WO2023182025A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2023182025A1
WO2023182025A1 PCT/JP2023/009491 JP2023009491W WO2023182025A1 WO 2023182025 A1 WO2023182025 A1 WO 2023182025A1 JP 2023009491 W JP2023009491 W JP 2023009491W WO 2023182025 A1 WO2023182025 A1 WO 2023182025A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
cross
end protrusion
flow fan
air conditioner
Prior art date
Application number
PCT/JP2023/009491
Other languages
French (fr)
Japanese (ja)
Inventor
賢宣 和田
崇裕 大城
剛史 永田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023182025A1 publication Critical patent/WO2023182025A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/02Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal
    • F04D17/04Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal of transverse-flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0025Cross-flow or tangential fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise

Definitions

  • the present disclosure mainly relates to a home air conditioner.
  • an air conditioner includes a cross flow fan having multiple blades, a stabilizer, a rear guider, and a heat exchanger within a housing.
  • the heat exchanger includes a front heat exchanger placed on the front side of the cross-flow fan and a back heat exchanger placed on the back side of the cross-flow fan.
  • This kind of air conditioner sucks air from the top side of the air conditioner housing, exchanges heat between the sucked air and the refrigerant flowing inside the heat exchanger, and then sucks air from the bottom side of the housing. It is configured to blow out. In this way, indoor air conditioning is achieved.
  • Patent Document 1 discloses an air conditioner that aims to suppress noise.
  • This air conditioner includes an air passage that communicates the air outlet and the suction port.
  • the air conditioner includes a cross flow fan, a rear guider, a stabilizer, a front heat exchanger, and a rear heat exchanger in the air passage.
  • a crossflow fan includes multiple blades.
  • the rear guider includes a proximal portion that faces and approaches the cross-flow fan and is separated from the cross-flow fan by a predetermined distance, and an upper end protrusion that extends from the proximal portion toward the upper side of the rear heat exchanger.
  • the front heat exchanger is placed in front of the crossflow fan, and the back heat exchanger is placed behind the crossflow fan.
  • the present disclosure provides an air conditioner that improves air blowing performance by rectifying airflow flowing into a cross-flow fan.
  • the air conditioner in the present disclosure includes a cross flow fan, a stabilizer, a rear guider, a front heat exchanger placed on the front side of the cross flow fan, and a back heat exchanger placed on the back side of the cross flow fan.
  • the rear guider includes a proximal portion that faces the cross-flow fan and is disposed close to the cross-flow fan at a predetermined distance, and an upper end protrusion that extends upward from the proximal portion.
  • the upper end protrusion of the rear guider has an arcuate portion circumscribing a straight line X perpendicular to the downstream surface of the back heat exchanger.
  • the air conditioner according to the present disclosure can improve air blowing performance by improving turbulence in the airflow flowing into the crossflow fan.
  • FIG. 1 is a longitudinal cross-sectional view of an air conditioner according to Embodiment 1 of the present disclosure.
  • FIG. 2 is a diagram showing a longitudinal cross-sectional configuration of the vicinity of the upper end protrusion of the air conditioner according to the first embodiment.
  • FIG. 3 is a streamline diagram showing the flow of air near the upper end protrusion of the air conditioner according to the first embodiment.
  • FIG. 4A is a diagram showing a change in the blowout air volume ratio with respect to D/T and the shape of the upper end protrusion of the air conditioner in the first embodiment.
  • FIG. 4B is a graph showing a change in the blowout air volume ratio with respect to D/T of the air conditioner in the first embodiment.
  • FIG. 5A is a diagram showing a change in the input of the crossflow fan and the shape of the upper end protrusion with respect to the D/T of the air conditioner in the first embodiment.
  • FIG. 5B is a graph showing a change in the input of the crossflow fan with respect to the D/T of the air conditioner in the first embodiment.
  • FIG. 6 is a longitudinal cross-sectional view of an air conditioner according to Patent Document 1.
  • FIG. 7 is a diagram showing a vertical cross-sectional configuration near the upper end protrusion of the air conditioner according to Patent Document 1.
  • FIG. 8 is a streamline diagram showing the flow of air near the upper end protrusion of the air conditioner according to Patent Document 1.
  • FIG. 6 is a longitudinal sectional view of the air conditioner 1 according to Patent Document 1.
  • FIG. 7 is a diagram showing a longitudinal cross-sectional configuration of the vicinity of the upper end protrusion 6b of the air conditioner 1.
  • FIG. 8 is a streamline diagram showing the flow of air near the upper end protrusion 6b of the air conditioner 1.
  • the air conditioner 1 includes an air passage 4 that communicates an air outlet 2 and an air inlet 3 with each other.
  • the air conditioner 1 includes a cross flow fan 5, a rear guider 6, and a stabilizer 7 in the air passage 4, a front heat exchanger 8 on the front side of the cross flow fan 5, and a rear heat exchanger on the back side of the cross flow fan 5. Equipped with 9.
  • the crossflow fan 5 includes a plurality of blades 5a.
  • the rear guider 6 includes a proximal portion 6a that faces the cross-flow fan 5 and approaches the cross-flow fan 5 at a predetermined distance.
  • the crossflow fan 5 includes an upper end protrusion 6b extending from the proximal portion 6a toward the upper side of the back heat exchanger 9.
  • the upper end projection 6b includes an upper end 6c of the upper end projection 6b, a surface 6d of the upper end projection 6b facing the back heat exchanger 9, and a surface 6e of the upper end projection 6b facing the cross flow fan 5.
  • the suction airflow that has passed through the portion of the upper end protrusion 6b located below the upper end 6c of the back heat exchanger 9 flows upward along the surface 6d of the upper end protrusion 6b facing the back heat exchanger 9, and flows upward through the upper end protrusion 6b. It turns toward the cross-flow fan 5 near the upper end of the portion 6b and flows into the cross-flow fan 5.
  • the suction airflow that has passed through the portion of the back heat exchanger 9 located above the upper end of the upper end protrusion 6b is transferred to the back heat exchanger located near the upper end of the upper end protrusion 6b and below the upper end of the upper end protrusion 6b. It merges with the suction airflow that has passed through the device 9 and flows into the crossflow fan 5.
  • a counterflow vortex that rotates in a direction opposite to the rotational direction of the crossflow fan 5 is generated in a space between the crossflow fan 5 and the surface 6e of the upper end protrusion 6b that faces the crossflow fan 5.
  • this backflow vortex is attached to the surface 6e of the upper end protrusion 6b facing the crossflow fan 5, and the vortex center of the backflow vortex is located upstream of the adjacent portion 6a, thereby preventing contact with the blades 5a.
  • the aim is to reduce interference and suppress noise.
  • FIG. 8 solid lines indicate streamlines of the airflow, and contours indicate the eddy viscosity coefficient of the airflow.
  • the upper end protrusion 6b has a uniform shape in the longitudinal direction parallel to the rotation axis of the cross flow fan 5.
  • the cross-sectional shape of the upper end of the upper end protrusion 6b in a cross section perpendicular to the rotation axis of the cross flow fan 5 is such that the surface of the upper end protrusion 6b facing the back heat exchanger 9 and the surface of the upper end protrusion 6b facing the cross flow fan 5 It is formed by an arc tangent to the surface.
  • a countercurrent vortex which is generated in the space between the crossflow fan 5 and the surface of the upper end protrusion 6b facing the crossflow fan 5 and rotates in a direction opposite to the rotational direction of the crossflow fan 5, flows into the arc of the upper end protrusion 6b.
  • the liquid flows along the upper end protrusion 6b toward the surface facing the back heat exchanger 9.
  • the suction airflow that has passed through the back heat exchanger 9 located below the upper end of the upper end protrusion 6b flows upward along the surface of the upper end protrusion 6b that faces the back heat exchanger 9, and
  • the liquid flows along the circular arc 6b toward the surface of the upper end protrusion 6b that faces the crossflow fan 5.
  • the present disclosure suppresses the collision between the suction airflow that has passed through the back heat exchanger and the backflow vortex generated in the space between the crossflow fan and the surface facing the crossflow fan of the upper end protrusion, and flows into the crossflow fan.
  • an air conditioner that can improve air blowing performance by improving airflow turbulence.
  • FIG. 1 is a longitudinal cross-sectional view of an air conditioner 100 in Embodiment 1 of the present disclosure.
  • FIG. 2 is a diagram showing a vertical cross-sectional configuration of the vicinity of the upper end protrusion 105b of the air conditioner 100.
  • FIG. 3 is a streamline diagram showing the flow of air near the upper end protrusion 105b of the air conditioner 100.
  • the left side in FIG. 1 will be described as the front side and the right side as the back side.
  • an air conditioner 100 includes a main body casing 103 having an inlet 101 and an outlet 102, a stabilizer 104, a rear guider 105, a cross flow fan 106, and a heat exchanger 107.
  • the rear guider 105 has a proximal portion 105a and an upper end protrusion 105b.
  • the proximal portion 105a is a portion that faces the cross-flow fan 106 and is close to the cross-flow fan 106 at a predetermined distance.
  • the upper end protrusion 105b is a portion extending upward from the proximal portion 105a.
  • the rear guider 105 is arranged between the crossflow fan 106 and a backside heat exchanger 107b, which will be described later.
  • the cross flow fan 106 has a rotating shaft and a plurality of blades 106a arranged in a cylindrical shape.
  • the heat exchanger 107 is composed of a front heat exchanger 107a and a back heat exchanger 107b.
  • Heat exchanger 107 may include an auxiliary heat exchanger.
  • the front heat exchanger 107a is arranged on the front side of the cross flow fan 106.
  • the back heat exchanger 107b is arranged on the back side of the cross flow fan 106.
  • the auxiliary heat exchanger is arranged, for example, on the surface of the rear heat exchanger 107b opposite to the surface where the cross flow fan 106 and the rear heat exchanger 107b face each other.
  • the auxiliary heat exchanger is arranged on the surface of the back heat exchanger 107b on the upstream side of the air flowing in from the suction port 101 when the crossflow fan rotates.
  • the heat exchanger 107 includes a plurality of fins 107c and a plurality of heat transfer tubes 107d passing through the plurality of fins 107c.
  • a point on the proximal portion 105a that is the shortest distance from the cross flow fan 106 is defined as a proximate point A.
  • a straight line X is a straight line perpendicular to the downstream surface of the back heat exchanger 107b.
  • the upper end protrusion 105b has a circular arc portion 105c that circumscribes the straight line X, and the point of contact between the straight line X and the circular arc portion 105c is a tip point B.
  • the tip point B is located closer to the cross flow fan 106 than the center line W of the upper end protrusion.
  • the upper end protrusion 105b is configured such that D/T ⁇ 0.6, where D is the diameter of the arcuate portion 105c and T is the thickness of the upper end protrusion 105b.
  • Point R is a point on the surface 105e of the upper end protrusion 105b facing the rear heat exchanger 107b, which is the shortest distance from point Q to the surface 105e of the upper end projection 105b facing the rear heat exchanger 107b.
  • the straight line connecting point Q and point R be straight line Z.
  • a straight line passing through the midpoint of the straight line Z and perpendicular to the straight line Z is defined as the center line W of the upper end protrusion.
  • the length of the line segment QR on the straight line Z be the thickness T of the upper end protrusion 105b.
  • the upper end protrusion 105b has a flat portion 105d that is tangential to the arcuate portion 105c and faces the back heat exchanger 107b.
  • the upper end protrusion 105b is configured such that U/T ⁇ 1.0, where U is the length of the flat portion 105d.
  • the cross flow fan 106 rotates, indoor air is sucked into the main body casing 103 from the suction port 101.
  • the indoor air sucked into the main body casing 103 passes through the front heat exchanger 107a and the back heat exchanger 107b, flows into the cross flow fan 106, and is blown out from the outlet 102 into the indoor space.
  • the cross flow fan 106 rotates clockwise.
  • the suction airflow that has passed through the portion of the rear heat exchanger 107b located below the upper end of the upper end protrusion 105b is caused to flow along the surface 105e of the upper end protrusion 105b facing the rear heat exchanger 107b. It flows upward, turns toward the cross-flow fan 106 near the upper end of the upper end protrusion 105b, and flows into the cross-flow fan 106.
  • the suction airflow passing through the portion located above the upper end of the upper end protrusion 105b in the back heat exchanger 107b is near the upper end of the upper end protrusion 105b, and is lower than the upper end of the upper end protrusion 105b in the back heat exchanger 107b. It merges with the suction airflow that has passed through the portion located at , and flows into the crossflow fan 106 .
  • a countercurrent vortex that rotates in a direction opposite to the rotational direction of the crossflow fan 106 is generated in the space between the crossflow fan 106 and the upper end protrusion 105b.
  • the backflow vortex adheres to the surface 105f of the upper end protrusion 105b facing the crossflow fan 106, and the vortex center of the backflow vortex is located above the proximal portion 105a.
  • the suction airflow passing through the portion of the back heat exchanger 107b that is located below the upper end of the upper end protrusion 105b flows upward along the surface 105e of the upper end protrusion 105b that faces the back heat exchanger 107b, and flows upward through the plane portion. Reach 105d. Due to the inertial force of the suction airflow, the suction airflow passing through the portion of the back heat exchanger 107b located below the upper end of the upper end protrusion 105b is flat with the surface 105e of the upper end protrusion 105b facing the back heat exchanger 107b. The upper end protrusion 105b is separated from the surface 105e facing the back heat exchanger 107b at the connection point S with the portion 105d.
  • the surface 105e of the upper end protrusion 105b facing the back heat exchanger 107b and the flat part 105d are not continuous, and the length U of the flat part 105d is equal to the thickness T of the upper end protrusion 105b. , U/T ⁇ 1.0. For this reason, the suction airflow separated from the surface 105e of the upper end protrusion 105b facing the back surface heat exchanger 107b does not re-adhere to the flat portion 105d, but joins the flow flowing into the cross-flow fan 106.
  • the backflow vortex flows upward along the surface 105f of the upper end protrusion 105b facing the crossflow fan 106, and reaches the arcuate portion 105c.
  • the tip point B of the arcuate portion 105c is located closer to the crossflow fan 106 than the centerline W of the upper end protrusion 105b, and the diameter D of the arcuate portion 105c is equal to the thickness of the upper end protrusion 105b. D/T ⁇ 0.6 for T.
  • the deflection radius is small and it is deflected sharply, but due to the inertia of the backflow vortex, it separates from the circular arc portion 105c and the cross flow fan 105 joins the flow flowing into the Furthermore, since the tip point B is located closer to the cross-flow fan 106 than the center line W of the upper end protrusion 105b, the backflow vortex separates from the arcuate portion 105c at a position close to the cross-flow fan 106, and the cross-flow fan 106 joins the flow flowing into the
  • FIG. 4A is a diagram showing changes in the blowout air volume ratio with respect to D/T of the air conditioner 100 and the shape of the upper end protrusion 105b.
  • FIG. 4B is a graph showing changes in the blowout air volume ratio with respect to D/T of the air conditioner 100.
  • FIG. 5A is a diagram showing the input change (change in input power) of the crossflow fan 106 with respect to the D/T of the air conditioner 100 and the shape of the upper end protrusion 105b.
  • FIG. 5B is a graph showing a change in input to the crossflow fan 106 (change in input power) with respect to D/T of the air conditioner 100.
  • the value of D/T is shown in the upper row
  • the air volume ratio is shown in the middle row
  • the shape of the upper end protrusion 105b is shown in the lower row.
  • the horizontal axis represents D/T
  • the vertical axis represents the air volume ratio to D/T.
  • the air volume ratio increases rapidly between D/T 1.0 and 0.6, while D/T When it becomes less than 0.6, the air volume ratio maintains a substantially constant value. That is, the air volume ratio increases rapidly when D/T is between 1.0 and 0.6, and reaches the upper limit when D/T reaches 0.6. Therefore, it can be said that when D/T is less than 0.6, the air volume ratio is improved and the air blowing performance is improved.
  • the value of D/T is shown in the upper row
  • the input ratio is shown in the middle row
  • the shape of the upper end protrusion 105b is shown in the lower row.
  • the horizontal axis represents D/T
  • the vertical axis represents input ratio.
  • the air conditioner 100 includes a main body casing 103 having an inlet 101 and an outlet 102, a stabilizer 104, a rear guider 105, a cross flow fan 106, and a front heat exchanger. 107a, and a back heat exchanger 107b.
  • the rear guider 105 includes a proximal portion 105a that faces the cross-flow fan 106 and is close to the cross-flow fan 106 by a predetermined dimension (distance), and an upper end protrusion 105b that extends upward from the proximal portion 105a.
  • the upper end protrusion 105b has an arcuate portion 105c, and the tip point B of the arcuate portion 105c is located closer to the cross flow fan 106 than the centerline W of the upper end protrusion 105b.
  • the upper end protrusion 105b is configured so that D/T ⁇ 0.6, where D is the diameter of the arcuate portion 105c and T is the thickness of the upper end protrusion 105b.
  • the tip point B of the arcuate portion 105c is located closer to the crossflow fan 106 than the centerline W of the upper end protrusion 105b, and D/T ⁇ 0.6, so the generated backflow vortex flows along the arcuate portion 105c.
  • the deflection radius is small and the flow is abruptly deflected, but the reverse flow vortex separates from the circular arc portion 105c due to the inertial force of the reverse flow vortex and joins the flow flowing into the cross flow fan 106.
  • the tip point B is located closer to the cross-flow fan 106 than the center line W of the upper end protrusion 105b, the backflow vortex separates from the arcuate portion 105c at a position close to the cross-flow fan 106, and the cross-flow fan 106 joins the flow flowing into the
  • the backflow vortex flows along the arcuate portion 105c of the upper end protrusion 105b to the surface of the upper end protrusion 105b facing the back heat exchanger 107b. Flowing toward 105e is suppressed. Therefore, the occurrence of collision between the backflow vortex and the suction airflow can be suppressed or alleviated. Therefore, by improving the turbulence of the airflow flowing into the cross-flow fan 106, the amount of air blown from the cross-flow fan 106 can be increased, and the power input to the cross-flow fan 106 can be reduced. Moreover, noise can be suppressed by improving the turbulence of the airflow flowing into the cross-flow fan 106.
  • the upper end protrusion 105b has a flat portion 105d, and is configured such that U/T ⁇ 1.0, where U is the length of the flat portion 105d.
  • U is the length of the flat portion 105d.
  • the suction airflow separates from the surface 105e of the upper end protrusion 105b facing the back surface heat exchanger 107b due to the inertial force of the suction airflow. Since the flat portion 105d is configured such that U/T ⁇ 1.0, the suction airflow separated from the surface 105e of the upper end protrusion 105b facing the back heat exchanger 107b is not reattached to the flat portion 105d. First, it joins the flow flowing into the crossflow fan 106.
  • the suction airflow flows toward the surface 105f of the upper end protrusion 105b facing the cross flow fan 106 along the arcuate part 105c of the upper end protrusion 105b. It is possible to suppress or alleviate the occurrence of collision with a backflow vortex. Therefore, by improving the turbulence of the airflow flowing into the cross-flow fan 106, the input power to the cross-flow fan 106 can be reduced and noise can be suppressed.
  • the outer diameter Dt of the heat exchanger tube 107d shown in this embodiment is only an example. It is sufficient if the heat exchanger tube 107d satisfies Dt ⁇ 5mm.
  • Dt the outer diameter of the heat transfer tube 107d
  • the amount of water flowing into the crossflow fan 106 By improving the turbulence of the airflow, the amount of air blown from the crossflow fan 106 can be increased, and the input power to the crossflow fan 106 can be reduced.
  • noise can be suppressed by improving the turbulence of the airflow flowing into the cross-flow fan 106.
  • the present disclosure can improve air blowing performance by suppressing or mitigating the collision between the intake airflow and the backflow vortex formed upstream of the vicinity of the rear guider, and improving the turbulence of the airflow flowing into the crossflow fan. Therefore, it can be suitably used for home air conditioning and commercial air conditioning.
  • Air conditioner 101 Suction port 102 Air outlet 103 Main body casing 104 Stabilizer 105 Rear guider 105a Proximity portion 105b Upper end protrusion 105c Arc portion 105d Plane portion 106 Cross flow fan 106a Blade 107 Heat exchanger 107a Front heat exchanger 107b Rear heat exchanger 107c Fin 107d Heat exchanger tube

