WO2023179371A1 - 一种紫外光源封装 - Google Patents

一种紫外光源封装 Download PDF

Info

Publication number
WO2023179371A1
WO2023179371A1 PCT/CN2023/080527 CN2023080527W WO2023179371A1 WO 2023179371 A1 WO2023179371 A1 WO 2023179371A1 CN 2023080527 W CN2023080527 W CN 2023080527W WO 2023179371 A1 WO2023179371 A1 WO 2023179371A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit layer
ultraviolet light
deep ultraviolet
emitting unit
substrate
Prior art date
Application number
PCT/CN2023/080527
Other languages
English (en)
French (fr)
Inventor
闫志超
周青
Original Assignee
至芯半导体(杭州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 至芯半导体(杭州)有限公司 filed Critical 至芯半导体(杭州)有限公司
Publication of WO2023179371A1 publication Critical patent/WO2023179371A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages

Definitions

  • the present invention relates to the technical field of semiconductor packaging, and in particular to an ultraviolet light source packaging.
  • Ultraviolet light is used in many fields such as sterilization and optical communications. Deep ultraviolet light-emitting diode chips (UVC LEDs) have the advantages of high reliability, long life, fast response, low power consumption, environmental protection and pollution-free, and small size. They are widely used in many fields such as disinfection and signal transmission.
  • a photoelectric sensor is a device that converts light signals into electrical signals.
  • an ultraviolet sensor uses a photosensitive element to convert ultraviolet light signals into electrical signals.
  • Ultraviolet sensors are often used to detect the luminous intensity of deep ultraviolet light-emitting diode chips, thereby detecting deep The attenuation of the ultraviolet light-emitting diode chip is monitored to facilitate timely replacement of the deep ultraviolet light-emitting diode chip to meet application needs.
  • the deep ultraviolet light-emitting diode chip is one device and the ultraviolet sensor is one device.
  • the ultraviolet luminescent chip and the photoelectric sensor chip need to be designed separately, which increases the design difficulty; at the same time, the ultraviolet luminescent chip and the photoelectric sensor chip need to occupy the design space separately, which takes up a large space and is difficult to meet The need for miniaturization.
  • the purpose of the present invention is to provide an ultraviolet light source package to solve the problems existing in the above-mentioned prior art. It has a simple structure, small volume, flexible application, easy processing, and strong practicability; it is conducive to reducing the difficulty of development and is easy to apply; and it can be used for equipment. Carry out timely maintenance and replacement to ensure the stable operation of the equipment.
  • the present invention provides the following solutions:
  • the invention provides an ultraviolet light source package, which includes a substrate, a deep ultraviolet light emitting unit, a detection unit, an inner dam, a peripheral dam and a protective cover.
  • the inner dam and the outer dam are both annular, and the deep ultraviolet light emitting unit is
  • the unit and the detection unit are both fixedly connected to the substrate, one end of the peripheral dam is fixedly connected to the end surface of the substrate close to the deep ultraviolet light-emitting unit, and the protective cover is fixed to the other end of the peripheral dam.
  • the peripheral dam, the protective cover and the substrate form a closed protection cavity
  • the deep ultraviolet light emitting unit, the detection unit and the inner dam are all arranged in the protection cavity
  • the One end of the inner dam is fixedly connected to the end surface of the substrate close to the deep ultraviolet light-emitting unit, and there is a gap between the other end of the inner dam and the end face of the protective cover close to the substrate, and the detection unit
  • the deep ultraviolet light-emitting unit is arranged on the inner and outer sides of the inner dam.
  • the deep ultraviolet light-emitting unit can emit ultraviolet photons.
  • the detection unit can receive the ultraviolet photons emitted by the deep ultraviolet light-emitting unit and detect the ultraviolet light-emitting unit.
  • the optical signal of the deep ultraviolet light emitting unit is converted into an electrical signal.
  • the gap is used for the detection unit to receive the ultraviolet photons emitted by the deep ultraviolet light emitting unit.
  • the ultraviolet photons of the deep ultraviolet light emitting unit can pass through the protection cap.
  • the detection unit is arranged in the inner cavity of the inner dam, and each deep ultraviolet light-emitting unit is arranged between the inner dam and the outer dam. , a plurality of deep ultraviolet light-emitting units are distributed along the circumference of the peripheral dam.
  • annular groove is provided at one end of the inner wall of the peripheral dam away from the base plate, and the protective cover is embedded in the annular groove.
  • the ultraviolet light source package provided by the present invention also includes a control module 9.
  • the control module 9 is fixedly connected to the substrate.
  • the control module 9 is communicatively connected to the detection unit.
  • the control module 9 The electrical signal obtained by converting the optical signal of the deep ultraviolet light-emitting unit by the detection unit can be amplified.
  • the ultraviolet light source package provided by the present invention further includes a circuit layer, a soldering pad and a heat sink.
  • the circuit layer, the soldering pad and the heat sink are all fixedly connected to the substrate, and the circuit layer is connected to the heat sink.
  • the deep ultraviolet light emitting unit, the detection unit and the control module 9 are all connected, the circuit layer is connected to the pad, and the circuit layer can be used for signal transmission and electrical energy conduction.
  • the deep ultraviolet light emitting unit is a deep ultraviolet light emitting diode chip
  • the detection unit is a photoelectric sensor chip
  • the protective cover is a lens
  • the control module 9 is an operational amplifier
  • the substrate is a ceramic substrate.
  • the circuit layer includes a first circuit layer and a second circuit layer
  • the pads include first pads, there are multiple first circuit layers
  • the second circuit layer There are two layers and the first pads
  • a plurality of the first circuit layers are distributed in an annular shape and there is a gap between two adjacent first circuit layers
  • each first circuit layer is provided with Between the deep ultraviolet light-emitting unit and the substrate, the second circuit layer and the first pad are provided at an end of the substrate away from the deep ultraviolet light-emitting unit, and each of the first circuit layers is Connected to two adjacent deep ultraviolet light-emitting units, and one of the deep ultraviolet light-emitting units is connected to two adjacent first circuit layers, and the two adjacent deep ultraviolet light-emitting units are connected to each other.
  • the first circuit layer is respectively connected to the two second circuit layers through the two connecting posts, the two second circuit layers are connected to the two first pads respectively, and the two first circuit layers are connected to the two first pads respectively.
  • the pads are used to connect to the positive and negative poles of the power supply respectively.
  • the circuit layer further includes a third circuit layer, a fourth circuit layer, a fifth circuit layer, a sixth circuit layer, a seventh circuit layer and an eighth circuit layer
  • the soldering pad further includes a second soldering pad
  • the third bonding pad and the fourth bonding pad, the third circuit layer, the fifth circuit layer, the sixth circuit layer and the eighth circuit layer are all disposed on the substrate close to the deep ultraviolet light-emitting unit
  • the fourth circuit layer, the seventh circuit layer, the second bonding pad, the third bonding pad and the fourth bonding pad are all disposed on the substrate away from the deep ultraviolet light emitting unit.
  • the fifth circuit layer and the sixth circuit layer are respectively connected to the negative terminal and the positive terminal of the detection unit, so
