WO2023176829A1 - Photovoltaic element, optical sensor, imaging element, and fingerprint authentication device - Google Patents

Photovoltaic element, optical sensor, imaging element, and fingerprint authentication device Download PDF

Info

Publication number
WO2023176829A1
WO2023176829A1 PCT/JP2023/009840 JP2023009840W WO2023176829A1 WO 2023176829 A1 WO2023176829 A1 WO 2023176829A1 JP 2023009840 W JP2023009840 W JP 2023009840W WO 2023176829 A1 WO2023176829 A1 WO 2023176829A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
photoelectric conversion
layer
anode
photovoltaic
Prior art date
Application number
PCT/JP2023/009840
Other languages
French (fr)
Japanese (ja)
Inventor
耕平 柴田
大輔 北澤
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2023176829A1 publication Critical patent/WO2023176829A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/60Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation in which radiation controls flow of current through the devices, e.g. photoresistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • H10K30/86Layers having high hole mobility, e.g. hole-transporting layers or electron-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • H10K39/34Organic image sensors integrated with organic light-emitting diodes [OLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers

Definitions

  • Optical sensors generally include an independent photoelectric conversion element that converts light into electrical energy and a light emitting element, and the light from the light emitting element is irradiated onto an object, and the light transmitted or reflected from the object is used by the photoelectric conversion element. Receives and senses light.
  • Such an optical sensor can acquire biological information such as fingerprints, vein shapes, and blood oxygen concentration by using green light, red light, or near-infrared light, for example.
  • the substrate, the light emitting element, and the light receiving element mainly from organic materials, it is possible to construct a thin and flexible device (see, for example, Non-Patent Documents 1 and 2).
  • the photoelectric conversion element for example, includes at least a first electrode, a work function adjustment layer, a photoelectric conversion layer, an oxide semiconductor layer, and a second electrode in this order, and further includes a third electrode, The third electrode is arranged to be spaced apart from the second electrode and is arranged to face the photoelectric conversion layer with an insulating layer interposed therebetween, and the work function adjustment layer has oxygen that satisfies the stoichiometric composition.
  • a photoelectric conversion element for example, see Patent Document 1 has been proposed, which contains an amount of oxygen larger than the amount of oxygen.
  • an optical sensor is characterized in that an organic electroluminescent element with a reverse structure having a cathode on a substrate and an organic light receiving element with a reverse structure having a cathode on a substrate are formed on the same substrate.
  • a sensor for example, see Patent Document 2 has been proposed.
  • An object of the present invention is to provide a photovoltaic element with high photoelectric conversion efficiency.
  • the invention is as follows.
  • a photovoltaic element having at least an anode and a cathode, and having a buffer layer containing an organic material and a photoelectric conversion layer between the anode and the cathode, the organic material being the lowest unoccupied orbital LUMO.
  • a photovoltaic element including an organic material whose absolute value is larger than the absolute value of the work function WF of the anode, and having no layer made of a metal oxide between the anode and the photoelectric conversion layer.
  • the photovoltaic device according to [1] comprising at least an anode, a buffer layer, a photoelectric conversion layer, and a cathode in this order.
  • An imaging device comprising the photovoltaic device according to any one of [1] to [6].
  • a fingerprint authentication device comprising the photovoltaic element according to any one of [1] to [6] and an organic light emitting element, and performing fingerprint authentication using light emitted from the organic light emitting element.
  • FIG. 1 is a schematic cross-sectional view showing an example of a photovoltaic device of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing another example of the photovoltaic device of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing another example of the photovoltaic device of the present invention.
  • the photovoltaic element of the present invention has a buffer layer containing an organic material and a photoelectric conversion layer between an anode and a cathode.
  • the photoelectric conversion layer has a function of converting light into electrical energy.
  • the buffer layer has the function of improving the efficiency of charge separation in the photovoltaic element by extracting electrons from the layer on the anode side and increasing the hole density in the layer on the anode side, contributing to improving the photoelectric conversion efficiency. .
  • deep LUMO material By including an organic material (hereinafter sometimes referred to as "deep LUMO material") in which the absolute value of the lowest unoccupied orbital orbital LUMO is larger than the absolute value of the work function WF of the anode as the organic material in the buffer layer.
  • the photovoltaic element of the present invention does not have a layer made of metal oxide between the anode and the photoelectric conversion layer.
  • a layer made of metal oxide means a film made of metal oxide.
  • Metal oxides are compounds composed of metal and oxygen, such as molybdenum oxide (MoO 3 ) and titanium oxide (TiO 2 ). Even if a layer made of a substance other than a metal oxide is doped with a metal oxide, it is considered to be a layer made of a metal oxide.
  • the photovoltaic element of the present invention does not have a layer made of metal oxide from the viewpoint of photoelectric conversion efficiency and bending resistance of the device.
  • the photovoltaic element of the present invention preferably has an anode, a buffer layer, a photoelectric conversion layer, and a cathode in this order. These may be provided on the substrate. Further, a hole extraction layer or a hole transport layer may be provided between the anode and the photoelectric conversion layer, or an electron transport layer or an electron extraction layer may be provided between the photoelectric conversion layer and the cathode.
  • the photovoltaic device of the present invention preferably has an anode, a hole extraction layer, a buffer layer, a hole transport layer, a photoelectric conversion layer, an electron transport layer, an electron extraction layer, and a cathode in this order on a substrate.
  • FIG. 1 shows a schematic cross-sectional view of an example of the photovoltaic device of the present invention.
  • An anode 2, a buffer layer 3, a photoelectric conversion layer 4, and a cathode 5 are provided on a substrate 1 in this order.
  • FIG. 2 shows a schematic cross-sectional view of another example of the photovoltaic device of the present invention.
  • a cathode 5, a photoelectric conversion layer 4, a buffer layer 3, and an anode 2 are provided on a substrate 1 in this order.
  • FIG. 3 shows a schematic cross-sectional view of another example of the photovoltaic device of the present invention.
  • the substrate 1 has an anode 2, a hole extraction layer 6, a buffer layer 3, a hole transport layer 7, a photoelectric conversion layer 4, an electron transport layer 10, and a cathode 5 in this order. It has a p-type semiconductor layer 8 on the transport layer 7 side and an n-type semiconductor layer 9 on the electron transport layer 10 side.
  • the buffer layer includes a deep LUMO material.
  • deep LUMO materials include hexaazatriphenylene derivatives, tri(benzylidene)cyclopropane derivatives, phthalocyanine derivatives, and porphyrin derivatives. It is preferable to have an electron-withdrawing group such as a fluoro group, a halogen group such as a chloro group, a bromo group, or an iodo group, a carbonyl group, a cyano group, a nitro group, a sulfonyl group, or a perfluoroalkyl group.
  • HATCN hexaazatriphenylene Hexacarbonitrile
  • 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-hexa Copper decafluorophthalocyanine and the like are preferred. Two or more types of these may be included.
  • HATCN compound [A]
  • tri(benzylidene)cyclopropane derivatives generally formula (1) are preferred, and can further improve photoelectric conversion efficiency.
  • R 1 to R 6 may be the same or different, substituted or unsubstituted aryl group, substituted or unsubstituted heteroaryl group, cyano group, nitro group, halogen atom, and halogenated alkyl group.
  • at least one of R 1 to R 6 is a cyano group or a halogen atom.
  • at least one of R 1 to R 6 is preferably a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group.
  • R 1 , R 3 and R 5 are each independently a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group
  • R 2 , R 4 and R 6 are each independently a cyano group or a halogen atom. It is more preferable that
  • the alkyl group refers to, for example, a saturated aliphatic hydrocarbon group such as a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, or tert-butyl group.
  • a halogenated alkyl group refers to an alkyl group in which at least one hydrogen atom is substituted with a halogen atom.
  • the number of carbon atoms in the alkyl group is preferably 1 or more and 20 or less, more preferably 1 or more and 10 or less, and even more preferably 1 or more and 6 or less, from the viewpoint of raw material availability and vapor deposition stability.
  • the carbon number of the alkyl group does not include the carbon number of the substituent, and this point is also common to the following description.
  • Aryl groups include, for example, phenyl group, biphenyl group, terphenyl group, naphthyl group, fluorenyl group, benzofluorenyl group, dibenzofluorenyl group, phenanthryl group, anthracenyl group, benzophenanthryl group, and benzanthracetyl group.
  • Indicates aromatic hydrocarbon groups such as nyl group, chrysenyl group, pyrenyl group, fluoranthenyl group, triphenylenyl group, benzofluoranthenyl group, dibenzaanthracenyl group, perylenyl group, and helicenyl group.
  • phenyl group biphenyl group, terphenyl group, naphthyl group, fluorenyl group, phenanthryl group, anthracenyl group, pyrenyl group, fluoranthenyl group, and triphenylenyl group are preferable.
  • the aryl group may or may not have a substituent.
  • substituents examples include an alkyl group, an alkoxy group, an aryloxy group, an amino group, a monoalkylamino group, a dialkylamino group, a monoarylamino group, a diarylamino group, a cyano group, an alkoxycarbonyl group, a halogen, a hydroxy group, Examples include a thiol group, thioalkyl group, nitro group, halogenated alkyl group, aryl group, and heteroaryl group.
  • the number of ring carbon atoms in the aryl group is preferably 6 or more and 40 or less, more preferably 6 or more and 30 or less. Further, in the phenyl group, when there are substituents on two adjacent carbon atoms in the phenyl group, these substituents may form a ring structure together.
  • Heteroaryl groups include, for example, pyridyl group, furanyl group, thiophenyl group, quinolinyl group, isoquinolinyl group, pyrazinyl group, pyrimidyl group, pyridazinyl group, triazinyl group, naphthyridinyl group, cinnolinyl group, phthalazinyl group, quinoxalinyl group, quinazolinyl group, Benzofuranyl group, benzothiophenyl group, indolyl group, dibenzofuranyl group, dibenzothiophenyl group, carbazolyl group, benzocarbazolyl group, carbolinyl group, indolocarbazolyl group, benzofurocarbazolyl group, benzothienocarba Non-carbon groups such as zolyl group, dihydroindenocarbazolyl group, benzoquinolinyl group, acridinyl
  • the naphthyridinyl group refers to any of the following: 1,5-naphthyridinyl group, 1,6-naphthyridinyl group, 1,7-naphthyridinyl group, 1,8-naphthyridinyl group, 2,6-naphthyridinyl group, 2,7-naphthyridinyl group. Show that.
  • a heteroaryl group may or may not have a substituent.
  • substituents include alkyl groups, alkoxy groups, aryloxy groups, amino groups, monoalkylamino groups, dialkylamino groups, monoarylamino groups, diarylamino groups, cyano groups, ester groups, halogens, hydroxy groups, and thiols. group, thioalkyl group, nitro group, halogenated alkyl group, aryl group, etc.
  • the number of ring carbon atoms in the heteroaryl group is preferably 2 or more and 40 or less, more preferably 2 or more and 30 or less.
  • Halogen refers to fluorine, chlorine, bromine, and iodine.
  • the difference between LUMO [eV] and WF [eV] of the deep LUMO material is preferably 0.01 eV or more, more preferably 0.1 eV or more, from the viewpoint of further improving photoelectric conversion efficiency.
  • the LUMO [eV] of the deep LUMO material in the present invention is as described in "Organic Electronics”, 2012, volume 13, page 2346 and “Journal of Information Display”. y)”, 2022, The values are those listed in Volume 23, page 45. However, compounds not listed here can be measured as electron affinity by ultraviolet photoelectron spectroscopy.
  • the buffer layer may further include a hole transporting material exemplified as a material constituting a hole transporting layer and a hole extracting material exemplified as a material constituting a hole extracting layer, which will be described later, to improve photoelectric conversion efficiency. It can be further improved.
  • the thickness of the buffer layer is preferably 1 nm to 200 nm, more preferably 5 nm to 50 nm.
  • the buffer layer material can also be used by doping into a hole transport layer or a hole extraction layer.
  • the doping ratio is 1% to 49%, preferably 1% to 30%, and more preferably 1% to 10% with respect to the film thickness of the hole transport layer or hole extraction layer.
  • the photoelectric conversion layer preferably contains a photoelectric conversion material that exhibits p-type or n-type semiconductor characteristics.
  • the photoelectric conversion layer preferably contains two or more types of photoelectric conversion materials, and more preferably contains a p-type semiconductor material (donor material) and an n-type semiconductor material (acceptor material), respectively. Note that the photoelectric conversion layer in the present invention does not include the above-mentioned deep LUMO material.
  • Examples of p-type semiconductor materials include boron dipyrromethene derivatives, azaboro dipyrromethene derivatives, oligothiophene compounds such as terthiophene, quarterthiophene, sexithiophene, and octithiophene, phenylene vinylene compounds, p-phenylene compounds, and polyphenylene compounds.
  • Fluorene compounds phthalocyanine compound derivatives having metal atoms such as H2 phthalocyanine (H2Pc) and copper phthalocyanine (CuPc), subphthalocyanine compound derivatives, porphyrin compound derivatives, coumarin compound derivatives, rhodamine compound derivatives, squarylium compound derivatives, N,N' -diphenyl-N,N'-di(3-methylphenyl)-4,4'-diphenyl-1,1'-diamine (TPD), N,N'-dinaphthyl-N,N'-diphenyl-4,4 Triarylamine derivatives such as '-diphenyl-1,1'-diamine (NPD), carbazole derivatives such as 4,4'-di(carbazol-9-yl)biphenyl (CBP), 2-tert-butyl-4- (dicyanomethylene)-6-[2-(1,1,7,7tetramethyljulolidin-9-
  • PTCBI perylenetetracarboxylic bisbenzimidazole
  • PTCBI N,N'-dioctyl-3,4,9,10-naphthyltetracarboxydiimide
  • PPD 4-t-butylphenyl)-1,3,4-oxadiazole
  • BND 2,5-di(1-naphthyl)-1,3,4-oxadiazole
  • TEZ triazole derivatives
  • perylene derivatives phthalocyanine derivatives
  • porphyrin derivatives phenanthroline derivatives
  • borondi Examples include pyrromethene derivatives, azaborone dipyrromethene derivative
  • the photoelectric conversion layer may contain two or more types of these.
  • fullerene compounds are preferably used because they have a high charge separation rate and high electron transfer rate.
  • fullerene compounds include unsubstituted ones including C60, C70, C76, C78, C82, C84, C90, and C94, [6,6]-phenyl C61 butyric acid methyl ester ([6,6]-PCBM ), [5,6]-phenyl C61 butyric acid methyl ester ([5,6]-PCBM), [6,6]-phenyl C61 butyric acid hexyl ester ([6,6]-PCBH), [6 ,6]-phenyl C61 butyric acid dodecyl ester ([6,6]-PCBD), phenyl C71 butyric acid methyl ester (PC70BM), phenyl C85 butyric acid methyl ester (PC84BM), and the like.
  • the photoelectric conversion layer contains two or more types of photoelectric conversion materials, these may be mixed or stacked. From the viewpoint of charge separation efficiency and rectification, it is preferable that the layers be laminated. When stacked, it is preferable that the p-type semiconductor layer containing the p-type semiconductor material is located on the anode side, and the n-type semiconductor layer containing the n-type semiconductor material is located on the cathode side. Moreover, when laminated, a mixed layer (i-layer) may be provided at the laminated interface. Such a structure is called a pin structure, where the i layer mainly takes charge of charge separation, and the p layer and n layer take charge of hole transport and electron transport, respectively, thereby increasing the photoelectric conversion efficiency. can be further increased.
  • the p-type semiconductor material and the n-type semiconductor material are compatible at the molecular level, or phase-separated at the nano-level.
  • the domain size of the phase-separated structure is preferably 1 nm or more and 50 nm or less.
  • the thickness of the photoelectric conversion layer is preferably 10 nm to 500 nm, more preferably 20 nm to 200 nm.
  • the thickness of the layer containing the p-type semiconductor material and the layer containing the material with n-type semiconductor properties is preferably 5 to 495 nm, more preferably 10 to 50 nm.
  • the thickness of the i-layer is preferably 1 nm to 100 nm, more preferably 5 nm to 50 nm.
  • the anode and/or the cathode have optical transparency.
  • the light transmittance of the electrode is not particularly limited as long as incident light reaches the photoelectric conversion layer and an electromotive force is generated.
  • the light transmittance is a value determined by [transmitted light intensity (W/m 2 )/incident light intensity (W/m 2 )] ⁇ 100 (%).
  • the thickness of the light-transmitting electrode may be within a range that has both light transparency and conductivity, and although it varies depending on the electrode material, it is preferably 20 nm to 300 nm. Note that the other electrode does not necessarily need to have optical transparency as long as it has conductivity, and its thickness is not particularly limited.
  • the electrode materials it is preferable to use a conductive material with a large absolute value of work function for one electrode and a conductive material with a small absolute value of work function for the other electrode.
  • An electrode made of a conductive material with a large absolute value of work function serves as an anode.
  • conductive materials with large work functions include metals such as gold, platinum, chromium, and nickel, transparent metal oxides such as indium, tin, and molybdenum, indium tin oxide (ITO), and indium zinc oxide.
  • Composite metal oxides such as IZO are preferably used.
  • the anode is preferably a metal oxide, more preferably ITO or IZO, which can be used as a transparent electrode that transmits light.
  • ITO is preferable as the anode.
  • the work function WF [eV] in the present invention can be measured by an atmospheric photoelectron yield spectrometer AC-2 (manufactured by Riken Keiki Co., Ltd.). More specifically, one side of the anode from the photovoltaic element was exposed, and a sample cut into 1 cm squares was surface-cleaned using a UV ozone cleaner for 10 minutes, and then exposed to the atmosphere using the photoelectron yield spectrometer described above. , the work function (WF) can be measured.
  • the conductive material used for the anode is preferably one that forms an ohmic contact with a layer adjacent to the anode, such as the above-mentioned photoelectric conversion layer, deep LUMO material, hole transport material, hole extraction material, etc. described below. .
  • An optimal method for forming the anode can be selected depending on the material used to form the anode, and examples thereof include sputtering, vapor deposition, and inkjet methods. For example, when forming the anode using a metal oxide, a sputtering method is preferably used, and when forming an anode using a metal, a vapor deposition method is preferably used.
  • An electrode made of a conductive material with a small absolute value of work function serves as a cathode.
  • Alkali metals such as lithium, alkaline earth metals such as magnesium and calcium, tin, silver, aluminum, and alloys thereof are preferably used. A laminate using two or more of these may also be used.
  • the conductive material used for the cathode is preferably one that forms an ohmic contact with a layer adjacent to the cathode among the above-mentioned photoelectric conversion layer, electron transport material, electron extraction layer, etc.
  • An optimal method for forming the cathode can be selected depending on the forming material, and examples thereof include sputtering, vapor deposition, and inkjet methods.
  • a sputtering method is preferably used when forming a cathode using a metal oxide
  • a vapor deposition method is preferably used when forming an anode using a metal.
  • the photovoltaic element In order to maintain the mechanical strength of the photovoltaic element, suppress thermal deformation, and provide barrier properties that suppress the intrusion of water vapor and oxygen into the photovoltaic conversion layer, it is possible to form the photovoltaic element on a substrate.
  • the substrate include a glass plate, a ceramic plate, a resin film, a thin resin film obtained by hardening varnish, and a thin metal plate.
  • glass substrates are preferably used because they are transparent and easy to process.
  • flexible displays and foldable displays are increasing mainly in mobile devices such as smartphones, and resin films and resin thin films are suitably used as substrates for these applications. More specifically, examples include heat-resistant films such as polyimide films and polyethylene naphthalate films.
  • hole transport materials used in the hole transport layer include oligothiophene compounds, phenylene vinylene compounds, p-phenylene compounds, polyfluorene compounds, and metal atoms such as H2 phthalocyanine (H2Pc) and copper phthalocyanine (CuPc).
  • H2Pc H2 phthalocyanine
  • CuPc copper phthalocyanine
  • phthalocyanine derivatives porphyrin derivatives, N,N'-diphenyl-N,N'-di(3-methylphenyl)-4,4'-diphenyl-1,1'-diamine (TPD), N,N'- Triarylamine derivatives such as dinaphthyl-N,N'-diphenyl-4,4'-diphenyl-1,1'-diamine (NPD), 4,4'-di(carbazol-9-yl)biphenyl (CBP) and N-[1,1'-biphenyl]-4-yl-9,9-dimethyl-N-[4-(9-phenyl-9H-carbazol-3-yl)phenyl]-9H-fluoren-2-amine, etc.
  • TPD N,N'-diphenyl-N,N'-di(3-methylphenyl)-4,4'-diphenyl-1,1'-diamine
  • NPD N,N'-
  • the hole transport layer in the present invention does not include the above-mentioned deep LUMO material.
  • the thickness of the hole transport layer is preferably 1 nm to 200 nm, more preferably 5 nm to 100 nm.
  • hole extraction materials used in the hole extraction layer include charge transfer complexes such as tris(4-bromophenyl)aminium hexachloroantimonate (TBPAH), 2,3,5,6-tetrafluoro-7, 7,8,8-tetracyanoquinodimethane (F4-TCNQ), tetracyanoquinodimethane derivatives, radialene derivatives, fluorinated copper phthalocyanine, poly3,4-ethylenedioxythiophene doped with poly4-styrenesulfonic acid Examples include conductive polymers such as (PEDOT:PSS). Two or more types of these may be included. Note that the hole extraction layer in the present invention does not include the above-mentioned deep LUMO material.
  • the hole extraction layer preferably has a thickness of 1 nm to 200 nm, more preferably 5 nm to 100 nm.
  • electron transport materials used in the electron transport layer and/or electron extraction layer include the above-mentioned n-type semiconductor materials, polycyclic aromatic derivatives, styryl aromatic ring derivatives, quinone derivatives, phosphorus oxide derivatives, tris(8 Examples include various metal complexes such as quinolinol complexes such as aluminum (III), benzoquinolinol complexes, hydroxyazole complexes, azomethine complexes, tropolone metal complexes, and flavonol metal complexes. Two or more types of these may be included. Note that the electron transport layer and electron extraction layer in the present invention do not contain the above-mentioned deep LUMO material.
  • the electron-accepting nitrogen refers to a nitrogen atom forming multiple bonds with adjacent atoms. Since the heteroaryl group containing electron-accepting nitrogen has a large electron affinity, it becomes easier to transport electrons, and the photoelectric conversion efficiency can be further improved.
  • Examples of compounds having a heteroaryl group containing electron-accepting nitrogen include pyridine derivatives, triazine derivatives, pyrazine derivatives, pyrimidine derivatives, quinoline derivatives, quinoxaline derivatives, quinazoline derivatives, naphthyridine derivatives, benzoquinoline derivatives, phenanthroline derivatives, and imidazole derivatives.
  • the electron transport material has a condensed polycyclic aromatic skeleton because the glass transition temperature is improved and the electron mobility is large.
  • fused polycyclic aromatic skeletons examples include quinolinol complexes, triazine derivatives, fluoranthene skeletons, anthracene skeletons, pyrene skeletons, and phenanthroline skeletons.
  • the electron transport layer may contain an electron donor material.
  • the electron donor material is a compound that improves the electrical conductivity of the electron transport layer.
  • Preferred examples of electron donor materials include alkali metals such as Li, inorganic salts containing alkali metals such as LiF, complexes of alkali metals and organic substances such as lithium quinolinol, alkaline earth metals, and alkaline earth metals.
  • examples include inorganic salts containing alkaline earth metals and organic substances, rare earth metals such as Eu and Yb, inorganic salts containing rare earth metals, and complexes of rare earth metals and organic substances. Two or more types of these may be included. Among these, metallic lithium, rare earth metals, and lithium quinolinol (Liq) are preferred.
  • the thickness of the electron transport layer and the electron extraction layer is preferably 1 nm to 200 nm, more preferably 3 nm to 100 nm.
  • each of the above layers constituting the photovoltaic element may be either a dry process or a wet process, such as resistance heating evaporation, electron beam evaporation, sputtering, molecular lamination method, coating method, inkjet method, printing method, etc. Can be mentioned. Among these, resistance heating vapor deposition is preferred from the viewpoint of device characteristics. On the other hand, when using a polymeric material, a coating method using an appropriate solvent is preferred.
  • the photovoltaic device of the present invention is suitable for detecting biological information. Further, it can be used in a display device that includes the photovoltaic element of the present invention and an organic light emitting element and performs fingerprint authentication using light from the organic light emitting element. That is, the fingerprint authentication device of the present invention includes the photovoltaic element of the present invention and an organic light emitting element, and performs fingerprint authentication using light from the organic light emitting element.For example, the fingerprint authentication device is displayed in a matrix and/or segment method. By configuring some of the pixels of the organic EL display using the photovoltaic element of the present invention, it is possible to provide the organic EL display with a fingerprint authentication function.
  • the green light emitted from the organic light emitting element of the organic EL display is reflected and scattered by a finger touching the display, and the light is received and photoelectrically converted by the photovoltaic element of the present invention, thereby generating fingerprint information with high precision. can be obtained.
  • PEDOT:PSS poly-3,4-ethylenedioxythiophene
  • poly-4-styrene sulfonic acid and isopropyl alcohol mixed at a volume ratio of 6:4 was poured onto the ITO electrode layer of the substrate. ,000 rpm for 30 seconds, and heat-treated on a 150° C. hot plate for 10 minutes to form a hole extraction layer with a thickness of 55 nm.
  • phenyl]-9H-fluoren-2-amine (thickness: 40 nm), boron dipyrromethene complex (thickness: 15 nm, the following compound [B]) compound as the p-type semiconductor, fullerene (thickness: 15 nm, the following compound) as the n-type semiconductor.
  • [C]) was deposited in order to form a hole transport layer and a photoelectric conversion layer, respectively. After the vacuum evaporation apparatus was once opened to the atmosphere, the evaporation source was replaced and the pressure was reduced to about 3 ⁇ 10 ⁇ 3 Pa again.
  • Example 10 A photovoltaic device was obtained in the same manner as in Example 9 except that the hole extraction layer was not formed.
  • the photoelectric conversion efficiency was 11.9%, and the absorption wavelength at that time was 528 nm.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention provides a photovoltaic element that exhibits a high photoelectric conversion efficiency. The present invention is a photovoltaic element at least having a positive electrode (2) and a negative electrode (5) and, between the positive electrode (2) and the negative electrode (5), an organic material-containing buffer layer (3) and a photoelectric conversion layer (4), wherein: this organic material comprises an organic material for which the absolute value of the lowest unoccupied molecular orbital LUMO is larger than the absolute value of the work function WF of the positive electrode, and this photovoltaic element does not have a layer comprising a metal oxide between the positive electrode (2) and the photoelectric conversion layer (4).

