WO2023179626A1 - 人工晶体炉及包括人工晶体炉的人工晶体炉*** - Google Patents

人工晶体炉及包括人工晶体炉的人工晶体炉*** Download PDF

Info

Publication number
WO2023179626A1
WO2023179626A1 PCT/CN2023/082895 CN2023082895W WO2023179626A1 WO 2023179626 A1 WO2023179626 A1 WO 2023179626A1 CN 2023082895 W CN2023082895 W CN 2023082895W WO 2023179626 A1 WO2023179626 A1 WO 2023179626A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
furnace chamber
cooling jacket
crystal
furnace
Prior art date
Application number
PCT/CN2023/082895
Other languages
English (en)
French (fr)
Inventor
郭李梁
朱振业
Original Assignee
洛阳长缨新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210277537.7A external-priority patent/CN114737246B/zh
Priority claimed from CN202223045663.4U external-priority patent/CN219315141U/zh
Application filed by 洛阳长缨新能源科技有限公司 filed Critical 洛阳长缨新能源科技有限公司
Priority to CN202380009893.3A priority Critical patent/CN117098877A/zh
Publication of WO2023179626A1 publication Critical patent/WO2023179626A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure

Definitions

  • the present application relates to the technical field of intraocular lens preparation, and specifically relates to an intraocular lens furnace and an intraocular lens furnace system including an intraocular lens furnace.
  • the patent number is 202110024156.3
  • the application date is January 8, 2021
  • the patent name is a Chinese invention patent for a crystal growth furnace.
  • the patent provides a method that allows the cooling screen 11 to be placed in the lower furnace chamber 12
  • the technical solution to realize small-scale lifting can achieve precise control of the crystal cooling process, effectively control the cooling speed of the crystal, accurately adjust the temperature distribution of the crystal, and increase the flexibility of the thermal field. Without changing the thermal field, It can produce different products, greatly reducing production and R&D costs, and can control the flow and position at different crystal growth stages to achieve uniformity of quality throughout the crystal ingot and improve the overall utilization of the crystal.
  • One end is connected to the lifting port of the furnace cover, and the O-ring seal ensures the airtightness of the device; the knob is connected to the lifting rod to rotate the angle of the lifting claw to realize the catching and releasing action of the guide tube, and the synchronous action of the other lifting claw is driven by a single motor Commutator, flexible shaft implementation, etc.
  • the lifting device of the existing structure cannot lift the cooling screen to the top of the furnace cover (among them, in the disclosed technical solution titled a lifting device for the guide tube of a Czochralski single crystal furnace, the guide tube can only be lifted above the furnace cover.
  • the cooling screen cannot be lifted to the top of the furnace cover, it is impossible to clean the cooling screen without stopping the furnace. If the cooling screen cannot be cleaned, when the silicon material in the crucible melts into silicon liquid, the impurities in the silicon liquid and in the furnace chamber will volatilize and float to the surface of the cooling screen. Since the cooling medium passes through the cooling screen, the temperature of the cooling screen is relatively low. At this time, the volatile matter condenses and adheres to the surface of the cooling screen.
  • the volatile matter When the volatile matter accumulates to a certain thickness, due to the disturbance of air flow and the effect of thermal expansion and contraction, the volatile matter falls to the upper surface of the melt in the crucible and then floats on the upper surface of the melt. Since the melting point of the volatile matter is higher than the melting point of the silicon material, the volatile matter cannot be melted, let alone vaporized. At this time, the volatile matter will continue to exist on the upper surface of the melt. During drawing, since the crucible is constantly rotating, the volatile matter in the crucible will not remain stationary at a certain location on the upper surface of the silicon melt, but will float in an uncertain position.
  • the floating objects adhere to the crystallization position of the crystal rod, the floating objects will destroy the alignment direction of the molecules when the silicon melt solidifies (dislocations occur in the crystal direction), causing the crystal lines to break.
  • the newly grown crystal rod will change from single crystal to polycrystal, causing the growth of the single crystal rod to fail.
  • the lifting device of the existing structure cannot lift the crystal cooling mechanism to the top of the furnace cover (in the disclosed technical solution titled a lifting device for the guide tube of a Czochralski single crystal furnace, the guide tube can only be placed above the furnace cover).
  • the crystal cooling mechanism cannot be lifted to the top of the furnace cover, it is impossible to clean the crystal cooling mechanism without stopping the furnace.
  • the silicon material in the crucible melts into silicon liquid, at this time, the impurities in the silicon liquid and the furnace chamber volatilize and float to the lower bottom or side walls of the crystal cooling mechanism. Since the cooling medium flows through the crystal cooling mechanism, the temperature of the crystal cooling mechanism is relatively low. At this time, the volatile matter condenses and adheres to the bottom surface or side wall of the crystal cooling mechanism.
  • the volatile matter When the volatile matter accumulates to a certain thickness, due to the disturbance of air flow and the effect of thermal expansion and contraction, the volatile matter falls to the upper surface of the melt in the crucible and then floats on the surface of the melt. upper surface. Since the melting point of the volatile matter is higher than the melting point of the silicon material, the volatile matter cannot be melted, let alone vaporized. At this time, the volatile matter will continue to exist on the upper surface of the melt. During drawing, since the crucible is constantly rotating, the volatile matter in the crucible will not remain stationary at a certain location on the upper surface of the silicon melt, but will float in an uncertain position.
  • the floating objects adhere to the crystallization position of the silicon core, it may cause the outer edge surface of the drawn silicon core to bulge and deform.
  • the change in the diameter of the silicon core may cause the silicon core to get stuck in the crystal perforation, and the machine will eventually be forced to shut down. End this round of drawing.
  • the drawn silicon core cannot be used as a finished product and can only be scrapped.
  • the crystal cooling mechanism cannot be lifted out of the lower furnace chamber (that is, the crystal cooling mechanism cannot be separated from the thermal field), and the crystal cooling mechanism is located above the crucible, when the crucible is continuously fed, the crystal cooling mechanism will block the continuous feeding device. channel, which makes it impossible to achieve the working condition requirement of continuously feeding the crucible without stopping the furnace.
  • this application provides an artificial crystal furnace that can easily lift the crystal cooling mechanism to better pull the crystal; and it can lift the crystal cooling mechanism to an upper position above the valve through a lifting device.
  • Furnace chamber thus enabling continuous drawing of crystals or ingots without stopping the furnace, effectively avoiding the problem of being unable to clean the cooling mechanism, and enabling continuous drawing of crystals or ingots when water leakage occurs in the cooling screen.
  • Replacing the cooling mechanism when the furnace is in use not only avoids the possibility of furnace explosion, but also improves the production efficiency of the IOL furnace.
  • an artificial crystal furnace includes: a furnace body, the furnace body includes an upper furnace chamber, a lower furnace chamber disposed below the upper furnace chamber, and a furnace chamber disposed between the upper furnace chamber and the lower furnace chamber. a valve between them, the valve can divide the upper furnace chamber and the lower furnace chamber into two independent cavities; a crystal cooling mechanism, the crystal cooling mechanism is arranged in the furnace body and is provided with a supply At least one drawing hole through which the drawn crystal passes; and a lifting device, which is arranged in the upper furnace chamber and is connected to the crystal cooling mechanism and drives the crystal cooling mechanism to move in the upper furnace.
  • the chamber and the lower furnace chamber move up and down.
  • the lifting device includes at least one lifting arm connected to the crystal cooling mechanism and a lifter for driving the lifting arm to move up and down.
  • the lifting device is provided with a cooling medium channel
  • the crystal cooling mechanism is provided with a cooling channel for cooling medium flow
  • the cooling medium channel is in fluid communication with the cooling channel.
  • the lifting arm is configured as a linear structure or a zigzag structure.
  • the cooling medium channel is provided on the side wall of the lifting arm or within the hollow structure of the lifting arm.
  • the lifting arm is configured as a folded line structure, and at least one linear groove penetrating to the inner wall of the upper furnace chamber is provided on the outer edge of the upper furnace chamber.
  • a cover is provided on the outer edge of the upper furnace chamber, and the folded line segment of the lifting arm moves up and down in the linear groove.
  • the upper furnace chamber is provided with at least one lifting arm cavity on the outer edge surface of the upper furnace chamber, and the inner cavity of the lifting arm cavity and the inner cavity of the upper furnace chamber are arranged integrally.
  • the lifting arm is configured to be able to move up and down in the cavity formed by the inner cavity of the lifting arm cavity and the inner cavity of the upper furnace chamber.
  • the lifting arm is arranged in a linear structure, and the upper end of the lifting arm passes through the top of the upper furnace chamber and is connected to the lifter.
  • the lifter includes a hydraulic cylinder, a pneumatic cylinder, an electric push rod, a screw lifter and a flexible shaft lifter.
  • the lifter includes a lifting block, a power source, a support frame, a guide column, a screw and a nut, wherein the support frame is arranged outside the upper furnace chamber, and two parallel rods are provided on the support frame.
  • the guide columns are provided with lifting blocks on the two guide columns, and nuts are provided on the lifting blocks.
  • the nuts are sleeved on the screw, and the upper and lower parts of the screw are Ends are respectively provided at the upper and lower ends of the support frame, the screw is connected to the power source, and the lifting block is connected to the lifting arm.
  • the lifter includes a lifting block, a power source, a support frame, a guide column, a flexible shaft lifter and a flexible shaft.
  • the support frame is arranged outside the upper furnace chamber, and two poles are provided on the support frame.
  • the parallel guide columns are provided with lifting blocks on the two guide columns, and a flexible shaft is provided on the lifting block in the middle of the two guide columns.
  • the flexible shaft is connected to the support frame.
  • the above flexible shaft lifter is connected to an external power source, and the lifting block is connected to the lifting arm.
  • the guide column includes a linear guide rail, a linear bearing, and a guide light rod.
  • valves include gate valves, rotary plate valves and flip valves.
  • a sealing body is provided between the upper furnace chamber and the outer edge surface of the lifting arm.
  • a bellows is sleeved on the outer edge of the lifting arm, one end of the bellows is connected to the upper furnace chamber, and the other end of the bellows is connected to the lifter.
  • a cooling jacket is connected between the crystal cooling mechanism and the lifting device, and the cooling jacket is used to cool the crystal.
  • the lifting device includes at least one lifting arm and a lifter for driving the lifting arm to move up and down.
  • the upper end of the cooling jacket is connected to the lifting arm, and the lower end of the cooling jacket is connected to the crystal cooling device. mechanism, and the upper end of the lifting arm is connected to the lifter.
  • a cooling medium channel is provided in the lifting arm, and the cooling medium channel is connected in series with the medium channel of the cooling jacket and the cooling channel of the crystal cooling mechanism.
  • a cooling medium channel is provided in the lifting arm, and the cooling medium channel is connected in parallel with the medium channel of the cooling jacket and the cooling channel of the crystal cooling mechanism.
  • the cooling jacket includes an upper cover plate, a cooling jacket outer ring, a cooling jacket inner ring and a lower cover plate.
  • the cooling jacket outer ring is sleeved on the periphery of the cooling jacket inner ring.
  • the cooling jacket outer ring is The upper end of the cavity between the cooling jacket inner ring and the cooling jacket inner ring is provided with the upper cover plate, and the lower cover plate is provided at the lower end of the cavity between the cooling jacket outer ring and the cooling jacket inner ring.
  • the upper cover plate is provided with an upper inlet and an upper outlet of the cooling medium.
  • the lower cover is provided with a lower cooling medium outlet and a lower cooling medium inlet.
  • the cooling jacket further includes a plurality of baffles spaced apart in the cavity between the outer ring of the cooling jacket and the inner ring of the cooling jacket, and the plurality of baffles are arranged to displace the cooling medium between the outer ring and the inner ring of the cooling jacket.
  • the upper ends in the cavity at the front and rear positions of the upper inlet and the upper outlet of the cooling medium are in contact with the upper cover plate.
  • the cooling jacket further includes a spiral baffle and a cooling medium return pipe provided in the cavity between the cooling jacket outer ring and the cooling jacket inner ring, and the cooling medium upper outlet is connected to the cooling jacket.
  • Cooling medium return pipe, the lower end of the cooling medium return pipe passes through the spiral baffle and is located in the middle and lower part of the cavity between the outer ring of the cooling jacket and the inner ring of the cooling jacket.
  • the cooling jacket further includes a spiral guide plate and a cooling medium guide tube provided in the cavity between the cooling jacket outer ring and the cooling jacket inner ring, and the cooling medium upper outlet is connected to the cooling jacket.
  • the cooling medium guide tube, the lower end of the cooling medium guide tube passes through the spiral guide plate and is connected to the cooling medium lower inlet.
  • the cooling jacket includes an upper cover plate, a cooling jacket outer ring, a cooling jacket inner ring and a lower cover plate.
  • the cooling jacket outer ring is sleeved on the periphery of the cooling jacket inner ring.
  • the cooling jacket outer ring is The upper end of the cavity between the cooling jacket inner ring and the cooling jacket inner ring is provided with the upper cover plate, and the lower cover plate is provided at the lower end of the cavity between the cooling jacket outer ring and the cooling jacket inner ring.
  • An upper cooling medium inlet and an upper cooling medium outlet are provided on the outer edge of the outer ring of the cooling jacket, and a lower cooling medium outlet and a lower cooling medium inlet are provided on the lower cover plate.
  • an intraocular lens furnace system which includes the above-mentioned intraocular lens furnace.
  • the lifting device drives the crystal cooling mechanism to move up and down in the cavities of the upper furnace chamber and the lower furnace chamber. In order to clean the volatile matter attached to the crystal cooling mechanism without stopping the furnace. At the same time, it also prevents the crystal cooling mechanism from absorbing the heat of the heater during heating, reduces manual labor intensity, and improves production efficiency.
  • the crystal cooling mechanism when the cooling mechanism leaks during the drawing process, the crystal cooling mechanism can be lifted out of the lower furnace chamber through the lifting device, thereby effectively avoiding the cooling water encountering the heat when the cooling device leaks.
  • the problem of instantaneous gasification of high temperatures in the field avoids the possibility of furnace explosion.
  • the crystal cooling mechanism can be lifted out of the lower furnace chamber, thereby providing a feeding channel for the continuous feeding device when the crucible is continuously fed, and realizing the crucible without stopping the furnace.
  • Working conditions requirements for continuous feeding are not limited to
  • a cooling jacket is provided above the cooling device, and the crystal ingot is cooled through the cooling jacket and the cooling device, thereby speeding up the cooling speed of the crystal ingot and thereby improving the drawing efficiency of the crystal ingot.
  • Figure 1 is a schematic structural diagram of the existing cooling screen arrangement in the furnace body
  • Figure 2 is a schematic structural diagram of the lifting device in the lower position according to the first embodiment of the present application
  • Figure 3 is a schematic structural diagram of the lifting device in an upper position according to the first embodiment of the present application.
  • Figure 4 is a schematic three-dimensional structural diagram of the cover according to the first embodiment of the present application.
  • Figure 5 is a second structural schematic diagram of the upper furnace chamber according to the first embodiment of the present application.
  • Figure 6 is a third structural schematic diagram of the upper furnace chamber according to the first embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a lifting device according to the first embodiment of the present application.
  • Figure 8 is a right structural diagram of Figure 4.
  • Figure 9 is a schematic structural diagram of a lifting block according to the first embodiment of the present application.
  • Figure 10 is a second structural schematic diagram of the lifting device according to the first embodiment of the present application.
  • Figure 11 is a schematic structural diagram of the lifting device in the lower position according to the second embodiment of the present application.
  • Figure 12 is a schematic structural diagram of the lifting device in an upper position according to the second embodiment of the present application.
  • Figure 13 is a first structural schematic diagram of a cooling jacket according to the second embodiment of the present application.
  • Figure 14 is a second structural schematic diagram of a cooling jacket according to the second embodiment of the present application.
  • Figure 15 is a third structural schematic diagram of a cooling jacket according to the second embodiment of the present application.
  • Figure 16 is a schematic top view of the structure of Figure 15;
  • Figure 17 is a fourth structural schematic diagram of a cooling jacket according to the second embodiment of the present application.
  • Figure 18 is a fifth structural schematic diagram of a cooling jacket according to the second embodiment of the present application.
  • Figure 19 is a sixth structural schematic diagram of a cooling jacket according to the second embodiment of the present application.
  • Figure 20 is a schematic diagram of the application of using a lifting device to draw a crystal rod according to the second embodiment of the present application;
  • Figure 21 is a schematic structural diagram of the combination of the crystal cooling mechanism and the cooling jacket shown in Figure 20;
  • Figure 22 is a schematic diagram of the application of using a cooling jacket alone to draw a crystal rod according to the second embodiment of the present application;
  • Figure 23 is a schematic structural diagram of the upper furnace chamber rotating away from the lower furnace chamber after the lifting mechanism drives the cooling jacket to rise into the upper furnace chamber according to the second embodiment of the present application;
  • Figure 24 is a schematic diagram of the application of pulling multiple crystals according to the second embodiment of the present application.
  • the terms “set”, “installation”, “connected” and “connected” should be understood in a broad sense.
  • it can be a fixed connection, It can also be a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • this application not only relates to a single crystal furnace but also to a crystal furnace capable of simultaneously pulling multiple crystals.
  • the upper furnace chamber mentioned below is equivalent to the auxiliary furnace chamber in the single crystal furnace
  • the lower furnace chamber is equivalent to the main furnace chamber in the single crystal furnace.
  • an intraocular lens furnace which includes: a furnace body, including an upper furnace chamber, a lower furnace chamber disposed below the upper furnace chamber, and a valve disposed between the upper furnace chamber and the lower furnace chamber, The valve can divide the upper furnace chamber and the lower furnace chamber into two independent cavities; a crystal cooling mechanism is provided in the furnace body and is provided with at least one drawing hole for the drawn crystal to pass through; and a lifting device, It is arranged in the upper furnace chamber and is connected with the crystal cooling mechanism and drives the crystal cooling mechanism to move up and down in the upper furnace chamber and the lower furnace chamber.
  • the crystal cooling mechanism can be easily raised and lowered, thereby better pulling the crystal.
  • this application can lift the crystal cooling mechanism to the upper furnace chamber above the valve through a lifting device, so that the crystal or crystal rod can be continuously drawn without stopping the furnace, effectively avoiding the inability to perform maintenance on the cooling mechanism.
  • the cooling mechanism can be replaced without stopping the furnace, which not only avoids the possibility of furnace explosion, but also improves the production efficiency of the intraocular lens furnace.
  • FIGS. 2 to 10 show schematic diagrams of a lifting device provided with a crystal cooling mechanism for an intraocular lens furnace according to a preferred embodiment of the present application.
  • an intraocular lens furnace may include an upper furnace chamber 1001, a crystal cooling mechanism 10011, a lifting device connected to the crystal cooling mechanism 10011, and a lower furnace chamber 10012.
  • the lifting device includes a lifter 1004 and a lifting arm 1007.
  • the upper furnace chamber 1001 is arranged above the lower furnace chamber 10012.
  • a valve is provided between the lower end surface of the upper furnace chamber 1001 and the upper end surface of the lower furnace chamber 10012.
  • the upper furnace chamber and the lower furnace chamber can be divided into two by the valve. independent cavity.
  • Valves may include flapper valves 1009, rotary flap valves, and flap valves.
  • the main function of the valve is to divide the cavities of the upper furnace chamber 1001 and the lower furnace chamber 10012 into two independent cavities. That is, when the valve is opened, the cavities of the upper furnace chamber 1001 and the lower furnace chamber 10012 are connected to form an integral cavity; when the valve is closed, the cavities of the upper furnace chamber 1001 and the lower furnace chamber 10012 are divided into two independent cavities.
  • the embodiment of the present application takes the valve as a gate valve 1009 as an example for description.
  • An oven door that can be opened and closed is provided on the outer edge surface of the upper oven chamber 1001 through a hinge.
  • the lifting device according to the present application is connected to the crystal cooling mechanism 10011, and drives the crystal cooling mechanism 10011 to move up and down in the cavities of the upper furnace chamber 1001 and the lower furnace chamber 1002.
  • At least one lifting arm 1007 is provided in the upper furnace chamber 1001, and the lifting arm 1007 is connected to the crystal cooling mechanism.
  • a cooling medium channel may be provided on the side wall of the lifting arm 1007.
  • the lifting arm 1007 is configured as a hollow structure, and the inner hole in the middle of the lifting arm 1007 is a cooling medium channel.
  • the lower end of the cooling medium channel is connected to the medium outlet or the medium inlet on the crystal cooling mechanism 10011, and the upper end of the cooling medium channel is connected to the cooling source. That is to say, the cooling medium introduced into the crystal cooling mechanism 10011 is transmitted through the cooling medium channel on the lifting arm 1007 .
  • two cooling medium channels are provided on the lifting arm 1007, one inlet and one out.
  • the upper port of one of the cooling medium channels is connected to the cooling source, and the lower port is connected to the medium inlet on the crystal cooling mechanism 10011.