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)

Abstract

This air conditioner comprises a cross-flow fan (106), a rear guider (105), and a back surface heat exchanger (107b). The rear guider (105) comprises an upper end protruding part (105b) that has an arc part (105c). A tip point B that is positioned on the arc part (105c) is positioned further to the cross-flow fan (106) side than a centerline W of the upper end protruding part (105b). When D is the diameter of the arc part (105c) and T is the shortest distance between a surface of the upper end protruding part (105b) that is on the cross-flow fan (106) side and a surface of the upper end protruding part (105b) that is on the back surface heat exchanger (107b) side, D/T<0.6.

Description

空気調和機air conditioner
 本開示は、主に家庭用の空気調和機に関する。 The present disclosure mainly relates to a home air conditioner.
 一般に、空気調和機は、筐体内に、複数のブレードを有するクロスフローファンと、スタビライザと、リアガイダと、熱交換器と、を備える。熱交換器は、クロスフローファンの前面側に配置される前面熱交換器と、クロスフローファンの背面側に配置される背面熱交換器とにより構成される。このような空気調和機は、空気調和機の筐体の天面側から空気を吸い込み、吸い込んだ空気と熱交換器の内部を流れる冷媒との熱交換をし、筐体の底面側から空気を吹き出すように構成される。これにより、室内の空気調和が行われる。 Generally, an air conditioner includes a cross flow fan having multiple blades, a stabilizer, a rear guider, and a heat exchanger within a housing. The heat exchanger includes a front heat exchanger placed on the front side of the cross-flow fan and a back heat exchanger placed on the back side of the cross-flow fan. This kind of air conditioner sucks air from the top side of the air conditioner housing, exchanges heat between the sucked air and the refrigerant flowing inside the heat exchanger, and then sucks air from the bottom side of the housing. It is configured to blow out. In this way, indoor air conditioning is achieved.
 特許文献1は、騒音抑制を図る空気調和機を開示する。この空気調和機は、吹出口と吸込口とを連通する送風路を備える。空気調和機は、送風路内に、クロスフローファンとリアガイダとスタビライザと前面熱交換器と背面熱交換器とを備える。クロスフローファンは複数のブレードを備える。リアガイダは、クロスフローファンに対向して近接して所定の寸法だけクロスフローファンから離れる近接部と、近接部から更に背面熱交換器の上部側へ向かって延設された上端突起部を備える。前面熱交換器はクロスフローファンの前方に配置されており、背面熱交換器はクロスフローファンの後方に配置されている。 Patent Document 1 discloses an air conditioner that aims to suppress noise. This air conditioner includes an air passage that communicates the air outlet and the suction port. The air conditioner includes a cross flow fan, a rear guider, a stabilizer, a front heat exchanger, and a rear heat exchanger in the air passage. A crossflow fan includes multiple blades. The rear guider includes a proximal portion that faces and approaches the cross-flow fan and is separated from the cross-flow fan by a predetermined distance, and an upper end protrusion that extends from the proximal portion toward the upper side of the rear heat exchanger. The front heat exchanger is placed in front of the crossflow fan, and the back heat exchanger is placed behind the crossflow fan.
特開2001-124362号公報Japanese Patent Application Publication No. 2001-124362
 しかしながら、特許文献1に記載の空気調和機では、クロスフローファンの回転により生じる吸込気流と逆渦流とが衝突し、その乱れた気流がクロスフローファンに流入してしまうことにより、送風性能が低下してしまうという問題がある。 However, in the air conditioner described in Patent Document 1, the suction airflow generated by the rotation of the crossflow fan collides with the reverse vortex flow, and the turbulent airflow flows into the crossflow fan, resulting in a decrease in air blowing performance. The problem is that you end up doing it.
 本開示は、クロスフローファンに流入する気流を整流し、送風性能を向上した空気調和機を提供する。 The present disclosure provides an air conditioner that improves air blowing performance by rectifying airflow flowing into a cross-flow fan.
 本開示における空気調和機は、クロスフローファンと、スタビライザと、リアガイダと、クロスフローファンの前面側に配置される前面熱交換器と、クロスフローファンの背面側に配置される背面熱交換器を備える。リアガイダは、クロスフローファンに対向し、かつ所定の距離でクロスフローファンと近接して配置される近接部と、近接部から上方へ向かって延出した上端突起部を備える。クロスフローファンの回転軸と直交するリアガイダの断面視において、リアガイダの上端突起部は背面熱交換器の下流面に垂直な直線Xと外接する円弧部を有する。直線Xと円弧部の接点を先端点Bとしたときに先端点Bが上端突起部中心線よりもクロスフローファン側に位置し、円弧部の径をDとし上端突起部の厚さをTとしたときにD/T<0.6となる。 The air conditioner in the present disclosure includes a cross flow fan, a stabilizer, a rear guider, a front heat exchanger placed on the front side of the cross flow fan, and a back heat exchanger placed on the back side of the cross flow fan. Be prepared. The rear guider includes a proximal portion that faces the cross-flow fan and is disposed close to the cross-flow fan at a predetermined distance, and an upper end protrusion that extends upward from the proximal portion. In a cross-sectional view of the rear guider perpendicular to the rotation axis of the cross-flow fan, the upper end protrusion of the rear guider has an arcuate portion circumscribing a straight line X perpendicular to the downstream surface of the back heat exchanger. When the point of contact between the straight line When this happens, D/T<0.6.
 本開示における空気調和機は、クロスフローファンに流入する気流の乱れを改善することで送風性能の向上を図ることができる。 The air conditioner according to the present disclosure can improve air blowing performance by improving turbulence in the airflow flowing into the crossflow fan.
図1は、本開示の実施の形態1における空気調和機の縦断面図である。FIG. 1 is a longitudinal cross-sectional view of an air conditioner according to Embodiment 1 of the present disclosure. 図2は、同実施の形態1における空気調和機の上端突起部近傍の縦断面構成を示す図である。FIG. 2 is a diagram showing a longitudinal cross-sectional configuration of the vicinity of the upper end protrusion of the air conditioner according to the first embodiment. 図3は、同実施の形態1における空気調和機の上端突起部近傍の空気の流れを示す流線図である。FIG. 3 is a streamline diagram showing the flow of air near the upper end protrusion of the air conditioner according to the first embodiment. 図4Aは、同実施の形態1における空気調和機のD/Tに対する吹出風量比の変化および上端突起部の形状を示す図である。FIG. 4A is a diagram showing a change in the blowout air volume ratio with respect to D/T and the shape of the upper end protrusion of the air conditioner in the first embodiment. 図4Bは、同実施の形態1における空気調和機のD/Tに対する吹出風量比の変化を示すグラフである。FIG. 4B is a graph showing a change in the blowout air volume ratio with respect to D/T of the air conditioner in the first embodiment. 図5Aは、同実施の形態1における空気調和機のD/Tに対するクロスフローファンの入力変化および上端突起部の形状を示す図である。FIG. 5A is a diagram showing a change in the input of the crossflow fan and the shape of the upper end protrusion with respect to the D/T of the air conditioner in the first embodiment. 図5Bは、同実施の形態1における空気調和機のD/Tに対するクロスフローファンの入力変化を示すグラフである。FIG. 5B is a graph showing a change in the input of the crossflow fan with respect to the D/T of the air conditioner in the first embodiment. 図6は、特許文献1に係る空気調和機の縦断面図である。FIG. 6 is a longitudinal cross-sectional view of an air conditioner according to Patent Document 1. 図7は、特許文献1に係る空気調和機の上端突起部近傍の縦断面構成を示す図である。FIG. 7 is a diagram showing a vertical cross-sectional configuration near the upper end protrusion of the air conditioner according to Patent Document 1. 図8は、特許文献1に係る空気調和機の上端突起部近傍の空気の流れを示す流線図である。FIG. 8 is a streamline diagram showing the flow of air near the upper end protrusion of the air conditioner according to Patent Document 1.
 (本開示の基礎となった知見等)
 発明者らが本開示に想到するに至った当時、空気調和機において、クロスフローファンとリアガイダの近接部の上流において周囲の気流を巻き込んで渦流が形成され、その渦流をブレードが通過することで干渉騒音が生じるという問題があった。この渦流は、クロスフローファンとリアガイダとの隙間において、クロスフローファンの回転方向と逆方向となる逆流が生じ、この逆流がクロスフローファンとリアガイダの近接部を通過することで発生する。この問題の解決策として、クロスフローファンの後方で上流と下流を仕切る近接部からクロスフローファンの上方に向かって設けられる上端突起部により、騒音抑制を図る技術がある。
(Findings, etc. that formed the basis of this disclosure)
At the time the inventors came up with the present disclosure, in an air conditioner, a vortex was formed upstream of the vicinity of the crossflow fan and the rear guider, drawing in the surrounding airflow, and the blades passing through the vortex. There was a problem that interference noise occurred. This vortex is generated by a backflow in a direction opposite to the rotational direction of the crossflow fan occurring in the gap between the crossflow fan and the rear guider, and this backflow passing through the vicinity of the crossflow fan and rear guider. As a solution to this problem, there is a technique for suppressing noise by using an upper end protrusion that is provided toward the top of the cross-flow fan from a proximal portion that partitions the upstream and downstream areas at the rear of the cross-flow fan.