  • the fifth circuit layer is connected to the fourth circuit layer through one of the connecting pillars
  • the fourth circuit layer is connected to the eighth circuit layer through one of the connecting pillars
  • the eighth circuit layer is connected to the
  • the sampling end of the control module is connected
  • the sixth circuit layer is connected to the seventh circuit layer through one of the connecting pillars
  • the seventh circuit layer is connected to the third circuit layer through one of the connecting pillars
  • the detection unit is connected to the positive input end of the control module through the third circuit layer
  • the GND end of the control module is connected to the second welding terminal through the third circuit layer and one of the connection posts.
  • pad connection the power supply terminal of the control module is connected to the third pad through the third circuit layer and one of the connection posts, and the signal output terminal of the control module passes through the third circuit layer and one of the connection posts.
  • One of the connecting posts is connected to the
  • the circuit layer further includes a ninth circuit layer and a tenth circuit layer
  • the ninth circuit layer is provided on one end of the substrate close to the deep ultraviolet light-emitting unit
  • the tenth circuit layer is provided on the One end of the substrate away from the deep ultraviolet light-emitting unit
  • the GND terminal of the control module and the positive input terminal of the control module are connected to the ninth circuit layer
  • the ninth circuit layer passes through one of the connection posts Connected to the tenth circuit layer
  • the tenth circuit layer is connected to both the resistor and the third circuit layer through one of the connection pillars
  • the resistor is connected to the control module through the third circuit layer.
  • the signal output end of the group is connected, and the resistor is connected to the second pad through the third circuit layer.
  • the present invention achieves the following technical effects:
  • the ultraviolet light source package integrates the deep ultraviolet light emitting unit and the detection unit on the same substrate, and can be directly applied as a whole, simplifying the design process of the equipment structure, reducing the development difficulty, and facilitating application; at the same time, in the equipment structure
  • the occupied volume is greatly reduced, which can meet the needs of miniaturization of equipment structure;
  • the inner dam can reduce the number of ultraviolet photons irradiated by the deep ultraviolet luminescence unit to the detection unit to adapt to the sensitivity of the detection unit and avoid high-intensity ultraviolet photon irradiation
  • the detection unit will cause the light saturation of the light receiving part of the detection unit, thereby avoiding the interruption of the signal feedback of the detection unit due to the light saturation phenomenon of the detection unit, which will result in the inability to monitor the change of the light energy of the deep ultraviolet light emitting unit in real time, ensuring
  • the deep ultraviolet light-emitting diode chip can be replaced in time to ensure the stable operation of the equipment; and the amount of transmitted ultraviolet photons
  • Figure 1 is a schematic structural diagram of the ultraviolet light source package provided by the present invention (front direction);
  • Figure 2 is a cross-sectional view of the ultraviolet light source package provided by the present invention.
  • Figure 3 is a schematic structural diagram of the ultraviolet light source package provided by the present invention (back direction);
  • Figure 4 is a schematic circuit diagram of an operational amplifier in the ultraviolet light source package provided by the present invention.
  • Figure 5 shows the driving circuit of the deep ultraviolet light-emitting unit in the ultraviolet light source package provided by the present invention
  • FIG. 6 is a circuit connection diagram of the ultraviolet light source package provided by the present invention.
  • FIG. 7 is a circuit connection diagram 2 of the ultraviolet light source package provided by the present invention.
  • the purpose of the present invention is to provide an ultraviolet light source package to solve the problems existing in the above-mentioned prior art. It has a simple structure, a small volume, is conducive to reducing development difficulty, and is easy to apply.
  • the present invention provides an ultraviolet light source package 100, including a substrate 1, a deep ultraviolet light emitting unit 2, a detection unit 3, an inner dam 4, a peripheral dam 5 and a protective cover 6.
  • the inner dam 4 Both the peripheral dam 5 and the peripheral dam 5 are annular.
  • the peripheral dam 5 is annular.
  • the deep ultraviolet light-emitting unit 2 and the detection unit 3 are both fixedly connected to the substrate 1.
  • One end of the peripheral dam 5 and the substrate 1 are close to the deep ultraviolet light-emitting unit 2.
  • the end face is fixedly connected, and the protective cover 6 is fixedly connected to the other end of the peripheral dam 5.
  • it is bonded with an adhesive.
  • the peripheral dam 5, the protective cover 6 and the substrate 1 form a closed protective cavity.
  • the deep ultraviolet light-emitting unit 2 , the detection unit 3 and the inner dam 4 are both arranged in the protection cavity.
  • One end of the inner dam 4 is fixedly connected to the end surface of the substrate 1 close to the deep ultraviolet light-emitting unit 2, and the other end of the inner dam 4 is close to the protective cover 6 close to the substrate 1 There is a gap 7 between the end faces.
  • the detection unit 3 and the deep ultraviolet light-emitting unit 2 are arranged on the inner and outer sides of the inner dam 4.
  • the deep ultraviolet light-emitting unit 2 can emit ultraviolet photons, and the detection unit 3 can receive the deep ultraviolet light-emitting unit. 2 and converts the optical signal of the deep ultraviolet light emitting unit 2 into an electrical signal.
  • the gap 7 is used for the detection unit 3 to receive the ultraviolet photons emitted by the deep ultraviolet light emitting unit 2.
  • the ultraviolet photons of the deep ultraviolet light emitting unit 2 can pass through.
  • the protective cover 6 is used to realize functions such as sterilization and disinfection. Integrating the deep ultraviolet light-emitting unit 2 and the detection unit 3 on the same substrate 1 can be directly used as a whole, simplifying the design process of the equipment structure, reducing the difficulty of development, and facilitating application; at the same time, the occupied volume of the equipment structure is greatly increased. reduction, which can meet the demand for miniaturization of equipment structure.
  • the inner dam 4 can reduce the number of ultraviolet photons irradiated by the deep ultraviolet light-emitting unit 2 to the detection unit 3 to adapt to the sensitivity of the detection unit 3 and prevent high-intensity ultraviolet photons from irradiating the detection unit 3 and causing the light receiving part of the detection unit 3 to emit light. saturation, thereby preventing the signal feedback of the detection unit 3 from being interrupted due to the light saturation phenomenon in the detection unit 3, and thus causing the inability to monitor the change in light energy of the deep ultraviolet light-emitting unit 2 in real time.
  • the amount of transmitted ultraviolet photons can be changed by changing the gap 7 between the inner dam 4 and the protective cover 6 , that is, a reasonable gap 7 can be set according to the sensitivity of the detection unit 3 , which is flexible in application, easy to process, and highly practical.
  • the detection unit 3 is arranged in the inner cavity of the inner dam 4.
  • Each deep ultraviolet light-emitting unit 2 is arranged between the inner dam 4 and the outer dam 5.
  • the plurality of deep ultraviolet light-emitting units 2 are arranged along the Circumferential distribution of peripheral dams 5.
  • the height of the inner dam 4 is greater than the height of each deep ultraviolet light-emitting unit 2 and detection unit 3 .