  • the lower port of the other cooling medium channel is connected to the medium outlet on the crystal cooling mechanism 10011, and the upper port is connected to the recovery port of the cooling source. That is, the two cooling medium channels, one inlet and one out, form a medium circulation channel with the crystal cooling mechanism 10011.
  • a cooling medium channel is provided on each of the two lifting arms 1007.
  • the two cooling medium channels are one inlet and one outlet, which also form a medium circulation channel.
  • the structure of the crystal cooling mechanism 10011 involved in the present invention will not be described in detail, and its specific structure is not the focus of the protection of the present invention.
  • the cooling screen or the crystal cooling mechanism according to this embodiment has one or more drawn holes for the crystal rod to pass through.
  • Two lifting arms 1007 are arranged in the upper furnace chamber 1001.
  • the two lifting arms 1007 are symmetrically arranged in the upper furnace chamber 1001.
  • connection forms involving the lifting arm 1007 and the crystal cooling mechanism 10011 are all conventional connection forms in this field, such as threaded connections or welded connections. However, it must be ensured that no medium leakage occurs after the connection, and the sealing of the connection must be ensured. sex.
  • the number of lifting arms 1007 is preferably two, and the two lifting arms 1007 are arranged symmetrically.
  • the crystal cooling mechanism 10011 can rise and fall smoothly, and optimize economy and practicality.
  • the lifting arm 1007 can also be raised and lowered, which is also within the protection scope of the present invention.
  • the lower end of the lifting arm 1007 is connected to the crystal cooling mechanism 10011 and drives the crystal cooling mechanism 10011 to move up and down in the cavity of the upper furnace chamber 1001 and the lower furnace chamber 10012. That is, the lifting arm 1007 can drive the crystal cooling mechanism 10011 to move upward to the upper furnace. In the chamber 1001, it is completely separated from the lower furnace chamber 10012.
  • the upper end of the lifting arm 1007 passes through the upper furnace chamber 1001 and is connected to the lifter 1004 provided outside the upper furnace chamber 1001.
  • the lifter 1004 drives the lift arm 1007 to move up and down.
  • the main function of the lifter 1004 is to drive the lift arm to move up and down.
  • a sealing body is provided between the upper furnace chamber 1001 and the outer edge of the lift arm 1007.
  • the lifting arm 1007 can be configured as a linear structure or a folded line structure.
  • the main function of the folded line structure is to connect the lifter 1004 and the crystal cooling mechanism 10011 that are not on the same straight line.
  • the folding line segments involved are linear bending, arc bending, or diagonal bending, they are all within the scope of protection of the present invention.
  • At least one linear groove 1006 penetrating to the inner wall of the upper furnace chamber 1001 is provided on the outer edge surface of the upper furnace chamber 1001.
  • the number of linear grooves 1006 is preferably two, and the two linear grooves 1006 are arranged symmetrically.
  • a cover 1005 is provided around the linear grooves 1006 on the outer edge of the upper furnace chamber 1001.
  • the zigzag structure of the lifting arm 1007 moves up and down in the linear groove 1006 .
  • the upper end of the lifting arm 1007 passes through the upper end surface of the cover body 1005 and is connected to the lifter 1004 located outside the cover body 1005 .
  • the specific structure of the cover 1005 is as shown in Figure 4 .
  • the cover body 1005 can be welded to the outer edge surface of the upper furnace chamber 1001 so that the inner cavity of the cover body 1005 and the inner cavity of the upper furnace chamber 1001 form an integral cavity through the linear groove 1006.
  • the upper end surface of the cover body 1005 is provided with a lifting arm through hole for accommodating the lifting arm 1007 to move up and down.
  • a sealing body is provided in the perforation of the lifting arm.
  • the main function of the sealing body is to ensure that the overall cavity formed by the upper furnace chamber 1001 and the cover body 1005 is a closed cavity. That is to say, it ensures that there is no leakage when the lifting arm 1007 moves up and down. Cause leakage in the sealed cavity.
  • the sealing body can be a sealing ring, O-ring, shaft seal, etc., as long as it can achieve a sealing effect.
  • the alternative structure of the upper furnace chamber 1001 is to provide at least one lifting arm cavity 10029 on the outer edge surface of the upper furnace chamber 1001 .
  • the lifting arm cavity 10029 is an annular structure or a linear structure.
  • the inner cavity of the lifting arm cavity 10029 and the inner cavity of the upper furnace chamber 1001 are integrated to form an integral cavity.
  • a lifter 1004 is provided on the upper surface of the lift arm cavity 10029, and the lifter 1004 is connected to the upper end of the lift arm 1007. That is to say, the main function of the lifting arm cavity 10029 is to form a space for the lifting arm 1007 to move up and down.
  • the lifting arm 1007 when the lifting arm 1007 is configured in a linear structure, the upper part of the lifting arm 1007 passes through the top of the upper furnace chamber 1001 and is connected to the lifter 1004 provided on the top of the upper furnace chamber 1001 . It can be understood that in this structural form, the lifting arm 1007 can also be configured as a zigzag structure.
  • the lifter 1004 is any one of a hydraulic cylinder, a pneumatic cylinder, an electric push rod, a screw lifter, or a flexible shaft lifter.
  • the lifter 1004 when configured as a hydraulic cylinder or a pneumatic cylinder or an electric push rod, it can be directly connected to the upper end of the lifting arm 1007.
  • the rod is connected to the upper end of the lifting arm 1007, so that the lifting arm 1007 can move up and down.
  • the telescopic rod on the hydraulic cylinder or air cylinder or electric push rod is connected to the lifting block 1002, and the lifting block 1002 is connected to the lifting arm. 1007, thereby realizing the up and down movement of the lifting arm 1007.
  • the screw lifter includes a lifting block 1002, a power source 10019, a support frame 10020, a guide column 10021, a screw 10022 and a nut 10023.
  • the support frame 10020 is provided in the upper furnace chamber 1001. On the outside, for example, it can be set on the bracket of the rack or directly on the rack.
  • the support frame 10020 is provided with two parallel guide columns 10021, a lifting block 1002 is provided on the two guide columns 10021, a nut 10023 is provided on the lifting block 1002, and the nut 10023 is sleeved on the screw 10022.
  • the upper and lower ends of the screw 10022 are respectively provided at the upper and lower ends of the support frame 10020, and the upper end or the lower end of the screw 10022 is connected to the power source 10019.
  • the power source 10019 is preferably a motor, and a reducer can also be used to transition between the motor and the lead screw.
  • the lifting block 1002 is connected to the upper end of the lifting arm 1007.
  • the replacement structure of the guide column 10021 is a linear guide rail, a linear bearing, and a guide light rod.
  • the structure of the lifting block 1002 is shown in Figure 9.
  • the lifting block 1002 has a rectangular structure, and two guide holes 10024 for installing the guide posts 10021 are provided on the top of the lifting block 1002.
  • a nut fixing hole 10025 is set in the middle of the lifting block 1002, and a nut 10023 is set in the nut fixing hole 10025.
  • a lifting arm fixing hole 10026 is provided at the front end of the nut fixing hole 10025, and the lifting arm fixing hole 10026 is connected to the lifting arm 1007.
  • the flexible shaft lifter includes a lifting block 1002, a power source 10019, a support frame 10020, a guide column 10021, a flexible shaft lifter 10027 and a flexible shaft 10028.
  • the support frame 10020 is arranged outside the upper furnace chamber 1001.
  • the support frame 10020 is provided with two parallel guide columns 10021, and the two guide columns 10021 are provided with lifting blocks 1002. Between the two guide columns 10021, a flexible shaft 10028 is provided on the lifting block 1002.
  • the upper end of the flexible shaft 10028 is connected to the flexible shaft lifter 10027 provided on the top surface of the support frame 10020, and the flexible shaft lifter 10027 is externally connected to the power source 10019.
  • the lifting block 1002 is connected to the upper end of the lifting arm 1007.
  • the replacement structure of the guide column 10021 can also be selected as a linear guide rail.
  • the flexible shaft lifter 10027 can also be purchased directly from the market. Its structure includes a housing, a flexible shaft roller, a ball spline, and a nut.
  • a flexible shaft roller is placed in the housing, and the flexible shaft roller is sleeved on the ball spline.
  • the ball spline is driven by the power source 10019 to realize forward or reverse rotation.
  • An external thread is provided at one end of the flexible shaft roller, and the external thread cooperates with the nut.
  • the nut is fixed in the housing, and the flexible shaft 10028 is wound around the flexible shaft roller. When winding, the flexible shaft roller rotates on the ball spline and moves left and right at the same time to ensure that the lower end of the flexible shaft 10028 does not move left and right, but only moves up and down.
  • a bellows 1003 is sleeved on the outer edge surface of the lifting arm 1007.
  • the upper end of the bellows 1003 is connected to the lifting block 1002 in the lifter 1004, and the lower end of the bellows 1003 is connected to the upper furnace chamber 1001.
  • a crucible support seat 10015 is provided in the lower furnace chamber 10012, and a supported crucible 10013 is provided on it.
  • An isolation sleeve 10016 is provided inside the crucible 10013, and a heater 10014 is provided around the crucible 10013.
  • the lower furnace chamber 10012 is also provided with a feeding pipe 10010. One end of the feeding pipe 10010 (the upper end in the figure) is connected to the automatic feeding device outside the furnace, and the other end of the feeding pipe 10010 (the lower end in the figure) is connected to the open end of the crucible 10013. .
  • the crystal cooling mechanism 10011 is arranged above the crucible 10013 through the lifting device of the present invention.
  • An upper furnace chamber 1001 is provided above the lower furnace chamber 10012, and a gate valve 1009 or a rotary plate valve is provided between the upper furnace chamber 1001 and the lower furnace chamber 10012.
  • An upper shaft 1008 is provided in the middle of the top of the upper furnace chamber.
  • the upper shaft is a motion mechanism.
  • the lower end of the upper shaft 1008 is provided with a receiving portion.
  • the receiving portion accommodates and is connected to the seed crystal 10018.
  • the upper shaft 1008 drives the seed crystal 10018 to move up and down. move.
  • the heater 10014 heats the silicon material in the crucible 10013
  • the power source 10019 is started, and the crystal cooling mechanism 10011 is driven up through the lifter 1004 and the lifting arm 1007, causing the crystal cooling mechanism 10011 to separate from the crucible 10013.
  • the heater 10014 heats the silicon material in the crucible 10013, which can prevent the crystal cooling mechanism 10011 from absorbing heat during heating and increase the heating speed of the silicon material by the heater 10014.
  • the crystal cooling mechanism 10011 by moving the crystal cooling mechanism 10011 upward, the continuous feeding of materials into the crucible 10013 by the feeding tube 10010 can be better realized.
  • the upper shaft 1008 drives the seed crystal 10018 to drop.
  • the lifting device drives the crystal cooling mechanism 10011 to drop to a predetermined position.
  • the upper shaft 1008 drives the seed crystal 10018 to move upward.
  • the silicon liquid follows the seed crystal 10018 and rises simultaneously.
  • the temperature of the silicon liquid gradually decreases and begins to crystallize.
  • the newly formed columnar crystal is the required crystal rod 10017.
  • the crystal rod 10017 may be a large diameter single crystal rod or a small diameter silicon core. After drawing for a certain period of time, the volatile matter in the silicon material will adhere to the inner wall of the crystal cooling mechanism 10011.
  • the existing method is to open the furnace chamber after shutting down the furnace to clean the crystal cooling mechanism 10011.
  • the crystal cooling mechanism 10011 is lifted into the upper furnace chamber 1001 through the lifter 1004 and the lifting arm 1007, and then the gate valve 1009 is closed to isolate the lower furnace chamber 10012 from the upper furnace chamber 1001. Open, then open the furnace door on the upper furnace chamber 1001, and clean the crystal cooling mechanism 10011. After cleaning, close the furnace door and inspect the upper furnace chamber 1001.
  • the present invention sets a valve between the upper furnace chamber and the lower furnace chamber, and then connects the cooling screen or crystal cooling mechanism to the lifting device, and the lifting device drives the cooling screen or crystal cooling mechanism to move between the upper furnace chamber and the lower furnace chamber.
  • the furnace chamber moves up and down, allowing the volatile matter attached to the cooling screen or crystal cooling mechanism to be cleaned without stopping the furnace.
  • it also avoids the cooling screen or crystal cooling mechanism from absorbing the heat of the heater during heating, reducing manual labor intensity and improving production efficiency.
  • the lifting device described in the present application is used in a single crystal furnace to pull single crystal rods, as shown in Figures 20, 21, and 22.
  • the crystal cooling device in FIG. 22 can be configured as a cooling jacket described below according to the second embodiment, and the cooling jacket has a drawing hole in the middle for the drawn crystal to pass through.
  • the structure of the cooling jacket is not limited to this, and multiple crystal drawing holes may also be provided thereon.
  • the lifting arm 1007 is configured as a folded line structure, and the lower end of the lifting arm 1007 is connected to the crystal cooling mechanism 10011.
  • Two linear grooves 1006 penetrating to the inner wall of the upper furnace chamber are provided on the outer edge surface of the upper furnace chamber 1001.
  • a cover 1005 is provided on the outer edge surface of the upper furnace chamber 1001.
  • the folded line segment of the lifting arm 1007 moves up and down in the linear groove 1006, so that the lifting arm 1007 drives the cooling screen or cooling mechanism 10011 to move up and down in the upper furnace chamber 1001 and the lower furnace chamber 1002.
  • the lifter 1004 includes a lifting block 1002, a power source 10019, a support frame 10020, a guide column 10021, a screw 10022 and a nut 10022.
  • the support frame 10020 is arranged outside the upper furnace chamber 1001.
  • Two parallel guide posts 10021 are provided on the support frame 10020.
  • Lifting blocks 1002 are provided on the two guide columns 10021.
  • a nut 10023 is provided on the lifting block 1002.
  • the nut 10023 is sleeved on the lead screw 10022.
  • the upper and lower ends of the screw 10022 are respectively located on the upper and lower ends of the support frame 10020.
  • Lead screw 10022 is connected to power source 10019.
  • the lifting block 1002 is connected to the lifting arm 1007, thereby driving the lifting arm 1007 to move up and down in the linear groove 1006.
  • the impurities in the silicon liquid and the furnace chamber evaporate and float to the surface of the cooling screen or cooling mechanism. Since the cooling medium passes through the cooling screen, the temperature of the cooling screen is relatively low. At this time, the volatile matter condenses and adheres to the surface of the cooling screen. When the volatile matter accumulates to a certain thickness, due to the disturbance of air flow and the effect of thermal expansion and contraction, the volatile matter falls to the upper surface of the melt in the crucible and then floats on the upper surface of the melt. Since the melting point of the volatile matter is higher than the melting point of the silicon material, the volatile matter cannot be melted, let alone vaporized.
  • the volatile matter will continue to exist on the upper surface of the melt.
  • the volatile matter in the crucible will not remain stationary at a certain location on the upper surface of the silicon melt, but will float in an uncertain position.
  • the floating objects will destroy the alignment direction of the molecules when the silicon melt solidifies (dislocations occur in the crystal direction), causing the crystal lines to break.
  • the newly grown crystal rod will change from single crystal to polycrystal, causing the growth of the single crystal rod to fail.
  • the cooling panel or cooling mechanism since a lifting device for the cooling panel or cooling mechanism is provided, when floating objects are found to be adhered to the cooling panel, the cooling panel or cooling mechanism is lifted out of the lower furnace chamber through the lifting device.
  • the cooling screen or cooling mechanism leaves the lower furnace chamber and enters the upper furnace chamber, close the valve.
  • the upper furnace chamber is rotated through the furnace chamber rotation mechanism to separate the upper furnace chamber and the lower furnace chamber (the state of the upper furnace chamber after rotation is shown in Figure 23.
  • the furnace chamber rotation mechanism is a conventional technology in this field. Many single crystal furnaces are used on both, so I won’t go into details here). Therefore, without stopping the furnace (the thermal field in the lower furnace room continues to work without stopping the furnace), the cooling screen or cooling mechanism can be cleaned to achieve continuous drawing of the crystal ingot, effectively avoiding the failure to clean the cooling screen. The problem of cleaning up.
  • the cooling screen can be lifted out of the lower furnace chamber through the lifting device.
  • the cooling screen leaves the lower furnace chamber and enters the upper furnace chamber, close the valve.
  • the upper furnace chamber is rotated through the furnace chamber rotation mechanism to separate the upper furnace chamber and the lower furnace chamber (the furnace chamber rotation mechanism is a conventional technology in this field and is used in many single crystal furnaces), without stopping the furnace. (The thermal field in the lower furnace room continues to work without shutting down the furnace) Just replace the cooling screen with a new one. Therefore, it effectively avoids the problem of instant gasification of cooling water when it encounters high temperature in the thermal field when water leakage occurs in the cooling panel, and avoids the possibility of furnace explosion.
  • the lifting device described in the present application is applied in a silicon core furnace that uses the Czochralski method to draw multiple silicon cores simultaneously, as shown in Figure 24 shown.
  • the lifting arm 1007 is configured as a folded line structure.
  • the lifting arm 1007 is connected to the cooling screen or cooling mechanism 10011.
  • Two linear grooves 1006 penetrating to the inner wall of the upper furnace chamber are provided on the outer edge surface of the upper furnace chamber 1001.
  • a cover 1005 is provided on the outer edge surface of the upper furnace chamber 1001.
  • the folded line segment of the lifting arm 1007 moves up and down in the linear groove 1006, so that the lifting arm 1007 drives the cooling screen or cooling mechanism 10011 to move up and down in the upper furnace chamber 1001 and the lower furnace chamber 1002.
  • the lifter 1004 includes a lifting block 1002, a power source 10019, a support frame 10020, a guide column 10021, a screw 10022 and a nut 10022.
  • the support frame 10020 is arranged outside the upper furnace chamber 1001.
  • Two parallel guide columns 10021 are provided on the support frame 10020
  • lifting blocks 1002 are provided on the two guide columns 10021
  • nuts 10023 are provided on the lifting blocks 1002.
  • the nut 10023 is sleeved on the lead screw 10022.
  • the upper and lower ends of the screw 10022 are respectively located on the upper and lower ends of the support frame 10020.
  • the screw 10022 is connected to the power source 10019, and the lifting block 1002 is connected to the lifting arm 1007, thereby driving the lifting arm 1007 to move up and down in the linear groove 1006.
  • the impurities in the silicon liquid and in the furnace chamber volatilize and then float to the surface of the crystal cooling mechanism 10011. Since the cooling medium flows through the crystal cooling mechanism 10011, the temperature of the crystal cooling mechanism 10011 is relatively low. At this time, the volatile matter condenses and adheres to the surface of the crystal cooling mechanism 10011. When the volatile matter accumulates to a certain thickness, due to the disturbance of air flow and the effect of thermal expansion and contraction, the volatile matter falls to the upper surface of the melt in the crucible and then floats on the upper surface of the melt. Since the melting point of the volatile matter is higher than the melting point of the silicon material, the volatile matter cannot be melted, let alone vaporized.
  • the volatile matter will continue to exist on the upper surface of the melt.
  • the volatile matter in the crucible will not remain stationary at a certain place on the upper surface of the silicon melt, but will float in an uncertain position.
  • the risk will be severe. This causes the outer edge surface of the drawn silicon core to be convex and deformed. In severe cases, the change in the diameter of the silicon core causes the silicon core to get stuck in the crystal perforation, and is eventually forced to shut down and end this round of drawing.
  • the drawn silicon core cannot be used as a finished product and can only be scrapped.
  • the crystal cooling mechanism 10011 can be lifted out of the lower furnace chamber through the lifting device.
  • the crystal cooling mechanism 10011 leaves the lower furnace chamber and enters the upper furnace chamber, close the valve. Then, the upper furnace chamber is rotated through the furnace chamber rotation mechanism to separate the upper furnace chamber and the lower furnace chamber.
  • the crystal cooling mechanism is 10011 is cleaned to achieve continuous drawing of the crystal ingot (that is, the crystal cooling mechanism is lifted into the upper furnace chamber 1001 above the valve through a lifting device; the lower furnace chamber below the valve still continues to work, so that the furnace can be operated without stopping the furnace. Clean the crystal cooling mechanism if necessary). Therefore, the problem of being unable to clean the crystal cooling mechanism 10011 is effectively avoided.
  • the crystal cooling mechanism can be lifted out of the furnace chamber, thereby providing a feeding channel for the continuous feeding device when the crucible is continuously fed, and the crucible can be continuously fed without stopping the furnace.
  • FIGS 11 to 12 show a second embodiment according to the present application.
  • the difference between the second embodiment and the above-mentioned first embodiment is that a cooling device or cooling screen is connected between the cooling device or the cooling screen and the lifting device.
  • Cooling jacket 100019. 13 to 19 show several different structures of the cooling jacket 100019 according to the preferred embodiment of the present application. However, the structure of the cooling jacket is not limited thereto, and the cooling jacket of the present application can be modified or replaced as needed.
  • the intraocular lens furnace includes an upper furnace chamber 1001, a lifter 1004, a lifting arm 1007, a crystal cooling mechanism 10011, a cooling jacket 100019 and valves.
  • the upper furnace chamber 1001 is arranged above the lower furnace chamber 10012, and a valve is provided between the lower end surface of the upper furnace chamber 1001 and the upper end surface of the lower furnace chamber 10012.
  • the main function of the valve is to divide the cavities of the upper furnace chamber 1001 and the lower furnace chamber 10012 into two independent cavities. That is, when the valve is opened, the cavities of the upper furnace chamber 1001 and the lower furnace chamber 10012 are connected to form an integral cavity; when the valve is closed, the cavities of the upper furnace chamber 1001 and the lower furnace chamber 10012 are divided into two. independent cavity.
  • the valve is gate valve 1009.
  • an oven door that can be opened and closed is provided on the outer edge surface of the upper oven chamber 1001 through a hinge.
  • At least one lifting arm 1007 is provided in the upper furnace chamber 1001, and the lower end of the lifting arm 1007 is connected to the upper end of the cooling jacket 100019.
  • the lower end of the cooling jacket 100019 is connected to the crystal cooling mechanism 10011.
  • the cooling jacket 100019 and the crystal cooling mechanism 10011 are driven by the lifting arm 1007 to move up and down in the cavity of the upper furnace chamber 1001 and the lower furnace chamber 10012, that is, the lifting arm 1007 can drive the cooling jacket. 100019 and the crystal cooling mechanism 10011 move upward into the upper furnace chamber 1001 and completely disengage from the lower furnace chamber 10012.