 ここで、図6~図8を用いて、従来の空気調和機の一例として、特許文献1について説明する。図6は、特許文献1に係る空気調和機1の縦断面図である。図7は、空気調和機1の上端突起部6b近傍の縦断面構成を示す図である。図8は、空気調和機1の上端突起部6b近傍の空気の流れを示す流線図である。 Here, Patent Document 1 will be described as an example of a conventional air conditioner using FIGS. 6 to 8. FIG. 6 is a longitudinal sectional view of the air conditioner 1 according to Patent Document 1. FIG. 7 is a diagram showing a longitudinal cross-sectional configuration of the vicinity of the upper end protrusion 6b of the air conditioner 1. FIG. 8 is a streamline diagram showing the flow of air near the upper end protrusion 6b of the air conditioner 1.
 図6を用いて特許文献1に開示されている空気調和機1の構造を説明する。空気調和機1は、吹出口2と吸込口3とを連通する送風路4を備える。空気調和機1は、送風路4内にクロスフローファン5とリアガイダ6とスタビライザ7と、クロスフローファン5の前面側に前面熱交換器8、クロスフローファンの5の背面側に背面熱交換器9を備える。クロスフローファン5は複数のブレード5aを備える。リアガイダ6は、クロスフローファン5に対向してクロスフローファン5と所定の距離で近接する近接部6aを備える。クロスフローファン5は、近接部6aから更に背面熱交換器9の上部側へ向かって延設された上端突起部6bを備える。 The structure of the air conditioner 1 disclosed in Patent Document 1 will be explained using FIG. 6. The air conditioner 1 includes an air passage 4 that communicates an air outlet 2 and an air inlet 3 with each other. The air conditioner 1 includes a cross flow fan 5, a rear guider 6, and a stabilizer 7 in the air passage 4, a front heat exchanger 8 on the front side of the cross flow fan 5, and a rear heat exchanger on the back side of the cross flow fan 5. Equipped with 9. The crossflow fan 5 includes a plurality of blades 5a. The rear guider 6 includes a proximal portion 6a that faces the cross-flow fan 5 and approaches the cross-flow fan 5 at a predetermined distance. The crossflow fan 5 includes an upper end protrusion 6b extending from the proximal portion 6a toward the upper side of the back heat exchanger 9.
 図7を用いて特許文献1に開示されている空気調和機1の空気の流れを説明する。上端突起部6bは上端突起部6bの上端6cと、上端突起部6bの背面熱交換器9に対向する面6dと、上端突起部6bのクロスフローファン5に対向する面6eを備える。背面熱交換器9における上端突起部6bの上端6c下方に位置する部分を通過した吸込気流は、上端突起部6bの背面熱交換器9に対向する面6dに沿って上方へ流動し、上端突起部6bの上端近傍でクロスフローファン5へ向けて旋回し、クロスフローファン5へ流入する。また、背面熱交換器9における上端突起部6bの上端より上方に位置する部分を通過した吸込気流は、上端突起部6bの上端近傍で、上端突起部6bの上端より下方に位置する背面熱交換器9を通過した吸込気流と合流して、クロスフローファン5へ流入する。クロスフローファン5と上端突起部6bのクロスフローファン5に対向する面6eとの間の空間に、クロスフローファン5の回転方向と逆方向に回転する逆流渦が生じる。空気調和機1では、この逆流渦を上端突起部6bのクロスフローファン5に対向する面6eに付着させ、逆流渦の渦中心を近接部6aよりも上流に位置させることで、ブレード5aとの干渉を緩和して騒音抑制できると目論んでいる。 The air flow in the air conditioner 1 disclosed in Patent Document 1 will be explained using FIG. 7. The upper end projection 6b includes an upper end 6c of the upper end projection 6b, a surface 6d of the upper end projection 6b facing the back heat exchanger 9, and a surface 6e of the upper end projection 6b facing the cross flow fan 5. The suction airflow that has passed through the portion of the upper end protrusion 6b located below the upper end 6c of the back heat exchanger 9 flows upward along the surface 6d of the upper end protrusion 6b facing the back heat exchanger 9, and flows upward through the upper end protrusion 6b. It turns toward the cross-flow fan 5 near the upper end of the portion 6b and flows into the cross-flow fan 5. In addition, the suction airflow that has passed through the portion of the back heat exchanger 9 located above the upper end of the upper end protrusion 6b is transferred to the back heat exchanger located near the upper end of the upper end protrusion 6b and below the upper end of the upper end protrusion 6b. It merges with the suction airflow that has passed through the device 9 and flows into the crossflow fan 5. A counterflow vortex that rotates in a direction opposite to the rotational direction of the crossflow fan 5 is generated in a space between the crossflow fan 5 and the surface 6e of the upper end protrusion 6b that faces the crossflow fan 5. In the air conditioner 1, this backflow vortex is attached to the surface 6e of the upper end protrusion 6b facing the crossflow fan 5, and the vortex center of the backflow vortex is located upstream of the adjacent portion 6a, thereby preventing contact with the blades 5a. The aim is to reduce interference and suppress noise.
 次に、図8を用いて特許文献1に開示されている空気調和機1の上端突起部6b近傍の空気の流れを説明する。図8において、実線は気流の流線を示し、コンター(contour)は気流の渦粘性係数を示している。上端突起部6bはクロスフローファン5の回転軸に平行な長手方向に一様な形状をしている。クロスフローファン5の回転軸に垂直な断面における、上端突起部6bの上端の断面形状は、上端突起部6bの背面熱交換器9に対向する面と上端突起部6bのクロスフローファン5に対向する面とに正接する円弧で形成されている。クロスフローファン5と上端突起部6bのクロスフローファン5に対向する面との間の空間に生じ、クロスフローファン5の回転方向と逆方向に回転する逆流渦が、上端突起部6bの円弧に沿って上端突起部6bの背面熱交換器9に対向する面に向かい流動する。また、上端突起部6bの上端より下方に位置する背面熱交換器9を通過した吸込気流は、上端突起部6bの背面熱交換器9に対向する面に沿って上方へ流動し、上端突起部6bの円弧に沿って上端突起部6bのクロスフローファン5に対向する面に向かい流動する。そして、逆流渦と吸込気流とが、上端突起部6bの上端近傍で衝突し、乱れた気流となりクロスフローファン5に流入する。気流のクロスフローファン5への流入の際に、ブレード5aが乱れた気流を横切るため、ブレード5aとブレード5aの表面における吸込気流との間で摩擦損失が生じる、または干渉による騒音が生じる場合がある。このような場合には、空気調和機の送風性能が低下すること、具体的には吹出風量が低下する、ファンの入力電力が増加する、または騒音を抑制できないといった問題があることを発明者らは見出した。発明者らは当該問題を解決するために、本開示の主題を構成するに至った。 Next, the flow of air near the upper end protrusion 6b of the air conditioner 1 disclosed in Patent Document 1 will be described using FIG. 8. In FIG. 8, solid lines indicate streamlines of the airflow, and contours indicate the eddy viscosity coefficient of the airflow. The upper end protrusion 6b has a uniform shape in the longitudinal direction parallel to the rotation axis of the cross flow fan 5. The cross-sectional shape of the upper end of the upper end protrusion 6b in a cross section perpendicular to the rotation axis of the cross flow fan 5 is such that the surface of the upper end protrusion 6b facing the back heat exchanger 9 and the surface of the upper end protrusion 6b facing the cross flow fan 5 It is formed by an arc tangent to the surface. A countercurrent vortex, which is generated in the space between the crossflow fan 5 and the surface of the upper end protrusion 6b facing the crossflow fan 5 and rotates in a direction opposite to the rotational direction of the crossflow fan 5, flows into the arc of the upper end protrusion 6b. The liquid flows along the upper end protrusion 6b toward the surface facing the back heat exchanger 9. In addition, the suction airflow that has passed through the back heat exchanger 9 located below the upper end of the upper end protrusion 6b flows upward along the surface of the upper end protrusion 6b that faces the back heat exchanger 9, and The liquid flows along the circular arc 6b toward the surface of the upper end protrusion 6b that faces the crossflow fan 5. Then, the backflow vortex and the suction airflow collide near the upper end of the upper end protrusion 6b, resulting in a turbulent airflow that flows into the crossflow fan 5. When the airflow flows into the cross-flow fan 5, the blades 5a cross the turbulent airflow, so friction loss may occur between the blades 5a and the suction airflow on the surface of the blades 5a, or noise may occur due to interference. be. The inventors have found that in such cases, there are problems such as a decrease in the air blowing performance of the air conditioner, specifically a decrease in the blowout air volume, an increase in the input power of the fan, or an inability to suppress noise. found out. In order to solve the problem, the inventors came up with the subject matter of the present disclosure.
 本開示は、背面熱交換器を通過した吸込気流とクロスフローファンと上端突起部のクロスフローファンに対向する面との間の空間に生じる逆流渦との衝突を抑制し、クロスフローファンに流入する気流の乱れを改善することで送風性能の向上を可能とする空気調和機を提供する。 The present disclosure suppresses the collision between the suction airflow that has passed through the back heat exchanger and the backflow vortex generated in the space between the crossflow fan and the surface facing the crossflow fan of the upper end protrusion, and flows into the crossflow fan. To provide an air conditioner that can improve air blowing performance by improving airflow turbulence.
 以下、図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が必要以上に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, embodiments will be described in detail with reference to the drawings. However, more detailed explanation than necessary may be omitted. For example, detailed explanations of well-known matters or redundant explanations of substantially the same configurations may be omitted. This is to avoid making the following description unnecessarily redundant and to facilitate understanding by those skilled in the art.
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより請求の範囲に記載の主題を限定することを意図していない。 The accompanying drawings and the following description are provided to enable those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter recited in the claims.
 (実施の形態1)
 以下、図1~図3を用いて、実施の形態1の空気調和機100について説明する。図1は、本開示の実施の形態1における空気調和機100の縦断面図である。図2は、空気調和機100の上端突起部105b近傍の縦断面構成を示す図である。図3は、空気調和機100の上端突起部105b近傍の空気の流れを示す流線図である。なお、本実施の形態においては、図1における左側を前面側、右側を背面側として説明する。
