WO2023178668A1 - 一种微生物生长曲线测定装置 - Google Patents

一种微生物生长曲线测定装置 Download PDF

Info

Publication number
WO2023178668A1
WO2023178668A1 PCT/CN2022/083114 CN2022083114W WO2023178668A1 WO 2023178668 A1 WO2023178668 A1 WO 2023178668A1 CN 2022083114 W CN2022083114 W CN 2022083114W WO 2023178668 A1 WO2023178668 A1 WO 2023178668A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
oscillation
controller
platform
illumination
Prior art date
Application number
PCT/CN2022/083114
Other languages
English (en)
French (fr)
Inventor
张智彧
王博
司同
庞任维
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to PCT/CN2022/083114 priority Critical patent/WO2023178668A1/zh
Publication of WO2023178668A1 publication Critical patent/WO2023178668A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/02Apparatus for enzymology or microbiology with agitation means; with heat exchange means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/36Apparatus for enzymology or microbiology including condition or time responsive control, e.g. automatically controlled fermentors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/36Apparatus for enzymology or microbiology including condition or time responsive control, e.g. automatically controlled fermentors
    • C12M1/38Temperature-responsive control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry

Definitions

  • This article relates to the technical field of microbial scientific research instruments, especially a microbial growth curve measuring device.
  • Microbial growth curves can reflect the growth patterns of microbial populations when cultured in a certain culture environment, and are of great significance for obtaining information such as microbial growth conditions and optimal culture environments.
  • Commonly used methods for measuring microbial growth curves include turbidimetry, which uses a spectrophotometer to detect the optical density of a bacterial suspension to infer the concentration of the bacterial solution. Turbidimetry requires experimental technicians to manually take out the bacterial liquid for absorbance measurement at regular intervals (usually 1 to 2 hours). The entire experimental cycle takes a long time (usually more than 12 hours), so the detection efficiency is low; and the level of detection standardization is Low, the probability of contamination with miscellaneous bacteria is high during absorbance measurement operation, and there is a problem of inaccurate detection results.
  • existing microbial growth curve measuring instruments are difficult to provide a light environment for the growth of microorganisms.
  • this article aims to provide a microbial growth curve measurement device that can significantly improve the efficiency and accuracy of microbial growth curve measurement.
  • This article is to provide a microbial growth curve measurement device to solve the problems of low efficiency and poor accuracy of growth curve measurement in the prior art.
  • This article provides a microbial growth curve measuring device, which includes a shell.
  • the shell is arranged on a detection platform.
  • An oscillation module, an illumination module and a measurement module are provided in the shell.
  • the oscillation module, illumination module and measurement module are all connected to the controller;
  • the oscillation module is used to oscillate under the control of the controller, the oscillation module is provided with a oscillation frame, and the oscillation frame is used to carry microbial samples;
  • the illumination module is arranged below the oscillation module, and the illumination module is used to provide illumination conditions for microbial samples under the control of the controller;
  • the measurement module is used to move from one end of the oscillation module to the other end of the oscillation module under the control of the controller, and detect the growth curve of the microbial samples carried on the oscillation frame passing along the way.
  • the illumination module includes an illumination platform, a lifting motor, a connecting rod, a lifting platform and a culture light source;
  • the lifting motor is connected to the controller and the lifting platform, and the lifting motor is used to drive the lifting platform to move closer to or away from the oscillation module;
  • the lighting platform is disposed on the side of the lifting platform close to the oscillation module, and the lifting platform and the lighting platform are detachably connected;
  • the connecting rod and the culture light source are both arranged on the illumination platform, the culture light source is connected to the controller and works under the control of the controller; the connecting rod is used to communicate with the oscillation module Connected to oscillate the culture light source and the oscillation module synchronously.
  • the oscillation module includes a snap-in structure; a mounting slot is provided on one side of the oscillation module facing the lighting platform, the snap-in structure is disposed in the mounting slot, and the snap-in structure is connected to the Match the connecting rods.
  • the clamping structure includes a connected spring and a clamping block
  • One end of the clamping block away from the spring is provided with a clamping slot, the clamping slot is adapted to the connecting rod, and the clamping slot and the connecting rod are clamped together to realize the oscillation module and the connecting rod.
  • the lighting module is connected.
  • the clamping block is further provided with a slot, and the lighting module further includes a dial pin;
  • the dial pin is arranged on a dial pin base, and the dial pin base is located on the side of the lifting platform away from the oscillation module.
  • the dial pin base is fixedly connected to the lifting platform; the slot is connected to the
  • the shifting pin is adapted to fit, and the shifting pin is plug-fitted with the slot so that the clamping block exerts force on the spring.
  • the oscillation module also includes an enzyme plate, an oscillation motor, a first bearing and a connecting plate;
  • the enzyme plate is detachably connected to the oscillation frame; a growth chamber for microbial growth is provided on the enzyme plate; one end of the first bearing is connected to the first output shaft of the oscillation motor, and the The other end of the first bearing is connected to the connecting plate, and the connecting plate is connected to the oscillation frame; the first output shaft is eccentrically arranged with the first bearing, and the oscillating motor is connected to the controller.
  • the oscillation frame is driven to oscillate under the control of the controller.
  • the oscillation module further includes a limiting structure, the limiting structure is connected to the controller, and the limiting structure is used to limit the oscillation amplitude of the oscillation frame.
  • the culture light source corresponds to the growth chamber one-to-one; the culture light source is connected to the controller, and the controller is also used to control the operation of each culture light source.
  • the measurement module includes an absorbance detector, a detection bracket, a second drive motor and a second conveyor belt.
  • the absorbance detector is arranged on the detection bracket, and the second drive motor is connected to the controller.
  • the output shaft of the second drive motor is connected to the second conveyor belt;
  • the second conveyor belt is arranged on the detection platform and is drivingly connected to the detection bracket;
  • the detection bracket includes a vertical bracket, a first horizontal bracket and a second horizontal bracket, and the first horizontal bracket and the second horizontal bracket are both connected to the vertical bracket;
  • the absorbance detector includes a transmitting unit and a receiving unit , the transmitting unit is disposed on one of the first horizontal bracket and the second horizontal bracket, the receiving unit is disposed on the other of the first horizontal bracket and the second horizontal bracket, the transmitting unit It is arranged opposite to the receiving unit; a gap is formed between the first horizontal bracket and the second horizontal bracket for avoiding the oscillation module.
  • the device further includes a temperature control module, which is disposed on the inner wall of the housing.
  • the temperature control module includes a heating plate and a temperature sensor. The heating plate and the temperature sensor are both connected to the connected to the controller.
  • the microbial growth curve measurement device provided in this article can provide a light growth environment for microorganisms; it has a high degree of automation and low manual participation, which reduces errors caused by artificial factors, thus greatly improving the efficiency of growth curve measurement. and accuracy.
  • Figure 1 shows a schematic structural diagram of the entire microbial growth curve measuring device provided by the embodiments of this article
  • Figure 2 shows a schematic structural diagram of the internal structure of a microbial growth curve measurement device provided by the embodiments of this article;
  • Figure 3 shows a schematic control logic diagram of a microbial growth curve measuring device provided by the embodiments of this article
  • Figure 4 shows a schematic structural diagram of the oscillation module in the embodiment of this article
  • Figure 5 shows a schematic assembly diagram of the first bearing and the oscillation motor
  • Figure 6 shows a schematic structural diagram of the bottom of the oscillation module in the embodiment of this article
  • Figure 7 shows a schematic structural diagram of the limiting structure in the embodiment of this article.
  • Figure 8 shows a schematic structural diagram of the oscillation module and lighting module in the embodiment of this article from another perspective
  • Figure 9 shows a schematic structural diagram of the snap-in structure in the embodiment of this article.
  • Figure 10 shows a schematic structural diagram of the lighting module in the embodiment of this article
  • Figure 11 shows a schematic structural diagram of the bottom of the lighting module in the embodiment of this article
  • Figure 12 shows a schematic structural diagram of the measurement module in the embodiment of this article
  • Figure 13 shows a schematic structural diagram of the temperature control module in the embodiment of this article.
  • Lighting module
  • the existing methods for measuring microbial growth curves mainly include volume measurement, dry weight weighing, turbidimetry, etc.
  • the growth of microorganisms will cause an increase in the turbidity of the culture.
  • the turbidimetric method is a method that uses a spectrophotometer to detect the optical density of the bacterial suspension to infer the concentration of the bacterial solution, and then obtain the growth curve of the microorganisms.
  • laboratory technicians need to manually take out the bacterial solution at regular intervals (usually 1 to 2 hours) for absorbance measurement. The entire experimental cycle takes a long time (usually more than 12 hours), so the detection efficiency is relatively low.
