WO2023176511A1 - 円筒形電池 - Google Patents

円筒形電池 Download PDF

Info

Publication number
WO2023176511A1
WO2023176511A1 PCT/JP2023/008048 JP2023008048W WO2023176511A1 WO 2023176511 A1 WO2023176511 A1 WO 2023176511A1 JP 2023008048 W JP2023008048 W JP 2023008048W WO 2023176511 A1 WO2023176511 A1 WO 2023176511A1
Authority
WO
WIPO (PCT)
Prior art keywords
gasket
cylindrical battery
tapered
axial direction
negative electrode
Prior art date
Application number
PCT/JP2023/008048
Other languages
English (en)
French (fr)
Inventor
翔太 矢冨
Original Assignee
パナソニックエナジ-株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックエナジ-株式会社 filed Critical パナソニックエナジ-株式会社
Publication of WO2023176511A1 publication Critical patent/WO2023176511A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/152Lids or covers characterised by their shape for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure

Definitions

  • the present disclosure relates to cylindrical batteries.
  • Cylindrical batteries are required to have high reliability, for example, high reliability such as insulation of positive and negative electrodes and leakage prevention performance of electrolyte.
  • This cylindrical battery includes an outer can, an electrode body housed in the outer can, and a sealing body that closes an opening of the outer can.
  • the sealing body is caulked and fixed to the opening of the outer can via a gasket.
  • the outer can has a shoulder, a groove, a cylindrical portion, and a bottom.
  • the grooved portion is formed by recessing a part of the side surface of the outer can in an annular shape radially inward.
  • the sealing body receives a force on the opening side in the axial direction from the annular protrusion that protrudes radially inward through the gasket due to the formation of the grooved portion.
  • the shoulder portion is formed by bending the upper end of the outer can inward toward the peripheral edge of the closure when caulking and fixing the closure to the outer can.
  • the cylindrical battery of Patent Document 1 secures sealability by caulking, but when electrolyte accumulates in the caulked part, the electrolyte creeps up between the gasket and the outer can, causing leakage. There is a possibility that Alternatively, the electrolyte may creep up between the sealing body and the gasket, causing leakage. Therefore, an object of the present disclosure is to provide a cylindrical battery that can suppress leakage of electrolyte from a sealing part.
  • a cylindrical battery according to the present disclosure includes an electrode body in which a positive electrode and a negative electrode are wound with a separator in between, a bottomed cylindrical outer can housing the electrode body, and an opening of the outer can.
  • the outer can and the closure include a sealing body that seals the outer can and an outer edge covering part that axially sandwiches the outer edge of the outer can and covers the outer circumferential surface of the outer edge.
  • An insulating gasket is provided, and one or more tapered grooves including a tapered portion that tapers toward the electrode body are provided on the outer surface of the gasket.
  • leakage of electrolyte from the sealing part can be suppressed.
  • FIG. 1 is an axial cross-sectional view of a cylindrical battery according to an embodiment of the present disclosure. It is a perspective view of the electrode body of the said cylindrical battery.
  • FIG. 3 is an enlarged cross-sectional view of the periphery of the sealing body of the cylindrical battery.
  • FIG. 4 is an enlarged cross-sectional view of the vicinity of the shoulder of the outer can in FIG. 3.
  • FIG. 3 is a schematic plan view of the annular gasket before deformation, which is incorporated into the cylindrical battery, when viewed from below in the axial direction.
  • FIG. 5 is a schematic cross-sectional view when the cross section taken along the dotted line AA in FIG. 4 is opened into a planar shape and expanded into a band shape in the circumferential direction, as viewed from above.
  • FIG. 7 is a schematic cross-sectional view corresponding to FIG. 6 of a cylindrical battery of a first modification.
  • FIG. 7 is a schematic cross-sectional view corresponding to FIG. 6 of a cylindrical battery of a second modification.
  • FIG. 5 is an enlarged sectional view corresponding to FIG. 4 of a cylindrical battery according to a third modification.
  • the cylindrical battery of the present disclosure may be a primary battery or a secondary battery.
  • a battery using an aqueous electrolyte or a non-aqueous electrolyte may be used.
  • a non-aqueous electrolyte secondary battery (lithium ion battery) using a non-aqueous electrolyte will be exemplified as the cylindrical battery 10 that is one embodiment, but the cylindrical battery of the present disclosure is not limited to this.
  • FIG. 1 is an axial cross-sectional view of a cylindrical battery 10 according to an embodiment of the present disclosure
  • FIG. 2 is a perspective view of an electrode body 14 of the cylindrical battery 10.
  • the cylindrical battery 10 includes a wound electrode body 14, a non-aqueous electrolyte (not shown), and a battery case 15 that houses the electrode body 14 and the non-aqueous electrolyte.
  • the battery case 15 includes a bottomed cylindrical outer can 16 and a sealing body 17 that closes the opening of the outer can 16.
  • the cylindrical battery 10 also includes a resin gasket 28 disposed between the outer can 16 and the sealing body 17.
  • the non-aqueous electrolyte includes a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • the non-aqueous solvent for example, esters, ethers, nitriles, amides, and mixed solvents of two or more of these may be used.
  • the non-aqueous solvent may contain a halogen-substituted product in which at least a portion of hydrogen in these solvents is replaced with a halogen atom such as fluorine.
  • the non-aqueous electrolyte is not limited to a liquid electrolyte, and may be a solid electrolyte using a gel-like polymer or the like.
  • a lithium salt such as LiPF 6 is used as the electrolyte salt.
  • the electrode body 14 includes an elongated positive electrode 11, an elongated negative electrode 12, and two elongated separators 13. It has a wound structure in which it is wound through.
  • a positive electrode lead 20 is connected to the positive electrode 11 of the electrode body 14, and a negative electrode lead 21 is connected to the negative electrode 12 of the electrode body 14.
  • the negative electrode 12 is formed to be one size larger than the positive electrode 11 in order to suppress precipitation of lithium, and is formed longer than the positive electrode 11 in the longitudinal direction and the width direction (short direction).
  • the two separators 13 are formed to be at least one size larger than the positive electrode 11, and are arranged to sandwich the positive electrode 11, for example.
  • the positive electrode 11 has a positive electrode current collector and positive electrode mixture layers formed on both sides of the current collector.
  • a metal foil such as aluminum or an aluminum alloy that is stable in the potential range of the positive electrode 11, a film having the metal disposed on the surface, or the like can be used.
  • the positive electrode mixture layer includes a positive electrode active material, a conductive agent, and a binder.
  • the positive electrode 11 is made by, for example, applying a positive electrode mixture slurry containing a positive electrode active material, a conductive agent, a binder, etc. onto a positive electrode current collector, drying the coating film, and then compressing it to collect the positive electrode mixture layer. It can be produced by forming on both sides of the electric body.
  • the positive electrode active material is composed of a lithium-containing metal composite oxide as a main component.
  • Metal elements contained in the lithium-containing metal composite oxide include Ni, Co, Mn, Al, B, Mg, Ti, V, Cr, Fe, Cu, Zn, Ga, Sr, Zr, Nb, In, and Sn. , Ta, W, etc.
  • An example of a preferable lithium-containing metal composite oxide is a composite oxide containing at least one of Ni, Co, Mn, and Al.
  • Examples of the conductive agent contained in the positive electrode mixture layer include carbon materials such as carbon black, acetylene black, Ketjen black, and graphite.
  • Examples of the binder included in the positive electrode mixture layer include fluororesins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide, acrylic resin, and polyolefin. These resins may be used in combination with cellulose derivatives such as carboxymethyl cellulose (CMC) or its salts, polyethylene oxide (PEO), and the like.
  • the negative electrode 12 includes a negative electrode current collector and negative electrode mixture layers formed on both sides of the current collector.
