WO2023181740A1 - Fiber manufacturing method and fiber manufacturing device - Google Patents

Fiber manufacturing method and fiber manufacturing device Download PDF

Info

Publication number
WO2023181740A1
WO2023181740A1 PCT/JP2023/005732 JP2023005732W WO2023181740A1 WO 2023181740 A1 WO2023181740 A1 WO 2023181740A1 JP 2023005732 W JP2023005732 W JP 2023005732W WO 2023181740 A1 WO2023181740 A1 WO 2023181740A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
fibers
fibrous polymer
fiber
discharge
Prior art date
Application number
PCT/JP2023/005732
Other languages
French (fr)
Japanese (ja)
Inventor
知樹 田村
祐 寺本
凌太 澤田
雄太 池田
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2023181740A1 publication Critical patent/WO2023181740A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching

Definitions

  • the present invention relates to a method and apparatus suitable for producing fibers.
  • Patent Document 1 is disclosed as a method of drawing a running yarn.
  • fibers formed by discharging a fluid in which a difficult-to-fiber substance is surrounded by an easily-fibrillable substance from three or more nozzles arranged around the outlet of a discharge hole are disclosed.
  • a method is disclosed in which a swirling flow is formed around the fibers by ejecting a gas jet, and the fibers are drawn by injecting the gas jet onto the fibers. Thereby, the fibers after being discharged can be drawn by rotating them, and the difficult-to-fiber substance can be made into fibers.
  • Patent Document 2 discloses that compressed air is supplied inside a duct that has a spiral unevenness on the inner wall and whose cross-sectional area decreases toward the downstream, and the running fibers are A method is shown in which the material is stretched by passing through a duct. In this method, a stretching force is applied to the fibers by the difference in flow velocity in the running direction of the fibers in the duct, and the fibers are twisted by the spiral air flow, thereby making it possible to reduce the diameter of the fibers.
  • Patent Document 3 discloses that a tubular fiber spinning needle is equipped with an inlet for introducing a polymer solution and an outlet for discharging the polymer solution with a non-fixed end, and the fiber spinning needle is compressed at the inlet.
  • a stretching force is generated that acts on the polymer solution, and the polymer solution at the outlet is divided into droplets, and the droplets are By being drawn by a jet of compressed gas, fibers can be obtained at high polymer injection rates.
  • Patent Document 1 In the fiber manufacturing method disclosed in Patent Document 1, a configuration is shown in which a swirling flow is formed near the discharge part by supplying a gas jet with a plurality of inclined nozzles, but the nozzle of Patent Document 1 In this configuration, a linear airflow formed by compressed gas is injected directly into an open space, so the gas expands before forming a swirling flow, and the speed of the airflow decreases before colliding with the fibers. Therefore, it is not possible to increase the spinning speed of the fibers. For this reason, the spinning speed of the fibers becomes low, and the effect of reducing the diameter of the fibers may not be sufficiently achieved.
  • an object of the present invention is to develop a fiber with a very small diameter by stretching a fibrous polymer discharged from a discharge hole while twisting it at high speed in a state where the polymer is easily deformed before solidification.
  • An object of the present invention is to provide a manufacturing method and a manufacturing device.
  • a method for manufacturing fibers of the present invention that solves the above problems is a method for manufacturing fibers by stretching a fibrous polymer discharged from a die having a discharge hole, the method comprising: stretching a fibrous polymer discharged from a die having a discharge hole; By applying a twisting force that rotates around the center of the cross section perpendicular to the polymer discharge direction so as to satisfy the following formula, the fibrous polymer is stretched while rotating.
  • V Discharge speed of fibrous polymer [mm/sec]
  • W Rotation speed of fibrous polymer [times/second]
  • the method for producing fibers of the present invention preferably has any or more of the following characteristics (1) to (4).
  • (1) The fibrous polymer is rotated so as to satisfy the following formula at one or more points in the section where the temperature of the fibrous polymer discharged from the nozzle is equal to or higher than (the melting point of the fibrous polymer - 50°C) .
  • W Rotation speed of fibrous polymer [times/second]
  • Each of the fibrous polymers is rotated and stretched so as to revolve around a straight line extending from the discharge hole in the polymer discharge direction.
  • a twisting force in the rotational direction is applied to the fibrous polymer by bringing into contact a roller that rotates in a direction opposite to the rotational direction.
  • the fiber manufacturing apparatus of the present invention that solves the above problems is an apparatus that manufactures fibers by stretching a fibrous polymer, and includes a die having a discharge hole for discharging the fibrous polymer, and a fibrous polymer that is discharged from the discharge hole.
  • an airflow nozzle for ejecting airflow arranged around the fibrous polymer; a space arranged below the discharge hole in the polymer discharge direction through which the fibrous polymer passes; and a wall surrounding the space.
  • an air flow closing member having an air flow closing member having a jet flow injected into the space from the air flow nozzle to form a swirling flow so that the fibrous polymer is oriented around the center of a cross section perpendicular to the direction of polymer discharge.
  • a twisting force in the rotational direction is applied to the fibrous polymer so that it rotates on its own axis.
  • a swirling flow is formed by a jet flow injected into the space from the air flow nozzle, so that the fibrous polymer has a central axis centered on a straight line extending from the discharge hole to the polymer discharge direction. It is preferable to revolve as follows.
  • a fiber manufacturing apparatus that solves the above problems is an apparatus for manufacturing fibers by stretching a fibrous polymer, which comprises: a die having a discharge hole for discharging the fibrous polymer; a rotating roller disposed so as to be in contact with the fibrous polymer being discharged, and by rotating the rotating roller, the fibrous polymer rotates about the center of a cross section perpendicular to the direction of the discharge. As such, a twisting force in the rotational direction is applied to the fibrous polymer.
  • the "polymer discharge direction” refers to the direction in which the fibrous polymer is discharged from the discharge hole.
  • “torsion force” refers to a force that acts on the fiber surface so that a moment is generated in the rotational direction about the center of the fiber cross section in a plane perpendicular to the longitudinal direction of the fiber.
  • “polymer discharge speed” is the length of polymer discharged from the discharge hole in the polymer discharge direction per unit time, and the volume of polymer discharged from the discharge hole per unit time is the length of the polymer discharged from the discharge hole per unit time.
  • rotation speed refers to the number of rotations at which the fiber rotates 360 degrees around the center of the fiber cross section per unit time in a plane perpendicular to the longitudinal direction of the fiber.
  • switching airflow refers to an airflow that continuously rotates in the circumferential direction around one point in a plane perpendicular to the longitudinal direction of the fibers.
  • fibers with a very small diameter can be produced by twisting and stretching the fibrous polymer discharged from the discharge hole at high speed in a state where the polymer is easily deformed before solidification.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of the fiber manufacturing apparatus of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing another embodiment of the fiber manufacturing apparatus of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing another embodiment of the fiber manufacturing apparatus of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing another embodiment of the fiber manufacturing apparatus of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing another embodiment of the fiber manufacturing apparatus of the present invention.
  • FIG. 6 is a schematic cross-sectional view showing another embodiment of the fiber manufacturing apparatus of the present invention.
  • FIG. 7 is a schematic cross-sectional view showing another embodiment of the fiber manufacturing apparatus of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of the fiber manufacturing apparatus of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing another embodiment of the fiber manufacturing apparatus of the present invention.
  • FIG. 3 is a schematic cross-sectional
  • FIG. 8 is a schematic cross-sectional view showing another embodiment of the fiber manufacturing apparatus of the present invention.
  • FIG. 9 is a schematic cross-sectional view showing an embodiment of a conventional fiber manufacturing apparatus.
  • FIG. 10 is a schematic cross-sectional view showing an embodiment of a conventional fiber manufacturing apparatus.
  • FIG. 11 is a schematic cross-sectional view showing an embodiment of a conventional fiber manufacturing apparatus.
  • FIG. 12 is a schematic diagram showing the form of the airflow closing member in the fiber manufacturing apparatus of the present invention.
  • FIG. 13 is a schematic diagram showing the formation of a swirling flow in the space of the airflow closing member in the fiber manufacturing apparatus of the present invention.
  • FIG. 14 is a schematic diagram showing an example of the form of the airflow closing member in the fiber manufacturing apparatus of the present invention.
  • FIG. 15 is a schematic cross-sectional view showing another embodiment of the fiber manufacturing apparatus of the present invention.
  • FIG. 16 is a schematic diagram illustrating the installation angle of the air nozzle.
  • FIG. 17 is a schematic diagram illustrating the direction of the jet flow from the air nozzle.
  • FIG. 18 is a schematic cross-sectional view illustrating a method for measuring the rotation speed of one fibrous polymer.
  • FIG. 19 is a schematic cross-sectional view illustrating a method for measuring the drawing force of one fibrous polymer.
  • FIG. 20 is a schematic diagram illustrating the installation angle of the air nozzle.
  • FIG. 21 is a schematic diagram of the molecular arrangement at the discharge section.
  • FIG. 22 is a schematic cross-sectional view showing an embodiment of a conventional fiber manufacturing apparatus.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of the fiber manufacturing apparatus of the present invention.
  • 2 to 8 are schematic cross-sectional views of other embodiments of the fiber manufacturing apparatus of the present invention.
  • 9 to 11 are schematic cross-sectional views of embodiments of conventional fiber manufacturing apparatuses.
  • figures A and B shown on the right side of the drawing are cross-sectional views taken along lines A and B in the embodiment shown on the left side of the drawing.
  • These figures are schematic diagrams for accurately conveying the main points of the present invention, and the figures are simplified, and the spinning apparatus of the present invention is not particularly limited, and the dimensional ratio etc. may vary depending on the implementation. It can be changed according to the form.
  • the size of the polymer 3 after being discharged from the discharge hole 2 in each figure is drawn large in order to clearly illustrate the twisting force.
  • the stretching phenomenon of the fiber 4 in the fiber manufacturing method of the present invention will be explained. See FIG. 9.
  • the conventional fiber manufacturing method which is generally called melt blowing
  • two nozzles are arranged to face a single fiber 4 formed by a polymer 3 discharged from a discharge hole 2, and a jet stream 11 is directly ejected.
  • the fibers 4 are sprayed with a stretching force 16.
  • the polymer 3 is discharged from the discharge hole 2 in a state of low viscosity, and by applying a stretching force 16, the fibers 4 are stretched in the polymer discharge direction. At this time, the molecular orientation of the polymer 3 within the fiber 4 is aligned in the longitudinal direction of the fiber.
  • the polymer 3 becomes difficult to deform in the orientation direction, that is, becomes difficult to be stretched. For this reason, there is a limit to reducing the diameter of the fibers 4 using conventional manufacturing methods.
  • the inventors of the present invention focused on the direction of molecular orientation of the fibers 4 as a result of intensive studies to solve the above problems.
  • the direction in which the fibers 4 are stretched and the orientation of the molecular orientation are the same, so by making this direction different, it may be possible to suppress the inhibition of stretching due to molecular orientation.
  • Molecular chains 22 exist inside the polymer 3, and when the polymer 3 is discharged from the discharge hole 2 during spinning, they are aligned in the longitudinal direction of the fibers 4, and are further aligned by being stretched by the stretching force 16. , the molecular chains 22 are oriented as shown in Figure (a). Since the molecular chains 22 in the polymer 3 are oriented, there is no room for the molecular chains 22 to deform in the orientation direction, and stretching of the polymer 3 in the orientation direction is suppressed. In other words, in the conventional stretching method, the polymer 3 is stretched by applying a stretching force 16 only in the longitudinal direction.
  • the polymer 3 moves in the cross section of the fibers 4, and the orientation of the molecular chains 22 is disturbed as shown in FIG.
  • the molecular chains 22 are easily mobile, so by rotating the fibers 4, it becomes possible to obtain a greater effect of disturbing the molecular chains 22.
  • the fibers 4 not only rotate on their own axis but also revolve around the center of the swirling flow 12 with the discharge part as a fixed point. This promotes the action of disturbing the molecular orientation in the longitudinal direction, making it possible to draw the fibers 4 more efficiently.
  • the fibers 4 are swirled at high speed by the swirling flow 12, with the straight line extending from the discharge hole 2 in the polymer discharge direction as the central axis.
  • This swirling motion causes centrifugal force to act on the fibers 4, promoting the stretching of the fibers 4, and the fibers 4 after being discharged swirl at high speed, making it possible to reduce the diameter of the fibers 4.
  • the revolution speed of the fibers 4 is preferably 100 times/second or more. More preferably, the speed is 500 times/second or more.
  • the inventors of the present invention discovered through their studies that in order to reduce the diameter of the fibers, it is necessary for the fibers 4 to rotate at high speed.
  • the conventional manufacturing method as shown in FIG. 9 only a stretching force 16 in the longitudinal direction is applied to the fibers 4, and it is not possible to apply a twisting force to the fibers 4 to promote stretching.
  • the jet stream 11 is injected from the air nozzle 5 installed at an angle so as to rotate, but since the jet stream 11 is injected into the atmosphere, , the jet stream 11 cannot diffuse to form a swirling flow, and it is not possible to apply a twisting force that causes the fibers 4 to rotate at a sufficient speed.
  • the fibers 4 By stretching the fibers 4 using the manufacturing method of the present invention, the fibers 4 can be stretched while maintaining a state in which the fibers 4 are easily deformed in the stretching direction, and the diameter of the fibers 4 can be reduced. In this way, by applying the stretching force 16 that acts in the longitudinal direction of the fiber 4 while rotating the fiber 4 about the center of the cross section perpendicular to the longitudinal direction, the stretching efficiency of the fiber 4 increases and the fiber It was discovered that it is possible to reduce the diameter of 4.
  • the rotation speed of the fibers 4 relative to the discharge speed of the polymer 3 is important.
  • a stretching phenomenon tends to occur near the discharge portion of the discharge hole 2.
  • the rotation speed is slow compared to the discharge speed, the number of rotations relative to the length of the fibers 4 to be discharged is small, that is, the twisting force acting on the molecules in the fibers 4 is small, and the effect of disturbing the molecular arrangement due to the twisting force. is not obtained sufficiently, so that the effect of promoting stretching cannot be obtained. Therefore, it is necessary to rotate the fibers 4 so that the discharge speed V (mm/sec) and the rotation speed W (times/sec) satisfy W/V ⁇ 0.1 (times/mm).
  • W/V W/V ⁇ 0.2 (times/mm).
  • the rotation speed is faster than the discharge linear velocity, the number of rotations relative to the length of the discharged fibers 4 is large, that is, the torsional force acting on the fibers 4 becomes large, and the shear stress generated in the fibers 4 increases. Since the fibers 4 may be broken due to this, it is preferable to adjust the discharge linear velocity and the number of rotations so that W/V ⁇ 5000 (times/mm).
  • the twisting force that causes the fibers 4 to rotate on their own axis is more likely to be influenced by the closer to the discharge part where the stretching phenomenon is actively occurring, and the torsional stretching effect is more likely to be obtained. Therefore, the position where the twisting force is applied is preferably within 100 mm, more preferably within 50 mm, from the discharge hole 2 of the mouthpiece 1 in the discharge direction. Furthermore, since the effect of the present invention is obtained by the fiber 4 rotating on its own axis in the section where stretching is promoted, if the polymer 3 in the fiber 4 is a crystalline polymer, at least the section where the temperature is higher than the melting point of -50°C is obtained. It is preferable that W/V ⁇ 0.1 (times/mm) at one or more locations.
  • one method is to generate a twisting force on the fibers 4 by a swirling flow, and the other is to bring the fibers 4 into direct contact with a rotating roller to apply a twisting force to the fibers 4.
  • FIG. 1 shows an embodiment of a fiber manufacturing apparatus that generates twisting force on fibers 4 by swirling flow.
  • the fiber manufacturing apparatus 100 shown in FIG. An air flow closing member 6 having an air nozzle 5 for spraying, a space 7 disposed below the discharge hole 2 in the polymer discharge direction through which the polymer 3 and the fibers 4 pass, and a wall 8 surrounding the space 7; It consists of a take-up roller 14 that takes up the .
  • a jet stream 11 is injected from an air nozzle 5 toward a wall 8 of an air flow closing member 6 to form a swirling flow 12 within a space 7 . Fibers 4 obtained from the polymer 3 discharged from the nozzle 1 are passed through this swirling flow 12 and then wound up by a winding roller 14.
  • the airflow closing member 6 is constituted by a cylindrical wall 8, and a space 7 surrounded by the wall 8 serves as an airflow passage.
  • the space 7 is a through hole that penetrates from one end surface of the airflow closing member 6 to the other end surface.
  • the space 7 does not need to be surrounded by walls 8 over its entire length, but only needs to be surrounded by walls 8 over a portion of its entire length.
  • FIG. 13 is a schematic diagram illustrating the formation of a swirling flow in the space of the airflow closing member in the fiber manufacturing apparatus of the present invention
  • FIG. 17 is a schematic diagram illustrating the direction of the jet flow from the air nozzle. be.
  • a jet stream 11 having a velocity component in the circumferential direction of the fiber 4 is injected toward the space 7 so as to collide with the wall 8 of the air flow closing member 6 from the air nozzle 5, thereby creating a high-speed swirl.
  • a stream 12 is formed.
  • the injection direction of the jet flow 11 is defined as the radial direction, which is the direction from the tip of the air nozzle 5 toward the center of the fiber 4, and the circumferential direction, which is the direction inclined by 90 degrees from the radial direction.
  • a jet stream 11 having a velocity component in the circumferential direction of the fibers 4 is injected from the air nozzle 5 so as to collide with the wall 8 of the air flow closing member 6 .
  • a swirling flow 12 is formed around the fibers 4.
  • a twisting force 17 acts on the fibers 4, causing the fibers 4 to rotate at high speed.
  • a stretching force 16 acting in the longitudinal direction of the fiber 4 and a twisting force 17 acting in a direction perpendicular to the longitudinal direction of the fiber 4 are applied to the fiber 4, and the fiber 4 is stretched.
  • This stretching method can promote the reduction in the diameter of the fibers 4, so that it is possible to stably obtain the fibers 4 with a small diameter.
  • FIG. 10 is a schematic cross-sectional view showing an embodiment of a conventional fiber manufacturing apparatus.
  • the fiber manufacturing apparatus 100 of the present invention by installing the air flow closing member 6, it is possible to prevent the jet flow 11 from spreading, and it is possible to reduce the diameter of the fiber 4.
  • FIG. 16 is a schematic diagram illustrating the installation angle of the air nozzle. If the angle ⁇ is small with respect to the running direction of the fibers 4, the rotational speed component of the swirling flow 12 tends to become weak. On the other hand, if the angle ⁇ is larger than 90°, the airflow is injected in the opposite direction to the running direction of the fibers 4, so an airflow in the opposite direction to the stretching direction of the fibers 4 is generated, which hinders the stretching of the fibers 4. It's easy to get caught. Therefore, the angle ⁇ between the air injection direction and the running direction of the fibers 4 is preferably 5 to 90°.
  • FIG. 20 is a schematic diagram illustrating the installation angle of the air nozzle in a cross section perpendicular to the running direction of the fibers. If the angle ⁇ between the straight line connecting the center of the discharge part of the air nozzle 5 and the center of the fiber 4 (the shortest straight line connecting the air nozzle 5 and the fiber 4) and the injection direction of the jet flow 11 is small, the jet flow will be directed directly to the fiber 4. 11 collide with each other, making it difficult to form a swirling flow 12.
  • the angle ⁇ between the straight line connecting the center of the discharge part of the air nozzle 5 and the center of the fiber 4 and the air jet direction is preferably 5 to 90 degrees.
  • FIG. 2 is a schematic cross-sectional view showing another embodiment of the fiber manufacturing apparatus of the present invention.
  • a jet flow 11 is supplied by one air nozzle 5, and a swirl flow 12 is formed inside the air flow closing member 6.
  • the jet flow 11 can be distributed and supplied, and the swirl flow 12 can be formed more stably. become. Therefore, it is preferable that two or more air nozzles 5 inject, and more preferably three or more air nozzles 5 inject.
  • the cross-sectional area of the air flow path of the air nozzle is smaller than the cross-sectional area of the space 7.
  • the cross-sectional shape of the air flow path of the air nozzle 5 is not limited to circular or rectangular, but may be any cross-sectional shape.
  • FIG. 3 is a schematic cross-sectional view showing another embodiment of the fiber manufacturing apparatus of the present invention.
  • the horizontal cross-sectional area of the space of the airflow closing member 6 is constant from the upper opening 9 to the lower opening 10.
  • the smaller the cross-sectional area the faster the airflow within the airflow closing member 6 and the faster the swirling flow 12 will be. Therefore, as in the fiber manufacturing apparatus 100B shown in FIG.
  • the space 7 has a structure in which the cross-sectional area is smaller at the lower opening 10 than at the upper opening 9. Since the swirling flow 12 formed by the airflow closing member 6 causes the fibers 4 to rotate, the center of the swirling flow 12 and the direction in which the fibers 4 are discharged coincide, making it possible to efficiently rotate the fibers 4. Therefore, it is preferable that the central axis of the spiral flow at the lower opening 10 of the air flow closing member 6 coincides with the traveling direction of the fibers 4.
  • the airflow closing member 6 is a member that forms a swirling flow 12 from the jet flow 11. As in the fiber manufacturing apparatus 100 shown in FIG. 1, the swirling flow 12 formed by approximately half of the inner wall of the airflow closing member 6 may collide with the fibers 4, or as in the fiber manufacturing apparatus 100B shown in FIG. As such, the swirling flow 12 may be caused to collide with the fibers 4 only from the vicinity of the lower opening 10 of the airflow closing member 6.
  • FIG. 14 is a schematic diagram showing an example of the form of the airflow closing member in the fiber manufacturing apparatus of the present invention.
  • the airflow closure member 6 can take various forms.
  • the shape of the airflow closing member 6 may be such that the horizontal cross section of the space 7 is circular and constant as shown in (a), or it may be a shape where the horizontal cross section of the space 7 is circular and tapered as shown in (b). good.
  • the horizontal cross section of the space 7 may be rectangular and constant as shown in (c), or the horizontal cross section of the space 7 may be circular and a passage is formed in the wall as shown in (d). .
  • the shape of the airflow closing member 6 may be other than those shown in (a) to (d).
  • FIG. 15 is a schematic cross-sectional view showing another embodiment of the fiber manufacturing apparatus of the present invention.
  • illustration of the winding roller 14 is omitted.
  • the supply of the swirling flow 12 may become unstable due to the influence of gas other than the jet flow 11 at the upper opening 9 of the airflow closing member 6. Therefore, as in the fiber manufacturing apparatuses 100K and 100L shown in FIG. 15, the upper opening 9 of the airflow closing member 6 may close the air nozzle 5 other than the air injection port.
  • the cross-sectional area of the space 7 of the airflow closure member 6 is preferably 1 mm 2 or more and 100 mm 2 or less.
  • FIG. 7 is a schematic cross-sectional view showing another embodiment of the fiber manufacturing apparatus of the present invention.
  • the die 1 has a plurality of discharge holes 2, and the polymer 3 is discharged from each of the plurality of discharge holes 2, and the discharged plurality of fibers 4 are drawn.
  • the fiber manufacturing apparatus 100F has one more air nozzles 5 than the number of discharge holes 2, and jets a jet stream 11 from the air nozzles 5 arranged in a zigzag manner so as to face each other with one discharge hole 2 in between.
  • a swirling flow 12 is formed around each fiber 4.
  • a mouthpiece 1 having a plurality of discharge holes 2 is used for one closed airflow member 6, and jetting is performed from a plurality of air nozzles 5 so that a swirling flow 12 is generated in each of the fibers 4 discharged from each discharge hole 2.
  • Stream 11 is injected.
  • the production capacity of small diameter fibers 4 can be improved.
  • FIG. 5 is a schematic cross-sectional view showing another embodiment of the fiber manufacturing apparatus of the present invention, in which the fiber is brought into direct contact with a rotating roller to apply a twisting force to the fiber.
  • a fiber manufacturing apparatus 100D shown in FIG. 5 includes a die 1 having a discharge hole 2 for discharging a polymer 3, and a rotating roller disposed so as to come into contact with fibers 4 made by stretching the polymer 3 discharged from the discharge hole 2. 13, and a take-up roller 14 for winding up the fiber 4.
  • the fibers 4 obtained by discharging the polymer 3 from the mouthpiece 1 are rolled by rotating the rotating roller 13 to apply a twisting force 17 to the fibers 4 while in contact with the rotating roller 13. It is wound up by the take-up roller 14.
  • the fibers 4 are stretched with a stretching force 16 acting on the fibers 4 in the longitudinal direction and a twisting force 17 acting on the fibers 4 in a direction perpendicular to the longitudinal direction. Thereby, it is possible to promote the reduction in the diameter of the fibers 4, so that it is possible to stably obtain the fibers 4 having a small diameter.
  • the rotating roller 13 rotates at high speed, the running fibers 4 may collide with the corners of the side surfaces of the rotating roller 13, causing the fibers 4 to be cut. Therefore, it is preferable that the corners of the side surfaces of the rotating roller 13 are curved. Since the rotating roller 13 comes into contact with the traveling fibers 4, the side surface of the rotating roller 13 that comes into contact with the fibers 4 will wear out if the rotating roller 13 is continuously operated. Therefore, it is preferable that the material of the side surface of the rotating roller 13 is ceramic.
  • the installation angle of the shaft of the rotating roller 13 is parallel to the running direction of the fibers 4 in FIG. It may be arranged at an angle in the range of 0 to 85 degrees.
  • FIG. 8 is a schematic cross-sectional view showing another embodiment of the fiber manufacturing apparatus of the present invention.
  • the fiber manufacturing apparatus 100G shown in FIG. 8 in order to efficiently apply twisting force 17 to the fibers 4, a plurality of spindles 1 are arranged around one rotating roller 13, and a plurality of spindles 1 are discharged from each spindle 1. The fibers 4 are brought into contact with one rotating roller 13, and twisted force is applied to the fibers 4 for spinning. In the fiber manufacturing apparatus 100G, the production capacity of small diameter fibers 4 can be improved.
  • the method for collecting the fibers 4 is not limited to the take-up roller 10 as shown in FIG. 1, but may also be performed using a conveyor 12 as shown in FIG. 7, a fiber drum, or the like.
  • a conveyor 12 and fiber drum By using the conveyor 12 and fiber drum, it is possible to run the fibers 4 without restricting the position of the fibers 4 at the collection position, so the fibers 4 can be twisted freely without restricting their positions. This makes it possible to enhance the stretching effect.
  • the present invention is extremely versatile and can be applied to the production of all known fibers. Therefore, it is not particularly limited by the polymer constituting the fiber.
  • examples of polymers constituting the fibers 4 include polyester, polyamide, polyphenylene sulfide, polyolefin, polyethylene, polypropylene, and the like.
  • matting agents such as titanium dioxide, silicon oxide, kaolin, color inhibitors, stabilizers, antioxidants, deodorants, flame retardants, thread friction agents, etc. It may contain additives such as various functional particles such as reducing agents, color pigments, and surface modifiers, and organic compounds, and may also contain copolymerization.
  • the polymer constituting the fiber 4 may be composed of a single component or a plurality of components, and in the case of a plurality of components, examples thereof include a core-sheath, side-by-side, etc. structure.
  • the cross-sectional shape of the fibers 4 forming the fibers 4 may be round, triangular, flat, polygonal, star-shaped, or other irregular shapes, or hollow. At this time, since the cross-sectional shape is different from a perfect circle, the surface area per volume increases, which makes it easier to receive the swirling flow 12 and the twisting force 17 from the rotating roll 13, increasing the rotation speed and making the fibers 4 thinner. can be obtained.
  • a cross-sectional shape that is flattened from a perfect circle is preferable, and a cross-sectional shape that has an uneven surface is more preferable.
  • the present invention aims to produce fibers 4 having a small diameter, there is no particular restriction on the fineness of the single fibers.
  • FIG. 18 shows a schematic diagram of the method for measuring the rotation speed of fibers.
  • a single 32 dtex measuring fiber 19 made of PET is fixed from the top of the cap 1, and a high-speed camera 18 is installed.
  • the number of rotations of the fiber for measurement 19 per second was measured by counting the number of rotations of the measurement fiber 19 from the movement of points in the video that was taken, and this was adopted as the rotation speed of the fiber.
  • the number of rotations in the devices of Examples and Comparative Examples to be described later was measured with the measurement fiber 19 and high-speed camera 18 installed in the devices of Examples and Comparative Examples, and with the air nozzle 5 and rotating roll 14 in operation. did.
  • FIG. 19 shows a schematic diagram of the method for measuring traction force.
  • a single thread of 32 dtex PET measuring fiber 19 was fixed to the tension meter 20 (MODEL-RX-1 manufactured by Aiko Engineering Co., Ltd.) at a length of 1000 mm from the bottom surface of the cap, and an air nozzle was attached to the measuring fiber 19.
  • the airflow ejected from 5 collided with each other, and the tension (mN) generated at that time was measured with a tension meter 16. This measurement was repeated five times, and the average value (mN) was taken as the stretching force.
  • the measurement of the stretching force in the apparatuses of Examples and Comparative Examples described later was carried out with the measurement fibers 19 fixed to the apparatuses of Examples and Comparative Examples, and with the air nozzle 5 in operation.
  • Fiber discharge part temperature (°C) A measuring section of a thermocouple was placed at a distance of 10 mm from the exit surface of the nozzle discharge hole in the discharge direction, and the ambient temperature of the nozzle discharge section was measured during spinning. This measurement was repeated three times to determine the fiber discharge portion temperature (° C.).
  • Fibers were manufactured using manufacturing equipment as shown in FIGS. 1 to 11.
  • As the raw material resin polypropylene resin was used which conformed to ASTM-D1238, had a weight of 2.16 kg, a melt flow rate of 1100 g/10 minutes at a temperature of 230°C, a density of 0.9 g/cm 3 , and a melting point of 180°C.
  • the polymer with a molten resin temperature of 280°C is discharged from the outlet of the nozzle with a nozzle hole diameter of 0.25 mm and a single hole discharge rate of 2 g/min, and the air nozzle hole diameter is 2 mm, which supplies hot air at 280°C, the air injection direction and the fiber running direction.
  • Fibers were produced under the conditions shown in Tables 1 to 3, with an angle of 10° and a jet flow from an air nozzle such that the drawing force was 15 mN.
  • the polymer discharge speed at this time is 755 mm/sec.
  • the test results are shown in Tables 1 to 3.
  • Example 1 Evaluate the effect of torsion in swirling flow.
  • the polymer 3 was discharged from one discharge hole 2 of the die 1.
  • a jet stream is supplied from one air nozzle 5 to the space 7 of the airflow closing member 6 with an inner diameter of ⁇ 5 mm and a height of 5 mm, and the fibers 4 are stretched while applying a twisting force by the swirling flow 12 from a position directly below the discharge hole 2.
  • the fiber was wound up with a winding roller 14.
  • the temperature of the fiber discharge part during spinning was 215° C.
  • the number of fiber rotations W/discharge speed V was 0.79 times/mm
  • the average fiber diameter of the sampled fibers was 2.60 ⁇ m. Note that during spinning, the temperature of the fibrous polymer is maximum at the discharge hole 2, and as the distance from the discharge hole 2 increases, the temperature of the fibrous polymer decreases, so the temperature near the discharge hole is almost the same. Measure the temperature and rotation speed of the fibrous polymer at the location, and check that the temperature is at least (the melting point of the fibrous polymer - 50°C) and that the W/V is at least 0.1 times/mm at that location.
  • the fibrous polymer satisfies W/V ⁇ 0.1 [times/mm] and rotates at one or more points in the section where the temperature of the fibrous polymer is equal to or higher than (the melting point of the fibrous polymer -50°C). You can assume that you are doing so.
  • the following examples and comparative examples may be considered in the same manner.
  • Example 2 Evaluate the influence of the number of air nozzles.
  • the polymer 3 was discharged from one discharge hole 2 of the die 1.
  • a jet stream is supplied from the three air nozzles 5 to the space 7 of the air flow closing member 6, and the fibers 4 are stretched while applying a twisting force from a position directly below the discharge hole 2, and the fibers 4 are wound by the winding roller 14. I took it.
  • the temperature of the fiber discharge part during spinning was 209° C.
  • the number of fiber rotations W/discharge speed V was 0.83 times/mm
  • the average fiber diameter of the collected fibers was 2.59 ⁇ m.
  • Example 3 Evaluate the effects of swirling flow generated by airflow closure members with different shapes.
  • the polymer 3 was discharged from one discharge hole 2 of the die 1.
  • a jet stream is supplied from the three air nozzles 5 to the space 7 of the air flow closing member 6 (inner diameter ⁇ 5 mm, height 5 mm, taper angle 60°, distance between the air discharge part surface and the polymer discharge surface 5 mm), and the discharge hole 2 is
  • the fibers 4 were stretched while applying a twisting force from a position immediately below the exit, and the fibers 4 were wound up with a winding roller 14.
  • the temperature of the fiber discharge part during spinning was 195° C.
  • the number of fiber rotations W/discharge speed V was 0.92 times/mm
  • the average fiber diameter of the sampled fibers was 2.56 ⁇ m.
  • Example 4 Evaluate the effect of temperature drop on twisting in swirling flow.
  • the polymer 3 was discharged from one discharge hole 2 of the die 1.
  • a jet stream is supplied from three air nozzles to the space 7 of the air flow closing member 6, and the fiber 4 is stretched while applying a twisting force from a position 200 mm from the outlet of the discharge hole 2. I wound up 4.
  • the temperature of the fiber discharge part during spinning was 124° C.
  • the number of fiber rotations W/discharge speed V was 0.75 times/mm
  • the average fiber diameter of the sampled fibers was 3.16 ⁇ m.
  • Example 5 Evaluate the effect of torsion on rotating rollers.
  • the polymer 3 was discharged from one discharge hole 2 of the die 1.
  • a rotating roller 13 rotating speed: 30 rpm
  • a twisting force is applied to the fibers 4, and the winding roller 14 Fiber 4 was wound up.
  • the temperature of the fiber discharge part during spinning was 120° C.
  • the number of fiber rotations W/discharge speed V was 0.22 times/mm
  • the average fiber diameter of the sampled fibers was 3.37 ⁇ m.
  • Example 6 Evaluate the impact of changing fiber collection to a conveyor.
  • the polymer 3 was discharged from one discharge hole 2 of the die 1.
  • a jet stream is supplied from the three air nozzles 5 to the space 7 of the air flow closing member 6, and the fibers 4 are stretched while applying a twisting force from a position directly below the outlet of the discharge hole 2, and the fibers 4 are collected by the conveyor 15. did.
  • the temperature of the fiber discharge part during spinning was 209° C.
  • the number of fiber rotations W/discharge speed V was 0.87 times/mm
  • the average fiber diameter of the collected fibers was 2.58 ⁇ m.
  • Example 7 Evaluate the effect of increasing the number of discharge holes in the mouthpiece.
  • a jet stream is supplied from the air nozzle 5 to the space of the airflow closing member 7 to form a swirling stream 12 around one polymer, and the fibers 4 are stretched while applying a twisting force from a position directly below the outlet of the discharge hole 2.
  • the fibers 4 were collected by a conveyor 15.
  • the temperature of the fiber discharge part during spinning was 190° C.
  • the number of fiber rotations W/discharge speed V was 0.59 times/mm
  • the average fiber diameter of the sampled fibers was 2.66 ⁇ m.
  • Example 8 The effect of increasing the number of discharge holes on the rotating roller will be evaluated.
  • the polymer 3 was discharged from each discharge hole 2 of the ten nozzles 1.
  • a twisting force is applied to the fibers 4, and the fibers 4 are wound with a winding roller 14. I took it.
  • the temperature of the fiber discharge part during spinning was 120° C.
  • the number of fiber rotations W/discharge speed V was 0.20 times/mm
  • the average fiber diameter of the sampled fibers was 3.40 ⁇ m.
  • FIG. 10 A fiber manufacturing apparatus 100I as shown in FIG. 10 was used.
  • a jet stream was ejected from three air nozzles 5 to the discharged polymer 3 to draw the fibers 4, and the fibers 4 were wound up by a winding roller 14.
  • the temperature at the fiber discharge part was 175° C., the fibers were not rotating, and the average fiber diameter of the collected fibers was 4.65 ⁇ m.
  • the number of fiber rotations W/discharge speed V is less than 0.1 times/mm.
  • the fiber discharge part temperature during spinning was 210° C.
  • the number of fiber rotations W/discharge speed V was 0.05 times/mm
  • the average fiber diameter of the sampled fibers was 4.58 ⁇ m.
  • Example 1 The evaluation conditions and evaluation results of each Example and each Comparative Example are summarized in Tables 1 to 3.
  • Example 1 the fibers were twisted by the swirling flow, and in Examples 5 and 8, by the rotating roller, which facilitated diameter reduction compared to Comparative Examples 1 to 5. Furthermore, in Example 1, the temperature at the twisted portion was high, which facilitated diameter reduction compared to Example 4.
  • the manufacturing method and manufacturing apparatus of the present invention can be applied not only to spinning filaments but also to spinning fibers for other uses such as nonwoven fabrics.