  • the inner wall of the peripheral dam 5 is provided with an annular groove 8 at one end away from the substrate 1, and the protective cover 6 is embedded in the annular groove 8.
  • an adhesive is used to bond the annular groove 8.
  • the ultraviolet light source package 100 provided by the present invention also includes a control module 9.
  • the control module 9 is fixedly connected to the substrate 1.
  • the control module 9 is communicatively connected to the detection unit 3.
  • the control module 9 can convert the detection unit 3 into a deep ultraviolet light emitting unit. 2.
  • the electrical signal obtained from the optical signal is amplified. Facilitates signal collection.
  • the ultraviolet light source package 100 provided by the present invention also includes a circuit layer 10, a soldering pad 11 and a heat sink 12.
  • the circuit layer 10, the solder pad 11 and the heat sink 12 are all fixedly connected to the substrate 1.
  • the circuit layer 10 is connected to the deep ultraviolet light-emitting unit 2 , the detection unit 3 and the control module 9 are all connected, the circuit layer 10 is connected to the pad 11, and the circuit layer 10 can be used for signal transmission and electrical energy conduction.
  • the heat sink 12 is used to dissipate heat from the ultraviolet light source package 100.
  • the heat sink 12 is preferably provided on the back surface of the substrate 1 .
  • the deep ultraviolet light emitting unit 2 is a deep ultraviolet light emitting diode chip
  • the detection unit 3 is a photoelectric sensor chip, preferably an ultraviolet sensor chip
  • the protective cover 6 is a lens
  • the control module 9 is an operational amplifier
  • the substrate 1 is a ceramic substrate 1.
  • a plurality of resistors 13 are also provided on the substrate 1.
  • the resistors 13 are located outside the peripheral dam 5 and are used to form the circuit of the operational amplifier.
  • Corresponding circuit layers 10 are provided between the plurality of resistors 13 , the control module 9 , the deep ultraviolet light-emitting unit 2 and the detection unit 3 and the substrate 1 .
  • the ultraviolet light source package 100 provided by the present invention includes a deep ultraviolet light emitting unit 2 control circuit and a detection unit 3 control circuit.
  • the ultraviolet light source package 100 provided by the present invention also includes a plurality of connecting posts 15.
  • the circuit layer 10 includes a first circuit layer 14 and a second circuit layer 16.
  • the soldering pad 11 includes a first soldering pad 17.
  • the first circuit layer 14 has a plurality of connecting posts 15. , there are two second circuit layers 16 and two first pads 17 , multiple first circuit layers 14 are distributed in an annular shape, and gaps are left between two adjacent first circuit layers 14 , each first circuit layer 14 Disposed between the deep ultraviolet light-emitting unit and the substrate 1, the second circuit layer 16 and the first pad 17 are provided at an end of the substrate 1 away from the deep ultraviolet light-emitting unit. Each first circuit layer 14 is connected to two adjacent deep ultraviolet light-emitting units.
  • the light-emitting units 2 are connected, and one deep ultraviolet light-emitting unit 2 is connected to two adjacent first circuit layers 14, and the two first circuit layers 14 connected to any deep ultraviolet light-emitting unit 2 are respectively connected to two second circuit layers. 16 are connected through two connecting posts 15. The two second circuit layers 16 are respectively connected to the two first pads 17. The two first pads 17 are respectively used to connect to the positive electrode and the negative electrode of the power supply. This is the control circuit of the deep ultraviolet light emitting unit 2. It should be noted that there are no deep ultraviolet light-emitting units 2 connected above two adjacent first circuit layers 14, thereby ensuring that multiple deep ultraviolet light-emitting units 2 will not be short-circuited when connected in series through the first circuit layer 14.
  • the circuit layer 10 also includes a third circuit layer 18, a fourth circuit layer 19, a fifth circuit layer 20, a sixth circuit layer 21, a seventh circuit layer 22, and an eighth circuit layer 23.
  • the bonding pad 11 also includes a second bonding pad. 26.
  • the third bonding pad 27 and the fourth bonding pad 28, the third circuit layer 18, the fifth circuit layer 20, the sixth circuit layer 21 and the eighth circuit layer 23 are all provided on one end of the substrate 1 close to the deep ultraviolet light-emitting unit 2
  • the fourth circuit layer 19, the seventh circuit layer 22, the second bonding pad 26, the third bonding pad 27 and the fourth bonding pad 28 are all provided at one end of the substrate 1 away from the deep ultraviolet light-emitting unit 2, the fifth circuit layer 20 and There is a gap between the sixth circuit layers 21.
  • the fifth circuit layer 20 and the sixth circuit layer 21 are respectively connected to the negative terminal and the positive terminal of the detection unit 3.
  • the fifth circuit layer 20 is connected to the fourth circuit layer through a connecting column 15. 19 connection, the fourth circuit layer 19 is connected to the eighth circuit layer 23 through a connecting column 15, the eighth circuit layer 23 is connected to the sampling end of the control module 9, the sixth circuit layer 21 is connected to the seventh circuit through a connecting column 15
  • Layer 22 is connected, the seventh circuit layer 22 is connected to the third circuit layer 18 through a connecting column 15, the detection unit 3 is connected to the positive input terminal of the control module 9 through the third circuit layer 18, and the GND terminal of the control module 9 passes
  • the third circuit layer 18 and a connecting post 15 are connected to the second pad 26.
  • the power supply end of the control module 9 is connected to the third pad 27 through the third circuit layer 18 and a connecting post 15.
  • the signal of the control module 9 The output terminal is connected to the fourth pad 28 through the third circuit layer 18 and a connecting post 15 . This is the control circuit of the detection unit 3.
  • the circuit layer 10 also includes a ninth circuit layer 24 and a tenth circuit layer 25.
  • the ninth circuit layer 24 is provided at one end of the substrate 1 close to the deep ultraviolet light emitting unit 2, and the tenth circuit layer 25 is provided on the substrate 1 away from the deep ultraviolet light emitting unit 2.
  • the GND terminal of the control module 9 and the positive input terminal of the control module 9 are connected to the ninth circuit layer 24.
  • the ninth circuit layer 24 is connected to the tenth circuit layer 25 through a connecting post 15.
  • the tenth circuit layer 25 The resistor 13 and the third circuit layer 18 are connected through a connecting post 15.
  • the resistor 13 is connected to the signal output end of the control module 9 through the third circuit layer 18.
  • the resistor 13 is connected to the second pad 26 through the third circuit layer 18. .
  • Resistor 13 is R 2 and R 3 in Figure 4, which can adjust the amplification factor of the electrical signal of operational amplifier U1.
  • the heat sink 12 is disposed at an end of the substrate 1 away from the deep ultraviolet light-emitting unit 2, and the second circuit layer 16, the fourth circuit layer 19, the seventh circuit layer 22, and the tenth circuit layer 25 are first
  • the end surfaces of the soldering pads 17, the second soldering pads 26, the second soldering pads 27 and the second soldering pads 28 close to the deep ultraviolet light-emitting unit 2 are on the same horizontal plane and in the same direction as the end face of the heat sink 12 close to the deep ultraviolet light-emitting unit 2.
  • the thickness of the first pad 17, the second pad 26, the second pad 27 and the second pad 28 is equal to that of the heat dissipation pad 12; the second circuit layer 16, the fourth circuit layer 19, the seventh circuit layer 22 and The thickness of the tenth circuit layer 25 is smaller than the thickness of the heat sink 12 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)