  • a foil made of a metal such as copper or a copper alloy that is stable in the potential range of the negative electrode 12, a film in which the metal is disposed on the surface layer, or the like can be used.
  • the negative electrode mixture layer includes a negative electrode active material and a binder.
  • the negative electrode 12 can be made by applying a negative electrode mixture slurry containing a negative electrode active material, a binder, etc. onto a negative electrode current collector, drying the coating film, and then compressing the negative electrode mixture layer to form a negative electrode mixture layer on the current collector. It can be produced by forming on both sides.
  • a carbon material that reversibly occludes and releases lithium ions is generally used as the negative electrode active material.
  • Preferred carbon materials include natural graphite such as flaky graphite, lumpy graphite, and earthy graphite, and graphite such as artificial graphite such as lumpy artificial graphite and graphitized mesophase carbon microbeads.
  • the negative electrode mixture layer may contain a Si-containing compound as a negative electrode active material.
  • a metal other than Si that is alloyed with lithium, an alloy containing the metal, a compound containing the metal, etc. may be used as the negative electrode active material.
  • the binder contained in the negative electrode mixture layer may be a fluororesin, PAN, polyimide resin, acrylic resin, polyolefin resin, etc., but preferably styrene-butadiene rubber (SBR). ) or its modified form.
  • the negative electrode mixture layer may contain, for example, in addition to SBR or the like, CMC or a salt thereof, polyacrylic acid (PAA) or a salt thereof, polyvinyl alcohol, or the like.
  • a porous sheet having ion permeability and insulation properties is used for the separator 13.
  • porous sheets include microporous thin films, woven fabrics, and nonwoven fabrics.
  • Preferable materials for the separator 13 include olefin resins such as polyethylene and polypropylene, cellulose, and the like.
  • the separator 13 may have either a single layer structure or a laminated structure.
  • a heat-resistant layer or the like may be formed on the surface of the separator 13.
  • the negative electrode 12 may constitute the winding start end of the electrode body 14, but generally the separator 13 extends beyond the winding start side end of the negative electrode 12, and the winding start side end of the separator 13 forms the winding start end of the electrode body 14. This will be the starting end of No. 14.
  • the positive electrode lead 20 is electrically connected to an intermediate portion such as the center in the winding direction of the positive electrode current collector, and the negative electrode lead 21 is electrically connected to an intermediate portion in the winding direction of the negative electrode current collector. electrically connected to the end of the winding.
  • the negative electrode lead may be electrically connected to the winding start end of the negative electrode current collector in the winding direction.
  • the electrode body has two negative electrode leads, one negative electrode lead is electrically connected to the winding start end in the winding direction of the negative electrode current collector, and the other negative electrode lead is connected to the negative electrode current collector. It may be electrically connected to the end of the winding in the winding direction.
  • the negative electrode and the outer can may be electrically connected by bringing the winding end side end of the negative electrode current collector in the winding direction into contact with the inner surface of the outer can.
  • the negative electrode lead is electrically connected to the winding start side end of the negative electrode current collector in the winding direction, and the winding end side end of the negative electrode current collector in the winding direction is brought into contact with the inner surface of the outer can. You can.
  • the cylindrical battery 10 further includes an upper insulating plate 18 disposed above the electrode body 14 and a lower insulating plate 19 disposed below the electrode body 14.
  • the positive electrode lead 20 attached to the positive electrode 11 extends to the sealing body 17 side through the through hole of the upper insulating plate 18, and the negative electrode lead 21 attached to the negative electrode 12 extends outside the lower insulating plate 19. It extends to the bottom plate portion 68 side of the outer can 16 through.
  • the positive electrode lead 20 is connected to the lower surface of the terminal plate 23, which is the bottom plate of the sealing body 17, by welding or the like, and the valve body (rupture disk) 27, which is the top plate of the sealing body 17, which is electrically connected to the terminal plate 23, is connected to the positive electrode. It becomes a terminal.
  • the negative electrode lead 21 is connected to the inner surface of the bottom plate portion 68 of the outer can 16 by welding or the like, and the outer can 16 serves as a negative electrode terminal.
  • the outer can 16 is a metal container having a cylindrical portion with a bottom.
  • the space between the outer can 16 and the sealing body 17 is sealed with an annular gasket 28, and the internal space of the battery case 15 is hermetically sealed.
  • the gasket 28 includes a clamping portion 32 that is held between the outer can 16 and the sealing body 17, and insulates the sealing body 17 from the outer can 16. That is, the gasket 28 has the role of a sealing material for maintaining airtightness inside the battery, and has the role of preventing electrolyte leakage. Further, the gasket 28 also has the role of an insulating material that prevents a short circuit between the outer can 16 and the sealing body 17.
  • the outer can 16 has a protrusion 36 on the inner circumferential side that protrudes inward in the radial direction by providing an annular groove 35 in a part of the cylindrical outer circumferential surface of the outer can 16 in the axial direction.
  • the annular groove 35 can be formed, for example, by spinning a part of the outer circumferential surface of the cylinder radially inward and recessing it radially inward.
  • the outer can 16 has a bottomed cylindrical portion 30 including a protrusion 36 and an annular shoulder portion 33 .
  • the bottomed cylindrical portion 30 accommodates the electrode body 14 and the non-aqueous electrolyte, and the shoulder portion 33 is bent radially inward from the open end of the bottomed cylindrical portion 30 to accommodate the electrode body 14 and the nonaqueous electrolyte. Extends in both directions.
  • the shoulder portion 33 is formed when the upper end portion of the outer can 16 is bent inward and caulked onto the peripheral edge portion 31 of the sealing body 17.
  • the sealing body 17 is clamped together with the gasket 28 between the shoulder portion 33 and the upper side of the protruding portion 36 by caulking, and is fixed to the exterior can 16.
  • FIG. 3 is an enlarged cross-sectional view of the periphery of the sealing body of the cylindrical battery 10.
  • the sealing body 17 has a structure in which a terminal plate 23, an annular insulating plate 25, and a valve body 27 are laminated in order from the electrode body 14 side.
  • the valve body 27 has a circular shape in plan view.
  • the valve body 27 can be manufactured, for example, by pressing a plate material of aluminum or aluminum alloy. Aluminum and aluminum alloys are preferred as materials for the valve body 27 because they have excellent flexibility.
  • the valve body 27 has a thin portion 27c formed at an intermediate portion connecting the central portion 27a and the outer peripheral portion 27b.
  • the thin wall portion 27c is reversed and ruptured, so that the valve body 27 functions as an explosion-proof valve.
  • the insulating plate 25 is formed in an annular shape when viewed from above, and has a through hole 25a in the center.
  • the insulating plate 25 is fitted into and fixed to an annular protrusion 27d formed on the outer peripheral portion 27b of the valve body 27 so as to protrude downward.
  • the insulating plate 25 is provided to ensure insulation. It is preferable that the insulating plate 25 is made of a material that does not affect battery characteristics. Examples of the material for the insulating plate 25 include polymer resins, such as polypropylene (PP) resin and polybutylene terephthalate (PBT) resin.
  • the insulating plate 25 has a ventilation hole 25b on the outer peripheral side that passes through it in the axial direction. Further, the insulating plate 25 has an annular skirt portion 25c extending downward at the outer peripheral edge.
  • the terminal plate 23 has a circular outer shape with a diameter smaller than that of the insulating plate 25 in plan view, and a central portion 23a is a thin portion.
  • the terminal plate 23 is arranged to face the valve body 27 with the insulating plate 25 interposed therebetween.
  • the terminal board 23 is attached to the insulating plate 25 by fitting its outer circumferential surface into the inner circumferential surface of the skirt portion 25c of the insulating plate 25 and fixing it.
  • the valve body 27 and the terminal plate 23 are connected at their centers via the through hole 25a of the insulating plate 25.
  • the terminal plate 23 is made of aluminum or an aluminum alloy like the valve body 27, and in this case, the central parts of the valve body 27 and the terminal plate 23 can be easily connected to each other.