Abstract

Provided are a fiber manufacturing method and a fiber manufacturing device that allow fiber with an exceptionally small fiber diameter to be obtained efficiently by stretching a fibrous polymer discharged from a discharge hole while twisting, at a high speed, the fibrous polymer in a state in which the fibrous polymer is easily deformable before solidification. In this fiber manufacturing method, through the application of twisting force to a single strand of a discharged fibrous polymer in a plane perpendicular to the direction of discharge of the polymer in a direction of rotation centered on the fibrous polymer, the fibrous polymer is made to rotate with the center of a cross-section thereof as an axis, stretching the fibrous polymer so that the discharge velocity V, in millimeters per second, of the polymer discharged from a nozzle and the rotational velocity W, in rotations per second, of the fibrous polymer satisfy W/V ≥ 0.1.

Description

繊維の製造方法および繊維の製造装置Fiber manufacturing method and fiber manufacturing device
 本発明は、繊維の製造に好適な方法および装置に関する。 The present invention relates to a method and apparatus suitable for producing fibers.
 近年、多くの分野で繊維の細径化(細繊度化)が求められており、熱可塑性ポリマを紡糸口金から繊維状に吐出し、延伸する方法については、様々な研究・開発がなされて、いくつかの延伸装置にて実施されている。一般的な延伸方法としては、吐出後の繊維に対して繊維を接触させた状態でローラを回転させることで繊維に速度差を発生させる方法や、走行する繊維に高速気流を噴射して繊維と気流の間に発生する摩擦力により繊維に張力を付与する方法などがある。 In recent years, there has been a demand for smaller diameter fibers (fineness) in many fields, and various research and developments have been conducted on methods for discharging thermoplastic polymers into fibers from spinnerets and drawing them. It is carried out in several stretching devices. Common stretching methods include creating a speed difference between the fibers by rotating a roller while the fibers are in contact with the fibers after being discharged, and by spraying high-speed airflow onto the running fibers to separate the fibers. There is a method of applying tension to the fibers by the frictional force generated between the airflows.
 その中で、走行する糸を延伸する方法として特許文献1が開示されている。特許文献1では、難繊維化性物質の周囲を易繊維化性物質で取り囲んだ流体を口金から吐出することにより形成した繊維に対して、吐出孔出口の周囲に配置した3本以上のノズルからガスジェットを噴出することで、繊維の周囲に旋回流を形成し、ガスジェットを繊維に噴射することにより繊維を延伸する方法が示されている。これにより、吐出後の繊維を旋回させることにより延伸し、難繊維化物質を繊維化することができる。 Among them, Patent Document 1 is disclosed as a method of drawing a running yarn. In Patent Document 1, fibers formed by discharging a fluid in which a difficult-to-fiber substance is surrounded by an easily-fibrillable substance from three or more nozzles arranged around the outlet of a discharge hole are disclosed. A method is disclosed in which a swirling flow is formed around the fibers by ejecting a gas jet, and the fibers are drawn by injecting the gas jet onto the fibers. Thereby, the fibers after being discharged can be drawn by rotating them, and the difficult-to-fiber substance can be made into fibers.
 また、その他の旋回流にて延伸する方法として、特許文献2では、内壁に螺旋状の凹凸部を有し下流に向けて断面積が減少するダクトの内部に圧縮空気を供給し、走行する繊維がダクトを通過することで延伸する方法が示されている。この方法では、ダクト内で繊維の走行方向の流速差により繊維に対して延伸力を付与するとともに、螺旋状の空気の流れにより繊維がねじれることで繊維を細径化することができる。 In addition, as another method of drawing with a swirl flow, Patent Document 2 discloses that compressed air is supplied inside a duct that has a spiral unevenness on the inner wall and whose cross-sectional area decreases toward the downstream, and the running fibers are A method is shown in which the material is stretched by passing through a duct. In this method, a stretching force is applied to the fibers by the difference in flow velocity in the running direction of the fibers in the duct, and the fibers are twisted by the spiral air flow, thereby making it possible to reduce the diameter of the fibers.
 また、その他の走行する糸を延伸する方法として特許文献3では、管状の繊維スピニングニードルがポリマ溶液を導入する入口と、非固定端であり、ポリマ溶液を吐出する出口を備え、入口での圧縮ガスジェットの噴射により出口側を振動または回転させた状態で出口からポリマを吐出することで、ポリマ溶液に作用する延伸力を生成し、出口でのポリマ溶液を液滴に分割し、液滴が圧縮ガスのジェットによって延伸されることで、高いポリマ注入速度で繊維を得ることができる。 In addition, as another method for drawing a running yarn, Patent Document 3 discloses that a tubular fiber spinning needle is equipped with an inlet for introducing a polymer solution and an outlet for discharging the polymer solution with a non-fixed end, and the fiber spinning needle is compressed at the inlet. By discharging the polymer from the outlet while vibrating or rotating the outlet side by jetting a gas jet, a stretching force is generated that acts on the polymer solution, and the polymer solution at the outlet is divided into droplets, and the droplets are By being drawn by a jet of compressed gas, fibers can be obtained at high polymer injection rates.
特開昭60-119212号公報Japanese Unexamined Patent Publication No. 119212/1986 特開2002-266154号公報Japanese Patent Application Publication No. 2002-266154 特開2022-32977号公報JP2022-32977A
 特許文献1で開示されている繊維の製造方法では、傾斜した複数本のノズルでガスジェットを供給することにより吐出部付近で旋回流を形成する構成が示されているが、特許文献1のノズル構成では、圧縮気体により形成した直線状の気流を開放した空間に直接噴射していることから、旋回流を形成する前に気体が膨張し、繊維に衝突する前に気流の速度が低下してしまうため、繊維の旋回速度を高速化することができない。このため、繊維の旋回速度が小さくなり、繊維の細径化の効果が十分に得られない場合がある。 In the fiber manufacturing method disclosed in Patent Document 1, a configuration is shown in which a swirling flow is formed near the discharge part by supplying a gas jet with a plurality of inclined nozzles, but the nozzle of Patent Document 1 In this configuration, a linear airflow formed by compressed gas is injected directly into an open space, so the gas expands before forming a swirling flow, and the speed of the airflow decreases before colliding with the fibers. Therefore, it is not possible to increase the spinning speed of the fibers. For this reason, the spinning speed of the fibers becomes low, and the effect of reducing the diameter of the fibers may not be sufficiently achieved.
 また、特許文献2で開示されている繊維の製造方法では、ダクト内に螺旋状の気流を形成し、螺旋状の気流により繊維をねじりながら延伸する。しかしながら、この方法では、ダクトの壁面では螺旋状の気流を形成するが、中央部では螺旋状の気流が発達しにくくなり、ダクトの長手方向に直線状の気流が発達する。そのため、繊維に螺旋状の気流による回転力が加わりにくくなり、繊維をねじることによる延伸の効果を得られず、繊維を細径化できない場合がある。特に、口金の吐出孔から離れた位置に吐出後ダクトを配置しても、ダクト内では既に繊維が冷却されて固化した状態であることから、十分に繊維を延伸することができない場合がある。 Furthermore, in the fiber manufacturing method disclosed in Patent Document 2, a spiral airflow is formed in a duct, and the fibers are stretched while being twisted by the spiral airflow. However, in this method, although a spiral airflow is formed on the wall surface of the duct, the spiral airflow is difficult to develop in the central part, and a linear airflow is developed in the longitudinal direction of the duct. Therefore, it becomes difficult to apply rotational force due to the spiral airflow to the fibers, and the effect of stretching by twisting the fibers cannot be obtained, so that it may not be possible to reduce the diameter of the fibers. In particular, even if the post-discharge duct is located at a position away from the discharge hole of the die, the fibers may not be sufficiently drawn because the fibers have already been cooled and solidified within the duct.
 特許文献3で開示されている繊維の製造方法では、繊維スピニングニードルの振動または回転させた状態で、ポリマ溶液を吐出して糸を延伸する。この方法では、出口の壁面からポリマに力を加えるので、吐出したポリマをねじる力を圧縮ガスジェットから直接加えることができないため、繊維をねじることによる延伸の効果を得られない場合がある。また、圧縮ガスジェット噴射位置からポリマを吐出する出口までの間が密閉されていないため、出口付近では圧縮ガスジェットが減速し、十分に繊維を延伸することができない場合がある。 In the fiber manufacturing method disclosed in Patent Document 3, a fiber spinning needle is vibrated or rotated, and a polymer solution is discharged to stretch the yarn. In this method, force is applied to the polymer from the wall surface of the outlet, so the force to twist the discharged polymer cannot be applied directly from the compressed gas jet, so the effect of stretching by twisting the fibers may not be obtained. Furthermore, since the space between the compressed gas jet injection position and the outlet where the polymer is discharged is not sealed, the compressed gas jet decelerates near the exit, and the fibers may not be sufficiently drawn.
 よって、本発明の目的は、吐出孔から吐出された繊維状ポリマを、固化前のポリマの変形しやすい状態で高速でねじりながら延伸することにより、直径が非常に小さい繊維を得ることができる繊維の製造方法および製造装置を提供することにある。 Therefore, an object of the present invention is to develop a fiber with a very small diameter by stretching a fibrous polymer discharged from a discharge hole while twisting it at high speed in a state where the polymer is easily deformed before solidification. An object of the present invention is to provide a manufacturing method and a manufacturing device.
 上記課題を解決する本発明の繊維の製造方法は、吐出孔を有する口金から吐出された繊維状ポリマを延伸させて繊維を製造する方法であって、上記口金から吐出された上記繊維状ポリマに、下記式を満たすようにポリマ吐出方向に垂直な断面の中心を軸として回転するねじり力を付与することにより、上記繊維状ポリマを自転させながら延伸させる。
 W/V≧0.1[回/mm]
 V:繊維状ポリマの吐出速度[mm/秒]
 W:繊維状ポリマの自転速度[回/秒]
A method for manufacturing fibers of the present invention that solves the above problems is a method for manufacturing fibers by stretching a fibrous polymer discharged from a die having a discharge hole, the method comprising: stretching a fibrous polymer discharged from a die having a discharge hole; By applying a twisting force that rotates around the center of the cross section perpendicular to the polymer discharge direction so as to satisfy the following formula, the fibrous polymer is stretched while rotating.
W/V≧0.1 [times/mm]
V: Discharge speed of fibrous polymer [mm/sec]
W: Rotation speed of fibrous polymer [times/second]
 本発明の繊維の製造方法は、下記(1)~(4)のいずれかまたは複数の特徴を有することが好ましい。
(1)上記口金から吐出された上記繊維状ポリマの温度が(繊維状ポリマの融点-50℃)以上となる区間の1か所以上で、上記繊維状ポリマを下記式を満たすように自転させる。
 W/V≧0.1[回/mm]
 V:繊維状ポリマの吐出速度[mm/秒]
 W:繊維状ポリマの自転速度[回/秒]
(2)上記繊維状ポリマを、上記回転方向に旋回する旋回流に晒すことにより、上記回転方向のねじり力を付与する。
(3)上記繊維状ポリマのそれぞれを、上記吐出孔からポリマ吐出方向に延びる直線を中心軸として公転するようにして、上記繊維状ポリマを旋回させながら延伸させる。
(4)上記繊維状ポリマに、上記回転方向とは逆方向に回転するローラを接触させることで、上記回転方向のねじり力を付与する。
The method for producing fibers of the present invention preferably has any or more of the following characteristics (1) to (4).
(1) The fibrous polymer is rotated so as to satisfy the following formula at one or more points in the section where the temperature of the fibrous polymer discharged from the nozzle is equal to or higher than (the melting point of the fibrous polymer - 50°C) .
W/V≧0.1 [times/mm]
V: Discharge speed of fibrous polymer [mm/sec]
W: Rotation speed of fibrous polymer [times/second]
(2) By exposing the fibrous polymer to a swirling flow that swirls in the rotational direction, a twisting force in the rotational direction is applied.
(3) Each of the fibrous polymers is rotated and stretched so as to revolve around a straight line extending from the discharge hole in the polymer discharge direction.
(4) A twisting force in the rotational direction is applied to the fibrous polymer by bringing into contact a roller that rotates in a direction opposite to the rotational direction.
 上記課題を解決する本発明の繊維の製造装置は、繊維状ポリマを延伸させて繊維を製造する装置であって、維状ポリマを吐出する吐出孔を有する口金と、上記吐出孔から吐出される上記繊維状ポリマの周囲に配置された、気流を噴射するための気流ノズルと、上記吐出孔のポリマ吐出方向の下方に配置され、上記繊維ポリマが通過する空間と、上記空間を囲繞する壁と、を有する気流閉鎖部材と、を備え、上記気流ノズルから上記空間に噴射される噴射流により旋回流を形成することで、上記繊維状ポリマがポリマ吐出方句に垂直な断面の中心を軸として自転するように、上記繊維状ポリマに回転方向のねじり力を付与する。 The fiber manufacturing apparatus of the present invention that solves the above problems is an apparatus that manufactures fibers by stretching a fibrous polymer, and includes a die having a discharge hole for discharging the fibrous polymer, and a fibrous polymer that is discharged from the discharge hole. an airflow nozzle for ejecting airflow arranged around the fibrous polymer; a space arranged below the discharge hole in the polymer discharge direction through which the fibrous polymer passes; and a wall surrounding the space. an air flow closing member having an air flow closing member having a jet flow injected into the space from the air flow nozzle to form a swirling flow so that the fibrous polymer is oriented around the center of a cross section perpendicular to the direction of polymer discharge. A twisting force in the rotational direction is applied to the fibrous polymer so that it rotates on its own axis.
 本発明の繊維の製造装置は、上記気流ノズルから上記空間に噴射される噴射流により旋回流を形成することで、上記繊維状ポリマが、上記吐出孔からポリマ吐出方句に延びる直線を中心軸として公転させる、ことが好ましい。 In the fiber manufacturing apparatus of the present invention, a swirling flow is formed by a jet flow injected into the space from the air flow nozzle, so that the fibrous polymer has a central axis centered on a straight line extending from the discharge hole to the polymer discharge direction. It is preferable to revolve as follows.
 上記課題を解決する本発明の別態様の繊維の製造装置は、繊維状ポリマを延伸させて繊維を製造する装置であって、繊維状ポリマを吐出する吐出孔を有する口金と、上記吐出孔から吐出される上記繊維状ポリマに接触するように配置された回転ローラと、を備え、上記回転ローラを回転させることで、上記繊維状ポリマが吐出方句に垂直な断面の中心を軸として自転するように、上記繊維状ポリマに回転方向のねじり力を付与する。 A fiber manufacturing apparatus according to another aspect of the present invention that solves the above problems is an apparatus for manufacturing fibers by stretching a fibrous polymer, which comprises: a die having a discharge hole for discharging the fibrous polymer; a rotating roller disposed so as to be in contact with the fibrous polymer being discharged, and by rotating the rotating roller, the fibrous polymer rotates about the center of a cross section perpendicular to the direction of the discharge. As such, a twisting force in the rotational direction is applied to the fibrous polymer.
 本発明において、「ポリマ吐出方向」とは、吐出孔から繊維状ポリマが吐出される方向のことをいう。
 本発明において、「ねじり力」とは、繊維の長手方向と垂直な面において繊維断面の中心を軸として回転方向にモーメントが発生するように、繊維表面に作用する力のことをいう。
 本発明において、「ポリマの吐出速度」とは、単位時間あたりに吐出孔からポリマがポリマの吐出方向に吐出される長さであり、単位時間あたりに吐出孔から吐出するポリマの体積を吐出孔の断面積で割ることで算出した値をいう。
 本発明において、「自転速度」とは、繊維の長手方向と垂直な面において単位時間あたりに繊維が繊維断面の中心を軸として360度自転する回転数をいう。
 本発明において、「旋回気流」とは、繊維の長手方向と垂直な面において1点を中心として円周方向に連続的に回転する流れを有する気流をいう。
In the present invention, the "polymer discharge direction" refers to the direction in which the fibrous polymer is discharged from the discharge hole.
In the present invention, "torsion force" refers to a force that acts on the fiber surface so that a moment is generated in the rotational direction about the center of the fiber cross section in a plane perpendicular to the longitudinal direction of the fiber.
In the present invention, "polymer discharge speed" is the length of polymer discharged from the discharge hole in the polymer discharge direction per unit time, and the volume of polymer discharged from the discharge hole per unit time is the length of the polymer discharged from the discharge hole per unit time. The value calculated by dividing by the cross-sectional area of
In the present invention, "rotation speed" refers to the number of rotations at which the fiber rotates 360 degrees around the center of the fiber cross section per unit time in a plane perpendicular to the longitudinal direction of the fiber.
In the present invention, the term "swirling airflow" refers to an airflow that continuously rotates in the circumferential direction around one point in a plane perpendicular to the longitudinal direction of the fibers.
 本発明によれば、吐出孔から吐出された繊維状ポリマを、固化前のポリマの変形しやすい状態で高速でねじりながら延伸することにより、直径が非常に小さい繊維を製造することができる。 According to the present invention, fibers with a very small diameter can be produced by twisting and stretching the fibrous polymer discharged from the discharge hole at high speed in a state where the polymer is easily deformed before solidification.