(Embodiment 1)
The air conditioner 100 of the first embodiment will be described below with reference to FIGS. 1 to 3. FIG. 1 is a longitudinal cross-sectional view of an air conditioner 100 in Embodiment 1 of the present disclosure. FIG. 2 is a diagram showing a vertical cross-sectional configuration of the vicinity of the upper end protrusion 105b of the air conditioner 100. FIG. 3 is a streamline diagram showing the flow of air near the upper end protrusion 105b of the air conditioner 100. In this embodiment, the left side in FIG. 1 will be described as the front side and the right side as the back side.
 [1-1.構成]
 図1において、空気調和機100は、吸込口101と、吹出口102を有する本体ケーシング103と、スタビライザ104と、リアガイダ105と、クロスフローファン106と、熱交換器107とを備えている。
[1-1. composition]
In FIG. 1, an air conditioner 100 includes a main body casing 103 having an inlet 101 and an outlet 102, a stabilizer 104, a rear guider 105, a cross flow fan 106, and a heat exchanger 107.
 リアガイダ105は、近接部105aと、上端突起部105bとを有する。近接部105aは、クロスフローファン106に対向してクロスフローファン106と所定の距離で近接する部分である。上端突起部105bは、近接部105aから上方へ向かって延設された部分である。リアガイダ105はクロスフローファン106と、後述する背面熱交換器107bとの間に配置されている。 The rear guider 105 has a proximal portion 105a and an upper end protrusion 105b. The proximal portion 105a is a portion that faces the cross-flow fan 106 and is close to the cross-flow fan 106 at a predetermined distance. The upper end protrusion 105b is a portion extending upward from the proximal portion 105a. The rear guider 105 is arranged between the crossflow fan 106 and a backside heat exchanger 107b, which will be described later.
 クロスフローファン106は、回転軸と、円筒状に配置された複数のブレード106aを有する。 The cross flow fan 106 has a rotating shaft and a plurality of blades 106a arranged in a cylindrical shape.
 熱交換器107は、前面熱交換器107aと、背面熱交換器107bとで構成される。熱交換器107は、補助熱交換器を含んでもよい。前面熱交換器107aは、クロスフローファン106の前面側に配置される。背面熱交換器107bは、クロスフローファン106の背面側に配置される。補助熱交換器を有する場合、補助熱交換器は、例えば、背面熱交換器107bにおける、クロスフローファン106と背面熱交換器107bの対面する面とは反対側の面に配置される。言い換えると、補助熱交換器は背面熱交換器107bにおける、クロスフローファン回転時に吸込口101から流入する空気の上流側の面に配置される。 The heat exchanger 107 is composed of a front heat exchanger 107a and a back heat exchanger 107b. Heat exchanger 107 may include an auxiliary heat exchanger. The front heat exchanger 107a is arranged on the front side of the cross flow fan 106. The back heat exchanger 107b is arranged on the back side of the cross flow fan 106. When an auxiliary heat exchanger is provided, the auxiliary heat exchanger is arranged, for example, on the surface of the rear heat exchanger 107b opposite to the surface where the cross flow fan 106 and the rear heat exchanger 107b face each other. In other words, the auxiliary heat exchanger is arranged on the surface of the back heat exchanger 107b on the upstream side of the air flowing in from the suction port 101 when the crossflow fan rotates.
 また、熱交換器107は、複数のフィン107cと、それら複数のフィン107cを貫通する複数の伝熱管107dとを備える。各伝熱管107dの外径Dtは5mm以下であり、例えば本実施の形態ではDt=5mmである。 Furthermore, the heat exchanger 107 includes a plurality of fins 107c and a plurality of heat transfer tubes 107d passing through the plurality of fins 107c. The outer diameter Dt of each heat exchanger tube 107d is 5 mm or less, and for example, in this embodiment, Dt=5 mm.
 次に、図2において、リアガイダ105の近接部105aおよび上端突起部105bの詳細形状について説明する。近接部105a上のクロスフローファン106と最短距離となる点を近接点Aとする。背面熱交換器107bの下流面に垂直な直線を直線Xとする。上端突起部105bは直線Xと外接する円弧部105cを有し、直線Xと円弧部105cの接点を先端点Bとする。先端点Bは上端突起部の中心線Wよりもクロスフローファン106側に位置する。上端突起部105bは、円弧部105cの直径をDとし、上端突起部105bの厚さをTとした時にD/T<0.6となるように構成されている。 Next, referring to FIG. 2, detailed shapes of the proximal portion 105a and the upper end protrusion 105b of the rear guider 105 will be described. A point on the proximal portion 105a that is the shortest distance from the cross flow fan 106 is defined as a proximate point A. A straight line X is a straight line perpendicular to the downstream surface of the back heat exchanger 107b. The upper end protrusion 105b has a circular arc portion 105c that circumscribes the straight line X, and the point of contact between the straight line X and the circular arc portion 105c is a tip point B. The tip point B is located closer to the cross flow fan 106 than the center line W of the upper end protrusion. The upper end protrusion 105b is configured such that D/T<0.6, where D is the diameter of the arcuate portion 105c and T is the thickness of the upper end protrusion 105b.
 ここで、本実施の形態において上端突起部の中心線Wと上端突起部105bの厚さTを以下のように定める。近接点Aと先端点Bとを結ぶ直線を直線Yとし、直線Yの長さをLとする。直線Y上にあって先端点Bからの距離をKとした時にK=0.25×Lとなる点を点Pとする。上端突起部105bのクロスフローファン106に対向する面105f上にあって点Pから上端突起部105bのクロスフローファン106に対向する面105fに最短距離となる点を点Qとする。上端突起部105bの背面熱交換器107bに対向する面105e上にあって点Qから上端突起部105bの背面熱交換器107bに対向する面105eに最短距離となる点を点Rとする。点Qと点Rとを結ぶ直線を直線Zとする。直線Zの中点を通り直線Zに直交する直線を、上端突起部の中心線Wとする。直線Z上の線分QRの長さを上端突起部105bの厚さTとする。 Here, in this embodiment, the center line W of the upper end protrusion and the thickness T of the upper end protrusion 105b are determined as follows. Let the straight line connecting the proximal point A and the tip point B be a straight line Y, and let the length of the straight line Y be L. A point on the straight line Y where K=0.25×L is defined as a point P when the distance from the tip point B is K. Point Q is a point on the surface 105f of the upper end protrusion 105b facing the cross flow fan 106, which is the shortest distance from point P to the surface 105f of the upper end projection 105b facing the cross flow fan 106. Point R is a point on the surface 105e of the upper end protrusion 105b facing the rear heat exchanger 107b, which is the shortest distance from point Q to the surface 105e of the upper end projection 105b facing the rear heat exchanger 107b. Let the straight line connecting point Q and point R be straight line Z. A straight line passing through the midpoint of the straight line Z and perpendicular to the straight line Z is defined as the center line W of the upper end protrusion. Let the length of the line segment QR on the straight line Z be the thickness T of the upper end protrusion 105b.
 また、上端突起部105bは、円弧部105cと正接して背面熱交換器107bに対向する平面部105dを有する。上端突起部105bは、平面部105dの長さをUとした時にU/T<1.0となるように構成されている。 Furthermore, the upper end protrusion 105b has a flat portion 105d that is tangential to the arcuate portion 105c and faces the back heat exchanger 107b. The upper end protrusion 105b is configured such that U/T<1.0, where U is the length of the flat portion 105d.
 [1-2.動作]
 以上のように構成された空気調和機100について、図3を用いてその動作を以下説明する。
[1-2. motion]
The operation of the air conditioner 100 configured as described above will be described below using FIG. 3.
 空気調和機100において、クロスフローファン106が回転することにより、室内空気は吸込口101から本体ケーシング103内へ吸い込まれる。本体ケーシング103内へ吸い込まれた室内空気は、前面熱交換器107aおよび背面熱交換器107bを通過してクロスフローファン106に流入し、吹出口102から室内空間へ吹き出される。なお、図1~図3において、クロスフローファン106は右回りに回転する。 In the air conditioner 100, when the cross flow fan 106 rotates, indoor air is sucked into the main body casing 103 from the suction port 101. The indoor air sucked into the main body casing 103 passes through the front heat exchanger 107a and the back heat exchanger 107b, flows into the cross flow fan 106, and is blown out from the outlet 102 into the indoor space. Note that in FIGS. 1 to 3, the cross flow fan 106 rotates clockwise.
 クロスフローファン106の回転により背面熱交換器107bにおける上端突起部105bの上端より下方に位置する部分を通過した吸込気流は、上端突起部105bの背面熱交換器107bに対向する面105eに沿って上方へ流動し、上端突起部105bの上端近傍で、クロスフローファン106へ向けて旋回し、クロスフローファン106へ流入する。また、背面熱交換器107bにおける上端突起部105bの上端より上方に位置する部分を通過する吸込気流は、上端突起部105bの上端近傍で、背面熱交換器107bにおける上端突起部105bの上端より下方に位置する部分を通過した吸込気流と合流して、クロスフローファン106へ流入する。クロスフローファン106と上端突起部105bとの間の空間に、クロスフローファン106の回転方向と逆方向に回転する逆流渦が生じる。逆流渦は上端突起部105bのクロスフローファン106に対向する面105fに付着し、逆流渦の渦中心が近接部105aよりも上方に位置する。 Due to the rotation of the crossflow fan 106, the suction airflow that has passed through the portion of the rear heat exchanger 107b located below the upper end of the upper end protrusion 105b is caused to flow along the surface 105e of the upper end protrusion 105b facing the rear heat exchanger 107b. It flows upward, turns toward the cross-flow fan 106 near the upper end of the upper end protrusion 105b, and flows into the cross-flow fan 106. In addition, the suction airflow passing through the portion located above the upper end of the upper end protrusion 105b in the back heat exchanger 107b is near the upper end of the upper end protrusion 105b, and is lower than the upper end of the upper end protrusion 105b in the back heat exchanger 107b. It merges with the suction airflow that has passed through the portion located at , and flows into the crossflow fan 106 . A countercurrent vortex that rotates in a direction opposite to the rotational direction of the crossflow fan 106 is generated in the space between the crossflow fan 106 and the upper end protrusion 105b. The backflow vortex adheres to the surface 105f of the upper end protrusion 105b facing the crossflow fan 106, and the vortex center of the backflow vortex is located above the proximal portion 105a.