  • connection method it is preferable to use metallurgical joining, and laser welding is exemplified as the metallurgical joining.
  • a ventilation hole 23b is formed on the outer peripheral side of the terminal plate 23, passing through the terminal plate 23 in the axial direction. The ventilation hole 23b communicates with the ventilation hole 25b of the insulating plate 25.
  • the inner circumferential surface of the skirt portion 25c may have a truncated conical shape with the inner diameter decreasing toward the bottom, and the outer circumferential surface of the terminal plate 23 may have a truncated conical shape corresponding to the inner circumferential surface.
  • the terminal plate 23 by press-fitting and fixing the terminal plate 23 to the skirt portion 25c, displacement of the terminal plate 23 relative to the valve body 27 can be reliably prevented.
  • one or more tapered grooves including a tapered portion that tapers toward the electrode body are provided on the outer surface of the gasket.
  • the gasket has one or more tapered grooves on the outer surface including a tapered portion that tapers toward the electrode body, so that the electrolyte accumulated in the caulked portion is caused by capillarity to form the tapered groove.
  • the depth of the tapered groove is preferably 50% or less of the thickness of the gasket before it is incorporated into a cylindrical battery, in order to ensure sufficient strength of the gasket.
  • the outer surface of the gasket 28 has a plurality of inner tapered grooves 51 that taper toward the electrode body 14 side of the outer can 16, and a plurality of inner tapered grooves 51 that taper toward the electrode body 14 side of the outer can 16.
  • a plurality of external tapered grooves 52 are provided.
  • FIG. 4 is an enlarged sectional view of the vicinity of the shoulder portion 38 of the outer can 16 in FIG. 3.
  • the inner tapered groove 51 is provided on the lower surface 54 of the gasket 28 on the bottom plate portion 68 side of the outer can 16 in the axial direction, and is a lower tapered portion that tapers toward the inside in the radial direction.
  • the internal tapered groove 51 includes only the lower tapered portion 51a.
  • the external tapered groove 52 is provided on the upper surface 55 of the gasket 28 axially opposite to the lower surface 59 on the bottom plate portion 68 side of the outer can 16 in the axial direction of the sealing body 17, and as it goes radially inward.
  • the external tapered groove 52 includes only the upper tapered portion 52a.
  • the depth of the upper tapered portion 52a after the gasket 28 is assembled into the cylindrical battery 10 is the length shown as t in FIG.
  • FIG. 5 is a schematic plan view of the annular gasket 28 before being deformed and incorporated into the cylindrical battery 10, when viewed from below in the axial direction.
  • a plurality of inner tapered grooves 51 are provided at approximately equal intervals in the circumferential direction.
  • the inner tapered groove 51 is a tapered groove whose groove width becomes narrower toward the inside in the radial direction. All of the plurality of internal tapered grooves 51 are substantially the same groove, but the plurality of internal tapered grooves may include two or more tapered grooves that differ in at least one of shape and size.
  • the plurality of internal tapered grooves 51 are provided at equal intervals in the circumferential direction, the plurality of internal tapered grooves may be provided at non-equal intervals in the circumferential direction.
  • FIG. 6 is a schematic cross-sectional view when the cross section taken along the dotted line AA in FIG. 4 is opened into a planar shape and developed into a band shape in the circumferential direction as viewed from above.
  • the plurality of external tapered grooves 52 are provided on the upper surface 55 of the gasket 28 at equal intervals in the circumferential direction.
  • the external tapered groove 52 is a tapered groove whose groove width becomes narrower toward the inside in the radial direction. All of the plurality of externally tapered grooves 52 are substantially the same groove, but the plurality of externally tapered grooves may include two or more tapered grooves that differ in at least one of shape and size.
  • the plurality of external tapered grooves 52 are provided at equal intervals in the circumferential direction, the plurality of external tapered grooves may be provided at non-equal intervals in the circumferential direction.
  • the gasket 28 may have a plurality of internal tapered grooves 51 arranged at intervals of 45° or less over the entire circumferential direction, or at intervals of 30° or less over the entire circumferential direction. It may have a plurality of internal tapered grooves 51 arranged at an interval of 15° or less over the entire circumference in the circumferential direction. Further, the gasket 28 may have a plurality of internal tapered grooves 51 arranged at intervals of 10° or less over the entire circumferential direction, or at intervals of 5° or less over the entire circumferential direction. A plurality of internal tapered grooves 51 may be provided. It is preferable to arrange the plurality of internal tapered grooves 51 over the entire circumference of the gasket 28 because leakage from between the outer can 16 and the gasket 28 can be effectively suppressed.
  • the gasket 28 may have a plurality of external tapered grooves 52 arranged at intervals of 45° or less over the entire circumferential direction, and at intervals of 30° over the entire circumferential direction. It may have a plurality of external tapered grooves 52 arranged at the following intervals, or it may have a plurality of external tapered grooves 52 arranged at intervals of 15 degrees or less over the entire circumference in the circumferential direction. good. Further, the gasket 28 may have a plurality of external tapered grooves 52 arranged at intervals of 10 degrees or less over the entire circumferential direction, and at intervals of 5 degrees or less over the entire circumferential direction. A plurality of externally tapered grooves 52 may be provided. It is preferable to arrange the plurality of externally tapered grooves 52 over the entire circumference of the gasket 28 because leakage from between the sealing body 17 and the gasket 28 can be effectively suppressed.
  • each of the internal tapered groove 51 and the external tapered groove 52 is a closed groove with a closed tip, but at least one of the internal tapered groove and the external tapered groove has a closed tip. The tip may be open without being closed.
  • each of the internal tapered groove 51 and the external tapered groove 52 has an isosceles triangular shape in the schematic cross-sectional view shown in FIG. In the schematic cross-sectional view corresponding to FIG. 6, it is sufficient that the shape is tapered toward the inside in the radial direction. good.
  • the circumferential position of the tips of the plurality of internal tapered grooves 51 substantially coincides with the circumferential position of the tips of the plurality of external tapered grooves 52.
  • the plurality of internal tapered grooves 151 and the plurality of external tapered grooves 152 are The circumferential position of the tip of the tapered groove 151 and the circumferential position of the tip of the plurality of external tapered grooves 152 may be arranged so as to appear alternately in the circumferential direction. In this way, it is preferable that the tip of the inner tapered groove 151 and the tip of the outer tapered groove 152 do not face each other because it is easy to ensure sufficient strength of the gasket 128.
  • the two inner tapered grooves 251 adjacent in the circumferential direction are located on the opposite side from the tapered side.
  • the end portion on the widening side may communicate in the circumferential direction, and the plurality of internal tapered grooves 251 may be provided continuously in the circumferential direction over the entire circumferential range.
  • the ends of the two external tapered grooves 252 adjacent to each other in the circumferential direction may communicate in the circumferential direction at the end portions on the side that widens toward the end opposite to the tapered side, and the plurality of external tapered grooves 252 may also be connected in the circumferential direction. It may be provided continuously in the circumferential direction over the entire range.
  • one of the internal tapered groove and the external tapered groove may not exist, only one or more internal tapered grooves may exist, or one or more internal tapered grooves may exist. Only the external tapered groove may be present. Further, in the cylindrical battery of the present disclosure, at least a portion of the tapered groove may be present on the side of the gasket, as shown in FIG. 9 below.
  • FIG. 9 is an enlarged sectional view corresponding to FIG. 4 of a cylindrical battery 310 of a third modification.
  • at least one of the one or more inner tapered grooves 351 is provided in an outer circumferential axially extending portion 371 that faces the outer can 16 and extends in the axial direction in the gasket 328. It may also include an outer circumferential tapered portion 381 that tapers toward the bottom plate of the outer can 16 in the axial direction. The end of the outer circumferential tapered portion 381 on the bottom plate portion 68 side in the axial direction may communicate with the radially outer end of the lower tapered portion 51a.