Description

光起電力素子、光センサ、撮像素子および指紋認証装置Photovoltaic elements, optical sensors, image sensors, and fingerprint authentication devices
 本発明は、光起電力素子、それを用いた光センサ、撮像素子および指紋認証装置に関する。 The present invention relates to a photovoltaic element, an optical sensor using the same, an image sensor, and a fingerprint authentication device.
 近年、IoT(Internet of Things)やビッグデータが注目を集めており、それを支える様々なデータを取得するセンシング技術の重要度が増している。センシング技術には様々な方式が存在するが、中でも、光センシングは、対象波長を選択することによりセンシング対象を変更することができるなど、多様な用途展開が可能であり、有用性が高いセンシング技術である。 In recent years, IoT (Internet of Things) and big data have been attracting attention, and the importance of sensing technology that acquires the various data that supports them is increasing. There are various sensing technologies, but among them, optical sensing is a highly useful sensing technology because it can be used in a variety of applications, such as the ability to change the sensing target by selecting the target wavelength. It is.
 光センサは、一般に、光を電気エネルギーに変換する光電変換素子と発光素子とを独立に備え、発光素子からの光を対象物に照射し、対象物を透過もしくは反射した光を光電変換素子で受光してセンシングする。このような光センサは、例えば、緑色光や赤色光、近赤外光を用いることにより、指紋や静脈の形状、血中酸素濃度などの生体情報を取得することが可能である。さらに、基板や発光素子、受光素子を主に有機物で形成することにより、薄型でフレキシブルなデバイスを構成することが可能である(例えば非特許文献1~2参照)。 Optical sensors generally include an independent photoelectric conversion element that converts light into electrical energy and a light emitting element, and the light from the light emitting element is irradiated onto an object, and the light transmitted or reflected from the object is used by the photoelectric conversion element. Receives and senses light. Such an optical sensor can acquire biological information such as fingerprints, vein shapes, and blood oxygen concentration by using green light, red light, or near-infrared light, for example. Furthermore, by forming the substrate, the light emitting element, and the light receiving element mainly from organic materials, it is possible to construct a thin and flexible device (see, for example, Non-Patent Documents 1 and 2).
 光電変換素子としては、例えば、第1電極と、仕事関数調整層と、光電変換層と、酸化物半導体層と、第2電極と、を少なくともこの順で備え、更に、第3電極を備え、該第3電極が、該第2電極と離間して配され、かつ、絶縁層を介して該光電変換層と対向して配され、該仕事関数調整層が、化学量論的組成を満たす酸素の量よりも多い酸素の量を含む、光電変換素子(例えば、特許文献1参照)が提案されている。また、光センサとしては、基板上に陰極を有する逆構造の有機電界発光素子と、基板上に陰極を有する逆構造の有機受光素子が、同一基板上に形成されていることを特徴とする光センサー(例えば、特許文献2参照)が提案されている。 The photoelectric conversion element, for example, includes at least a first electrode, a work function adjustment layer, a photoelectric conversion layer, an oxide semiconductor layer, and a second electrode in this order, and further includes a third electrode, The third electrode is arranged to be spaced apart from the second electrode and is arranged to face the photoelectric conversion layer with an insulating layer interposed therebetween, and the work function adjustment layer has oxygen that satisfies the stoichiometric composition. A photoelectric conversion element (for example, see Patent Document 1) has been proposed, which contains an amount of oxygen larger than the amount of oxygen. In addition, as an optical sensor, an optical sensor is characterized in that an organic electroluminescent element with a reverse structure having a cathode on a substrate and an organic light receiving element with a reverse structure having a cathode on a substrate are formed on the same substrate. A sensor (for example, see Patent Document 2) has been proposed.
国際公開第2020/027117号International Publication No. 2020/027117 特開2020-027875号公報JP2020-027875A
 近年、ディスプレイの大画面化のため、画面の縁(ベゼル)を小さくするベゼルレス化が進んでいる。ディスプレイのベゼルレス化に伴い、画面内にセンシング素子を設けることができ、かつ高い光電変換効率を発現する光起電力素子が求められている。しかしながら、特許文献1~2に記載される光電変換素子や光センサは、近年求められる高い光電変換効率に対してなお不十分である課題があった。本発明は、光電変換効率の高い光起電力素子を提供することを目的とする。 In recent years, as displays have become larger, there has been a trend towards bezel-less displays, where the edges (bezels) of the screen are made smaller. As displays become bezel-less, there is a need for photovoltaic elements that can provide sensing elements within the screen and that exhibit high photoelectric conversion efficiency. However, the photoelectric conversion elements and optical sensors described in Patent Documents 1 and 2 have a problem that they are still insufficient for the high photoelectric conversion efficiency that is required in recent years. An object of the present invention is to provide a photovoltaic element with high photoelectric conversion efficiency.
 本発明は以下の通りである。
[1]少なくとも陽極および陰極を有し、陽極と陰極の間に、有機材料を含むバッファー層と、光電変換層とを有する光起電力素子であって、前記有機材料として、その最低空軌道LUMOの絶対値が陽極の仕事関数WFの絶対値よりも大きい有機材料を含み、陽極と光電変換層との間には金属酸化物からなる層を有しない光起電力素子。
[2]少なくとも陽極、バッファー層、光電変換層および陰極をこの順に有する[1]に記載の光起電力素子。
[3]前記光電変換層が2種以上の光電変換材料を含む[1]または[2]に記載の光起電力素子。
[4]陽極が金属酸化物である[1]~[3]いずれかに記載の光起電力素子。
[5]前記有機材料としてヘキサアザトリフェニレンヘキサカルボニトリルを含む[1]~[4]いずれかに記載の光起電力素子。
[6]
前記有機材料としてトリ(ベンジリデン)シクロプロパン誘導体を含む[1]~[5]いずれに記載の光起電力素子。
[7][1]~[6]いずれかに記載の光起電力素子を含む光センサ。
[8][1]~[6]いずれかに記載の光起電力素子を含む撮像素子。
[9][1]~[6]いずれかに記載の光起電力素子と有機発光素子を有し、有機発光素子の発光を利用して指紋認証を行う指紋認証装置。
The invention is as follows.
[1] A photovoltaic element having at least an anode and a cathode, and having a buffer layer containing an organic material and a photoelectric conversion layer between the anode and the cathode, the organic material being the lowest unoccupied orbital LUMO. A photovoltaic element including an organic material whose absolute value is larger than the absolute value of the work function WF of the anode, and having no layer made of a metal oxide between the anode and the photoelectric conversion layer.
[2] The photovoltaic device according to [1], comprising at least an anode, a buffer layer, a photoelectric conversion layer, and a cathode in this order.
[3] The photovoltaic device according to [1] or [2], wherein the photoelectric conversion layer contains two or more types of photoelectric conversion materials.
[4] The photovoltaic device according to any one of [1] to [3], wherein the anode is a metal oxide.
[5] The photovoltaic device according to any one of [1] to [4], wherein the organic material includes hexaazatriphenylenehexacarbonitrile.
[6]
The photovoltaic device according to any one of [1] to [5], wherein the organic material includes a tri(benzylidene)cyclopropane derivative.
[7] An optical sensor comprising the photovoltaic element according to any one of [1] to [6].
[8] An imaging device comprising the photovoltaic device according to any one of [1] to [6].
[9] A fingerprint authentication device comprising the photovoltaic element according to any one of [1] to [6] and an organic light emitting element, and performing fingerprint authentication using light emitted from the organic light emitting element.
 本発明により、光電変換効率の高い光起電力素子を提供することができる。 According to the present invention, a photovoltaic element with high photoelectric conversion efficiency can be provided.
本発明の光起電力素子の一例を示した断面概略図である。FIG. 1 is a schematic cross-sectional view showing an example of a photovoltaic device of the present invention. 本発明の光起電力素子の別の一例を示した断面概略図である。FIG. 3 is a schematic cross-sectional view showing another example of the photovoltaic device of the present invention. 本発明の光起電力素子の別の一例を示した断面概略図である。FIG. 3 is a schematic cross-sectional view showing another example of the photovoltaic device of the present invention.
 以下、本発明の実施の形態を具体的に説明するが、本発明は以下の実施の形態に限定されるものではなく、目的や用途に応じて種々に変更して実施することができる。 Hereinafter, embodiments of the present invention will be specifically described, but the present invention is not limited to the following embodiments, and can be implemented with various changes depending on the purpose and use.
 本発明の光起電力素子は、陽極と陰極との間に、有機材料を含むバッファー層および光電変換層を有する。光電変換層は、光を電気エネルギーに変換する機能を有する。バッファー層は、陽極側の層から電子を取り出し、陽極側の層の正孔密度を高めることによって光起電力素子中の電荷分離の効率を向上させ、光電変換効率の向上に寄与する機能を有する。バッファー層に、前記有機材料として、その最低空軌道LUMOの絶対値が陽極の仕事関数WFの絶対値よりも大きい有機材料(以下、「深LUMO材料」と記載することがある)を含むことにより、陽極側の層の電子が深LUMO材料のLUMOに取り出されやすくなり、正孔側の層の電子密度を高めやすくなる。よって、光起電力素子中の電荷分離効率が促進され、緑・赤および近赤外光を効率的に電気エネルギーに変換することができ、光電変換効率を大きく向上させることができる。 The photovoltaic element of the present invention has a buffer layer containing an organic material and a photoelectric conversion layer between an anode and a cathode. The photoelectric conversion layer has a function of converting light into electrical energy. The buffer layer has the function of improving the efficiency of charge separation in the photovoltaic element by extracting electrons from the layer on the anode side and increasing the hole density in the layer on the anode side, contributing to improving the photoelectric conversion efficiency. . By including an organic material (hereinafter sometimes referred to as "deep LUMO material") in which the absolute value of the lowest unoccupied orbital orbital LUMO is larger than the absolute value of the work function WF of the anode as the organic material in the buffer layer. , electrons in the layer on the anode side are more likely to be taken out by the LUMO of the deep LUMO material, making it easier to increase the electron density in the layer on the hole side. Therefore, charge separation efficiency in the photovoltaic device is promoted, green, red and near-infrared light can be efficiently converted into electrical energy, and photoelectric conversion efficiency can be greatly improved.
 本発明の光起電力素子は、陽極と光電変換層との間には金属酸化物からなる層を有しない。金属酸化物からなる層は金属酸化物で構成される膜であることを意味する。金属酸化物は酸化モリブデン(MoO)や酸化チタン(TiO)のような、金属と酸素から構成される化合物である。金属酸化物以外の物質から構成される層に金属酸化物がドーピングされていても金属酸化物からなる層とみなす。本発明の光起電力素子は、光電変換効率の観点やデバイスの折り曲げ耐性の観点より、金属酸化物からなる層を有しない。 The photovoltaic element of the present invention does not have a layer made of metal oxide between the anode and the photoelectric conversion layer. A layer made of metal oxide means a film made of metal oxide. Metal oxides are compounds composed of metal and oxygen, such as molybdenum oxide (MoO 3 ) and titanium oxide (TiO 2 ). Even if a layer made of a substance other than a metal oxide is doped with a metal oxide, it is considered to be a layer made of a metal oxide. The photovoltaic element of the present invention does not have a layer made of metal oxide from the viewpoint of photoelectric conversion efficiency and bending resistance of the device.
 ここで、本発明において、WFやHOMOおよびLUMOの各エネルギーは、真空準位(ポテンシャルエネルギー=0eV)を基準とするため、全て負の値として表される。したがって、有機材料の最低空軌道LUMOの絶対値が陽極の仕事関数WFの絶対値よりも大きいとは、有機材料の最低空軌道LUMOが陽極の仕事関数WFよりも小さい、すなわち、LUMOのエネルギー準位のほうが深いことを意味する。なお、バッファー層に2種以上の有機材料を含む場合、そのうちの少なくとも1種が深LUMO材料であればよい。 Here, in the present invention, the energies of WF, HOMO, and LUMO are all expressed as negative values because they are based on the vacuum level (potential energy = 0 eV). Therefore, the absolute value of the lowest unoccupied orbital LUMO of the organic material is greater than the absolute value of the work function WF of the anode means that the lowest unoccupied orbital LUMO of the organic material is smaller than the work function WF of the anode, that is, the energy level of LUMO is greater than the absolute value of the work function WF of the anode. It means that the rank is deeper. Note that when the buffer layer contains two or more types of organic materials, at least one of them may be a deep LUMO material.
 本発明の光起電力素子は、陽極、バッファー層、光電変換層および陰極をこの順に有することが好ましい。基板上にこれらを有してもよい。また、陽極と光電変換層の間に正孔取り出し層や正孔輸送層を有してもよいし、光電変換層と陰極の間に電子輸送層や電子取り出し層を有してもよい。本発明の光起電力素子は、基板上に、陽極、正孔取り出し層、バッファー層、正孔輸送層、光電変換層、電子輸送層、電子取り出し層、陰極をこの順に有することが好ましい。 The photovoltaic element of the present invention preferably has an anode, a buffer layer, a photoelectric conversion layer, and a cathode in this order. These may be provided on the substrate. Further, a hole extraction layer or a hole transport layer may be provided between the anode and the photoelectric conversion layer, or an electron transport layer or an electron extraction layer may be provided between the photoelectric conversion layer and the cathode. The photovoltaic device of the present invention preferably has an anode, a hole extraction layer, a buffer layer, a hole transport layer, a photoelectric conversion layer, an electron transport layer, an electron extraction layer, and a cathode in this order on a substrate.
 図1に、本発明の光起電力素子の一例の断面概略図を示す。基板1上に、陽極2、バッファー層3、光電変換層4、陰極5をこの順に有する。図2に、本発明の光起電力素子の別の一例の断面概略図を示す。基板1上に、陰極5、光電変換層4、バッファー層3、陽極2をこの順に有する。図3に、本発明の光起電力素子の別の一例の断面概略図を示す。基板1上に、陽極2、正孔取り出し層6、バッファー層3、正孔輸送層7、光電変換層4、電子輸送層10、陰極5をこの順に有し、光電変換層4は、正孔輸送層7側のp型半導体層8と、電子輸送層10側のn型半導体層9とを有する。 FIG. 1 shows a schematic cross-sectional view of an example of the photovoltaic device of the present invention. An anode 2, a buffer layer 3, a photoelectric conversion layer 4, and a cathode 5 are provided on a substrate 1 in this order. FIG. 2 shows a schematic cross-sectional view of another example of the photovoltaic device of the present invention. A cathode 5, a photoelectric conversion layer 4, a buffer layer 3, and an anode 2 are provided on a substrate 1 in this order. FIG. 3 shows a schematic cross-sectional view of another example of the photovoltaic device of the present invention. The substrate 1 has an anode 2, a hole extraction layer 6, a buffer layer 3, a hole transport layer 7, a photoelectric conversion layer 4, an electron transport layer 10, and a cathode 5 in this order. It has a p-type semiconductor layer 8 on the transport layer 7 side and an n-type semiconductor layer 9 on the electron transport layer 10 side.
