WO2023181238A1 - Stator, electric motor, compressor, and refrigeration cycle device - Google Patents

Stator, electric motor, compressor, and refrigeration cycle device Download PDF

Info

Publication number
WO2023181238A1
WO2023181238A1 PCT/JP2022/013872 JP2022013872W WO2023181238A1 WO 2023181238 A1 WO2023181238 A1 WO 2023181238A1 JP 2022013872 W JP2022013872 W JP 2022013872W WO 2023181238 A1 WO2023181238 A1 WO 2023181238A1
Authority
WO
WIPO (PCT)
Prior art keywords
teeth
coil
stator
tooth
slot
Prior art date
Application number
PCT/JP2022/013872
Other languages
French (fr)
Japanese (ja)
Inventor
大輝 岩田
篤 松岡
淳史 石川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/013872 priority Critical patent/WO2023181238A1/en
Publication of WO2023181238A1 publication Critical patent/WO2023181238A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/18Windings for salient poles

Definitions

  • the present disclosure relates to a stator, an electric motor, a compressor, and a refrigeration cycle device.
  • the electric motor has a stator core with teeth and a coil wound around the teeth.
  • a coil When a coil is wound with distributed winding, the coil end tends to become large and the circumference of the coil becomes long.
  • Patent Document 1 discloses a stator core in which a stepped portion is formed at the end of the tooth in the axial direction.
  • the circumferential length of the coil will be shortened.
  • the width of the axial end portion of the tooth becomes narrow due to the formation of the stepped portion, there is a problem in that the magnetic flux density increases and iron loss increases.
  • the present disclosure has been made to solve the above problems, and aims to shorten the circumferential length of the coil while suppressing an increase in iron loss.
  • the stator in the present disclosure includes a yoke extending in the circumferential direction centered on the axis, first teeth and second teeth extending radially inward from the yoke centered on the axis, and first teeth.
  • a stator core having a slot formed between a tooth and a second tooth, and a coil wound around the stator core that passes through the slot and is bent toward the first tooth. and a winding having.
  • the first tooth has a stepped portion at the end in the axial direction, and the second tooth does not have a stepped portion at the end in the axial direction.
  • stator of the present disclosure includes the first teeth having a stepped portion and the second teeth having no stepped portion, the circumferential length of the coil can be shortened while suppressing an increase in iron loss. .
  • FIG. 1 is a cross-sectional view showing an electric motor of Embodiment 1.
  • FIG. 3 is a plan view showing the stator of Embodiment 1.
  • FIG. 3 is a plan view showing a part of the stator of Embodiment 1.
  • FIG. 2 is a perspective view showing a part of the stator according to the first embodiment.
  • FIG. 2 is a plan view (A) showing a part of the stator of Embodiment 1, and an enlarged view (B) showing the periphery of a slot.
  • FIG. 3 is a plan view (A) showing a part of a stator of Comparative Example 1, and an enlarged view (B) showing the periphery of a slot.
  • FIGS. FIG. 3 is a plan view (A) showing a part of a stator of Comparative Example 2, and an enlarged view (B) showing the periphery of a slot.
  • FIG. 3 is a cross-sectional view showing a stator according to a second embodiment.
  • FIGS. 7A and 7B are enlarged views showing the peripheries of slots in a stator of Comparative Example 3 and a stator of Embodiment 2;
  • FIGS. 12 is a plan view showing a part of the stator of Embodiment 3. It is a figure showing a compressor to which the electric motor of each embodiment is applicable. It is a figure showing a refrigeration cycle device to which the electric motor of each embodiment is applicable.
  • FIG. 1 is a sectional view showing an electric motor 100 according to the first embodiment.
  • the electric motor 100 is a synchronous electric motor, and is incorporated into a compressor, for example.
  • the electric motor 100 has an annular stator 1 and a rotor 5 rotatably provided inside the stator 1. An air gap is formed between the stator 1 and the rotor 5.
  • FIG. 1 is a sectional view taken in a plane perpendicular to the axis Ax.
  • the stator 1 has a stator core 10 and a winding 2 wound around the stator core 10.
  • the stator core 10 is composed of a laminate in which a plurality of electromagnetic steel plates are laminated in the axial direction and fixed by caulking or the like.
  • the thickness of the electromagnetic steel plate is, for example, 0.1 to 0.7 mm.
  • the stator core 10 has an annular yoke 11 centered on the axis Ax, and a plurality of teeth 12 extending radially inward from the yoke 11. Teeth 12 are arranged at equal intervals in the circumferential direction. The number of teeth 12 is 18 here, but it may be 2 or more. A slot 13, which is a space for accommodating the winding 2, is formed between teeth 12 adjacent in the circumferential direction. The number of slots 13 is the same as the number of teeth 12.
  • an insulating part made of resin that is, an insulating film 31 and an insulator 32 shown in FIG. 4 is provided between the stator core 10 and the winding 2. It will be done.
  • the rotor 5 has a cylindrical rotor core 50 and a permanent magnet 55 attached to the rotor core 50.
  • the rotor core 50 is composed of a laminated body in which a plurality of electromagnetic steel plates are laminated in the axial direction and fixed by caulking or the like.
  • the thickness of the electromagnetic steel plate is, for example, 0.1 to 0.7 mm.
  • the rotor core 50 has a center hole 53 at the center in the radial direction.
  • a rotating shaft 60 is fixed to the center hole 53 by shrink fitting, press fitting, adhesive, or the like.
  • a plurality of magnet insertion holes 51 are formed along the outer periphery of the rotor core 50.
  • six magnet insertion holes 51 are formed at equal intervals in the circumferential direction.
  • the number of magnet insertion holes 51 is not limited to six, but may be two or more.
  • Each magnet insertion hole 51 reaches from one end of the rotor core 50 in the axial direction to the other end.
  • Each permanent magnet 55 is inserted into each magnet insertion hole 51. That is, a total of six permanent magnets 55 are embedded in the rotor core 50. Each permanent magnet 55 constitutes one magnetic pole, and the number of poles of the rotor 5 is six. However, the number of poles of the rotor 5 is not limited to six, but may be two or more. Each permanent magnet 55 is made of, for example, a rare earth magnet.
  • each magnet insertion hole 51 Although one permanent magnet 55 is inserted into each magnet insertion hole 51 here, two or more permanent magnets 55 may be inserted into each magnet insertion hole 51. Furthermore, although each magnet insertion hole 51 extends linearly here, it may extend in a V-shape convex toward the inner circumferential side.
  • Flux barriers 52 are formed on both circumferential sides of each magnet insertion hole 51 in the rotor core 50.
  • a thin wall portion is formed between the flux barrier 52 and the outer periphery of the rotor core 50.
  • the width of the thin wall portion is set to be equal to the thickness of the electromagnetic steel sheet.
  • FIG. 2 is a top view showing the stator 1.
  • the winding 2 includes a U-phase coil 20U as a first-phase coil, a V-phase coil 20V as a second-phase coil, and a W-phase coil 20W as a third-phase coil.
  • the coils 20U, 20V, and 20W are all made of copper wire or aluminum wire.
  • the winding 2 here has three coils 20U, 20V, and 20W.
  • the three coils 20U are arranged at intervals of 120 degrees in the circumferential direction around the axis Ax, and each coil 20U is wound so as to straddle the three teeth 12. The same applies to the coils 20V and 20W.
  • the coil 20U is arranged at the innermost position in the radial direction.
  • Coil 20V is arranged radially outward with respect to coil 20U.
  • the coil 20W is routed from the radially outer side of the coil 20U to the radially inner side of the coil 20V.
  • Two of the coils 20U, 20V, and 20W overlap in the radial direction. That is, the coils 20U and 20V overlap in the radial direction, the coils 20V and 20W overlap in the radial direction, and the coils 20U and 20W overlap in the radial direction.
  • Each of the coils 20U, 20V, and 20W has two coil sides 201 that are inserted into the slots 13 and two coil ends 202 that extend along the axial end surfaces of the teeth 12.
  • One coil side 201 is inserted into each slot 13 of the stator core 10.
  • the coils 20U, 20V, and 20W will be referred to as "coils 20" unless there is a particular need to distinguish them. Note that the arrangement example of the coils 20U, 20V, and 20W of the winding 2 shown in FIG. 2 is an example, and the arrangement is not limited thereto.
  • FIG. 3 is a plan view showing a part of the stator 1. As described above, each slot 13 accommodates the coil side 201 of one coil 20. The coil 20 is wound every three slots, that is, so as to straddle the three teeth 12.
  • the teeth 12 include teeth 12A as first teeth and teeth 12B as second teeth.
  • teeth 12A and teeth 12B are provided and are arranged alternately in the circumferential direction.
  • Each coil 20 is wound so as to straddle the tooth 12B and the two teeth 12A on both sides thereof.
  • the coil 20 that has passed through the slot 13 is bent toward the teeth 12A, passes through the teeth 12B and the two slots 13 in the circumferential direction, passes through another tooth 12A, and is inserted into the slots 13.
  • the left tooth 12A in FIG. 3 includes a coil 20U that has passed through the left slot 13 (i.e., the first slot) of the tooth 12A, and a coil 20U that has passed through the right slot 13 (i.e., the second slot) of the tooth 12A.
  • the passed coil 20V is wound.
  • each tooth 12A the coil 20 that has passed through the slots 13 on both sides of each tooth 12A is wound so as to be bent.
  • the coil end 202 passes through the axial end face of each tooth 12B.
  • a stepped portion S is formed at the axial end of the tooth 12A on the slot 13 side.
  • the stepped portion S is formed at a position corresponding to a portion where the coil 20 is bent, that is, a corner portion between the coil side 201 and the coil end 202 of the coil 20.
  • the stepped portion S may be formed at at least one end of the tooth 12A in the axial direction, but it is preferably formed at both ends of the tooth 12A in the axial direction.
  • the stepped portions S are formed on both sides in the circumferential direction of the axial end portions of the teeth 12A. Therefore, the teeth 12A have a stepped portion S at a position corresponding to the bent portion of the coil 20 of one phase, and also have a stepped portion S at a position corresponding to the bent portion of the coil 20 of the other phase.
  • the left tooth 12A in FIG. 3 has a stepped portion S at a position corresponding to the bent portion of the coil 20U, and also has a stepped portion S at a position corresponding to the bent portion of the coil 20V.
  • the step S is not formed at the axial end of the teeth 12B.
  • FIG. 4 is a perspective view showing a portion of the stator core 10 including one tooth 12 and an insulating portion attached to this portion. The axial direction is indicated by arrow Z. Although the teeth 12 shown in FIG. 4 are the teeth 12A, the teeth 12B are also provided with similar insulating parts.
  • the insulating portion attached to the teeth 12 includes an insulating film 31 provided in the slot 13 and an insulator 32 provided on the axial end surface of the stator core 10.
  • the insulating film 31 is fixed to a side surface 31a fixed to the side surface of the tooth 12, an inner circumferential portion 31b fixed to the inner circumferential surface of the yoke 11, and a surface of the tooth tip of the tooth 12 on the slot 13 side. It has a tip portion 31c.
  • the insulating film 31 does not necessarily need to have all of the side surface portion 31a, the inner peripheral portion 31b, and the tip portion 31c, and it is sufficient to have at least the side surface portion 31a.
  • the axial length of the insulating film 31 is the same as the axial length of the stator core 10. Note that an example in which the axial length of the insulating film 31 is longer than the axial length of the stator core 10 will be described in Embodiment 2.
  • the insulator 32 has a body portion 32a located on the teeth 12, a wall portion 32b located on the yoke 11, and a flange portion 32c located on the tips of the teeth 12.
  • the insulator 32 may be provided with a wall portion 32d that covers a portion of the inner circumferential surface of the slot 13, if necessary.
  • FIG. 5(A) is a schematic diagram showing a part of the stator 1.
  • the stator core 10 is shown spread out in a straight line, and the circumferential direction is indicated by an arrow C.
  • FIG. 5(B) is a schematic diagram showing the periphery of the slot 13 of the stator 1.
  • the insulating portion that is, the insulating film 31 and insulator 32 shown in FIG. 4 are omitted.
  • a first side surface 121 facing the slot 13 is formed at the axial center of the tooth 12A.
  • a second side surface 122 facing the slot 13 is formed at the axial end of the tooth 12A.
  • the second side surface 122 of the tooth 12A is located at a position retracted further inward in the width direction of the tooth 12A than the first side surface 121. In other words.
  • the first side surface 121 of the teeth 12A is located at a position that protrudes further into the slot 13 than the second side surface 122.
  • the circumferential width W2 (hereinafter referred to as width W2) at the axial end of the tooth 12A is the circumferential width W1 (hereinafter referred to as width W2) at the axial center of the tooth 12A. (referred to as W1).
  • the above-described stepped portion S is formed between the first side surface 121 and the second side surface 122 of the teeth 12A.
  • the stepped portion S faces the portion where the coil 20 in the slot 13 is bent, in other words, the corner portion between the coil side 201 and the coil end 202. Therefore, the coil 20 passes through the slot 13 in the axial direction, bends along the stepped portion S toward the teeth 12A, and extends in the circumferential direction on the axial end surface 12e of the teeth 12A.
  • the stator core 10 has a first core portion 101 and a second core portion 102 in the axial direction.
  • the first core portion 101 is located at the center of the stator core 10 in the axial direction
  • the second core portion 102 is located at the end of the stator core 10 in the axial direction.
  • the first core portion 101 corresponds to a portion of the teeth 12A having a first side surface 121
  • the second core portion 102 corresponds to a portion of the tooth 12A having a second side surface 122.
  • the teeth 12B have side surfaces 120 facing the slots 13.
  • the positions of the side surfaces 120 in the width direction of the teeth 12B are the same at both the axial ends and the axial center. That is, the width W1 of the teeth 12B is constant in the axial direction.