  • At least one of the one or more external tapered grooves 352 is provided in the inner circumferential axially extending portion 372 that faces the outer circumferential surface 27e of the sealing body 17 and extends in the axial direction in the gasket 328.
  • the outer can 16 may include an inner circumferentially tapered portion 382 that tapers toward the bottom plate portion of the outer can 16 in the axial direction. The end of the inner circumferential tapered portion 382 on the bottom plate portion 68 side in the axial direction may communicate with the outer end in the radial direction of the upper tapered portion 52a.
  • the gasket 328 may have a plurality of internal tapered grooves 351 that are arranged at intervals in the circumferential direction over the entire circumference and include an outer circumferential tapered portion 381 and a lower tapered portion 51a. good.
  • the gasket 328 may have a plurality of external tapered grooves 352 that are arranged at intervals in the circumferential direction over the entire circumferential direction and include an inner circumferential tapered portion 382 and an upper tapered portion 52a. good.
  • Example 1> (Preparation of positive electrode) Li(Ni 0.8 Co 0.15 Al 0.05 )O 2 was used as the positive electrode active material.
  • a positive electrode mixture paste was prepared by mixing 100 parts by mass of a positive electrode active material, 2.0 parts by mass of polyvinylidene fluoride as a binder, and 2.0 parts by mass of acetylene black as a conductive agent into a liquid component (NMP).
  • the positive electrode mixture paste was applied to both surfaces of a positive electrode current collector made of aluminum foil, except for the connection portion of the positive electrode lead, and dried to form a positive electrode mixture layer.
  • the produced positive electrode precursor was compressed to obtain a positive electrode.
  • the connection portion of the positive electrode lead was formed at the center of the positive electrode.
  • Graphite was used as the negative electrode active material. 100 parts by mass of the negative electrode active material, 1.0 parts by mass of polyvinylidene fluoride as a binder, 1.0 parts by mass of carboxymethylcellulose as a thickener, and an appropriate amount of water were stirred in a double-arm kneader. A negative electrode paste was obtained. The negative electrode mixture paste was applied to both sides of a negative electrode current collector made of copper foil except for the connection portion of the negative electrode lead, and dried to form a negative electrode mixture layer. The produced negative electrode precursor was compressed to obtain a negative electrode. The connection portion of the negative electrode lead was formed at the winding end of the negative electrode.
  • LiPF 6 as an electrolyte salt was dissolved at a concentration of 1.0 M (mol/liter) in a non-aqueous solvent that was a mixture of ethylene carbonate and dimethyl carbonate at a volume ratio of 40:60 (1 atm, 25°C).
  • a non-aqueous electrolyte was prepared.
  • the electrode body was inserted into an exterior can with a height of 74.5 mm and a diameter of 21 mm, and the diameter of the opening was reduced.
  • an upper insulating plate made of phenolic resin (GP) mixed with glass fiber and having an outer diameter of 20 mm and a thickness of 0.3 mm was inserted.
  • a positive electrode lead is welded to a sealing body incorporating an insulating gasket (PP) into the opening of the outer can, the above-mentioned non-aqueous electrolyte is injected, and a press machine is used to remove the sealing body, gasket, and opening side of the outer can.
  • the ends were caulked to produce a cylindrical battery.
  • As the gasket a gasket was used in which an externally tapered groove was provided only in the portion from the outer peripheral surface of the valve body (rupture disk) that contacted the lower surface of the valve body.
  • the rated capacity of the cylindrical battery was 5.0 Ah.
  • Example 2 A cylindrical battery was produced that differed from the cylindrical battery of Example 1 only in that a gasket having an externally tapered groove was used only in the portion contacting the lower surface of the valve body (rupture disk). The rated capacity of the cylindrical battery was 5.0 Ah.
  • Example 3 The cylindrical battery of Example 1 has the only difference that a gasket with an internal tapered groove is used only in the range from the outer circumferential surface in contact with the inner circumferential surface of the outer can to the radially inner edge of the lower surface on the electrode body side in the axial direction.
  • a different type of cylindrical battery was fabricated.
  • the rated capacity of the cylindrical battery was 5.0 Ah.
  • Example 4 A cylindrical battery was produced that differed from the cylindrical battery of Example 1 only in that a gasket was used that had an internal tapered groove provided only in the range up to the radial inner edge of the lower surface on the electrode body side in the axial direction.
  • the rated capacity of the cylindrical battery was 5.0 Ah.
  • Example 5 An external tapered groove is provided only in the part from the outer circumferential surface of the valve body (rupture disk) that contacts the lower surface of the valve body, and the radially inner groove is provided on the lower surface of the electrode body side in the axial direction from the outer circumferential surface that contacts the inner circumferential surface of the outer can.
  • a cylindrical battery was produced that differed from the cylindrical battery of Example 1 only in that a gasket having an internal tapered groove only up to the edge was used. The rated capacity of the cylindrical battery was 5.0 Ah.
  • Example 6 An external tapered groove is provided only from the outer circumferential surface of the valve body (rupture disk) to the portion that touches the bottom surface of the valve body, and an internal tapered groove is provided only in the range from the radially inner edge of the lower surface of the electrode body side in the axial direction.
  • a cylindrical battery was produced that differed from the cylindrical battery of Example 1 only in that the provided gasket was used. The rated capacity of the cylindrical battery was 5.0 Ah.
  • Example 7 An external tapered groove is provided only in the part that contacts the lower surface of the valve body (rupture disk), and only in the range from the outer circumferential surface in contact with the inner circumferential surface of the outer can to the radially inner edge of the lower surface on the electrode body side in the axial direction.
  • a cylindrical battery was produced that differed from the cylindrical battery of Example 1 only in that a gasket having an internal tapered groove was used. The rated capacity of the cylindrical battery was 5.0 Ah.
  • Example 8 A gasket was used in which an external tapered groove was provided only in the part that contacted the lower surface of the valve body (rupture disk), and an internal tapered groove was provided only in the range up to the radial inner edge of the lower surface on the electrode body side in the axial direction.
  • a cylindrical battery was produced that differed from the cylindrical battery of Example 1 only in one point. The rated capacity of the cylindrical battery was 5.0 Ah.
  • a cylindrical battery was produced that differed from the cylindrical battery of Example 1 only in that a gasket without a tapered groove was used.
  • the rated capacity of the cylindrical battery was 5.0 Ah.
  • a temperature cycle test was conducted on five samples at a state of charge (SOC) of 30%. Specifically, a cycle of maintaining a temperature of 85 ⁇ 2°C for 6 hours and then maintaining a temperature of -40 ⁇ 2°C for 6 hours was repeated 10 times, and then a temperature of 20°C was maintained for 24 hours. After the test, the presence or absence of leakage at the caulked portion of the cylindrical battery was checked, and the presence or absence of a change in the mass of the cylindrical battery was confirmed.
  • SOC state of charge
  • the cylindrical battery of the present disclosure it is possible to suppress the electrolytic solution from creeping up at the caulked portion, the airtightness of the gasket can be made good, and leakage from the cylindrical battery 10 can be suppressed.
  • the gasket is provided with tapered grooves over a wide range, the strength of the gasket will be reduced. Therefore, if the cylindrical battery of Example 8 in which the internal tapered groove is formed in a narrow range and the external tapered groove is also formed in a narrow range is manufactured, it is possible to prevent liquid leakage from between the valve body and the gasket and prevent the external can from leaking. Not only can liquid leakage from between the gaskets be effectively suppressed, but also the gasket strength can be increased, and gasket breakage can also be effectively suppressed.
  • the tapered groove was not provided in the gasket at the portion facing the upper surface of the sealing body, such a tapered groove may be provided.
  • the external tapered groove may be provided only in the portion of the gasket that faces the side of the sealing body, or the internal tapered groove may be provided only in the portion of the gasket that faces the inner circumferential surface of the outer can in the radial direction.