  • the cooling medium channel on the lifting arm 1007 is connected in series or parallel with the cooling jacket 100019 and the crystal cooling mechanism 10011.
  • a cooling medium channel is provided on the side wall of the lifting arm 1007; or the lifting arm 1007 is provided with a hollow structure, and a cooling medium channel is provided in the inner hole in the middle of the lifting arm 1007. That is to say, the cooling medium introduced into the cooling jacket 100019 and the crystal cooling mechanism 10011 is transmitted through the cooling medium channel on the lifting arm 1007 .
  • cooling medium channels are provided on the lifting arm 1007, one inlet and one out.
  • the upper port of one of the cooling medium channels is connected to the cooling source, and the lower port is connected to the cooling medium upper inlet on the cooling jacket 100019. 1901, the lower port of another cooling medium channel is connected to the cooling medium upper outlet 1904 on the cooling jacket 100019, and the upper port is connected to the recovery port of the cooling source.
  • the cooling jacket 100019 and the crystal cooling mechanism 10011 are connected in series or parallel, that is, the two cooling medium channels, one inlet and one out, form a complete medium circulation channel with the cooling jacket 100019 and the crystal cooling mechanism 10011.
  • a cooling medium channel is provided on each of the two lifting arms 1007.
  • the two cooling medium channels are one inlet and one out, forming a complete medium circulation channel.
  • the structure of the crystal cooling mechanism 10011 in this embodiment is substantially the same as that in the first embodiment, and therefore will not be described again here.
  • the two lifting arms 1007 are symmetrically arranged in the upper furnace chamber 1001.
  • connection forms between the lifting arm 1007 and the cooling jacket 100019 there are various connection forms between the lifting arm 1007 and the cooling jacket 100019, and they are all conventional connection forms in this field, such as threaded connection or welded connection. Connection, etc., but it is necessary to ensure that no medium leakage occurs after connection, and the sealing of the connection needs to be ensured.
  • the number of lifting arms 1007 is preferably two, and the two lifting arms 1007 are arranged symmetrically. This can ensure that the cooling jacket 100019 and the crystal cooling mechanism 10011 can rise and fall smoothly, and the economy and practicality are optimized. Three or more selections can also be used, and are within the scope of protection of this application.
  • the lifting arm 1007 When the lifting arm 1007 is set to one, the lifting arm 1007 can also be raised and lowered, which is also within the scope of protection of this application. .
  • the cooling medium channel is connected in series with the cooling jacket 100019 and the crystal cooling mechanism 10011
  • the upper end of the cooling medium channel is connected to the cooling source and the cooling medium recovery device respectively
  • the outlet at the lower end of the cooling medium channel is connected to the cooling medium upper inlet on the cooling jacket 100019.
  • the inlet at the lower end of the cooling medium channel is connected to the cooling medium upper outlet 1904 on the cooling jacket 100019
  • the cooling medium lower outlet 1902 on the cooling jacket 100019 is connected to the cooling medium inlet on the crystal cooling mechanism 10011
  • the cooling medium outlet on the crystal cooling mechanism 10011 Connect the cooling medium lower inlet 1908 on the cooling jacket 100019.
  • the cooling medium channel is connected in parallel with the cooling jacket 100019 and the crystal cooling mechanism 10011, the upper end of the cooling medium channel is connected to the cooling source and the cooling medium recovery device respectively, and the outlet at the lower end of the cooling medium channel is connected to the cooling medium on the cooling jacket 100019 through pipes.
  • the inlet 1901, the cooling medium inlet on the crystal cooling mechanism 10011, and the inlet at the lower end of the cooling medium channel are respectively connected to the cooling medium upper outlet 1904 on the cooling jacket 100019 and the cooling medium outlet on the crystal cooling mechanism 10011 through pipes.
  • the upper end of the lifting arm 1007 passes through the upper furnace chamber 1001 and is connected to the lifter 1004 provided outside the upper furnace chamber 1001.
  • the lifter 1004 drives the lifting arm 1007 to move up and down.
  • the main function of the lifter 1004 is to drive the lifting arm to move up and down.
  • a sealing body is provided between the upper furnace chamber 1001 and the outer edge surface of the lifting arm 1007, thereby forming the crystal cooling device with lifting function for crystal drawing. device.
  • At least one linear groove 1006 penetrating to the inner wall of the upper furnace chamber 1001 is provided on the outer edge surface of the upper furnace chamber 1001.
  • a cover 1005 is provided on the outer edge surface of the upper furnace chamber 1001.
  • the zigzag structure of the lifting arm 1007 moves up and down in the linear groove 1006.
  • the upper part of the lifting arm 1007 passes through the upper end surface of the cover body 1005 and is connected to the lifter 1004 provided outside the cover body 1005.
  • the lifting arm 1007 is configured as a linear structure or a zigzag structure.
  • the lifting arm 1007 When the lifting arm 1007 is configured as a folded line structure, as shown in Figures 11 and 12, the main function of the folded line structure is to connect the lifter 1004, the cooling jacket 100019 and the crystal cooling mechanism 10011 that are not on the same straight line. In practical applications, whether the folded line structure involved is linear bending, arc bending or diagonal bending, it is within the scope of protection of this application.
  • At least one linear groove 1006 penetrating to the inner wall of the upper furnace chamber 1001 is provided on the outer edge of the upper furnace chamber 1001.
  • the number of linear grooves 1006 is preferably two, and the two linear grooves 1006 are preferably arranged symmetrically.
  • a cover 1005 is provided on the outer edge surface of the upper furnace chamber 1001, and the zigzag structure of the lifting arm 1007 moves up and down in the linear groove 1006.
  • the upper part of the lifting arm 1007 passes through the upper end surface of the cover body 1005 and is connected to the lifter 1004 provided outside the cover body 1005 .
  • the cover body 1005 can be welded to the outer edge surface of the upper furnace chamber 1001, so that the inner cavity of the cover body 1005 and the inner cavity of the upper furnace chamber 1001 form an integral cavity through the linear groove 1006.
  • the upper end surface of the cover body 1005 is provided with a lifting arm through hole for accommodating the lifting arm 1007 to move up and down.
  • a sealing body is provided in the perforation of the lifting arm.
  • the main function of the sealing body is to ensure that the overall cavity formed by the upper furnace chamber 1001 and the cover body 1005 is a closed cavity. That is to say, it ensures that the lifting arm 1007 does not become sealed when it moves up and down. The chamber is leaking.
  • the sealing body can be a sealing ring, O-ring, shaft seal, etc., as long as it can achieve a sealing effect.
  • At least one lifting arm cavity may be provided on the outer edge surface of the upper furnace chamber 1001.
  • the lifting arm cavity has an annular structure or a linear structure, and the inner cavity of the lifting arm cavity and the inner cavity of the upper furnace chamber 1001 are integrated to form an integral cavity.
  • a lifter 1004 is provided above the lift arm cavity, and the lifter 1004 is connected to the upper end of the lift arm 1007. That is to say, the main function of the lifting arm cavity is to form a space for the lifting arm 1007 to move up and down.
  • Its specific structural form can be set as a ring structure, or can be selected as any other various shapes, as long as it can ensure that the lifting arm 1007 Just move it up and down in the upper furnace chamber 1001.
  • this effect can also be achieved by enlarging the diameter of the upper furnace chamber 1001 as a whole. Just increasing the diameter of the upper furnace chamber 1001 as a whole in this way is slightly less economical, but this structure is also within the protection scope of the present application.
  • the lifting arm 1007 when configured in a linear structure, the upper part of the lifting arm 1007 passes through the top of the upper furnace chamber 1001 and is connected to the lifter 1004 provided on the top of the upper furnace chamber 1001 . It should be understood that in this structural form, the lifting arm 1007 can also be configured as a zigzag structure.
  • the lifter 1004 is any one of a hydraulic cylinder, a pneumatic cylinder, an electric push rod, a screw lifter, or a flexible shaft lifter.
  • the lifter 1004 when configured as a hydraulic cylinder or a pneumatic cylinder or an electric push rod, it can be directly connected to the upper end of the lifting arm 1007.
  • the rod is connected to the upper end of the lifting arm 1007, thereby realizing the up and down movement of the lifting arm 1007.
  • the telescopic rod on the hydraulic cylinder or the air cylinder or the electric push rod is connected to the lifting block 1002, and the lifting block 1002 is connected to the lifting arm 1007 The upper end of the lifting arm 1007 is moved up and down.
  • the screw lifter includes a lifting block 1002, a power source, a support frame, a guide column, a screw and a nut.
  • the support frame is set outside the upper furnace chamber 1001. For example, it can be set on a bracket of the frame or directly on the machine. on the shelf.
  • the support frame is provided with two parallel guide columns, a lifting block 1002 is provided on the two guide columns, a nut is provided on the lifting block 1002, and the nut is sleeved on the screw.
  • the upper and lower ends of the screw are respectively arranged on the upper and lower ends of the support frame, and the upper or lower end of the screw is connected to the power source.
  • the preferred power source is an electric motor.
  • the lifting block 1002 is connected to the upper end of the lifting arm 1007.
  • the replacement structure of the guide column can For linear guide rail.
  • the lifting block 1002 has a rectangular structure.
  • Two guide holes for installing guide posts are provided on the upper surface of the lifting block 1002, and a nut fixing hole is provided in the middle of the lifting block 1002.
  • a nut is set in the nut fixing hole, and a lifting arm fixing hole is set at the front end of the nut fixing hole.
  • the lifting arm fixing hole is connected to the lifting arm 1007.
  • the flexible shaft lifter includes a lifting block 1002, a power source, a support frame, a guide column, a flexible shaft lifter and a flexible shaft.
  • the support frame is arranged outside the upper furnace chamber 1001.
  • the support frame is provided with two parallel guide columns, and the lifting blocks 1002 are provided on the two guide columns.
  • a flexible shaft is provided on the lifting block 1002 between the two guide columns.
  • the upper end of the flexible shaft is connected to the flexible shaft lifter arranged on the support frame.
  • the flexible shaft lifter is connected to an external power source.
  • the lifting block 1002 is connected to the upper end of the lifting arm 1007.
  • the replacement structure of the guide column can also be selected as a linear guide.
  • the flexible shaft lifter can also be purchased directly from the market.
  • Its structure includes, for example, a housing, a flexible shaft roller, a ball spline, and a nut.
  • a flexible shaft roller is placed in the housing, and the flexible shaft roller is sleeved on the ball spline.
  • the ball spline is driven by the power source to realize forward or reverse rotation.
  • An external thread is provided at one end of the flexible shaft roller, and the external thread cooperates with the nut, and the nut is fixed in the housing.
  • the flexible shaft is wound around the flexible shaft roller. When winding, the flexible shaft roller rotates on the ball spline and moves left and right at the same time to ensure that the lower end of the flexible shaft does not move left and right, but only moves up and down.
  • a bellows 1003 is sleeved on the outer edge surface of the lifting arm 1007.
  • the upper end of the bellows 1003 is connected to the lifting block 1002 in the lifter 1004, and the lower end of the bellows 1003 is connected to the upper furnace chamber 1001.
  • drawing silicon material is taken as an example.
  • a crucible support seat 10015 is provided in the lower furnace chamber 10012, and a crucible 10013 is provided on the crucible support seat 10015.
  • An isolation sleeve 10016 is provided inside the crucible 10013, and a heater 10014 is provided around the crucible 10013.
  • the lower furnace chamber 10012 is provided with a feeding pipe 10010. One end of the feeding tube 10010 (eg, the upper end in the figure) is connected to the automatic feeding device, and the other end (eg, the lower end in the figure) of the feeding tube 10010 is connected to the open end of the crucible 10013.
  • the crystal cooling mechanism 10011 is arranged above the crucible 10013 through the lifting device described in this application.
  • An upper furnace chamber 1001 is provided above the lower furnace chamber 10012, and a gate valve 1009 is provided between the upper furnace chamber 1001 and the lower furnace chamber 10012.
  • An upper shaft 1008 is provided in the middle of the top of the upper furnace chamber. The lower end of the upper shaft 1008 is connected to the seed crystal 10018, and the upper shaft 1008 drives the seed crystal 10018 to move up and down.
  • the heater 10014 heats the silicon material in the crucible 10013
  • the power source is started at this time, and the cooling jacket 100019 and the crystal cooling mechanism 10011 are driven up through the lifter 1004 and the lifting arm 1007, so that the cooling jacket 100019 and the crystal cooling mechanism are raised.
  • 10011 is separated from the crucible 10013.
  • the heater 10014 heats the silicon material in the crucible 10013, which can prevent the cooling jacket 100019 and the crystal cooling mechanism 10011 from absorbing the heat during heating, and improve the effect of the heater 10014 on the silicon material. Heating speed.
  • the cooling jacket 100019 and the crystal cooling mechanism 10011 By moving the cooling jacket 100019 and the crystal cooling mechanism 10011 upward, the continuous feeding of materials into the crucible 10013 by the feeding pipe 10010 can be better realized.
  • the upper shaft 1008 drives the seed crystal 10018 to drop.
  • the lifting device drives the crystal cooling mechanism 10011 to drop to a predetermined position.
  • the upper shaft 1008 drives the seed crystal 10018 to move upward.
  • the silicon liquid follows the seed crystal 10018 and rises simultaneously.
  • the temperature of the silicon liquid gradually decreases and crystallization begins.
  • the cooling jacket 100019 further cools the drawn crystal rod 10017.
  • the newly formed columnar crystal is the required crystal rod 10017.
  • the crystal rod 10017 may be a large diameter single crystal rod or a small diameter silicon core. After drawing for a certain period of time, the volatile matter in the silicon material will adhere to the inner wall of the crystal cooling mechanism 10011. Therefore, when the volatile matter adheres to a certain extent, the attachment needs to be cleaned.
  • the existing method is to open the furnace chamber after shutting down the furnace to clean the cooling jacket 100019 and the crystal cooling mechanism 10011.
  • the cooling jacket 100019 and the crystal cooling mechanism 10011 are lifted into the upper furnace chamber 1001 through the lifter 1004 and the lifting arm 1007, and then the gate valve 1009 is closed to connect the lower furnace chamber 10012 with the upper furnace chamber. Isolate the furnace chamber 1001, then open the furnace door on the upper furnace chamber 1001, and clean the cooling jacket 100019 and crystal cooling mechanism 10011. After cleaning, close the furnace door, vacuum the upper furnace chamber 1001, then open the gate valve 1009, lower the cooling jacket 100019 and the crystal cooling mechanism 10011 to the lower furnace chamber 10012 through the lifter 1004 and the lifting arm 1007, and hover. Above the crucible 10013, the drawing of the crystal rod 10017 is then started. This effectively improves the yield and drawing efficiency of crystal ingot 10017.
  • the lifting mechanism involved in this embodiment can use the lifting device described in the first embodiment.
  • the first structure of the cooling jacket 100019 is that the cooling jacket 100019 includes an upper cover plate 1903, a cooling jacket outer ring 1905, a cooling jacket inner ring 1906 and a lower cover plate 1907.
  • the cooling jacket outer ring 1905 is sleeved on the periphery of the cooling jacket inner ring 1906.
  • the upper cover plate 1903 is disposed at the upper end of the cavity between the cooling jacket outer ring 1905 and the cooling jacket inner ring 1906
  • the lower cover plate 1907 is disposed at the lower end of the cavity between the cooling jacket outer ring 1905 and the cooling jacket inner ring 1906.
  • the upper cover plate 1903 is symmetrically provided with an upper cooling medium inlet 1901 and an upper cooling medium outlet 1904
  • the lower cover plate 1907 is symmetrically provided with a lower cooling medium outlet 1902 and a lower cooling medium inlet 1908.
  • the structure of the cooling jacket 100019 is as shown in Figure 14.
  • the second structure of the cooling jacket 100019 is that the cooling jacket 100019 includes an upper cover plate 1903, a cooling jacket outer ring 1905, a cooling jacket inner ring 1906 and a lower cover plate 1907.
  • the cooling jacket outer ring 1905 is sleeved on the periphery of the cooling jacket inner ring 1906.
  • the upper cover plate 1903 is disposed at the upper end of the cavity between the cooling jacket outer ring 1905 and the cooling jacket inner ring 1906
  • the lower cover plate 1907 is disposed at the lower end of the cavity between the cooling jacket outer ring 1905 and the cooling jacket inner ring 1906.
  • An upper cooling medium inlet 1901 and an upper cooling medium outlet 1904 are symmetrically provided on the upper cover 1903 .
  • the structure of the cooling jacket 100019 can also be as shown in Figures 15 and 16.
  • the third structure of the cooling jacket 100019 is that the cooling jacket 100019 includes an upper cover plate 1903, a cooling jacket outer ring 1905, Cooling jacket inner ring 1906, lower cover plate 1907 and deflector plate 1909.
  • the cooling jacket outer ring 1905 is sleeved on the periphery of the cooling jacket inner ring 1906.
  • the upper cover plate 1903 is disposed at the upper end of the cavity between the cooling jacket outer ring 1905 and the cooling jacket inner ring 1906, and the lower cover plate 1907 is disposed at the lower end of the cavity between the cooling jacket outer ring 1905 and the cooling jacket inner ring 1906.
  • An upper cooling medium inlet 1901 and an upper cooling medium outlet 1904 are symmetrically provided on the upper cover 1903 .
  • a plurality of baffles 1909 are spaced apart in the cavity between the cooling jacket outer ring 1905 and the cooling jacket inner ring 1906 .
  • the plurality of guide plates 1909 are arranged in the cavity at the front and rear positions of the cooling medium upper inlet 1901 and the cooling medium upper outlet 1904, respectively, with the upper end of the guide plates 1909 in contact with the upper cover plate 1903.
  • one guide plate 1909 whose lower end is connected to the lower cover 1907 is respectively provided between the two guide plates 1909 whose upper ends are in contact with the upper cover 1903. This can realize the wavy flow of the cooling medium in the cavity, further improving the cooling effect.
  • the structure of the cooling jacket 100019 can also be as shown in Figure 17.
  • the fourth structure of the cooling jacket 100019 is that the cooling jacket 100019 includes an upper cover plate 1903, a cooling jacket outer ring 1905, a cooling jacket inner ring 1906, a lower cover plate 1907, a cooling medium return pipe 1910 and a spiral guide plate 1911.
  • the cooling jacket outer ring 1905 is sleeved on the periphery of the cooling jacket inner ring 1906.
  • the upper cover plate 1903 is disposed at the upper end of the cavity between the cooling jacket outer ring 1905 and the cooling jacket inner ring 1906, and the lower cover plate 1907 is disposed at the lower end of the cavity between the cooling jacket outer ring 1905 and the cooling jacket inner ring 1906.
  • An upper cooling medium inlet 1901 and an upper cooling medium outlet 1904 are symmetrically provided on the upper cover 1903 .
  • a spiral guide plate 1911 is provided in the cavity between the cooling jacket outer ring 1905 and the cooling jacket inner ring 1906.
  • the cooling medium upper outlet 1904 is connected to the upper end of the cooling medium return pipe 1910 disposed in the cavity between the cooling jacket outer ring 1905 and the cooling jacket inner ring 1906.
  • the cooling medium return pipe 1910 passes through the spiral baffle 1911. And its lower end is located in the middle and lower part of the cavity between the cooling jacket outer ring 1905 and the cooling jacket inner ring 1906.
  • the structure of the cooling jacket 100019 can also be as shown in Figure 18.
  • the fifth structure of the cooling jacket 100019 is that the cooling jacket 100019 includes an upper cover plate 1903, a cooling jacket outer ring 1905, a cooling jacket inner ring 1906, a lower cover plate 1907, a spiral guide plate 1911 and a cooling medium guide tube 1912.
  • the cooling jacket outer ring 1905 is sleeved on the periphery of the cooling jacket inner ring 1906.
  • the upper cover plate 1903 is disposed at the upper end of the cavity between the cooling jacket outer ring 1905 and the cooling jacket inner ring 1906, and the lower cover plate 1907 is disposed at the lower end of the cavity between the cooling jacket outer ring 1905 and the cooling jacket inner ring 1906.
  • the upper cover plate 1903 is symmetrically provided with an upper cooling medium inlet 1901 and an upper cooling medium outlet 1904, and the lower cover plate 1907 is symmetrically provided with a lower cooling medium outlet 1902 and a lower cooling medium inlet 1908.
  • a spiral guide plate 1911 is provided in the cavity between the cooling jacket outer ring 1905 and the cooling jacket inner ring 1906.
  • the cooling medium upper outlet 1904 is connected to the upper end of the cooling medium guide tube 1912 disposed in the cavity between the cooling jacket outer ring 1905 and the cooling jacket inner ring 1906.
  • the cooling medium guide tube 1912 passes through the spiral guide plate. 1911 and the lower end is connected to the cooling medium lower inlet 1908.
  • the structure of the cooling jacket 100019 can also be as shown in Figure 19.
  • the sixth structure of the cooling jacket 100019 is that the cooling jacket 100019 includes an upper cover plate 1903, a cooling jacket outer ring 1905, a cooling jacket inner ring 1906 and a lower cover plate 1907.
  • the cooling jacket outer ring 1905 is sleeved on the periphery of the cooling jacket inner ring 1906.
  • the upper cover plate 1903 is disposed at the upper end of the cavity between the cooling jacket outer ring 1905 and the cooling jacket inner ring 1906
  • the lower cover plate 1907 is disposed at the lower end of the cavity between the cooling jacket outer ring 1905 and the cooling jacket inner ring 1906.
  • An upper cooling medium inlet 1901 and an upper cooling medium outlet 1904 are symmetrically provided on the outer edge surface of the cooling jacket outer ring 1905, and a lower cooling medium outlet 1902 and a lower cooling medium inlet 1908 are symmetrically provided on the lower cover plate 1907.
  • a cooling jacket is provided above the cooling screen or the cooling device, and the crystal ingot is cooled through the cooling jacket and the cooling screen or the cooling device, thereby accelerating the cooling speed of the crystal ingot, thereby improving the drawing efficiency of the crystal ingot.
  • the cooling jacket and cooling screen are connected to the lifting arm, and the lifting arm is connected to the lifter.
  • the lifting arm drives the cooling jacket and cooling screen between the upper furnace room and the lower furnace room.
  • the furnace chamber moves up and down, allowing the volatile matter attached to the cooling jacket and cooling screen to be cleaned without stopping the furnace. It also avoids the cooling jacket, cooling screen or cooling device from absorbing the energy of the heater during heating. Calories etc. Therefore, manual labor intensity is reduced, production efficiency is improved, etc., and it is suitable for large-scale promotion and application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种人工晶体炉及包括人工晶体炉的人工晶体炉***。人工晶体炉包括:炉体,包括上炉室、下炉室以及设置在上下炉室之间的阀门,阀门能够将上炉室和下炉室分割为两个独立的腔体;晶体冷却机构,设置在炉体中并设置有供拉制出来的晶体穿过的至少一个拉制孔;及升降装置,设置在上炉室,其与晶体冷却机构连接并带动其在上炉室和下炉室内上下移动。通过升降装置将晶体冷却机构提升至阀门上方的上炉室,从而能够在不停炉的情况下,实现晶体或晶棒的持续拉制,有效的避免了不能对冷却机构进行清污的问题,而且能够在冷却屏发生漏水时,在不停炉的情况下更换冷却机构,不但避免了炉体***的可能性,还提高了人工晶体炉的生产效率。