  • FIG. 6(A) is a schematic diagram showing a part of the stator 1C of Comparative Example 1.
  • FIG. 6(B) is a schematic diagram showing the periphery of the slot 13 of the stator 1C of Comparative Example 1. In FIGS. 6A and 6B, the insulating portion is omitted.
  • FIGS. 7A and 7B are schematic diagrams showing the surroundings of the slots 13 in the stator 1C of the comparative example and the stator 1 of the first embodiment.
  • the insulating portion is omitted.
  • the coil 20 begins to bend on the axial outside of the slot 13, so the height H from the end surface 12e of the tooth 12B to the coil end 202 increases. .
  • the tooth 12A on the side where the coil 20 is bent has the stepped portion S. Therefore, as shown in FIG. 7(B), the coil 20 begins to bend at the stepped portion S of the teeth 12A. In other words, the coil 20 begins to bend within the slot 13. Therefore, the height H from the end surface 12e of the teeth 12A to the coil end 202 becomes low, and the axial length of the coil 20 becomes short. This shortens the circumferential length of the coil 20 and reduces copper loss.
  • the circumferential length of the coil 20 is the sum of the axial length and circumferential length of the coil 20. More specifically, it is the total length of two coil sides 201 and two coil ends 202 that constitute one coil 20.
  • FIG. 8(A) is a schematic diagram showing a part of the stator 1D of Comparative Example 2.
  • FIG. 8(B) is a schematic diagram showing the periphery of the slot 13 of the stator 1D of Comparative Example 2.
  • the insulating portion is omitted.
  • the stator core 10 has teeth 12A and teeth 12B.
  • the width W2 of the axial end of the teeth 12A is narrow, but the width W1 of the axial end of the teeth 12B is wide. Therefore, an increase in iron loss can be suppressed while reducing the circumferential length of the coil 20.
  • the teeth 12B are located at the center of the three teeth 12 around which the coils 20 are wound.
  • the tooth 12B is located at the center of the three teeth 12 that the coil 20U straddles.
  • the magnetic flux generated by the current flowing through the coil 20 is concentrated on the central teeth 12B. Since the teeth 12B do not have a stepped portion S and have a wide width W1 even at the axial ends of the teeth 12B, an increase in magnetic flux density is suppressed. Thereby, the effect of reducing iron loss can be enhanced and the motor efficiency can be improved.
  • the teeth 12A have stepped portions S on both sides in the circumferential direction.
  • a coil 20 of a certain phase for example, coil 20U
  • a coil 20 of another phase that passed through the slot 13 on the other side in the circumferential direction
  • a coil (20V) is also wound. Therefore, by utilizing the stepped portion S in which the teeth 12A are provided on both sides in the circumferential direction, the circumferential lengths of the coils 20 of both phases can be shortened.
  • the coil 20 is wound here so as to straddle three teeth 12 (that is, two teeth 12A and one tooth 12B), the number N of teeth 12 that the coil 20 straddles is 3 or more. good. Teeth 12A having stepped portions S at both ends of the N teeth 12 may be provided, and teeth 12B having no stepped portion S may be provided between these.
  • the three-phase coils 20U, 20V, and 20W can be arranged evenly in the circumferential direction as shown in FIG. Moreover, by arranging the teeth 12A and the teeth 12B alternately in the circumferential direction, the circumferential length of the coil 20 can be shortened as described above, and an increase in iron loss can be suppressed.
  • the stator 1 of the first embodiment includes the stator core 10 and the winding 2.
  • Stator core 10 includes an annular yoke 11, teeth 12A and 12B extending radially inward from yoke 11, and slots 13 formed between them.
  • the winding 2 is wound so that one coil 20 is accommodated in the slot 13, and the coil 20 passes through the slot 13 and is bent toward the teeth 12A.
  • the teeth 12A have a stepped portion S at the axial end, and the teeth 12B do not have a stepped portion S at the axial end.
  • the teeth 12A have the stepped portion S in this manner, the height H of the coil end 202 of the coil 20 can be reduced, and the circumferential length of the coil 20 can be shortened.
  • the teeth 12B do not have a stepped portion S and have a wide width W1 even at the axial ends, it is possible to suppress an increase in magnetic flux density and reduce iron loss. That is, the circumferential length of the coil 20 can be shortened and an increase in iron loss can be suppressed.
  • the teeth 12B are located at the center in the circumferential direction of the N teeth 12 (N is an integer of 3 or more) that are spanned by one coil 20, a wide magnetic path width is ensured in the area where the magnetic flux is concentrated. Iron loss can be reduced.
  • FIG. 9 is a schematic diagram of the stator 1A of the second embodiment viewed from the inner peripheral side.
  • the stator core 10 of the stator 1A has teeth 12A and teeth 12B as described in the first embodiment.
  • the insulating film 31 described with reference to FIG. 4 is provided in the slot 13 of the stator 1A.
  • the axial length of the insulating film 31 is longer than the axial length L1 of the teeth 12.
  • the axial end of the insulating film 31 is referred to as a film end 31e.
  • the film ends 31e of the insulating film 31 on both sides of the teeth 12A are bent at an acute angle toward the teeth 12A.
  • the bent film end portion 31e is accommodated in the space formed by the stepped portion S of the teeth 12A.
  • the film ends 31e of the insulating film 31 on both circumferential sides of the teeth 12B are bent at an obtuse angle toward the teeth 12A so as not to interfere with the coil ends 202 of the coil 20 (FIG. 10(B)).
  • FIGS. 10A and 10B are schematic diagrams showing the surroundings of the slots 13 in the stator 1E of Comparative Example 3 and the stator 1A of Embodiment 2.
  • the stator 1E of the comparative example all the teeth 12 of the stator core 10 are constituted by teeth 12B that do not have a stepped portion S.
  • the coil 20 and teeth 12 are insulated by an insulating film 31 and an insulator 32. If there is a part between the coil 20 and the teeth 12 where the insulating film 31 or the insulator 32 is not present, it is necessary to provide a distance D between the coil 20 and the teeth 12 as specified in the Electrical Appliance and Material Safety Act. .
  • the thickness of the insulator 32 on the teeth 12 is set so that the coil end 202 is separated by a distance D from the end surface 12e of the teeth 12. There is. Further, the insulating film 31 protrudes from the slot 13 in the axial direction and is bent toward the end surface 12e of the teeth 12.
  • the coil end 202 may be spaced apart from the stepped portion S of the teeth 12 by a distance D. Further, the insulating film 31 accommodates the film end 31e in the space created by the step S by bending the film end 31e toward the step S of the teeth 12A. Thereby, the insulating film end portion 31e can be accommodated inside the slot 13.
  • the height from the end surface 12e of the teeth 12A to the coil end 202 can be lower than that of the stator 1E of the third comparative example shown in FIG. 10(A).
  • the insulating film 31 on the teeth 12B side only needs to be bent to the extent that it does not get in the way of the coil end 202 passing over the end surface 12e of the teeth 12B.
  • a portion of the insulator 32 on the teeth 12A be engaged with the stepped portion S of the teeth 12A.
  • the wall portion 32d shown in FIG. 4 engages with the stepped portion S of the teeth 12A.
  • the stator 1A of the second embodiment is configured in the same manner as the stator 1 of the first embodiment except for the above points.
  • the teeth 12A have the step S, the film end 31e of the insulating film 31 is bent toward the step S of the tooth 12A, and the space created by the step S is housed in. Therefore, the coil end 202 can be brought closer to the end surface 12e of the teeth 12A, and thereby the circumferential length of the coil 20 can be shortened.
  • FIG. 11 is a plan view showing a part of the stator 1B of the third embodiment.
  • Stator core 10 of stator 1B has teeth 12A and teeth 12B as described in the first embodiment.
  • the stator core 10 of the stator 1B further has a through hole 16 in the yoke 11.
  • the through hole 16 of the yoke 11 is formed on the radially outer side of the teeth 12B that do not have the stepped portion S.
  • the through hole 16 is used, for example, as a refrigerant passage through which refrigerant from a compressor passes.
  • the magnetic path becomes narrow at the location where the through hole 16 is formed.
  • the teeth 12A have the stepped portions S, the width W2 of the axial end portions of the teeth 12A is narrow. Therefore, if the through holes 16 are formed on the radially outer side of the teeth 12A, the magnetic flux density may increase at the portion where the magnetic flux flows from the teeth 12A to the yoke 11, and iron loss may increase.
  • the width W1 of the axial end portions of the teeth 12B is wide. Therefore, even if the through holes 16 are formed on the radially outer side of the teeth 12B, the magnetic flux density is difficult to increase even in the portion where the magnetic flux flows from the teeth 12B to the yoke 11. Therefore, an increase in iron loss can be suppressed.
  • the through hole 16 does not need to be formed on the radially outer side of all the teeth 12B of the stator core 10, but only needs to be formed on the radially outer side of at least one tooth 12B.
  • the stator 1B of the third embodiment is configured similarly to the stator 1 of the first embodiment except for the above points. Note that the insulating film 31 of the second embodiment may be used in the stator 1B of the third embodiment.
  • the stator core 10 has the through holes 16 on the radially outer side of the teeth 12B, so that an increase in magnetic flux density due to the formation of the through holes 16 is suppressed, and an increase in iron loss is suppressed. can do.
  • FIG. 12 is a sectional view showing the compressor 300.
  • Compressor 300 is a scroll compressor here, but is not limited to this.
  • the compressor 300 includes a compression mechanism 310, an electric motor 100 that drives the compression mechanism 310, a rotating shaft 60 that connects the compression mechanism 310 and the electric motor 100, and a sub-shaft that supports the lower end (secondary shaft) of the rotating shaft 60. It has a frame 303 and a closed container 301 in which these are housed. Refrigerating machine oil 304 is stored in an oil reservoir 305 at the bottom of the airtight container 301 .
  • the compression mechanism 310 includes a fixed scroll 311, an oscillating scroll 312, an Oldham ring 313, a compliant frame 314, and a guide frame 315.
  • the fixed scroll 311 and the swinging scroll 312 both have plate-shaped spiral teeth and are combined to form a compression chamber 316.
  • the fixed scroll 311 has a discharge port 317 that discharges the refrigerant compressed in the compression chamber 316. Furthermore, a suction pipe 306 that penetrates the closed container 301 is press-fitted into the fixed scroll 311 . Further, a discharge pipe 307 is provided so as to penetrate the closed container 301 and discharge high-pressure refrigerant gas discharged from the discharge port 317 of the fixed scroll 311 to the outside.
  • the electric motor 100 is installed inside the sealed container 301 by shrink fitting. Further, a glass terminal 308 for electrically connecting the stator 1 of the electric motor 100 and the drive circuit is fixed to the sealed container 301 by welding.
  • the rotating shaft 60 is rotatably supported by bearings provided on the compliant frame 314 and the subframe 303, respectively.
  • the operation of the compressor 300 is as follows.
  • the rotating shaft 60 rotates together with the rotor 5.
  • the swinging scroll 312 swings, changing the volume of the compression chamber 316 between the fixed scroll 311 and the swinging scroll 312. Thereby, refrigerant gas is sucked into the compression chamber 316 from the suction pipe 306 and compressed.
  • the high-pressure refrigerant gas compressed within the compression chamber 316 is discharged from the discharge port 317 of the fixed scroll 311 into the closed container 301 and is discharged from the discharge pipe 307 to the outside. Further, a part of the refrigerant gas discharged from the compression chamber 316 into the closed container 301 passes through a hole provided in the electric motor 100 and cools the electric motor 100.
  • the circumferential length of the coil 20 can be shortened while suppressing an increase in iron loss. Therefore, the operating efficiency of compressor 300 can be improved.
  • FIG. 13 is a diagram showing the configuration of the refrigeration cycle device 400.
  • the refrigeration cycle device 400 includes a compressor 401, a condenser 402, a throttle device (pressure reducing device) 403, and an evaporator 404.
  • Compressor 401, condenser 402, throttle device 403, and evaporator 404 are connected by refrigerant piping 407 to constitute a refrigeration cycle. That is, the refrigerant circulates in the order of compressor 401, condenser 402, expansion device 403, and evaporator 404.
  • a compressor 401, a condenser 402, and a throttle device 403 are provided in an outdoor unit 410.
  • Compressor 401 is comprised of compressor 300 described with reference to FIG.
  • the outdoor unit 410 is provided with an outdoor blower 405 that blows air to the condenser 402 .
  • Evaporator 404 is provided in indoor unit 420.
  • This indoor unit 420 is provided with an indoor blower 406 that blows air to the evaporator 404 .
  • the operation of the refrigeration cycle device 400 is as follows. Compressor 401 compresses the refrigerant it sucks in and sends it out.
  • the condenser 402 exchanges heat between the refrigerant flowing from the compressor 401 and outdoor air, condenses and liquefies the refrigerant, and sends the refrigerant to the refrigerant pipe 407 .
  • Outdoor blower 405 supplies outdoor air to condenser 402 .
  • the expansion device 403 adjusts the pressure of the refrigerant flowing through the refrigerant pipe 407 .
  • the evaporator 404 exchanges heat between the refrigerant brought into a low pressure state by the expansion device 403 and indoor air.
  • the refrigerant absorbs heat from the air, evaporates, and is sent to the refrigerant pipe 407.
  • the indoor blower 406 supplies air from which heat has been removed by the refrigerant in the evaporator 404 into the room.
  • the circumferential length of the coil 20 can be shortened while suppressing an increase in iron loss. Therefore, by using the electric motor 100 for the compressor 401 of the refrigeration cycle device 400, the operating efficiency of the refrigeration cycle device 400 can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