  • the center portion of the axially upper end surface of the cylindrical battery 10 is recessed axially downward; however, in the cylindrical battery of the present disclosure, the axially upper end surface The center portion may be configured to protrude upward in the axial direction.
  • the tapered groove may include a tapered portion that becomes tapered toward the electrode body. The tapered groove may be tapered over the entire length, or may have a portion with the same groove width in some regions in the extending direction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

円筒形電池(10)が、正極(11)と負極(12)がセパレータ(13)を介して巻回された電極体(14)、電極体(14)を収容する有底筒状の外装缶(16)、外装缶(16)の開口を封口する封口体(17)、及び外装缶(16)と封口体(17)を絶縁するガスケット(28)を備える。ガスケット(28)の外面に電極体(15)側に行くにしたがって先細りとなる先細り部を含む1以上の先細り溝(51,52)を設ける。

Description

円筒形電池
 本開示は、円筒形電池に関する。
 近年、円筒形電池の用途は、拡大の一途を辿っており、例えば、ハイブリット車(HV)、電気自動車(EV)等の車載用途から、ノートパソコン、スマートフォン、タブレット等の情報端末用途、電動工具やアシスト自転車の搭載用途まで多岐に渡っている。そして、円筒形電池は、高い信頼性、例えば、正負極の絶縁性や電解液の漏液防止性能等の高い信頼性が求められている。
 係る背景において、従来、円筒形電池としては、特許文献1に記載されているものがある。この円筒形電池は、外装缶と、外装缶内に収容される電極体と、外装缶の開口部を塞ぐ封口体を備える。封口体は、ガスケットを介して外装缶の開口部にかしめ固定される。外装缶は、肩部、溝入れ部、筒状部、及び底部を有する。溝入れ部は、外装缶の側面の一部を、径方向内側に環状に窪ませることで形成される。封口体は、溝入れ部の形成によって径方向内方側に突出する環状突出部からガスケットを介して軸方向の開口部側の力を受ける。肩部は、封口体を外装缶にかしめ固定する際に、外装缶の上端部を封口体の周縁部に向かって内側に折り曲げることで形成される。
特開2000-48825号公報
 特許文献1の円筒形電池は、かしめ固定で封止性を確保しているが、かしめ部に電解液が溜まった際に、ガスケットと外装缶の間を電解液が這い上がり、漏液が発生する虞がある。又は、封口体とガスケットの間を電解液が這い上がり、漏液が発生する虞もある。そこで、本開示の目的は、封口部からの電解液の漏液を抑制できる円筒形電池を提供することにある。
 上記課題を解決するため、本開示に係る円筒形電池は、正極と負極がセパレータを介して巻回された電極体と、電極体を収容する有底筒状の外装缶と、外装缶の開口を封口する封口体と、封口体の径方向の外方側の外縁部を軸方向に挟持すると共に外縁部の外周面を覆うように配置される外縁被覆部を含み、外装缶と封口体を絶縁するガスケットと、を備え、ガスケットの外面に電極体側に行くにしたがって先細りとなる先細り部を含む1以上の先細り溝が設けられる。
 本開示に係る円筒形電池によれば、封口部からの電解液の漏液を抑制できる。
本開示の一実施形態に係る円筒形電池の軸方向の断面図である。 上記円筒形電池の電極体の斜視図である。 円筒形電池の封口体周辺部における拡大断面図である。 図3における外装缶の肩部周辺の拡大断面図である。 上記円筒形電池に組み込む変形前の環状のガスケットを軸方向下側から見たときの模式平面図である。 図4の点線のA-A線断面を平面状に開くと共に周方向に関して帯状に展開して平面視としてみたときの模式断面図である。 第1変形例の円筒形電池における図6に対応する模式断面図である。 第2変形例の円筒形電池における図6に対応する模式断面図である。 第3変形例の円筒形電池における図4に対応する拡大断面図である。
 以下、図面を参照しながら、本開示に係る円筒形電池の実施形態について詳細に説明する。なお、本開示の円筒形電池は、一次電池でもよく、二次電池でもよい。また、水系電解質を用いた電池でもよく、非水系電解質を用いた電池でもよい。以下では、一実施形態である円筒形電池10として、非水電解質を用いた非水電解質二次電池(リチウムイオン電池)を例示するが、本開示の円筒形電池はこれに限定されない。
 以下において複数の実施形態や変形例などが含まれる場合、それらの特徴部分を適宜に組み合わせて新たな実施形態を構築することは当初から想定されている。以下の実施形態では、図面において同一構成に同一符号を付し、重複する説明を省略する。また、複数の図面には、模式図が含まれ、異なる図間において、各部材における、縦、横、高さ等の寸法比は、必ずしも一致しない。本明細書では、説明の便宜上、電池ケース15の軸方向(高さ方向)の封口体17側を「上」とし、軸方向の外装缶16の底側を「下」とする。以下で説明される構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素であり、必須の構成要素ではない。
 図1は、本開示の一実施形態に係る円筒形電池10の軸方向の断面図であり、図2は、円筒形電池10の電極体14の斜視図である。図1に示すように、円筒形電池10は、巻回型の電極体14と、非水電解質(図示せず)と、電極体14及び非水電解質を収容する電池ケース15とを備える。電池ケース15は、有底筒状の外装缶16と、外装缶16の開口部を塞ぐ封口体17で構成される。また、円筒形電池10は、外装缶16と封口体17との間に配置される樹脂製のガスケット28を備える。
 非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水溶媒には、例えばエステル類、エーテル類、ニトリル類、アミド類、およびこれらの2種以上の混合溶媒等を用いてもよい。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有してもよい。なお、非水電解質は液体電解質に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。電解質塩には、LiPF等のリチウム塩が使用される。
 図2に示すように、電極体14は、長尺状の正極11と、長尺状の負極12と、長尺状の2枚のセパレータ13とを有し、正極11と負極12がセパレータ13を介して巻回された巻回構造を有する。電極体14の正極11には、正極リード20が接合され、電極体14の負極12には、負極リード21が接合される。負極12は、リチウムの析出を抑制するために、正極11よりも一回り大きな寸法で形成され、正極11より長手方向及び幅方向(短手方向)に長く形成される。また、2枚のセパレータ13は、少なくとも正極11よりも一回り大きな寸法で形成され、例えば正極11を挟むように配置される。
 正極11は、正極集電体と、集電体の両面に形成された正極合剤層とを有する。正極集電体には、アルミニウム、アルミニウム合金など、正極11の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極合剤層は、正極活物質、導電剤、及び結着剤を含む。正極11は、例えば正極集電体上に正極活物質、導電剤、及び結着剤等を含む正極合剤スラリーを塗布し、塗膜を乾燥させた後、圧縮して正極合剤層を集電体の両面に形成することにより作製できる。