  • the microbial growth curve measuring device includes a housing 10.
  • the housing 10 is disposed on the detection stage 20.
  • An oscillation module 40 and a lighting module are provided in the housing 10. 50 and the measurement module 60, the oscillation module 40, the illumination module 50 and the measurement module 60 are all connected to the controller 30.
  • the oscillation module 40 is used to oscillate under the control of the controller 30.
  • the oscillation module 40 is provided with an oscillation frame 41, and the oscillation frame 41 is used to carry microbial samples;
  • the illumination module 50 is provided on the oscillation frame.
  • the illumination module 50 is used to provide illumination conditions for microbial samples under the control of the controller 30;
  • the measurement module 60 is used to obtain light from the oscillation module 40 under the control of the controller 30. Move one end to the other end of the oscillation module 40, and perform growth curve detection on the microbial samples carried on the oscillation frame 41 passing along the way.
  • the controller 30 may be a single chip microcomputer, a microprocessor (MCU), a digital signal processor (DSP), etc., or may be a control board integrated with a controller, etc.
  • the oscillation module 40, the illumination module 50 and the measurement module 60 are all connected to the controller 30, which means that the oscillation module 40, the illumination module 50 and the measurement module 60 are connected through control lines or A wired electrical connection is achieved with the controller 30 through a data line or the like, or a wireless communication connection is achieved with the controller 30 through wireless communication technology.
  • the lighting module can provide a suitable growth environment for phototrophic microorganisms, which improves the applicable scope of the microbial growth curve measuring device; the measuring module can oscillate along the axis under the control of the controller.
  • the module moves and measures the growth curve of the microbial samples in it. It has a high degree of automation and is conducive to improving detection efficiency; it can also reduce manual participation, thereby reducing errors caused by artificial factors and conducive to improving the accuracy of growth curve detection.
  • the oscillation frame 41 can be arranged in a long strip shape and adapt to the length direction of the detection platform 20 , then the measurement module 60 can be arranged along the length of the oscillation module 40 To move in the length direction, for example, the measurement module 60 can move from the left side of FIG. 2 to the right side of FIG. 2 .
  • the measurement module 60 can also move along the width direction of the oscillation module 40, and the detection range of the measurement module 60 should be appropriately adjusted to meet the detection requirements of all microbial samples along the way.
  • the oscillation module 40 also includes an enzyme plate 43 , an oscillation motor 44 , a first bearing 45 and a connecting plate 46 .
  • the enzyme plate 43 is detachably connected to the shaking frame 41; the enzyme plate 43 is provided with a growth chamber for microbial growth.
  • the enzyme plate 43 is provided with a growth chamber for microbial growth.
  • four enzyme-labeled plates 43 can be arranged side by side on the shaking stand 41, and each enzyme-labeled plate 43 can be 96-well, that is, each enzyme-labeled plate 43 can have 96 holes.
  • It can be equipped with 96 growth chambers, which can increase the number of microbial samples carried and increase the throughput of measuring microbial growth curves.
  • the 96 growth chambers are arranged in 12 rows by 8 columns, then the measurement range of the measurement module 60 should cover at least 12 growth chambers in the same column.
  • the number of the microplates 43, the number of growth chambers on the microplates 43 and their arrangement can be adjusted according to actual needs, and the measurement range of the measurement module 60 should also be adjusted according to the enzyme requirements.
  • the size of the target plate 43, the number of growth chambers on it, and their arrangement are adjusted accordingly.
  • the shaking frame 41 may be provided with a fixed structure, and the fixed structure is used to prevent the enzyme plate 43 from being thrown out during the shaking process.
  • one end of the first bearing 45 is connected to the first output shaft 441 of the oscillation motor 44, and the other end of the first bearing 45 is connected to the connecting plate 46.
  • the connecting plate 46 is connected to the oscillation frame 41; the first output shaft 441 of the oscillation motor 44 is eccentrically arranged with the first bearing 45, and the oscillation motor 44 is connected to the controller 30 to control the operation of the controller.
  • the oscillation frame 41 is driven to oscillate under the control of 30.
  • FIG. 5 it is a schematic diagram of the assembly of the first bearing 45 and the oscillation motor 44 .
  • the first output shaft 441 of the oscillating motor 44 rotates under the control of the controller 30 , and the first bearing 45 eccentrically connected to the first output shaft 441 then rotates.
  • the oscillating motion is performed, thereby driving the oscillating frame 41 and the microbial sample arranged thereon to oscillate.
  • the oscillation module 40 also includes a limiting structure 48.
  • the limiting structure 48 is connected to the controller 30.
  • the limiting structure 48 is used to limit the oscillation.
  • the limiting structure 48 includes a limiting motor 481, a second bearing 482 and a roller 483.
  • the limit motor 481 is connected to the roller 483 via the second bearing 482; the roller 483 and the second bearing 482 are arranged eccentrically.
  • a first connecting arm and a second connecting arm 485 are formed on the side of the connecting plate 46 close to the limiting structure 48.
  • the first connecting arm can be integrally formed with the connecting plate 46.
  • the first connecting arm can be formed integrally with the connecting plate 46.
  • a first following wheel 484 is connected, and the axis center of the first following wheel 484 is coaxial with the first connecting arm; the second connecting arm is rotationally connected to the connecting plate 46, and the second connecting arm 485 A second following wheel is connected, and the axis center of the second following wheel is coaxial with the second connecting arm 485 .
  • a tension spring 486 is provided between the first connecting arm and the second connecting arm 485 . The tension spring 486 enables the first following wheel 484 and the second following wheel to always abut against the roller 483 . Therefore, the limiting structure 48 works under the control of the controller 30 to limit the oscillation amplitude of the oscillation module 40 .
  • the oscillation module also includes a counterweight 47, which is disposed on the side of the connecting plate 46 away from the oscillation frame 41.
  • the counterweight 47 is used to make the oscillation frame 41 oscillate.
  • the direction is on the horizontal plane, thereby preventing the microbial sample on the shaking frame 41 from tipping during the shaking process.
  • the oscillation module 40 includes a snap-in structure 42; the snap-in structure 42 is provided at the bottom of the oscillation frame 41, and the snap-in structure 42 is used for
  • the oscillation module 40 is connected to the illumination module 50 so that the illumination module 50 (specifically, the illumination platform 51 therein) oscillates synchronously with the oscillation module 40 .
  • the side of the oscillation frame 41 facing the lighting module 50 is provided with an installation groove (not shown in the figure), and the clamping structure 42 is provided in the installation groove.
  • the illumination module 50 includes an illumination platform 51, a connecting rod 511, a lifting motor 52, a culture light source 54 and a lifting platform 59.
  • the lifting motor 52 is connected to the controller 30 and the lifting platform 59.
  • the lifting motor 52 is used to drive the lifting platform 59 to rise and fall;
  • the lighting platform 51 is connected to the lifting platform 59, that is,
  • the illumination platform 51 is disposed on the side of the lifting platform 59 close to the oscillation module 40 , thereby driving the illumination platform 51 closer to or away from the oscillation module 40 .
  • the output shaft of the lifting motor 52 is connected to the slide rail 55 through a transmission structure (not shown in the figure), such as a nut, and the slide rail 55 is connected to the lifting platform 59 .
  • the transmission structure can convert the rotational motion into linear reciprocating motion, that is, drive the lifting platform 59 together with the lighting platform. 51 lifts.
  • the lifting platform 59 and the illumination platform 51 are detachably connected. That is to say, when the lifting platform 59 lifts the illumination platform 51 to the bottom of the oscillation module 40 and stabilizes it, After connection, the lifting platform 59 can be separated from the lighting platform 51 , so that when the lighting platform 51 vibrates synchronously with the oscillation frame 41 , the lifting platform 59 together with the lifting motor 52 and other components do not follow the vibration. of oscillation.
  • the detection platform 20 may be provided with a passage for the lighting module 50 to descend through. That is to say, the detection platform 20 will not cause any impact on the descending stroke of the lighting module 50. put one's oar in.
  • the measurement module 60 can be moved for detection.
  • the connecting rod 511 (shown in Figure 8) and the culture light source 54 are both arranged on the illumination platform 51, and the culture light source 54 is connected to the controller 30 and Working under the control of the controller 30 , the connecting rod 511 is snap-fitted with the snap-in structure 42 so that the culture light source 54 and the oscillation module 40 oscillate synchronously.
  • the clamping structure 42 includes a connected spring 421 and a clamping block 422; the spring 421 is in a pre-compressed state to abut and fix the clamping block 422 in the installation groove.
  • the end of the engaging block 422 away from the spring 421 is provided with a engaging groove 423.
  • the engaging groove 423 is adapted to the connecting rod 511.
  • the engaging groove 423 is engaged with the connecting rod 511.
  • the oscillation module 40 and the lighting module 50 are connected in cooperation.
  • the clamping block 422 is also provided with a slot 424, and the lighting module 50 also includes a dial pin 53; the dial pin 53 is provided on the dial pin base 58, and the dial pin base 58 is located on the lifting platform 59 On the side away from the oscillation module 40, the dial base 58 is fixedly connected to the lifting platform 59; the slot 424 is adapted to the dial pin 53, and the dial pin 53 is connected to the slot. 424 is plug-fitted so that the clamping block 422 can exert force on the spring 421 .
  • the end of the driving pin 53 may be provided with a boss to ensure the stability when it is plugged into the clamping block 422 .