This stator has: a yoke that extends in the circumferential direction about the axis; a stator core that has first and second teeth extending from the yoke to the inside in the radial direction about the axis and a slot formed between the first tooth and the second tooth; and a winding that is wound around the stator core and has a coil passing through the slot and bent to the first tooth side. The first tooth has a step portion at the end portion in the axis direction, and the second tooth does not have the step portion at the end portion in the axis direction.

Description

固定子、電動機、圧縮機および冷凍サイクル装置Stator, electric motor, compressor and refrigeration cycle equipment
 本開示は、固定子、電動機、圧縮機および冷凍サイクル装置に関する。 The present disclosure relates to a stator, an electric motor, a compressor, and a refrigeration cycle device.
 電動機は、ティースを有する固定子鉄心と、ティースに巻き付けられたコイルとを有する。コイルが分布巻で巻かれている場合、コイルエンドが大きくなり、コイルの周長が長くなる傾向がある。 The electric motor has a stator core with teeth and a coil wound around the teeth. When a coil is wound with distributed winding, the coil end tends to become large and the circumference of the coil becomes long.
 一方、特許文献1には、固定子鉄心のティースの軸方向の端部に段差部を形成したものが開示されている。 On the other hand, Patent Document 1 discloses a stator core in which a stepped portion is formed at the end of the tooth in the axial direction.
特開2017-079557号公報(図2参照)JP 2017-079557 (see Figure 2)
 上記のようにティースの軸方向端部に段差部を形成すれば、コイルの周長は短くなる。しかしながら、段差部の形成によってティースの軸方向端部の幅が狭くなるため、磁束密度が高くなり、鉄損が増加するという問題がある。 By forming the stepped portion at the axial end of the teeth as described above, the circumferential length of the coil will be shortened. However, since the width of the axial end portion of the tooth becomes narrow due to the formation of the stepped portion, there is a problem in that the magnetic flux density increases and iron loss increases.
 本開示は、上記の課題を解決するためになされたものであり、鉄損の増加を抑えながらコイルの周長を短くすることを目的とする。 The present disclosure has been made to solve the above problems, and aims to shorten the circumferential length of the coil while suppressing an increase in iron loss.
 本開示における固定子は、軸線を中心とする周方向に延在するヨークと、ヨークから軸線を中心とする径方向の内側に延在する第1のティースおよび第2のティースと、第1のティースと第2のティースとの間に形成されたスロットとを有する固定子鉄心と、固定子鉄心に巻かれた巻線であって、スロットを通過して第1のティースの側に折り曲げられるコイルを有する巻線とを有する。第1のティースは軸線の方向の端部に段差部を有し、第2のティースは軸線の方向の端部に段差部を有さない。 The stator in the present disclosure includes a yoke extending in the circumferential direction centered on the axis, first teeth and second teeth extending radially inward from the yoke centered on the axis, and first teeth. A stator core having a slot formed between a tooth and a second tooth, and a coil wound around the stator core that passes through the slot and is bent toward the first tooth. and a winding having. The first tooth has a stepped portion at the end in the axial direction, and the second tooth does not have a stepped portion at the end in the axial direction.
 本開示の固定子は、段差部を有する第1のティースと、段差部を有さない第2のティースとを有するため、鉄損の増加を抑えながら、コイルの周長を短くすることができる。 Since the stator of the present disclosure includes the first teeth having a stepped portion and the second teeth having no stepped portion, the circumferential length of the coil can be shortened while suppressing an increase in iron loss. .
実施の形態1の電動機を示す断面図である。1 is a cross-sectional view showing an electric motor of Embodiment 1. FIG. 実施の形態1の固定子を示す平面図である。FIG. 3 is a plan view showing the stator of Embodiment 1. FIG. 実施の形態1の固定子の一部を示す平面図である。FIG. 3 is a plan view showing a part of the stator of Embodiment 1. FIG. 実施の形態1の固定子の一部を示す斜視図である。FIG. 2 is a perspective view showing a part of the stator according to the first embodiment. 実施の形態1の固定子の一部を示す平面図(A)、およびスロットの周囲を拡大して示す図(B)である。FIG. 2 is a plan view (A) showing a part of the stator of Embodiment 1, and an enlarged view (B) showing the periphery of a slot. 比較例1の固定子の一部を示す平面図(A)、およびスロットの周囲を拡大して示す図(B)である。FIG. 3 is a plan view (A) showing a part of a stator of Comparative Example 1, and an enlarged view (B) showing the periphery of a slot. 比較例1の固定子および実施の形態1の固定子におけるスロットの周囲を拡大して示す図(A),(B)である。FIGS. 7A and 7B are enlarged views showing the peripheries of slots in the stator of Comparative Example 1 and the stator of Embodiment 1. FIGS. 比較例2の固定子の一部を示す平面図(A)、およびスロットの周囲を拡大して示す図(B)である。FIG. 3 is a plan view (A) showing a part of a stator of Comparative Example 2, and an enlarged view (B) showing the periphery of a slot. 実施の形態2の固定子を示す断面図である。FIG. 3 is a cross-sectional view showing a stator according to a second embodiment. 比較例3の固定子および実施の形態2の固定子におけるスロットの周囲を拡大して示す図(A),(B)である。FIGS. 7A and 7B are enlarged views showing the peripheries of slots in a stator of Comparative Example 3 and a stator of Embodiment 2; FIGS. 実施の形態3の固定子の一部を示す平面面である。12 is a plan view showing a part of the stator of Embodiment 3. 各実施の形態の電動機が適用可能な圧縮機を示す図である。It is a figure showing a compressor to which the electric motor of each embodiment is applicable. 各実施の形態の電動機が適用可能な冷凍サイクル装置を示す図である。It is a figure showing a refrigeration cycle device to which the electric motor of each embodiment is applicable.
実施の形態1.
<電動機の構成>
 図1は、実施の形態1の電動機100を示す断面図である。電動機100は、同期電動機であり、例えば、圧縮機に組み込まれる。電動機100は、環状の固定子1と、固定子1の内側に回転可能に設けられた回転子5とを有する。固定子1と回転子5との間には、エアギャップが形成されている。
Embodiment 1.
<Configuration of electric motor>
FIG. 1 is a sectional view showing an electric motor 100 according to the first embodiment. The electric motor 100 is a synchronous electric motor, and is incorporated into a compressor, for example. The electric motor 100 has an annular stator 1 and a rotor 5 rotatably provided inside the stator 1. An air gap is formed between the stator 1 and the rotor 5.
 以下では、回転子5の回転中心である軸線Axの方向を「軸方向」とする。軸線Axを中心とする径方向を「径方向」とする。軸線Axを中心とする周方向を「周方向」とする。図1は、軸線Axに直交する面における断面図である。 Hereinafter, the direction of the axis Ax, which is the center of rotation of the rotor 5, will be referred to as the "axial direction." The radial direction centered on the axis Ax is defined as the "radial direction." The circumferential direction centered on the axis Ax is defined as the "circumferential direction." FIG. 1 is a sectional view taken in a plane perpendicular to the axis Ax.
 固定子1は、固定子鉄心10と、固定子鉄心10に巻き付けられた巻線2とを有する。固定子鉄心10は、複数の電磁鋼板を軸方向に積層し、カシメ等により固定した積層体で構成される。電磁鋼板の板厚は、例えば0.1~0.7mmである。 The stator 1 has a stator core 10 and a winding 2 wound around the stator core 10. The stator core 10 is composed of a laminate in which a plurality of electromagnetic steel plates are laminated in the axial direction and fixed by caulking or the like. The thickness of the electromagnetic steel plate is, for example, 0.1 to 0.7 mm.
 固定子鉄心10は、軸線Axを中心とする環状のヨーク11と、ヨーク11から径方向内側に延在する複数のティース12とを有する。ティース12は、周方向に等間隔に配置されている。ティース12の数はここでは18であるが、2以上であればよい。周方向に隣り合うティース12の間には、巻線2を収容する空間であるスロット13が形成される。スロット13の数は、ティース12の数と同じである。 The stator core 10 has an annular yoke 11 centered on the axis Ax, and a plurality of teeth 12 extending radially inward from the yoke 11. Teeth 12 are arranged at equal intervals in the circumferential direction. The number of teeth 12 is 18 here, but it may be 2 or more. A slot 13, which is a space for accommodating the winding 2, is formed between teeth 12 adjacent in the circumferential direction. The number of slots 13 is the same as the number of teeth 12.
 固定子鉄心10と巻線2とを絶縁するため、固定子鉄心10と巻線2との間には、樹脂で形成された絶縁部(すなわち図4に示す絶縁フィルム31およびインシュレータ32)が設けられる。 In order to insulate the stator core 10 and the winding 2, an insulating part made of resin (that is, an insulating film 31 and an insulator 32 shown in FIG. 4) is provided between the stator core 10 and the winding 2. It will be done.
 回転子5は、円筒状の回転子鉄心50と、回転子鉄心50に取り付けられた永久磁石55とを有する。回転子鉄心50は、複数の電磁鋼板を軸方向に積層し、カシメ等で固定した積層体で構成される。電磁鋼板の板厚は、例えば0.1~0.7mmである。 The rotor 5 has a cylindrical rotor core 50 and a permanent magnet 55 attached to the rotor core 50. The rotor core 50 is composed of a laminated body in which a plurality of electromagnetic steel plates are laminated in the axial direction and fixed by caulking or the like. The thickness of the electromagnetic steel plate is, for example, 0.1 to 0.7 mm.
 回転子鉄心50は、径方向中心に中心孔53を有する。中心孔53には、回転シャフト60が、焼嵌め、圧入または接着等により固定されている。 The rotor core 50 has a center hole 53 at the center in the radial direction. A rotating shaft 60 is fixed to the center hole 53 by shrink fitting, press fitting, adhesive, or the like.
 回転子鉄心50の外周に沿って、複数の磁石挿入孔51が形成されている。ここでは6つの磁石挿入孔51が周方向に等間隔に形成されている。磁石挿入孔51の数は6に限定されるものではなく、2以上であればよい。各磁石挿入孔51は、回転子鉄心50の軸方向の一端から他端に達している。 A plurality of magnet insertion holes 51 are formed along the outer periphery of the rotor core 50. Here, six magnet insertion holes 51 are formed at equal intervals in the circumferential direction. The number of magnet insertion holes 51 is not limited to six, but may be two or more. Each magnet insertion hole 51 reaches from one end of the rotor core 50 in the axial direction to the other end.
 各磁石挿入孔51に、永久磁石55が1つずつ挿入されている。すなわち、回転子鉄心50には、合計6つの永久磁石55が埋め込まれている。各永久磁石55は1磁極を構成し、回転子5の極数は6である。但し、回転子5の極数は6に限定されるものではなく、2以上であればよい。各永久磁石55は、例えば、希土類磁石で構成されている。 One permanent magnet 55 is inserted into each magnet insertion hole 51. That is, a total of six permanent magnets 55 are embedded in the rotor core 50. Each permanent magnet 55 constitutes one magnetic pole, and the number of poles of the rotor 5 is six. However, the number of poles of the rotor 5 is not limited to six, but may be two or more. Each permanent magnet 55 is made of, for example, a rare earth magnet.
 ここでは、各磁石挿入孔51に1つの永久磁石55が挿入されているが、各磁石挿入孔51に2つ以上の永久磁石55が挿入されていてもよい。また、各磁石挿入孔51は、ここでは直線状に延在しているが、内周側に凸となるV字状に延在していてもよい。 Although one permanent magnet 55 is inserted into each magnet insertion hole 51 here, two or more permanent magnets 55 may be inserted into each magnet insertion hole 51. Furthermore, although each magnet insertion hole 51 extends linearly here, it may extend in a V-shape convex toward the inner circumferential side.