Description

人工晶体炉及包括人工晶体炉的人工晶体炉***
相关申请的引用
本申请要求于2022年03月21日向中华人民共和国国家知识产权局提交的第202210277537.7号中国专利申请以及于2022年11月16日提交的第202223045663.4号中国专利申请的权益,在此将其全部内容以援引的方式整体并入本文中。
技术领域
本申请涉及人工晶体制备技术领域,具体涉及一种人工晶体炉及包括人工晶体炉的人工晶体炉***。
背景技术
在“碳达峰、碳中和”的国家宏观战略政策的推动下,光伏产业正在成为新能源行业的“新宠”。在此背景下,随着光伏行业的发展,全球对多/单晶硅的需求增长迅猛,市场供不应求。受此影响,作为太阳能电池主要原料的多/单晶硅价格快速上涨,国内很多企业均在扩产。
以多/单晶硅为例,在提高晶体拉制效率方面,如何提高晶体的拉制速度是其中的关键技术之一。当采用提拉法生产硅棒或硅芯时(即将硅料放置在坩埚中加热熔化形成硅熔液,然后将籽晶与硅熔液表面接触后进行硅棒或硅芯的提拉,并在受控条件下,使籽晶和硅熔液在交界面上不断进行原子或分子的重新排列,随降温逐渐凝固而生长出新的硅棒或硅芯),在利用提拉法制备硅棒或硅芯的过程中,冷却屏的应用非常广泛,其主要作用是提高长晶速率和长晶质量,降低成本。冷却屏的应用成了该领域技术革新的重点,通过冷却屏的应用,使拉速由1mm/min向2mm/min突进,而在实际应用中,如图1所示,大多数企业使用的冷却屏11都是固定在下炉室12的内壁上,无法实现冷却屏11的升降,也就是说其不能实现升降。
发明人经过检索发现了专利号为202110024156.3,申请日为2021年1月8日,专利名称为一种长晶炉的中国发明专利,该专利中给出了可以使冷却屏11在下炉室12内实现小幅度升降的技术方案,其可以实现对晶体冷却过程的精确控制,有效控制晶体的冷却速度,精确调节晶体的温度分布,增大热场的灵活性,在不改变热场的情况下,可以生产不同产品,极大的降低了生产及研发成本,且可在不同的长晶阶段进行流量和位置的控制,以实现整个晶棒的质量均匀性,提高晶体的整体利用率等。
中国发明专利,专利号为201520585827.3,申请日为2015年8月6日,专利名称为一种直拉单晶炉导流筒升降装置,该发明对称水平安装在增加了两个提升口的炉盖上,导向柱与丝杆、滑块组成了高精度直线运动单元,提升杆一端固定在滑块上,另一端连接提升爪来实现导流筒的上下运动;波纹管上端与滑块相连,另一端与炉盖提升口相连,O型圈密封保证装置的气密性;旋钮与提升杆相连旋转提升爪的角度,实现导流筒的抓放动作,另一个提升爪的同步动作由单电机带动换向器、软轴实现等。
通过实际应用发现,上述两种方案在拉制单晶棒时存在如下技术缺陷:
1、由于现有结构的升降装置无法将冷却屏提升至炉盖的上方(其中,发明名称为一种直拉单晶炉导流筒升降装置公开的技术方案中,导流筒只能在炉盖的下方进行升降),当无法将冷却屏提升至炉盖的上方时,就无法实现在不停炉的情况下对冷却屏进行清污。若不能对冷却屏进行清污,当坩埚中的硅料熔融成硅液后,此时硅液中及炉室内的杂质挥发后漂浮至冷却屏的表面。由于冷却屏内通有冷却介质,冷却屏的温度相对较低,此时,挥发物冷凝附着在冷却屏的表面。当挥发物堆积到一定厚度后,由于气流扰动再加上热胀冷缩效应,挥发物掉落到坩埚的熔液上表面后漂浮在熔液的上表面。由于挥发物的熔点高于硅料的熔点,无法将挥发物熔化,更无法将挥发物气化,此时挥发物会持续存在于熔液的上表面。拉制时,由于坩埚一直旋转,此时坩埚内的挥发物不会静止处于硅熔液上表面的某一处不动,而是位置漂浮不定。一旦漂浮物附着到晶棒结晶位置,此时漂浮物就会破坏硅熔液凝固时分子的排列方向(晶向发生位错),导致晶线断裂。此时新生长的晶棒就会由单晶体改变为多晶体,造成单晶棒的生长失败。
2、在拉制过程中,当冷却屏发生漏水时,无法及时将冷却屏提出下炉室(即无法将冷却屏脱离热场),只能通过切断水源及电源,对坩埚内的硅熔液进行强冷。当漏水量过大时,冷却水遇到热场内的高温瞬间气化。此时若气化产生的气体不能及时地排出热场所处的炉室,就会造成炉体***。
当采用直拉法同时拉制多根硅芯时,若晶体冷却机构无法提出下炉室,则存在如下技术缺陷:
1、由于现有结构的升降装置无法将晶体冷却机构提升至炉盖的上方(发明名称为一种直拉单晶炉导流筒升降装置公开的技术方案中,导流筒只能在炉盖的下方进行升降),当无法将晶体冷却机构提升至炉盖的上方时,就无法实现在不停炉的情况下对晶体冷却机构进行清污。当坩埚中的硅料熔融成硅液后,此时,硅液中及炉室内的杂质挥发后漂浮至晶体冷却机构的下底面或侧壁上。由于晶体冷却机构内通有冷却介质,晶体冷却机构的温度相对较低,此时,挥发物冷凝附着在晶体冷却机构的底面或侧壁上。当挥发物堆积到一定厚度后,由于气流扰动再加上热胀冷缩效应,挥发物掉落到坩埚的熔液上表面后漂浮在熔液的 上表面。由于挥发物的熔点高于硅料的熔点,无法将挥发物熔化,更无法将挥发物气化,此时挥发物会持续存在于熔液的上表面。拉制时,由于坩埚一直旋转,此时坩埚内的挥发物不会静止处于硅熔液上表面的某一处不动,而是位置漂浮不定。一旦漂浮物附着到硅芯结晶位置,轻者导致所拉制硅芯的外缘面凸起变形,严重时,由于硅芯直径的变化导致硅芯卡死在晶体穿孔内,最终被迫停机,结束本轮的拉制。所拉制硅芯也无法当做成品使用,只能报废处理。
2、由于无法将晶体冷却机构提出下炉室(即无法将晶体冷却机构脱离热场),并且晶体冷却机构位于坩埚的上方,在坩埚实现连续投料时,晶体冷却机构会遮挡住连续投料装置的通道,从而导致无法实现在不停炉的状态下对坩埚进行连续投料的工况要求。
3、当晶体冷却机构上的粘附物过多时,就需要停炉进行清理粘附物,严重降低了硅芯的生产效率等。
因此,如何在使冷却屏或晶体冷却机构实现升降的基础上提供一种将晶体冷却机构提升至下炉室上方的上炉室内的升降装置就成了需要解决的技术问题之一。
发明内容
为了解决上述问题,本申请提供一种人工晶体炉,其能够方便的实现晶体冷却机构的升降,从而更好的拉制晶体;并且,其能够通过升降装置将晶体冷却机构提升至阀门上方的上炉室,从而能够在不停炉的情况下,实现晶体或晶棒的持续拉制,有效的避免了不能对冷却机构进行清污的问题,而且,能够在冷却屏发生漏水时,在不停炉的情况下更换冷却机构,不但避免了炉体***的可能性,还提高了人工晶体炉的生产效率。
根据本申请的一方面,人工晶体炉包括:炉体,所述炉体包括上炉室、设置在所述上炉室下方的下炉室以及设置在所述上炉室和所述下炉室之间的阀门,所述阀门能够将所述上炉室和所述下炉室分割为两个独立的腔体;晶体冷却机构,所述晶体冷却机构设置在所述炉体中并设置有供拉制出来的晶体穿过的至少一个拉制孔;以及升降装置,所述升降装置设置在所述上炉室,且与所述晶体冷却机构连接并带动所述晶体冷却机构在所述上炉室和所述下炉室内上下移动。
优选地,升降装置包括与所述晶体冷却机构连接的至少一根升降臂和用于驱动所述升降臂上下运动的升降器。
优选地,升降装置设置有冷却介质通道,所述晶体冷却机构设置有用于冷却介质流的冷却通道,所述冷却介质通道与所述冷却通道流体连通。
优选地,升降臂设置为直线形结构或折线形结构。
优选地,所述升降臂设置为两个。
优选地,所述冷却介质通道设置在所述升降臂的侧壁上或所述升降臂的中空结构内。
优选地,所述升降臂设置为折线形结构,在所述上炉室的外缘面上设有至少一个贯通至所述上炉室内壁的线形槽,在所述线形槽***,在所述上炉室的外缘面上设有罩体,所述升降臂的折线段在所述线形槽内上下移动。
优选地,上炉室设置为在所述上炉室的外缘面上设有至少一个升降臂腔体,并且所述升降臂腔体的内腔与所述上炉室的内腔设置为一体,所述升降臂设置为能够在所述升降臂腔体的内腔与所述上炉室的内腔所形成的腔体内上下运动。
优选地,升降臂设置为直线形结构,所述升降臂的上端穿过所述上炉室的顶部连接所述升降器。
优选地,所述升降器包括液压缸、气缸、电动推杆、丝杠升降器和软轴升降器。
优选地,升降器包括升降块、动力源、支撑架、导向柱、丝杠和螺母,其中,所述支撑架设置在所述上炉室的外侧,在所述支撑架上设有两根平行的所述导向柱,在两根所述导向柱上设有所述升降块,在所述升降块上设有螺母,所述螺母套接在所述丝杠上,所述丝杠的上下两端分别设在所述支撑架的上下两端,所述丝杠连接至所述动力源,所述升降块连接至所述升降臂。
优选地,升降器包括升降块、动力源、支撑架、导向柱、软轴升降器和软轴,所述支撑架设置在所述上炉室的外侧,在所述支撑架上设有两根平行的所述导向柱,在两导向柱上设有所述升降块,在两根所述导向柱中间的所述升降块上设置有软轴,所述软轴连接至设置在所述支撑架上面的所述软轴升降器,所述软轴升降器外接动力源,所述升降块连接至所述升降臂。
优选地,导向柱包括直线导轨、直线轴承、导向光杠。
优选地,阀门包括插板阀、旋板阀和翻板阀。
优选地,上炉室与所述升降臂的外缘面之间设有密封体。
优选地,升降臂的外缘面上套接有波纹管,所述波纹管的一端连接所述上炉室,所述波纹管的另一端连接所述升降器。
优选地,晶体冷却机构和所述升降装置之间连接设置有冷却套,所述冷却套用于对所述晶体进行冷却。
优选地,升降装置包括至少一根升降臂和用于驱动所述升降臂上下运动的升降器,所述冷却套的上端连接至所述升降臂,所述冷却套的下端连接至所述晶体冷却机构,并且,所述升降臂的上端连接至所述升降器。
优选地,升降臂中设置有冷却介质通道,所述冷却介质通道与所述冷却套的介质通道及所述晶体冷却机构的冷却通道串联连通。
优选地,升降臂中设置有冷却介质通道,所述冷却介质通道与所述冷却套的介质通道及所述晶体冷却机构的冷却通道并联连通。
优选地,冷却套包括上盖板、冷却套外环、冷却套内环和下盖板,在所述冷却套内环的***套接有所述冷却套外环,在所述冷却套外环与所述冷却套内环之间空腔的上端设有所述上盖板,在所述冷却套外环与所述冷却套内环之间空腔的下端设有所述下盖板,在所述上盖板上设有冷却介质上入口和冷却介质上出口。
优选地,下盖板上设有冷却介质下出口和冷却介质下入口。
优选地,冷却套还包括在所述冷却套外环与所述冷却套内环之间的空腔内间隔设置的多个导流板,所述多个导流板设置为在所述冷却介质上入口及所述冷却介质上出口前后位置处的空腔内上端头与所述上盖板接触。
优选地,冷却套还包括在所述冷却套外环与所述冷却套内环之间的空腔内设置的螺旋形导流板和冷却介质回流管,所述冷却介质上出口连接至所述冷却介质回流管,所述冷却介质回流管的下端头穿过螺旋形导流板位于所述冷却套外环与所述冷却套内环之间空腔的中下部。
优选地,冷却套还包括在所述冷却套外环与所述冷却套内环之间的空腔内设置的螺旋形导流板和冷却介质导流管,所述冷却介质上出口连接至所述冷却介质导流管,所述冷却介质导流管的下端穿过所述螺旋形导流板连接至所述冷却介质下入口。
优选地,冷却套包括上盖板、冷却套外环、冷却套内环和下盖板,在所述冷却套内环的***套接有所述冷却套外环,在所述冷却套外环与所述冷却套内环之间空腔的上端设有所述上盖板,在所述冷却套外环与所述冷却套内环之间空腔的下端设有所述下盖板,在所述冷却套外环的外缘面上设有冷却介质上入口和冷却介质上出口,在所述下盖板上设有冷却介质下出口和冷却介质下入口。
根据本申请的另一方面,提供一种人工晶体炉***,该人工晶体炉***包括上述的人工晶体炉。
根据本申请,通过在上炉室和下炉室之间设置阀门,然后将晶体冷却机构连接至升降装置,由升降装置带动晶体冷却机构在上炉室和下炉室的腔体内上下移动,实现了在不停炉的情况下对晶体冷却机构上附着的挥发物进行清理。同时还避免了在加热时,晶体冷却机构吸收加热器的热量等,降低了人工的劳动强度,提高了生产效率等。
并且,根据本申请,在拉制过程中,当冷却机构发生漏水时,可以通过升降装置将晶体冷却机构提出下炉室,从而,有效地避免了在冷却装置发生漏水时,冷却水遇到热场内的高温瞬间气化的问题,避免炉体***的可能等。
而且,根据本申请,通过升降装置的设置,可以将晶体冷却机构提出下炉室,从而,在坩埚实现连续投料时,为连续投料装置提供投料通道,实现了在不停炉的状态下对坩埚进行连续投料的工况要求。
此外,根据本申请,通过在冷却装置的上方设置冷却套,通过冷却套及冷却装置对晶棒进行冷却,加快了对晶棒的冷却速度,进而提高了晶棒的拉制效率。
附图说明
图1是现有冷却屏在炉体内设置方式的结构示意图;
图2是根据本申请的第一实施例的升降装置处于下位的结构示意图;
图3是根据本申请的第一实施例的升降装置处于上位的结构示意图;
图4是根据本申请的第一实施例的罩体的立体结构示意图;
图5是根据本申请的第一实施例的上炉室的第二结构示意图;
图6是根据本申请的第一实施例的上炉室的第三结构示意图;
图7是根据本申请的第一实施例的升降装置的结构示意图;
图8是图4的右视结构示意图;
图9是根据本申请的第一实施例的升降块的结构示意图;
图10是根据本申请的第一实施例的升降装置的第二结构示意图;
图11是根据本申请第二实施例的升降装置处于下位的结构示意图;
图12是根据本申请第二实施例的升降装置处于上位的结构示意图;
图13是根据本申请第二实施例的冷却套的第一结构示意图;
图14是根据本申请第二实施例的冷却套的第二结构示意图;
图15是根据本申请第二实施例的冷却套的第三结构示意图;
图16是图15的俯视结构示意图;
图17是根据本申请第二实施例的冷却套的第四结构示意图;
图18是根据本申请第二实施例的冷却套的第五结构示意图;
图19是根据本申请第二实施例的冷却套的第六结构示意图;
图20是根据本申请第二实施例使用升降装置拉制一根晶棒的应用示意图;
图21是图20所示的晶体冷却机构与冷却套组合的结构示意图;
图22是根据本申请第二实施例中单独使用冷却套拉制一根晶棒的应用示意图;
图23是根据本申请第二实施例中升降机构带动冷却套上升至上炉室内后上炉室旋转脱离下炉室的结构示意图;
图24是根据本申请第二实施例中拉制多根晶体的应用示意图。
具体实施方式
下面通过实施例对本申请进行详细描述,但并不意味着存在对本申请而言任何不利的限制。本文已经详细地描述了本申请,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本申请精神和范围的情况下针对本申请具体实施方式进行各种变化和改进将是显而易见的。
在本发明的描述中,需要理解的是,术语“中心”、“侧向”、“长度”、“宽度”、“高度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“侧”等指示的方位或位置关系为基于附图1所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的设备或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
需要说明的是,本申请中不仅涉及单晶炉还涉及能够同时拉制多根晶体的晶体炉。当为单晶炉时,下面涉及的上炉室相当于单晶炉中的副炉室,下炉室相当于单晶炉中的主炉室。
根据本申请,提供一种人工晶体炉,该人工晶体炉包括:炉体,包括上炉室、设置在上炉室下方的下炉室以及设置在上炉室和下炉室之间的阀门,阀门能够将上炉室和下炉室分割为两个独立的腔体;晶体冷却机构,设置在炉体中并设置有供拉制出来的晶体穿过的至少一个拉制孔;以及升降装置,设置在上炉室,且与晶体冷却机构连接并带动晶体冷却机构在上炉室和下炉室内上下移动。。
根据本申请,通过设置升降装置,能够方便的实现晶体冷却机构的升降,从而更好的拉制晶体。
并且,本申请可以通过升降装置将晶体冷却机构提升至阀门上方的上炉室,从而能够在不停炉的情况下,实现晶体或晶棒的持续拉制,有效的避免了不能对冷却机构进行清污的问题,并且,能够在冷却屏发生漏水时,在不停炉的情况下更换冷却机构,不但避免了炉体***的可能性,而且,提高了人工晶体炉的生产效率。
下面,将根据附图及实施例详细说明本申请优选实施例的具体结构。
第一实施例
图2至图10示出了设置有根据本申请的优选实施例的用于人工晶体炉的晶体冷却机构的升降装置的示意图。
如图2和图3所示,根据本申请的一个实施例,人工晶体炉可以包括上炉室1001、晶体冷却机构10011、与晶体冷却机构10011连接的升降装置以及下炉室10012。该升降装置包括升降器1004和升降臂1007。上炉室1001设置在下炉室10012的上方,在上炉室1001的下端面与下炉室10012的上端面之间设有阀门,通过该阀门能够将上炉室和下炉室分割为两个独立的腔体。阀门可以包括插板阀1009、旋板阀和翻板阀。实施时,阀门的主要作用是将上炉室1001与下炉室10012的腔体分割为两个独立的腔体。即当阀门打开时,上炉室1001与下炉室10012的腔体连通形成一个整体腔体;当阀门关闭时,上炉室1001与下炉室10012的腔体分割为两个独立的腔体。本申请的实施例以阀门为插板阀1009为例进行说明。在上炉室1001的外缘面上通过铰链设有可以开合的炉门。根据本申请的升降装置与晶体冷却机构10011连接,并带动晶体冷却机构10011在上炉室1001和下炉室1002的腔体内上下运动。
进一步,在上炉室1001内设有至少一根升降臂1007,升降臂1007与晶体冷却机构相连接。具体实施时,可以在升降臂1007的侧壁上设置冷却介质通道。或可替换地,将升降臂1007设置为中空结构,升降臂1007中部的内孔为冷却介质通道。冷却介质通道的下端连接晶体冷却机构10011上的介质出口或介质入口,冷却介质通道的上端连接冷却源。也就是说,晶体冷却机构10011内通入的冷却介质是通过升降臂1007上的冷却介质通道传输的。
当升降臂1007设置为一根时,在升降臂1007上设置一进一出两个冷却介质通道,其中一个冷却介质通道的上端口连接冷却源,下端口连接晶体冷却机构10011上的介质入口,另一个冷却介质通道的下端口连接晶体冷却机构10011上的介质出口,上端口连接冷却源的回收口。即一进一出两个冷却介质通道与晶体冷却机构10011形成一个介质的流通通道。
当升降臂1007设置为两个时,两个升降臂1007上分别设置一个冷却介质通道。两个冷却介质通道为一进一出,同样形成一个介质的流通通道。本发明中涉及到的晶体冷却机构10011的结构再此不做详细累述,其具体结构也不是本发明保护的重点。此外,根据本实施例的冷却屏或晶体冷却机构均具有一个或多个供晶棒穿过的拉制孔。