  • four clamping structures 42 may be provided, and the four clamping structures 42 are evenly distributed on the oscillating frame 41 , for example, on the oscillating frame 41
  • the connecting rod 511 can be disposed on the side of the illumination platform 51 in the length direction.
  • the number of the clamping structure 42 , the connecting rod 511 and the dial pin 53 can be increased or decreased according to the actual needs of use, and their setting position can be adjusted according to the actual needs of use, but it should always be so as to ensure
  • the premise is the stability of the connection between the lighting platform 51 and the oscillation frame 41 .
  • the culture light sources 54 correspond to the growth chambers one-to-one; the culture light sources 54 are connected to the controller 30 , and the controller 30 is also used to control the operation of each of the culture light sources 54 . That is, four groups of light sources are provided on the illumination platform 51 , and each group of light sources includes an array of 12 rows by 8 columns of culture light sources 54 . It should be noted that the controller 30 can control the opening and closing (ie, working time and working duration) of any culture light source 54 in the illumination platform 51 as well as its working power, so as to set up a comparative reference experiment. In addition, a structure may be provided between each culture light source 54 and/or between the growth chambers of each microplate to avoid interference of light signals between different wells.
  • the driving pin base 58 can be connected to a driving module (not shown in the figure), the driving module is connected to the controller 30 , and the driving module is used to drive the driving pin base 58 together with the driving pin 53 Move along the length direction of the lighting module. Specifically, when the driving pin 53 is inserted into the slot 424 , the driving module driving the driving pin 53 to move will drive the clamping block 422 plug-connected with the driving pin 53 to move synchronously.
  • the clamping block 422 moves in a direction close to the corresponding spring 421, the clamping block 422 squeezes the spring 421 and a gap is formed between the clamping block 422 and the inner wall of the installation groove for the connecting rod 511 to be inserted; when When the lever pin 53 is separated from the slot 424, or when the lever pin 53 causes the clamping block 422 to press the spring 421 to disappear, the spring 421 will exert a reaction force on the clamping block 422. , so that the locking groove 423 locks and fixes the connecting rod 511, thereby realizing the connection between the illumination platform 51 and the oscillation frame 41.
  • the dial pin 53 is controlled to be inserted into the corresponding slot 424, and the clamping block 422 is driven to squeeze the spring 421.
  • the clamping The block 422 loses its pressing force on the corresponding connecting rod 511, and the gap between the clamping block 422 and the inner wall of the installation groove becomes larger to facilitate the disengagement of the connecting rod 511, so that the lighting platform 51 is separated from the oscillating frame 41 Detach.
  • the oscillating frame 41 is in
  • the oscillating motor 44 makes an oscillating motion
  • the illumination platform 51 and the culture light source 54 thereon will be driven to make oscillating motion in synchronization with it, so that the culture light source 54 is always aligned with the corresponding growth chamber. , providing a stable light environment for the growth of microorganisms.
  • the connecting rod 511 and the dial pin 53 used in the embodiment of this specification the oscillation frame 41 and the lighting platform can also be realized through other structures and cooperation methods between the structures. 51 detachable connections.
  • the lighting module 50 further includes a first driving motor 56 , a first conveyor belt 57 and a pin base 58 .
  • the first drive motor 56 is connected to the controller 30, the output shaft of the first drive motor 56 is connected to the first conveyor belt 57, and the first conveyor belt 57 is drivingly connected to the dial pin base 58, The first conveyor belt 57 is used to align the dial pin 53 with the oscillation module 40 under the control of the controller 30 .
  • the transmission direction of the first conveyor belt 57 is adapted to the length direction of the oscillation frame 41.
  • the controller 30 drives the first drive motor 56 to operate, the first drive motor 56
  • the output shaft rotates and drives the first conveyor belt 57 to rotate, and the first conveyor belt 57 is connected to the dial base 58 , that is, the illumination platform 51 , so it will drive the illumination platform 51 along the direction of the oscillation frame 41 Move lengthwise.
  • the lighting platform 51 may not be lifted to be connected to the oscillating frame 41 (of course, the lighting platform 51 may also be lifted to be connected to the oscillating frame 41 41 is connected but the culture light source 54 does not work under the control of the controller 30), when the oscillation module 40 stops oscillating under the control of the controller 30, its position may not be restored to its original position.
  • the illumination platform 51 can be adjusted along the length direction of the oscillation frame 41 .
  • a motor and a conveyor belt structure for adjusting the illumination platform along the width direction of the oscillation frame 41 can also be provided.
  • the oscillation motor 44 may also be provided with a position sensor or encoder, and the position sensor and encoder may be used to obtain the position of the oscillation frame 41 on the oscillation horizontal plane, thereby The illumination platform 51 is adjusted according to this position, thereby improving the efficiency of adjusting the position of the illumination platform.
  • the measurement module 60 includes an absorbance detector, a detection bracket 61, a second drive motor 62 and a second conveyor belt 63.
  • the absorbance detector is arranged on the detection bracket 61.
  • the second drive motor 62 is connected to the controller 30, and the output shaft of the second drive motor 62 is connected to the second conveyor belt 63;
  • the second conveyor belt 63 is arranged on the detection platform 20 and It is drivingly connected to the detection bracket 61 . Therefore, under the control of the controller 30, the second driving motor 62 rotates to drive the second conveyor belt 63, so that the detection bracket 61 and the absorbance detector on it move on the detection stage 20.
  • the microbial samples on the shaking rack 41 passing along the way are detected.
  • the detection bracket 61 includes a vertical bracket 613, a first horizontal bracket 611 and a second horizontal bracket 612.
  • the first horizontal bracket 611 and the second horizontal bracket 612 are both connected to the vertical bracket 613; And the first horizontal bracket 611 and the second horizontal bracket 612 are disposed on the same side of the vertical bracket 613 .
  • the absorbance detector includes a transmitting unit and a receiving unit.
  • the transmitting unit is disposed on one of the first horizontal bracket 611 and the second horizontal bracket 612 .
  • the receiving unit is disposed on the first horizontal bracket 611 and the second horizontal bracket 612 .
  • the transmitting unit and the receiving unit are arranged oppositely; a space is formed between the first horizontal bracket 611 and the second horizontal bracket 612 to avoid the oscillation module 40 Clearance. That is, the height of the first horizontal bracket 611 is higher than the height of the oscillation bracket 41 , and the height of the second horizontal bracket is lower than the height of the oscillation bracket 41 , so that when the measurement module 60 moves along the oscillation bracket, When moving in the length direction of 41, the receiving unit and the transmitting unit are respectively located on the upper and lower sides (or the lower and upper sides) of the oscillation frame, and the light emitted by the transmitting unit passes through the microorganisms in the growth chamber. Then it is received by the receiving unit, so that the growth curve of the microorganism can be obtained according to the optical density of the microbial liquid in the growth chamber.
  • the device provided by the embodiment of this specification also includes a temperature control module 70.
  • the temperature control module 70 is provided on the inner wall of the housing 10.
  • the temperature control module 70 includes a heating plate 71 and a temperature sensor ( (not shown in the figure), the heating plate 71 and the temperature sensor are both connected to the controller 30 .
  • the temperature sensor is arranged in the housing 10. The temperature sensor is used to obtain the ambient temperature of microbial growth in the housing 10 and send it to the controller 30.
  • the controller 30 can then detect the temperature of the environment according to the ambient temperature. Adjust the start, stop and working power of the heating plate 71 to control the ambient temperature.
  • the housing 10 is provided with a hatch 11 that can be flipped open.
  • the hatch 11 and the housing 10 can be connected through a pin 12 (as shown in Figure 1), or can be flipped and connected through a shaft pin 13 (as shown in Figure 1). shown in 13).
  • the lifting motor drives the lighting platform to rise.
  • the lighting platform and the oscillating frame are connected and fixed through the connecting rod and clamping structure.
  • the temperature sensor obtains the ambient temperature of microbial growth in the housing of the microbial growth curve measuring device. When the ambient temperature reaches the set, the oscillation motor is controlled to drive the oscillation frame and the lighting platform to oscillate. At the same time, the microorganisms in each growth chamber are illuminated and cultured according to the set light intensity.
  • the above-mentioned measurement module outputs the measured growth curve corresponding to the microorganisms in each growth chamber.
  • the microbial growth curve measuring device stops working, open the hatch and take out the enzyme plate.
  • the microorganism growth curve measurement device provided by the embodiments of this specification can meet the lighting environment and the environmental temperature required for growth, and can improve the throughput of microbial culture and growth curve measurement, and improve the efficiency and efficiency of growth curve measurement. Accurate, promoting the construction of high-throughput and highly automated experimental platforms.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be an indirect coupling or communication connection through some interfaces, devices or units, or may be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the embodiments of this article.
  • each functional unit in each embodiment of this article can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution in this article essentially contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this article.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