 回転子鉄心50において各磁石挿入孔51の周方向両側には、フラックスバリア52が形成されている。フラックスバリア52と回転子鉄心50の外周との間には、薄肉部が形成される。薄肉部の幅は、電磁鋼板の板厚と同等に設定されている。 Flux barriers 52 are formed on both circumferential sides of each magnet insertion hole 51 in the rotor core 50. A thin wall portion is formed between the flux barrier 52 and the outer periphery of the rotor core 50. The width of the thin wall portion is set to be equal to the thickness of the electromagnetic steel sheet.
 図2は、固定子1を示す上面図である。巻線2は、第1相のコイルとしてのU相のコイル20Uと、第2相のコイルとしてのV相のコイル20Vと、第3相のコイルとしてのW相のコイル20Wとを有する。コイル20U,20V,20Wはいずれも、銅線またはアルミニウム線で構成される。 FIG. 2 is a top view showing the stator 1. The winding 2 includes a U-phase coil 20U as a first-phase coil, a V-phase coil 20V as a second-phase coil, and a W-phase coil 20W as a third-phase coil. The coils 20U, 20V, and 20W are all made of copper wire or aluminum wire.
 巻線2は、ここでは、コイル20U,20V,20Wを3つずつ有する。3つのコイル20Uは、軸線Axを中心とする周方向に120度間隔で配置され、各コイル20Uは3つのティース12を跨ぐように巻かれている。コイル20V,20Wも同様である。 The winding 2 here has three coils 20U, 20V, and 20W. The three coils 20U are arranged at intervals of 120 degrees in the circumferential direction around the axis Ax, and each coil 20U is wound so as to straddle the three teeth 12. The same applies to the coils 20V and 20W.
 コイル20Uは最も径方向内側に配置されている。コイル20Vは、コイル20Uに対して径方向外側に配置されている。コイル20Wは、コイル20Uの径方向外側からコイル20Vの径方向内側に引き回されている。 The coil 20U is arranged at the innermost position in the radial direction. Coil 20V is arranged radially outward with respect to coil 20U. The coil 20W is routed from the radially outer side of the coil 20U to the radially inner side of the coil 20V.
 コイル20U,20V,20Wは、これらのうちの2つのコイルが径方向に重なり合っている。すなわち、コイル20U,20Vが径方向に重なり合い、コイル20V,20Wが径方向に重なり合い、コイル20U,20Wが径方向に重なり合っている。 Two of the coils 20U, 20V, and 20W overlap in the radial direction. That is, the coils 20U and 20V overlap in the radial direction, the coils 20V and 20W overlap in the radial direction, and the coils 20U and 20W overlap in the radial direction.
 コイル20U,20V,20Wはいずれも、スロット13に挿入される2つのコイルサイド201と、ティース12の軸方向の端面に沿って延在する2つのコイルエンド202とを有する。固定子鉄心10の各スロット13には、コイルサイド201が1つ挿入されている。 Each of the coils 20U, 20V, and 20W has two coil sides 201 that are inserted into the slots 13 and two coil ends 202 that extend along the axial end surfaces of the teeth 12. One coil side 201 is inserted into each slot 13 of the stator core 10.
 コイル20U,20V,20Wは、特に区別する必要がない場合には「コイル20」と称する。なお、図2に示した巻線2のコイル20U,20V,20Wの配置例は一例であり、これに限定されるものではない。 The coils 20U, 20V, and 20W will be referred to as "coils 20" unless there is a particular need to distinguish them. Note that the arrangement example of the coils 20U, 20V, and 20W of the winding 2 shown in FIG. 2 is an example, and the arrangement is not limited thereto.
 図3は、固定子1の一部を示す平面図である。上記の通り、各スロット13には1つのコイル20のコイルサイド201が収容される。コイル20は3スロット毎に、すなわち3つのティース12を跨ぐように巻かれている。 FIG. 3 is a plan view showing a part of the stator 1. As described above, each slot 13 accommodates the coil side 201 of one coil 20. The coil 20 is wound every three slots, that is, so as to straddle the three teeth 12.
 ティース12は、第1のティースとしてのティース12Aと、第2のティースとしてのティース12Bとを有する。ここではティース12Aとティース12Bとは同じ数だけ設けられ、周方向に交互に配置されている。 The teeth 12 include teeth 12A as first teeth and teeth 12B as second teeth. Here, the same number of teeth 12A and teeth 12B are provided and are arranged alternately in the circumferential direction.
 各コイル20は、ティース12Bとその両側の2つのティース12Aを跨ぐように巻かれている。スロット13を通過したコイル20は、ティース12A側に折り曲げられ、ティース12Bと2つのスロット13とを周方向に通過し、もう一つのティース12Aを通過してスロット13に挿入される。 Each coil 20 is wound so as to straddle the tooth 12B and the two teeth 12A on both sides thereof. The coil 20 that has passed through the slot 13 is bent toward the teeth 12A, passes through the teeth 12B and the two slots 13 in the circumferential direction, passes through another tooth 12A, and is inserted into the slots 13.
 また、図3における左側のティース12Aには、当該ティース12Aの左側のスロット13(すなわち第1のスロット)を通過したコイル20Uと、当該ティース12Aの右側のスロット13(すなわち第2のスロット)を通過したコイル20Vとが巻かれる。 In addition, the left tooth 12A in FIG. 3 includes a coil 20U that has passed through the left slot 13 (i.e., the first slot) of the tooth 12A, and a coil 20U that has passed through the right slot 13 (i.e., the second slot) of the tooth 12A. The passed coil 20V is wound.
 同様に、図3の右側のティース12Aには、当該ティース12Aの右側のスロット13を通過したコイル20Uと、当該ティース12Aの左側のスロット13を通過したコイル20Wとが巻かれる。 Similarly, a coil 20U passing through the right slot 13 of the tooth 12A and a coil 20W passing through the left slot 13 of the tooth 12A are wound around the right tooth 12A in FIG.
 すなわち、各ティース12Aには、その両側のスロット13を通過したコイル20が折り曲げられるように巻かれる。これに対し、各ティース12Bは、その軸方向端面をコイルエンド202が通過する。 That is, the coil 20 that has passed through the slots 13 on both sides of each tooth 12A is wound so as to be bent. On the other hand, the coil end 202 passes through the axial end face of each tooth 12B.
 ティース12Aの軸方向端部のスロット13側には、段差部Sが形成されている。段差部Sは、コイル20が折り曲げられる部分、すなわちコイル20のコイルサイド201とコイルエンド202との間のコーナー部分に対応する位置に形成されている。 A stepped portion S is formed at the axial end of the tooth 12A on the slot 13 side. The stepped portion S is formed at a position corresponding to a portion where the coil 20 is bent, that is, a corner portion between the coil side 201 and the coil end 202 of the coil 20.
 なお、段差部Sは、ティース12Aの軸方向の少なくとも一端部に形成されていればよいが、ティース12Aの軸方向の両端部に形成されていることが望ましい。 Note that the stepped portion S may be formed at at least one end of the tooth 12A in the axial direction, but it is preferably formed at both ends of the tooth 12A in the axial direction.
 また、段差部Sは、ティース12Aの軸方向端部の周方向両側に形成されている。そのため、ティース12Aは、ある相のコイル20の折り曲げ部分に対応する位置に段差部Sを有し、もう一相のコイル20の折り曲げ部分に対応する位置にも段差部Sを有する。 Furthermore, the stepped portions S are formed on both sides in the circumferential direction of the axial end portions of the teeth 12A. Therefore, the teeth 12A have a stepped portion S at a position corresponding to the bent portion of the coil 20 of one phase, and also have a stepped portion S at a position corresponding to the bent portion of the coil 20 of the other phase.
 例えば、図3の左側のティース12Aは、コイル20Uの折り曲げ部分に対応する位置に段差部Sを有し、コイル20Vの折り曲げ部分に対応する位置にも段差部Sを有する。 For example, the left tooth 12A in FIG. 3 has a stepped portion S at a position corresponding to the bent portion of the coil 20U, and also has a stepped portion S at a position corresponding to the bent portion of the coil 20V.
 これに対し、ティース12Bの軸方向端部には、段差部Sが形成されていない。 On the other hand, the step S is not formed at the axial end of the teeth 12B.
 図4は、固定子鉄心10の1つのティース12を含む部分と、これに取り付けられる絶縁部とを示す斜視図である。軸方向は矢印Zで示す。図4に示したティース12はティース12Aであるが、ティース12Bにも同様の絶縁部が設けられている。 FIG. 4 is a perspective view showing a portion of the stator core 10 including one tooth 12 and an insulating portion attached to this portion. The axial direction is indicated by arrow Z. Although the teeth 12 shown in FIG. 4 are the teeth 12A, the teeth 12B are also provided with similar insulating parts.
 ティース12に取り付けられる絶縁部は、スロット13内に設けられる絶縁フィルム31と、固定子鉄心10の軸方向端面に設けられるインシュレータ32とを含む。 The insulating portion attached to the teeth 12 includes an insulating film 31 provided in the slot 13 and an insulator 32 provided on the axial end surface of the stator core 10.
 絶縁フィルム31は、ティース12の側面に固定される側面部31aと、ヨーク11の内周面に固定される内周部31bと、ティース12の歯先部のスロット13側の面に固定される先端部31cとを有する。 The insulating film 31 is fixed to a side surface 31a fixed to the side surface of the tooth 12, an inner circumferential portion 31b fixed to the inner circumferential surface of the yoke 11, and a surface of the tooth tip of the tooth 12 on the slot 13 side. It has a tip portion 31c.
 但し、絶縁フィルム31は、必ずしも側面部31aと内周部31bと先端部31cの全てを有している必要はなく、少なくとも側面部31aを有していればよい。 However, the insulating film 31 does not necessarily need to have all of the side surface portion 31a, the inner peripheral portion 31b, and the tip portion 31c, and it is sufficient to have at least the side surface portion 31a.
 絶縁フィルム31の軸方向長さは、固定子鉄心10の軸方向長さと同じである。なお、絶縁フィルム31の軸方向長さが固定子鉄心10の軸方向長さよりも長い例については、実施の形態2で説明する。 The axial length of the insulating film 31 is the same as the axial length of the stator core 10. Note that an example in which the axial length of the insulating film 31 is longer than the axial length of the stator core 10 will be described in Embodiment 2.
 インシュレータ32は、ティース12上に位置する胴部32aと、ヨーク11上に位置する壁部32bと、ティース12の歯先部上に位置するフランジ部32cとを有する。インシュレータ32には、必要に応じて、スロット13の内周面の一部を覆う壁部32dを設けてもよい。 The insulator 32 has a body portion 32a located on the teeth 12, a wall portion 32b located on the yoke 11, and a flange portion 32c located on the tips of the teeth 12. The insulator 32 may be provided with a wall portion 32d that covers a portion of the inner circumferential surface of the slot 13, if necessary.
 図5(A)は、固定子1の一部を示す模式図である。なお、図5(A)では、固定子鉄心10を直線状に広げて示しており、周方向を矢印Cで示す。図5(B)は、固定子1のスロット13の周囲を示す模式図である。図5(A),(B)では、絶縁部すなわち図4に示した絶縁フィルム31およびインシュレータ32を省略している。 FIG. 5(A) is a schematic diagram showing a part of the stator 1. In addition, in FIG. 5(A), the stator core 10 is shown spread out in a straight line, and the circumferential direction is indicated by an arrow C. FIG. 5(B) is a schematic diagram showing the periphery of the slot 13 of the stator 1. In FIGS. 5A and 5B, the insulating portion, that is, the insulating film 31 and insulator 32 shown in FIG. 4 are omitted.
 図5(B)に示すように、ティース12Aの軸方向中央部には、スロット13に面する第1の側面121が形成されている。ティース12Aの軸方向端部には、スロット13に面する第2の側面122が形成されている。 As shown in FIG. 5(B), a first side surface 121 facing the slot 13 is formed at the axial center of the tooth 12A. A second side surface 122 facing the slot 13 is formed at the axial end of the tooth 12A.