实施时,如图2、3、5和6所示,以设置有两个升降臂1007时的情况为例进行说明。两个升降臂1007设置在上炉室1001内,优选的,两个升降臂1007对称设置在上炉室1001内。涉及到升降臂1007与晶体冷却机构10011的连接形式多种多样,也都是本领域常规的连接形式,比如螺纹连接或焊接连接等,但必须保证连接后不能发生介质泄漏,必须保证连接的密封性。在具体实施时,升降臂1007的数量优选为两个,且两个升降臂1007为对称设置,这样可以保证晶体冷却机构10011能平稳的升降,经济性和实用性最优。同样地,也可以选择使用三个或三个以上的升降臂,这些设置均在本发明保护的范围之内。升降臂1007设置为一个时,同样也可以实现升降臂1007的升降,其也在本发明保护的范围之内。
进一步,升降臂1007的下端头连接晶体冷却机构10011并带动晶体冷却机构10011在上炉室1001和下炉室10012的腔体内上下移动,即可以实现升降臂1007带动晶体冷却机构10011上移至上炉室1001内,完全脱离出下炉室10012。升降臂1007的上端头穿过上炉室1001连接至设置在上炉室1001外部的升降器1004。由升降器1004驱动升降臂1007做上下运动,其中升降器1004的主要作用是带动升降臂上下移动,在上炉室1001与升降臂1007的外缘面之间设有密封体。
进一步,如图2、3、5和6所示,升降臂1007可以设置为直线形结构或折线形结构。升降臂1007设置为折线形结构时,由附图可知,折线形结构的主要作用就是使得能够连接不在同一条直线上的升降器1004和晶体冷却机构10011。在实际应用中,涉及到的折线段无论是直线折弯还是弧形折弯还是斜线折弯均在本发明保护的范围之内。在上炉室1001的外缘面上设有至少一个贯通至上炉室1001内壁的线形槽1006。实施时,线形槽1006的数量优选为两个,且两个线形槽1006为对称设置,在线形槽1006***,在上炉室1001的外缘面上设有罩体1005。升降臂1007的折线形结构在线形槽1006内上下移动。升降臂1007的上端头穿过罩体1005的上端面连接设置至位于罩体1005外的升降器1004。实施时,罩体1005的具体结构如图4所示。罩体1005可以焊接在上炉室1001的外缘面上使罩体1005的内腔与上炉室1001的内腔通过线形槽1006形成一个整体的腔体。在罩体1005的上端面设置有用于容纳升降臂1007上下移动的升降臂穿孔。在升降臂穿孔内设置有密封体,密封体的主要作用是保证上炉室1001与罩体1005形成的整体腔体为一个密闭的腔体,也就是说保证在升降臂1007上下移动时不会导致密闭腔体发生泄漏。密封体可以选用密封环或者O型圈或者轴封等等,只要是能起到密封效果均可使用。
可替换地,在具体实施时,如图6所示,上炉室1001的替换结构为在上炉室1001的外缘面上设有至少一个升降臂腔体10029。升降臂腔体10029为环形结构或直线形结构。升降臂腔体10029的内腔与上炉室1001的内腔设置为一体形成一个整体的腔体。在升降臂腔体10029的上面设有升降器1004,升降器1004连接升降臂1007的上端头。也就是说,升降臂腔体10029的主要作用就是给升降臂1007上下移动形成一个空间,其具体结构形式可以设置为环形结构,也可以选择为其它任意的各种形状,其只要能确保升降臂1007在上炉室1001内上下移动即可。同样,也可以通过整体加大上炉室1001的直径来实现该效果,只是 这样整体增大上炉室1001的直径,其经济性略差,但该结构同样在本发明的保护范围之内。
进一步,如图5所示,升降臂1007设置为直线形结构时,升降臂1007的上部穿过上炉室1001的顶部连接至设置在上炉室1001顶部的升降器1004。可以理解的是,在该结构形式中,升降臂1007同样也可以设置为折线形结构。
进一步,升降器1004为液压缸或气缸或电动推杆或丝杠升降器或软轴升降器中的任意一种。实施时,当升降器1004设置为液压缸或气缸或电动推杆时,其可以直接连接升降臂1007的上端头。此时,只需要将液压缸或气缸或电动推杆设置在上炉室的上方,然后将液压缸或气缸或电动推杆设置在一个支架上,然后将液压缸或气缸或电动推杆的伸缩杆连接升降臂1007的上端头,就可实现升降臂1007的上下移动。当液压缸或气缸或电动推杆设置在上炉室1001或机架上的支撑架上时,液压缸或气缸或电动推杆上的伸缩杆连接至升降块1002,升降块1002连接至升降臂1007的上端头,从而实现升降臂1007的上下移动。
进一步,如图7、8、9所示,丝杠升降器包括升降块1002、动力源10019、支撑架10020、导向柱10021、丝杠10022和螺母10023,支撑架10020设置在上炉室1001的外侧,比如可以设置机架的支架上或者直接设置在机架上。在支撑架10020上设有两根平行的导向柱10021,在两根导向柱10021上设有升降块1002,在升降块1002上设有螺母10023,螺母10023套接在丝杠10022上。丝杠10022的上下两端分别设有在支撑架10020的上下两端,并且丝杠10022的上端头或下端头连接动力源10019。动力源10019优选是电机,同样还可以在电机与丝杠之间通过减速机过渡。升降块1002连接升降臂1007的上端头。实施时,导向柱10021的替换结构为直线导轨、直线轴承、导向光杠。升降块1002的结构如图9所示,升降块1002为长方形结构,在升降块1002的上面设有两个用于安装导向柱10021的导向孔10024。在升降块1002的中部设置螺母固定孔10025,然后在螺母固定孔10025内设置螺母10023。在螺母固定孔10025的前端设置升降臂固定孔10026,升降臂固定孔10026连接升降臂1007。
进一步,如图10所示,软轴升降器包括升降块1002、动力源10019、支撑架10020、导向柱10021、软轴升降器10027和软轴10028。支撑架10020设置在上炉室1001的外侧,在支撑架10020上设有两根平行的导向柱10021,在两导向柱10021上设有升降块1002。在两导向柱10021中间,在升降块1002上设置有软轴10028。软轴10028的上端头连接设置在支撑架10020的顶面的软轴升降器10027,软轴升降器10027外接动力源10019。升降块1002连接升降臂1007的上端头。实施时,导向柱10021的替换结构同样可以选择为直线导轨。其中,软轴升降器10027同样可以从市场上直接采购获得,其结构包括壳体、软轴滚轮、滚珠花键、螺母。例如,在壳体内放置一个软轴滚轮,软轴滚轮套接在滚珠花键上,滚珠花键通过动力源10019驱动实现正转或反转。在软轴滚轮的一端设置外螺纹,外螺纹与螺母配合,螺母固定在壳体内,将软轴10028缠绕在软轴滚轮上。缠绕时,软轴滚轮在滚珠花键上做旋转运动的同时做左右移动运动,保证软轴10028下端头不发生左右移动,只做上下移动。
进一步,为了提高上炉室1001的密封性,在升降臂1007的外缘面上套接有波纹管1003。波纹管1003的上端头连接至升降器1004中的升降块1002,波纹管1003的下端头连接上炉室1001。
本发明在具体应用时,如图2、3所示,在下炉室10012内设有坩埚支撑座10015,其上设有被支撑的坩埚10013。在坩埚10013内设有隔离套10016,在坩埚10013的***设有加热器10014。下炉室10012还设有加料管10010,加料管10010的一端(图中为上端)连接至炉外的自动加料装置,加料管10010的另一端(图中为下端)连接至坩埚10013的开口端。晶体冷却机构10011通过本发明所述的升降装置设置在坩埚10013的上方。在下炉室10012的上方设置有上炉室1001,在上炉室1001与下炉室10012之间设有插板阀1009或旋板阀。在上炉室顶端的中部设有上轴1008,该上轴为运动机构,上轴1008的下端头设置有容纳部,该容纳部容纳连接有籽晶10018,上轴1008带动籽晶10018做上下移动。使用时,当加热器10014对坩埚10013内的硅料加热时,启动动力源10019,通过升降器1004、升降臂1007带动晶体冷却机构10011上升,致使晶体冷却机构10011与坩埚10013分离开。此时,加热器10014对坩埚10013内的硅料加热,可以避免晶体冷却机构10011吸收加热时的热量,提高加热器10014对硅料的加热速度。同时,通过晶体冷却机构10011的上移,可以更好的实现加料管10010对坩埚10013内的连续投料。当坩埚10013内的硅料熔化后,上轴1008带动籽晶10018下降,此时升降装置带动晶体冷却机构10011下降至预定位置。当籽晶10018的下端头与溶化后的硅液接触且籽晶10018的下端头熔化后,上轴1008带动籽晶10018上移,此时硅液跟随籽晶10018同时上升。当硅液上升到达晶体冷却机构10011后,硅液的温度逐渐降低并开始结晶,此时新形成的柱形晶体就是所需的晶棒10017。晶棒10017可以是大直径的单晶棒,也可以是小直径的硅芯。当拉制一定时间后,由于硅料中的挥发物会附着到晶体冷却机构10011的内壁上,当挥发物附着到一定程度后,需要对附着物进行清理。当需要清理挥发物时,现有的做法都是停炉后打开炉室对晶体冷却机构10011进行清理。本发明则是在不停炉的情况下,通过升降器1004、升降臂1007将晶体冷却机构10011提升至上炉室1001内,然后关闭插板阀1009,使下炉室10012与上炉室1001隔离开,然后打开上炉室1001上的炉门,对晶体冷却机构10011进行清理。清理后,关闭炉门,对上炉室1001进行 抽真空,然后打开插板阀1009,再通过升降器1004、升降臂1007将晶体冷却机构10011下降至下炉室10012内坩埚10013的上方开始晶棒10017的拉制,有效的提高了晶棒10017的成品率及拉制效率等。
根据该实施例,本发明通过在上炉室和下炉室之间设置阀门,然后将冷却屏或晶体冷却机构连接至升降装置,由升降装置带动冷却屏或晶体冷却机构在上炉室和下炉室的腔体内上下移动,实现了在不停炉的情况下对冷却屏或晶体冷却机构上附着的挥发物进行清理。同时还避免了在加热时,冷却屏或晶体冷却机构吸收加热器的热量等,降低了人工的劳动强度,提高了生产效率等。
根据本申请的一个优选实施方案,例如,将本申请所述的升降装置应用在单晶炉中拉制单晶棒,如图20、21、22所示。其中,图22中的晶体冷却装置可以设置为下面根据第二实施例描述的冷却套,该冷却套中部具有一个供所拉制的晶体穿过的拉制孔。然而冷却套的结构不限于此,并且,其上也可以设置多个晶体拉制孔。
将升降臂1007设置为折线形结构,升降臂1007的下端头连接晶体冷却机构10011。在上炉室1001的外缘面上设有两个贯通至上炉室内壁的线形槽1006。在线形槽1006***,在上炉室1001的外缘面上设有罩体1005。升降臂1007的折线段在线形槽1006内上下移动,从而升降臂1007带动冷却屏或冷却机构10011在上炉室1001和下炉室1002内上下运动。
进一步,升降器1004包括升降块1002、动力源10019、支撑架10020、导向柱10021、丝杠10022和螺母10022。其中,支撑架10020设置在上炉室1001的外侧。在支撑架10020上设有两根平行的导向柱10021。在两根导向柱10021上设有升降块1002。在升降块1002上设有螺母10023。螺母10023套接在丝杠10022上。丝杠10022的上下两端分别设在支撑架10020的上下两端。丝杠10022连接至动力源10019。升降块1002连接至升降臂1007,从而带动升降臂1007在线性槽1006内上下移动。
本申请应用在单晶炉中拉制单晶棒时,具有如下优势:
1、当坩埚中的硅料熔融成硅液后,此时硅液中及炉室内的杂质挥发后漂浮至冷却屏或冷却机构的表面。由于冷却屏内通有冷却介质,冷却屏的温度相对较低,此时,挥发物冷凝附着在冷却屏的表面。当挥发物堆积到一定厚度后,由于气流扰动再加上热胀冷缩效应,挥发物掉落到坩埚的熔液上表面后漂浮在熔液的上表面。由于挥发物的熔点高于硅料的熔点,无法将挥发物熔化,更无法将挥发物气化,此时挥发物会持续存在于熔液的上表面。拉制时,由于坩埚一直旋转,此时坩埚内的挥发物不会静止处于硅熔液上表面的某一处不动,而是位置漂浮不定。一旦漂浮物附着到晶棒结晶位置,此时漂浮物就会破坏硅熔液凝固时分子的排列方向(晶向发生位错),导致晶线断裂。此时新生长的晶棒就会由单晶体改变为多晶体,造成单晶棒的生长失败。
根据本申请,由于设置了用于冷却屏或冷却机构的升降装置,当发现冷却屏上粘附有漂浮物后,通过升降装置将冷却屏或冷却机构提出下炉室。当冷却屏或冷却机构离开下炉室进入上炉室后,关闭阀门。然后通过炉室旋转机构将上炉室旋转使上炉室和下炉室脱开(上炉室旋转后的状态如图23所示,炉室旋转机构为本领域的常规技术,很多单晶炉上都在使用,在此不再赘述)。从而,在不停炉的情况下(下炉室内的热场继续工作,无需停炉),对冷却屏或冷却机构进行清洁处理,实现晶棒的持续拉制,有效的避免了不能对冷却屏进行清污的问题。
2、在拉制过程中,当冷却屏或冷却机构发生漏水时,可以通过升降装置将冷却屏提出下炉室。当冷却屏离开下炉室进入上炉室后,关闭阀门。然后通过炉室旋转机构将上炉室旋转使上炉室和下炉室脱开(炉室旋转机构为本领域的常规技术,很多单晶炉上都在使用),在不停炉的情况下(下炉室内的热场继续工作,无需停炉)更换新的冷却屏即可。从而,有效地避免了在冷却屏发生漏水时,冷却水遇到热场内的高温瞬间气化的问题,避免炉体***的可能等。
根据本申请的另一个优选实施方案,例如,将本申请所述的升降装置应用在采用直拉法同时拉制多根硅芯的硅芯炉中来同时拉制多根硅芯,如图24所示。
将升降臂1007设置为折线形结构。升降臂1007连接冷却屏或冷却机构10011。在上炉室1001的外缘面上设有两个贯通至上炉室内壁的线形槽1006。在线形槽1006***,在上炉室1001的外缘面上设有罩体1005。升降臂1007的折线段在线形槽1006内上下移动,从而升降臂1007带动冷却屏或冷却机构10011在上炉室1001和下炉室1002内上下运动。
进一步,升降器1004包括升降块1002、动力源10019、支撑架10020、导向柱10021、丝杠10022和螺母10022。其中,支撑架10020设置在上炉室1001的外侧。在支撑架10020上设有两根平行的导向柱10021,在两根所述导向柱10021上设有升降块1002,在升降块1002上设有螺母10023。螺母10023套接在丝杠10022上。丝杠10022的上下两端分别设在支撑架10020的上下两端。所述丝杠10022连接至动力源10019,升降块1002连接至所述升降臂1007,从而带动升降臂1007在线性槽1006内上下移动。
本申请应用在硅芯炉中同时拉制多根硅芯时,具有如下优势:
1、当坩埚中的硅料熔融成硅液后,此时硅液中及炉室内的杂质挥发后漂浮至晶体冷却机构10011的表面。由于晶体冷却机构10011内通有冷却介质,晶体冷却机构10011的温度相对较低,此时,挥发物冷凝附着在晶体冷却机构10011的表面。当挥发物堆积到一定厚度后,由于气流扰动再加上热胀冷缩效应,挥发物掉落到坩埚的熔液上表面后漂浮在熔液的上表面。由于挥发物的熔点高于硅料的熔点,无法将挥发物熔化,更无法将挥发物气化,此时挥发物会持续存在于熔液的上表面。拉制时,由于坩埚一直旋转,此时坩埚内的挥发物不会静止处于硅熔液上表面的某一处不动,而是位置漂浮不定,一旦漂浮物附着到硅芯结晶位置,轻者导致所拉制硅芯的外缘面凸起变形,严重时,由于硅芯直径的变化导致硅芯卡死在晶体穿孔内,最终被迫停机,结束本轮的拉制。所拉制硅芯也无法当做成品使用,只能报废处理。
根据本申请,由于设置了用于冷却屏或冷却机构的升降装置,当发现晶体冷却机构10011上粘附有漂浮物后,可以通过升降装置将晶体冷却机构10011提出下炉室。当晶体冷却机构10011离开下炉室进入上炉室后,关闭阀门。然后通过炉室旋转机构将上炉室旋转使上炉室和下炉室脱开,从而,在不停炉的情况下(下炉室内的热场继续工作,无需停炉),对晶体冷却机构10011进行清洁处理,实现晶棒的持续拉制(即通过升降装置将晶体冷却机构提升至阀门上方的上炉室1001内;阀门下方的下炉室仍然持续工作,这样就可以在不停炉的情况下对晶体冷却机构进行清洁处理)。从而,有效地避免了不能对晶体冷却机构10011进行清污的问题。
2、通过升降装置的设置,可以将晶体冷却机构提出下炉室,从而,在坩埚实现连续投料时,为连续投料装置提供投料通道,实现了在不停炉的状态下对坩埚进行连续投料的工况要求。
3、由于可以实现在不停炉的情况下实现对晶体冷却机构上的粘附物进行清理,有效的提高了硅芯的生产效率等。
第二实施例
图11至图12示出了根据本申请的第二实施例,如图所示,第二实施例与上述第一实施例的区别在于:在冷却装置或冷却屏与升降装置之间连接设置有冷却套100019。其中,图13至图19示出了根据本申请优选实施例的冷却套100019的几种不同结构,然而,冷却套的结构不限于此,根据需要可以对本申请的冷却套进行修改或更换。
结合附图11至24来说明用于晶体拉制时具有升降功能的人工晶体炉。
如图所示,人工晶体炉包括上炉室1001、升降器1004、升降臂1007、晶体冷却机构10011、冷却套100019和阀门。上炉室1001设置在下炉室10012的上方,在上炉室1001的下端面与下炉室10012的上端面之间设有阀门。实施时,阀门的主要作用是将上炉室1001与下炉室10012的腔体分为两个独立的腔体。也即是,当阀门打开时,上炉室1001与下炉室10012的腔体连通形成一个整体腔体;当阀门关闭时,上炉室1001与下炉室10012的腔体被分为两个独立的腔体。阀门为插板阀1009。此外,在上炉室1001的外缘面上通过铰链设有可以开合的炉门。