一种微生物生长曲线测定装置,包括壳体(10)以及设置在壳体(10)内的振荡模块(40)、光照模块(50)和测量模块(60),壳体(10)设置在检测台(20)上,振荡模块(40)、光照模块(50)和测量模块(60)均与控制器(30)相连;振荡模块(40)用于在控制器(30)的控制下振荡,振荡模块(40)设置有振荡架(41),振荡架(41)用于承载微生物样品;光照模块(50)设置在振荡模块(40)的下方,光照模块(50)用于在控制器(30)的控制下为微生物样品提供光照条件;测量模块(60)用于在控制器(30)的控制下从振荡模块(40)的一端移动至振荡模块(40)的另一端,并对沿途经过的振荡架(41)上承载的微生物样品进行生长曲线检测。该装置能够为微生物提供光照生长环境;且自动化程度高,人工参与度低,从而大大提高了生长曲线测定的效率和准确率。

Description

一种微生物生长曲线测定装置 技术领域
本文涉及微生物科研仪器技术领域,尤其是一种微生物生长曲线测定装置。
背景技术
微生物生长曲线能够反映在一定培养环境下培养时的微生物群体的生长规律,对获取微生物生长情况,最适培养环境等信息有重要的意义。测定微生物生长曲线常用方法有比浊法,即利用分光光度计检测细菌悬液的光密度来推知菌液的浓度。比浊法需要实验技术人员每隔一段时间(一般1至2小时)手工取出菌液进行吸光度测量,整个实验周期耗时较长(通常大于12小时),因此检测效率较低;且检测标准化水平低,吸光度测量操作时污染杂菌概率较大,存在检测结果不准确的问题。除此之外,现有的微生物生长曲线测定仪难以为微生物的生长提供光照环境。
有鉴于此,本文旨在提供一种微生物生长曲线测定装置,能够显著提高微生物生长曲线测定的效率和准确率。
发明内容
本文的目的在于,提供一种微生物生长曲线测定装置,以解决现有技术中生长曲线测定效率底下以及准确性差的问题。
为了解决上述技术问题,本文的具体技术方案如下:
本文提供一种微生物生长曲线测定装置,包括壳体,所述壳体设置在检测台上,所述壳体内设置有振荡模块、光照模块和测量模块,所述振荡模块、光照模块和测量模块均与控制器相连;
所述振荡模块用于在所述控制器的控制下振荡,所述振荡模块设置有振荡架,所述振荡架用于承载微生物样品;
所述光照模块设置在所述振荡模块的下方,所述光照模块用于在所述控制器的控制下为微生物样品提供光照条件;
所述测量模块用于在所述控制器的控制下从所述振荡模块的一端移动至所述振荡模块的另一端,并对沿途经过的所述振荡架上承载的微生物样品进行生长曲线检测。
具体地,所述光照模块包括光照平台、升降电机、连接杆、升降平台和培养光源;
所述升降电机与所述控制器和所述升降平台相连,所述升降电机用于带动所述升降平台升降以靠近或远离所述振荡模块;
所述光照平台设置在所述升降平台靠近所述振荡模块的一侧,所述升降平台与所述光照平台可分离连接;
所述连接杆和所述培养光源均设置在所述光照平台上,所述培养光源与所述控制器相连并在所述控制器的控制下工作;所述连接杆用于与所述振荡模块相连以使所述培养光源与所述振荡模块同步振荡。
进一步地,所述振荡模块包括卡接结构;所述振荡模块面朝所述光照平台的一侧设置有安装槽,所述卡接结构设置在所述安装槽内,所述卡接结构与所述连接杆相配合。
进一步地,所述卡接结构包括相连接的弹簧和卡接块;
所述卡接块远离所述弹簧的一端设有卡接槽,所述卡接槽与所述连接杆相适配,所述卡接槽和所述连接杆卡接配合实现所述振荡模块与所述光照模块的相连。
优选地,所述卡接块上还设有插槽,所述光照模块还包括拨销;
所述拨销设置在拨销底座上,所述拨销底座位于所述升降平台远离所述振荡模块的一侧,所述拨销底座与所述升降平台固定连接;所述插槽与所述拨销相适配,所述拨销与所述插槽插接配合使得所述卡接块施加作用力于所述弹簧上。
具体地,所述振荡模块还包括酶标板、振荡电机、第一轴承和连接板;
所述酶标板与所述振荡架可拆卸连接;所述酶标板上设置有用于微生物生长的生长室;所述第一轴承的一端与所述振荡电机的第一输出轴相连,所述第一轴承的另一端与所述连接板相连,所述连接板与所述振荡架相连;所述第一输出轴与所述第一轴承偏心设置,所述振荡电机与所述控制器相连以在所述控制器的控制下带动所述振荡架振荡。
进一步地,所述振荡模块还包括限位结构,所述限位结构与所述控制器相连,所述限位结构用于限制所述振荡架的振荡幅度。
优选地,所述培养光源与所述生长室一一对应;所述培养光源与所述控制器相连,所述控制器还用于控制各所述培养光源工作。
具体地,所述测量模块包括吸光度检测仪、检测支架、第二驱动电机和第二传送带,所述吸光度检测仪设置在所述检测支架上,所述第二驱动电机与所述控制器相连,所述第二驱动电机的输出轴与所述第二传送带相连;所述第二传送带设置在所述检测台上并与所述检测支架传动连接;
所述检测支架包括竖直支架、第一水平支架和第二水平支架,所述第一水平支架和 第二水平支架均与所述竖直支架相连;所述吸光度检测仪包括发射单元和接收单元,所述发射单元设置在所述第一水平支架和第二水平支架中的一个上,所述接收单元设置在所述第一水平支架和第二水平支架中的另一个上,所述发射单元和所述接收单元相对设置;所述第一水平支架和所述第二水平支架之间形成有用于避让所述振荡模块的间隙。
具体地,所述装置还包括温控模块,所述温控模块设置在所述壳体的内壁,所述温控模块包括加热板和温度传感器,所述加热板和所述温度传感器均与所述控制器相连。
采用上述技术方案,本文提供的微生物生长曲线测定装置,能够为微生物提供光照生长环境;自动化程度高,人工参与度低,降低了人工因素带来的误差,从而极大地提高了生长曲线测定的效率和准确率。
为让本文的上述和其他目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附图式,作详细说明如下。
附图说明
为了更清楚地说明本文实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本文的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本文实施例提供的一种微生物生长曲线测定装置整体的结构示意图;
图2示出了本文实施例提供的一种微生物生长曲线测定装置内部的结构示意图;
图3示出了本文实施例提供的一种微生物生长曲线测定装置的控制逻辑示意图;
图4示出了本文实施例中振荡模块的结构示意图;
图5示出了第一轴承与振荡电机的装配示意图;
图6示出了本文实施例中振荡模块底部的结构示意图;
图7示出了本文实施例中限位结构的结构示意图;
图8示出了本文实施例中振荡模块和光照模块在另一个视角下的结构示意图;
图9示出了本文实施例中卡接结构的结构示意图;
图10示出了本文实施例中光照模块的结构示意图;
图11示出了本文实施例中光照模块底部的结构示意图;
图12示出了本文实施例中测量模块的结构示意图;
图13示出了本文实施例中温控模块的结构示意图。
附图符号说明:
10、壳体;