 バッファー層には、前述のとおり、深LUMO材料を含む。深LUMO材料としては、例えば、ヘキサアザトリフェニレン誘導体、トリ(ベンジリデン)シクロプロパン誘導体、フタロシアニン誘導体、ポルフィリン誘導体などが挙げられる。フルオロ基やクロロ基、ブロモ基、ヨード基などのハロゲノ基、カルボニル基、シアノ基、ニトロ基、スルホニル基、パーフルオロアルキル基などの電子求引性基を有することが好ましく、例えば、ヘキサアザトリフェニレンヘキサカルボニトリル(以下、「HATCN」と記載する場合がある)、1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-ヘキサデカフルオロフタロシアニン銅などが好ましい。これらを2種以上含んでもよい。これらの中でも、HATCN(化合物[A])とトリ(ベンジリデン)シクロプロパン誘導体(一般式(1))が好ましく、光電変換効率をより向上させることができる。 As described above, the buffer layer includes a deep LUMO material. Examples of deep LUMO materials include hexaazatriphenylene derivatives, tri(benzylidene)cyclopropane derivatives, phthalocyanine derivatives, and porphyrin derivatives. It is preferable to have an electron-withdrawing group such as a fluoro group, a halogen group such as a chloro group, a bromo group, or an iodo group, a carbonyl group, a cyano group, a nitro group, a sulfonyl group, or a perfluoroalkyl group. For example, hexaazatriphenylene Hexacarbonitrile (hereinafter sometimes referred to as "HATCN"), 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-hexa Copper decafluorophthalocyanine and the like are preferred. Two or more types of these may be included. Among these, HATCN (compound [A]) and tri(benzylidene)cyclopropane derivatives (general formula (1)) are preferred, and can further improve photoelectric conversion efficiency.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 一般式(1)中、R~Rは同一でも異なっていても良く、置換もしくは非置換のアリール基、置換もしくは非置換のヘテロアリール基、シアノ基、ニトロ基、ハロゲン原子およびハロゲン化アルキル基からなる群より選ばれる基を表す。ただしR~Rのうち少なくとも1つはシアノ基またはハロゲン原子である。蒸着への利用と素子作製時の他の分子との配向性の観点から、R~Rの少なくとも1つは、置換もしくは非置換のアリール基および置換もしくは非置換のヘテロアリール基が好ましい。中でも、R、RおよびRがそれぞれ独立に置換もしくは非置換のアリール基または置換もしくは非置換のヘテロアリール基であり、R、RおよびRがそれぞれ独立にシアノ基またはハロゲン原子であることがより好ましい。 In general formula (1), R 1 to R 6 may be the same or different, substituted or unsubstituted aryl group, substituted or unsubstituted heteroaryl group, cyano group, nitro group, halogen atom, and halogenated alkyl group. Represents a group selected from the group consisting of groups. However, at least one of R 1 to R 6 is a cyano group or a halogen atom. From the viewpoint of utilization in vapor deposition and orientation with other molecules during device fabrication, at least one of R 1 to R 6 is preferably a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group. Among them, R 1 , R 3 and R 5 are each independently a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group, and R 2 , R 4 and R 6 are each independently a cyano group or a halogen atom. It is more preferable that
 アルキル基とは、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などの飽和脂肪族炭化水素基を示す。また、ハロゲン化アルキル基とは、アルキル基の少なくとも1つの水素原子がハロゲン原子で置換された基を示す。アルキル基の炭素数は、原料入手の容易性や蒸着安定性の観点から、1以上20以下が好ましく、1以上10以下がより好ましく、1以上6以下がさらに好ましい。ここで、アルキル基の炭素数には、置換基の炭素数は含めないこととし、この点は、以下の記載にも共通する。 The alkyl group refers to, for example, a saturated aliphatic hydrocarbon group such as a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, or tert-butyl group. Further, a halogenated alkyl group refers to an alkyl group in which at least one hydrogen atom is substituted with a halogen atom. The number of carbon atoms in the alkyl group is preferably 1 or more and 20 or less, more preferably 1 or more and 10 or less, and even more preferably 1 or more and 6 or less, from the viewpoint of raw material availability and vapor deposition stability. Here, the carbon number of the alkyl group does not include the carbon number of the substituent, and this point is also common to the following description.
 アリール基とは、例えば、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、フルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、フェナントリル基、アントラセニル基、ベンゾフェナントリル基、ベンゾアントラセニル基、クリセニル基、ピレニル基、フルオランテニル基、トリフェニレニル基、ベンゾフルオランテニル基、ジベンゾアントラセニル基、ペリレニル基、ヘリセニル基などの芳香族炭化水素基を示す。中でも、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、フルオレニル基、フェナントリル基、アントラセニル基、ピレニル基、フルオランテニル基、トリフェニレニル基が好ましい。アリール基は、置換基を有していても有していなくてもよい。置換基としては、例えば、アルキル基、アルコキシ基、アリールオキシ基、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基、モノアリールアミノ基、ジアリールアミノ基、シアノ基、アルコキシカルボニル基、ハロゲン、ヒドロキシ基、チオール基、チオアルキル基、ニトロ基、ハロゲン化アルキル基、アリール基、ヘテロアリール基等を挙げることができる。アリール基の環形成炭素数は、好ましくは6以上40以下、より好ましくは6以上30以下の範囲である。また、フェニル基においては、そのフェニル基中の隣接する2つの炭素原子上に各々置換基がある場合、それらの置換基同士で環構造を形成していてもよい。 Aryl groups include, for example, phenyl group, biphenyl group, terphenyl group, naphthyl group, fluorenyl group, benzofluorenyl group, dibenzofluorenyl group, phenanthryl group, anthracenyl group, benzophenanthryl group, and benzanthracetyl group. Indicates aromatic hydrocarbon groups such as nyl group, chrysenyl group, pyrenyl group, fluoranthenyl group, triphenylenyl group, benzofluoranthenyl group, dibenzaanthracenyl group, perylenyl group, and helicenyl group. Among these, phenyl group, biphenyl group, terphenyl group, naphthyl group, fluorenyl group, phenanthryl group, anthracenyl group, pyrenyl group, fluoranthenyl group, and triphenylenyl group are preferable. The aryl group may or may not have a substituent. Examples of the substituent include an alkyl group, an alkoxy group, an aryloxy group, an amino group, a monoalkylamino group, a dialkylamino group, a monoarylamino group, a diarylamino group, a cyano group, an alkoxycarbonyl group, a halogen, a hydroxy group, Examples include a thiol group, thioalkyl group, nitro group, halogenated alkyl group, aryl group, and heteroaryl group. The number of ring carbon atoms in the aryl group is preferably 6 or more and 40 or less, more preferably 6 or more and 30 or less. Further, in the phenyl group, when there are substituents on two adjacent carbon atoms in the phenyl group, these substituents may form a ring structure together.
 ヘテロアリール基とは、例えば、ピリジル基、フラニル基、チオフェニル基、キノリニル基、イソキノリニル基、ピラジニル基、ピリミジル基、ピリダジニル基、トリアジニル基、ナフチリジニル基、シンノリニル基、フタラジニル基、キノキサリニル基、キナゾリニル基、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基、ベンゾカルバゾリル基、カルボリニル基、インドロカルバゾリル基、ベンゾフロカルバゾリル基、ベンゾチエノカルバゾリル基、ジヒドロインデノカルバゾリル基、ベンゾキノリニル基、アクリジニル基、ジベンゾアクリジニル基、ベンゾイミダゾリル基、イミダゾピリジル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、フェナントロリニル基などの、炭素以外の原子を一個または複数個環内に有する環状芳香族基を示す。ただし、ナフチリジニル基とは、1,5-ナフチリジニル基、1,6-ナフチリジニル基、1,7-ナフチリジニル基、1,8-ナフチリジニル基、2,6-ナフチリジニル基、2,7-ナフチリジニル基のいずれかを示す。ヘテロアリール基は置換基を有していても有していなくてもよい。置換基としては、例えば、アルキル基、アルコキシ基、アリールオキシ基、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基、モノアリールアミノ基、ジアリールアミノ基、シアノ基、エステル基、ハロゲン、ヒドロキシ基、チオール基、チオアルキル基、ニトロ基、ハロゲン化アルキル基、アリール基等を挙げることができる。ヘテロアリール基の環形成炭素数は、好ましくは、2以上40以下、より好ましくは2以上30以下の範囲である。 Heteroaryl groups include, for example, pyridyl group, furanyl group, thiophenyl group, quinolinyl group, isoquinolinyl group, pyrazinyl group, pyrimidyl group, pyridazinyl group, triazinyl group, naphthyridinyl group, cinnolinyl group, phthalazinyl group, quinoxalinyl group, quinazolinyl group, Benzofuranyl group, benzothiophenyl group, indolyl group, dibenzofuranyl group, dibenzothiophenyl group, carbazolyl group, benzocarbazolyl group, carbolinyl group, indolocarbazolyl group, benzofurocarbazolyl group, benzothienocarba Non-carbon groups such as zolyl group, dihydroindenocarbazolyl group, benzoquinolinyl group, acridinyl group, dibenzoacridinyl group, benzimidazolyl group, imidazopyridyl group, benzoxazolyl group, benzothiazolyl group, phenanthrolinyl group represents a cyclic aromatic group having one or more atoms in the ring. However, the naphthyridinyl group refers to any of the following: 1,5-naphthyridinyl group, 1,6-naphthyridinyl group, 1,7-naphthyridinyl group, 1,8-naphthyridinyl group, 2,6-naphthyridinyl group, 2,7-naphthyridinyl group. Show that. A heteroaryl group may or may not have a substituent. Examples of substituents include alkyl groups, alkoxy groups, aryloxy groups, amino groups, monoalkylamino groups, dialkylamino groups, monoarylamino groups, diarylamino groups, cyano groups, ester groups, halogens, hydroxy groups, and thiols. group, thioalkyl group, nitro group, halogenated alkyl group, aryl group, etc. The number of ring carbon atoms in the heteroaryl group is preferably 2 or more and 40 or less, more preferably 2 or more and 30 or less.
 ハロゲンとは、フッ素、塩素、臭素およびヨウ素を示す。 Halogen refers to fluorine, chlorine, bromine, and iodine.
 一般式(1)で表される構造の例を以下に示すが、これらに限定されるものではない。 Examples of the structure represented by general formula (1) are shown below, but the structure is not limited thereto.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 深LUMO材料のLUMO[eV]とWF[eV]との差は、光電変換効率をより向上させる観点から、0.01eV以上が好ましく、0.1eV以上がさらに好ましい。 The difference between LUMO [eV] and WF [eV] of the deep LUMO material is preferably 0.01 eV or more, more preferably 0.1 eV or more, from the viewpoint of further improving photoelectric conversion efficiency.
 ここで、本発明における深LUMO材料のLUMO[eV]は、「オーガニック エレクトロニクス(Organic Electronics)」、2012年、13巻、2346頁および「ジャーナル オブ インフォメーション ディスプレイ(Jornal of Information Display)」、2022年、23巻、45頁に記載された値とする。ただし、ここに記載されない化合物については、紫外光電子分光法により電子親和力として測定することができる。 Here, the LUMO [eV] of the deep LUMO material in the present invention is as described in "Organic Electronics", 2012, volume 13, page 2346 and "Journal of Information Display". y)”, 2022, The values are those listed in Volume 23, page 45. However, compounds not listed here can be measured as electron affinity by ultraviolet photoelectron spectroscopy.
 バッファー層には、さらに、後述する正孔輸送層を構成する材料として例示した正孔輸送材料や、正孔取り出し層を構成する材料として例示した正孔取り出し材料を含んでもよく、光電変換効率をより向上させることができる。 The buffer layer may further include a hole transporting material exemplified as a material constituting a hole transporting layer and a hole extracting material exemplified as a material constituting a hole extracting layer, which will be described later, to improve photoelectric conversion efficiency. It can be further improved.
 バッファー層の厚さは、1nm~200nmが好ましく、5nm~50nmがより好ましい。また、前記バッファー層材料は正孔輸送層や正孔取り出し層にドープして利用することもできる。そのドープ割合は、当該正孔輸送層あるいは正孔取出し層の膜厚に対して1%~49%、好ましくは1%~30%、より好ましくは1%~10%である。 The thickness of the buffer layer is preferably 1 nm to 200 nm, more preferably 5 nm to 50 nm. Further, the buffer layer material can also be used by doping into a hole transport layer or a hole extraction layer. The doping ratio is 1% to 49%, preferably 1% to 30%, and more preferably 1% to 10% with respect to the film thickness of the hole transport layer or hole extraction layer.
 光電変換層は、p型またはn型の半導体特性を示す光電変換材料を含むことが好ましい。光電変換層は、2種以上の光電変換材料を含むことが好ましく、p型半導体材料(ドナー材料)とn型半導体材料(アクセプター材料)をそれぞれ含むことがより好ましい。なお、本発明における光電変換層には、前述の深LUMO材料は含まない。 The photoelectric conversion layer preferably contains a photoelectric conversion material that exhibits p-type or n-type semiconductor characteristics. The photoelectric conversion layer preferably contains two or more types of photoelectric conversion materials, and more preferably contains a p-type semiconductor material (donor material) and an n-type semiconductor material (acceptor material), respectively. Note that the photoelectric conversion layer in the present invention does not include the above-mentioned deep LUMO material.
 p型半導体材料としては、例えば、ボロンジピロメテン誘導体、アザボロンジピロメテン誘導体、ターチオフェン、クウォーターチオフェン、セキシチオフェン、オクチチオフェンなどのオリゴチオフェン化合物、フェニレンビニレン系化合物、p-フェニレン系化合物、ポリフルオレン系化合物、H2フタロシアニン(H2Pc)や銅フタロシアニン(CuPc)などの金属原子を有するフタロシアニン化合物誘導体、サブフタロシアニン化合物誘導体、ポルフィリン化合物誘導体、クマリン化合物誘導体、ローダミン化合物誘導体、スクアリリウム化合物誘導体、N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジフェニル-1,1’-ジアミン(TPD)、N,N’-ジナフチル-N,N’-ジフェニル-4,4’-ジフェニル-1,1’-ジアミン(NPD)等のトリアリールアミン誘導体、4,4’-ジ(カルバゾール-9-イル)ビフェニル(CBP)等のカルバゾール誘導体、2-tert-ブチル-4-(ジシアノメチレン)-6-[2-(1,1,7,7テトラメチルジュロリジン-9-イル)ビニル]-4H-ピラン(DCJTB)化合物誘導体、メロシアニン化合物誘導体、ケトシアニン化合物誘導体、ジインモニウム化合物誘導体などが挙げられる。光電変換層はこれらを2種以上含んでもよい。 Examples of p-type semiconductor materials include boron dipyrromethene derivatives, azaboro dipyrromethene derivatives, oligothiophene compounds such as terthiophene, quarterthiophene, sexithiophene, and octithiophene, phenylene vinylene compounds, p-phenylene compounds, and polyphenylene compounds. Fluorene compounds, phthalocyanine compound derivatives having metal atoms such as H2 phthalocyanine (H2Pc) and copper phthalocyanine (CuPc), subphthalocyanine compound derivatives, porphyrin compound derivatives, coumarin compound derivatives, rhodamine compound derivatives, squarylium compound derivatives, N,N' -diphenyl-N,N'-di(3-methylphenyl)-4,4'-diphenyl-1,1'-diamine (TPD), N,N'-dinaphthyl-N,N'-diphenyl-4,4 Triarylamine derivatives such as '-diphenyl-1,1'-diamine (NPD), carbazole derivatives such as 4,4'-di(carbazol-9-yl)biphenyl (CBP), 2-tert-butyl-4- (dicyanomethylene)-6-[2-(1,1,7,7tetramethyljulolidin-9-yl)vinyl]-4H-pyran (DCJTB) compound derivative, merocyanine compound derivative, ketocyanine compound derivative, diimmonium compound derivative Examples include. The photoelectric conversion layer may contain two or more types of these.