図1は、本発明の繊維の製造装置の一実施形態を示した概略断面図である。FIG. 1 is a schematic cross-sectional view showing an embodiment of the fiber manufacturing apparatus of the present invention. 図2は、本発明の繊維の製造装置の別の実施形態を示した概略断面図である。FIG. 2 is a schematic cross-sectional view showing another embodiment of the fiber manufacturing apparatus of the present invention. 図3は、本発明の繊維の製造装置の別の実施形態を示した概略断面図である。FIG. 3 is a schematic cross-sectional view showing another embodiment of the fiber manufacturing apparatus of the present invention. 図4は、本発明の繊維の製造装置の別の実施形態を示した概略断面図である。FIG. 4 is a schematic cross-sectional view showing another embodiment of the fiber manufacturing apparatus of the present invention. 図5は、本発明の繊維の製造装置の別の実施形態を示した概略断面図である。FIG. 5 is a schematic cross-sectional view showing another embodiment of the fiber manufacturing apparatus of the present invention. 図6は、本発明の繊維の製造装置の別の実施形態を示した概略断面図である。FIG. 6 is a schematic cross-sectional view showing another embodiment of the fiber manufacturing apparatus of the present invention. 図7は、本発明の繊維の製造装置の別の実施形態を示した概略断面図である。FIG. 7 is a schematic cross-sectional view showing another embodiment of the fiber manufacturing apparatus of the present invention. 図8は、本発明の繊維の製造装置の別の実施形態を示した概略断面図である。FIG. 8 is a schematic cross-sectional view showing another embodiment of the fiber manufacturing apparatus of the present invention. 図9は、従来の繊維の製造装置の実施形態を示した概略断面図である。FIG. 9 is a schematic cross-sectional view showing an embodiment of a conventional fiber manufacturing apparatus. 図10は、従来の繊維の製造装置の実施形態を示した概略断面図である。FIG. 10 is a schematic cross-sectional view showing an embodiment of a conventional fiber manufacturing apparatus. 図11は、従来の繊維の製造装置の実施形態を示した概略断面図である。FIG. 11 is a schematic cross-sectional view showing an embodiment of a conventional fiber manufacturing apparatus. 図12は、本発明の繊維の製造装置における気流閉鎖部材の形態を示す概略図である。FIG. 12 is a schematic diagram showing the form of the airflow closing member in the fiber manufacturing apparatus of the present invention. 図13は、本発明の繊維の製造装置における気流閉鎖部材の空間での旋回流の形成の形態を示す概略図である。FIG. 13 is a schematic diagram showing the formation of a swirling flow in the space of the airflow closing member in the fiber manufacturing apparatus of the present invention. 図14は、本発明の繊維の製造装置における気流閉鎖部材の形態の例を示す概略図である。FIG. 14 is a schematic diagram showing an example of the form of the airflow closing member in the fiber manufacturing apparatus of the present invention. 図15は、本発明の繊維の製造装置の別の実施形態を示す概略断面図である。FIG. 15 is a schematic cross-sectional view showing another embodiment of the fiber manufacturing apparatus of the present invention. 図16は、エアノズルの設置角度を説明する概略図である。FIG. 16 is a schematic diagram illustrating the installation angle of the air nozzle. 図17は、エアノズルからの噴射流の噴射方向を説明する概略図である。FIG. 17 is a schematic diagram illustrating the direction of the jet flow from the air nozzle. 図18は、1本の繊維状ポリマの自転速度の測定方法を説明する模式断面図である。FIG. 18 is a schematic cross-sectional view illustrating a method for measuring the rotation speed of one fibrous polymer. 図19は、1本の繊維状ポリマの延伸力の測定方法を説明する模式断面図である。FIG. 19 is a schematic cross-sectional view illustrating a method for measuring the drawing force of one fibrous polymer. 図20は、エアノズルの設置角度を説明する概略図である。FIG. 20 is a schematic diagram illustrating the installation angle of the air nozzle. 図21は、吐出部での分子配列の概略図である。FIG. 21 is a schematic diagram of the molecular arrangement at the discharge section. 図22は、従来の繊維の製造装置の実施形態を示した概略断面図である。FIG. 22 is a schematic cross-sectional view showing an embodiment of a conventional fiber manufacturing apparatus.
 以下、図面を参照しながら、本発明の繊維の製造装置の様々な実施形態と、その製造装置を用いた繊維の製造方法について詳細に説明する。図1は、本発明の繊維の製造装置の一実施形態を示す概略断面図である。図2~8は、本発明の繊維の製造装置の別の実施形態の概略断面図である。図9~11は、従来の繊維の製造装置の実施形態の概略断面図である。各図で、図面向かって右側に図示されている図A、Bは、図面向かって左側に図示されている実施形態での線A、Bにおける断面図である。これらの図は、本発明の要点を正確に伝えるための概略図であり、図を簡略化しており、本発明の紡糸装置は、特に制限されるものではなく、また、寸法比などは実施の形態に合わせて変更可能である。また、各図中の吐出孔2から吐出された後のポリマ3は、ねじり力を分かり易く図示するために、サイズを大きく描いている。 Hereinafter, various embodiments of the fiber manufacturing apparatus of the present invention and a fiber manufacturing method using the manufacturing apparatus will be described in detail with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing an embodiment of the fiber manufacturing apparatus of the present invention. 2 to 8 are schematic cross-sectional views of other embodiments of the fiber manufacturing apparatus of the present invention. 9 to 11 are schematic cross-sectional views of embodiments of conventional fiber manufacturing apparatuses. In each figure, figures A and B shown on the right side of the drawing are cross-sectional views taken along lines A and B in the embodiment shown on the left side of the drawing. These figures are schematic diagrams for accurately conveying the main points of the present invention, and the figures are simplified, and the spinning apparatus of the present invention is not particularly limited, and the dimensional ratio etc. may vary depending on the implementation. It can be changed according to the form. Moreover, the size of the polymer 3 after being discharged from the discharge hole 2 in each figure is drawn large in order to clearly illustrate the twisting force.
 まずは、本発明の繊維の製造方法における繊維4の延伸現象について説明する。図9を参照する。一般的にメルトブローと呼ばれる従来の繊維の製造方法では、吐出孔2から吐出されたポリマ3により形成された1本の繊維4に対して対向して配置される2つのノズルにより直接噴射流11を噴射し、繊維4に対して延伸力16を付与する。ポリマ3は粘度が低い状態で吐出孔2から吐出され、延伸力16が付与されることで、繊維4がポリマ吐出方向に延伸される。この際に、繊維4内のポリマ3の分子配向が繊維の長手方向に引きそろえられる。一方で、繊維4内の分子配向が促進することで、ポリマ3が配向方向には変形しにくくなり、つまりは延伸されにくくなる。このため、従来の製造方法では、繊維4を細径化するには限界が存在する。 First, the stretching phenomenon of the fiber 4 in the fiber manufacturing method of the present invention will be explained. See FIG. 9. In the conventional fiber manufacturing method, which is generally called melt blowing, two nozzles are arranged to face a single fiber 4 formed by a polymer 3 discharged from a discharge hole 2, and a jet stream 11 is directly ejected. The fibers 4 are sprayed with a stretching force 16. The polymer 3 is discharged from the discharge hole 2 in a state of low viscosity, and by applying a stretching force 16, the fibers 4 are stretched in the polymer discharge direction. At this time, the molecular orientation of the polymer 3 within the fiber 4 is aligned in the longitudinal direction of the fiber. On the other hand, by promoting molecular orientation within the fibers 4, the polymer 3 becomes difficult to deform in the orientation direction, that is, becomes difficult to be stretched. For this reason, there is a limit to reducing the diameter of the fibers 4 using conventional manufacturing methods.
 その中で、本発明者らは、上記の課題解決のために鋭意検討を重ねた結果、繊維4の分子配向の方向に着目した。上記の通り、従来の延伸方法では、繊維4の延伸方向と、分子配向の配向とが同じ方向となることから、この方向を異ならせることで、分子配向による延伸阻害を抑制できるのではないかと考えた。 Among these, the inventors of the present invention focused on the direction of molecular orientation of the fibers 4 as a result of intensive studies to solve the above problems. As mentioned above, in the conventional stretching method, the direction in which the fibers 4 are stretched and the orientation of the molecular orientation are the same, so by making this direction different, it may be possible to suppress the inhibition of stretching due to molecular orientation. Thought.
 図21を参照して、ポリマ3の分子配向と延伸の関係について説明する。ポリマ3内部では分子鎖22が存在しており、紡糸の際に吐出孔2からポリマ3が吐出される際に繊維4の長手方向に揃えられ、延伸力16により延ばされることにより更に引きそろえられ、図(a)に示すように分子鎖22が配向する。ポリマ3内の分子鎖22が配向することで配向方向に分子鎖22が変形する余裕がなくなり、配向方向へのポリマ3の延伸が抑制される。つまり、従来の延伸方法では、長手方向のみに延伸力16を付与してポリマ3を延伸するため、ポリマ3の延伸により長手方向に分子鎖22が配向した後は、長手方向へのさらなる延伸が抑制される。そこで、延伸の際に分子鎖22の配向を乱すことが延伸抑制を防止するために有効ではないかと考えた。延伸の際に長手方向への延伸力16と合わせて、長手方向と垂直な方向にポリマ3を移動させる力を付与することで、ポリマ3内の分子鎖22の配向を乱すことを検討した。その手段として繊維4を吐出方向と垂直な断面の中心を軸として回転、すなわち自転する方向にねじり力を付与する方法に着目した。繊維4が自転することにより繊維4の断面でポリマ3が移動し、図(b)に示すように分子鎖22の配向が乱れる。特にポリマ3が溶融状態では分子鎖22が移動しやすい状態であるため、繊維4を自転させることで、分子鎖22を乱す効果をより得ることが可能となる。 With reference to FIG. 21, the relationship between molecular orientation and stretching of the polymer 3 will be explained. Molecular chains 22 exist inside the polymer 3, and when the polymer 3 is discharged from the discharge hole 2 during spinning, they are aligned in the longitudinal direction of the fibers 4, and are further aligned by being stretched by the stretching force 16. , the molecular chains 22 are oriented as shown in Figure (a). Since the molecular chains 22 in the polymer 3 are oriented, there is no room for the molecular chains 22 to deform in the orientation direction, and stretching of the polymer 3 in the orientation direction is suppressed. In other words, in the conventional stretching method, the polymer 3 is stretched by applying a stretching force 16 only in the longitudinal direction. Therefore, after the molecular chains 22 are oriented in the longitudinal direction by stretching the polymer 3, further stretching in the longitudinal direction is required. suppressed. Therefore, we considered that disturbing the orientation of the molecular chains 22 during stretching would be effective in preventing stretching inhibition. We considered disturbing the orientation of the molecular chains 22 in the polymer 3 by applying a force to move the polymer 3 in a direction perpendicular to the longitudinal direction in addition to the stretching force 16 in the longitudinal direction during stretching. As a means for this purpose, we focused on a method of rotating the fibers 4 about the center of the cross section perpendicular to the discharge direction, that is, applying a twisting force in the direction of rotation. As the fibers 4 rotate, the polymer 3 moves in the cross section of the fibers 4, and the orientation of the molecular chains 22 is disturbed as shown in FIG. In particular, when the polymer 3 is in a molten state, the molecular chains 22 are easily mobile, so by rotating the fibers 4, it becomes possible to obtain a greater effect of disturbing the molecular chains 22.
 このように、ポリマ3内の分子が配向するポリマ3の吐出部、繊維4の延伸部において、延伸方向である繊維4の長手方向に対して垂直方向に連続的にねじり力を付与して、繊維4を高速で自転させることにより、長手方向の分子配向を乱して繊維4を延伸することができる。 In this way, a twisting force is continuously applied in the direction perpendicular to the longitudinal direction of the fibers 4, which is the stretching direction, at the discharge section of the polymer 3 where the molecules in the polymer 3 are oriented and at the stretching section of the fibers 4. By rotating the fibers 4 at high speed, the longitudinal molecular orientation can be disturbed and the fibers 4 can be drawn.
 また、図1に示すように旋回流12によりねじり力を繊維4に付与する方法では、繊維4が自転に加えて、吐出部を固定点として旋回流12の中心を軸とした公転もすることにより、長手方向の分子配向を乱す作用が促進し、繊維4をより効率的に延伸することができる。旋回流12によりねじり力を付与する構成では、旋回流12により繊維4が、吐出孔2からポリマ吐出方向に延びる直線を中心軸として、繊維4が高速で旋回する。この旋回運動により繊維4に遠心力が作用することで繊維4の延伸を促進し、吐出後の繊維4が高速で旋回することで繊維4を細径化することが可能になる。繊維4の公転速度は100回/秒以上であることが好ましく。500回/秒以上であることがより好ましい。 In addition, in the method of applying twisting force to the fibers 4 by the swirling flow 12 as shown in FIG. 1, the fibers 4 not only rotate on their own axis but also revolve around the center of the swirling flow 12 with the discharge part as a fixed point. This promotes the action of disturbing the molecular orientation in the longitudinal direction, making it possible to draw the fibers 4 more efficiently. In the configuration in which the twisting force is applied by the swirling flow 12, the fibers 4 are swirled at high speed by the swirling flow 12, with the straight line extending from the discharge hole 2 in the polymer discharge direction as the central axis. This swirling motion causes centrifugal force to act on the fibers 4, promoting the stretching of the fibers 4, and the fibers 4 after being discharged swirl at high speed, making it possible to reduce the diameter of the fibers 4. The revolution speed of the fibers 4 is preferably 100 times/second or more. More preferably, the speed is 500 times/second or more.
 このような中で、本発明者らは検討を進める中で繊維の細径化のためには、繊維4が高速で自転することが必要であることを見出した。図9に示すような従来の製造方法では、繊維4に対して長手方向の延伸力16を付与するのみであり、延伸を促進するねじり力を繊維4に付与することはできない。また、図10に示すような従来の製造方法では、旋回するように角度をつけて設置した気流ノズル5から噴射流11を噴射する構成にしているが、噴射流11を大気中に噴射するため、噴射流11が拡散して旋回流を形成することができず、繊維4を十分な速度で自転させるようなねじり力を付与することができない。本発明の製造方法で繊維4を延伸することで、延伸方向に対して繊維4が変形しやすい状態を保ちながら繊維4を延伸することが可能となり、繊維4を細径化できる。このように、繊維4を長手方向と垂直な断面の中心を軸としてを自転させながら繊維4の長手方向に作用する延伸力16を加えることで、繊維4への延伸効率が増大して、繊維4を細径化できることを見出した。 Under these circumstances, the inventors of the present invention discovered through their studies that in order to reduce the diameter of the fibers, it is necessary for the fibers 4 to rotate at high speed. In the conventional manufacturing method as shown in FIG. 9, only a stretching force 16 in the longitudinal direction is applied to the fibers 4, and it is not possible to apply a twisting force to the fibers 4 to promote stretching. Furthermore, in the conventional manufacturing method shown in FIG. 10, the jet stream 11 is injected from the air nozzle 5 installed at an angle so as to rotate, but since the jet stream 11 is injected into the atmosphere, , the jet stream 11 cannot diffuse to form a swirling flow, and it is not possible to apply a twisting force that causes the fibers 4 to rotate at a sufficient speed. By stretching the fibers 4 using the manufacturing method of the present invention, the fibers 4 can be stretched while maintaining a state in which the fibers 4 are easily deformed in the stretching direction, and the diameter of the fibers 4 can be reduced. In this way, by applying the stretching force 16 that acts in the longitudinal direction of the fiber 4 while rotating the fiber 4 about the center of the cross section perpendicular to the longitudinal direction, the stretching efficiency of the fiber 4 increases and the fiber It was discovered that it is possible to reduce the diameter of 4.
 繊維4の細径化のためには、ポリマ3の吐出速度に対する繊維4の自転速度が重要になる。繊維4の紡糸においては、吐出孔2の吐出部近傍で延伸現象が発生しやすい。吐出速度に対して自転速度が遅い場合、吐出される繊維4の長さに対する自転回数が少ない、すなわち繊維4中の分子に対して作用するねじり力が小さくなり、ねじり力による分子配列を乱す効果が十分に得られないために延伸促進の効果が得られない。そこで、繊維4の吐出速度V(mm/秒)と自転速度W(回/秒)とが、W/V≧0.1(回/mm)を満たすように自転させることが必要である。好ましくは、W/V≧0.2(回/mm)である。また、吐出線速度に対して自転速度が速い場合、吐出される繊維4の長さに対する自転回数が多い、すなわち、繊維4に対して作用するねじり力が大きくなり、繊維4に発生するせん断応力により繊維4が破断する可能性があるため、吐出線速度と自転回数を調整し、W/V≦5000(回/mm)とすることが好ましい。 In order to reduce the diameter of the fibers 4, the rotation speed of the fibers 4 relative to the discharge speed of the polymer 3 is important. When spinning the fiber 4, a stretching phenomenon tends to occur near the discharge portion of the discharge hole 2. When the rotation speed is slow compared to the discharge speed, the number of rotations relative to the length of the fibers 4 to be discharged is small, that is, the twisting force acting on the molecules in the fibers 4 is small, and the effect of disturbing the molecular arrangement due to the twisting force. is not obtained sufficiently, so that the effect of promoting stretching cannot be obtained. Therefore, it is necessary to rotate the fibers 4 so that the discharge speed V (mm/sec) and the rotation speed W (times/sec) satisfy W/V≧0.1 (times/mm). Preferably, W/V≧0.2 (times/mm). Furthermore, when the rotation speed is faster than the discharge linear velocity, the number of rotations relative to the length of the discharged fibers 4 is large, that is, the torsional force acting on the fibers 4 becomes large, and the shear stress generated in the fibers 4 increases. Since the fibers 4 may be broken due to this, it is preferable to adjust the discharge linear velocity and the number of rotations so that W/V≦5000 (times/mm).
 なお、紡糸中の繊維の自転速度を測定することは難しいため、本発明のおける自転速度は、後述する実施例での「(1)繊維の自転速度(回/秒)」で説明しているとおり、静止中の繊維の自転速度を測定した値を用いる。 Since it is difficult to measure the rotation speed of fibers during spinning, the rotation speed in the present invention is explained in "(1) Fiber rotation speed (rotations/second)" in the examples below. As shown above, the measured value of the rotation speed of the fiber at rest is used.
 また、繊維4を自転させるねじり力は延伸現象が活発に発生している吐出部から近いほうがねじり力の影響を受けやすく、ねじり延伸効果が得られやすい。そこで、ねじり力を作用させる位置として、口金1の吐出孔2から吐出方向の距離が100mm以内とするのが好ましく、50mm以内とするのがより好ましい。また、延伸が促進している区間で繊維4が自転することにより本発明の効果が得られるため、繊維4においてポリマ3が結晶性ポリマの場合には融点-50℃以上の温度の区間の少なくとも1ヶ所以上でW/V≧0.1(回/mm)であることが好ましい。 Further, the twisting force that causes the fibers 4 to rotate on their own axis is more likely to be influenced by the closer to the discharge part where the stretching phenomenon is actively occurring, and the torsional stretching effect is more likely to be obtained. Therefore, the position where the twisting force is applied is preferably within 100 mm, more preferably within 50 mm, from the discharge hole 2 of the mouthpiece 1 in the discharge direction. Furthermore, since the effect of the present invention is obtained by the fiber 4 rotating on its own axis in the section where stretching is promoted, if the polymer 3 in the fiber 4 is a crystalline polymer, at least the section where the temperature is higher than the melting point of -50°C is obtained. It is preferable that W/V≧0.1 (times/mm) at one or more locations.