Abstract

一种紫外光源封装(100),包括基板(1)、深紫外发光单元(2)、探测单元(3)、内围坝(4)、***坝(5)和保护盖(6),深紫外发光单元和探测单元固连于基板上,***坝两端与基板和保护盖固连,***坝、保护盖和基板围成封闭的保护腔,深紫外发光单元、探测单元和内围坝设于保护腔内,内围坝的一端与基板固连,内围坝的另一端与保护盖靠近基板的端面之间留有间隙,探测单元和深紫外发光单元设于内围坝的两侧,探测单元能够接收深紫外发光单元发出的紫外线光子并将光信号转换为电信号,间隙用于供探测单元接收深紫外发光单元发出的紫外线光子,深紫外发光单元的紫外线光子能够穿过保护盖。

Description

一种紫外光源封装 技术领域
  本发明涉及半导体封装技术领域,特别是涉及一种紫外光源封装。
背景技术
  紫外光在杀菌消毒、光通讯等多个领域中均有应用。深紫外发光二极管芯片(UVC LED)具有可靠性高、寿命长、反应快、功耗低、环保无污染及体型小等优势,被广泛应用于消毒杀菌和信号传输等多个领域。光电传感器是将光信号转换为电信号的一种器件,如紫外传感器是利用光敏元件将紫外光信号转换为电信号的传感器,紫外传感器常用于检测深紫外发光二极管芯片的发光强度,从而对深紫外发光二极管芯片的衰减度进行监测,便于及时对深紫外发光二极管芯片进行更换,以满足应用需求。目前普遍将紫外发光芯片与光电传感器的芯片分别单独安装应用,如深紫外发光二极管芯片为一个器件,紫外传感器为一个器件。
技术问题
  在应用中,对设备进行结构设计时需要分别对紫外发光芯片和光电传感器芯片分别设计,增加了设计难度;同时,紫外发光芯片和光电传感器芯片需要分别占用设计空间, 占用空间较大,难以满足小型化的需求。
技术解决方案
  本发明的目的是提供一种紫外光源封装,以解决上述现有技术存在的问题,结构简单,体积小,应用灵活,便于加工,实用性强;有利于降低开发难度,便于应用;能够对设备进行及时地维修、更换,保证了设备的稳定运行。
  为实现上述目的,本发明提供了如下方案:
  本发明提供了一种紫外光源封装,包括基板、深紫外发光单元、探测单元、内围坝、***坝和保护盖,所述内围坝和所述***坝均呈环形,所述深紫外发光单元和所述探测单元均固定连接于所述基板上,所述***坝的一端与所述基板靠近所述深紫外发光单元的端面固定连接,所述保护盖与所述***坝的另一端固定连接,所述***坝、所述保护盖和所述基板围成封闭的保护腔,所述深紫外发光单元、所述探测单元和所述内围坝均设置于所述保护腔内,所述内围坝的一端与所述基板靠近所述深紫外发光单元的端面固定连接,所述内围坝的另一端与所述保护盖靠近所述基板的端面之间留有间隙,所述探测单元和所述深紫外发光单元设置于所述内围坝的内、外两侧,所述深紫外发光单元能够发出紫外线光子, 所述探测单元能够接收所述深紫外发光单元发出的紫外线光子并将所述深紫外发光单元的光信号转换为电信号,所述间隙用于供所述探测单元接收所述深紫外发光单元发出的紫外线光子,所述深紫外发光单元的紫外线光子能够穿过所述保护盖。
  优选的,所述深紫外发光单元为多个,所述探测单元设置于所述内围坝的内腔内,各所述深紫外发光单元设置于所述内围坝和所述***坝之间,多个所述深紫外发光单元沿所述***坝的周向分布。
  优选的,所述***坝的内壁远离所述基板的一端设有环形槽,所述保护盖嵌设在所述环形槽上。
  优选的,本发明提供的紫外光源封装还包括控制模组9,所述控制模组9与所述基板固定连接,所述控制模组9与所述探测单元通讯连接,所述控制模组9能够将所述探测单元转换所述深紫外发光单元的光信号得到的电信号进行放大。
  优选的,本发明提供的紫外光源封装还包括线路层、焊盘和散热盘,所述线路层、所述焊盘和所述散热盘均固定连接于所述基板上,所述线路层与所述深紫外发光单元、所述探测单元和所述控制模组9均连接,所述线路层和所述焊盘连接,所述线路层能够用于信号传输和电能传导。
  优选的,所述深紫外发光单元为深紫外发光二极管芯片,所述探测单元为光电传感器芯片,所述保护盖为透镜,所述控制模组9为运算放大器,所述基板为陶瓷基板。
  优选的,还包括多个连接柱,所述线路层包括第一线路层和第二线路层,所述焊盘包括第一焊盘,所述第一线路层为多个,所述第二线路层和所述第一焊盘均为两个,多个所述第一线路层呈环形分布且相邻的两个所述第一线路层之间留有间隙,各所述第一线路层设置于所述深紫外发光单元和所述基板之间,所述第二线路层和所述第一焊盘设置于所述基板远离所述深紫外发光单元的一端,一个所述第一线路层均与两个相邻的所述深紫外发光单元连接,且一个所述深紫外发光单元与两个相邻的所述第一线路层连接,与任一个所述深紫外发光单元连接的两个所述第一线路层分别与两个所述第二线路层通过两个所述连接柱连接,两个所述第二线路层分别与两个所述第一焊盘连接,两个所述第一焊盘分别用于与电源正极和电源负极连接。