进一步,在上炉室1001内设有至少一根升降臂1007,升降臂1007的下端连接冷却套100019的上端。冷却套100019的下端连接至晶体冷却机构10011,由升降臂1007带动冷却套100019及晶体冷却机构10011在上炉室1001和下炉室10012的腔体内上下移动,即可以实现升降臂1007带动冷却套100019及晶体冷却机构10011上移至上炉室1001内,完全脱离出下炉室10012。
进一步,升降臂1007上的冷却介质通道与冷却套100019及晶体冷却机构10011为串联或并联连通。实施时,升降臂1007的侧壁上设有冷却介质通道;或升降臂1007设置为中空结构,在升降臂1007中部的内孔中设有冷却介质通道。也就是说,冷却套100019及晶体冷却机构10011内通入的冷却介质是通过升降臂1007上的冷却介质通道传输的。
当升降臂1007设置为一根时,在升降臂1007上设置一进一出两个冷却介质通道,其中一个冷却介质通道的上端口连接冷却源,下端口连接冷却套100019上的冷却介质上入口1901,另一个冷却介质通道的下端口连接冷却套100019上的冷却介质上出口1904,上端口连接冷却源的回收口。冷却套100019与晶体冷却机构10011为串联或并联连通,即一进一出两个冷却介质通道与冷却套100019及晶体冷却机构10011形成一个完整的介质流通通道。
当升降臂1007设置为两个时,两个升降臂1007上分别设置一个冷却介质通道,两个冷却介质通道为一进一出,同样形成一个完整的介质流通通道。本实施例中的晶体冷却机构10011的结构与第一实施例中的大致相同,因此在此不再赘述。
实施时,如图11、12所示,升降臂1007设置为两个时,两个升降臂1007对称设置在上炉室1001内。升降臂1007与冷却套100019的连接形式多种多样,都是本领域常规的连接形式,比如螺纹连接或焊接连 接等,但需要保证连接后不能发生介质泄漏,需要保证连接的密封性。具体实施时,升降臂1007的数量优选为两个,且两个升降臂1007为对称设置,这样可以保证冷却套100019及晶体冷却机构10011能平稳的升降,经济性和实用性最优。选择为三个或三个以上同样也可以使用,也在本申请保护的范围之内,升降臂1007设置为一个时,同样也可以实现升降臂1007的升降,也在本申请保护的范围之内。
实施时,冷却介质通道与冷却套100019及晶体冷却机构10011串联连通时,冷却介质通道的上端分别连接冷却源及冷却介质回收装置,冷却介质通道下端的出口连接冷却套100019上的冷却介质上入口1901,冷却介质通道下端的入口连接冷却套100019上的冷却介质上出口1904,冷却套100019上的冷却介质下出口1902连接晶体冷却机构10011上的冷却介质入口,晶体冷却机构10011上的冷却介质出口连接冷却套100019上的冷却介质下入口1908。若冷却介质通道与冷却套100019及晶体冷却机构10011并联连通时,冷却介质通道的上端分别连接冷却源及冷却介质回收装置,冷却介质通道下端的出口通过管道分别连接冷却套100019上的冷却介质上入口1901及晶体冷却机构10011上的冷却介质入口,冷却介质通道下端的入口通过管道分别连接冷却套100019上的冷却介质上出口1904及晶体冷却机构10011上的冷却介质出口。
进一步,升降臂1007的上端头穿过上炉室1001连接设置至上炉室1001外部的升降器1004,由升降器1004驱动升降臂1007做上下运动。升降器1004的主要作用是带动升降臂上下移动,在上炉室1001与升降臂1007的外缘面之间设有密封体,从而形成所述的用于晶体拉制时具有升降功能的晶体冷却装置。
进一步,上炉室1001的外缘面上设有至少一个贯通至上炉室1001内壁的线形槽1006。在线形槽1006***,在上炉室1001的外缘面上设有罩体1005。升降臂1007的折线形结构在线形槽1006内上下移动,升降臂1007的上部穿过罩体1005的上端面连接至设置在罩体1005外部的升降器1004。
具体实施时,升降臂1007设置为直线形结构或折线形结构。
升降臂1007设置为折线形结构时,由附图11、12可知,折线形结构的主要作用就是使得能够连接不在同一条直线上的升降器1004、冷却套100019和晶体冷却机构10011。在实际应用中,涉及到的折线形结构无论是直线折弯还是弧形折弯还是斜线折弯均在本申请保护的范围之内。在上炉室1001的外缘面上设有至少一个贯通至上炉室1001内壁的线形槽1006,实施时,线形槽1006的数量优选为两个,且两个线形槽1006优选为对称设置。在线形槽1006的***,在上炉室1001的外缘面上设有罩体1005,升降臂1007的折线形结构在线形槽1006内上下移动。升降臂1007的上部穿过罩体1005的上端面连接至设置在罩体1005外的升降器1004。实施时,罩体1005可以焊接在上炉室1001的外缘面上,以使罩体1005的内腔与上炉室1001的内腔通过线形槽1006形成一个整体的腔体。在罩体1005的上端面设置用于容纳升降臂1007上下移动的升降臂穿孔。在升降臂穿孔内设置密封体,密封体的主要作用是保证上炉室1001与罩体1005形成的整体腔体为一个密闭的腔体,也就是说保证升降臂1007上下移动时不会导致密闭腔体发生泄漏。密封体可以选用密封环或者O型圈或者轴封等等,只要是能起到密封效果均可使用。
与第一实施例中相似地,在具体实施时,可替换地,也可以在上炉室1001的外缘面上设有至少一个升降臂腔体。升降臂腔体为环形结构或直线形结构,升降臂腔体的内腔与上炉室1001的内腔设置为一体形成一个整体的腔体。在升降臂腔体的上面设有升降器1004,升降器1004连接至升降臂1007的上端头。也就是说,升降臂腔体的主要作用就是给升降臂1007上下移动形成一个空间,其具体结构形式可以设置为环形结构,也可以选择为其它任意的各种形状,其只要能确保升降臂1007在上炉室1001内上下移动即可。同样,也可以通过整体上加大上炉室1001的直径来实现该效果。只是这样整体上增大上炉室1001的直径,其经济性略差,但该结构同样在本申请的保护范围之内。
进一步,当升降臂1007设置为直线形结构时,升降臂1007的上部穿过上炉室1001的顶部连接至设置在上炉室1001顶部的升降器1004。应当理解的是,在该结构形式中,升降臂1007同样也可以设置为折线形结构。
进一步,升降器1004为液压缸或气缸或电动推杆或丝杠升降器或软轴升降器中的任意一种。实施时,当升降器1004设置为液压缸或气缸或电动推杆时,其可以直接连接升降臂1007的上端。此时,只需要将液压缸或气缸或电动推杆设置在上炉室的上方,然后将液压缸或气缸或电动推杆设置在一个支架上,然后将液压缸或气缸或电动推杆的伸缩杆连接至升降臂1007的上端,从而实现升降臂1007的上下移动。当液压缸或气缸或电动推杆设置在上炉室1001或机架的支撑架上时,液压缸或气缸或电动推杆上的伸缩杆连接至升降块1002,升降块1002连接至升降臂1007的上端头,从而实现升降臂1007的上下移动。
进一步,丝杠升降器包括升降块1002、动力源、支撑架、导向柱、丝杠和螺母,支撑架设置在上炉室1001的外侧,比如可以设置在机架的支架上或者直接设置在机架上。在支撑架上设有两根平行的导向柱,在两导向柱上设有升降块1002,在升降块1002上设有螺母,所述螺母套接在丝杠上。丝杠的上下两端分别设置在支撑架的上下两端,丝杠的上端头或下端头连接至动力源。动力源优选电机。同样还可以在电机与丝杠之间通过减速机过渡。升降块1002连接至升降臂1007的上端头。实施时,导向柱的替换结构可以 为直线导轨。升降块1002为长方形结构。在升降块1002的上面设有两个用于安装导向柱的导向孔,在升降块1002的中部设置螺母固定孔。在螺母固定孔内设置螺母,在螺母固定孔的前端设置升降臂固定孔。升降臂固定孔连接至升降臂1007。
进一步,软轴升降器包括升降块1002、动力源、支撑架、导向柱、软轴升降器和软轴。支撑架设置在上炉室1001的外侧,在支撑架上设有两根平行的导向柱,在两导向柱上设有升降块1002。在两导向柱中间,在升降块1002上设置有软轴。软轴的上端头连接至设置在支撑架上面的软轴升降器。软轴升降器外接动力源。升降块1002连接至升降臂1007的上端头。实施时,导向柱的替换结构同样可以选择为直线导轨。软轴升降器同样可以从市场上直接采购获得,其结构例如包括壳体、软轴滚轮、滚珠花键、螺母。在壳体内放置一个软轴滚轮,软轴滚轮套接在滚珠花键上,滚珠花键通过动力源驱动实现正转或反转。在软轴滚轮的一端设置外螺纹,外螺纹与螺母配合,螺母固定在壳体内。软轴缠绕在软轴滚轮上。缠绕时,软轴滚轮在滚珠花键上做旋转运动的同时做左右移动运动,保证软轴下端头不发生左右移动,只做上下移动。
进一步,为了提高上炉室1001的密封性,在升降臂1007的外缘面上套接有波纹管1003。波纹管1003的上端连接升降器1004中的升降块1002,波纹管1003的下端连接上炉室1001。
本申请在具体实施时,以拉制硅材料为例,如图11、12所示,在下炉室10012内设有坩埚支撑座10015,在坩埚支撑座10015上设有坩埚10013。在坩埚10013内设有隔离套10016,在坩埚10013的***设有加热器10014。下炉室10012设有加料管10010。加料管10010的一端(例如,图中的上端)连接至自动加料装置,加料管10010的另一端(例如,图中的下端)连接至坩埚10013的开口端。晶体冷却机构10011通过本申请所述的升降装置设置在坩埚10013的上方。在下炉室10012的上方设置有上炉室1001,在上炉室1001与下炉室10012之间设有插板阀1009。在上炉室顶端的中部设有上轴1008。上轴1008的下端连接籽晶10018,上轴1008带动籽晶10018做上下移动。使用时,当加热器10014对坩埚10013内的硅料加热时,此时启动动力源,通过升降器1004、升降臂1007带动冷却套100019及晶体冷却机构10011上升,使冷却套100019及晶体冷却机构10011与坩埚10013分离开。冷却套100019及晶体冷却机构10011与坩埚10013分离后,加热器10014对坩埚10013内的硅料加热,可以避免冷却套100019及晶体冷却机构10011吸收加热时的热量,提高加热器10014对硅料的加热速度。同时,通过冷却套100019及晶体冷却机构10011的上移,可以更好的实现加料管10010对坩埚10013内的连续投料。当坩埚10013内的硅料熔化后,上轴1008带动籽晶10018下降,此时升降装置带动晶体冷却机构10011下降至预定位置。当籽晶10018的下端头与溶化后的硅液接触且籽晶10018的下端头熔化后,上轴1008带动籽晶10018上移,此时硅液跟随籽晶10018同时上升。当硅液上升到达晶体冷却机构10011后,硅液的温度逐渐降低并开始结晶。接着,冷却套100019进一步对所拉制出的晶棒10017进行冷却,此时新形成的柱形晶体就是所需的晶棒10017。晶棒10017可以是大直径的单晶棒,也可以是小直径的硅芯。当拉制一定时间后,由于硅料中的挥发物会附着到晶体冷却机构10011的内壁上,因此当挥发物附着到一定程度后需要对附着物进行清理。当需要清理挥发物时,现有的做法都是停炉后打开炉室对冷却套100019及晶体冷却机构10011进行清理。本申请则是在不停炉的情况下,通过升降器1004、升降臂1007将冷却套100019及晶体冷却机构10011提升至上炉室1001内,然后关闭插板阀1009,使下炉室10012与上炉室1001隔离开,然后打开上炉室1001上的炉门,对冷却套100019及晶体冷却机构10011进行清理。清理后,关闭炉门,对上炉室1001进行抽真空,然后打开插板阀1009,通过升降器1004、升降臂1007将冷却套100019及晶体冷却机构10011下降至下炉室10012内,悬停在坩埚10013的上方,然后开始晶棒10017的拉制。这就有效地提高了晶棒10017的成品率及拉制效率等。
本实施例中涉及到的升降机构可以使用第一实施例中所记载的升降装置。
进一步,当冷却介质通道与冷却套100019及晶体冷却机构10011串联连通时,冷却套100019的结构如图13所示。冷却套100019的第一结构为冷却套100019包括上盖板1903、冷却套外环1905、冷却套内环1906和下盖板1907。冷却套外环1905套接在冷却套内环1906的***。上盖板1903设置在冷却套外环1905与冷却套内环1906之间的空腔的上端,下盖板1907设置在冷却套外环1905与冷却套内环1906之间的空腔的下端。在上盖板1903上对称设有冷却介质上入口1901和冷却介质上出口1904,在下盖板1907上对称设有冷却介质下出口1902和冷却介质下入口1908。
进一步,当冷却介质通道与冷却套100019及晶体冷却机构10011并联连通时,冷却套100019的结构如图14所示。冷却套100019的第二结构为冷却套100019包括上盖板1903、冷却套外环1905、冷却套内环1906和下盖板1907。冷却套外环1905套接在冷却套内环1906的***。上盖板1903设置在冷却套外环1905与冷却套内环1906之间的空腔的上端,下盖板1907设置在冷却套外环1905与冷却套内环1906之间的空腔的下端。在上盖板1903上对称设有冷却介质上入口1901和冷却介质上出口1904。
进一步,当冷却介质通道与冷却套100019及晶体冷却机构10011并联连通时,冷却套100019的结构也可以如图15、16所示。冷却套100019的第三结构为冷却套100019包括上盖板1903、冷却套外环1905、 冷却套内环1906、下盖板1907和导流板1909。冷却套外环1905套接在冷却套内环1906的***。上盖板1903设置在冷却套外环1905与冷却套内环1906之间的空腔的上端,下盖板1907设置在冷却套外环1905与冷却套内环1906之间的空腔的下端。在上盖板1903上对称设有冷却介质上入口1901和冷却介质上出口1904。在冷却套外环1905与冷却套内环1906之间的空腔内间隔设置多个导流板1909。多个导流板1909的设置形式为在冷却介质上入口1901及冷却介质上出口1904前后位置处的空腔内分别设置上端头与上盖板1903接触的导流板1909。为了进一步提高冷却效果,如图16所示,在两个上端头与上盖板1903接触的导流板1909之间分别设置一个下端头与下盖板1907连接的导流板1909。这样可以实现冷却介质在空腔内的波浪形流动,进一步提高了冷却效果等。
进一步,当冷却介质通道与冷却套100019及晶体冷却机构10011并联连通时,冷却套100019的结构也可以如图17所示。冷却套100019的第四结构为冷却套100019包括上盖板1903、冷却套外环1905、冷却套内环1906、下盖板1907、冷却介质回流管1910和螺旋形导流板1911。冷却套外环1905套接在冷却套内环1906的***。上盖板1903设置在冷却套外环1905与冷却套内环1906之间的空腔的上端,下盖板1907设置在冷却套外环1905与冷却套内环1906之间的空腔的下端。在上盖板1903上对称设有冷却介质上入口1901和冷却介质上出口1904。在冷却套外环1905与冷却套内环1906之间的空腔内设置有螺旋形导流板1911。冷却介质上出口1904连接至设置在冷却套外环1905与冷却套内环1906之间的空腔内的冷却介质回流管1910的上端头,冷却介质回流管1910穿过螺旋形导流板1911,并且其下端头位于冷却套外环1905与冷却套内环1906之间的空腔的中下部。
进一步,当冷却介质通道与冷却套100019及晶体冷却机构10011串联连通时,冷却套100019的结构也可以如图18所示。冷却套100019的第五结构为冷却套100019包括上盖板1903、冷却套外环1905、冷却套内环1906、下盖板1907、螺旋形导流板1911和冷却介质导流管1912。冷却套外环1905套接在冷却套内环1906的***。上盖板1903设置在冷却套外环1905与冷却套内环1906之间的空腔的上端设,下盖板1907设置在冷却套外环1905与冷却套内环1906之间的空腔的下端。在上盖板1903上对称设有冷却介质上入口1901和冷却介质上出口1904,在下盖板1907上对称设有冷却介质下出口1902和冷却介质下入口1908。在冷却套外环1905与冷却套内环1906之间的空腔内设置有螺旋形导流板1911。冷却介质上出口1904连接至设置在冷却套外环1905与冷却套内环1906之间的空腔内的冷却介质导流管1912的上端头,冷却介质导流管1912穿过螺旋形导流板1911并且下端头连接至冷却介质下入口1908。
进一步,当冷却介质通道与冷却套100019及晶体冷却机构10011串联连通时,冷却套100019的结构也可以如图19所示。冷却套100019的第六结构为冷却套100019包括上盖板1903、冷却套外环1905、冷却套内环1906和下盖板1907。冷却套外环1905套接在冷却套内环1906的***。上盖板1903设置在冷却套外环1905与冷却套内环1906之间的空腔的上端,下盖板1907设置在冷却套外环1905与冷却套内环1906之间的空腔的下端。在冷却套外环1905的外缘面上对称地设有冷却介质上入口1901和冷却介质上出口1904,在下盖板1907上对称地设有冷却介质下出口1902和冷却介质下入口1908。
本实施例通过在冷却屏或冷却装置的上方设置冷却套,通过冷却套及冷却屏或冷却装置对晶棒进行冷却,加快了对晶棒的冷却速度,进而提高了晶棒的拉制效率。此外,通过在上炉室和下炉室之间设置阀门,将冷却套及冷却屏连接至升降臂,将升降臂连接至升降器,由升降臂带动冷却套及冷却屏在上炉室和下炉室的腔体内上下移动,实现了在不停炉的情况下对冷却套及冷却屏上附着的挥发物进行清理,同时还避免了在加热时冷却套及冷却屏或冷却装置吸收加热器的热量等。因此,降低了人工的劳动强度,提高了生产效率等,适合大范围的推广和应用。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明的上述实施例可以进行相互组合,并且本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (27)