 次に、このような製造方法を実現するための装置構成を示す。繊維4を自転させるためには、旋回流によって繊維4にねじり力を発生させる方法と、回転する回転ローラに直接繊維4を接触させて、繊維4にねじり力を作用させる方法とがある。 Next, a device configuration for realizing such a manufacturing method will be shown. In order to cause the fibers 4 to rotate, there are two methods: one method is to generate a twisting force on the fibers 4 by a swirling flow, and the other is to bring the fibers 4 into direct contact with a rotating roller to apply a twisting force to the fibers 4.
 図1を参照して、本発明の繊維の製造装置を説明する。図1は旋回流によって繊維4にねじり力を発生させる繊維の製造装置の一実施形態である。図1に示す繊維の製造装置100は、繊維4の原料であるポリマ3を吐出する吐出孔2を有する口金1と、吐出孔2から吐出されたポリマ3の周囲に配置され、噴射流11を噴射するエアノズル5と、吐出孔2のポリマ吐出方向の下方に配置され、ポリマ3および繊維4が通過する空間7と、空間7を囲繞する壁8と、を有する気流閉鎖部材6と、繊維4を巻き取る巻き取りローラ14から構成される。この装置においては、エアノズル5から噴射流11を気流閉鎖部材6の壁8に向けて噴射し、空間7内に旋回流12を形成させる。そして、口金1から吐出されたポリマ3によって得られた繊維4を、この旋回流12の中に通過させて、その後巻取ローラ14により巻き取る。 With reference to FIG. 1, the fiber manufacturing apparatus of the present invention will be explained. FIG. 1 shows an embodiment of a fiber manufacturing apparatus that generates twisting force on fibers 4 by swirling flow. The fiber manufacturing apparatus 100 shown in FIG. An air flow closing member 6 having an air nozzle 5 for spraying, a space 7 disposed below the discharge hole 2 in the polymer discharge direction through which the polymer 3 and the fibers 4 pass, and a wall 8 surrounding the space 7; It consists of a take-up roller 14 that takes up the . In this device, a jet stream 11 is injected from an air nozzle 5 toward a wall 8 of an air flow closing member 6 to form a swirling flow 12 within a space 7 . Fibers 4 obtained from the polymer 3 discharged from the nozzle 1 are passed through this swirling flow 12 and then wound up by a winding roller 14.
 図12を参照して、気流閉鎖部材6の具体的な構成を説明する。気流閉鎖部材6は円筒状の壁8により構成されており、壁8で周囲を囲まれた空間7が気流通路になっている。空間7は、気流閉鎖部材6の一方の端面から他方の端面を貫く貫通穴である。空間7は、全長に渡って壁8で全周囲を囲まれている必要はなく、全長のうちの一部において壁8で全周囲を囲まれていればよい。 A specific configuration of the airflow closing member 6 will be described with reference to FIG. 12. The airflow closing member 6 is constituted by a cylindrical wall 8, and a space 7 surrounded by the wall 8 serves as an airflow passage. The space 7 is a through hole that penetrates from one end surface of the airflow closing member 6 to the other end surface. The space 7 does not need to be surrounded by walls 8 over its entire length, but only needs to be surrounded by walls 8 over a portion of its entire length.
 図13、17を参照して、気流閉鎖部材6による気流の流れを説明する。図13は、本発明の繊維の製造装置における気流閉鎖部材の空間での旋回流の形成の形態を示す概略図であり、図17は、エアノズルからの噴射流の噴射方向を説明する概略図である。図13に示すように、エアノズル5から気流閉鎖部材6の壁8に衝突するように、繊維4の円周方向に速度成分を持つ噴射流11を空間7に向けて噴射することで高速の旋回流12が形成される。ここで、図17に示すように、噴射流11の噴射方向は、エアノズル5の先端から繊維4の中心に向かう方向を半径方向、半径方向から90°傾けた方向を円周方向とする。 The flow of airflow by the airflow closing member 6 will be explained with reference to FIGS. 13 and 17. FIG. 13 is a schematic diagram illustrating the formation of a swirling flow in the space of the airflow closing member in the fiber manufacturing apparatus of the present invention, and FIG. 17 is a schematic diagram illustrating the direction of the jet flow from the air nozzle. be. As shown in FIG. 13, a jet stream 11 having a velocity component in the circumferential direction of the fiber 4 is injected toward the space 7 so as to collide with the wall 8 of the air flow closing member 6 from the air nozzle 5, thereby creating a high-speed swirl. A stream 12 is formed. Here, as shown in FIG. 17, the injection direction of the jet flow 11 is defined as the radial direction, which is the direction from the tip of the air nozzle 5 toward the center of the fiber 4, and the circumferential direction, which is the direction inclined by 90 degrees from the radial direction.
 再び図1を参照する。線Aにおける断面図に示すように、エアノズル5から気流閉鎖部材6の壁8に衝突するように、繊維4の円周方向に速度成分を持つ噴射流11を噴射する。そうすると、線Bにおける断面図に示すように、繊維4の周囲に旋回流12が形成される。旋回流12の中を繊維4が通過することにより、繊維4にねじり力17が作用して繊維4が高速で自転する。これにより、繊維4に、繊維4の長手方向に作用する延伸力16と繊維4の長手方向と垂直な方向に作用するねじり力17が付与されて繊維4が延伸する。この延伸方法により、繊維4の細径化を促進することができるため、安定して細径な繊維4を得ることが可能になる。 Refer to FIG. 1 again. As shown in the cross-sectional view along line A, a jet stream 11 having a velocity component in the circumferential direction of the fibers 4 is injected from the air nozzle 5 so as to collide with the wall 8 of the air flow closing member 6 . Then, as shown in the cross-sectional view along line B, a swirling flow 12 is formed around the fibers 4. As the fibers 4 pass through the swirling flow 12, a twisting force 17 acts on the fibers 4, causing the fibers 4 to rotate at high speed. As a result, a stretching force 16 acting in the longitudinal direction of the fiber 4 and a twisting force 17 acting in a direction perpendicular to the longitudinal direction of the fiber 4 are applied to the fiber 4, and the fiber 4 is stretched. This stretching method can promote the reduction in the diameter of the fibers 4, so that it is possible to stably obtain the fibers 4 with a small diameter.
 図10は、従来の繊維の製造装置の実施形態を示した概略断面図である。図10に示す繊維の製造装置100Iのような周囲に壁8のない開放空間に直接エアノズル5から噴射流11を噴射する方法では、噴射直後に噴射流11が膨張して拡散するため、旋回流12を形成することが困難であり、繊維4が十分な自転速度で回転するようなねじり力を発生させることができない。繊維4が十分に自転するような旋回流を発生させるためには、噴射流11の拡散を防止する必要がある。本願発明の繊維の製造装置100では、気流閉鎖部材6を設置することにより、噴射流11の拡散を防止でき、繊維4の細径化が可能になる。 FIG. 10 is a schematic cross-sectional view showing an embodiment of a conventional fiber manufacturing apparatus. In the method of directly injecting the jet stream 11 from the air nozzle 5 into an open space without surrounding walls 8, such as the fiber manufacturing apparatus 100I shown in FIG. 12, and it is difficult to generate a twisting force that causes the fibers 4 to rotate at a sufficient rotation speed. In order to generate a swirling flow that causes the fibers 4 to sufficiently rotate, it is necessary to prevent the jet flow 11 from spreading. In the fiber manufacturing apparatus 100 of the present invention, by installing the air flow closing member 6, it is possible to prevent the jet flow 11 from spreading, and it is possible to reduce the diameter of the fiber 4.
 図16を参照して、繊維4の走行方向に対するエアノズル5のエア噴射角度について説明する。図16は、エアノズルの設置角度を説明する概略図である。繊維4の走行方向に対して角度αが小さいと、旋回流12の回転速度成分が弱くなり易い。逆に、角度αが90°より大きいと、繊維4の走行方向に対して反対方向に気流を噴射するため、繊維4の延伸方向と反対方向の気流が発生して、繊維4の延伸が妨げられ易い。そのため、エア噴射方向と繊維4の走行方向の角度αは5~90°とすることが好ましい。 With reference to FIG. 16, the air injection angle of the air nozzle 5 with respect to the running direction of the fibers 4 will be explained. FIG. 16 is a schematic diagram illustrating the installation angle of the air nozzle. If the angle α is small with respect to the running direction of the fibers 4, the rotational speed component of the swirling flow 12 tends to become weak. On the other hand, if the angle α is larger than 90°, the airflow is injected in the opposite direction to the running direction of the fibers 4, so an airflow in the opposite direction to the stretching direction of the fibers 4 is generated, which hinders the stretching of the fibers 4. It's easy to get caught. Therefore, the angle α between the air injection direction and the running direction of the fibers 4 is preferably 5 to 90°.
 図20を参照して、繊維4の走行方向に垂直な断面でのエアノズル5からの噴射流11の噴射角度について説明する。図20は、エアノズルの繊維の走行方向に垂直な断面での設置角度を説明する概略図である。エアノズル5の吐出部の中心と繊維4の中心とを結ぶ直線(エアノズル5と繊維4とを結ぶ最短な直線)が噴射流11の噴射方向となす角度βが小さいと、繊維4に直接噴射流11が衝突し、旋回流12を形成しにくくなり易い。逆に、角度βが大きいと、繊維4と反対方向に噴射しエネルギーの損失が発生し易くなる。そのため、エアノズル5の吐出部の中心と繊維4の中心を結ぶ直線がエアの噴射方向となす角度βは5~90°とすることが好ましい。 With reference to FIG. 20, the injection angle of the jet stream 11 from the air nozzle 5 in a cross section perpendicular to the running direction of the fibers 4 will be explained. FIG. 20 is a schematic diagram illustrating the installation angle of the air nozzle in a cross section perpendicular to the running direction of the fibers. If the angle β between the straight line connecting the center of the discharge part of the air nozzle 5 and the center of the fiber 4 (the shortest straight line connecting the air nozzle 5 and the fiber 4) and the injection direction of the jet flow 11 is small, the jet flow will be directed directly to the fiber 4. 11 collide with each other, making it difficult to form a swirling flow 12. On the other hand, if the angle β is large, the jet will be injected in the opposite direction to the fibers 4 and energy loss will likely occur. Therefore, the angle β between the straight line connecting the center of the discharge part of the air nozzle 5 and the center of the fiber 4 and the air jet direction is preferably 5 to 90 degrees.
 図2は、本発明の繊維の製造装置の別の実施形態を示した概略断面図である。図1の繊維の製造装置100では、1つのエアノズル5で噴射流11を供給し、気流閉鎖部材6の内部で旋回流12を形成する。一方、図2に示す繊維の製造装置100Aのように、エアノズル5を多く設置することにより、噴射流11を分散させて供給することができ、より安定して旋回流12を形成することが可能になる。したがって、エアノズル5は2つ以上で噴射することが好ましく、3つ以上で噴射することがより好ましい。 FIG. 2 is a schematic cross-sectional view showing another embodiment of the fiber manufacturing apparatus of the present invention. In the fiber manufacturing apparatus 100 of FIG. 1, a jet flow 11 is supplied by one air nozzle 5, and a swirl flow 12 is formed inside the air flow closing member 6. On the other hand, by installing many air nozzles 5 as in the fiber manufacturing apparatus 100A shown in FIG. 2, the jet flow 11 can be distributed and supplied, and the swirl flow 12 can be formed more stably. become. Therefore, it is preferable that two or more air nozzles 5 inject, and more preferably three or more air nozzles 5 inject.
 エアノズル5を2つ以上使用する場合、均等に噴射流11を供給することにより、乱れの少ない旋回流12を形成することが可能になり、繊維4を連続的に自転させることが可能になる。したがって、エアノズル5を2つ以上使用する際には、図2のAに点線で示す円上にエアノズル5を均等に配置し、この円の円周方向に噴射流11を噴射することが好ましい。
 気流閉鎖部材6の空間7で旋回流12を形成するために、空間7の断面積よりエアノズルのエア流路の断面積が小さいほうが好ましい。エアノズル5のエア流路の断面形状は、円形、矩形に限らずどのような断面形状でもよい。
When two or more air nozzles 5 are used, by uniformly supplying the jet flow 11, it becomes possible to form a swirling flow 12 with little turbulence, and it becomes possible to cause the fibers 4 to rotate continuously. Therefore, when using two or more air nozzles 5, it is preferable to arrange the air nozzles 5 evenly on the circle shown by the dotted line in A in FIG. 2, and to inject the jet stream 11 in the circumferential direction of this circle.
In order to form the swirling flow 12 in the space 7 of the airflow closing member 6, it is preferable that the cross-sectional area of the air flow path of the air nozzle is smaller than the cross-sectional area of the space 7. The cross-sectional shape of the air flow path of the air nozzle 5 is not limited to circular or rectangular, but may be any cross-sectional shape.
 図3は、本発明の繊維の製造装置の別の実施形態を示した概略断面図である。図1の繊維の製造装置100では、気流閉鎖部材6の空間の水平方向の断面積は、上部開口9から下部開口10まで一定である。しかしながら、気流閉鎖部材6の空間7にエアノズル5から噴射流11を取り込むには、気流閉鎖部材6の上部開口9での空間7の断面積は大きいほうが取り込みやすく、下部開口10での空間7の断面積が小さいほうが、気流閉鎖部材6内での気流が増速し、旋回流12が増速しやすくなる。したがって、図3に示す繊維の製造装置100Bのように、空間7は上部開口9より下部開口10で断面積が減少する構造とすることが好ましい。
 気流閉鎖部材6で形成した旋回流12により、繊維4を自転させるため、旋回流12の中心と繊維4の吐出方向が一致することで効率的に繊維4を自転させることが可能になる。したがって、気流閉鎖部材6の下部開口10での旋回流のらせんの中心軸が繊維4の走行方向と一致していることが好ましい。
FIG. 3 is a schematic cross-sectional view showing another embodiment of the fiber manufacturing apparatus of the present invention. In the fiber manufacturing apparatus 100 of FIG. 1, the horizontal cross-sectional area of the space of the airflow closing member 6 is constant from the upper opening 9 to the lower opening 10. However, in order to take in the jet stream 11 from the air nozzle 5 into the space 7 of the airflow closing member 6, the larger the cross-sectional area of the space 7 at the upper opening 9 of the airflow closing member 6, the easier it is to take in the jet stream 11 from the air nozzle 5. The smaller the cross-sectional area, the faster the airflow within the airflow closing member 6 and the faster the swirling flow 12 will be. Therefore, as in the fiber manufacturing apparatus 100B shown in FIG. 3, it is preferable that the space 7 has a structure in which the cross-sectional area is smaller at the lower opening 10 than at the upper opening 9.
Since the swirling flow 12 formed by the airflow closing member 6 causes the fibers 4 to rotate, the center of the swirling flow 12 and the direction in which the fibers 4 are discharged coincide, making it possible to efficiently rotate the fibers 4. Therefore, it is preferable that the central axis of the spiral flow at the lower opening 10 of the air flow closing member 6 coincides with the traveling direction of the fibers 4.
 気流閉鎖部材6は噴射流11から旋回流12を形成する部材である。図1に示す繊維の製造装置100のように、気流閉鎖部材6の内部壁の略半分で形成した旋回流12を繊維4に衝突させてもよいし、図3に示す繊維の製造装置100Bのように、気流閉鎖部材6の下部開口10近傍のみから旋回流12を繊維4に衝突させてもよい。 The airflow closing member 6 is a member that forms a swirling flow 12 from the jet flow 11. As in the fiber manufacturing apparatus 100 shown in FIG. 1, the swirling flow 12 formed by approximately half of the inner wall of the airflow closing member 6 may collide with the fibers 4, or as in the fiber manufacturing apparatus 100B shown in FIG. As such, the swirling flow 12 may be caused to collide with the fibers 4 only from the vicinity of the lower opening 10 of the airflow closing member 6.
 図14は、本発明の繊維の製造装置における気流閉鎖部材の形態の例を示す概略図である。図14に例を示すように、気流閉鎖部材6は様々な形態をとることが可能である。気流閉鎖部材6の形状は(a)のように空間7の水平方向の断面が円形かつ一定の形状でもよく、(b)のように空間7の水平方向の断面が円形かつテーパ状の形状でもよい。また、(c)のように空間7の水平方向の断面が矩形かつ一定の形状でもよく、(d)のように空間7の水平方向の断面が円形かつ壁に通路が形成された形状でもよい。また、気流閉鎖部材6の形態は(a)~(d)以外の形態であってもよい。 FIG. 14 is a schematic diagram showing an example of the form of the airflow closing member in the fiber manufacturing apparatus of the present invention. As illustrated in FIG. 14, the airflow closure member 6 can take various forms. The shape of the airflow closing member 6 may be such that the horizontal cross section of the space 7 is circular and constant as shown in (a), or it may be a shape where the horizontal cross section of the space 7 is circular and tapered as shown in (b). good. Further, the horizontal cross section of the space 7 may be rectangular and constant as shown in (c), or the horizontal cross section of the space 7 may be circular and a passage is formed in the wall as shown in (d). . Further, the shape of the airflow closing member 6 may be other than those shown in (a) to (d).
 図15は、本発明の繊維の製造装置における別の実施形態を示す概略断面図である。なお、図15では、巻取ローラ14の図示を省略している。図1の繊維の製造装置100では、気流閉鎖部材6の上部開口9において、噴射流11以外の気体の影響を受けることにより、旋回流12の供給が不安定になることがある。したがって、図15に示す繊維の製造装置100Kおよび100Lのように、気流閉鎖部材6の上部開口9は、エアノズル5のエア噴射口以外を塞いでもよい。 FIG. 15 is a schematic cross-sectional view showing another embodiment of the fiber manufacturing apparatus of the present invention. In addition, in FIG. 15, illustration of the winding roller 14 is omitted. In the fiber manufacturing apparatus 100 of FIG. 1, the supply of the swirling flow 12 may become unstable due to the influence of gas other than the jet flow 11 at the upper opening 9 of the airflow closing member 6. Therefore, as in the fiber manufacturing apparatuses 100K and 100L shown in FIG. 15, the upper opening 9 of the airflow closing member 6 may close the air nozzle 5 other than the air injection port.
 気流閉鎖部材6の空間7の断面積が狭すぎると、繊維4を通過させた際に繊維4が気流閉鎖部材6の壁面に付着することで紡糸性が悪化し易くなる。一方、断面積が広すぎると、旋回流12が減速して、繊維4を自転させるためのねじり力が弱くなり易い。そのため、空間7の最も断面積が小さい面での断面積は1mm以上かつ100mm以下であることが好ましい。 If the cross-sectional area of the space 7 of the airflow closure member 6 is too narrow, the fibers 4 will adhere to the wall surface of the airflow closure member 6 when the fibers 4 are passed through, resulting in poor spinnability. On the other hand, if the cross-sectional area is too wide, the swirling flow 12 is likely to decelerate and the twisting force for causing the fibers 4 to rotate on their own axis becomes weak. Therefore, the cross-sectional area of the space 7 at the plane with the smallest cross-sectional area is preferably 1 mm 2 or more and 100 mm 2 or less.