 ティース12Aの第2の側面122は、第1の側面121よりもティース12Aの幅方向内側に退避した位置にある。言い換えると。ティース12Aの第1の側面121は、第2の側面122よりもスロット13内に突出した位置にある。 The second side surface 122 of the tooth 12A is located at a position retracted further inward in the width direction of the tooth 12A than the first side surface 121. In other words. The first side surface 121 of the teeth 12A is located at a position that protrudes further into the slot 13 than the second side surface 122.
 図5(A)に示すように、ティース12Aの軸方向端部における周方向の幅W2(以下、幅W2と称する)は、ティース12Aの軸方向中央部における周方向の幅W1(以下、幅W1と称する)よりも狭い。 As shown in FIG. 5A, the circumferential width W2 (hereinafter referred to as width W2) at the axial end of the tooth 12A is the circumferential width W1 (hereinafter referred to as width W2) at the axial center of the tooth 12A. (referred to as W1).
 ティース12Aの第1の側面121と第2の側面122との間に、上述した段差部Sが形成されている。段差部Sは、上記の通り、スロット13内のコイル20が折れ曲がる部分、言いかえるとコイルサイド201とコイルエンド202との間のコーナー部分に対向する。そのため、コイル20は、スロット13内を軸方向に通過し、段差部Sに沿ってティース12A側に折れ曲がり、ティース12Aの軸方向の端面12e上で周方向に延在する。 The above-described stepped portion S is formed between the first side surface 121 and the second side surface 122 of the teeth 12A. As described above, the stepped portion S faces the portion where the coil 20 in the slot 13 is bent, in other words, the corner portion between the coil side 201 and the coil end 202. Therefore, the coil 20 passes through the slot 13 in the axial direction, bends along the stepped portion S toward the teeth 12A, and extends in the circumferential direction on the axial end surface 12e of the teeth 12A.
 図5(B)に示すように、固定子鉄心10は、軸方向に第1の鉄心部101と第2の鉄心部102とを有する。第1の鉄心部101は固定子鉄心10の軸方向中央部に位置し、第2の鉄心部102は固定子鉄心10の軸方向端部に位置する。第1の鉄心部101は、ティース12Aが第1の側面121を有する部分に相当し、第2の鉄心部102は、ティース12Aが第2の側面122を有する部分に相当する。 As shown in FIG. 5(B), the stator core 10 has a first core portion 101 and a second core portion 102 in the axial direction. The first core portion 101 is located at the center of the stator core 10 in the axial direction, and the second core portion 102 is located at the end of the stator core 10 in the axial direction. The first core portion 101 corresponds to a portion of the teeth 12A having a first side surface 121, and the second core portion 102 corresponds to a portion of the tooth 12A having a second side surface 122.
 一方、ティース12Bは、スロット13に面する側面120を有する。ティース12Bの幅方向における側面120の位置は、軸方向端部も軸方向中央部も同じである。すなわち、ティース12Bの幅W1は、軸方向に一定である。 On the other hand, the teeth 12B have side surfaces 120 facing the slots 13. The positions of the side surfaces 120 in the width direction of the teeth 12B are the same at both the axial ends and the axial center. That is, the width W1 of the teeth 12B is constant in the axial direction.
<作用>
 次に、実施の形態1の作用について説明する。まず、実施の形態1の固定子1に対比される比較例1,2について説明する。図6(A)は、比較例1の固定子1Cの一部を示す模式図である。図6(B)は、比較例1の固定子1Cのスロット13の周囲を示す模式図である。図6(A),(B)では、絶縁部を省略している。
<Effect>
Next, the operation of the first embodiment will be explained. First, Comparative Examples 1 and 2, which are compared to the stator 1 of Embodiment 1, will be described. FIG. 6(A) is a schematic diagram showing a part of the stator 1C of Comparative Example 1. FIG. 6(B) is a schematic diagram showing the periphery of the slot 13 of the stator 1C of Comparative Example 1. In FIGS. 6A and 6B, the insulating portion is omitted.
 図6(A)に示すように、比較例1の固定子1Cでは、固定子鉄心10の全ティース12が、段差部Sを有さないティース12Bで構成されている。すなわち、図6(B)に示すように、スロット13の両側に位置するティース12Bが、いずれも段差部Sを有さない。そのため、コイル20は、スロット13から軸方向に抜け出した位置で、一方のティース12B側に折れ曲がる。 As shown in FIG. 6(A), in the stator 1C of Comparative Example 1, all teeth 12 of the stator core 10 are composed of teeth 12B that do not have a stepped portion S. That is, as shown in FIG. 6(B), none of the teeth 12B located on both sides of the slot 13 has a stepped portion S. Therefore, the coil 20 is bent toward one tooth 12B at the position where it exits from the slot 13 in the axial direction.
 図7(A),(B)は、比較例の固定子1Cと実施の形態1の固定子1におけるスロット13の周囲を示す模式図である。図7(A),(B)では、絶縁部を省略している。 FIGS. 7A and 7B are schematic diagrams showing the surroundings of the slots 13 in the stator 1C of the comparative example and the stator 1 of the first embodiment. In FIGS. 7A and 7B, the insulating portion is omitted.
 図7(A)に示すように、比較例1の固定子1Cでは、コイル20がスロット13の軸方向外側で折れ曲がり始めるため、ティース12Bの端面12eからコイルエンド202までの高さHが高くなる。 As shown in FIG. 7(A), in the stator 1C of Comparative Example 1, the coil 20 begins to bend on the axial outside of the slot 13, so the height H from the end surface 12e of the tooth 12B to the coil end 202 increases. .
 これに対し、実施の形態1の固定子1では、スロット13の両側のティース12A,12Bのうち、コイル20が折り曲げられる側のティース12Aが段差部Sを有する。そのため、図7(B)に示すように、コイル20はティース12Aの段差部Sで折れ曲がり始める。言い換えると、コイル20がスロット13内で折れ曲がり始める。そのため、ティース12Aの端面12eからコイルエンド202までの高さHが低くなり、コイル20の軸方向長さが短くなる。これによりコイル20の周長が短くなり、銅損を低減することができる。 On the other hand, in the stator 1 of the first embodiment, of the teeth 12A and 12B on both sides of the slot 13, the tooth 12A on the side where the coil 20 is bent has the stepped portion S. Therefore, as shown in FIG. 7(B), the coil 20 begins to bend at the stepped portion S of the teeth 12A. In other words, the coil 20 begins to bend within the slot 13. Therefore, the height H from the end surface 12e of the teeth 12A to the coil end 202 becomes low, and the axial length of the coil 20 becomes short. This shortens the circumferential length of the coil 20 and reduces copper loss.
 なお、コイル20の周長とは、コイル20の軸方向長さと周方向長さとの合計である。より具体的には、1つのコイル20を構成する2つのコイルサイド201と2つのコイルエンド202の長さの合計である。 Note that the circumferential length of the coil 20 is the sum of the axial length and circumferential length of the coil 20. More specifically, it is the total length of two coil sides 201 and two coil ends 202 that constitute one coil 20.
 図8(A)は、比較例2の固定子1Dの一部を示す模式図である。図8(B)は、比較例2の固定子1Dのスロット13の周囲を示す模式図である。図8(A),(B)では、絶縁部を省略している。 FIG. 8(A) is a schematic diagram showing a part of the stator 1D of Comparative Example 2. FIG. 8(B) is a schematic diagram showing the periphery of the slot 13 of the stator 1D of Comparative Example 2. In FIGS. 8(A) and 8(B), the insulating portion is omitted.
 比較例2の固定子1Dでは、固定子鉄心10の全ティース12が、段差部Sを有するティース12Aで構成されている。そのため、図8(B)に示すように、コイル20はティース12Aの段差部Sで折れ曲がり始め、従ってティース12Aの端面12eからコイルエンド202までの高さHが低くなる。 In the stator 1D of Comparative Example 2, all the teeth 12 of the stator core 10 are composed of teeth 12A having a stepped portion S. Therefore, as shown in FIG. 8(B), the coil 20 begins to bend at the stepped portion S of the teeth 12A, and therefore the height H from the end surface 12e of the teeth 12A to the coil end 202 decreases.
 但し、比較例2の固定子1Dでは、固定子鉄心10の全ティース12がティース12Aで構成されており、ティース12Aの軸方向端部の幅が狭い。そのため、コイル20の電流によって発生する磁束の流れる磁路が狭まり、その結果、磁束密度が高くなり、鉄損が増加する。 However, in the stator 1D of Comparative Example 2, all teeth 12 of the stator core 10 are composed of teeth 12A, and the width of the axial end portion of the teeth 12A is narrow. Therefore, the magnetic path through which the magnetic flux generated by the current in the coil 20 flows is narrowed, resulting in an increase in magnetic flux density and an increase in iron loss.
 これに対し、実施の形態1の固定子1では、固定子鉄心10がティース12Aとティース12Bとを有する。ティース12Aの軸方向端部の幅W2は狭いが、ティース12Bの軸方向端部の幅W1は広い。そのため、コイル20の周長を短くしながら、鉄損の増加を抑えることができる。 On the other hand, in the stator 1 of Embodiment 1, the stator core 10 has teeth 12A and teeth 12B. The width W2 of the axial end of the teeth 12A is narrow, but the width W1 of the axial end of the teeth 12B is wide. Therefore, an increase in iron loss can be suppressed while reducing the circumferential length of the coil 20.
 加えて、実施の形態1の固定子1では、コイル20が巻かれた3つのティース12の中央に、ティース12Bが位置する。例えば、図5(A)に示した例では、コイル20Uが跨る3つのティース12の中央に、ティース12Bが位置する。コイル20を流れる電流によって生じた磁束は、中央のティース12Bに集中する。ティース12Bは段差部Sを有さず、ティース12Bの軸方向端部でも広い幅W1を有するため、磁束密度の上昇が抑えられる。これにより、鉄損の低減効果を高め、電動機効率を向上することができる。 In addition, in the stator 1 of the first embodiment, the teeth 12B are located at the center of the three teeth 12 around which the coils 20 are wound. For example, in the example shown in FIG. 5(A), the tooth 12B is located at the center of the three teeth 12 that the coil 20U straddles. The magnetic flux generated by the current flowing through the coil 20 is concentrated on the central teeth 12B. Since the teeth 12B do not have a stepped portion S and have a wide width W1 even at the axial ends of the teeth 12B, an increase in magnetic flux density is suppressed. Thereby, the effect of reducing iron loss can be enhanced and the motor efficiency can be improved.
 また、実施の形態1の固定子1では、ティース12Aが周方向両側に段差部Sを有する。また、ティース12Aには、周方向の一方の側のスロット13を通過したある相のコイル20(例えばコイル20U)が巻かれ、もう一方の側のスロット13を通過した別の相のコイル20(例えばコイル20V)も巻かれる。そのため、ティース12Aが周方向両側に設けられた段差部Sを利用し、両相のコイル20の周長を短くすることができる。 Furthermore, in the stator 1 of the first embodiment, the teeth 12A have stepped portions S on both sides in the circumferential direction. Further, a coil 20 of a certain phase (for example, coil 20U) that passed through the slot 13 on one side in the circumferential direction is wound around the teeth 12A, and a coil 20 of another phase that passed through the slot 13 on the other side in the circumferential direction ( For example, a coil (20V) is also wound. Therefore, by utilizing the stepped portion S in which the teeth 12A are provided on both sides in the circumferential direction, the circumferential lengths of the coils 20 of both phases can be shortened.
 なお、ここではコイル20が3個のティース12(すなわち2つのティース12Aおよび1つのティース12B)を跨ぐように巻かれているが、コイル20が跨ぐティース12の数Nは3個以上であればよい。当該N個のティース12のうちの両端に段差部Sを有するティース12Aを設け、これらの間に段差部Sを有さないティース12Bを設ければよい。 Note that although the coil 20 is wound here so as to straddle three teeth 12 (that is, two teeth 12A and one tooth 12B), the number N of teeth 12 that the coil 20 straddles is 3 or more. good. Teeth 12A having stepped portions S at both ends of the N teeth 12 may be provided, and teeth 12B having no stepped portion S may be provided between these.