 n型半導体材料としては、例えば、ナフタレンテトラカルボキシリックジアンハイドライド(NTCDA)誘導体、ナフタレンテトラカルボシリックジイミド(NTCDI)誘導体、ペリレンテトラカルボキシリックジアンハイドライド(PTCDA)誘導体、ペリレンテトラカルボシリックジイミド誘導体(PTCDI)、ペリレンテトラカルボキシリックビスベンズイミダゾール(PTCBI)誘導体、N,N'-ジオクチル-3,4,9,10-ナフチルテトラカルボキシジイミド(PTCDI-C8H)誘導体、2-(4-ビフェニリル)-5-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール(PBD)や2,5-ジ(1-ナフチル)-1,3,4-オキサジアゾール(BND)等のオキサゾール誘導体、3-(4-ビフェニリル)-4-フェニル-5-(4-t-ブチルフェニル)-1,2,4-トリアゾール(TAZ)等のトリアゾール誘導体、ペリレン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、フェナントロリン誘導体、ボロンジピロメテン誘導体やアザボロンジピロメテン誘導体、ホスフィンオキサイド誘導体、フラーレン化合物、カーボンナノチューブ(CNT)、ポリ-p-フェニレンビニレン系重合体にシアノ基を導入した誘導体(CN-PPV)などが挙げられる。光電変換層はこれらを2種以上含んでもよい。中でも、フラーレン化合物は電荷分離速度と電子移動速度が速いため、好ましく用いられる。フラーレン化合物としては、C60、C70、C76、C78、C82、C84、C90、C94を始めとする無置換のもの、[6,6]-フェニル C61 ブチリックアシッドメチルエステル([6,6]-PCBM)、[5,6]-フェニル C61 ブチリックアシッドメチルエステル([5,6]-PCBM)、[6,6]-フェニル C61 ブチリックアシッドヘキシルエステル([6,6]-PCBH)、[6,6]-フェニル C61 ブチリックアシッドドデシルエステル([6,6]-PCBD)、フェニル C71 ブチリックアシッドメチルエステル(PC70BM)、フェニル C85 ブチリックアシッドメチルエステル(PC84BM)などが挙げられる。 Examples of n-type semiconductor materials include naphthalenetetracarboxylic dianhydride (NTCDA) derivatives, naphthalenetetracarbosilic diimide (NTCDI) derivatives, perylenetetracarboxylic dianhydride (PTCDA) derivatives, and perylenetetracarbosilic diimide derivatives (PTCDI). , perylenetetracarboxylic bisbenzimidazole (PTCBI) derivative, N,N'-dioctyl-3,4,9,10-naphthyltetracarboxydiimide (PTCDI-C8H) derivative, 2-(4-biphenylyl)-5-( Oxazole derivatives such as 4-t-butylphenyl)-1,3,4-oxadiazole (PBD) and 2,5-di(1-naphthyl)-1,3,4-oxadiazole (BND), 3 -(4-biphenylyl)-4-phenyl-5-(4-t-butylphenyl)-1,2,4-triazole (TAZ) and other triazole derivatives, perylene derivatives, phthalocyanine derivatives, porphyrin derivatives, phenanthroline derivatives, borondi Examples include pyrromethene derivatives, azaborone dipyrromethene derivatives, phosphine oxide derivatives, fullerene compounds, carbon nanotubes (CNT), and derivatives in which cyano groups are introduced into poly-p-phenylene vinylene polymers (CN-PPV). The photoelectric conversion layer may contain two or more types of these. Among these, fullerene compounds are preferably used because they have a high charge separation rate and high electron transfer rate. Examples of fullerene compounds include unsubstituted ones including C60, C70, C76, C78, C82, C84, C90, and C94, [6,6]-phenyl C61 butyric acid methyl ester ([6,6]-PCBM ), [5,6]-phenyl C61 butyric acid methyl ester ([5,6]-PCBM), [6,6]-phenyl C61 butyric acid hexyl ester ([6,6]-PCBH), [6 ,6]-phenyl C61 butyric acid dodecyl ester ([6,6]-PCBD), phenyl C71 butyric acid methyl ester (PC70BM), phenyl C85 butyric acid methyl ester (PC84BM), and the like.
 光電変換層が2種以上の光電変換材料を含む場合、これらは混合されていても積層されていてもよい。電荷分離効率および整流性の観点から、積層されていることが好ましい。積層されている場合は、p型半導体材料を含むp型半導体層が陽極側、n型半導体材料を含むn型半導体層が陰極側に位置することが好ましい。また、積層されている場合、積層界面に混合層(i層)を有してもよい。このような構成はp-i-n構造と呼ばれており、i層が主に電荷分離を担い、p層とn層がそれぞれ主に正孔輸送と電子輸送を担うことにより、光電変換効率をより高めることができる。混合されている場合は、p型半導体材料とn型半導体材料が分子レベルで相溶しているか、もしくは、ナノレベルで相分離していることが好ましい。相分離している場合、相分離構造のドメインサイズは、1nm以上50nm以下が好ましい。 When the photoelectric conversion layer contains two or more types of photoelectric conversion materials, these may be mixed or stacked. From the viewpoint of charge separation efficiency and rectification, it is preferable that the layers be laminated. When stacked, it is preferable that the p-type semiconductor layer containing the p-type semiconductor material is located on the anode side, and the n-type semiconductor layer containing the n-type semiconductor material is located on the cathode side. Moreover, when laminated, a mixed layer (i-layer) may be provided at the laminated interface. Such a structure is called a pin structure, where the i layer mainly takes charge of charge separation, and the p layer and n layer take charge of hole transport and electron transport, respectively, thereby increasing the photoelectric conversion efficiency. can be further increased. When mixed, it is preferable that the p-type semiconductor material and the n-type semiconductor material are compatible at the molecular level, or phase-separated at the nano-level. When phase-separated, the domain size of the phase-separated structure is preferably 1 nm or more and 50 nm or less.
 光電変換層の厚さは、10nm~500nmが好ましく、より好ましくは20nm~200nmである。光電変換層が積層構造からなる場合、p型半導体材料を含む層とn型半導体特性材料を含む層の厚さはそれぞれ5~495nmが好ましく、より好ましくは10nm~50nmである。積層界面に混合層(i層)を有する場合、i層の厚さは、1nm~100nmが好ましく、より好ましくは5nm~50nmである。 The thickness of the photoelectric conversion layer is preferably 10 nm to 500 nm, more preferably 20 nm to 200 nm. When the photoelectric conversion layer has a laminated structure, the thickness of the layer containing the p-type semiconductor material and the layer containing the material with n-type semiconductor properties is preferably 5 to 495 nm, more preferably 10 to 50 nm. When a mixed layer (i-layer) is provided at the lamination interface, the thickness of the i-layer is preferably 1 nm to 100 nm, more preferably 5 nm to 50 nm.
 光起電力素子においては、陽極および/または陰極が光透過性を有することが好ましい。電極の光透過性は、光電変換層に入射光が到達して起電力が発生する程度であれば、特に限定されるものではない。ここで、光透過性とは、[透過光強度(W/m)/入射光強度(W/m)]×100(%)で求められる値である。例えばこの時、350nm以上の波長において50%以上の光透過性を持つことが好ましく、より好ましくは70%以上、さらに好ましくは90%以上である。 In the photovoltaic element, it is preferable that the anode and/or the cathode have optical transparency. The light transmittance of the electrode is not particularly limited as long as incident light reaches the photoelectric conversion layer and an electromotive force is generated. Here, the light transmittance is a value determined by [transmitted light intensity (W/m 2 )/incident light intensity (W/m 2 )]×100 (%). For example, at this time, it is preferable to have a light transmittance of 50% or more at a wavelength of 350 nm or more, more preferably 70% or more, and even more preferably 90% or more.
 光透過性を有する電極の厚さは、光透過性と導電性とを有する範囲であればよく、電極素材によって異なるが、20nm~300nmが好ましい。なお、もう一方の電極は、導電性があれば必ずしも光透過性は必要ではなく、厚さも特に限定されない。 The thickness of the light-transmitting electrode may be within a range that has both light transparency and conductivity, and although it varies depending on the electrode material, it is preferably 20 nm to 300 nm. Note that the other electrode does not necessarily need to have optical transparency as long as it has conductivity, and its thickness is not particularly limited.
 電極材料としては、一方の電極には仕事関数の絶対値が大きな導電性素材、もう一方の電極には仕事関数の絶対値が小さな導電性素材を使用することが好ましい。 As for the electrode materials, it is preferable to use a conductive material with a large absolute value of work function for one electrode and a conductive material with a small absolute value of work function for the other electrode.
 仕事関数の絶対値が大きな導電性素材を用いた電極は陽極となる。仕事関数の大きな導電性材料としては、例えば、金、白金、クロム、ニッケルなどの金属や、透明性を有するインジウム、スズ、モリブデンなどの金属酸化物、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)などの複合金属酸化物などが好ましく用いられる。陽極が金属酸化物であることが好ましいく、より好ましくは光を透過させる透明電極として利用可能なITOやIZOである。上記の中でも、例えば、バッファー層の深LUMO材料として前述のHATCNやトリ(ベンジリデン)シクロプロパン誘導体を用いる場合には、陽極としては、ITOが好ましい。 An electrode made of a conductive material with a large absolute value of work function serves as an anode. Examples of conductive materials with large work functions include metals such as gold, platinum, chromium, and nickel, transparent metal oxides such as indium, tin, and molybdenum, indium tin oxide (ITO), and indium zinc oxide. Composite metal oxides such as IZO are preferably used. The anode is preferably a metal oxide, more preferably ITO or IZO, which can be used as a transparent electrode that transmits light. Among the above, for example, when the above-mentioned HATCN or tri(benzylidene)cyclopropane derivative is used as the deep LUMO material of the buffer layer, ITO is preferable as the anode.
 ここで、本発明における仕事関数WF[eV]は、大気中光電子収量分光装置AC-2(理研計器(株)製)によって測定することができる。より詳しくは、光起電力素子から陽極の片面を露出させ、1cm角にカットしたサンプルを、UVオゾン洗浄機を用いて10分間表面洗浄した後、大気中、前述の光電子収量分光装置を用いて、仕事関数(WF)を測定することができる。 Here, the work function WF [eV] in the present invention can be measured by an atmospheric photoelectron yield spectrometer AC-2 (manufactured by Riken Keiki Co., Ltd.). More specifically, one side of the anode from the photovoltaic element was exposed, and a sample cut into 1 cm squares was surface-cleaned using a UV ozone cleaner for 10 minutes, and then exposed to the atmosphere using the photoelectron yield spectrometer described above. , the work function (WF) can be measured.
 陽極に用いられる導電性材料は、上述の光電変換層、深LUMO材料や、後述する正孔輸送材料、正孔取り出し材料などのうち、陽極に隣接する層とオーミック接合するものであることが好ましい。陽極の形成方法は、その形成材料に応じて最適な方法を選択することができるが、例えば、スパッタ法、蒸着法、インクジェット法などが挙げられる。例えば、金属酸化物によって陽極を形成する場合にはスパッタ法、金属によって陽極を形成する場合には蒸着法が好ましく用いられる。 The conductive material used for the anode is preferably one that forms an ohmic contact with a layer adjacent to the anode, such as the above-mentioned photoelectric conversion layer, deep LUMO material, hole transport material, hole extraction material, etc. described below. . An optimal method for forming the anode can be selected depending on the material used to form the anode, and examples thereof include sputtering, vapor deposition, and inkjet methods. For example, when forming the anode using a metal oxide, a sputtering method is preferably used, and when forming an anode using a metal, a vapor deposition method is preferably used.
 仕事関数の絶対値が小さな導電性素材を用いた電極は陰極となる。リチウムなどのアルカリ金属、マグネシウム、カルシウムなどのアルカリ土類金属、錫や銀、アルミニウムなどや、これらの合金などが好ましく用いられる。これらを2種以上用いた積層体であってもよい。また、陰極に用いられる導電性材料は上述の光電変換層、電子輸送材料、電子取り出し層などのうち、陰極に隣接する層とオーミック接合するものであることが好ましい。 An electrode made of a conductive material with a small absolute value of work function serves as a cathode. Alkali metals such as lithium, alkaline earth metals such as magnesium and calcium, tin, silver, aluminum, and alloys thereof are preferably used. A laminate using two or more of these may also be used. Further, the conductive material used for the cathode is preferably one that forms an ohmic contact with a layer adjacent to the cathode among the above-mentioned photoelectric conversion layer, electron transport material, electron extraction layer, etc.
 陰極の形成方法は、その形成材料に応じて最適な方法を選択することができるが、例えば、スパッタ法、蒸着法、インクジェット法などが挙げられる。例えば、金属酸化物によって陰極を形成する場合にはスパッタ法、金属によって陽極を形成する場合には蒸着法が好ましく用いられる。 An optimal method for forming the cathode can be selected depending on the forming material, and examples thereof include sputtering, vapor deposition, and inkjet methods. For example, a sputtering method is preferably used when forming a cathode using a metal oxide, and a vapor deposition method is preferably used when forming an anode using a metal.
 光起電力素子の機械的強度を保ち、熱変形を抑制し、光電変換層への水蒸気や酸素の侵入を抑制するバリア性を付与するために、光起電力素子を基板上に形成することが好ましい。基板としては、例えば、ガラス板、セラミック板、樹脂フィルム、ワニスを硬化した樹脂薄膜、金属製薄板などが挙げられる。これらの中でも、透明であり、加工が容易である観点から、ガラス基板が好適に用いられる。また、主にスマートフォンなどのモバイル機器において、フレキシブルディスプレイやフォルダブルディスプレイが増加しており、これらの用途における基板には、樹脂フィルムや樹脂薄膜が好適に用いられる。より具体的には、例えば、ポリイミドフィルム、ポリエチレンナフタレートフィルムなどの耐熱フィルムが挙げられる。 In order to maintain the mechanical strength of the photovoltaic element, suppress thermal deformation, and provide barrier properties that suppress the intrusion of water vapor and oxygen into the photovoltaic conversion layer, it is possible to form the photovoltaic element on a substrate. preferable. Examples of the substrate include a glass plate, a ceramic plate, a resin film, a thin resin film obtained by hardening varnish, and a thin metal plate. Among these, glass substrates are preferably used because they are transparent and easy to process. Furthermore, flexible displays and foldable displays are increasing mainly in mobile devices such as smartphones, and resin films and resin thin films are suitably used as substrates for these applications. More specifically, examples include heat-resistant films such as polyimide films and polyethylene naphthalate films.
 正孔輸送層に用いられる正孔輸送材料としては、例えば、オリゴチオフェン化合物、フェニレンビニレン系化合物、p-フェニレン系化合物、ポリフルオレン系化合物、H2フタロシアニン(H2Pc)や銅フタロシアニン(CuPc)など金属原子を含むフタロシアニン誘導体、ポルフィリン誘導体、N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジフェニル-1,1’-ジアミン(TPD)、N,N’-ジナフチル-N,N’-ジフェニル-4,4’-ジフェニル-1,1’-ジアミン(NPD)等のトリアリールアミン誘導体、4,4’-ジ(カルバゾール-9-イル)ビフェニル(CBP)やN-[1,1’-ビフェニル]-4-イル-9,9-ジメチル-N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]-9H-フルオレン-2-アミン等のカルバゾール誘導体、酸化モリブデン、酸化タングステンなどのp型半導体性を示す金属酸化物が挙げられる。これらを2種以上含んでもよい。なお、本発明における正孔輸送層には、前述の深LUMO材料は含まない。正孔輸送層の厚さは、1nm~200nmが好ましく、より好ましくは5nm~100nmである。 Examples of hole transport materials used in the hole transport layer include oligothiophene compounds, phenylene vinylene compounds, p-phenylene compounds, polyfluorene compounds, and metal atoms such as H2 phthalocyanine (H2Pc) and copper phthalocyanine (CuPc). phthalocyanine derivatives, porphyrin derivatives, N,N'-diphenyl-N,N'-di(3-methylphenyl)-4,4'-diphenyl-1,1'-diamine (TPD), N,N'- Triarylamine derivatives such as dinaphthyl-N,N'-diphenyl-4,4'-diphenyl-1,1'-diamine (NPD), 4,4'-di(carbazol-9-yl)biphenyl (CBP) and N-[1,1'-biphenyl]-4-yl-9,9-dimethyl-N-[4-(9-phenyl-9H-carbazol-3-yl)phenyl]-9H-fluoren-2-amine, etc. Examples include metal oxides exhibiting p-type semiconductor properties such as carbazole derivatives, molybdenum oxide, and tungsten oxide. Two or more types of these may be included. Note that the hole transport layer in the present invention does not include the above-mentioned deep LUMO material. The thickness of the hole transport layer is preferably 1 nm to 200 nm, more preferably 5 nm to 100 nm.