  优选的,所述线路层还包括第三线路层、第四线路层、第五线路层、第六线路层、第七线路层、第八线路层,所述焊盘还包括第二焊盘、第三焊盘和第四焊盘,所述第三线路层、所述第五线路层、所述第六线路层和所述第八线路层均设置于所述基板靠近所述深紫外发光单元的一端,所述第四线路层、所述第七线路层、所述第二焊盘、所述第三焊盘和所述第四焊盘均设置于所述基板远离所述深紫外发光单元的一端,所述第五线路层和所述第六线路层之间留有间隙,所述第五线路层和所述第六线路层分别与所述探测单元的负极端口和正极端口连接,所述第五线路层通过一个所述连接柱与所述第四线路层连接,所述第四线路层通过一个所述连接柱与所述第八线路层连接,所述第八线路层与所述控制模组的采样端连接,所述第六线路层通过一个所述连接柱与所述第七线路层连接,所述第七线路层通过一个所述连接柱与所述第三线路层连接,所述探测单元通过所述第三线路层与所述控制模组的正输入端连接,所述控制模组的GND端通过所述第三线路层和一个所述连接柱与所述第二焊盘连接,所述控制模组的供电端通过所述第三线路层和一个所述连接柱与所述第三焊盘连接,所述控制模组的信号输出端通过所述第三线路层和一个所述连接柱与所述第四焊盘连接。
  优选的,所述线路层还包括第九线路层和第十线路层,所述第九线路层设置于所述基板靠近所述深紫外发光单元的一端,所述第十线路层设置于所述基板远离所述深紫外发光单元的一端,所述控制模组的GND端和所述控制模组的正输入端与所述第九线路层连接,所述第九线路层通过一个所述连接柱与所述第十线路层连接,所述第十线路层通过一个所述连接柱与所述电阻和所述第三线路层均连接,所述电阻通过所述第三线路层与所述控制模组的信号输出端连接,所述电阻通过所述第三线路层与所述第二焊盘连接。
有益效果
  本发明相对于现有技术取得了以下技术效果:
  本发明提供的紫外光源封装,将深紫外发光单元和探测单元集成于同一个基板上,能够作为一个整体直接应用,简化了设备结构的设计过程,降低了开发难度,便于应用; 同时在设备结构上的占用体积大大减小,能够满足设备结构小型化的需求;内围坝能够减少深紫外发光单元照射到探测单元的紫外光子的数量,以适应探测单元的灵敏度,避免高强度的紫外线光子照射探测单元而导致探测单元的受光部的光线饱和,进而避免由于探测单元出现光饱和现象而导致探测单元的信号反馈中断,进而导致不能对深紫外发光单元的光线能量的变化量进行实时监测,保证及时对深紫外发光二极管芯片进行更换,进而保证设备的稳定运行;且能够通过改变内围坝与保护盖之间的间隙改变透过的紫外光子量,能够根据探测单元的灵敏度设置合理的间隙,应用灵活,便于加工,实用性强。
附图说明
  为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
  图1为本发明提供的紫外光源封装的结构示意图(正面方向);
  图2为本发明提供的紫外光源封装的剖视图;
  图3为本发明提供的紫外光源封装的结构示意图(背面方向);
  图4为本发明提供的紫外光源封装中运算放大器的电路原理图;
  图5为本发明提供的紫外光源封装中深紫外发光单元的驱动电路;
  图6为本发明提供的紫外光源封装的线路连接图一;
  图7为本发明提供的紫外光源封装的线路连接图二;
  图中:100-紫外光源封装,1-基板,2-深紫外发光单元,3-探测单元,4-内围坝,5-***坝,6-保护盖,7-间隙,8-环形槽,9-控制模组9,10-线路层,11-焊盘,12-散热盘,13-电阻,14-第一线路层,15-连接柱,16-第二线路层,17-第一焊盘,18-第三线路层,19-第四线路层,20-第五线路层,21-第六线路层,22-第七线路层,23-第八线路层,24-第九线路层,25-第十线路层,26-第二焊盘,27-第三焊盘,28-第四焊盘。
本发明的实施方式
  下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
  本发明的目的是提供一种紫外光源封装,以解决上述现有技术存在的问题,结构简单,体积小,且有利于降低开发难度,便于应用。
  为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
  如图1‑7所示,本发明提供了一种紫外光源封装100,包括基板1、深紫外发光单元 2、探测单元3、内围坝4、***坝5和保护盖6,内围坝4和***坝5均呈环形,优选的,***坝5呈圆环形,深紫外发光单元2和探测单元3均固定连接于基板1上,***坝5的一端与基板1靠近深紫外发光单元2的端面固定连接,保护盖6与***坝5的另一端固定连接,优选的,采用粘结剂粘接,***坝5、保护盖6和基板1围成封闭的保护腔,深紫外发光单元2、探测单元3和内围坝4均设置于保护腔内,内围坝4的一端与基板1靠近深紫外发光单元2的端面固定连接,内围坝4的另一端与保护盖6靠近基板1的端面之间留有间隙7,探测单元3和深紫外发光单元2设置于内围坝4的内、外两侧,深紫外发光单元2能够发出紫外线光子,探测单元3能够接收深紫外发光单元2发出的紫外线光子并将深紫外发光单元2的光信号转换为电信号,间隙7用于供探测单元3接收深紫外发光单元2发出的紫外线光子,深紫外发光单元2的紫外线光子能够穿过保护盖6,用于实现杀菌消毒等功能。将深紫外发光单元2和探测单元3集成于同一个基板1上,能够作为一个整体直接应用,简化了设备结构的设计过程,降低了开发难度,便于应用;同时在设备结构上的占用体积大大减小,能够满足设备结构小型化的需求。内围坝4能够减少深紫外发光单元2照射到探测单元3的紫外光子的数量,以适应探测单元3 的灵敏度,避免高强度的紫外线光子照射探测单元3而导致探测单元3的受光部的光线饱和,进而避免由于探测单元3出现光饱和现象而导致探测单元3的信号反馈中断,进而导致不能对深紫外发光单元2的光线能量的变化量进行实时监测。且能够通过改变内围坝4与保护盖6之间的间隙7改变透过的紫外光子量,即能够根据探测单元3的灵敏度设置合理的间隙7,应用灵活,便于加工,实用性强。