 背面熱交換器107bにおける上端突起部105bの上端より下方に位置する部分を通過する吸込気流は、上端突起部105bの背面熱交換器107bに対向する面105eに沿って上方へ流動し、平面部105dに到達する。背面熱交換器107bにおける上端突起部105bの上端より下方に位置する部分を通過する吸込気流は、吸込気流が持つ慣性力により、上端突起部105bの背面熱交換器107bに対向する面105eと平面部105dとの連接点Sで上端突起部105bの背面熱交換器107bに対向する面105eから剥離する。 The suction airflow passing through the portion of the back heat exchanger 107b that is located below the upper end of the upper end protrusion 105b flows upward along the surface 105e of the upper end protrusion 105b that faces the back heat exchanger 107b, and flows upward through the plane portion. Reach 105d. Due to the inertial force of the suction airflow, the suction airflow passing through the portion of the back heat exchanger 107b located below the upper end of the upper end protrusion 105b is flat with the surface 105e of the upper end protrusion 105b facing the back heat exchanger 107b. The upper end protrusion 105b is separated from the surface 105e facing the back heat exchanger 107b at the connection point S with the portion 105d.
 本実施の形態では、上端突起部105bの背面熱交換器107bに対向する面105eと平面部105dは連続しておらず、また、平面部105dの長さUは上端突起部105bの厚さTに対して、U/T<1.0となる。このことから、上端突起部105bの背面熱交換器107bに対向する面105eから剥離した吸込気流は、平面部105dに再付着せず、クロスフローファン106へ流入する流れに合流する。 In this embodiment, the surface 105e of the upper end protrusion 105b facing the back heat exchanger 107b and the flat part 105d are not continuous, and the length U of the flat part 105d is equal to the thickness T of the upper end protrusion 105b. , U/T<1.0. For this reason, the suction airflow separated from the surface 105e of the upper end protrusion 105b facing the back surface heat exchanger 107b does not re-adhere to the flat portion 105d, but joins the flow flowing into the cross-flow fan 106.
 逆流渦は、上端突起部105bのクロスフローファン106に対向する面105fに沿って上方へ流動し、円弧部105cに達する。本実施の形態では、円弧部105cは、先端点Bが上端突起部105bの中心線Wよりもクロスフローファン106側に位置し、また、円弧部105cの直径Dは上端突起部105bの厚さTに対してD/T<0.6となる。このことから、逆流渦は円弧部105cに沿って流れようとする際に偏向半径が小さく急偏向することになるが、逆流渦が持つ慣性力により、円弧部105cから剥離してクロスフローファン106へ流入する流れに合流する。また、先端点Bは上端突起部105bの中心線Wよりもクロスフローファン106側に位置することから、逆流渦は、クロスフローファン106に近い位置で円弧部105cから剥離してクロスフローファン106へ流入する流れに合流する。 The backflow vortex flows upward along the surface 105f of the upper end protrusion 105b facing the crossflow fan 106, and reaches the arcuate portion 105c. In this embodiment, the tip point B of the arcuate portion 105c is located closer to the crossflow fan 106 than the centerline W of the upper end protrusion 105b, and the diameter D of the arcuate portion 105c is equal to the thickness of the upper end protrusion 105b. D/T<0.6 for T. Therefore, when the backflow vortex tries to flow along the circular arc portion 105c, the deflection radius is small and it is deflected sharply, but due to the inertia of the backflow vortex, it separates from the circular arc portion 105c and the cross flow fan 105 joins the flow flowing into the Furthermore, since the tip point B is located closer to the cross-flow fan 106 than the center line W of the upper end protrusion 105b, the backflow vortex separates from the arcuate portion 105c at a position close to the cross-flow fan 106, and the cross-flow fan 106 joins the flow flowing into the
 図4A~図5Bを用いて、D/Tの数値に対する送風性能の向上を詳細に説明する。図4Aは、空気調和機100のD/Tに対する吹出風量比の変化および上端突起部105bの形状を示す図である。図4Bは、空気調和機100のD/Tに対する吹出風量比の変化を示すグラフである。図5Aは、空気調和機100のD/Tに対するクロスフローファン106の入力変化(入力電力の変化)および上端突起部105bの形状を示す図である。図5Bは、空気調和機100のD/Tに対するクロスフローファン106の入力変化(入力電力の変化)を示すグラフである。 The improvement in air blowing performance with respect to the value of D/T will be explained in detail using FIGS. 4A to 5B. FIG. 4A is a diagram showing changes in the blowout air volume ratio with respect to D/T of the air conditioner 100 and the shape of the upper end protrusion 105b. FIG. 4B is a graph showing changes in the blowout air volume ratio with respect to D/T of the air conditioner 100. FIG. 5A is a diagram showing the input change (change in input power) of the crossflow fan 106 with respect to the D/T of the air conditioner 100 and the shape of the upper end protrusion 105b. FIG. 5B is a graph showing a change in input to the crossflow fan 106 (change in input power) with respect to D/T of the air conditioner 100.
 まず、図4Aおよび図4Bにおいて、D/Tに対する風量変化について説明する。図4Aおよび図4Bは、数値解析によるD/Tをパラメータとして、空気調和機100のクロスフローファン106の単位時間当たりの回転数を同一回転数とした時の風量比を示す。なお、図4Aおよび図4Bの風量比は、D/T=1.0の時の風量比を100として示している。図4Aでは、上段にD/Tの値、中段に風量比、下段に上端突起部105bの形状を示している。図4Bでは、横軸をD/T、縦軸をD/Tに対する風量比としている。D/Tを1から0.27まで低下させたとすると、図4Bに示すように、D/Tが1.0から0.6までの間は急激に風量比が増加し、一方D/Tが0.6未満になると、風量比はほぼ一定の値を保つ。つまり、D/Tが1.0から0.6の間で急激に風量比は向上し、D/Tが0.6に達した時点で風量比が上限に達する。従ってD/Tが0.6未満であると、風量比が改善されて、送風性能が向上するといえる。 First, in FIGS. 4A and 4B, changes in air volume with respect to D/T will be described. 4A and 4B show the air volume ratio when the number of rotations per unit time of the cross flow fan 106 of the air conditioner 100 is set to the same number of rotations using D/T determined by numerical analysis as a parameter. Note that the air volume ratios in FIGS. 4A and 4B are shown assuming that the air volume ratio when D/T=1.0 is 100. In FIG. 4A, the value of D/T is shown in the upper row, the air volume ratio is shown in the middle row, and the shape of the upper end protrusion 105b is shown in the lower row. In FIG. 4B, the horizontal axis represents D/T, and the vertical axis represents the air volume ratio to D/T. Assuming that D/T is decreased from 1 to 0.27, as shown in Figure 4B, the air volume ratio increases rapidly between D/T 1.0 and 0.6, while D/T When it becomes less than 0.6, the air volume ratio maintains a substantially constant value. That is, the air volume ratio increases rapidly when D/T is between 1.0 and 0.6, and reaches the upper limit when D/T reaches 0.6. Therefore, it can be said that when D/T is less than 0.6, the air volume ratio is improved and the air blowing performance is improved.
 図5Aおよび図5Bにおいて、D/Tに対する入力変化について説明する。図5Aおよび図5Bは、数値解析によるD/Tをパラメータとして、空気調和機100から吹き出される風量を同一吹出風量とした時の入力比を示す。なお、図5Aおよび図5Bの入力比は、D/T=1.0の時の入力比を100として示している。図5Aでは、上段にD/Tの値、中段に入力比、下段に上端突起部105bの形状を示している。図5Bでは、横軸をD/T、縦軸を入力比としている。D/Tを1.0から0.27まで低下させたとすると、図5Bに示すように、D/Tが1.0から0.6までの間では入力比はほぼ一定の値を保ち、D/Tが0.6未満になると急激に入力比が低下する。つまり、D/Tが1.0から0.6までは入力比の向上の効果は少なく、D/Tの値が0.6を境にして0.6未満になると入力比の改善の効果があるといえる。つまり、D/Tが0.6未満になると、入力比が急激に低下して、送風性能が向上するといえる。さらに、図5Bに示すように、D/T=0.5では、D/T=1.0と比較して入力比を0.5%低減できることがわかる。従って、D/Tが0.5以下であると入力比はより改善されて、さらに送風性能が向上するといえる。 Input changes to the D/T will be explained with reference to FIGS. 5A and 5B. 5A and 5B show input ratios when the air volume blown out from the air conditioner 100 is set to the same air volume using D/T determined by numerical analysis as a parameter. Note that the input ratios in FIGS. 5A and 5B are shown assuming that the input ratio when D/T=1.0 is 100. In FIG. 5A, the value of D/T is shown in the upper row, the input ratio is shown in the middle row, and the shape of the upper end protrusion 105b is shown in the lower row. In FIG. 5B, the horizontal axis represents D/T, and the vertical axis represents input ratio. Assuming that D/T is decreased from 1.0 to 0.27, as shown in Figure 5B, when D/T is between 1.0 and 0.6, the input ratio remains almost constant, and D When /T becomes less than 0.6, the input ratio rapidly decreases. In other words, the effect of improving the input ratio is small when D/T is from 1.0 to 0.6, and when the value of D/T becomes less than 0.6 after reaching 0.6, the effect of improving the input ratio becomes less effective. It can be said that there is. In other words, it can be said that when D/T becomes less than 0.6, the input ratio decreases rapidly and the air blowing performance improves. Further, as shown in FIG. 5B, it can be seen that when D/T=0.5, the input ratio can be reduced by 0.5% compared to D/T=1.0. Therefore, it can be said that when D/T is 0.5 or less, the input ratio is further improved and the air blowing performance is further improved.