 正孔取り出し層に用いられる正孔取り出し材料としては、例えば、トリス(4-ブロモフェニル)アミニウムヘキサクロロアンチモネート(TBPAH)などの電荷移動錯体、2,3,5,6-テトラフルオロ-7,7,8,8-テトラシアノキノジメタン(F4-TCNQ)、テトラシアノキノジメタン誘導体、ラジアレン誘導体、フッ素化銅フタロシアニン、ポリ4-スチレンスルホン酸をドープしたポリ3,4-エチレンジオキシチオフェン(PEDOT:PSS)などの導電性高分子が挙げられる。これらを2種以上含んでもよい。なお、本発明における正孔取り出し層には、前述の深LUMO材料は含まない。正孔取り出し層としては、1nm~200nmが好ましく、より好ましくは5nm~100nmである。 Examples of hole extraction materials used in the hole extraction layer include charge transfer complexes such as tris(4-bromophenyl)aminium hexachloroantimonate (TBPAH), 2,3,5,6-tetrafluoro-7, 7,8,8-tetracyanoquinodimethane (F4-TCNQ), tetracyanoquinodimethane derivatives, radialene derivatives, fluorinated copper phthalocyanine, poly3,4-ethylenedioxythiophene doped with poly4-styrenesulfonic acid Examples include conductive polymers such as (PEDOT:PSS). Two or more types of these may be included. Note that the hole extraction layer in the present invention does not include the above-mentioned deep LUMO material. The hole extraction layer preferably has a thickness of 1 nm to 200 nm, more preferably 5 nm to 100 nm.
 電子輸送層および/または電子取り出し層に用いられる電子輸送材料としては、例えば、上述のn型半導体材料や、多環芳香族誘導体、スチリル系芳香環誘導体、キノン誘導体、リンオキサイド誘導体、トリス(8-キノリノラート)アルミニウム(III)などのキノリノール錯体、ベンゾキノリノール錯体、ヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体およびフラボノール金属錯体などの各種金属錯体が挙げられる。これらを2種以上含んでもよい。なお、本発明における電子輸送層および電子取り出し層には、前述の深LUMO材料は含まない。電子輸送効率をより向上させる観点から、電子受容性窒素を含むヘテロアリール基を有する化合物を用いることが好ましい。ここで、電子受容性窒素とは、隣接原子との間に多重結合を形成している窒素原子を表す。電子受容性窒素を含むヘテロアリール基は、電子親和力が大きいため、電子を輸送しやすくなり、光電変換効率をより高めることができる。電子受容性窒素を含むヘテロアリール基を有する化合物としては、例えば、ピリジン誘導体、トリアジン誘導体、ピラジン誘導体、ピリミジン誘導体、キノリン誘導体、キノキサリン誘導体、キナゾリン誘導体、ナフチリジン誘導体、ベンゾキノリン誘導体、フェナントロリン誘導体、イミダゾール誘導体、オキサゾール誘導体、チアゾール誘導体、トリアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体、フェナンスロイミダゾール誘導体、ビピリジンやターピリジンなどのオリゴピリジン誘導体などが挙げられる。また、電子輸送材料が縮合多環芳香族骨格を有していると、ガラス転移温度が向上し、電子移動度が大きいためより好ましい。このような縮合多環芳香族骨格としては、キノリノール錯体、トリアジン誘導体、フルオランテン骨格、アントラセン骨格、ピレン骨格またはフェナントロリン骨格などが挙げられる。 Examples of electron transport materials used in the electron transport layer and/or electron extraction layer include the above-mentioned n-type semiconductor materials, polycyclic aromatic derivatives, styryl aromatic ring derivatives, quinone derivatives, phosphorus oxide derivatives, tris(8 Examples include various metal complexes such as quinolinol complexes such as aluminum (III), benzoquinolinol complexes, hydroxyazole complexes, azomethine complexes, tropolone metal complexes, and flavonol metal complexes. Two or more types of these may be included. Note that the electron transport layer and electron extraction layer in the present invention do not contain the above-mentioned deep LUMO material. From the viewpoint of further improving electron transport efficiency, it is preferable to use a compound having a heteroaryl group containing electron-accepting nitrogen. Here, the electron-accepting nitrogen refers to a nitrogen atom forming multiple bonds with adjacent atoms. Since the heteroaryl group containing electron-accepting nitrogen has a large electron affinity, it becomes easier to transport electrons, and the photoelectric conversion efficiency can be further improved. Examples of compounds having a heteroaryl group containing electron-accepting nitrogen include pyridine derivatives, triazine derivatives, pyrazine derivatives, pyrimidine derivatives, quinoline derivatives, quinoxaline derivatives, quinazoline derivatives, naphthyridine derivatives, benzoquinoline derivatives, phenanthroline derivatives, and imidazole derivatives. , oxazole derivatives, thiazole derivatives, triazole derivatives, oxadiazole derivatives, thiadiazole derivatives, benzimidazole derivatives, benzoxazole derivatives, benzthiazole derivatives, phenanthroimidazole derivatives, and oligopyridine derivatives such as bipyridine and terpyridine. Further, it is more preferable that the electron transport material has a condensed polycyclic aromatic skeleton because the glass transition temperature is improved and the electron mobility is large. Examples of such fused polycyclic aromatic skeletons include quinolinol complexes, triazine derivatives, fluoranthene skeletons, anthracene skeletons, pyrene skeletons, and phenanthroline skeletons.
 電子輸送層は、電子ドナー性材料を含んでもよい。ここで、電子ドナー性材料とは、電子輸送層の電気伝導性を向上させる化合物である。電子ドナー性材料の好ましい例としては、Liなどのアルカリ金属、LiFなどのアルカリ金属を含有する無機塩、リチウムキノリノールなどのアルカリ金属と有機物との錯体、アルカリ土類金属、アルカリ土類金属を含有する無機塩、アルカリ土類金属と有機物との錯体、EuやYbなどの希土類金属、希土類金属を含有する無機塩、希土類金属と有機物との錯体などが挙げられる。これらを2種以上含んでもよい。これらの中でも、金属リチウム、希土類金属、リチウムキノリノール(Liq)が好ましい。 The electron transport layer may contain an electron donor material. Here, the electron donor material is a compound that improves the electrical conductivity of the electron transport layer. Preferred examples of electron donor materials include alkali metals such as Li, inorganic salts containing alkali metals such as LiF, complexes of alkali metals and organic substances such as lithium quinolinol, alkaline earth metals, and alkaline earth metals. Examples include inorganic salts containing alkaline earth metals and organic substances, rare earth metals such as Eu and Yb, inorganic salts containing rare earth metals, and complexes of rare earth metals and organic substances. Two or more types of these may be included. Among these, metallic lithium, rare earth metals, and lithium quinolinol (Liq) are preferred.
 電子輸送層および電子取出し層の厚さは、1nm~200nmが好ましく、より好ましくは3nm~100nmである。 The thickness of the electron transport layer and the electron extraction layer is preferably 1 nm to 200 nm, more preferably 3 nm to 100 nm.
 光起電力素子を構成する上記各層の形成方法は、ドライプロセスまたはウェットプロセスのいずれでもよく、例えば、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、コーティング法、インクジェット法、印刷法などが挙げられる。これらの中でも、素子特性の観点から、抵抗加熱蒸着が好ましい。一方、高分子材料を用いる場合は、適当な溶媒を用いたコーティング法が好ましい。 The formation method of each of the above layers constituting the photovoltaic element may be either a dry process or a wet process, such as resistance heating evaporation, electron beam evaporation, sputtering, molecular lamination method, coating method, inkjet method, printing method, etc. Can be mentioned. Among these, resistance heating vapor deposition is preferred from the viewpoint of device characteristics. On the other hand, when using a polymeric material, a coating method using an appropriate solvent is preferred.
 本発明の光起電力素子は、光エネルギーを電気エネルギーに効率的に変換することができるため、種々の電子デバイスや光センシングデバイスへの応用が可能である。例えば、本発明の光起電力素子は、光センサ、光スイッチ、撮像素子として利用することができ、環境の明るさに係る照度、リモコンやスイッチに関連する光信号、動植物や自動車等の物体、人体、指紋や静脈形状のほか心拍や虹彩等の生体情報を取得することができる。すなわち、本発明の光センサは本発明の光起電力素子を含む。また、本発明の撮像素子は本発明の光起電力素子を含む。これらの中でも本発明の光起電力素子は生体情報の検知に適する。また、本発明の光起電力素子と有機発光素子とを有し、有機発光素子の光を利用して指紋認証する表示装置に利用することができる。すなわち、本発明の指紋認証装置は本発明の光起電力素子と有機発光素子とを有し、有機発光素子の光を利用して指紋認証を行う・例えば、マトリクスおよび/またはセグメント方式で表示する有機ELディスプレイの画素の一部を、本発明の光起電力素子により構成することにより、有機ELディスプレイに指紋認証機能を付与することができる。すなわち、有機ELディスプレイの有機発光素子から発せられる緑色光がディスプレイに触れた指により反射・散乱された光を、本発明の光起電力素子により受光・光電変換することにより、指紋情報を高精度に取得することができる。 Since the photovoltaic element of the present invention can efficiently convert light energy into electrical energy, it can be applied to various electronic devices and optical sensing devices. For example, the photovoltaic element of the present invention can be used as an optical sensor, optical switch, or image sensor, and can be used to detect illuminance related to the brightness of the environment, optical signals related to remote controls and switches, objects such as animals, plants, and automobiles, etc. It is possible to acquire biometric information such as the human body, fingerprints, vein shape, heartbeat, and iris. That is, the optical sensor of the present invention includes the photovoltaic element of the present invention. Moreover, the image sensor of the present invention includes the photovoltaic element of the present invention. Among these, the photovoltaic device of the present invention is suitable for detecting biological information. Further, it can be used in a display device that includes the photovoltaic element of the present invention and an organic light emitting element and performs fingerprint authentication using light from the organic light emitting element. That is, the fingerprint authentication device of the present invention includes the photovoltaic element of the present invention and an organic light emitting element, and performs fingerprint authentication using light from the organic light emitting element.For example, the fingerprint authentication device is displayed in a matrix and/or segment method. By configuring some of the pixels of the organic EL display using the photovoltaic element of the present invention, it is possible to provide the organic EL display with a fingerprint authentication function. That is, the green light emitted from the organic light emitting element of the organic EL display is reflected and scattered by a finger touching the display, and the light is received and photoelectrically converted by the photovoltaic element of the present invention, thereby generating fingerprint information with high precision. can be obtained.
 以下、実施例を挙げて本発明を説明するが、本発明はこれらの例によって限定されるものではない。 The present invention will be described below with reference to Examples, but the present invention is not limited to these Examples.
 まず、各実施例および比較例における評価方法を以下に記載する。 First, evaluation methods for each example and comparative example will be described below.
 (LUMO)
 各実施例および比較例において、バッファー層に用いた有機材料のLUMOは、オーガニック エレクトロニクス(Organic Electronics)」、2012年、13巻、2346頁および「ジャーナル オブ インフォメーション ディスプレイ(Jornal of Information Display)」、2022年、23巻、45頁の記載により、ヘキサアザトリフェニレンヘキサカルボニトリル(HATCNは-5.42eV、後述の化合物[G]は-5.40eVとする。
(LUMO)
In each Example and Comparative Example, the LUMO of the organic material used for the buffer layer is the same as that in Organic Electronics, 2012, vol. 13, p. 2346 and Journal of Information Display, 2022. According to the description in Vol. 23, p. 45 of 2010, hexaazatriphenylenehexacarbonitrile (HATCN is −5.42 eV, and compound [G] described below is −5.40 eV.
 (陽極の仕事関数)
 無アルカリガラス基板上に、各実施例および比較例に用いたITOを100nm成膜し、1cm角にカットしたサンプルを、UVオゾン洗浄機(セン特殊光源(株)製)を用いて10分間表面洗浄した後、大気中、大気中光電子収量分光装置AC-2(理研計器(株)製)を用いて仕事関数(WF)を測定した。
(work function of anode)
A 100 nm film of ITO used in each example and comparative example was formed on a non-alkali glass substrate, and a sample cut into 1 cm squares was heated on the surface for 10 minutes using a UV ozone cleaning machine (manufactured by Sen Tokushu Light Source Co., Ltd.). After washing, the work function (WF) was measured in the air using an atmospheric photoelectron yield spectrometer AC-2 (manufactured by Riken Keiki Co., Ltd.).
 (光電変換効率)
 各実施例および比較例によって得られた光起電力素子について、大気中、ガラス基板側から波長400~700nmの可視光を照射し、分光感度測定装置(分光計器(株)製、ハイパーモノライトシステム、SM-250型)を用いて、印加電圧を-3Vとしたときの光電変換効率を測定した。
(Photoelectric conversion efficiency)
The photovoltaic elements obtained in each Example and Comparative Example were irradiated with visible light with a wavelength of 400 to 700 nm from the glass substrate side in the atmosphere, using a spectral sensitivity measuring device (manufactured by Bunko Keiki Co., Ltd., Hyper Monolight System). , SM-250 type), the photoelectric conversion efficiency was measured when the applied voltage was -3V.
 (比較例1)
 陽極としてITO電極層(WF=-4.8eV)を125nm有する、46mm×38mmの透明ガラス基板を用意した。この基板を、アルカリ洗浄液(フルウチ化学(株)製、“セミコクリーン”(登録商標)EL56)を純水で10倍希釈した希釈液に浸し、10分間超音波洗浄した後、純水による5分間の超音波洗浄を2度行い、十分に乾燥した。その後、UVオゾン洗浄を30分間行った。
(Comparative example 1)
A 46 mm x 38 mm transparent glass substrate having a 125 nm thick ITO electrode layer (WF=-4.8 eV) was prepared as an anode. This substrate was immersed in a diluted solution of an alkaline cleaning solution ("Semico Clean" (registered trademark) EL56, manufactured by Furuuchi Chemical Co., Ltd.) diluted 10 times with pure water, subjected to ultrasonic cleaning for 10 minutes, and then soaked in pure water for 5 minutes. It was subjected to ultrasonic cleaning twice and thoroughly dried. Thereafter, UV ozone cleaning was performed for 30 minutes.
