A2と、絶縁体層2内に形成された第2内部電極3Bと、半導体基板1の表層側に形成された熱酸化膜による誘電体層4と、第1内部電極3A1,3A2より表層側で第1内部電極3A1,3A2に導通する第1引出電極5A1,5A2と、第2内部電極3Bより表層側で第2内部電極3Bに導通する第2引出電極5B1,5B2と、第1引出電極5A1,5A2より表層側で第1引出電極5A1,5A2に導通する第1外部電極6Aと、第2引出電極5B1,5B2より表層側で第2引出電極5B1,5B2に導通する第2外部電極6Bと、保護膜10と、を備える。
 半導体基板1は例えばキャリアドーピングシリコン基板などの不純物半導体による基板、絶縁体層2は例えばSiN膜、誘電体層4は例えば半導体基板1の熱酸化膜SiO2 膜である。第1内部電極3A1,3A2及び第2内部電極3Bは例えばAl膜、第1引出電極5A1,5A2及び第2引出電極5B1,5B2は例えばCu膜である。第1外部電極6A及び第2外部電極6Bは例えば下地をNiとし表面をAuとする金属膜である。保護膜10は例えばソルダーレジスト等の有機絶縁膜である。
 第2内部電極3Bは誘電体層4上に形成されたキャパシタ電極を構成する。半導体基板1はキャリアドーピングシリコン基板などの不純物半導体による基板であるので導電性を有する。したがって、半導体基板1、誘電体層4及び第2内部電極3Bによってキャパシタの主要部が構成される。
 第1外部電極6A、第1引出電極5A1,5A2及び第1内部電極3A1,3A2は半導体基板1に導通し、第2外部電極6B及び第2引出電極5B1,5B2は第2内部電極3Bに導通する。
 第1外部電極6A及び第2外部電極6Bは例えばワイヤーボンディング用のパッド又は表面実装用パッド等の接続用パッドとして用いられる。したがって、この電子部品101は第1外部電極6A及び第2外部電極6Bを有するキャパシタとして作用する。
 本実施形態の電子部品101に形成されるキャパシタは、シリコン半導体基板を一方の電極とし、シリコン熱酸化膜を誘電体層として用いているので高精度なキャパシタンスが設定できる。
 また、本実施形態によれば、半導体基板1の面に対する垂直方向に視て、第2引出電極5B1,5B2が第2内部電極3Bの内側に形成されているので、第2引出電極5B1,5B2と半導体基板1との間の寄生容量を小さくできる。また、第2引出電極5B1,5B2に導通する第2外部電極6Bが第2引出電極5B1,5B2上に形成されているので、第2引出電極5B1,5B2による寄生インダクタンスや寄生抵抗を抑制できる。さらに、第1引出電極5A1,5A2が第1内部電極3A1,3A2上に形成されていて、第1引出電極5A1,5A2に導通する第1外部電極6Aが第1引出電極5A1,5A2上に形成されているので、第1引出電極5A1,5A2による寄生インダクタンスや寄生抵抗も抑制できる。
 その結果、電気的特性が理想的な容量素子に近いキャパシタを備える電子部品を構成でき、高周波回路で低損失な回路を実現できるため、意図した設計通りの回路特性を実現できる。
《第2の実施形態》
 第2の実施形態では、内部電極と誘電体層の構成が第1の実施形態で示した例とは異なる電子部品について例示する。
 図2(A)は第2の実施形態に係る電子部品102の平面図であり、図2(B)は図2(A)におけるB-B部分での断面図であり、図2(C)は図2(A)におけるC-C部分での断面図である。ただし、図2(A)は保護膜10の形成前の状態での平面図である。
 この電子部品102は、半導体基板1と、この半導体基板1の表層側に形成された絶縁体層2と、絶縁体層2内に形成された第1内部電極3A1,3A2と、絶縁体層2内に形成された第2内部電極3Bと、半導体基板1の表層側に形成された熱酸化膜による誘電体層4と、第1内部電極3A1,3A2より表層側で第1内部電極3A1,3A2に導通する第1引出電極5A1,5A2と、第2内部電極3Bより表層側で第2内部電極3Bに導通する第2引出電極5B1,5B2と、第1引出電極5A1,5A2より表層側で第1引出電極5A1,5A2に導通する第1外部電極6Aと、第2引出電極5B1,5B2より表層側で第2引出電極5B1,5B2に導通する第2外部電極6Bと、保護膜10と、を備える。
 半導体基板1は例えばキャリアドーピングシリコン基板などの不純物半導体による基板、絶縁体層2は例えばSiN膜、誘電体層4は例えば半導体基板1の熱酸化膜SiO2 膜である。第1内部電極3A1,3A2及び第2内部電極3Bは例えばAl膜、第1引出電極5A1,5A2及び第2引出電極5B1,5B2は例えばCu膜である。第1外部電極6A及び第2外部電極6Bは例えば下地をNiとし表面をAuとする金属膜である。保護膜10は例えばソルダーレジスト等の有機絶縁膜である。