11、舱门;
12、销钉;
13、轴销;
20、检测台;
30、控制器;
40、振荡模块;
41、振荡架;
42、卡接结构;
421、弹簧;
422、卡接块;
423、卡接槽;
424、插槽;
43、酶标板;
44、振荡电机;
441、第一输出轴;
45、第一轴承;
46、连接板;
47、配重块;
48、限位结构;
481、限位电机;
482、第二轴承;
483、滚轮;
484、第一随动轮;
485、第二连接臂;
486、拉簧;
50、光照模块;
51、光照平台;
511、连接杆;
52、升降电机;
53、拨销;
54、培养光源;
55、滑轨;
56、第一驱动电机;
57、第一传送带;
58、拨销底座;
59、升降平台;
60、测量模块;
61、检测支架;
611、第一水平支架;
612、第二水平支架;
613、竖直支架;
62、第二驱动电机;
63、第二传送带;
70、温控模块;
71、加热板。
具体实施方式
下面将结合本文实施例中的附图,对本文实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本文一部分实施例,而不是全部的实施例。基于本文中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本文保护的范围。
需要说明的是,本文的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本文的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、装置、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这 些过程、方法、产品或设备固有的其它步骤或单元。
现有的测定微生物生长曲线的方法主要有体积测量法、称干重法、比浊法等。微生物的生长会引起培养物混浊度的增高,比浊法则是利用分光光度计检测细菌悬液的光密度来推知菌液的浓度,进而得到微生物的生长曲线的方法。但比浊法测定微生物生长曲线时需要实验技术人员每隔一段时间(一般1至2小时)手工取出菌液进行吸光度测量,整个实验周期耗时较长(通常大于12小时),因此检测效率较低;且检测标准化水平低,吸光度测量操作时污染杂菌概率较大,存在检测结果不准确的问题。且现有的微生物生长曲线测定仪难以为微生物的生长提供光照环境。
为了解决上述问题,本文实施例提供了一种微生物生长曲线测定装置,能够提供微生物生长所需的光照条件,并且可提高微生物生长曲线测定的效率和准确率。具体的,如图1至图13所示,所述微生物生长曲线测定装置包括壳体10,所述壳体10设置在检测台20上,所述壳体10内设置有振荡模块40、光照模块50和测量模块60,所述振荡模块40、光照模块50和测量模块60均与控制器30相连。
所述振荡模块40用于在所述控制器30的控制下振荡,所述振荡模块40设置有振荡架41,所述振荡架41用于承载微生物样品;所述光照模块50设置在所述振荡模块40的下方,所述光照模块50用于在所述控制器30的控制下为微生物样品提供光照条件;所述测量模块60用于在所述控制器30的控制下从所述振荡模块40的一端移动至所述振荡模块40的另一端,并对沿途经过的所述振荡架41上承载的微生物样品进行生长曲线检测。
本说明书实施例中,所述控制器30可以为单片机、微处理器(MCU)、数字信号处理器(DSP)等,也可以是集成有控制器的控制板等。本说明书实施例中,如图3所示,所述振荡模块40、光照模块50和测量模块60均与控制器30相连是指所述振荡模块40、光照模块50和测量模块60通过控制线或数据线等方式与控制器30实现有线电连接,或通过无线通信技术与控制器30之间实现无线通信连接。
本说明书实施例提供的微生物生长曲线测定装置,其中光照模块能够为光能营养型微生物提供适宜的生长环境,提高了微生物生长曲线测定装置的适用范围;测量模块能够在控制器的控制下沿振荡模块移动并对其中的微生物样品进行生长曲线测量,自动化程度高,有利于提高检测效率;并且能够减少人工参与,从而降低了人工因素带来的误差,有利于提高生长曲线检测准确率。
需要说明的是,本说明书实施例中,所述振荡架41可以为长条形设置并与所述检测台20的长度方向相适配,则所述测量模块60可沿所述振荡模块40的长度方向移动,示例性的,所述测量模块60可以从图2的左侧向图2的右侧移动。当然了,所述测量模块60也可以沿所述振荡模块40的宽度方向移动,则所述测量模块60的检测范围应适当调整以满足对沿途所有的微生物样品的检测需求。
如图4所示,所述振荡模块40还包括酶标板43、振荡电机44、第一轴承45和连接板46。
所述酶标板43与所述振荡架41可拆卸连接;所述酶标板43上设置有用于微生物生长的生长室。本说明书实施例中,如图4所示,所述振荡架41上可并排设置有4块酶标板43,每个酶标板43可均为96孔,即每个酶标板43上均可设置有96个生长室,从而可提高所承载的微生物样品的数量、提高微生物生长曲线的测定通量。示例性的,本说明书实施例中,这96个生长室呈12排乘8列排布,则所述测量模块60的测量范围至少应覆盖同一列的12个生长室。当然了,所述酶标板43的数量、所述酶标板43上生长室的数量及其排布方式可根据实际需要进行调整,则所述测量模块60的测量范围也应当随所述酶标板43的大小,及其上生长室的数量及其排布方式进行适应性调整。
在一些优选的实施例中,所述振荡架41上可设置有固定结构,所述固定结构用于使得所述酶标板43在振荡的过程中不被甩出。
如图4和图5所示,所述第一轴承45的一端与所述振荡电机44的第一输出轴441相连,所述第一轴承45的另一端与所述连接板46相连,所述连接板46与所述振荡架41相连;所述振荡电机44的第一输出轴441与所述第一轴承45偏心设置,所述振荡电机44与所述控制器30相连以在所述控制器30的控制下带动所述振荡架41振荡。
如图5所示,为所述第一轴承45与所述振荡电机44的装配示意图。如图4和图5所示,所述振荡电机44在所述控制器30的控制下其第一输出轴441旋转运动,与所述第一输出轴441偏心传动连接的第一轴承45随之进行振荡运动,从而带动所述振荡架41及设置在其上的微生物样品振荡。
如图4、图6和图7所示,所述振荡模块40还包括限位结构48,所述限位结构48与所述控制器30相连,所述限位结构48用于限制所述振荡架41的振荡幅度。
具体地,所述限位结构48包括限位电机481、第二轴承482和滚轮483。所述限位电机481经所述第二轴承482与滚轮483相连;所述滚轮483与所述第二轴承482偏心设置。所述连接板46靠近所述限位结构48的一侧形成有第一连接臂和第二连接臂485, 所述第一连接臂可与所述连接板46一体成型,所述第一连接臂连接有第一随动轮484,所述第一随动轮484的轴心与所述第一连接臂同轴;所述第二连接臂与所述连接板46转动连接,所述第二连接臂485连接有第二随动轮,所述第二随动轮的轴心与所述第二连接臂485同轴。所述第一连接臂与所述第二连接臂485之间设置有拉簧486,所述拉簧486使得所述第一随动轮484与第二随动轮始终与所述滚轮483抵靠。从而所述限位结构48在所述控制器30的控制下工作实现对所述振荡模块40振荡幅度的限制。