 正極活物質は、リチウム含有金属複合酸化物を主成分として構成される。リチウム含有金属複合酸化物に含有される金属元素としては、Ni、Co、Mn、Al、B、Mg、Ti、V、Cr、Fe、Cu、Zn、Ga、Sr、Zr、Nb、In、Sn、Ta、W等が挙げられる。好ましいリチウム含有金属複合酸化物の一例は、Ni、Co、Mn、Alの少なくとも1種を含有する複合酸化物である。
 正極合剤層に含まれる導電剤としては、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛等の炭素材料が例示できる。正極合剤層に含まれる結着剤としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素樹脂、ポリアクリロニトリル(PAN)、ポリイミド、アクリル樹脂、ポリオレフィンなどが例示できる。これらの樹脂と、カルボキシメチルセルロース(CMC)又はその塩等のセルロース誘導体、ポリエチレンオキシド(PEO)などが併用されてもよい。
 負極12は、負極集電体と、集電体の両面に形成された負極合剤層とを有する。負極集電体には、銅、銅合金など、負極12の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極合剤層は、負極活物質、及び結着剤を含む。負極12は、例えば負極集電体上に負極活物質、及び結着剤等を含む負極合剤スラリーを塗布し、塗膜を乾燥させた後、圧縮して負極合剤層を集電体の両面に形成することにより作製できる。
 負極活物質には、一般的に、リチウムイオンを可逆的に吸蔵、放出する炭素材料が用いられる。好ましい炭素材料は、鱗片状黒鉛、塊状黒鉛、土状黒鉛等の天然黒鉛、塊状人造黒鉛、黒鉛化メソフェーズカーボンマイクロビーズ等の人造黒鉛などの黒鉛である。負極合剤層には、負極活物質として、Si含有化合物が含まれていてもよい。また、負極活物質には、Si以外のリチウムと合金化する金属、当該金属を含有する合金、当該金属を含有する化合物等が用いられてもよい。
 負極合剤層に含まれる結着剤には、正極11の場合と同様に、フッ素樹脂、PAN、ポリイミド樹脂、アクリル樹脂、ポリオレフィン樹脂等を用いてもよいが、好ましくはスチレン-ブタジエンゴム(SBR)又はその変性体を用いる。負極合剤層には、例えばSBR等に加えて、CMC又はその塩、ポリアクリル酸(PAA)又はその塩、ポリビニルアルコールなどが含まれていてもよい。
 セパレータ13には、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータ13の材質としては、ポリエチレン、ポリプロピレン等のオレフィン樹脂、セルロースなどが好ましい。セパレータ13は、単層構造、積層構造のいずれでもよい。セパレータ13の表面には、耐熱層などが形成されてもよい。なお、負極12は電極体14の巻き始め端を構成してもよいが、一般的にはセパレータ13が負極12の巻き始め側端を超えて延出し、セパレータ13の巻き始め側端が電極体14の巻き始め端となる。
 図1及び図2に示す例では、正極リード20は、正極集電体における巻回方向の中央部等の中間部に電気的に接続され、負極リード21は、負極集電体における巻回方向の巻き終わり端部に電気的に接続される。しかし、負極リードは、負極集電体における巻回方向の巻き始め端部に電気的に接続されてもよい。又は、電極体が2つの負極リードを有して、一方の負極リードが、負極集電体における巻回方向の巻き始め端部に電気的に接続され、他方の負極リードが、負極集電体における巻回方向の巻き終わり端部に電気的に接続されてもよい。又は、負極集電体における巻回方向の巻き終わり側端部を外装缶の内面に当接させることで、負極と外装缶を電気的に接続してもよい。又は、負極リードを、負極集電体における巻回方向の巻き始め側端部に電気的に接続し、負極集電体における巻回方向の巻き終わり側端部を外装缶の内面に当接させてもよい。
 図1に示すように、円筒形電池10は、電極体14の上側に配置される上部絶縁板18と、電極体14の下側に配置される下部絶縁板19を更に有する。図1に示す例では、正極11に取り付けられた正極リード20が上部絶縁板18の貫通孔を通って封口体17側に延び、負極12に取り付けられた負極リード21が下部絶縁板19の外側を通って、外装缶16の底板部68側に延びる。正極リード20は封口体17の底板である端子板23の下面に溶接等で接続され、端子板23と電気的に接続された封口体17の天板である弁体(ラプチャーディスク)27が正極端子となる。また、負極リード21は外装缶16の底板部68の内面に溶接等で接続され、外装缶16が負極端子となる。
 外装缶16は、有底筒状部を有する金属製容器である。外装缶16と封口体17との間は、環状のガスケット28で密封され、その密封で電池ケース15の内部空間が密閉される。また、ガスケット28は、外装缶16と封口体17とで挟持される挟持部32を含み、封口体17を外装缶16に対して絶縁する。つまり、ガスケット28は、電池内部の気密性を保つためのシール材の役割を有し、電解液の漏液が起こらないようにする役割を有する。また、ガスケット28は、外装缶16と封口体17との短絡を防止する絶縁材としての役割も有する。
 外装缶16は、外装缶16の円筒外周面の軸方向の一部に環状溝35を設けることで径方向の内方側に突出する突出部36を内周側に有する。環状溝35は、例えば、円筒外周面の一部を、径方向内側にスピニング加工して径方向内方側に窪ませることで形成できる。外装缶16は、突出部36を含む有底筒状部30と、環状の肩部33を有する。有底筒状部30は、電極体14と非水電解質とを収容し、肩部33は、有底筒状部30の開口側の端部から径方向の内方側に折り曲げられて該内方側に延びる。肩部33は、外装缶16の上端部を内側に折り曲げて封口体17の周縁部31にかしめる際に形成される。封口体17は、そのかしめによって肩部33と突出部36の上側とでガスケット28と共に挟持されて外装缶16に固定される。
 次に、封口体17について詳細に説明する。図3は、円筒形電池10の封口体周辺部における拡大断面図である。図3に示すように、封口体17は、電極体14側から順に、端子板23、環状の絶縁板25、弁体27が積層された構造を有する。弁体27は、平面視で円形をなしている。弁体27は、例えば、アルミニウム又はアルミニウム合金の板材をプレス加工することで作製できる。アルミニウム及びアルミニウム合金は可撓性に優れるため弁体27の材料として好ましい。
 弁体27は、その中央部27aと外周部27bをつなぐ中間部に薄肉部27cが形成されている。電池内圧が上昇したときに薄肉部27cが反転し、破断することで弁体27が防爆弁として機能する。中央部27aを端子板23に向けて突出するように形成することで、弁体27と端子板23との接続を容易にしている。
 絶縁板25は、平面視で円環状に形成され、中央に貫通孔25aを有する。絶縁板25は、弁体27の外周部27bにおいて下側に突出するように形成された環状の突起部27dに嵌め込み固定される。絶縁板25は絶縁性を確保するために設けられる。絶縁板25は電池特性に影響を与えない材料で構成されると好ましい。絶縁板25の材料としては、ポリマー樹脂が挙げられ、ポリプロピレン(PP)樹脂やポリブチレンテレフタレート(PBT)樹脂を例示できる。絶縁板25は、それを軸方向に貫通する通気孔25bを外周側に有する。また、絶縁板25は、下側に延びる環状のスカート部25cを外周縁部に有する。
 端子板23は、平面視で絶縁板25より小径の円形の外形を有し、中央部23aが薄肉部となっている。端子板23は、絶縁板25を挟んで弁体27に対向配置される。端子板23は、その外周面を絶縁板25のスカート部25cの内周面に内嵌して固定することで、絶縁板25に取り付けられる。弁体27と端子板23は、絶縁板25の貫通孔25aを介して、中心部同士が接続される。