 [1-3.効果等]
 以上のように、本実施の形態において、空気調和機100は、吸込口101と、吹出口102を有する本体ケーシング103と、スタビライザ104と、リアガイダ105と、クロスフローファン106と、前面熱交換器107aと、背面熱交換器107bとを備えている。リアガイダ105は、クロスフローファン106に対向し、かつ所定の寸法(距離)でクロスフローファン106と近接する近接部105aと、近接部105aから上方へ向かって延設された上端突起部105bとを有する。上端突起部105bは、円弧部105cを有し、円弧部105cの先端点Bが上端突起部105bの中心線Wよりもクロスフローファン106側に位置する。上端突起部105bは、円弧部105cの直径をDとし、上端突起部105bの厚さをTとした時に、D/T<0.6となるように構成されている。
[1-3. Effects, etc.]
As described above, in this embodiment, the air conditioner 100 includes a main body casing 103 having an inlet 101 and an outlet 102, a stabilizer 104, a rear guider 105, a cross flow fan 106, and a front heat exchanger. 107a, and a back heat exchanger 107b. The rear guider 105 includes a proximal portion 105a that faces the cross-flow fan 106 and is close to the cross-flow fan 106 by a predetermined dimension (distance), and an upper end protrusion 105b that extends upward from the proximal portion 105a. have The upper end protrusion 105b has an arcuate portion 105c, and the tip point B of the arcuate portion 105c is located closer to the cross flow fan 106 than the centerline W of the upper end protrusion 105b. The upper end protrusion 105b is configured so that D/T<0.6, where D is the diameter of the arcuate portion 105c and T is the thickness of the upper end protrusion 105b.
 円弧部105cは、先端点Bが上端突起部105bの中心線Wよりもクロスフローファン106側に位置し、D/T<0.6となることから、発生した逆流渦は円弧部105cに沿って流れようとする際に偏向半径が小さく急偏向することになるが、逆流渦は逆流渦が持つ慣性力により円弧部105cから剥離して、クロスフローファン106へ流入する流れに合流する。また、先端点Bは上端突起部105bの中心線Wよりもクロスフローファン106側に位置することから、逆流渦は、クロスフローファン106に近い位置で円弧部105cから剥離してクロスフローファン106へ流入する流れに合流する。 The tip point B of the arcuate portion 105c is located closer to the crossflow fan 106 than the centerline W of the upper end protrusion 105b, and D/T<0.6, so the generated backflow vortex flows along the arcuate portion 105c. When attempting to flow, the deflection radius is small and the flow is abruptly deflected, but the reverse flow vortex separates from the circular arc portion 105c due to the inertial force of the reverse flow vortex and joins the flow flowing into the cross flow fan 106. Furthermore, since the tip point B is located closer to the cross-flow fan 106 than the center line W of the upper end protrusion 105b, the backflow vortex separates from the arcuate portion 105c at a position close to the cross-flow fan 106, and the cross-flow fan 106 joins the flow flowing into the
 これにより、本実施の形態の空気調和機100では、上端突起部105bの上端において、逆流渦が上端突起部105bの円弧部105cに沿って上端突起部105bの背面熱交換器107bに対向する面105eに向かって流動することが抑制される。従って、逆流渦と吸込気流との衝突の発生を抑制又は緩和することができる。そのため、クロスフローファン106に流入する気流の乱れが改善されることにより、クロスフローファン106の吹出風量を増加させ、クロスフローファン106への入力電力を低減することができる。また、クロスフローファン106に流入する気流の乱れが改善されることにより、騒音を抑制することができる。 As a result, in the air conditioner 100 of the present embodiment, at the upper end of the upper end protrusion 105b, the backflow vortex flows along the arcuate portion 105c of the upper end protrusion 105b to the surface of the upper end protrusion 105b facing the back heat exchanger 107b. Flowing toward 105e is suppressed. Therefore, the occurrence of collision between the backflow vortex and the suction airflow can be suppressed or alleviated. Therefore, by improving the turbulence of the airflow flowing into the cross-flow fan 106, the amount of air blown from the cross-flow fan 106 can be increased, and the power input to the cross-flow fan 106 can be reduced. Moreover, noise can be suppressed by improving the turbulence of the airflow flowing into the cross-flow fan 106.
 上端突起部105bは、平面部105dを有し、平面部105dの長さをUとした時にU/T<1.0となるように構成されると好ましい。このように構成すれば、上端突起部105bの背面熱交換器107bに対向する面105eと平面部105dとは連続しないように接続される。これにより、上端突起部105bの背面熱交換器107bに対向する面105eと平面部105d平面部との連接点Sにおいて、上端突起部105bの上端より下方に位置する背面熱交換器107bを通過する吸込気流は、吸込気流が持つ慣性力により、上端突起部105bの背面熱交換器107bに対向する面105eから剥離する。平面部105dがU/T<1.0となるように構成されることから、上端突起部105bの背面熱交換器107bに対向する面105eから剥離した吸込気流は、平面部105dに再付着せず、クロスフローファン106へ流入する流れに合流する。 It is preferable that the upper end protrusion 105b has a flat portion 105d, and is configured such that U/T<1.0, where U is the length of the flat portion 105d. With this configuration, the surface 105e of the upper end protrusion 105b facing the back surface heat exchanger 107b and the plane portion 105d are connected so as not to be continuous. As a result, at the connection point S between the surface 105e of the upper end protrusion 105b facing the back heat exchanger 107b and the plane part 105d, the heat passes through the back heat exchanger 107b located below the upper end of the upper end protrusion 105b. The suction airflow separates from the surface 105e of the upper end protrusion 105b facing the back surface heat exchanger 107b due to the inertial force of the suction airflow. Since the flat portion 105d is configured such that U/T<1.0, the suction airflow separated from the surface 105e of the upper end protrusion 105b facing the back heat exchanger 107b is not reattached to the flat portion 105d. First, it joins the flow flowing into the crossflow fan 106.
 これにより、空気調和機100は、上端突起部105bの上端において、吸込気流が上端突起部105bの円弧部105cに沿って上端突起部105bのクロスフローファン106に対向する面105fに向かって流動することを抑制し、逆流渦との衝突の発生を抑制又は緩和することができる。そのため、クロスフローファン106に流入する気流の乱れが改善されることにより、クロスフローファン106における入力電力を低減し、騒音を抑制することができる。 Thereby, in the air conditioner 100, at the upper end of the upper end protrusion 105b, the suction airflow flows toward the surface 105f of the upper end protrusion 105b facing the cross flow fan 106 along the arcuate part 105c of the upper end protrusion 105b. It is possible to suppress or alleviate the occurrence of collision with a backflow vortex. Therefore, by improving the turbulence of the airflow flowing into the cross-flow fan 106, the input power to the cross-flow fan 106 can be reduced and noise can be suppressed.
 本実施の形態のように、伝熱管107dの外径DtはDt=5mmであってもよい。但し、本実施の形態で示す伝熱管107dの外径Dtは一例に過ぎない。Dt≦5mmを満たす伝熱管107dであればよい。 As in this embodiment, the outer diameter Dt of the heat exchanger tube 107d may be Dt=5 mm. However, the outer diameter Dt of the heat exchanger tube 107d shown in this embodiment is only an example. It is sufficient if the heat exchanger tube 107d satisfies Dt≦5mm.
 このように、空気調和機100が、伝熱管107dの外径DtをDt=5mmとすることで圧力損失の軽減を図った背面熱交換器107bを備える場合にも、クロスフローファン106に流入する気流の乱れが改善されることにより、クロスフローファン106における吹出風量を増大させ、クロスフローファン106の入力電力を低減することができる。また、クロスフローファン106に流入する気流の乱れが改善されることにより、騒音を抑制することができる。 In this way, even when the air conditioner 100 includes the back heat exchanger 107b in which pressure loss is reduced by setting the outer diameter Dt of the heat transfer tube 107d to Dt = 5 mm, the amount of water flowing into the crossflow fan 106 By improving the turbulence of the airflow, the amount of air blown from the crossflow fan 106 can be increased, and the input power to the crossflow fan 106 can be reduced. Moreover, noise can be suppressed by improving the turbulence of the airflow flowing into the cross-flow fan 106.
 なお、上述の実施の形態は、本開示における技術を例示するためのものであるから、請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 Note that the above-described embodiments are for illustrating the technology of the present disclosure, and therefore various changes, substitutions, additions, omissions, etc. can be made within the scope of the claims or their equivalents.
 本開示は、吸込気流とリアガイダの近接部上流で形成される逆流渦との衝突の発生を抑制又は緩和し、クロスフローファンに流入する気流の乱れを改善することで送風性能を向上できる。従って、家庭用空調や業務用空調に好適に用いることができる。 The present disclosure can improve air blowing performance by suppressing or mitigating the collision between the intake airflow and the backflow vortex formed upstream of the vicinity of the rear guider, and improving the turbulence of the airflow flowing into the crossflow fan. Therefore, it can be suitably used for home air conditioning and commercial air conditioning.
 100  空気調和機
 101  吸込口
 102  吹出口
 103  本体ケーシング
 104  スタビライザ
 105  リアガイダ
 105a 近接部
 105b 上端突起部
 105c 円弧部
 105d 平面部
 106  クロスフローファン
 106a ブレード
 107  熱交換器
 107a 前面熱交換器
 107b 背面熱交換器
 107c フィン
 107d 伝熱管
100 Air conditioner 101 Suction port 102 Air outlet 103 Main body casing 104 Stabilizer 105 Rear guider 105a Proximity portion 105b Upper end protrusion 105c Arc portion 105d Plane portion 106 Cross flow fan 106a Blade 107 Heat exchanger 107a Front heat exchanger 107b Rear heat exchanger 107c Fin 107d Heat exchanger tube