 図1(A)、図1(B)、図1(C)に示した電子部品101とは、第1内部電極3A1,3A2、第2内部電極3B、誘電体層4の形状が異なる。電子部品102では、半導体基板1の面に対する垂直方向に視て、誘電体層4は凹状を成している。それに応じて、第2内部電極3Bも凹状である。一方、第1内部電極3A1,3A2の全体形状は凸状であり、第1内部電極3A1,3A2と第2内部電極3Bとの対向部は凹凸状に対向する。すなわち、第1内部電極3A1は第2外部電極6Bに向けて延伸された直線状の部分を有し、その延伸された部分を囲むように第2内部電極3Bが配置されている。また、図2(A)からわかるように、第1内部電極3A1と第2内部電極3Bとが対向する領域でそれらの辺の間隔が一定(第1内部電極3A1と第2内部電極3Bの対向する辺の距離が一定)になるように、第1内部電極3A1及び第2内部電極3Bが形成されている。
 第2内部電極3Bは誘電体層4上に形成されたキャパシタ電極を構成する。半導体基板1、誘電体層4及び第2内部電極3Bによってキャパシタの主要部が構成される。その他の構成は第1の実施形態で示した電子部品101と同様である。
 第2の実施形態によれば、第1内部電極3A1,3A2と第2内部電極3Bとが対向する領域が広いので、半導体基板1を横方向に流れる電流の平均経路長が短くなる。
 一般に、シリコン半導体基板を一方の電極とし、シリコン熱酸化膜を誘電体層として用いたMOS型キャパシタでは、電流がシリコン半導体基板をその横方向(面に沿った方向)に流れる。この電流は、例えば1GHz以上の高い周波数領域において、電流の表皮効果により、電流はシリコン半導体基板の表面付近に集中する。この現象により、ESR(等価直列抵抗)が増加するため、キャパシタの特性が悪化する。上記表皮効果によるESRの増加は、導電率の高い金属でも発生するが、導電率が金属よりも低い半導体基板であればより顕著となる。本実施形態では、半導体基板1を横方向に流れる電流の平均的な経路長が短いので、半導体基板1が要因となって発生するESRが低い。このことにより、低ESRのキャパシタが得られる。
 なお、後の第5の実施形態で示す電子部品105と比べると、第1内部電極3A1と半導体基板1との導通部の面積を小さくできるので、容量密度のより高いキャパシタを形成できる。
《第3の実施形態》
 第3の実施形態では、内部電極と誘電体層の構成が第1、第2の実施形態で示した例とは異なる電子部品について例示する。
 図3(A)は第3の実施形態に係る電子部品103の平面図であり、図3(B)は図3(A)におけるB-B部分での断面図であり、図3(C)は図3(A)におけるC-C部分での断面図である。ただし、図3(A)は保護膜10の形成前の状態での平面図である。
 この電子部品103は、半導体基板1と、この半導体基板1の表層側に形成された絶縁体層2と、絶縁体層2内に形成された第1内部電極3A1,3A2と、絶縁体層2内に形成された第2内部電極3Bと、半導体基板1の表層側に形成された熱酸化膜による誘電体層4と、第1内部電極3A1,3A2より表層側で第1内部電極3A1,3A2に導通する第1引出電極5A1,5A2と、第2内部電極3Bより表層側で第2内部電極3Bに導通する第2引出電極5B1,5B2と、第1引出電極5A1,5A2より表層側で第1引出電極5A1,5A2に導通する第1外部電極6Aと、第2引出電極5B1,5B2より表層側で第2引出電極5B1,5B2に導通する第2外部電極6Bと、保護膜10と、を備える。
 図2(A)、図2(B)、図2(C)に示した電子部品102とは、第1内部電極3A1,3A2、誘電体層4の形状が異なる。電子部品103では、半導体基板1の面に対する垂直方向に視て、誘電体層4は第1内部電極3A2の下面にも形成されている。また、第1内部電極3A1は誘電体層4の開口部内に形成されている。
 第2内部電極3Bは誘電体層4上に形成されたキャパシタ電極を構成する。半導体基板1、誘電体層4及び第2内部電極3Bによってキャパシタの主要部が構成される。その他の構成は第2の実施形態で示した電子部品102と同様である。
 本実施形態によれば、第1内部電極3A2の下部の誘電体層4はこの第1内部電極3A2の高さ調整層として作用する。つまり、第1内部電極3A2の形成工程で、この第1内部電極3A2が半導体基板1側への垂れ込みが抑制される。その結果、第1外部電極6Aと第2外部電極6Bの高さが揃いやすい。その結果、電子部品103をワイヤーボンディングするときの、第1外部電極6A及び第2外部電極6Bへのワイヤーボンディング精度を高めることができる。あるいは電子部品103を表面実装するときの衝撃が一方の外部電極に集中しないようにできる。
 なお、第1外部電極6Aと第2外部電極6Bとの高さを揃えるための第1内部電極3A2の高さ調整層を構成する部分と、キャパシタの主要部を構成する部分とで、誘電体層4が別体となるようにそれらが形成されていてもよい。