 続いて、基板のITO電極層上に、ポリ4-スチレンスルホン酸をドープしたポリ3,4-エチレンジオキシチオフェン(PEDOT:PSS)とイソプロピルアルコールを体積比6:4で混合した溶液を、3,000rpmで30秒間スピンコートし、150℃のホットプレートで10分間、加熱処理し、厚さ55nmの正孔取り出し層を形成した。 Next, a solution of poly-3,4-ethylenedioxythiophene (PEDOT:PSS) doped with poly-4-styrene sulfonic acid and isopropyl alcohol mixed at a volume ratio of 6:4 was poured onto the ITO electrode layer of the substrate. ,000 rpm for 30 seconds, and heat-treated on a 150° C. hot plate for 10 minutes to form a hole extraction layer with a thickness of 55 nm.
 正孔取り出し層を形成した基板を、真空蒸着装置((株)エイコー・エンジニアリング製)に設置し、約3×10-3Paまで減圧した。正孔取り出し層上に、正孔輸送層としてN-[1,1’-ビフェニル]-4-イル-9,9-ジメチル-N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]-9H-フルオレン-2-アミン(厚さ40nm)、p型半導体としてボロンジピロメテン錯体(厚さ15nm、下記化合物[B])化合物、n型半導体としてフラーレン(厚さ15nm、下記化合物[C])を順に蒸着し、正孔輸送層と光電変換層をそれぞれ形成した。真空蒸着装置を一度大気開放した後、蒸着源を入れ替え、再び約3×10-3Paまで減圧した。光電変換層上に、リチウムキノリナール(厚さ5nm)とアルミニウム(厚さ41nm)を順次蒸着し、電子輸送層と陰極をそれぞれ形成した。得られた積層体を、グローブボックス内において、バリアフィルム(TESA製)により封止し、光起電力素子を得た。 The substrate on which the hole extraction layer was formed was placed in a vacuum evaporation device (manufactured by Eiko Engineering Co., Ltd.), and the pressure was reduced to about 3×10 −3 Pa. N-[1,1'-biphenyl]-4-yl-9,9-dimethyl-N-[4-(9-phenyl-9H-carbazol-3-yl) is placed on the hole extraction layer as a hole transport layer. ) phenyl]-9H-fluoren-2-amine (thickness: 40 nm), boron dipyrromethene complex (thickness: 15 nm, the following compound [B]) compound as the p-type semiconductor, fullerene (thickness: 15 nm, the following compound) as the n-type semiconductor. [C]) was deposited in order to form a hole transport layer and a photoelectric conversion layer, respectively. After the vacuum evaporation apparatus was once opened to the atmosphere, the evaporation source was replaced and the pressure was reduced to about 3×10 −3 Pa again. Lithium quinolinal (thickness: 5 nm) and aluminum (thickness: 41 nm) were sequentially deposited on the photoelectric conversion layer to form an electron transport layer and a cathode, respectively. The obtained laminate was sealed in a glove box with a barrier film (manufactured by TESA) to obtain a photovoltaic element.
 得られた光起電力素子について、前述の方法により評価したところ、光電変換効率は10.2%、その時の吸収波長は532nmであった。 When the obtained photovoltaic device was evaluated by the method described above, the photoelectric conversion efficiency was 10.2%, and the absorption wavelength at that time was 532 nm.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 (比較例2)
 正孔取り出し層を形成した基板を、真空蒸着装置((株)エイコー・エンジニアリング製)に設置し、約3×10-3Paまで減圧し、正孔取り出し層上に、酸化モリブデン(厚さ10nm)を蒸着してバッファー層を形成した後、真空蒸着装置を一度大気開放し、蒸着源を入れ替えて正孔輸送層、光電変換層および電子輸送層をそれぞれ形成したこと、アルミニウム陰極の厚さを74nmに変更したこと以外は比較例1と同様にして光起電力素子を得た。得られた光起電力素子について、前述の方法により評価したところ、光電変換効率は6.5%、その時の吸収波長は538nmであった。陽極と光電変換層との間に金属酸化物層を有したので、比較例1に比べ光電変換効率が劣った。
(Comparative example 2)
The substrate on which the hole extraction layer was formed was placed in a vacuum evaporation device (manufactured by Eiko Engineering Co., Ltd.), the pressure was reduced to approximately 3 × 10 -3 Pa, and molybdenum oxide (10 nm thick) was deposited on the hole extraction layer. ) was deposited to form a buffer layer, the vacuum evaporation equipment was once opened to the atmosphere, and the evaporation source was replaced to form a hole transport layer, photoelectric conversion layer, and electron transport layer, respectively, and the thickness of the aluminum cathode was A photovoltaic device was obtained in the same manner as Comparative Example 1 except that the wavelength was changed to 74 nm. When the obtained photovoltaic device was evaluated by the method described above, the photoelectric conversion efficiency was 6.5%, and the absorption wavelength at that time was 538 nm. Since the metal oxide layer was provided between the anode and the photoelectric conversion layer, the photoelectric conversion efficiency was inferior compared to Comparative Example 1.
 (比較例3)
 ボロンジピロメテン錯体(厚さ15nm、上記化合物[B])を上記化合物[D]に変更したこと、アルミニウム陰極の厚さを60nmに変更したこと以外は比較例1と同様にして光起電力素子を得た。得られた光起電力素子について、前述の方法により評価したところ、光電変換効率は3.5%、その時の吸収波長は528nmであった。
(Comparative example 3)
A photovoltaic element was prepared in the same manner as in Comparative Example 1, except that the boron dipyrromethene complex (thickness 15 nm, the above compound [B]) was changed to the above compound [D], and the thickness of the aluminum cathode was changed to 60 nm. I got it. When the obtained photovoltaic device was evaluated by the method described above, the photoelectric conversion efficiency was 3.5%, and the absorption wavelength at that time was 528 nm.
 (比較例4)
 ボロンジピロメテン錯体(厚さ15nm、上記化合物[B])を上記化合物[E]に変更したこと、アルミニウム陰極の厚さを81nmに変更したこと以外は比較例1と同様にして光起電力素子を得た。得られた光起電力素子について、前述の方法により評価したところ、光電変換効率は1.1%、その時の吸収波長は539nmであった。
(Comparative example 4)
A photovoltaic device was prepared in the same manner as in Comparative Example 1, except that the boron dipyrromethene complex (thickness 15 nm, the above compound [B]) was changed to the above compound [E], and the thickness of the aluminum cathode was changed to 81 nm. I got it. When the obtained photovoltaic device was evaluated by the method described above, the photoelectric conversion efficiency was 1.1%, and the absorption wavelength at that time was 539 nm.
 (比較例5)
 正孔取り出し層を形成しなかったこと以外は比較例4と同様にして光起電力素子を得た。得られた光起電力素子について、前述の方法により評価したところ、光電変換効率は0.8%、その時の吸収波長は539nmであった。
(比較例6)
 ボロンジピロメテン錯体(厚さ15nm、上記化合物[B])を上記化合物[F]に変更したこと、アルミニウム陰極の厚さを29nmに変更したこと以外は比較例1と同様にして光起電力素子を得た。得られた光起電力素子について、前述の方法により評価したところ、光電変換効率は4.4%、その時の吸収波長は546nmであった。
(Comparative example 5)
A photovoltaic device was obtained in the same manner as Comparative Example 4 except that the hole extraction layer was not formed. When the obtained photovoltaic device was evaluated by the method described above, the photoelectric conversion efficiency was 0.8%, and the absorption wavelength at that time was 539 nm.
(Comparative example 6)
A photovoltaic device was prepared in the same manner as in Comparative Example 1, except that the boron dipyrromethene complex (thickness 15 nm, the above compound [B]) was changed to the above compound [F], and the thickness of the aluminum cathode was changed to 29 nm. I got it. When the obtained photovoltaic device was evaluated by the method described above, the photoelectric conversion efficiency was 4.4%, and the absorption wavelength at that time was 546 nm.
 (比較例7)
 正孔取り出し層を形成しなかったこと以外は比較例6と同様にして光起電力素子を得た。得られた光起電力素子について、前述の方法により評価したところ、光電変換効率は3.8%、その時の吸収波長は546nmであった。
(Comparative Example 7)
A photovoltaic device was obtained in the same manner as in Comparative Example 6 except that the hole extraction layer was not formed. When the obtained photovoltaic device was evaluated by the method described above, the photoelectric conversion efficiency was 3.8%, and the absorption wavelength at that time was 546 nm.
 (実施例1)
 正孔取り出し層を形成した基板を、真空蒸着装置((株)エイコー・エンジニアリング製)に設置し、約3×10-3Paまで減圧し、正孔取り出し層上に、ヘキサアザトリフェニレンヘキサカルボニトリル(HATCN、LUMO=-5.42eV)によりバッファー層(厚さ10nm)を形成した後に正孔輸送層、光電変換層および電子輸送層を形成したこと、アルミニウム陰極の厚さを31nmに変更したこと以外は比較例1と同様にして光起電力素子を得た。得られた光起電力素子について、前述の方法により評価したところ、光電変換効率は24.6%、その時の吸収波長は534nmであった。
(Example 1)
The substrate on which the hole extraction layer was formed was placed in a vacuum evaporation device (manufactured by Eiko Engineering Co., Ltd.), the pressure was reduced to approximately 3 × 10 -3 Pa, and hexaazatriphenylenehexacarbonitrile was deposited on the hole extraction layer. (HATCN, LUMO=-5.42 eV) after forming a buffer layer (thickness 10 nm), a hole transport layer, a photoelectric conversion layer, and an electron transport layer were formed, and the thickness of the aluminum cathode was changed to 31 nm. A photovoltaic device was obtained in the same manner as in Comparative Example 1 except for this. When the obtained photovoltaic device was evaluated by the method described above, the photoelectric conversion efficiency was 24.6%, and the absorption wavelength at that time was 534 nm.
 (実施例2)
 正孔取り出し層を形成しなかったこと以外は実施例1と同様にして光起電力素子を得た。得られた光起電力素子について、前述の方法により評価したところ、光電変換効率は21.8%、その時の吸収波長は534nmであった。
(Example 2)
A photovoltaic device was obtained in the same manner as in Example 1 except that the hole extraction layer was not formed. When the obtained photovoltaic device was evaluated by the method described above, the photoelectric conversion efficiency was 21.8%, and the absorption wavelength at that time was 534 nm.
 (実施例3)
 ボロンジピロメテン錯体(厚さ15nm、上記化合物[B])を上記化合物[D]に変更したこと、アルミニウム陰極の厚さを30nmに変更したこと以外は実施例1と同様にして光起電力素子を得た。得られた光起電力素子について、前述の方法により評価したところ、光電変換効率は9.1%、その時の吸収波長は528nmであった。
(Example 3)
A photovoltaic element was prepared in the same manner as in Example 1, except that the boron dipyrromethene complex (thickness 15 nm, the above compound [B]) was changed to the above compound [D], and the thickness of the aluminum cathode was changed to 30 nm. I got it. When the obtained photovoltaic device was evaluated by the method described above, the photoelectric conversion efficiency was 9.1%, and the absorption wavelength at that time was 528 nm.
 (実施例4)
 正孔取り出し層を形成しなかったこと以外は実施例3と同様にして光起電力素子を得た。得られた光起電力素子について、前述の方法により評価したところ、光電変換効率は8.7%、その時の吸収波長は539nmであった。
(Example 4)
A photovoltaic device was obtained in the same manner as in Example 3 except that the hole extraction layer was not formed. When the obtained photovoltaic device was evaluated by the method described above, the photoelectric conversion efficiency was 8.7%, and the absorption wavelength at that time was 539 nm.
 (実施例5)
 ボロンジピロメテン錯体(厚さ15nm、上記化合物[B])を上記化合物[E]に変更したこと、アルミニウム陰極の厚さを42nmに変更したこと以外は実施例1と同様にして光起電力素子を得た。得られた光起電力素子について、前述の方法により評価したところ、光電変換効率は4.1%、その時の吸収波長は539nmであった。
(Example 5)
A photovoltaic device was prepared in the same manner as in Example 1, except that the boron dipyrromethene complex (thickness 15 nm, the above compound [B]) was changed to the above compound [E], and the thickness of the aluminum cathode was changed to 42 nm. I got it. When the obtained photovoltaic device was evaluated by the method described above, the photoelectric conversion efficiency was 4.1%, and the absorption wavelength at that time was 539 nm.
 (実施例6)
 正孔取り出し層を形成しなかったこと以外は実施例5と同様にして光起電力素子を得た。得られた光起電力素子について、前述の方法により評価したところ、光電変換効率は3.7%、その時の吸収波長は539nmであった。
(Example 6)
A photovoltaic device was obtained in the same manner as in Example 5 except that the hole extraction layer was not formed. When the obtained photovoltaic device was evaluated by the method described above, the photoelectric conversion efficiency was 3.7%, and the absorption wavelength at that time was 539 nm.
 (実施例7)
 ボロンジピロメテン錯体(厚さ15nm、上記化合物[B])を上記化合物[F]に変更したこと、アルミニウム陰極の厚さを63nmに変更したこと以外は実施例1と同様にして光起電力素子を得た。得られた光起電力素子について、前述の方法により評価したところ、光電変換効率は9.8%、その時の吸収波長は546nmであった。
(Example 7)
A photovoltaic device was prepared in the same manner as in Example 1, except that the boron dipyrromethene complex (thickness 15 nm, the above compound [B]) was changed to the above compound [F], and the thickness of the aluminum cathode was changed to 63 nm. I got it. When the obtained photovoltaic device was evaluated by the method described above, the photoelectric conversion efficiency was 9.8%, and the absorption wavelength at that time was 546 nm.
 (実施例8)
 正孔取り出し層を形成しなかったこと以外は実施例7と同様にして光起電力素子を得た。得られた光起電力素子について、前述の方法により評価したところ、光電変換効率は9.6%、その時の吸収波長は546nmであった。
(Example 8)
A photovoltaic device was obtained in the same manner as in Example 7 except that the hole extraction layer was not formed. When the obtained photovoltaic device was evaluated by the method described above, the photoelectric conversion efficiency was 9.6%, and the absorption wavelength at that time was 546 nm.
 (実施例9)
 正孔取り出し層をHATCNから上記化合物[G](5nm、LUMO=-5.40eV)に変更したこと、アルミニウム陰極の厚さを28nmに変更したこと以外は実施例3と同様にして光起電力素子を得た。得られた光起電力素子について、前述の方法により評価したところ、光電変換効率は12.1%、その時の吸収波長は528nmであった。
(Example 9)
Photovoltaic power was generated in the same manner as in Example 3, except that the hole extraction layer was changed from HATCN to the above compound [G] (5 nm, LUMO = -5.40 eV), and the thickness of the aluminum cathode was changed to 28 nm. I got the element. When the obtained photovoltaic device was evaluated by the method described above, the photoelectric conversion efficiency was 12.1%, and the absorption wavelength at that time was 528 nm.
 (実施例10)
 正孔取り出し層を形成しなかったこと以外は実施例9と同様にして光起電力素子を得た。得られた光起電力素子について、前述の方法により評価したところ、光電変換効率は11.9%、その時の吸収波長は528nmであった。
(Example 10)
A photovoltaic device was obtained in the same manner as in Example 9 except that the hole extraction layer was not formed. When the obtained photovoltaic device was evaluated by the method described above, the photoelectric conversion efficiency was 11.9%, and the absorption wavelength at that time was 528 nm.
  1:基板
  2:陽極
  3:バッファー層
  4:光電変換層
  5:陰極
  6:正孔取り出し層
  7:正孔輸送層
  8:p型半導体層
  9:n型半導体層
  10:電子輸送層
1: Substrate 2: Anode 3: Buffer layer 4: Photoelectric conversion layer 5: Cathode 6: Hole extraction layer 7: Hole transport layer 8: P-type semiconductor layer 9: N-type semiconductor layer 10: Electron transport layer