 図7は、本発明の繊維の製造装置における別の実施形態を示す概略断面図である。図7の繊維の製造装置100Fでは、口金1が複数の吐出孔2を有し、複数の吐出孔2からポリマ3をそれぞれ吐出し、吐出された複数の繊維4を延伸する。また、繊維の製造装置100Fは、吐出孔2の数より1つ多くエアノズル5を有し、1つの吐出孔2を挟んで対向するようにジグザグに配置されたエアノズル5から噴射流11を噴出して、1つの繊維4の周りにそれぞれ旋回流12を形成する。1つの閉鎖気流部材6に対して複数の吐出孔2を有する口金1を使用し、各吐出孔2から吐出される繊維4のそれぞれに旋回流12が発生するように、複数のエアノズル5から噴射流11を噴射する。繊維の製造装置100Fでは、細径な繊維4の生産能力を向上することができる。 FIG. 7 is a schematic cross-sectional view showing another embodiment of the fiber manufacturing apparatus of the present invention. In the fiber manufacturing apparatus 100F of FIG. 7, the die 1 has a plurality of discharge holes 2, and the polymer 3 is discharged from each of the plurality of discharge holes 2, and the discharged plurality of fibers 4 are drawn. Furthermore, the fiber manufacturing apparatus 100F has one more air nozzles 5 than the number of discharge holes 2, and jets a jet stream 11 from the air nozzles 5 arranged in a zigzag manner so as to face each other with one discharge hole 2 in between. Thus, a swirling flow 12 is formed around each fiber 4. A mouthpiece 1 having a plurality of discharge holes 2 is used for one closed airflow member 6, and jetting is performed from a plurality of air nozzles 5 so that a swirling flow 12 is generated in each of the fibers 4 discharged from each discharge hole 2. Stream 11 is injected. In the fiber manufacturing apparatus 100F, the production capacity of small diameter fibers 4 can be improved.
 図5は、本発明の繊維の製造装置における別の実施形態を示す概略断面図であり、回転する回転ローラに直接繊維を接触させて、繊維にねじり力を作用させるものである。図5に示す繊維の製造装置100Dは、、ポリマ3を吐出する吐出孔2を有する口金1と、吐出孔2から吐出されるポリマ3を延伸した繊維4に接触するように配置された回転ローラ13と、繊維4を巻き取る巻取ローラ14と、から構成される。この装置においては、口金1よりポリマ3が吐出されて得られた繊維4を、回転ローラ13に接触させた状態で、回転ローラ13を回転させて繊維4にねじり力17を作用させて、巻取ローラ14により巻き取る。繊維の製造装置100Dでは、繊維4に長手方向に作用する延伸力16と長手方向と垂直な方向に作用するねじり力17とを付与した状態で繊維4を延伸する。これにより、繊維4の細径化を促進することができるため、安定して細径な繊維4を得ることが可能になる。 FIG. 5 is a schematic cross-sectional view showing another embodiment of the fiber manufacturing apparatus of the present invention, in which the fiber is brought into direct contact with a rotating roller to apply a twisting force to the fiber. A fiber manufacturing apparatus 100D shown in FIG. 5 includes a die 1 having a discharge hole 2 for discharging a polymer 3, and a rotating roller disposed so as to come into contact with fibers 4 made by stretching the polymer 3 discharged from the discharge hole 2. 13, and a take-up roller 14 for winding up the fiber 4. In this device, the fibers 4 obtained by discharging the polymer 3 from the mouthpiece 1 are rolled by rotating the rotating roller 13 to apply a twisting force 17 to the fibers 4 while in contact with the rotating roller 13. It is wound up by the take-up roller 14. In the fiber manufacturing apparatus 100D, the fibers 4 are stretched with a stretching force 16 acting on the fibers 4 in the longitudinal direction and a twisting force 17 acting on the fibers 4 in a direction perpendicular to the longitudinal direction. Thereby, it is possible to promote the reduction in the diameter of the fibers 4, so that it is possible to stably obtain the fibers 4 having a small diameter.
 繊維の製造装置100Dでは、回転ローラ13は高速で回転するため、回転ローラ13の側面の角部で走行中の繊維4が衝突して繊維4が切断してしまう場合がある。したがって、回転ローラ13の側面部の角は曲面とすることが好ましい。
 回転ローラ13は走行する繊維4と接触することから、連続的に運転すると繊維4と接触する回転ローラ13の側面部が摩耗する。したがって、回転ローラ13の側面部の材質はセラミックスとすることが好ましい。
 回転ローラ13の軸の設置角度は、図5では繊維4の走行方向と平行に設置しているが、繊維4にねじり力17を作用させることができればよく、繊維4の走行方向と平行な方向から0~85度の範囲で傾けて配置してもよい。
In the fiber manufacturing apparatus 100D, since the rotating roller 13 rotates at high speed, the running fibers 4 may collide with the corners of the side surfaces of the rotating roller 13, causing the fibers 4 to be cut. Therefore, it is preferable that the corners of the side surfaces of the rotating roller 13 are curved.
Since the rotating roller 13 comes into contact with the traveling fibers 4, the side surface of the rotating roller 13 that comes into contact with the fibers 4 will wear out if the rotating roller 13 is continuously operated. Therefore, it is preferable that the material of the side surface of the rotating roller 13 is ceramic.
The installation angle of the shaft of the rotating roller 13 is parallel to the running direction of the fibers 4 in FIG. It may be arranged at an angle in the range of 0 to 85 degrees.
 図8は、本発明の繊維の製造装置における別の実施形態を示す概略断面図である。図8に示す繊維の製造装置100Gでは、効率的に繊維4にねじり力17を作用させるために、1つの回転ローラ13の周囲に複数の口金1を配置し、各口金1から吐出される複数の繊維4を、1つの回転ローラ13と接触させて、ねじり力を付与して紡糸する構成としている。繊維の製造装置100Gでは、細径な繊維4の生産能力を向上することができる。 FIG. 8 is a schematic cross-sectional view showing another embodiment of the fiber manufacturing apparatus of the present invention. In the fiber manufacturing apparatus 100G shown in FIG. 8, in order to efficiently apply twisting force 17 to the fibers 4, a plurality of spindles 1 are arranged around one rotating roller 13, and a plurality of spindles 1 are discharged from each spindle 1. The fibers 4 are brought into contact with one rotating roller 13, and twisted force is applied to the fibers 4 for spinning. In the fiber manufacturing apparatus 100G, the production capacity of small diameter fibers 4 can be improved.
 次に、本発明における共通の好ましい形態について説明する。
 図1、7を参照する。繊維4の回収方法は、図1に示すような巻取ローラ10に限らず、図7に示すようなコンベア12や、ファイバードラム等を用いても回収してもよい。コンベア12やファイバードラムを用いることにより、回収位置で繊維4の位置を制限することなく、繊維4を走行させることが可能になるため、繊維4の位置を拘束することなく自由にねじることが可能になり、延伸の効果を高めることができる。
Next, common preferred embodiments of the present invention will be explained.
Refer to FIGS. 1 and 7. The method for collecting the fibers 4 is not limited to the take-up roller 10 as shown in FIG. 1, but may also be performed using a conveyor 12 as shown in FIG. 7, a fiber drum, or the like. By using the conveyor 12 and fiber drum, it is possible to run the fibers 4 without restricting the position of the fibers 4 at the collection position, so the fibers 4 can be twisted freely without restricting their positions. This makes it possible to enhance the stretching effect.
 本発明は、極めて汎用性の高い発明であり、公知の繊維全ての製造においてに適用できる。従って、繊維を構成するポリマにより特に限られるものではない。例えば、繊維4を構成するポリマの一例を挙げれば、ポリエステル、ポリアミド、ポリフェニレンサルファイド、ポリオレフィン、ポリエチレン、ポリプロピレン等々が挙げられる。更に、上記したポリマに、紡糸安定性等を損なわない範囲で、二酸化チタン等の艶消し剤、酸化ケイ素、カオリン、着色防止剤、安定剤、抗酸化剤、消臭剤、難燃剤、糸摩擦低減剤、着色顔料、表面改質剤等の各種機能性粒子や有機化合物等の添加剤が含有されていても良く、共重合が含まれても良い。 The present invention is extremely versatile and can be applied to the production of all known fibers. Therefore, it is not particularly limited by the polymer constituting the fiber. For example, examples of polymers constituting the fibers 4 include polyester, polyamide, polyphenylene sulfide, polyolefin, polyethylene, polypropylene, and the like. Furthermore, to the above-mentioned polymer, matting agents such as titanium dioxide, silicon oxide, kaolin, color inhibitors, stabilizers, antioxidants, deodorants, flame retardants, thread friction agents, etc. It may contain additives such as various functional particles such as reducing agents, color pigments, and surface modifiers, and organic compounds, and may also contain copolymerization.
 繊維4を構成するポリマは、単一成分で構成しても、複数成分で構成してもよく、複数成分の場合には、例えば、芯鞘、サイドバイサイド等の構成が挙げられる。
 繊維4を形成する繊維4の断面形状は、丸、三角、扁平、多角形、星形等の異形状や中空であってもよい。この際、断面形状が真円と異なることにより体積当たりの表面積が増加することで、旋回流12や回転ロール13からのねじり力17を受けてやすくなり自転速度が上昇して、より細い繊維4を得ることができる。よって、真円から扁平にした断面形状が好ましく、表面に凹凸を持つ断面形状がより好ましい。
 また、本発明は細径の繊維4を製造することを目的とするが、特に単糸繊度は限られるものではない。
The polymer constituting the fiber 4 may be composed of a single component or a plurality of components, and in the case of a plurality of components, examples thereof include a core-sheath, side-by-side, etc. structure.
The cross-sectional shape of the fibers 4 forming the fibers 4 may be round, triangular, flat, polygonal, star-shaped, or other irregular shapes, or hollow. At this time, since the cross-sectional shape is different from a perfect circle, the surface area per volume increases, which makes it easier to receive the swirling flow 12 and the twisting force 17 from the rotating roll 13, increasing the rotation speed and making the fibers 4 thinner. can be obtained. Therefore, a cross-sectional shape that is flattened from a perfect circle is preferable, and a cross-sectional shape that has an uneven surface is more preferable.
Further, although the present invention aims to produce fibers 4 having a small diameter, there is no particular restriction on the fineness of the single fibers.
 以下、実施例を挙げて本発明をさらに具体的に説明する。なお実施例における特性値の測定法等は次のとおりである。 Hereinafter, the present invention will be described in more detail with reference to Examples. The method for measuring characteristic values in the examples is as follows.
 (1)繊維の自転速度(回/秒)
 図18に繊維の自転速度の測定方法の概要図を示す。単糸1本の32dtexのPET製の測定用繊維19を口金1の上部から固定し、ハイスピードカメラ18を設置する。口金1の吐出孔2出口面からの距離が10mmの位置の繊維表面に黒色インクで目印となる点をつけて、点をつけた位置での繊維の挙動をハイスピードカメラ18で0.1秒間観察する。撮影した動画で点の動きから測定用繊維19の自転回数をカウントすることで1秒当たりの繊維の自転回数を測定して、繊維の自転速度として採用した。後述する実施例および比較例の装置における自転回数の測定は、実施例および比較例の装置に測定用繊維19およびハイスピードカメラ18を設置し、エアノズル5および回転ロール14を稼働させた状態で測定した。
(1) Fiber rotation speed (times/second)
FIG. 18 shows a schematic diagram of the method for measuring the rotation speed of fibers. A single 32 dtex measuring fiber 19 made of PET is fixed from the top of the cap 1, and a high-speed camera 18 is installed. Mark a dot on the fiber surface with black ink at a distance of 10 mm from the outlet surface of the discharge hole 2 of the nozzle 1, and observe the behavior of the fiber at the dot for 0.1 seconds using the high-speed camera 18. Observe. The number of rotations of the fiber for measurement 19 per second was measured by counting the number of rotations of the measurement fiber 19 from the movement of points in the video that was taken, and this was adopted as the rotation speed of the fiber. The number of rotations in the devices of Examples and Comparative Examples to be described later was measured with the measurement fiber 19 and high-speed camera 18 installed in the devices of Examples and Comparative Examples, and with the air nozzle 5 and rotating roll 14 in operation. did.
 (2)平均繊維径(μm)
 紡糸した繊維からランダムにサンプル10本を採取し、マイクロスコープで1000倍の表面写真を撮影した。サンプルの写真から繊維の幅を測定し、それらの平均値を平均繊維径として採用した。
(2) Average fiber diameter (μm)
Ten samples were randomly taken from the spun fibers, and surface photographs were taken with a microscope at 1000x magnification. The width of the fibers was measured from a photograph of the sample, and the average value was adopted as the average fiber diameter.
 (3)吐出速度(mm/秒)
 各条件で設定した紡糸口金の吐出孔から吐出されるポリマ吐出量(mm/秒)と口金出口での吐出孔の断面積(mm)から、次の式に基づき、吐出速度を算出した。
・吐出速度=ポリマ吐出量/吐出孔断面積
(3) Discharge speed (mm/sec)
The discharge speed was calculated based on the following formula from the polymer discharge amount (mm 3 /sec) discharged from the discharge hole of the spinneret set under each condition and the cross-sectional area (mm 3 ) of the discharge hole at the outlet of the spinneret. .
・Discharge speed = Polymer discharge amount / Discharge hole cross-sectional area
 (4)延伸力(mN)
 図19に牽引力の測定方法の概要図を示す。まず、張力計20(アイコーエンジニアリング社製 MODEL-RX-1)に、単糸1本の32dtexのPET製の測定用繊維19を口金下面から1000mmの長さで固定し、測定用繊維19にエアノズル5から噴射する気流を衝突させて、その際に発生した張力(mN)を張力計16にて測定した。この測定を5回繰り返し、その平均値(mN)を延伸力とした。後述する実施例および比較例の装置における延伸力の測定は、実施例および比較例の装置に測定用繊維19を固定し、エアノズル5を稼働させた状態で測定した。
(4) Stretching force (mN)
FIG. 19 shows a schematic diagram of the method for measuring traction force. First, a single thread of 32 dtex PET measuring fiber 19 was fixed to the tension meter 20 (MODEL-RX-1 manufactured by Aiko Engineering Co., Ltd.) at a length of 1000 mm from the bottom surface of the cap, and an air nozzle was attached to the measuring fiber 19. The airflow ejected from 5 collided with each other, and the tension (mN) generated at that time was measured with a tension meter 16. This measurement was repeated five times, and the average value (mN) was taken as the stretching force. The measurement of the stretching force in the apparatuses of Examples and Comparative Examples described later was carried out with the measurement fibers 19 fixed to the apparatuses of Examples and Comparative Examples, and with the air nozzle 5 in operation.
 (5)繊維吐出部温度(℃)
 口金吐出孔出口面から吐出方向の距離が10mmの位置に熱電対の測定部を配置し、紡糸時に口金吐出部の周囲温度を測定した。この測定を3回繰り返し、繊維吐出部温度(℃)とした。
(5) Fiber discharge part temperature (℃)
A measuring section of a thermocouple was placed at a distance of 10 mm from the exit surface of the nozzle discharge hole in the discharge direction, and the ambient temperature of the nozzle discharge section was measured during spinning. This measurement was repeated three times to determine the fiber discharge portion temperature (° C.).
 (実施例1~8、比較例1~5)
 図1~11に示すような製造装置を用いて、繊維の製造を行った。原料樹脂として、ASTM-D1238に準拠し、おもり2.16Kg、温度230℃でのメルトフローレートが1100g/10分、密度0.9g/cm、融点180℃のポリプロピレン樹脂を用いた。溶融樹脂温度280℃のポリマを、ノズル孔径0.25mm、単孔吐出量2g/分で口金の吐出口から吐出し、280℃の熱風を供給するエアノズル孔径2mm、エア噴射方向と繊維の走行方向が成す角度を10°として、延伸力が 15mNになるようにエアノズルから噴射流を噴射して、表1~3に示す条件で、繊維の製造を行った。この際のポリマ吐出速度は755mm/秒になる。試験結果を表1~3に示す。
(Examples 1 to 8, Comparative Examples 1 to 5)
Fibers were manufactured using manufacturing equipment as shown in FIGS. 1 to 11. As the raw material resin, polypropylene resin was used which conformed to ASTM-D1238, had a weight of 2.16 kg, a melt flow rate of 1100 g/10 minutes at a temperature of 230°C, a density of 0.9 g/cm 3 , and a melting point of 180°C. The polymer with a molten resin temperature of 280°C is discharged from the outlet of the nozzle with a nozzle hole diameter of 0.25 mm and a single hole discharge rate of 2 g/min, and the air nozzle hole diameter is 2 mm, which supplies hot air at 280°C, the air injection direction and the fiber running direction. Fibers were produced under the conditions shown in Tables 1 to 3, with an angle of 10° and a jet flow from an air nozzle such that the drawing force was 15 mN. The polymer discharge speed at this time is 755 mm/sec. The test results are shown in Tables 1 to 3.
 [実施例1]
 旋回流でのねじりの影響を評価する。図1に示す繊維の製造装置100を使用し、口金1の1個の吐出孔2からポリマ3を吐出した。エアノズル吐出部と繊維の中心を結ぶ直線が噴射流の噴射方向となす角度β=80°でエアノズル5を配置した。1個のエアノズル5から内径Φ5mm、高さ5mmの気流閉鎖部材6の空間7に噴射流を供給し、吐出孔2直下の位置から旋回流12によりねじり力を作用させながら繊維4を延伸して、巻取ローラ14にて繊維を巻き取った。紡糸時の繊維吐出部温度は215℃、繊維自転回数W/吐出速度Vは0.79回/mmとなり、採取した繊維の平均繊維径は2.60μmとなった。
 なお、紡糸中には吐出孔2で繊維状ポリマの温度は最大となっており、吐出孔2からの距離が長くなるにつれて繊維状ポリマの温度が低下しているので、吐出孔付近のほぼ同じ位置で繊維状ポリマの温度と自転速度を測定して、その温度が(繊維状ポリマの融点-50℃)以上であり、かつその場所においてW/Vが0.1回/mm以上になっていれば、繊維状ポリマの温度が(繊維状ポリマの融点-50℃)以上となる区間の1か所以上で、繊維状ポリマがW/V≧0.1[回/mm]を満たして自転していると考えてよい。以下の実施例、比較例でも同様に考えてよい。
[Example 1]
Evaluate the effect of torsion in swirling flow. Using the fiber manufacturing apparatus 100 shown in FIG. 1, the polymer 3 was discharged from one discharge hole 2 of the die 1. The air nozzle 5 was arranged at an angle β=80° between the straight line connecting the air nozzle discharge part and the center of the fiber and the jetting direction of the jet stream. A jet stream is supplied from one air nozzle 5 to the space 7 of the airflow closing member 6 with an inner diameter of Φ5 mm and a height of 5 mm, and the fibers 4 are stretched while applying a twisting force by the swirling flow 12 from a position directly below the discharge hole 2. , the fiber was wound up with a winding roller 14. The temperature of the fiber discharge part during spinning was 215° C., the number of fiber rotations W/discharge speed V was 0.79 times/mm, and the average fiber diameter of the sampled fibers was 2.60 μm.