 端子板23は、弁体27と同様にアルミニウム又はアルミニウム合金から形成されると好ましく、そのようにすると、弁体27と端子板23の中央部同士の接続を容易に実行できる。接続方法としては、冶金的接合を用いることが好ましく、冶金的接合としてレーザー溶接が例示される。端子板23の外周側には、端子板23を軸方向に貫通する通気孔23bが形成されている。通気孔23bは、絶縁板25の通気孔25bに連通している。スカート部25cの内周面は、下側に行くにしたがって内径が小さくなる円錐台形状でもよく、端子板23の外周面が、その内周面に対応する円錐台形状でもよい。そのような場合、端子板23を、スカート部25cに圧入固定することで、弁体27に対する端子板23の位置ズレを確実に防止できる。
 本開示の円筒形電池では、ガスケットの外面に電極体側に行くにしたがって先細りとなる先細り部を含む1以上の先細り溝が設けられる。円筒形電池のかしめ部に電解液が溜まり、ガスケットと外装缶の間を電解液が這い上がり、漏液が発生する虞がある。又は、封口体とガスケットの間を電解液が這い上がり、漏液が発生する虞もある。本開示の円筒形電池によれば、ガスケットが外面に電極体側に行くにしたがって先細りとなる先細り部を含む1以上の先細り溝を有するので、かしめ部に溜まった電解液が毛細管現象によって先細り溝の先端側(電極体側)に流動し、電解液のかしめ部における這い上がりを抑制できる。したがって、ガスケットの気密性を良好なものにでき、円筒形電池からの漏液を抑制できる。なお、先細り溝の深さは、ガスケットの十分な強度確保のため、円筒形電池に組み込む前のガスケットの厚みの50%以下の深さであることが好ましい。
 以下、ガスケットに設ける先細り溝について詳細に説明する。円筒形電池10では、ガスケット28の外面に、外装缶16の電極体14側に行くにしたがって先細りとなる複数の内部側先細り溝51と、外装缶16の電極体14側に行くにしたがって先細りとなる複数の外部側先細り溝52が設けられる。図4は、図3における外装缶16の肩部38周辺の拡大断面図である。図4に示すように、内部側先細り溝51は、ガスケット28における軸方向の外装缶16の底板部68側の下面54に設けられると共に径方向の内側に行くにしたがって先細りとなる下側先細り部51aを含み、本実施形態では、内部側先細り溝51は、下側先細り部51aのみで構成される。また、外部側先細り溝52は、ガスケット28において封口体17の軸方向の外装缶16の底板部68側の下面59に軸方向に対向する上面55に設けられると共に径方向の内側に行くにしたがって先細りとなる上側先細り部52aを含み、本実施形態では、外部側先細り溝52は、上側先細り部52aのみで構成される。ガスケット28が円筒形電池10に組み込まれた後の上側先細り部52aの深さは、図4にtで示す長さである。
 図5は、円筒形電池10に組み込む変形前の環状のガスケット28を軸方向下側から見たときの模式平面図である。図5に示すように、変形前の環状のガスケット28の下面64には、周方向に間隔をおいて略等間隔に複数の内部側先細り溝51が設けられている。内部側先細り溝51は、径方向内側に行くにしたがって溝幅が狭くなる先細り溝となっている。複数の内部側先細り溝51は、全て略同一の溝になっているが、複数の内部側先細り溝は、形状及び大きさのうちの少なくとも一方が異なる2以上の先細り溝を含んでもよい。また、複数の内部側先細り溝51は、周方向に等間隔に設けられているが、複数の内部側先細り溝は、周方向に非等間隔で設けられてもよい。
 図6は、図4の点線のA-A線断面を平面状に開くと共に周方向に関して帯状に展開して平面視としてみたときの模式断面図である。図6に示すように、内部側先細り溝51と同様に、複数の外部側先細り溝52は、ガスケット28の上面55に周方向に等間隔に設けられている。外部側先細り溝52は、径方向内側に行くにしたがって溝幅が狭くなる先細り溝となっている。複数の外部側先細り溝52は、全て略同一の溝になっているが、複数の外部側先細り溝は、形状及び大きさのうちの少なくとも一方が異なる2以上の先細り溝を含んでもよい。また、複数の外部側先細り溝52は、周方向に等間隔に設けられているが、複数の外部側先細り溝は、周方向に非等間隔で設けられてもよい。
 なお、ガスケット28は、周方向の全周に亘って45°以下の間隔で配置される複数の内部側先細り溝51を有してもよく、周方向の全周に亘って30°以下の間隔で配置される複数の内部側先細り溝51を有してもよく、周方向の全周に亘って15°以下の間隔で配置される複数の内部側先細り溝51を有してもよい。また、ガスケット28は、周方向の全周に亘って10°以下の間隔で配置される複数の内部側先細り溝51を有してもよく、周方向の全周に亘って5°以下の間隔で配置される複数の内部側先細り溝51を有してもよい。複数の内部側先細り溝51をガスケット28の全周に亘って配置すると、外装缶16とガスケット28の間からの漏液を効果的に抑制できて好ましい。
 また、同様に、ガスケット28は、周方向の全周に亘って45°以下の間隔で配置される複数の外部側先細り溝52を有してもよく、周方向の全周に亘って30°以下の間隔で配置される複数の外部側先細り溝52を有してもよく、周方向の全周に亘って15°以下の間隔で配置される複数の外部側先細り溝52を有してもよい。また、ガスケット28は、周方向の全周に亘って10°以下の間隔で配置される複数の外部側先細り溝52を有してもよく、周方向の全周に亘って5°以下の間隔で配置される複数の外部側先細り溝52を有してもよい。複数の外部側先細り溝52をガスケット28の全周に亘って配置すると、封口体17とガスケット28の間からの漏液を効果的に抑制できて好ましい。
 図6に示すように、内部側先細り溝51及び外部側先細り溝52の夫々は、先端が閉鎖した閉鎖溝になっているが、内部側先細り溝及び外部側先細り溝の少なくとも一方は、先端が閉鎖せずに先端が開口してもよい。また、内部側先細り溝51及び外部側先細り溝52の夫々は、図6に示す模式断面図で二等辺三角形の形状を有しているが、内部側先細り溝及び外部側先細り溝の夫々は、図6に対応する模式断面図において、径方向内方に行くにしたがって先細りとなっている形状を有していればよく、当該模式断面図において、二等辺三角形の形状を有していなくてもよい。
 また、図6に示すように、複数の内部側先細り溝51の先端の周方向位置は、複数の外部側先細り溝52の先端の周方向位置と略一致している。しかし、図7、すなわち、第1変形例の円筒形電池における図6に対応する模式断面図に示すように、複数の内部側先細り溝151及び複数の外部側先細り溝152は、複数の内部側先細り溝151の先端の周方向位置と複数の外部側先細り溝152の先端の周方向位置が周方向に交互に現れるように配置されてもよい。このように、内部側先細り溝151の先端と、外部側先細り溝152の先端が対向しないようにすると、ガスケット128の十分な強度を確保し易くて好ましい。
 また、図8、すなわち、第2変形例の円筒形電池における図6に対応する模式断面図に示すように、周方向に隣り合う2つの内部側先細り溝251は、先細り側とは反対側の末広がり側の端部が周方向に連通してもよく、複数の内部側先細り溝251は、周方向の全範囲で周方向に連続的に設けられてもよい。また、周方向に隣り合う2つの外部側先細り溝252も、先細り側とは反対側の末広がり側の端部が周方向に連通してもよく、複数の外部側先細り溝252も、周方向の全範囲で周方向に連続的に設けられてもよい。
 また、本開示の円筒形電池では、内部側先細り溝と外部側先細り溝の一方は、存在しなくてもよく、1以上の内部側先細り溝のみが存在してもよく、又は、1以上の外部側先細り溝のみが存在してもよい。また、本開示の円筒形電池では、次の図9に示すように、ガスケット側方に先細り溝の少なくとも一部が存在してもよい。
 図9は、第3変形例の円筒形電池310における図4に対応する拡大断面図である。図9に示すように、1以上の内部側先細り溝351のうちの少なくとも1つが、ガスケット328において外装缶16に対向すると共に軸方向に延在する外周側軸方向延在部371に設けられて軸方向における外装缶16の底板部側に行くにしたがって先細りとなる外周側先細り部381を含んでもよい。そして、外周側先細り部381の軸方向の底板部68側の端部が、下側先細り部51aの径方向の外方側の端部に連通してもよい。