  深紫外发光单元2为多个,探测单元3设置于内围坝4的内腔内,各深紫外发光单元2设置于内围坝4和***坝5之间,多个深紫外发光单元2沿***坝5的周向分布。优选的,内围坝4的高度大于各深紫外发光单元2和探测单元3的高度。设置多个深紫外发光单元2能够提高紫外线光子的能量,从而达到更好的高杀菌消毒的效果。
  ***坝5的内壁远离基板1的一端设有环形槽8,保护盖6嵌设在环形槽8上,优选的,采用粘结剂粘接在环形槽8上。
  本发明提供的紫外光源封装100还包括控制模组9,控制模组9与基板1固定连接,控制模组9与探测单元3通讯连接,控制模组9能够将探测单元3转换深紫外发光单元2的光信号得到的电信号进行放大。便于信号的采集。
  本发明提供的紫外光源封装100还包括线路层10、焊盘11和散热盘12,线路层10、焊盘11和散热盘12均固定连接于基板1上,线路层10与深紫外发光单元2、探测单元3和控制模组9均连接,线路层10和焊盘11连接,线路层10能够用于信号传输和电能传导。散热盘12 用于为紫外光源封装100散热。散热盘12优选为设置于基板1的背面。
  优选的,深紫外发光单元2为深紫外发光二极管芯片,探测单元3为光电传感器芯片,优选为紫外传感器芯片;保护盖6为透镜,控制模组9为运算放大器,基板1为陶瓷基板1。
  基板1上还设置有多个电阻13,电阻13位于***坝5外侧,用于形成运算放大器的电路。多个电阻13、控制模组9、深紫外发光单元2及探测单元3与基板1之间设置有对应的线路层10。其中,本发明提供的紫外光源封装100包括深紫外发光单元2控制电路和探测单元3 控制电路。
  本发明提供的紫外光源封装100还包括多个连接柱15,线路层10包括第一线路层 14和第二线路层16,焊盘11包括第一焊盘17,第一线路层14为多个,第二线路层16和第一焊盘17均为两个,多个第一线路层14呈环形分布且相邻的两个第一线路层14之间留有间隙,各第一线路层14设置于深紫外发光单元和基板1之间,第二线路层16和第一焊盘17设置于基板1远离深紫外发光单元的一端,一个第一线路层14均与两个相邻的深紫外发光单元2连接,且一个深紫外发光单元2与两个相邻的第一线路层14连接,与任一个深紫外发光单元2 连接的两个第一线路层14分别与两个第二线路层16通过两个连接柱15连接,两个第二线路层16分别与两个第一焊盘17连接,两个第一焊盘17分别用于与电源正极和电源负极连接。此为深紫外发光单元2的控制电路。需要说明的是,其中有两个相邻的第一线路层14上方未连接有深紫外发光单元2,从而保证多个深紫外发光单元2通过第一线路层14进行串联时不会短路。
  线路层10还包括第三线路层18、第四线路层19、第五线路层20、第六线路层21、第七线路层22、第八线路层23,焊盘11还包括第二焊盘26、第三焊盘27和第四焊盘28,第三线路层18、第五线路层20、第六线路层21和第八线路层23均设置于基板1靠近深紫外发光单元 2的一端,第四线路层19、第七线路层22、第二焊盘26、第三焊盘27和第四焊盘28均设置于基板1远离深紫外发光单元2的一端,第五线路层20和第六线路层21之间留有间隙,第五线路层20和第六线路层21分别与探测单元3的负极端口和正极端口连接,第五线路层20通过一个连接柱15与第四线路层19连接,第四线路层19通过一个连接柱15与第八线路层23连接, 第八线路层23与控制模组9的采样端连接,第六线路层21通过一个连接柱15与第七线路层22连接,第七线路层22通过一个连接柱15与第三线路层18连接,探测单元3通过第三线路层18与控制模组9的正输入端连接,控制模组9的GND端通过第三线路层18和一个连接柱15与第二焊盘26连接,控制模组9的供电端通过第三线路层18和一个连接柱15与第三焊盘27连接,控制模组9的信号输出端通过第三线路层18和一个连接柱15与第四焊盘28连接。此为探测单元3的控制电路。
  线路层10还包括第九线路层24和第十线路层25,第九线路层24设置于基板1靠近深紫外发光单元2的一端,第十线路层25设置于基板1远离深紫外发光单元2的一端,控制模组9的GND端和控制模组9的正输入端与第九线路层24连接,第九线路层24通过一个连接柱15与第十线路层25连接,第十线路层25通过一个连接柱15与电阻13和第三线路层18连接, 电阻13通过第三线路层18与控制模组9的信号输出端连接,电阻13通过第三线路层18与第二焊盘26连接。电阻13即为图4中的 R 2和 R 3,能够对运算放大器U1电信号放大倍数的调节。
  其中,还包括散热盘12,散热盘12设置于基板1远离深紫外发光单元2的一端,且第二线路层16、第四线路层19、第七线路层22、第十线路层25第一焊盘17、第二焊盘26、第二焊盘27、第二焊盘28靠近深紫外发光单元2的端面均与散热盘12靠近深紫外发光单元2的端面处于同一水平面上且朝向相同,其中第一焊盘17、第二焊盘26、第二焊盘27和第二焊盘28与散热盘12的厚度相等;第二线路层16、第四线路层19、第七线路层22和第十线路层25的厚度小于散热盘12的厚度。
  本发明中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (9)