Note that during spinning, the temperature of the fibrous polymer is maximum at the discharge hole 2, and as the distance from the discharge hole 2 increases, the temperature of the fibrous polymer decreases, so the temperature near the discharge hole is almost the same. Measure the temperature and rotation speed of the fibrous polymer at the location, and check that the temperature is at least (the melting point of the fibrous polymer - 50°C) and that the W/V is at least 0.1 times/mm at that location. If so, the fibrous polymer satisfies W/V≧0.1 [times/mm] and rotates at one or more points in the section where the temperature of the fibrous polymer is equal to or higher than (the melting point of the fibrous polymer -50°C). You can assume that you are doing so. The following examples and comparative examples may be considered in the same manner.
 [実施例2]
 エアノズル数の影響を評価する。図2に示す繊維の製造装置100Aを使用し、口金1の1個の吐出孔2からポリマ3を吐出した。エアノズル吐出部と繊維の中心を結ぶ直線がエアの噴射方向となす角度β=80°でエアノズル5を配置した。3個のエアノズル5から気流閉鎖部材6の空間7に噴射流を供給し、吐出孔2直下の位置からねじり力を作用させながら繊維4を延伸して、巻取ローラ14にて繊維4を巻き取った。紡糸時の繊維吐出部温度は209℃、繊維自転回数W/吐出速度Vは0.83回/mmとなり、採取した繊維の平均繊維径は2.59μmとなった。
[Example 2]
Evaluate the influence of the number of air nozzles. Using the fiber manufacturing apparatus 100A shown in FIG. 2, the polymer 3 was discharged from one discharge hole 2 of the die 1. The air nozzle 5 was arranged at an angle β=80° between the straight line connecting the air nozzle discharge part and the center of the fiber and the air jet direction. A jet stream is supplied from the three air nozzles 5 to the space 7 of the air flow closing member 6, and the fibers 4 are stretched while applying a twisting force from a position directly below the discharge hole 2, and the fibers 4 are wound by the winding roller 14. I took it. The temperature of the fiber discharge part during spinning was 209° C., the number of fiber rotations W/discharge speed V was 0.83 times/mm, and the average fiber diameter of the collected fibers was 2.59 μm.
 [実施例3]
 形状の異なる気流閉鎖部材で発生させた旋回流の影響を評価する。図3に示す繊維の製造装置100Bを使用し、口金1の1個の吐出孔2からポリマ3を吐出した。エアノズル吐出部と繊維の中心を結ぶ直線がエアの噴射方向となす角度β=80°でエアノズル5を配置した。3個のエアノズル5から気流閉鎖部材6(内径Φ5mm、高さ5mm、テ^パー角度60°、エア吐出部面とポリマ吐出面の距離5mm)の空間7に噴射流を供給し、吐出孔2出口直下の位置からねじり力を作用させながら繊維4を延伸して、巻取ローラ14にて繊維4を巻き取った。紡糸時の繊維吐出部温度は195℃、繊維自転回数W/吐出速度Vは0.92回/mmとなり、採取した繊維の平均繊維径は2.56μmとなった。
[Example 3]
Evaluate the effects of swirling flow generated by airflow closure members with different shapes. Using the fiber manufacturing apparatus 100B shown in FIG. 3, the polymer 3 was discharged from one discharge hole 2 of the die 1. The air nozzle 5 was arranged at an angle β=80° between the straight line connecting the air nozzle discharge part and the center of the fiber and the air jet direction. A jet stream is supplied from the three air nozzles 5 to the space 7 of the air flow closing member 6 (inner diameter Φ5 mm, height 5 mm, taper angle 60°, distance between the air discharge part surface and the polymer discharge surface 5 mm), and the discharge hole 2 is The fibers 4 were stretched while applying a twisting force from a position immediately below the exit, and the fibers 4 were wound up with a winding roller 14. The temperature of the fiber discharge part during spinning was 195° C., the number of fiber rotations W/discharge speed V was 0.92 times/mm, and the average fiber diameter of the sampled fibers was 2.56 μm.
 [実施例4]
 旋回流でのねじりにおいて、温度低下の影響を評価する。図4に示す繊維の製造装置100Cを使用し、口金1の1個の吐出孔2からポリマ3を吐出した。エアノズル吐出部と繊維の中心を結ぶ直線がエアの噴射方向となす角度β=80°でエアノズルを配置した。3個のエアノズルから気流閉鎖部材6の空間7に噴射流を供給し、吐出孔2出口から200mmの距離の位置からねじり力を作用させながら繊維4を延伸して、巻取ローラ14にて繊維4を巻き取った。紡糸時の繊維吐出部温度は124℃、繊維自転回数W/吐出速度Vは0.75回/mmとなり、採取した繊維の平均繊維径は3.16μmとなった。
[Example 4]
Evaluate the effect of temperature drop on twisting in swirling flow. Using the fiber manufacturing apparatus 100C shown in FIG. 4, the polymer 3 was discharged from one discharge hole 2 of the die 1. The air nozzle was arranged at an angle β=80° between the straight line connecting the air nozzle discharge part and the center of the fiber and the air jet direction. A jet stream is supplied from three air nozzles to the space 7 of the air flow closing member 6, and the fiber 4 is stretched while applying a twisting force from a position 200 mm from the outlet of the discharge hole 2. I wound up 4. The temperature of the fiber discharge part during spinning was 124° C., the number of fiber rotations W/discharge speed V was 0.75 times/mm, and the average fiber diameter of the sampled fibers was 3.16 μm.
 [実施例5]
 回転ローラでのねじりの影響を評価する。図5に示す繊維の製造装置100Dを使用し、口金1の1個の吐出孔2からポリマ3を吐出した。吐出孔2出口から200mmの距離の位置に設置したで回転する回転ローラ13(回転数:30rpm)に繊維4を接触させることにより、繊維4に対してねじり力を作用させて、巻取ローラ14にて繊維4を巻き取った。紡糸時の繊維吐出部温度は120℃、繊維自転回数W/吐出速度Vは0.22回/mmとなり、採取した繊維の平均繊維径は3.37μmとなった。
[Example 5]
Evaluate the effect of torsion on rotating rollers. Using the fiber manufacturing apparatus 100D shown in FIG. 5, the polymer 3 was discharged from one discharge hole 2 of the die 1. By bringing the fibers 4 into contact with a rotating roller 13 (rotation speed: 30 rpm) installed at a distance of 200 mm from the outlet of the discharge hole 2, a twisting force is applied to the fibers 4, and the winding roller 14 Fiber 4 was wound up. The temperature of the fiber discharge part during spinning was 120° C., the number of fiber rotations W/discharge speed V was 0.22 times/mm, and the average fiber diameter of the sampled fibers was 3.37 μm.
 [実施例6]
 繊維の捕集をコンベアに変更することによる影響を評価する。図6に示す繊維の製造装置100Eを使用し、口金1の1個の吐出孔2からポリマ3を吐出した。エアノズル吐出部と繊維の中心を結ぶ直線がエアの噴射方向となす角度β=80°でエアノズルを配置した。3個のエアノズル5から気流閉鎖部材6の空間7に噴射流を供給し、吐出孔2出口直下の位置からねじり力を作用させながら繊維4を延伸して、コンベア15にて繊維4を捕集した。紡糸時の繊維吐出部温度は209℃、繊維自転回数W/吐出速度Vは0.87回/mmとなり、採取した繊維の平均繊維径は2.58μmとなった。
[Example 6]
Evaluate the impact of changing fiber collection to a conveyor. Using the fiber manufacturing apparatus 100E shown in FIG. 6, the polymer 3 was discharged from one discharge hole 2 of the die 1. The air nozzle was arranged at an angle β=80° between the straight line connecting the air nozzle discharge part and the center of the fiber and the air jet direction. A jet stream is supplied from the three air nozzles 5 to the space 7 of the air flow closing member 6, and the fibers 4 are stretched while applying a twisting force from a position directly below the outlet of the discharge hole 2, and the fibers 4 are collected by the conveyor 15. did. The temperature of the fiber discharge part during spinning was 209° C., the number of fiber rotations W/discharge speed V was 0.87 times/mm, and the average fiber diameter of the collected fibers was 2.58 μm.
 [実施例7] 
 口金の吐出孔数を増加させた場合の影響を評価する。図7に示す繊維の製造装置100Fを使用し、口金1の10個の吐出孔2からポリマ3を吐出した。エアノズル吐出部と繊維の中心を結ぶ直線がエアの噴射方向となす角度β=80°、1つの吐出孔2を挟んで対向するようにジグザグに11個のエアノズルを配置した。エアノズル5から気流閉鎖部材7の空間に噴射流を供給し、1つのポリマの周囲にそれぞれ旋回流12を形成し、吐出孔2出口直下の位置からねじり力を作用させながら繊維4を延伸して、コンベア15にて繊維4を捕集した。紡糸時の繊維吐出部温度は190℃、繊維自転回数W/吐出速度Vは0.59回/mmとなり、採取した繊維の平均繊維径は2.66μmとなった。
[Example 7]
Evaluate the effect of increasing the number of discharge holes in the mouthpiece. Using the fiber manufacturing apparatus 100F shown in FIG. 7, the polymer 3 was discharged from ten discharge holes 2 of the die 1. Eleven air nozzles were arranged in a zigzag pattern so that the straight line connecting the air nozzle discharge part and the center of the fiber formed with the air jet direction at an angle β = 80°, facing each other with one discharge hole 2 in between. A jet stream is supplied from the air nozzle 5 to the space of the airflow closing member 7 to form a swirling stream 12 around one polymer, and the fibers 4 are stretched while applying a twisting force from a position directly below the outlet of the discharge hole 2. , the fibers 4 were collected by a conveyor 15. The temperature of the fiber discharge part during spinning was 190° C., the number of fiber rotations W/discharge speed V was 0.59 times/mm, and the average fiber diameter of the sampled fibers was 2.66 μm.
 [実施例8]
 回転ローラに対する吐出孔数を増加させた場合の影響を評価する。図8に示す繊維の製造装置100Gを使用し、10個の口金1の各吐出孔2からポリマ3を吐出した。吐出孔2出口から200mmの距離の位置に設置した回転ローラ13に10本の繊維4を接触させることにより、繊維4に対してねじり力を作用させて、巻取ローラ14にて繊維4を巻き取った。紡糸時の繊維吐出部温度は120℃、繊維自転回数W/吐出速度Vは0.20回/mmとなり、採取した繊維の平均繊維径は3.40μmとなった。
[Example 8]
The effect of increasing the number of discharge holes on the rotating roller will be evaluated. Using a fiber manufacturing apparatus 100G shown in FIG. 8, the polymer 3 was discharged from each discharge hole 2 of the ten nozzles 1. By bringing ten fibers 4 into contact with a rotating roller 13 installed at a distance of 200 mm from the outlet of the discharge hole 2, a twisting force is applied to the fibers 4, and the fibers 4 are wound with a winding roller 14. I took it. The temperature of the fiber discharge part during spinning was 120° C., the number of fiber rotations W/discharge speed V was 0.20 times/mm, and the average fiber diameter of the sampled fibers was 3.40 μm.
 [比較例1]
 旋回成分のない気流を噴射する従来の紡糸方法を評価する。図9に示す繊維の製造装置100Hを使用し、口金1の1個の吐出孔2からポリマ3を吐出した。エアノズル吐出部と繊維の中心を結ぶ直線がエアの噴射方向となす角度β=0°でエアノズルを配置した。吐出されたポリマ3に対し2個のエアノズル5から噴射流を噴射することにより、繊維4を延伸して、巻取ローラ14にて繊維4を巻き取った。紡糸時に繊維吐出部温度は184℃となり、繊維は自転しておらず、採取した繊維の平均繊維径は4.77μmとなった。
[Comparative example 1]
A conventional spinning method that injects airflow without swirling components is evaluated. Using the fiber manufacturing apparatus 100H shown in FIG. 9, the polymer 3 was discharged from one discharge hole 2 of the die 1. The air nozzle was arranged at an angle β=0° between the straight line connecting the air nozzle discharge part and the center of the fiber and the air jet direction. A jet stream was ejected from two air nozzles 5 to the discharged polymer 3 to draw the fibers 4, and the fibers 4 were wound up by a winding roller 14. During spinning, the temperature at the fiber discharge part was 184° C., the fibers were not rotating, and the average fiber diameter of the sampled fibers was 4.77 μm.
 [比較例2]
 大気中で繊維の円周方向に噴射流を噴射する従来の紡糸方法を評価する。図10に示すよ繊維の製造装置100Iを使用した。口金1の1個の吐出孔2からポリマ3を吐出し、エアノズル吐出部と繊維の中心を結ぶ直線がエアの噴射方向となす角度β=80°でエアノズルを配置した。吐出されたポリマ3に対し3個のエアノズル5から噴射流を噴射することにより、繊維4を延伸して、巻取ローラ14にて繊維4を巻き取った。紡糸時に繊維吐出部温度は175℃となり、繊維は自転しておらず、採取した繊維の平均繊維径は4.65μmとなった。
[Comparative example 2]
A conventional spinning method in which a jet stream is injected in the circumferential direction of the fiber in the atmosphere is evaluated. A fiber manufacturing apparatus 100I as shown in FIG. 10 was used. The polymer 3 was discharged from one discharge hole 2 of the nozzle 1, and the air nozzle was arranged at an angle β=80° between the straight line connecting the air nozzle discharge part and the center of the fiber and the air jet direction. A jet stream was ejected from three air nozzles 5 to the discharged polymer 3 to draw the fibers 4, and the fibers 4 were wound up by a winding roller 14. During spinning, the temperature at the fiber discharge part was 175° C., the fibers were not rotating, and the average fiber diameter of the collected fibers was 4.65 μm.
 [比較例3]
 旋回成分のない気流を噴射し、吐出孔数を複数配列した従来の紡糸方法を評価する。図11に示す繊維の製造装置100Jを使用し、口金1の10個の吐出孔2からポリマをそれぞれ吐出し、エアノズル吐出部と繊維の中心を結ぶ直線がエアの噴射方向となす角度β=0°、1つの吐出孔2を挟んで対向するように20個のエアノズル5を配置した。各吐出孔2から吐出されたポリマ3に対して対向する2個のエアノズルから噴射流を噴射することにより、繊維4を延伸して、コンベア15にて捕集した。紡糸時に繊維吐出部温度は185℃となり、繊維は自転しておらず、採取した繊維の平均繊維径は4.95μmとなった。
[Comparative example 3]
A conventional spinning method in which airflow without swirling components is injected and a plurality of discharge holes are arranged will be evaluated. Using the fiber manufacturing apparatus 100J shown in FIG. 11, the polymer is discharged from each of the ten discharge holes 2 of the die 1, and the angle β between the straight line connecting the air nozzle discharge part and the center of the fiber and the air jet direction is 0. 20 air nozzles 5 were arranged to face each other with one discharge hole 2 in between. By injecting a jet stream from two air nozzles facing each other to the polymer 3 discharged from each discharge hole 2, the fibers 4 were drawn and collected on a conveyor 15. During spinning, the temperature at the fiber discharge part was 185° C., the fibers were not rotating, and the average fiber diameter of the collected fibers was 4.95 μm.
 [比較例4]
 エアノズル吐出部と繊維の中心を結ぶ直線がエアの噴射方向となす角度βを小さくし、噴射エアの旋回流を抑制することで、繊維自転回数の影響を評価する。図22に示す繊維の製造装置100Mを使用し、口金1の1個の吐出孔2からポリマ3を吐出し、エアノズル吐出部と繊維の中心を結ぶ直線がエアの噴射方向となす角度β=3°でエアノズルを配置した。1個のエアノズル5から気流閉鎖部材6の空間7に噴射流を供給し、吐出孔出口直下の位置からねじり力を作用させながら繊維4を延伸して、巻取ローラ14にて繊維4を巻き取った。繊維自転回数W/吐出速度Vは0.1回/mm未満である。紡糸時の繊維吐出部温度は210℃、繊維自転回数W/吐出速度Vは0.05回/mmとなり、採取した繊維の平均繊維径は4.58μmとなった。
[Comparative example 4]
The influence of the number of fiber rotations is evaluated by reducing the angle β between the straight line connecting the air nozzle discharge part and the center of the fiber and the air jet direction, and suppressing the swirling flow of the jet air. Using the fiber manufacturing apparatus 100M shown in FIG. 22, the polymer 3 is discharged from one discharge hole 2 of the nozzle 1, and the angle β between the straight line connecting the air nozzle discharge part and the center of the fiber and the air jet direction is 3. The air nozzle was placed at °. A jet stream is supplied from one air nozzle 5 to the space 7 of the air flow closing member 6, and the fibers 4 are stretched while applying a twisting force from a position directly below the outlet of the discharge hole, and the fibers 4 are wound by the winding roller 14. I took it. The number of fiber rotations W/discharge speed V is less than 0.1 times/mm. The fiber discharge part temperature during spinning was 210° C., the number of fiber rotations W/discharge speed V was 0.05 times/mm, and the average fiber diameter of the sampled fibers was 4.58 μm.
 [比較例5]
 回転ローラでのねじりにおいて、ローラ回転速度を低下させて、繊維自転回数の影響を評価する。図5に示す繊維の製造装置100Dを使用し、口金1の1個の吐出孔2からポリマ3を吐出し、吐出孔出口から200mmの距離の位置に設置した回転ローラ13に(回転数:5rpm)繊維4を接触させることにより、繊維4に対してねじり力を作用させて、巻取ローラ13にて繊維4を巻き取った。繊維自転回数W/吐出速度Vは0.1回/mm未満である。紡糸時の繊維吐出部温度は120℃、繊維自転回数W/吐出速度Vは0.03回/mmとなり、採取した繊維の平均繊維径は4.67μmとなった。
[Comparative example 5]
When twisting with a rotating roller, the roller rotation speed is reduced to evaluate the effect of the number of fiber rotations. Using the fiber manufacturing apparatus 100D shown in FIG. ) By bringing the fibers 4 into contact with each other, a twisting force was applied to the fibers 4, and the fibers 4 were wound up by the winding roller 13. The number of fiber rotations W/discharge speed V is less than 0.1 times/mm. The temperature of the fiber discharge part during spinning was 120° C., the number of fiber rotations W/discharge speed V was 0.03 times/mm, and the average fiber diameter of the sampled fibers was 4.67 μm.
 各実施例、各比較例の評価条件と評価結果を表1~3にまとめた。実施例1、2、3、4、6、7では旋回流により、実施例5、8では回転ローラにより繊維がねじることで比較例1~5と比較して細径化が促進した。また、実施例1ではねじり部での温度が高いことで実施例4と比較して細径化が促進した。 The evaluation conditions and evaluation results of each Example and each Comparative Example are summarized in Tables 1 to 3. In Examples 1, 2, 3, 4, 6, and 7, the fibers were twisted by the swirling flow, and in Examples 5 and 8, by the rotating roller, which facilitated diameter reduction compared to Comparative Examples 1 to 5. Furthermore, in Example 1, the temperature at the twisted portion was high, which facilitated diameter reduction compared to Example 4.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明の製造方法・製造装置はフィラメントに限らず、不織布など他の用途の繊維の紡糸にも応用することができる。 The manufacturing method and manufacturing apparatus of the present invention can be applied not only to spinning filaments but also to spinning fibers for other uses such as nonwoven fabrics.
1  口金
2  吐出孔
3  ポリマ
4  繊維
5  エアノズル
6  気流閉鎖部材
7  空間
8  壁
9  上部開口
10 下部開口
11 噴射流
12 旋回流
13 回転ローラ
14 巻取ローラ
15 コンベア
16 延伸力
17 ねじり力
18 ハイスピードカメラ
19 測定繊維
20 張力計
21 自転測定点
22 分子鎖
1 Base 2 Discharge hole 3 Polymer 4 Fiber 5 Air nozzle 6 Air flow closing member 7 Space 8 Wall 9 Upper opening 10 Lower opening 11 Jet flow 12 Swirling flow 13 Rotating roller 14 Take-up roller 15 Conveyor 16 Stretching force 17 Twisting force 18 High-speed camera 19 Measurement fiber 20 Tension meter 21 Autorotation measurement point 22 Molecular chain