Claims (4)

  1.  クロスフローファンと、
     スタビライザと、
     リアガイダと、
     前記クロスフローファンの前面側に配置される前面熱交換器と、
     前記クロスフローファンの背面側に配置される背面熱交換器と、を備え、
     前記リアガイダは、
      前記クロスフローファンに対向し、かつ所定の距離で前記クロスフローファンと近接して配置される近接部と、
      前記近接部から上方へ向かって延出した上端突起部と、を備え、
     前記クロスフローファンの回転軸と直交する前記リアガイダの断面視において、
      前記リアガイダの前記上端突起部は、前記背面熱交換器の下流面に垂直な直線Xと外接する円弧部を有し、
      前記円弧部が前記直線Xと外接する接点を先端点Bとしたときに、前記先端点Bは前記上端突起部の中心線よりも前記クロスフローファン側に位置し、前記円弧部の直径をDとし前記上端突起部の厚さをTとしたときにD/T<0.6となる、
    空気調和機。
    cross flow fan,
    stabilizer and
    rear guider and
    a front heat exchanger disposed on the front side of the cross flow fan;
    a rear heat exchanger disposed on the rear side of the cross flow fan,
    The rear guider is
    a proximal part facing the cross-flow fan and disposed close to the cross-flow fan at a predetermined distance;
    an upper end protrusion extending upward from the proximal portion;
    In a cross-sectional view of the rear guider perpendicular to the rotation axis of the cross flow fan,
    The upper end protrusion of the rear guider has a circular arc portion that circumscribes a straight line X perpendicular to the downstream surface of the rear heat exchanger,
    When the point of contact of the circular arc section with the straight line When the thickness of the upper end protrusion is T, D/T<0.6.
    Air conditioner.
  2.  D/T≦0.5となる、
    請求項1に記載の空気調和機。
    D/T≦0.5,
    The air conditioner according to claim 1.
  3.  前記リアガイダの前記断面視において、前記上端突起部は、前記円弧部と正接して前記背面熱交換器に対向する平面部を有し、
     前記平面部の長さをUとしたときにU/T<1.0となる、
    請求項1または2に記載の空気調和機。
    In the cross-sectional view of the rear guider, the upper end protrusion has a flat part that is tangential to the arcuate part and faces the back heat exchanger,
    When the length of the flat part is U, U/T<1.0,
    The air conditioner according to claim 1 or 2.
  4.  前記背面熱交換器は、フィンと、前記フィンを貫通する伝熱管と、を備え、
     前記伝熱管の外径DtがDt≦5mmとなる、
    請求項1~3のいずれか一項に記載の空気調和機。
    The back heat exchanger includes fins and heat transfer tubes passing through the fins,
    The outer diameter Dt of the heat exchanger tube is Dt≦5 mm,
    The air conditioner according to any one of claims 1 to 3.
PCT/JP2023/009491 2022-03-22 2023-03-13 Air conditioner WO2023182025A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022044828 2022-03-22
JP2022-044828 2022-03-22