 但し、コイル20が3つのティース12を跨ぐようにすれば、図2に示したように3相のコイル20U,20V,20Wを周方向に均等に配置することができる。また、ティース12Aとティース12Bとを周方向に交互に配置することで、上述したようにコイル20の周長を短くし、且つ鉄損の増加を抑えることができる。 However, if the coil 20 straddles the three teeth 12, the three- phase coils 20U, 20V, and 20W can be arranged evenly in the circumferential direction as shown in FIG. Moreover, by arranging the teeth 12A and the teeth 12B alternately in the circumferential direction, the circumferential length of the coil 20 can be shortened as described above, and an increase in iron loss can be suppressed.
<実施の形態の効果>
 以上説明したように、実施の形態1の固定子1は、固定子鉄心10と巻線2とを有する。固定子鉄心10は、環状のヨーク11と、ヨーク11から径方向内側に延在するティース12Aおよびティース12Bと、これらの間に形成されたスロット13とを有する。巻線2は、スロット13に1つのコイル20が収容されるように巻かれ、コイル20はスロット13を通過してティース12Aの側に折り曲げられる。ティース12Aは軸方向端部に段差部Sを有し、ティース12Bは軸方向端部に段差部Sを有さない。
<Effects of the embodiment>
As described above, the stator 1 of the first embodiment includes the stator core 10 and the winding 2. Stator core 10 includes an annular yoke 11, teeth 12A and 12B extending radially inward from yoke 11, and slots 13 formed between them. The winding 2 is wound so that one coil 20 is accommodated in the slot 13, and the coil 20 passes through the slot 13 and is bent toward the teeth 12A. The teeth 12A have a stepped portion S at the axial end, and the teeth 12B do not have a stepped portion S at the axial end.
 このようにティース12Aが段差部Sを有するため、コイル20のコイルエンド202の高さHを低くし、コイル20の周長を短くすることができる。また、ティース12Bが段差部Sを有さず、軸方向端部でも広い幅W1を有するため、磁束密度の上昇を抑え、鉄損を低減することができる。すなわち、コイル20の周長を短くし、且つ鉄損の上昇を抑えることができる。 Since the teeth 12A have the stepped portion S in this manner, the height H of the coil end 202 of the coil 20 can be reduced, and the circumferential length of the coil 20 can be shortened. Moreover, since the teeth 12B do not have a stepped portion S and have a wide width W1 even at the axial ends, it is possible to suppress an increase in magnetic flux density and reduce iron loss. That is, the circumferential length of the coil 20 can be shortened and an increase in iron loss can be suppressed.
 また、ティース12Bが、1つのコイル20が跨るN個(Nは3以上の整数)のティース12の周方向の中央に位置するため、磁束が集中する部分での磁路幅を広く確保し、鉄損を低減することができる。 In addition, since the teeth 12B are located at the center in the circumferential direction of the N teeth 12 (N is an integer of 3 or more) that are spanned by one coil 20, a wide magnetic path width is ensured in the area where the magnetic flux is concentrated. Iron loss can be reduced.
実施の形態2.
 次に、実施の形態2について説明する。図9は、実施の形態2の固定子1Aを内周側から見た模式図である。固定子1Aの固定子鉄心10は、実施の形態1で説明したようにティース12Aとティース12Bとを有する。固定子1Aのスロット13には、図4を参照して説明した絶縁フィルム31が設けられている。
Embodiment 2.
Next, a second embodiment will be described. FIG. 9 is a schematic diagram of the stator 1A of the second embodiment viewed from the inner peripheral side. The stator core 10 of the stator 1A has teeth 12A and teeth 12B as described in the first embodiment. The insulating film 31 described with reference to FIG. 4 is provided in the slot 13 of the stator 1A.
 実施の形態2では、絶縁フィルム31の軸方向長さがティース12の軸方向長さL1よりも長い。絶縁フィルム31の軸方向端部を、フィルム端部31eと称する。 In the second embodiment, the axial length of the insulating film 31 is longer than the axial length L1 of the teeth 12. The axial end of the insulating film 31 is referred to as a film end 31e.
 ティース12Aの両側の絶縁フィルム31のフィルム端部31eは、ティース12A側に鋭角に折り曲げられている。折り曲げられたフィルム端部31eは、ティース12Aの段差部Sによって形成されたスペースに収容されている。 The film ends 31e of the insulating film 31 on both sides of the teeth 12A are bent at an acute angle toward the teeth 12A. The bent film end portion 31e is accommodated in the space formed by the stepped portion S of the teeth 12A.
 ティース12Bの周方向両側の絶縁フィルム31のフィルム端部31eは、コイル20のコイルエンド202(図10(B))の邪魔にならない程度に、ティース12A側に鈍角に折り曲げられている。 The film ends 31e of the insulating film 31 on both circumferential sides of the teeth 12B are bent at an obtuse angle toward the teeth 12A so as not to interfere with the coil ends 202 of the coil 20 (FIG. 10(B)).
 図10(A),(B)は、比較例3の固定子1Eと実施の形態2の固定子1Aにおけるスロット13の周囲を示す模式図である。比較例の固定子1Eは、固定子鉄心10の全ティース12が、段差部Sを有さないティース12Bで構成されている。 FIGS. 10A and 10B are schematic diagrams showing the surroundings of the slots 13 in the stator 1E of Comparative Example 3 and the stator 1A of Embodiment 2. In the stator 1E of the comparative example, all the teeth 12 of the stator core 10 are constituted by teeth 12B that do not have a stepped portion S.
 コイル20とティース12とは、絶縁フィルム31およびインシュレータ32によって絶縁される。コイル20とティース12との間に、絶縁フィルム31あるいはインシュレータ32が存在しない部分がある場合には、コイル20とティース12との間に電気用品安全法に規定された距離Dを設ける必要がある。 The coil 20 and teeth 12 are insulated by an insulating film 31 and an insulator 32. If there is a part between the coil 20 and the teeth 12 where the insulating film 31 or the insulator 32 is not present, it is necessary to provide a distance D between the coil 20 and the teeth 12 as specified in the Electrical Appliance and Material Safety Act. .
 図10(A)に示すように、比較例3の固定子1Eでは、コイルエンド202をティース12の端面12eから距離Dだけ離間させるように、ティース12上のインシュレータ32の厚さが設定されている。また、絶縁フィルム31は、スロット13から軸方向に突出し、ティース12の端面12eに向けて折り曲げられている。 As shown in FIG. 10(A), in the stator 1E of Comparative Example 3, the thickness of the insulator 32 on the teeth 12 is set so that the coil end 202 is separated by a distance D from the end surface 12e of the teeth 12. There is. Further, the insulating film 31 protrudes from the slot 13 in the axial direction and is bent toward the end surface 12e of the teeth 12.
 一方、図10(B)に示すように、実施の形態2の固定子1Aでは、コイルエンド202をティース12の段差部Sから距離Dだけ離間させればよい。また、絶縁フィルム31は、フィルム端部31eをティース12Aの段差部Sに向けて屈曲させることで、フィルム端部31eを段差部Sによって生じたスペースに収容する。これにより、絶縁フィルム端部31eをスロット13の内部に収容することができる。 On the other hand, as shown in FIG. 10(B), in the stator 1A of the second embodiment, the coil end 202 may be spaced apart from the stepped portion S of the teeth 12 by a distance D. Further, the insulating film 31 accommodates the film end 31e in the space created by the step S by bending the film end 31e toward the step S of the teeth 12A. Thereby, the insulating film end portion 31e can be accommodated inside the slot 13.
 そのため、実施の形態2の固定子1Aでは、図10(A)に示した比較例3の固定子1Eよりも、ティース12Aの端面12eからコイルエンド202までの高さを低くすることができる。 Therefore, in the stator 1A of the second embodiment, the height from the end surface 12e of the teeth 12A to the coil end 202 can be lower than that of the stator 1E of the third comparative example shown in FIG. 10(A).
 なお、図10(B)に示したように、ティース12B側の絶縁フィルム31は、ティース12Bの端面12e上を通過するコイルエンド202の邪魔にならない程度に折り曲げられていればよい。 Note that, as shown in FIG. 10(B), the insulating film 31 on the teeth 12B side only needs to be bent to the extent that it does not get in the way of the coil end 202 passing over the end surface 12e of the teeth 12B.
 また、ティース12A上のインシュレータ32は、その一部がティース12Aの段差部Sに係合していることが望ましい。例えば、図4に示した壁部32dがティース12Aの段差部Sに係合していることが望ましい。このように構成すれば、ティース12Aとコイル20との間の絶縁性を確保しやすくなる。 Furthermore, it is desirable that a portion of the insulator 32 on the teeth 12A be engaged with the stepped portion S of the teeth 12A. For example, it is desirable that the wall portion 32d shown in FIG. 4 engages with the stepped portion S of the teeth 12A. With this configuration, insulation between the teeth 12A and the coil 20 can be easily ensured.
 実施の形態2の固定子1Aは、以上の点を除き、実施の形態1の固定子1と同様に構成されている。 The stator 1A of the second embodiment is configured in the same manner as the stator 1 of the first embodiment except for the above points.
 以上説明したように、実施の形態2では、ティース12Aが段差部Sを有し、絶縁フィルム31のフィルム端部31eがティース12Aの段差部Sに向けて折り曲げられ、段差部Sによって生じたスペースに収容されている。そのため、コイルエンド202をティース12Aの端面12eに近付けることができ、これによりコイル20の周長を短くすることができる。 As described above, in the second embodiment, the teeth 12A have the step S, the film end 31e of the insulating film 31 is bent toward the step S of the tooth 12A, and the space created by the step S is housed in. Therefore, the coil end 202 can be brought closer to the end surface 12e of the teeth 12A, and thereby the circumferential length of the coil 20 can be shortened.
実施の形態3.
 次に、実施の形態3について説明する。図11は、実施の形態3の固定子1Bの一部を示す平面図である。固定子1Bの固定子鉄心10は、実施の形態1で説明したようにティース12Aとティース12Bとを有する。固定子1Bの固定子鉄心10は、さらに、ヨーク11に貫通穴16を有している。
Embodiment 3.
Next, Embodiment 3 will be described. FIG. 11 is a plan view showing a part of the stator 1B of the third embodiment. Stator core 10 of stator 1B has teeth 12A and teeth 12B as described in the first embodiment. The stator core 10 of the stator 1B further has a through hole 16 in the yoke 11.
 ヨーク11の貫通穴16は、段差部Sを有さないティース12Bの径方向外側に形成されている。貫通穴16は、例えば、圧縮機の冷媒を通過させる冷媒通路として用いられる。 The through hole 16 of the yoke 11 is formed on the radially outer side of the teeth 12B that do not have the stepped portion S. The through hole 16 is used, for example, as a refrigerant passage through which refrigerant from a compressor passes.
 貫通穴16は磁束を通過させないため、貫通穴16を形成した箇所では磁路が狭くなる。実施の形態1で説明したように、ティース12Aは段差部Sを有するため、ティース12Aの軸方向端部の幅W2が狭い。そのため、ティース12Aの径方向外側に貫通穴16を形成すると、ティース12Aからヨーク11に磁束が流入する部分で磁束密度が上昇し、鉄損が増加する可能性がある。 Since the through hole 16 does not allow magnetic flux to pass through, the magnetic path becomes narrow at the location where the through hole 16 is formed. As described in the first embodiment, since the teeth 12A have the stepped portions S, the width W2 of the axial end portions of the teeth 12A is narrow. Therefore, if the through holes 16 are formed on the radially outer side of the teeth 12A, the magnetic flux density may increase at the portion where the magnetic flux flows from the teeth 12A to the yoke 11, and iron loss may increase.