Claims (8)

  1.  吐出孔を有する口金から吐出された繊維状ポリマを延伸させて繊維を製造する方法であって、
     前記口金から吐出された前記繊維状ポリマに、下記式を満たすようにポリマ吐出方向に垂直な断面の中心を軸として回転させるねじり力を付与することにより、当該繊維状ポリマを自転させながら、延伸させる、
    繊維の製造方法。
     W/V≧0.1[回/mm]
     V:繊維状ポリマの吐出速度[mm/秒]
     W:繊維状ポリマの自転速度[回/秒]
    A method for producing fibers by stretching a fibrous polymer discharged from a nozzle having discharge holes, the method comprising:
    By applying a twisting force to the fibrous polymer discharged from the nozzle to rotate it around the center of the cross section perpendicular to the polymer discharge direction so as to satisfy the following formula, the fibrous polymer is rotated and stretched. let,
    Fiber manufacturing method.
    W/V≧0.1 [times/mm]
    V: Discharge speed of fibrous polymer [mm/sec]
    W: Rotation speed of fibrous polymer [times/second]
  2.  前記口金から吐出された前記繊維状ポリマの温度が(繊維状ポリマの融点-50℃)以上となる区間の1か所以上で、前記繊維状ポリマを下記式を満たすように自転させる、請求項1に記載の繊維の製造方法。
     W/V≧0.1[回/mm]
     V:繊維状ポリマの吐出速度[mm/秒]
     W:繊維状ポリマの自転速度[回/秒]
    The fibrous polymer is rotated so as to satisfy the following formula at one or more locations in a section where the temperature of the fibrous polymer discharged from the nozzle is equal to or higher than (the melting point of the fibrous polymer -50°C). 1. The method for producing the fiber according to 1.
    W/V≧0.1 [times/mm]
    V: Discharge speed of fibrous polymer [mm/sec]
    W: Rotation speed of fibrous polymer [times/second]
  3.  前記繊維状ポリマを、前記回転方向に旋回する旋回流に晒すことにより、前記回転方向のねじり力を付与する、請求項1または2に記載の繊維の製造方法。 The method for producing fibers according to claim 1 or 2, wherein a twisting force in the rotational direction is applied by exposing the fibrous polymer to a swirling flow that swirls in the rotational direction.
  4.  前記繊維状ポリマを、前記吐出孔からポリマ吐出方向に延びる直線を中心軸として公転するようにして、前記繊維状ポリマを旋回させながら延伸させる、請求項1~3のいずれかに記載の繊維の製造方法。 The fibrous polymer according to any one of claims 1 to 3, wherein the fibrous polymer is stretched while rotating so as to revolve around a straight line extending from the discharge hole in the polymer discharge direction. Production method.
  5.  前記繊維状ポリマに、前記回転方向とは逆方向に回転するローラを接触させることで、前記回転方向のねじり力を付与する、請求項1または2に記載の繊維の製造方法。 The method for producing fibers according to claim 1 or 2, wherein a twisting force in the rotational direction is applied to the fibrous polymer by bringing a roller rotating in a direction opposite to the rotational direction into contact with the fibrous polymer.
  6.  繊維状ポリマを延伸させて繊維を製造する装置であって、
     前記繊維状ポリマを吐出する吐出孔を有する口金と、
     前記吐出孔から吐出される前記繊維状ポリマの周囲に配置された、気流を噴射するための気流ノズルと、
     前記吐出孔のポリマ吐出方向の下方に配置され、前記繊維ポリマが通過する空間と、前記空間を囲繞する壁と、を有する気流閉鎖部材と、を備え、
     前記気流ノズルから前記空間に噴射される噴射流により旋回流を形成することで、前記繊維状ポリマがポリマ吐出方句に垂直な断面の中心を軸として自転するように、前記繊維状ポリマに回転方向のねじり力を付与する、
    繊維の製造装置。
    An apparatus for producing fibers by stretching a fibrous polymer,
    a mouthpiece having a discharge hole for discharging the fibrous polymer;
    an airflow nozzle for ejecting airflow arranged around the fibrous polymer discharged from the discharge hole;
    an airflow closing member disposed below the discharge hole in the polymer discharge direction and having a space through which the fiber polymer passes and a wall surrounding the space;
    By forming a swirling flow by the jet flow injected into the space from the air flow nozzle, the fibrous polymer is rotated so that the fibrous polymer rotates around the center of a cross section perpendicular to the direction of polymer discharge. imparts a torsional force in the direction,
    Fiber manufacturing equipment.
  7.  前記気流ノズルから前記空間に噴射される噴射流により旋回流を形成することで、前記繊維状ポリマが、前記吐出孔からポリマ吐出方句に延びる直線を中心軸として公転させる、請求項6に記載の繊維の製造装置。 According to claim 6, the fibrous polymer is caused to revolve around a straight line extending from the discharge hole to the polymer discharge direction as a central axis by forming a swirling flow by a jet flow injected into the space from the air flow nozzle. fiber manufacturing equipment.
  8.  繊維状ポリマを延伸させて繊維を製造する装置であって、
     繊維状ポリマを吐出する吐出孔を有する口金と、
     前記吐出孔から吐出される前記繊維状ポリマに接触するように配置された回転ローラと、を備え、
     前記回転ローラを回転させることで、前記繊維状ポリマが吐出方句に垂直な断面の中心を軸として自転するように、前記繊維状ポリマに回転方向のねじり力を付与する、
    繊維の製造装置。
    An apparatus for producing fibers by stretching a fibrous polymer,
    a mouthpiece having a discharge hole for discharging a fibrous polymer;
    a rotating roller arranged to contact the fibrous polymer discharged from the discharge hole,
    By rotating the rotating roller, applying a twisting force in the rotational direction to the fibrous polymer so that the fibrous polymer rotates about the center of a cross section perpendicular to the discharge direction.
    Fiber manufacturing equipment.
PCT/JP2023/005732 2022-03-25 2023-02-17 Fiber manufacturing method and fiber manufacturing device WO2023181740A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022049574 2022-03-25
JP2022-049574 2022-03-25