需要说明的是,以上仅是限位结构的一种可行的实施方式,除上述限位结构48所具有的具体结构和连接关系外,还可以通过具有其他结构和其他连接关系的限位结构来实现对所述振荡模块40振荡幅度的限制。
所述振荡模块还包括配重块47,所述配重块47设置在所述连接板46远离所述振荡架41的一侧,所述配重块47用于使所述振荡架41的振荡方向在水平平面上,从而避免所述振荡架41上微生物样品在振荡过程中倾翻。
如图6和图8所示,本说明书实施例中,所述振荡模块40包括卡接结构42;所述卡接结构42设置在所述振荡架41的底部,所述卡接结构42用于将所述振荡模块40与所述光照模块50相连以使得所述光照模块50(具体的,是其中的光照平台51)随所述振荡模块40同步振荡。在一些可行的实施例中,所述振荡架41面朝所述光照模块50的一侧设置有安装槽(图中未示出),所述卡接结构42设置在所述安装槽内。
如图8、图10和图11所示,所述光照模块50包括光照平台51、连接杆511、升降电机52、培养光源54和升降平台59。
所述升降电机52与所述控制器30和所述升降平台59相连,所述升降电机52用于带动所述升降平台59升降;所述升降平台59上承载连接有所述光照平台51,即所述光照平台51设置在所述升降平台59靠近所述振荡模块40的一侧,从而带动所述光照平台51靠近或远离所述振荡模块40。具体地,所述升降电机52的输出轴经传动结构(图中未示出),例如螺母等,与滑轨55相连,所述滑轨55与所述升降平台59相连。从而当所述升降电机52在所述控制器30的控制下其输出轴正转或反转时,传动结构可将旋转运动转变为直线往复运动,即带动所述升降平台59连同所述光照平台51升降。进一步地,本说明书实施例中,所述升降平台59与所述光照平台51可分离连接,也就是说,当升降平台59将所述光照平台51举升至振荡模块40的下方并与之稳固连接后,升降平台59可与所述光照平台51实现分离,从而,在所述光照平台51随着所述振荡架41同步振动时,所述升降平台59连同所述升降电机52等部件均不随之振荡。
优选地,本说明书实施例中,所述检测台20上可设置有供所述光照模块50下降通过的通道,也就是说,所述检测台20不会对所述光照模块50下降的行程造成干涉。当所述光照平台51与所述振荡架41分离并下降至所述检测台20的台面以下时,可便于所述测量模块60移动检测。
如图8至图11所示,所述连接杆511(如图8所示)和所述培养光源54均设置在所述光照平台51上,所述培养光源54与所述控制器30相连并在所述控制器30的控制下工作;所述连接杆511与所述卡接结构42卡接配合以使所述培养光源54与所述振荡模块40同步振荡。具体地,所述卡接结构42包括相连接的弹簧421和卡接块422;所述弹簧421为预压缩状态以将所述卡接块422抵接固定在所述安装槽内。所述卡接块422远离所述弹簧421的一端设有卡接槽423,所述卡接槽423与所述连接杆511相适配,所述卡接槽423和所述连接杆511卡接配合实现所述振荡模块40与所述光照模块50的相连。
所述卡接块422上还设有插槽424,所述光照模块50还包括拨销53;所述拨销53设置在拨销底座58上,所述拨销底座58位于所述升降平台59远离所述振荡模块40的一侧,所述拨销底座58与所述升降平台59固定连接;所述插槽424与所述拨销53相适配,所述拨销53与所述插槽424插接配合使得所述卡接块422可施加作用力于所述弹簧421上。所述拨销53的端部可设有凸台以保证其与所述卡接块422插接时的稳固性。
需要说明的是,本说明书实施例中,所述卡接结构42可设置有四个,且四个所述卡接结构42均匀分布在所述振荡架41上,例如,在所述振荡架41的两条长边上各设置有两个卡接结构42;则与之相适配的,所述连接杆511和所述拨销53也均设置有四个。所述连接杆511可设置在所述光照平台51其长度方向的侧面上。当然了,所述卡接结构42、所述连接杆511和所述拨销53的数量可根据实际使用需要进行增减,以及其设置位置可根据实际使用需要进行调节,但应使得始终以保证所述光照平台51与所述振荡架41连接的稳固性为前提。
所述培养光源54与所述生长室一一对应;所述培养光源54与所述控制器30相连,所述控制器30还用于控制各所述培养光源54工作。即所述光照平台51上设有四组光源,且每组光源包括12排乘8列的培养光源54阵列。需要说明的是,所述控制器30可控制光照平台51中任意一个培养光源54的开闭(即工作时间和工作时长)以及其工作功率,起到设置对比参照实验的作用。另外,各培养光源54之间和/或各酶标板的生长室之间可设置有避免不同孔目间的光信号干扰的结构。
所述拨销底座58可连接有驱动模块(图中未示出),所述驱动模块与所述控制器30相连,所述驱动模块用于驱动所述拨销底座58连同所述拨销53沿所述光照模块的长度方向移动。具体地,当所述拨销53***所述插槽424时,所述驱动模块带动所述拨销53移动时将带动与所述拨销53插接连接的卡接块422同步移动。当卡接块422向靠近与之对应的弹簧421所在的方向移动时,卡接块422挤压所述弹簧421且卡接块422与安装槽内壁间形成有供连接杆511***的间隙;当拨销53脱离所述插槽424时,或拨销53使得所述卡接块422挤压所述弹簧421的作用力消失时,所述弹簧421将施加反作用力于所述卡接块422上,以使得所述卡接槽423将所述连接杆511卡住固定,从而实现了所述光照平台51与所述振荡架41的相连。与之相似的,当使得所述光照平台51与所述振荡架41相分离时,控制所述拨销53***对应的插槽424,并带动卡接块422挤压弹簧421,此时卡接块422失去对相应连接杆511的抵压作用力,且卡接块422与安装槽内壁间的间隙变大以便于所述连接杆511脱离,从而所述光照平台51从所述振荡架41处脱离。
本说明书实施例中,通过设置所述卡接结构42、所述连接杆511和拨销53,使得当所述连接杆511与所述卡接结构42卡接相连时,所述振荡架41在所述振荡电机44的带动下做振荡运动时,将带动光照平台51以及其上的培养光源54做与之同步的振荡运动,从而,使得所述培养光源54始终对准与之对应的生长室,为微生物的生长提供稳定的光照环境。当然了,除本说明书实施例中所采用的卡接结构42、连接杆511和拨销53外,还可以通过其他结构和各结构间的配合方法来实现所述振荡架41与所述光照平台51的可拆卸连接。
如图8和图11所示,所述光照模块50还包括第一驱动电机56、第一传送带57和拨销底座58。
所述第一驱动电机56与所述控制器30相连,所述第一驱动电机56的输出轴与所述第一传送带57相连,所述第一传送带57与所述拨销底座58传动连接,所述第一传送带57用于在所述控制器30的控制下将所述拨销53与所述振荡模块40对准。