《第4の実施形態》
 第4の実施形態では、内部電極と誘電体層の構成が、これまでに示した例とは異なる電子部品について例示する。
 図4(A)は第4の実施形態に係る電子部品104の平面図であり、図4(B)は図4(A)におけるB-B部分での断面図であり、図4(C)は図4(A)におけるC-C部分での断面図である。ただし、図4(A)は保護膜10の形成前の状態での平面図である。
 図2(B)に示した電子部品102では、誘電体層4及び第2内部電極3Bが半導体基板1の上部に平面状に形成されていたが、第4の実施形態の電子部品104では、半導体基板1の上部に複数のトレンチが形成されている。この例におけるトレンチは溝状ではなく円柱状である。これらトレンチの内面には誘電体層4が形成されていて、それらの内部に第2内部電極3Bの一部が埋められている。
 本実施形態によれば、誘電体層4を介する、第2内部電極3Bと半導体基板1との対向面積を広くできるので、キャパシタ形成領域の平面積を省スペース化できる。
《第5の実施形態》
 第5の実施形態では、内部電極と誘電体層の構成が第1、第2の実施形態で示した例とは異なる電子部品について例示する。
 図5(A)は第5の実施形態に係る電子部品105の平面図であり、図5(B)は図5(A)におけるB-B部分での断面図であり、図5(C)は図5(A)におけるC-C部分での断面図である。ただし、図5(A)は保護膜10の形成前の状態での平面図である。
 この電子部品105は、半導体基板1と、この半導体基板1の表層側に形成された絶縁体層2と、絶縁体層2内に形成された第1内部電極3A1,3A2と、絶縁体層2内に形成された第2内部電極3Bと、半導体基板1の表層側に形成された熱酸化膜による誘電体層4と、第1内部電極3A1,3A2より表層側で第1内部電極3A1,3A2に導通する第1引出電極5A1,5A2と、第2内部電極3Bより表層側で第2内部電極3Bに導通する第2引出電極5B1,5B2と、第1引出電極5A1,5A2より表層側で第1引出電極5A1,5A2に導通する第1外部電極6Aと、第2引出電極5B1,5B2より表層側で第2引出電極5B1,5B2に導通する第2外部電極6Bと、保護膜10と、を備える。
 図2(A)、図2(B)、図2(C)に示した例では、半導体基板1の面に対する垂直方向に視て、誘電体層4及び第2内部電極3Bが凹状であって、第1内部電極3A1,3A2の全体形状が凸状であったが、第5の実施形態に係る電子部品105では、誘電体層4及び第2内部電極3Bが凸状であり、第1内部電極3A1,3A2の全体形状が凹状である。そして、第1内部電極3A1,3A2と第2内部電極3Bとの対向部は凹凸状に対向する。すなわち、第2内部電極3Bの一部は第1外部電極6Aに向かって直線状に延伸し、第1内部電極3A1を第2内部電極3Bの延伸部を囲むように第2内部電極3Bが配置されている。また、第1内部電極3A1と第2内部電極3Bとが対向する領域では、それらの辺の間隔が一定(第1内部電極3A1と第2内部電極3Bの対向する辺の距離が一定)となるように第1内部電極3A1及び第2内部電極3Bが形成されている。
 本実施形態によれば、第2の実施形態で示した電子部品102と同様に、寄生インダクタンスや寄生抵抗が抑制された、また、低ESRのキャパシタが得られる。
 最後に、本発明は上述した各実施形態に限られるものではない。当業者によって適宜変形及び変更が可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲内と均等の範囲内での実施形態からの変形及び変更が含まれる。
 各実施形態ではパッシブコンポーネントとしてキャパシタ及びインダクタを備える電子部品を示したが、パッシブコンポーネントと共にアクティブコンポーネントを備える電子部品についても同様に適用できる。
 第2の実施形態から第5の実施形態では、半導体基板1の面に対する垂直方向に視て、第2内部電極3Bと第1内部電極3A1,3A2との対向部は凹凸状に対向する電子部品の例を示したが、半導体基板1の面に対する垂直方向に視て、第2内部電極3Bと第1内部電極3A1,3A2との対向部は櫛歯状に対向する電子部品についても同様に適用できる。
C0,C1…キャパシタ
L1…インダクタ
R1…抵抗
T1,T2…端子
1…半導体基板
2…絶縁体層
3A1,3A2…第1内部電極
3B…第2内部電極
4…誘電体層
5A1,5A2…第1引出電極
5B1,5B2…第2引出電極
6A…第1外部電極
6B…第2外部電極
10…保護膜
11…半導体基板
12…ウェル
13…拡散層
15…ゲート絶縁膜
101,102,103,104,105…電子部品
106…ゲート
108…配線層
113…層間絶縁膜
115…保護層
116…コンタクト孔