Publications (1)

Publication Number Publication Date
WO2023181740A1 true WO2023181740A1 (en) 2023-09-28

Family

ID=88100527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005732 WO2023181740A1 (en) 2022-03-25 2023-02-17 Fiber manufacturing method and fiber manufacturing device

Country Status (1)

Country Link
WO (1) WO2023181740A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933712B1 (en) * 1970-12-26 1974-09-09
JPS5349126A (en) * 1976-10-12 1978-05-04 Nippon Sheet Glass Co Ltd Manufacturing apparatus for thermal plastic fiber
JPH11247062A (en) * 1989-06-07 1999-09-14 Kimberly Clark Corp Fiber forming apparatus and forming process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933712B1 (en) * 1970-12-26 1974-09-09
JPS5349126A (en) * 1976-10-12 1978-05-04 Nippon Sheet Glass Co Ltd Manufacturing apparatus for thermal plastic fiber
JPH11247062A (en) * 1989-06-07 1999-09-14 Kimberly Clark Corp Fiber forming apparatus and forming process

Similar Documents

Publication Publication Date Title
US6800226B1 (en) Method and device for the production of an essentially continous fine thread
JP4233181B2 (en) Method and apparatus for producing a horizontally arranged web
US6103158A (en) Method and apparatus for spinning a multifilament yarn
US2953427A (en) Production of artificial filamentary materials
JPH04228667A (en) Manufacture of hyperfine fiber nonwoven fabric from thermoplastic polymer
US5439364A (en) Apparatus for delivering and depositing continuous filaments by means of aerodynamic forces
KR100431679B1 (en) Process for Making High Tenacity Aramid Fibers
US3366721A (en) Process for treating filaments
WO2003102278A1 (en) Device and method for manufacturing thread line
KR20030004409A (en) Process and Apparatus for Conditioning of Melt-Spun Material
JPH02104710A (en) Improved method for coagulating filaments
US4211736A (en) Process for forming and twisting fibers
JP4495871B2 (en) Method and apparatus for producing a laterally aligned web
Afifi et al. Fabrication of Aligned Poly (L‐lactide) Fibers by Electrospinning and Drawing
US6824717B2 (en) Method for melt spinning filament yarns
WO2023181740A1 (en) Fiber manufacturing method and fiber manufacturing device
KR100676572B1 (en) Meltblown process with mechanical attenuation
KR20100070203A (en) Making apparatus and method of fiber aggregate composed of nanofibers using vertical flow and centrifugal force
WO2001071070A1 (en) Molten yarn take-up device
JP5262834B2 (en) Method and apparatus for producing ultrafine synthetic fiber comprising multi-threads
JPS6128012A (en) Method for melt spinning modified cross section fiber
JP6965922B2 (en) Stretching equipment, and fiber and fiber web manufacturing equipment and manufacturing methods
JP3659939B2 (en) Spunbond nonwoven fabric manufacturing method and apparatus
MXPA05005094A (en) Non-round spinneret plate hole.
JP2001181957A (en) Method for producing nonwoven fabric from continuous filament

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023518486

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774339

Country of ref document: EP

Kind code of ref document: A1