  1. 一种人工晶体炉,其特征在于,所述人工晶体炉包括:炉体,所述炉体包括上炉室(1001)、设置在所述上炉室(1001)下方的下炉室(10012)以及设置在所述上炉室(1001)和所述下炉室(10012)之间的阀门,所述阀门能够将所述上炉室(1001)和所述下炉室(10012)分割为两个独立的腔体;晶体冷却机构(10011),所述晶体冷却机构(10011)设置在所述炉体中并设置有供拉制出来的晶体穿过的至少一个拉制孔;以及升降装置,所述升降装置设置在所述上炉室(1001),且与所述晶体冷却机构(10011)连接并带动所述晶体冷却机构(10011)在所述上炉室(1001)和所述下炉室(10012)内上下移动。
  2. 根据权利要求1所述的人工晶体炉,其特征在于,所述升降装置包括与所述晶体冷却机构(10011)连接的至少一根升降臂(1007)和用于驱动所述升降臂(1007)上下运动的升降器(1004)。
  3. 根据权利要求2所述的人工晶体炉,其特征在于,所述升降装置设置有冷却介质通道,所述晶体冷却机构(10011)设置有用于冷却介质流的冷却通道,所述冷却介质通道与所述冷却通道流体连通。
  4. 根据权利要求2所述的人工晶体炉,其特征在于,所述升降臂(1007)设置为直线形结构或折线形结构。
  5. 根据权利要求2或3所述的人工晶体炉,其特征在于,所述升降臂(1007)设置为两个。
  6. 根据权利要求3所述的人工晶体炉,其特征在于,所述冷却介质通道设置在所述升降臂(1007)的侧壁上或所述升降臂(1007)的中空结构内。
  7. 根据权利要求4所述的人工晶体炉,其特征在于,所述升降臂(1007)设置为折线形结构,在所述上炉室(1001)的外缘面上设有至少一个贯通至所述上炉室内壁的线形槽(1006),在所述线形槽(1006)***,在所述上炉室(1001)的外缘面上设有罩体(1005),所述升降臂(1007)的折线段在所述线形槽(1006)内上下移动
  8. 根据权利要求2所述的人工晶体炉,其特征在于,所述上炉室(1001)设置为在所述上炉室(1001)的外缘面上设有至少一个升降臂腔体(10029),并且所述升降臂腔体(10029)的内腔与所述上炉室(1001)的内腔设置为一体,所述升降臂(1007)设置为能够在所述升降臂腔体(10029)的内腔与所述上炉室(1001)的内腔所形成的腔体内上下运动。
  9. 根据权利要求4所述的人工晶体炉,其特征在于,所述升降臂(1007)设置为直线形结构,所述升降臂(1007)的上端穿过所述上炉室(1001)的顶部连接所述升降器(1004)。
  10. 根据权利要求2或3所述的人工晶体炉,其特征在于,所述升降器(1004)包括液压缸、气缸、电动推杆、丝杠升降器和软轴升降器。
  11. 根据权利要求2所述的人工晶体炉,其特征在于,所述升降器(1004)包括升降块(1002)、动力源(10019)、支撑架(10020)、导向柱(10021)、丝杠(10022)和螺母(10022),其中,所述支撑架(10020)设置在所述上炉室(1001)的外侧,在所述支撑架(10020)上设有两根平行的所述导向柱(10021),在两根所述导向柱(10021)上设有所述升降块(1002),在所述升降块(1002)上设有螺母(10023),所述螺母(10023)套接在所述丝杠(10022)上,所述丝杠(10022)的上下两端分别设在所述支撑架(10020)的上下两端,所述丝杠(10022)连接至所述动力源(10019),所述升降块(1002)连接至所述升降臂(1007)。
  12. 根据权利要求2所述的人工晶体炉,其特征在于,所述升降器包括升降块(1002)、动力源(10019)、支撑架(10020)、导向柱(10021)、软轴升降器(10027)和软轴(10028),所述支撑架(10020)设置在所述上炉室(1001)的外侧,在所述支撑架(10020)上设有两根平行的所述导向柱(10021),在两导向柱(10021)上设有所述升降块(1002),在两根所述导向柱(10021)中间的所述升降块(1002)上设置有软轴(10028),所述软轴(10028)连接至设置在所述支撑架(10020)上面的所述软轴升降器(10027),所述软轴升降器(10027)外接动力源(10019),所述升降块(1002)连接至所述升降臂(1007)。
  13. 根据权利要求11或12所述的人工晶体炉,其特征在于,所述导向柱(10021)包括直线导轨、直线轴承、导向光杠。
  14. 根据权利要求1至4中任一项所述的人工晶体炉,其特征在于,所述阀门包括插板阀(1009)、旋板阀和翻板阀。
  15. 根据权利要求2至4中任一项所述的人工晶体炉,其特征在于,所述上炉室(1001)与所述升降臂(1007)的外缘面之间设有密封体。
  16. 根据权利要求2至4中任一项所述的人工晶体炉,其特征在于,所述升降臂(1007)的外缘面上套接有波纹管(1003),所述波纹管(1003)的一端连接所述上炉室(1001),所述波纹管(1003)的另一端连接所述升降器(1004)。
  17. 根据权利要求1所述的人工晶体炉,其特征在于,所述晶体冷却机构(10011)和所述升降装置之间连接设置有冷却套(100019),所述冷却套(100019)用于对所述晶体进行冷却。
  18. 根据权利要求17所述的人工晶体炉,其特征在于,所述升降装置包括至少一根升降臂(1007)和用于驱动所述升降臂(1007)上下运动的升降器(1004),所述冷却套(100019)的上端连接至所述升降臂(1007),所述冷却套(100019)的下端连接至所述晶体冷却机构(10011),并且,所述升降臂(1007)的上端连接至所述升降器(1004)。
  19. 根据权利要求18所述的人工晶体炉,其特征在于,所述升降臂(1007)中设置有冷却介质通道,所述冷却介质通道与所述冷却套(100019)的介质通道及所述晶体冷却机构(10011)的冷却通道串联连通。
  20. 根据权利要求18所述的人工晶体炉,其特征在于,所述升降臂(1007)中设置有冷却介质通道,所述冷却介质通道与所述冷却套(100019)的介质通道及所述晶体冷却机构(10011)的冷却通道并联连通。
  21. 根据权利要求17至20中任一项所述的人工晶体炉,其特征在于,所述冷却套(100019)包括上盖板(1903)、冷却套外环(1905)、冷却套内环(1906)和下盖板(1907),在所述冷却套内环(1906)的***套接有所述冷却套外环(1905),在所述冷却套外环(1905)与所述冷却套内环(1906)之间空腔的上端设有所述上盖板(1903),在所述冷却套外环(1905)与所述冷却套内环(1906)之间空腔的下端设有所述下盖板(1907),在所述上盖板(1903)上设有冷却介质上入口(1901)和冷却介质上出口(1904)。
  22. 根据权利要求21所述的人工晶体炉,其特征在于,所述下盖板(1907)上设有冷却介质下出口(1902)和冷却介质下入口(1908)。
  23. 根据权利要求21所述的人工晶体炉,其特征在于,所述冷却套(100019)还包括在所述冷却套外环(1905)与所述冷却套内环(1906)之间的空腔内间隔设置的多个导流板(1909),所述多个导流板(1909)设置为在所述冷却介质上入口(1901)及所述冷却介质上出口(1904)前后位置处的空腔内上端头与所述上盖板(1903)接触。
  24. 根据权利要求21所述的人工晶体炉,其特征在于,所述冷却套(100019)还包括在所述冷却套外环(1905)与所述冷却套内环(1906)之间的空腔内设置的螺旋形导流板(1911)和冷却介质回流管(1910),所述冷却介质上出口(1904)连接至所述冷却介质回流管(1910),所述冷却介质回流管(1910)的下端头穿过螺旋形导流板(1911)位于所述冷却套外环(1905)与所述冷却套内环(1906)之间空腔的中下部。
  25. 根据权利要求22所述的人工晶体炉,其特征在于,所述冷却套(100019)还包括在所述冷却套外环(1905)与所述冷却套内环(1906)之间的空腔内设置的螺旋形导流板(1911)和冷却介质导流管(1912),所述冷却介质上出口(1904)连接至所述冷却介质导流管(1912),所述冷却介质导流管(1912)的下端穿过所述螺旋形导流板(1911)连接至所述冷却介质下入口(1908)。
  26. 根据权利要求17至20中任一项所述的人工晶体炉,其特征在于,所述冷却套(100019)包括上盖板(1903)、冷却套外环(1905)、冷却套内环(1906)和下盖板(1907),在所述冷却套内环(1906)的***套接有所述冷却套外环(1905),在所述冷却套外环(1905)与所述冷却套内环(1906)之间空腔的上端设有所述上盖板(1903),在所述冷却套外环(1905)与所述冷却套内环(1906)之间空腔的下端设有所述下盖板(1907),在所述冷却套外环(1905)的外缘面上设有冷却介质上入口(1901)和冷却介质上出口(1904),在所述下盖板(1907)上设有冷却介质下出口(1902)和冷却介质下入口(1908)。
  27. 一种人工晶体炉***,其特征在于,所述人工晶体炉***包括根据权利要求1至26中任一项所述的人工晶体炉。
PCT/CN2023/082895 2022-03-21 2023-03-21 人工晶体炉及包括人工晶体炉的人工晶体炉*** WO2023179626A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380009893.3A CN117098877A (zh) 2022-03-21 2023-03-21 人工晶体炉及包括人工晶体炉的人工晶体炉***