Claims (9)

  1. 少なくとも陽極および陰極を有し、陽極と陰極の間に、有機材料を含むバッファー層と、光電変換層とを有する光起電力素子であって、前記有機材料として、その最低空軌道LUMOの絶対値が陽極の仕事関数WFの絶対値よりも大きい有機材料を含み、陽極と光電変換層との間には金属酸化物からなる層を有しない光起電力素子。 A photovoltaic element having at least an anode and a cathode, and having a buffer layer containing an organic material and a photoelectric conversion layer between the anode and the cathode, wherein the organic material is the absolute value of the lowest unoccupied orbital LUMO. A photovoltaic element containing an organic material whose work function WF is larger than the absolute value of the work function WF of the anode, and having no layer made of a metal oxide between the anode and the photoelectric conversion layer.
  2. 少なくとも陽極、バッファー層、光電変換層および陰極をこの順に有する請求項1に記載の光起電力素子。 The photovoltaic device according to claim 1, comprising at least an anode, a buffer layer, a photoelectric conversion layer, and a cathode in this order.
  3. 前記光電変換層が2種以上の光電変換材料を含む請求項1に記載の光起電力素子。 The photovoltaic device according to claim 1, wherein the photoelectric conversion layer contains two or more types of photoelectric conversion materials.
  4. 陽極が金属酸化物である請求項1に記載の光起電力素子。 The photovoltaic device according to claim 1, wherein the anode is a metal oxide.
  5. 前記有機材料としてヘキサアザトリフェニレンヘキサカルボニトリルを含む請求項1に記載の光起電力素子。 The photovoltaic device according to claim 1, wherein the organic material includes hexaazatriphenylenehexacarbonitrile.
  6. 前記有機材料としてトリ(ベンジリデン)シクロプロパン誘導体を含む請求項1に記載の光起電力素子。 The photovoltaic device according to claim 1, wherein the organic material includes a tri(benzylidene)cyclopropane derivative.
  7. 請求項1~6いずれかに記載の光起電力素子を含む光センサ。 An optical sensor comprising the photovoltaic element according to any one of claims 1 to 6.
  8. 請求項1~6いずれかに記載の光起電力素子を含む撮像素子。 An imaging device comprising the photovoltaic device according to any one of claims 1 to 6.
  9. 請求項1~6いずれかに記載の光起電力素子と有機発光素子を有し、有機発光素子の発光を利用して指紋認証を行う指紋認証装置。 A fingerprint authentication device comprising the photovoltaic element according to any one of claims 1 to 6 and an organic light emitting element, and performing fingerprint authentication using light emitted from the organic light emitting element.
PCT/JP2023/009840 2022-03-16 2023-03-14 Photovoltaic element, optical sensor, imaging element, and fingerprint authentication device WO2023176829A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-041074 2022-03-16
JP2022041074 2022-03-16