Publications (1)

Publication Number Publication Date
WO2023182025A1 true WO2023182025A1 (en) 2023-09-28

Family

ID=88101407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009491 WO2023182025A1 (en) 2022-03-22 2023-03-13 Air conditioner

Country Status (1)

Country Link
WO (1) WO2023182025A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0861685A (en) * 1994-08-25 1996-03-08 Matsushita Electric Ind Co Ltd Indoor unit for air conditioner
JP2000291594A (en) * 1999-04-05 2000-10-17 Sharp Corp Cross flow fan
JP2001090689A (en) * 1999-09-24 2001-04-03 Daikin Ind Ltd Fan mechanism and air conditioner with the same
JP2014020243A (en) * 2012-07-17 2014-02-03 Panasonic Corp Cross flow air blowing device
WO2014050365A1 (en) * 2012-09-28 2014-04-03 ダイキン工業株式会社 Air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0861685A (en) * 1994-08-25 1996-03-08 Matsushita Electric Ind Co Ltd Indoor unit for air conditioner
JP2000291594A (en) * 1999-04-05 2000-10-17 Sharp Corp Cross flow fan
JP2001090689A (en) * 1999-09-24 2001-04-03 Daikin Ind Ltd Fan mechanism and air conditioner with the same
JP2014020243A (en) * 2012-07-17 2014-02-03 Panasonic Corp Cross flow air blowing device
WO2014050365A1 (en) * 2012-09-28 2014-04-03 ダイキン工業株式会社 Air conditioner

Similar Documents

Publication Publication Date Title
WO2009113338A1 (en) Air conditioner
JP4973249B2 (en) Multi-wing fan
WO2014080494A1 (en) Air conditioner
JP4690682B2 (en) air conditioner
WO2011036848A1 (en) Through-flow fan, air blower, and air conditioner
JP2010236437A (en) Cross-flow fan and air conditioner provided with the same
CN210832217U (en) Indoor unit of air conditioner
JP4147560B2 (en) Air conditioner
WO2023182025A1 (en) Air conditioner
JP3649567B2 (en) Once-through fan
EP2280176B1 (en) Cross flow fan and air conditioner equipped with same
WO2017098693A1 (en) Air conditioner
JP6398086B2 (en) Blower and air conditioner using the same
JP2009281215A (en) Air conditioner indoor unit
US20220205650A1 (en) Air conditioner including a centrifugal fan
ITMI981182A1 (en) INDOOR UNIT FOR AIR CONDITIONER
JP2023139347A (en) air conditioner
CN108469073B (en) Window type air conditioning equipment
JP2002357194A (en) Cross-flow fan
CN217031394U (en) Air duct machine
JP7275257B2 (en) air conditioner
JP2689802B2 (en) Air conditioner
JP2014081147A (en) Outdoor unit of air conditioner
EP4012189B1 (en) Air duct component for cross-flow impeller, and air conditioning device having same
US20210324874A1 (en) Impeller, fan, and air-conditioning apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774622

Country of ref document: EP

Kind code of ref document: A1