Claims (8)

  1.  半導体基板と、
     前記半導体基板の表層側に形成された絶縁体層と、
     前記絶縁体層内に形成された内部電極と、
     前記半導体基板の表層側に形成された誘電体層と、
     前記内部電極より表層側で前記内部電極に導通する引出電極と、
     前記引出電極より表層側で前記引出電極に導通する外部電極と、
     を備え、
     前記内部電極は、前記半導体基板に導通する第1内部電極と、前記誘電体層の表層側に形成された第2内部電極と、を含んで構成され、
     前記引出電極は、前記第1内部電極に導通する第1引出電極と、前記第2内部電極に導通する第2引出電極と、を含んで構成され、
     前記外部電極は、前記第1引出電極に導通する第1外部電極と、前記第2引出電極に導通する第2外部電極と、を含んで構成され、
     前記半導体基板の面に対する垂直方向に視て、前記第2引出電極は前記第2内部電極の内側に形成されている、
     電子部品。
  2.  前記誘電体層は前記半導体基板の熱酸化膜である、
     請求項1に記載の電子部品。
  3.  前記半導体基板の面に対する垂直方向に視て、前記第1内部電極と前記第2内部電極との対向部は凹凸状又は櫛歯状に対向する、
     請求項1又は2に記載の電子部品。
  4.  前記第1内部電極と前記第2内部電極の対向する辺の距離が一定である、請求項3に記載の電子部品。
  5.  前記第1内部電極は前記第2引出電極に向かって直線状に延びた延伸部分を有し、前記第2内部電極が前記第1内部電極の前記延伸部分を囲むよう配置されている、請求項3に記載の電子部品。
  6.  前記第2内部電極は前記第1引出電極に向かって直線状に延びた延伸部分を有し、前記第1内部電極が前記第2内部電極の前記延伸部分を囲むよう配置されている、請求項3に記載の電子部品。
  7.  前記誘電体層は、前記半導体基板の一部に形成されたトレンチにも形成されている、請求項1から6のいずれかに記載の電子部品。
  8.  前記誘電体層は、前記半導体基板と前記第1内部電極との間にも形成されている、
     請求項1から7のいずれかに記載の電子部品。
PCT/JP2023/009641 2022-03-23 2023-03-13 電子部品 WO2023182051A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022047045 2022-03-23
JP2022-047045 2022-03-23