示例性的,所述第一传送带57的传送方向与所述振荡架41的长度方向相适配,所述控制器30驱动所述第一驱动电机56工作时,所述第一驱动电机56的输出轴旋转并带动所述第一传送带57转动,而所述第一传送带57与所述拨销底座58即所述光照平台51相连,因此将带动所述光照平台51沿所述振荡架41的长度方向移动。
在一些无需光照环境的微生物培养和微生物生长曲线测定实验中,所述光照平台51 可不举升至与所述振荡架41相连(当然,所述光照平台51也可举升至与所述振荡架41相连但在控制器30的控制下培养光源54不工作),则当所述振荡模块40在所述控制器30的控制下振荡停止时,其位置可能未恢复至其初始位置。此时,若需要提供光照环境,则不仅需将光照平台举升,还需要调节所述光照平台51在水平方向的位置以使得所述光照平台中各培养光源54对准振荡架41上微生物的各生长室。则通过本说明书实施例中的所述第一驱动电机56和第一传送带57,可实现对光照平台51在沿振荡架41长度方向的调节。与之相似地,还可以设置实现所述光照平台沿振荡架41宽度方向调节的电机和传送带结构。
在一些可行的实施例中,所述振荡电机44处还可设置有位置传感器或编码器,所述位置传感器、所述编码器可用于获取所述振荡架41在振荡水平平面上的位置,从而根据该位置调节所述光照平台51,从而提高对光照平台位置调节效率。
如图12所示,本说明书实施例中,所述测量模块60包括吸光度检测仪、检测支架61、第二驱动电机62和第二传送带63,所述吸光度检测仪设置在所述检测支架61上,所述第二驱动电机62与所述控制器30相连,所述第二驱动电机62的输出轴与所述第二传送带63相连;所述第二传送带63设置在所述检测台20上并与所述检测支架61传动连接。从而在所述控制器30的控制下,所述第二驱动电机62转动以带动所述第二传送带63,从而使得所述检测支架61连同其上的吸光度检测仪在所述检测台20移动以对沿途经过的振荡架41上的微生物样品进行检测。
可选的,所述检测支架61包括竖直支架613、第一水平支架611和第二水平支架612,所述第一水平支架611和第二水平支架612均与所述竖直支架613相连;且所述第一水平支架611与所述第二水平支架612设置在所述竖直支架613的同一侧。所述吸光度检测仪包括发射单元和接收单元,所述发射单元设置在所述第一水平支架611和第二水平支架612中的一个上,所述接收单元设置在所述第一水平支架611和第二水平支架612中的另一个上,且所述发射单元和所述接收单元相对设置;所述第一水平支架611和所述第二水平支架612之间形成有用于避让所述振荡模块40的间隙。即所述第一水平支架611的高度高于所述振荡架41的高度,所述第二水平支架的高度低于所述振荡架41的高度,从而在所述测量模块60沿所述振荡架41的长度方向移动时,所述接收单元和所述发射单元分别位于所述振荡架的上下两侧(或下上两侧),所述发射单元发射的光线透过所述生长室中的微生物进而被接收单元接收,从而根据所述生长室中微生物菌液的光密度得到微生物的生长曲线。
如图13所示,本说明书实施例提供的装置还包括温控模块70,所述温控模块70设置在所述壳体10的内壁,所述温控模块70包括加热板71和温度传感器(图中未示出),所述加热板71和所述温度传感器均与所述控制器30相连。所述温度传感器设置在所述壳体10内,所述温度传感器用于获取所述壳体10内微生物生长的环境温度并发送给控制器30,所述控制器30则可根据所述环境温度调节所述加热板71的启停以及工作功率,实现对环境温度的控制。
所述壳体10设置有可翻转打开的舱门11,所述舱门11与所述壳体10可通过销钉12相连(如图1所示),也可以通过轴销13翻转连接(如图13所示)。
为更清楚明白地说明本说明书实施例提供的微生物生长曲线测定装置,下面将对其的操作步骤进行简单介绍。
(1)预先准备好承载有微生物的酶标板。
(2)打开舱门11,将酶标板43放置于振荡架41上,关闭舱门11。
(3)设定所述微生物生长曲线测定装置的实验参数,包括振荡转速(即振荡电机的振荡转速)、培养温度(即所述加热板71的工作温度)、培养时间、光照强度(即各培养光源的工作功率)、光照时间、检测波长(即所述吸光度检测仪发射单元的出光属性)及检测次数和检测时间间隔(即所述测量模块每隔多久进行一次微生物生长曲线测量工作)等等。实验参数设置好后,使微生物生长曲线测定装置开始运作。
(4)升降电机带动光照平台升举升,通过连接杆及卡接结构使得光照平台与振荡架相连固定,温度传感器获取微生物生长曲线测定装置壳体内微生物生长的环境温度,当环境温度达到设定的培养温度时,控制振荡电机工作以带动振荡架及光照平台振荡,同时按设定光照强度的对各生长室中的微生物进行光照培养。
(5)培养期间当需进行生长曲线测量时,停止振荡并关闭培养光源,控制升降电机工作以带动光照平台下降并与振荡架脱离;控制测量模块从振荡架的一侧移动至振荡架的另一侧,以对沿途经过的微生物样本进行顺序检测。检测完毕后,控制测量模块移动至其初始位置(示例性的,初始位置可以是如图2所示,检测架的左侧),并重复上述步骤(3)至(5),直至达到设定的培养时间。
(6)上述测量模块输出测得的每个生长室中微生物对应的生长曲线。
(7)微生物生长曲线测定装置停止工作,打开舱门,取出酶标板。
综上,本说明书实施例提供的一种微生物生长曲线测定装置,能够满足光照环境和生长所需的环境温度,并能提高对微生物培养及生长曲线测定的通量,提高生长曲线测 定的效率和准确,促进了高通量、高自动化实验平台的建设。
应理解,在本文的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本文实施例的实施过程构成任何限定。
还应理解,在本文实施例中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本文的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本文所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本文实施例方案的目的。
另外,在本文各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本文的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本文各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本文中应用了具体实施例对本文的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本文的方法及其核心思想;同时,对于本领域的一般技术人员,依据本文的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本文的限制。