  1. 一种紫外光源封装,其特征在于:包括基板、深紫外发光单元、探测单元、内围坝、***坝和保护盖,所述内围坝和所述***坝均呈环形,所述深紫外发光单元和所述探测单元均固定连接于所述基板上,所述***坝的一端与所述基板靠近所述深紫外发光单元的端面固定连接,所述保护盖与所述***坝的另一端固定连接,所述***坝、所述保护盖和所述基板围成封闭的保护腔,所述深紫外发光单元、所述探测单元和所述内围坝均设置于所述保护腔内,所述内围坝的一端与所述基板靠近所述深紫外发光单元的端面固定连接,所述内围坝的另一端与所述保护盖靠近所述基板的端面之间留有间隙,所述探测单元和所述深紫外发光单元设置于所述内围坝的内、外两侧,所述深紫外发光单元能够发出紫外线光子,所述探测单元能够接收所述深紫外发光单元发出的紫外线光子并将所述深紫外发光单元的光信号转换为电信号,以对所述深紫外发光单元的光线能量的变化量进行实时监测;所述间隙用于供所述探测单元接收所述深紫外发光单元发出的紫外线光子,通过改变所述间隙能够改变透过的紫外线光子量;所述深紫外发光单元的紫外线光子能够穿过所述保护盖。
  2. 根据权利要求1所述的紫外光源封装,其特征在于:所述深紫外发光单元为多个,所述探测单元设置于所述内围坝的内腔内,各所述深紫外发光单元设置于所述内围坝和所述***坝之间,多个所述深紫外发光单元沿所述***坝的周向分布,且相邻的两个所述深紫外发光单元之间留有间隙。
  3. 根据权利要求1所述的紫外光源封装,其特征在于:所述***坝的内壁远离所述基板的一端设有环形槽,所述保护盖嵌设在所述环形槽上。
  4. 根据权利要求2所述的紫外光源封装,其特征在于:还包括控制模组,所述控制模组与所述基板固定连接,所述控制模组与所述探测单元通讯连接,所述控制模组能够将所述探测单元转换所述深紫外发光单元的光信号得到的电信号进行放大。
  5. 根据权利要求4所述的紫外光源封装,其特征在于:还包括线路层、焊盘和散热盘, 所述线路层、所述焊盘和所述散热盘均固定连接于所述基板上,所述线路层与所述深紫外发光单元、所述探测单元和所述控制模组均连接,所述线路层和所述焊盘连接,所述线路层能够用于信号传输和电能传导。
  6. 根据权利要求4所述的紫外光源封装,其特征在于:所述深紫外发光单元为深紫外发光二极管芯片,所述探测单元为光电传感器芯片,所述保护盖为透镜,所述控制模组为运算放大器,所述基板为陶瓷基板。
  7. 根据权利要求5所述的紫外光源封装,其特征在于:还包括多个连接柱,所述线路层包括第一线路层和第二线路层,所述焊盘包括第一焊盘,所述第一线路层为多个,所述第二线路层和所述第一焊盘均为两个,多个所述第一线路层呈环形分布且相邻的两个所述第一线路层之间留有间隙,各所述第一线路层设置于所述深紫外发光单元和所述基板之间,所述第二线路层和所述第一焊盘设置于所述基板远离所述深紫外发光单元的一端,一个所述第一线路层均与两个相邻的所述深紫外发光单元连接,且一个所述深紫外发光单元与两个相邻的所述第一线路层连接,与任一个所述深紫外发光单元连接的两个所述第一线路层分别与两个所述第二线路层通过两个所述连接柱连接,两个所述第二线路层分别与两个所述第一焊盘连接,两个所述第一焊盘分别用于与电源正极和电源负极连接。
  8. 根据权利要求7所述的紫外光源封装,其特征在于:所述线路层还包括第三线路层、第四线路层、第五线路层、第六线路层、第七线路层、第八线路层,所述焊盘还包括第二焊盘、第三焊盘和第四焊盘,所述第三线路层、所述第五线路层、所述第六线路层和所述第八线路层均设置于所述基板靠近所述深紫外发光单元的一端,所述第四线路层、所述第七线路层、所述第二焊盘、所述第三焊盘和所述第四焊盘均设置于所述基板远离所述深紫外发光单元的一端,所述第五线路层和所述第六线路层之间留有间隙,所述第五线路层和所述第六线路层分别与所述探测单元的负极端口和正极端口连接,所述第五线路层通过一个所述连接柱与所述第四线路层连接,所述第四线路层通过一个所述连接柱与所述第八线路层连接,所述第八线路层与所述控制模组的采样端连接,所述第六线路层通过一个所述连接柱与所述第七线路层连接,所述第七线路层通过一个所述连接柱与所述第三线路层连接, 所述探测单元通过所述第三线路层与所述控制模组的正输入端连接,所述控制模组的GND 端通过所述第三线路层和一个所述连接柱与所述第二焊盘连接,所述控制模组的供电端通过所述第三线路层和一个所述连接柱与所述第三焊盘连接,所述控制模组的信号输出端通过所述第三线路层和一个所述连接柱与所述第四焊盘连接。
  9. 根据权利要求8所述的紫外光源封装,其特征在于:所述线路层还包括第九线路层和第十线路层,所述第九线路层设置于所述基板靠近所述深紫外发光单元的一端,所述第十线路层设置于所述基板远离所述深紫外发光单元的一端,所述控制模组的GND端和所述控制模组的正输入端与所述第九线路层连接,所述第九线路层通过一个所述连接柱与所述第十线路层连接,所述第十线路层通过一个所述连接柱与电阻和所述第三线路层均连接,所述电阻通过所述第三线路层与所述控制模组的信号输出端连接,所述电阻通过所述第三线路层与所述第二焊盘连接。
PCT/CN2023/080527 2022-03-22 2023-03-09 一种紫外光源封装 WO2023179371A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210279219.4 2022-03-22
CN202210279219.4A CN114373744B (zh) 2022-03-22 2022-03-22 一种紫外光源封装