 一方、ティース12Bは段差部Sを有さないため、ティース12Bの軸方向端部の幅W1が広い。そのため、ティース12Bの径方向外側に貫通穴16を形成しても、ティース12Bからヨーク11に磁束が流入する部分でも磁束密度が上昇しにくい。そのため、鉄損の増加を抑制することができる。 On the other hand, since the teeth 12B do not have the stepped portion S, the width W1 of the axial end portions of the teeth 12B is wide. Therefore, even if the through holes 16 are formed on the radially outer side of the teeth 12B, the magnetic flux density is difficult to increase even in the portion where the magnetic flux flows from the teeth 12B to the yoke 11. Therefore, an increase in iron loss can be suppressed.
 なお、ここでは貫通穴16は、固定子鉄心10の全てのティース12Bの径方向外側に形成されている必要はなく、少なくとも1つのティース12Bの径方向外側に形成されていればよい。 Here, the through hole 16 does not need to be formed on the radially outer side of all the teeth 12B of the stator core 10, but only needs to be formed on the radially outer side of at least one tooth 12B.
 実施の形態3の固定子1Bは、以上の点を除き、実施の形態1の固定子1と同様に構成されている。なお、実施の形態3の固定子1Bに、実施の形態2の絶縁フィルム31を用いてもよい。 The stator 1B of the third embodiment is configured similarly to the stator 1 of the first embodiment except for the above points. Note that the insulating film 31 of the second embodiment may be used in the stator 1B of the third embodiment.
 以上説明したように、実施の形態3では、固定子鉄心10がティース12Bの径方向外側に貫通穴16を有するため、貫通穴16の形成による磁束密度の上昇を抑え、鉄損の増加を抑制することができる。 As explained above, in the third embodiment, the stator core 10 has the through holes 16 on the radially outer side of the teeth 12B, so that an increase in magnetic flux density due to the formation of the through holes 16 is suppressed, and an increase in iron loss is suppressed. can do.
<圧縮機>
 次に、各実施の形態の電動機が適用可能な圧縮機300について説明する。図12は、圧縮機300を示す断面図である。圧縮機300は、ここではスクロール圧縮機であるが、これに限定されるものではない。
<Compressor>
Next, a compressor 300 to which the electric motor of each embodiment can be applied will be described. FIG. 12 is a sectional view showing the compressor 300. Compressor 300 is a scroll compressor here, but is not limited to this.
 圧縮機300は、圧縮機構310と、圧縮機構310を駆動する電動機100と、圧縮機構310と電動機100とを連結する回転シャフト60と、回転シャフト60の下端部(副軸部)を支持するサブフレーム303と、これらが収容された密閉容器301とを有する。密閉容器301の底部の油だめ305には、冷凍機油304が貯留されている。 The compressor 300 includes a compression mechanism 310, an electric motor 100 that drives the compression mechanism 310, a rotating shaft 60 that connects the compression mechanism 310 and the electric motor 100, and a sub-shaft that supports the lower end (secondary shaft) of the rotating shaft 60. It has a frame 303 and a closed container 301 in which these are housed. Refrigerating machine oil 304 is stored in an oil reservoir 305 at the bottom of the airtight container 301 .
  圧縮機構310は、固定スクロール311および揺動スクロール312と、オルダムリング313と、コンプライアントフレーム314と、ガイドフレーム315とを備える。固定スクロール311および揺動スクロール312はいずれも板状渦巻歯を有し、圧縮室316を形成するように組み合わせられている。 The compression mechanism 310 includes a fixed scroll 311, an oscillating scroll 312, an Oldham ring 313, a compliant frame 314, and a guide frame 315. The fixed scroll 311 and the swinging scroll 312 both have plate-shaped spiral teeth and are combined to form a compression chamber 316.
  固定スクロール311は、圧縮室316で圧縮された冷媒を吐出する吐出ポート317を有する。また、固定スクロール311には、密閉容器301を貫通する吸入管306が圧入されている。また、密閉容器301を貫通するように、固定スクロール311の吐出ポート317から吐出された高圧の冷媒ガスを外部に吐出する吐出管307が設けられている。 The fixed scroll 311 has a discharge port 317 that discharges the refrigerant compressed in the compression chamber 316. Furthermore, a suction pipe 306 that penetrates the closed container 301 is press-fitted into the fixed scroll 311 . Further, a discharge pipe 307 is provided so as to penetrate the closed container 301 and discharge high-pressure refrigerant gas discharged from the discharge port 317 of the fixed scroll 311 to the outside.
 密閉容器301の内側には、電動機100が焼嵌めによって組み込まれる。また、密閉容器301には、電動機100の固定子1と駆動回路とを電気的に接続するためのガラス端子308が溶接により固定されている。回転シャフト60は、コンプライアントフレーム314およびサブフレーム303にそれぞれ設けられた軸受部によって回転可能に支持されている。 The electric motor 100 is installed inside the sealed container 301 by shrink fitting. Further, a glass terminal 308 for electrically connecting the stator 1 of the electric motor 100 and the drive circuit is fixed to the sealed container 301 by welding. The rotating shaft 60 is rotatably supported by bearings provided on the compliant frame 314 and the subframe 303, respectively.
 圧縮機300の動作は、以下の通りである。電動機100が回転すると、回転子5と共に回転シャフト60が回転する。回転シャフト60が回転すると、揺動スクロール312が揺動し、固定スクロール311と揺動スクロール312との間の圧縮室316の容積を変化させる。これにより、吸入管306から圧縮室316に冷媒ガスを吸入して圧縮する。 The operation of the compressor 300 is as follows. When the electric motor 100 rotates, the rotating shaft 60 rotates together with the rotor 5. When the rotating shaft 60 rotates, the swinging scroll 312 swings, changing the volume of the compression chamber 316 between the fixed scroll 311 and the swinging scroll 312. Thereby, refrigerant gas is sucked into the compression chamber 316 from the suction pipe 306 and compressed.
 圧縮室316内で圧縮された高圧の冷媒ガスは、固定スクロール311の吐出ポート317から密閉容器301内に排出され、吐出管307から外部に排出される。また、圧縮室316から密閉容器301内に排出された冷媒ガスの一部は、電動機100に設けられた穴部を通過し、電動機100を冷却する。 The high-pressure refrigerant gas compressed within the compression chamber 316 is discharged from the discharge port 317 of the fixed scroll 311 into the closed container 301 and is discharged from the discharge pipe 307 to the outside. Further, a part of the refrigerant gas discharged from the compression chamber 316 into the closed container 301 passes through a hole provided in the electric motor 100 and cools the electric motor 100.
 上記の各実施の形態の電動機100では、鉄損の増加を抑えながらコイル20の周長を短くすることができる。そのため、圧縮機300の運転効率を向上することができる。 In the electric motor 100 of each of the embodiments described above, the circumferential length of the coil 20 can be shortened while suppressing an increase in iron loss. Therefore, the operating efficiency of compressor 300 can be improved.
<冷凍サイクル装置>
 次に、各実施の形態の電動機を備えた圧縮機が適用可能な冷凍サイクル装置400について説明する。冷凍サイクル装置は、ここでは空気調和装置であるが、これに限定されるものではなく、例えば冷蔵庫であってもよい。図13は、冷凍サイクル装置400の構成を示す図である。
<Refrigerating cycle equipment>
Next, a refrigeration cycle device 400 to which the compressor equipped with the electric motor of each embodiment can be applied will be described. Although the refrigeration cycle device is an air conditioner here, it is not limited to this, and may be, for example, a refrigerator. FIG. 13 is a diagram showing the configuration of the refrigeration cycle device 400.
 冷凍サイクル装置400は、圧縮機401と、凝縮器402と、絞り装置(減圧装置)403と、蒸発器404とを備えている。圧縮機401、凝縮器402、絞り装置403および蒸発器404は、冷媒配管407によって連結されて冷凍サイクルを構成している。すなわち、圧縮機401、凝縮器402、絞り装置403および蒸発器404の順に、冷媒が循環する。 The refrigeration cycle device 400 includes a compressor 401, a condenser 402, a throttle device (pressure reducing device) 403, and an evaporator 404. Compressor 401, condenser 402, throttle device 403, and evaporator 404 are connected by refrigerant piping 407 to constitute a refrigeration cycle. That is, the refrigerant circulates in the order of compressor 401, condenser 402, expansion device 403, and evaporator 404.
 圧縮機401、凝縮器402および絞り装置403は、室外機410に設けられている。圧縮機401は、図12を参照して説明した圧縮機300で構成されている。室外機410には、凝縮器402に空気を送風する室外送風機405が設けられている。蒸発器404は、室内機420に設けられている。この室内機420には、蒸発器404に空気を送風する室内送風機406が設けられている。 A compressor 401, a condenser 402, and a throttle device 403 are provided in an outdoor unit 410. Compressor 401 is comprised of compressor 300 described with reference to FIG. The outdoor unit 410 is provided with an outdoor blower 405 that blows air to the condenser 402 . Evaporator 404 is provided in indoor unit 420. This indoor unit 420 is provided with an indoor blower 406 that blows air to the evaporator 404 .
 冷凍サイクル装置400の動作は、次の通りである。圧縮機401は、吸入した冷媒を圧縮して送り出す。凝縮器402は、圧縮機401から流入した冷媒と室外の空気との熱交換を行い、冷媒を凝縮して液化させて冷媒配管407に送り出す。室外送風機405は、凝縮器402に室外の空気を供給する。絞り装置403は、冷媒配管407を流れる冷媒の圧力を調整する。 The operation of the refrigeration cycle device 400 is as follows. Compressor 401 compresses the refrigerant it sucks in and sends it out. The condenser 402 exchanges heat between the refrigerant flowing from the compressor 401 and outdoor air, condenses and liquefies the refrigerant, and sends the refrigerant to the refrigerant pipe 407 . Outdoor blower 405 supplies outdoor air to condenser 402 . The expansion device 403 adjusts the pressure of the refrigerant flowing through the refrigerant pipe 407 .
 蒸発器404は、絞り装置403により低圧状態にされた冷媒と室内の空気との熱交換を行う。冷媒は、空気の熱を奪って蒸発し、冷媒配管407に送り出される。室内送風機406は、蒸発器404で冷媒に熱を奪われた空気を、室内に供給する。 The evaporator 404 exchanges heat between the refrigerant brought into a low pressure state by the expansion device 403 and indoor air. The refrigerant absorbs heat from the air, evaporates, and is sent to the refrigerant pipe 407. The indoor blower 406 supplies air from which heat has been removed by the refrigerant in the evaporator 404 into the room.
 上記の各実施の形態の電動機100では、鉄損の増加を抑えながらコイル20の周長を短くすることができる。そのため、冷凍サイクル装置400の圧縮機401に電動機100を用いることで、冷凍サイクル装置400の運転効率を向上することができる。 In the electric motor 100 of each of the embodiments described above, the circumferential length of the coil 20 can be shortened while suppressing an increase in iron loss. Therefore, by using the electric motor 100 for the compressor 401 of the refrigeration cycle device 400, the operating efficiency of the refrigeration cycle device 400 can be improved.
 以上、望ましい実施の形態について具体的に説明したが、本開示は上記の実施の形態に限定されるものではなく、各種の改良または変形を行なうことができる。 Although the preferred embodiments have been specifically described above, the present disclosure is not limited to the above embodiments, and various improvements and modifications can be made.
 1,1A,1B 固定子、 2 巻線、 5 回転子、 10 固定子鉄心、 11 ヨーク、 12 ティース、 12A ティース(第1のティース)、 12B ティース(第2のティース)、 12e 端面、 13 スロット、 16 貫通穴、 20,20U,20V,20W コイル、 31 絶縁フィルム(絶縁部)、 31e フィルム端部(端部)、 32 インシュレータ(絶縁部)、 50 回転子鉄心、 51 磁石挿入孔、 52 フラックスバリア、 55 永久磁石、 60 回転シャフト、 70 圧縮機構、 100 電動機、 101 第1の鉄心部、 102 第2の鉄心部、 120 側面、 121 第1の側面、 122 第2の側面、 201 コイルサイド、 202 コイルエンド、 300 圧縮機、 301 密閉容器、 310 圧縮機構、 400 冷凍サイクル装置、 401 圧縮機、 402 凝縮器、 403 絞り装置(減圧装置)、 404 蒸発器。
 