Publications (1)

Publication Number Publication Date
WO2023176829A1 true WO2023176829A1 (en) 2023-09-21

Family

ID=88023870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009840 WO2023176829A1 (en) 2022-03-16 2023-03-14 Photovoltaic element, optical sensor, imaging element, and fingerprint authentication device

Country Status (1)

Country Link
WO (1) WO2023176829A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002740A (en) * 2002-03-22 2004-01-08 Mitsubishi Chemicals Corp Polymer compound, 1,4-phenylenediamine derivative, charge-transporting material, organic electroluminescent element material and organic electroluminescent element
JP2013541217A (en) * 2010-10-15 2013-11-07 ザ リージェンツ オブ ザ ユニヴァシティ オブ ミシガン Materials for controlling the epitaxial growth of photosensitive layers in photovoltaic devices
KR20170003471A (en) * 2015-06-30 2017-01-09 (주)피엔에이치테크 An electroluminescent compound and an electroluminescent device comprising the same
WO2017126153A1 (en) * 2016-01-22 2017-07-27 コニカミノルタ株式会社 Optical fingerprint authentication device
JP2019530254A (en) * 2016-09-20 2019-10-17 イヌル ゲーエムベーハー Diffusion-limited electroactive barrier layer for optoelectronic components

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002740A (en) * 2002-03-22 2004-01-08 Mitsubishi Chemicals Corp Polymer compound, 1,4-phenylenediamine derivative, charge-transporting material, organic electroluminescent element material and organic electroluminescent element
JP2013541217A (en) * 2010-10-15 2013-11-07 ザ リージェンツ オブ ザ ユニヴァシティ オブ ミシガン Materials for controlling the epitaxial growth of photosensitive layers in photovoltaic devices
KR20170003471A (en) * 2015-06-30 2017-01-09 (주)피엔에이치테크 An electroluminescent compound and an electroluminescent device comprising the same
WO2017126153A1 (en) * 2016-01-22 2017-07-27 コニカミノルタ株式会社 Optical fingerprint authentication device
JP2019530254A (en) * 2016-09-20 2019-10-17 イヌル ゲーエムベーハー Diffusion-limited electroactive barrier layer for optoelectronic components

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU YUAN, NELL BERNHARD, ORTSTEIN KATRIN, WU ZHONGBIN, KARPOV YEVHEN, BERYOZKINA TETYANA, LENK SIMONE, KIRIY ANTON, LEO KARL, REIN: "High Electron Affinity Molecular Dopant CN6-CP for Efficient Organic Light-Emitting Diodes", APPLIED MATERIALS & INTERFACES, AMERICAN CHEMICAL SOCIETY, US, vol. 11, no. 12, 27 March 2019 (2019-03-27), US , pages 11660 - 11666, XP093092948, ISSN: 1944-8244, DOI: 10.1021/acsami.8b21865 *

Similar Documents

Publication Publication Date Title
KR102233924B1 (en) Photoactive organic material for optoelectronic components
CN111095587B (en) Organic light emitting device
JP5938028B2 (en) PHOTOELECTRIC CONVERSION ELEMENT AND METHOD OF USING THE SAME, OPTICAL SENSOR
TWI683463B (en) Photoelectric conversion element and image sensor using the same
CN111312912B (en) Organic light emitting device
TW201618321A (en) Photoelectric conversion device and imaging device
JP6610257B2 (en) Photoelectric conversion element and image sensor, solar cell, single color detection sensor and flexible sensor using the same
WO2014157238A1 (en) Photoelectric conversion material, photoelectric conversion element and method for using same, optical sensor, and image pickup element
JP6047108B2 (en) Photoelectric conversion device, imaging device, optical sensor
JP2015043362A (en) Photoelectric conversion element and image pickup element
TW201910339A (en) Dibenzopyrrolemethine boron chelate compound, near-infrared light absorbing material, film and organic electronic device
JP6077426B2 (en) PHOTOELECTRIC CONVERSION ELEMENT AND METHOD OF USING THE SAME, OPTICAL SENSOR
JP2019169693A (en) Photoelectric conversion material and photoelectric conversion element
Bhat et al. Versatile aza‐BODIPY‐based low‐bandgap conjugated small molecule for light harvesting and near‐infrared photodetection
JP2016152239A (en) Photoelectric conversion element and image sensor including the same
WO2023176829A1 (en) Photovoltaic element, optical sensor, imaging element, and fingerprint authentication device
WO2015025717A1 (en) Photoelectric conversion element, optical sensor and imaging element
JP6855129B2 (en) Organic electroluminescent device containing a polycyclic aromatic compound as a constituent
WO2023199670A1 (en) Light sensor and display device using same
CN114075115A (en) Amine compound and organic electroluminescent device containing same
US10312445B2 (en) Polymer and organic electronic element comprising same
JP2023025641A (en) Photoelectric conversion material and photoelectric conversion element including the same
KR20190078963A (en) Heterocyclic compound and organic electronic device comprising the same
WO2022215541A1 (en) Compound, light-emitting element material, light-emitting element using same, photoelectric conversion material, and photoelectric conversion element using same
CN115700059A (en) Photoelectric conversion element, imaging element, photosensor, and compound

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023521064

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770784

Country of ref document: EP

Kind code of ref document: A1