Publications (1)

Publication Number Publication Date
WO2023179371A1 true WO2023179371A1 (zh) 2023-09-28

Family

ID=81146187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080527 WO2023179371A1 (zh) 2022-03-22 2023-03-09 一种紫外光源封装

Country Status (2)

Country Link
CN (1) CN114373744B (zh)
WO (1) WO2023179371A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114373744B (zh) * 2022-03-22 2023-01-31 至芯半导体(杭州)有限公司 一种紫外光源封装

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101392896A (zh) * 2007-09-21 2009-03-25 富士迈半导体精密工业(上海)有限公司 发光二极管
CN103727965A (zh) * 2012-10-16 2014-04-16 安华高科技通用Ip(新加坡)公司 具有内部通道区段的接近传感器装置
CN105895643A (zh) * 2015-02-13 2016-08-24 台医光电科技股份有限公司 光学传感模组、光学传感配件与光学传感装置
CN215069983U (zh) * 2021-11-10 2021-12-07 至芯半导体(杭州)有限公司 一种带监测功能的深紫外封装器件结构
CN114373744A (zh) * 2022-03-22 2022-04-19 至芯半导体(杭州)有限公司 一种紫外光源封装

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677540A (ja) * 1992-08-24 1994-03-18 Sanyo Electric Co Ltd 光半導体装置
JP2009177099A (ja) * 2008-01-28 2009-08-06 Panasonic Electric Works Co Ltd 発光装置
DE102019000752A1 (de) * 2019-02-01 2020-08-06 Diehl Ako Stiftung & Co. Kg Drucktaste
JP7397687B2 (ja) * 2020-01-22 2023-12-13 スタンレー電気株式会社 深紫外光を発する発光装置及びそれを用いた水殺菌装置
CN215451410U (zh) * 2021-12-06 2022-01-07 至芯半导体(杭州)有限公司 一种深紫外发光二极管封装结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101392896A (zh) * 2007-09-21 2009-03-25 富士迈半导体精密工业(上海)有限公司 发光二极管
CN103727965A (zh) * 2012-10-16 2014-04-16 安华高科技通用Ip(新加坡)公司 具有内部通道区段的接近传感器装置
CN105895643A (zh) * 2015-02-13 2016-08-24 台医光电科技股份有限公司 光学传感模组、光学传感配件与光学传感装置
CN215069983U (zh) * 2021-11-10 2021-12-07 至芯半导体(杭州)有限公司 一种带监测功能的深紫外封装器件结构
CN114373744A (zh) * 2022-03-22 2022-04-19 至芯半导体(杭州)有限公司 一种紫外光源封装

Also Published As

Publication number Publication date
CN114373744B (zh) 2023-01-31
CN114373744A (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
WO2023179371A1 (zh) 一种紫外光源封装
CN100382346C (zh) 光半导体器件及采用该器件的电子装置
TW200531137A (en) Optical coupler and electronic equipment using same
US9472695B2 (en) Opto-coupler and method of manufacturing the same
CN103400833A (zh) Led模组及其制造方法
JP2013110164A (ja) 光センサ装置
CN215069983U (zh) 一种带监测功能的深紫外封装器件结构
JP2017220664A (ja) 紫外線発光ダイオードパーツのパッケージ構造
JP2009016405A (ja) 固体撮像装置
CN210092068U (zh) 一种用于驱动硅基雪崩光电二极管的电路结构
CN114864796A (zh) 一种紫外器件封装结构及制作方法
US20080061313A1 (en) Photosensitive chip package
CN203351666U (zh) Led模组
WO2021056826A1 (zh) ***级封装结构和电子设备
CN219811499U (zh) 一种光电池芯片及光mos固态继电器
JP7091035B2 (ja) 多色led照明装置および照明器具
TWM528526U (zh) 低光衰高出光率二極體封裝模組
TWI422071B (zh) 發光二極體的封裝結構
CN208027049U (zh) 用于lcd的背光源模组
CN218887197U (zh) 一种具有触端防护结构的光耦
CN221150065U (zh) 一种透光性导线架led封装光源
CN220710319U (zh) 一种光电耦合器
CN217691215U (zh) 一种led封装用高散热基板
CN106299097B (zh) 一种正贴正发光led、灯条及高透率显示屏
CN118248687A (zh) 一种叠层微晶光耦合器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773620

Country of ref document: EP

Kind code of ref document: A1