 
1, 1A, 1B stator, 2 winding, 5 rotor, 10 stator core, 11 yoke, 12 teeth, 12A teeth (first teeth), 12B teeth (second teeth), 12e end face, 13 slots , 16 through hole, 20, 20U, 20V, 20W coil, 31 insulating film (insulating part), 31e film end (end), 32 insulator (insulating part), 50 rotor core, 51 magnet insertion hole, 52 flux barrier, 55 permanent magnet, 60 rotating shaft, 70 compression mechanism, 100 electric motor, 101 first core, 102 second core, 120 side, 121 first side, 122 second side, 201 coil side, 202 coil end, 300 compressor, 301 airtight container, 310 compression mechanism, 400 refrigeration cycle device, 401 compressor, 402 condenser, 403 throttling device (pressure reducing device), 404 evaporator.

Claims (12)

  1.  軸線を中心とする周方向に延在するヨークと、前記ヨークから前記軸線を中心とする径方向の内側に延在する第1のティースおよび第2のティースと、前記第1のティースと前記第2のティースとの間に形成されたスロットとを有する固定子鉄心と、
     前記固定子鉄心に巻かれた巻線であって、前記スロットを通過して前記第1のティースの側に折り曲げられるコイルを有する巻線と
     を有し、
     前記第1のティースは前記軸線の方向の端部に段差部を有し、前記第2のティースは前記軸線の方向の端部に段差部を有さない
     固定子。
    a yoke extending in a circumferential direction centered on an axis; first teeth and second teeth extending from the yoke inward in a radial direction centered on the axis; and the first teeth and the first teeth. a stator core having a slot formed between the two teeth;
    a winding wound around the stator core, the winding having a coil that passes through the slot and is bent toward the first teeth;
    The first tooth has a stepped portion at an end in the direction of the axis, and the second tooth does not have a stepped portion at an end in the direction of the axis.
  2.  前記第1のティースは、前記軸線の方向の端部における前記周方向の両側に、前記段差部を有する
     請求項1に記載の固定子。
    The stator according to claim 1, wherein the first tooth has the stepped portion on both sides in the circumferential direction at an end in the direction of the axis.
  3.  前記コイルは、N個(Nは3以上の整数)のティースを跨ぐように巻き付けられ、
     前記第2のティースは、前記N個のティースの中央に位置する
     請求項1または2に記載の固定子。
    The coil is wound so as to straddle N teeth (N is an integer of 3 or more),
    The stator according to claim 1 or 2, wherein the second tooth is located at the center of the N teeth.
  4.  前記コイルは、3個のティースを跨ぐように巻き付けられ、
     前記第2のティースは、前記周方向において前記3個のティースの中央に位置する
     請求項3に記載の固定子。
    The coil is wound so as to straddle three teeth,
    The stator according to claim 3, wherein the second tooth is located at the center of the three teeth in the circumferential direction.
  5.  前記第1のティースと前記第2のティースとは前記周方向に交互に配列されている
     請求項1から4までの何れか1項に記載の固定子。
    The stator according to any one of claims 1 to 4, wherein the first teeth and the second teeth are alternately arranged in the circumferential direction.
  6.  前記固定子鉄心と前記コイルとの間に絶縁部を有し、
     前記絶縁部の少なくとも一部は、前記第1のティースの前記段差部によって生じたスペースに収容されている
     請求項1から5までの何れか1項に記載の固定子。
    an insulating section is provided between the stator core and the coil,
    The stator according to any one of claims 1 to 5, wherein at least a portion of the insulating portion is accommodated in a space created by the stepped portion of the first tooth.
  7.  前記絶縁部は、前記スロットに収容された絶縁フィルムであり、
     前記絶縁フィルムの前記軸線の方向の端部は、前記段差部に向けて折り曲げられている
     請求項6に記載の固定子。
    The insulating part is an insulating film accommodated in the slot,
    The stator according to claim 6, wherein an end portion of the insulating film in the direction of the axis is bent toward the step portion.
  8.  前記固定子鉄心は、前記固定子鉄心を前記軸線の方向に貫通する貫通穴を有し、
     前記貫通穴は、前記第2のティースの前記径方向の外側に位置する
     請求項1から7までの何れか1項に記載の固定子。
    The stator core has a through hole that penetrates the stator core in the direction of the axis,
    The stator according to any one of claims 1 to 7, wherein the through hole is located outside the second tooth in the radial direction.
  9.  前記コイルは第1相のコイルであり、
     前記巻線は、前記第1のティースを挟んで前記スロットとは反対側のスロットを通過して前記第1のティースの側に折り曲げられる第2相のコイルを有する
     請求項1から8までの何れか1項に記載の固定子。
    The coil is a first phase coil,
    Any one of claims 1 to 8, wherein the winding includes a second phase coil that passes through a slot on the opposite side of the slot with the first tooth in between and is bent toward the first tooth. The stator according to item 1.
  10.  請求項1から9までのいずれか1項に記載の固定子と、
     前記固定子に囲まれた回転子と
     とを備えた電動機。
    A stator according to any one of claims 1 to 9,
    An electric motor comprising: a rotor surrounded by the stator;
  11.  請求項10に記載の電動機と、
     前記電動機によって駆動される圧縮機構と
     を備えた圧縮機。
    The electric motor according to claim 10;
    A compressor comprising: a compression mechanism driven by the electric motor.
  12.  請求項11に記載の圧縮機と、凝縮器と、減圧装置と、蒸発器とを備えた冷凍サイクル装置。
     
     
    A refrigeration cycle device comprising the compressor according to claim 11, a condenser, a pressure reducing device, and an evaporator.

PCT/JP2022/013872 2022-03-24 2022-03-24 Stator, electric motor, compressor, and refrigeration cycle device WO2023181238A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/013872 WO2023181238A1 (en) 2022-03-24 2022-03-24 Stator, electric motor, compressor, and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/013872 WO2023181238A1 (en) 2022-03-24 2022-03-24 Stator, electric motor, compressor, and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2023181238A1 true WO2023181238A1 (en) 2023-09-28

Family

ID=88100619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013872 WO2023181238A1 (en) 2022-03-24 2022-03-24 Stator, electric motor, compressor, and refrigeration cycle device

Country Status (1)

Country Link
WO (1) WO2023181238A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010124637A (en) * 2008-11-21 2010-06-03 Hitachi Ltd Rotating electric machine and method of manufacturing the same
JP2017169248A (en) * 2016-03-14 2017-09-21 本田技研工業株式会社 Stator core
WO2017175330A1 (en) * 2016-04-06 2017-10-12 三菱電機株式会社 Electric motor, air blower, compressor, and air conditioning device
WO2020240735A1 (en) * 2019-05-29 2020-12-03 三菱電機株式会社 Electric motor and compressor equipped with same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010124637A (en) * 2008-11-21 2010-06-03 Hitachi Ltd Rotating electric machine and method of manufacturing the same
JP2017169248A (en) * 2016-03-14 2017-09-21 本田技研工業株式会社 Stator core
WO2017175330A1 (en) * 2016-04-06 2017-10-12 三菱電機株式会社 Electric motor, air blower, compressor, and air conditioning device
WO2020240735A1 (en) * 2019-05-29 2020-12-03 三菱電機株式会社 Electric motor and compressor equipped with same

Similar Documents

Publication Publication Date Title
JP6742402B2 (en) Electric motor, compressor, and refrigeration cycle device
US11804739B2 (en) Motor having stator and rotor configured to reduce eddy current loss, and compressor and air conditioner incorporating same
JP6942246B2 (en) Rotors, motors, compressors and air conditioners
JP7023408B2 (en) Motors, compressors and air conditioners
US11108293B2 (en) Stator, motor, compressor, and air conditioner
JPWO2019043850A1 (en) Rotor, electric motor, compressor and air conditioner
JP2023168510A (en) Motor, compressor, air blower, and refrigerating air conditioner
WO2023181238A1 (en) Stator, electric motor, compressor, and refrigeration cycle device
WO2020021693A1 (en) Electric motor, compressor, and air conditioner
WO2024004202A1 (en) Stator, electric motor, compressor, and refrigeration cycle device
WO2023233629A1 (en) Stator, electric motor, compressor, and refrigeration cycle device
WO2023112078A1 (en) Stator, motor, compressor, and refrigeration cycle device
JP7486613B2 (en) Stator, motor, compressor and refrigeration cycle device
JP7286019B2 (en) Stator, electric motor, compressor, refrigeration cycle device and air conditioner
JP7292424B2 (en) Motors, compressors and air conditioners
JP7450805B2 (en) Motors, compressors and refrigeration cycle equipment
US11949291B2 (en) Motor having rotor with different core regions, compressor, and air conditioner having the motor
JPWO2020026431A1 (en) Stator, motor, compressor, and refrigeration air conditioner
WO2022113346A1 (en) Stator, motor, compressor, and refrigeration cycle device
WO2024089866A1 (en) Stator, electric motor, compressor and refrigeration cycle apparatus
CN110366809B (en) Rotating electric machine, compressor, and refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933379

Country of ref document: EP

Kind code of ref document: A1