Publications (1)

Publication Number Publication Date
WO2023182051A1 true WO2023182051A1 (ja) 2023-09-28

Family

ID=88101360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009641 WO2023182051A1 (ja) 2022-03-23 2023-03-13 電子部品

Country Status (1)

Country Link
WO (1) WO2023182051A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547586A (ja) * 1991-08-16 1993-02-26 Toshiba Corp コンデンサ部品
JP2017208528A (ja) * 2016-05-19 2017-11-24 サムソン エレクトロ−メカニックス カンパニーリミテッド. 薄膜キャパシター及びその製造方法
JP2021057374A (ja) * 2019-09-27 2021-04-08 太陽誘電株式会社 キャパシタ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547586A (ja) * 1991-08-16 1993-02-26 Toshiba Corp コンデンサ部品
JP2017208528A (ja) * 2016-05-19 2017-11-24 サムソン エレクトロ−メカニックス カンパニーリミテッド. 薄膜キャパシター及びその製造方法
JP2021057374A (ja) * 2019-09-27 2021-04-08 太陽誘電株式会社 キャパシタ

Similar Documents

Publication Publication Date Title
US8076755B2 (en) Semiconductor device and method of manufacturing the same
TWI472031B (zh) 半導體裝置
TWI515878B (zh) 絕緣體上半導體結構、自絕緣體上半導體主動元件之通道去除無用積聚多數型載子之方法、及製造積體電路之方法
US20190348496A1 (en) Capacitor
US8187930B2 (en) Structure and layout of a FET prime cell
KR100398164B1 (ko) 절연게이트반도체장치
US20080224257A1 (en) Semiconductor device
CN109994430A (zh) 半导体元件
JP2017118099A (ja) カスコード回路に基づく半導体パッケージ構造
US7560774B1 (en) IC chip
JP2014060358A (ja) 半導体装置
JP6923303B2 (ja) ダイオード素子
WO2023182051A1 (ja) 電子部品
US20080149981A1 (en) Rf power transistor with large periphery metal-insulator-silicon shunt capacitor
US20210273118A1 (en) Semiconductor Device
US20040238871A1 (en) Semiconductor device
JP2000299319A (ja) 半導体素子用電極パッド、半導体装置及びその製造方法
US6627982B2 (en) Electric connection structure for electronic power devices, and method of connection
JP7180842B2 (ja) 半導体装置
US6570237B2 (en) Semiconductor device with a protective diode having a high breakdown voltage
WO2023181803A1 (ja) 電子部品及び回路装置
CN214336713U (zh) 一种半导体器件
KR100448085B1 (ko) 패드의기생캐패시턴스감소형반도체장치
KR100471520B1 (ko) 반도체디바이스
JP5401056B2 (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774648

Country of ref document: EP

Kind code of ref document: A1