Claims (10)

  1. 一种微生物生长曲线测定装置,其特征在于,包括壳体,所述壳体设置在检测台上,所述壳体内设置有振荡模块、光照模块和测量模块,所述振荡模块、光照模块和测量模块均与控制器相连;
    所述振荡模块用于在所述控制器的控制下振荡,所述振荡模块设置有振荡架,所述振荡架用于承载微生物样品;
    所述光照模块设置在所述振荡模块的下方,所述光照模块用于在所述控制器的控制下为微生物样品提供光照条件;
    所述测量模块用于在所述控制器的控制下从所述振荡模块的一端移动至所述振荡模块的另一端,并对沿途经过的所述振荡架上承载的微生物样品进行生长曲线检测。
  2. 根据权利要求1所述的装置,其特征在于,所述光照模块包括光照平台、升降电机、连接杆、升降平台和培养光源;
    所述升降电机与所述控制器和所述升降平台相连,所述升降电机用于带动所述升降平台升降以靠近或远离所述振荡模块;
    所述光照平台设置在所述升降平台靠近所述振荡模块的一侧,所述升降平台与所述光照平台可分离连接;
    所述连接杆和所述培养光源均设置在所述光照平台上,所述培养光源与所述控制器相连并在所述控制器的控制下工作;所述连接杆用于与所述振荡模块相连以使所述培养光源与所述振荡模块同步振荡。
  3. 根据权利要求2所述的装置,其特征在于,所述振荡模块包括卡接结构;所述振荡模块面朝所述光照平台的一侧设置有安装槽,所述卡接结构设置在所述安装槽内,所述卡接结构与所述连接杆相配合。
  4. 根据权利要求3所述的装置,其特征在于,所述卡接结构包括相连接的弹簧和卡接块;
    所述卡接块远离所述弹簧的一端设有卡接槽,所述卡接槽与所述连接杆相适配,所述卡接槽和所述连接杆卡接配合实现所述振荡模块与所述光照模块的相连。
  5. 根据权利要求4所述的装置,其特征在于,所述卡接块上还设有插槽,所述光照模块还包括拨销;
    所述拨销设置在拨销底座上,所述拨销底座位于所述升降平台远离所述振荡模块的一侧,所述拨销底座与所述升降平台固定连接;所述插槽与所述拨销相适配,所述拨销与所述插槽插接配合使得所述卡接块施加作用力于所述弹簧上。
  6. 根据权利要求2所述的装置,其特征在于,所述振荡模块还包括酶标板、振荡电机、第一轴承和连接板;
    所述酶标板与所述振荡架可拆卸连接;所述酶标板上设置有用于微生物生长的生长室;所述第一轴承的一端与所述振荡电机的第一输出轴相连,所述第一轴承的另一端与所述连接板相连,所述连接板与所述振荡架相连;所述第一输出轴与所述第一轴承偏心设置,所述振荡电机与所述控制器相连以在所述控制器的控制下带动所述振荡架振荡。
  7. 根据权利要求6所述的装置,其特征在于,所述振荡模块还包括限位结构,所述限位结构与所述控制器相连,所述限位结构用于限制所述振荡架的振荡幅度。
  8. 根据权利要求6所述的装置,其特征在于,所述培养光源与所述生长室一一对应;所述培养光源与所述控制器相连,所述控制器还用于控制各所述培养光源工作。
  9. 根据权利要求1所述的装置,其特征在于,所述测量模块包括吸光度检测仪、检测支架、第二驱动电机和第二传送带,所述吸光度检测仪设置在所述检测支架上,所述第二驱动电机与所述控制器相连,所述第二驱动电机的输出轴与所述第二传送带相连;所述第二传送带设置在所述检测台上并与所述检测支架传动连接;
    所述检测支架包括竖直支架、第一水平支架和第二水平支架,所述第一水平支架和第二水平支架均与所述竖直支架相连;所述吸光度检测仪包括发射单元和接收单元,所述发射单元设置在所述第一水平支架和第二水平支架中的一个上,所述接收单元设置在所述第一水平支架和第二水平支架中的另一个上,所述发射单元和所述接收单元相对设置;所述第一水平支架和所述第二水平支架之间形成有用于避让所述振荡模块的间隙。
  10. 根据权利要求1所述的装置,其特征在于,所述装置还包括温控模块,所述温 控模块设置在所述壳体的内壁,所述温控模块包括加热板和温度传感器,所述加热板和所述温度传感器均与所述控制器相连。
PCT/CN2022/083114 2022-03-25 2022-03-25 一种微生物生长曲线测定装置 WO2023178668A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/083114 WO2023178668A1 (zh) 2022-03-25 2022-03-25 一种微生物生长曲线测定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/083114 WO2023178668A1 (zh) 2022-03-25 2022-03-25 一种微生物生长曲线测定装置

Publications (1)

Publication Number Publication Date
WO2023178668A1 true WO2023178668A1 (zh) 2023-09-28

Family

ID=88099586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083114 WO2023178668A1 (zh) 2022-03-25 2022-03-25 一种微生物生长曲线测定装置

Country Status (1)

Country Link
WO (1) WO2023178668A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105278375A (zh) * 2015-10-16 2016-01-27 珠海迪尔生物工程有限公司 一种智能自动化微生物检测设备及其方法
CN205193474U (zh) * 2015-10-16 2016-04-27 珠海迪尔生物工程有限公司 一种智能自动化微生物检测设备
WO2016088108A1 (en) * 2014-12-05 2016-06-09 Bacterioscan Ltd. Multi-sample laser-scatter measurement instrument with incubation feature, and systems for using the same
CN109486650A (zh) * 2018-09-20 2019-03-19 宁波新芝生物科技股份有限公司 一种微生物生长曲线测定仪
CN212152334U (zh) * 2019-12-26 2020-12-15 太仓市华利达实验设备有限公司 一种全温双层可控型光照振荡培养箱
CN113092433A (zh) * 2021-04-09 2021-07-09 广州新成生物科技有限公司 一种带振荡的荧光检测装置
CN214735792U (zh) * 2021-04-13 2021-11-16 上海知楚仪器有限公司 双层紫外灯带光照抽拉夹具摇床
CN215339529U (zh) * 2021-07-16 2021-12-28 中国科学院微生物研究所 一种多功能微生物生长曲线测定仪

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088108A1 (en) * 2014-12-05 2016-06-09 Bacterioscan Ltd. Multi-sample laser-scatter measurement instrument with incubation feature, and systems for using the same
CN105278375A (zh) * 2015-10-16 2016-01-27 珠海迪尔生物工程有限公司 一种智能自动化微生物检测设备及其方法
CN205193474U (zh) * 2015-10-16 2016-04-27 珠海迪尔生物工程有限公司 一种智能自动化微生物检测设备
CN109486650A (zh) * 2018-09-20 2019-03-19 宁波新芝生物科技股份有限公司 一种微生物生长曲线测定仪
CN212152334U (zh) * 2019-12-26 2020-12-15 太仓市华利达实验设备有限公司 一种全温双层可控型光照振荡培养箱
CN113092433A (zh) * 2021-04-09 2021-07-09 广州新成生物科技有限公司 一种带振荡的荧光检测装置
CN214735792U (zh) * 2021-04-13 2021-11-16 上海知楚仪器有限公司 双层紫外灯带光照抽拉夹具摇床
CN215339529U (zh) * 2021-07-16 2021-12-28 中国科学院微生物研究所 一种多功能微生物生长曲线测定仪

Similar Documents

Publication Publication Date Title
EP2762887B1 (en) Full-automatic immunity analyzer and detection method thereof
EP1309719B2 (en) Bioreactor and bioprocessing technique
CN110146712B (zh) 一种旋转抽样微型转盘式全自动发光免疫分析***
CN107828648B (zh) 微生物恒温连续自动培养检测药敏分析装置
CN106338429B (zh) 一种模块化全自动消解仪
CN103969459A (zh) 一种全自动生化分析方法
CN102519898A (zh) 单光源检测摇床发酵液体的装置
CN202256364U (zh) 一种全自动免疫分析仪
CN214374309U (zh) 一种化学发光免疫分析仪
WO2023178668A1 (zh) 一种微生物生长曲线测定装置
CN1696650A (zh) 流水线式自动连续工业分析仪
CN103728460B (zh) 一种自动化细菌性***病检测仪
CN117368463A (zh) 一种自动化酶联免疫前处理设备
CN113125693B (zh) 一种小型便携式全自动酶联免疫分析仪及其应用
CN109486650B (zh) 一种微生物生长曲线测定仪
CN113865512A (zh) 一种外形轮廓扫描测量装置及方法
CN114606122A (zh) 一种微生物生长曲线测定装置
CN210376404U (zh) 全自动检测装置
CN210528936U (zh) 多通道光路装置及微生物高通量培养和检测装置
CN202126439U (zh) 一种免疫层析自动检测装置
CN214937417U (zh) 一种微生物检测试剂盒
CN215975794U (zh) 一种微生物定期取样检测装置
CN107966577B (zh) 一种全自动凝集试验分析仪
CN110923123A (zh) 用于微生物培养的摇晃机构
CN201107269Y (zh) 离心式pcr分析仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932729

Country of ref document: EP

Kind code of ref document: A1