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210277537.7 2022-03-21
CN202210277537.7A CN114737246B (zh) 2022-03-21 2022-03-21 一种用于人工晶体炉的冷却屏升降装置
CN202223045663.4 2022-11-16
CN202223045663.4U CN219315141U (zh) 2022-11-16 2022-11-16 一种用于晶体拉制时具有升降功能的晶体冷却装置

Publications (1)

Publication Number Publication Date
WO2023179626A1 true WO2023179626A1 (zh) 2023-09-28

Family

ID=88100002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082895 WO2023179626A1 (zh) 2022-03-21 2023-03-21 人工晶体炉及包括人工晶体炉的人工晶体炉***

Country Status (2)

Country Link
CN (1) CN117098877A (zh)
WO (1) WO2023179626A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1265712A (zh) * 1997-08-01 2000-09-06 Memc电子材料有限公司 生长富空位单晶硅的热屏蔽组件和方法
US20100319610A1 (en) * 2008-03-24 2010-12-23 Shin-Etsu Handotai Co., Ltd. Single-crystal manufacturing apparatus and method for manufacturing single crystal
JP2011219300A (ja) * 2010-04-07 2011-11-04 Covalent Materials Corp シリコン単結晶の製造方法及びそれに用いられるシリコン単結晶引上装置
CN107227487A (zh) * 2017-07-19 2017-10-03 天津环际达科技有限公司 一种真空炉内复合冷却提速成晶设备
CN107523869A (zh) * 2017-09-21 2017-12-29 浙江晶盛机电股份有限公司 一种单晶炉可提升水冷热屏装置
CN207294942U (zh) * 2017-08-24 2018-05-01 大连连城数控机器股份有限公司 一种带石墨和水冷复合热屏的高效单晶生长炉
CN207452294U (zh) * 2017-09-20 2018-06-05 内蒙古中环光伏材料有限公司 一种带有冷却装置的炉盖
CN112048762A (zh) * 2020-08-26 2020-12-08 南京晶能半导体科技有限公司 一种新型半导体单晶硅炉水冷套
CN113638037A (zh) * 2020-05-11 2021-11-12 西安奕斯伟材料科技有限公司 一种单晶炉及单晶硅的制备方法
CN114737246A (zh) * 2022-03-21 2022-07-12 郭李梁 一种用于人工晶体炉的冷却屏升降装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1265712A (zh) * 1997-08-01 2000-09-06 Memc电子材料有限公司 生长富空位单晶硅的热屏蔽组件和方法
US20100319610A1 (en) * 2008-03-24 2010-12-23 Shin-Etsu Handotai Co., Ltd. Single-crystal manufacturing apparatus and method for manufacturing single crystal
JP2011219300A (ja) * 2010-04-07 2011-11-04 Covalent Materials Corp シリコン単結晶の製造方法及びそれに用いられるシリコン単結晶引上装置
CN107227487A (zh) * 2017-07-19 2017-10-03 天津环际达科技有限公司 一种真空炉内复合冷却提速成晶设备
CN207294942U (zh) * 2017-08-24 2018-05-01 大连连城数控机器股份有限公司 一种带石墨和水冷复合热屏的高效单晶生长炉
CN207452294U (zh) * 2017-09-20 2018-06-05 内蒙古中环光伏材料有限公司 一种带有冷却装置的炉盖
CN107523869A (zh) * 2017-09-21 2017-12-29 浙江晶盛机电股份有限公司 一种单晶炉可提升水冷热屏装置
CN113638037A (zh) * 2020-05-11 2021-11-12 西安奕斯伟材料科技有限公司 一种单晶炉及单晶硅的制备方法
CN112048762A (zh) * 2020-08-26 2020-12-08 南京晶能半导体科技有限公司 一种新型半导体单晶硅炉水冷套
CN114737246A (zh) * 2022-03-21 2022-07-12 郭李梁 一种用于人工晶体炉的冷却屏升降装置

Also Published As

Publication number Publication date
CN117098877A (zh) 2023-11-21

Similar Documents

Publication Publication Date Title
EP1867759B1 (en) Manufacturing equipment for polysilicon ingot
KR101540225B1 (ko) 단결정 제조장치 및 단결정의 제조방법
KR20070118945A (ko) 다결정 실리콘 잉곳 제조장치
WO2008086705A1 (fr) Système de production de cristaux utilisé dans un procédé à gradient thermique par rotation de plusieurs creusets
KR20100024675A (ko) 잉곳 제조 장치 및 제조 방법
CN100460571C (zh) 直线导轨式坩埚提升装置
WO2020224186A1 (zh) 一种定向凝固生长晶体硅的铸锭炉及应用
CN115787066A (zh) 一种单晶炉生产用智能水冷装置
CN114737246B (zh) 一种用于人工晶体炉的冷却屏升降装置
US20130239616A1 (en) Directional Solidification Furnace Having Movable Heat Exchangers
WO2023179626A1 (zh) 人工晶体炉及包括人工晶体炉的人工晶体炉***
CN100585028C (zh) 倒锥形凸底式晶体生长装置
CN202131390U (zh) 多晶铸锭生产循环冷却水节能装置
WO2023179627A1 (zh) 用于同时拉制多根晶体的晶体冷却装置及人工晶体制备设备
US20130252011A1 (en) Multi-Crystalline Silicon Ingot And Directional Solidification Furnace
CN113652736A (zh) 单晶炉冷却***
CN105133019A (zh) 多室砷化镓单晶生长炉及其生长方法
CN200992594Y (zh) 直线导轨式坩埚提升装置
US20130239620A1 (en) Directional Solidification Furnace Having Movable Insulation System
CN217757743U (zh) 一种用于人工晶体炉的冷却屏升降装置
CN116121879A (zh) 一种用于大尺寸蓝宝石晶体生长制备装置
CN201495105U (zh) 一种梯度控温的铸锭炉加热器
CN102978697A (zh) 一种晶硅铸锭炉移动幕门装置及其控制方法
CN217997415U (zh) 一种长晶炉籽晶杆循环水机构
CN205188472U (zh) 一种石英玻璃熔化炉

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202380009893.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773873

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202427056382

Country of ref document: IN