 また、同様に、1以上の外部先細り溝352のうちの少なくとも1つが、ガスケット328において封口体17の外周面27eに対向すると共に軸方向に延在する内周側軸方向延在部372に設けられて軸方向における外装缶16の底板部側に行くにしたがって先細りとなる内周側先細り部382を含んでもよい。そして、内周側先細り部382の軸方向の底板部68側の端部が、上側先細り部52aの径方向の外方側の端部に連通してもよい。
 なお、本開示の円筒形電池では、図9で説明した1以上の内部先細り溝351のみがガスケットに存在し、ガスケットに図9で説明した外部先細り溝352が存在しなくてもよい。また、その逆に、本開示の円筒形電池では、図9で説明した1以上の外部先細り溝352のみがガスケットに存在し、ガスケットに図9で説明した内部先細り溝351が存在しなくてもよい。また、ガスケット328は、周方向の全周に亘って周方向に間隔をおいて配置されると共に、外周側先細り部381と下側先細り部51aを含む複数の内部先細り溝351を有してもよい。また、ガスケット328は、周方向の全周に亘って周方向に間隔をおいて配置されると共に、内周側先細り部382と上側先細り部52aを含む複数の外部先細り溝352を有してもよい。
 <実施例1>
 (正極の作製)
 正極活物質としてLi(Ni0.8Co0.15Al0.05)Oを使用した。正極活物質100質量部、結着剤としてポリフッ化ビニリデン2.0質量部、及び導電剤としてアセチレンブラック2.0質量部を液状成分(NMP)に混合させて正極合剤ペーストを調製した。その正極合剤ペーストを、アルミニウム箔からなる正極集電体の両面に、正極リードの接続部分を除いて塗布し、乾燥して、正極合剤層を形成した。作製した正極の前駆体を、圧縮し、正極を得た。正極リードの接続部分は、正極の中央部分に形成した。
 (負極の作製)
 負極活物質としてグラファイトを使用した。負極活物質100質量部と、結着剤としてポリフッ化ビニリデン1.0質量部と、増粘剤としてカルボキシメチルセルロース1.0質量部と、適量の水とを、双腕式練合機にて攪拌し、負極ペーストを得た。負極合剤ペーストを、銅箔からなる負極集電体の両面に、負極リードの接続部分を除いて塗布し、乾燥して負極合剤層を形成した。作製した負極の前駆体を、圧縮し、負極を得た。負極リードの接続部分は、負極の巻終わり端部に形成した。
 (電極体の作製)
 Φ4の巻芯を用いて上記作製した正極と負極とオレフィン系樹脂からなる微多孔膜のセパレータとを巻取機により巻回し、巻き終り部に絶縁性の巻き止めテープを取り付けた後、巻芯から取り除くことで巻回形の電極体を作製した。
 (非水電解質の作製)
 エチレンカーボネートとジメチルカーボネートとを、体積比40:60(1気圧、25℃換算)で混合した非水溶媒に、電解質塩としてのLiPFを1.0M(モル/リットル)の濃度で溶解して非水電解質を作製した。
 (円筒形電池の作製)
 電極体を、高さ74.5mm、直径21mmの外装缶に挿入し、開口部を縮径した。次にガラス繊維を混合したフェノール樹脂(GP)からなる外径20mm、厚み0.3mmの上部絶縁板を挿入した。その後、外装缶の開口部に絶縁性のガスケット(PP)を組み込んだ封口体に正極リードを溶接し、上記非水電解質を注入し、プレス機により、封口体、ガスケット、及び外装缶の開口側端部をかしめて円筒形電池を作製した。ガスケットとしては、弁体(ラプチャーディスク)の外周面から弁体の下面に接する部分のみに外部側先細り溝を設けたガスケットを用いた。円筒形電池の定格容量は、5.0Ahであった。
 <実施例2>
 弁体(ラプチャーディスク)の下面に接する部分のみに外部側先細り溝を設けたガスケットを用いた点のみが実施例1の円筒形電池と異なる円筒形電池を作製した。円筒形電池の定格容量は、5.0Ahであった。
 <実施例3>
 外装缶の内周面に接する外周面から軸方向の電極体側の下面における径方向の内側縁までの範囲のみに内部側先細り溝を設けたガスケットを用いた点のみが実施例1の円筒形電池と異なる円筒形電池を作製した。円筒形電池の定格容量は、5.0Ahであった。
 <実施例4>
 軸方向の電極体側の下面における径方向の内側縁までの範囲のみに内部側先細り溝を設けたガスケットを用いた点のみが実施例1の円筒形電池と異なる円筒形電池を作製した。円筒形電池の定格容量は、5.0Ahであった。
 <実施例5>
 弁体(ラプチャーディスク)の外周面から弁体の下面に接する部分のみに外部側先細り溝を設けると共に、外装缶の内周面に接する外周面から軸方向の電極体側の下面における径方向の内側縁までの範囲のみに内部側先細り溝を設けたガスケットを用いた点のみが実施例1の円筒形電池と異なる円筒形電池を作製した。円筒形電池の定格容量は、5.0Ahであった。
 <実施例6>
 弁体(ラプチャーディスク)の外周面から弁体の下面に接する部分のみに外部側先細り溝を設けると共に、軸方向の電極体側の下面における径方向の内側縁までの範囲のみに内部側先細り溝を設けたガスケットを用いた点のみが実施例1の円筒形電池と異なる円筒形電池を作製した。円筒形電池の定格容量は、5.0Ahであった。
 <実施例7>
 弁体(ラプチャーディスク)の下面に接する部分のみに外部側先細り溝を設けると共に、外装缶の内周面に接する外周面から軸方向の電極体側の下面における径方向の内側縁までの範囲のみに内部側先細り溝を設けたガスケットを用いた点のみが実施例1の円筒形電池と異なる円筒形電池を作製した。円筒形電池の定格容量は、5.0Ahであった。
 <実施例8>
 弁体(ラプチャーディスク)の下面に接する部分のみに外部側先細り溝を設けると共に、軸方向の電極体側の下面における径方向の内側縁までの範囲のみに内部側先細り溝を設けたガスケットを用いた点のみが実施例1の円筒形電池と異なる円筒形電池を作製した。円筒形電池の定格容量は、5.0Ahであった。
 <比較例>
 先細り溝を有さないガスケットを用いた点のみが実施例1の円筒形電池と異なる円筒形電池を作製した。円筒形電池の定格容量は、5.0Ahであった。
 (温度サイクル試験)
 実施例1-8の円筒形電池及び比較例の円筒形電池の夫々に関して、充電状態(SOC)を30%とした5つのサンプルで温度サイクル試験を行った。詳しくは、85±2℃の温度を6時間維持した後、-40±2℃の温度を6時間維持するサイクルを10回繰り返した、その後、20℃の温度を24時間維持した。試験後における円筒形電池のかしめ部での漏液の有無を確認し、円筒形電池の質量変化の有無を確認した。
 [試験結果]
Figure JPOXMLDOC01-appb-T000001
 上記試験結果から、ガスケットにおいて弁体側方から弁体下面に接触する部分に外部先細り溝を設けか、又は、ガスケットにおいて弁体下面に接触する部のみに外部先細り溝を設けると、弁体とガスケットの間からの漏液を防止できることを確認できた。また、ガスケットにおいて外装缶の側方に接触する部分からガスケット下面にかけて内部先細り溝を設けか、又は、ガスケット下面のみに内部先細り溝を設けると、外装缶とガスケットの間からの漏液を防止できることを確認できた。したがって、本開示の円筒形電池によれば、電解液のかしめ部における這い上がりを抑制でき、ガスケットの気密性を良好なものにでき、円筒形電池10からの漏液を抑制できる。なお、ガスケットに先細り溝を広範囲に設けると、ガスケットの強度が低下する。したがって、内部側先細り溝の形成範囲が狭くて、かつ、外部側先細り溝の形成範囲も狭い実施例8の円筒形電池を作製すれば、弁体とガスケットの間からの漏液と外装缶とガスケットの間からの漏液の両方を効果的に抑制できるだけでなく、ガスケット強度を大きくできて、ガスケット切れも効果的に抑制できる。
 本開示は、上記実施形態およびその変形例に限定されるものではなく、本願の特許請求の範囲に記載された事項およびその均等な範囲において種々の改良や変更が可能である。例えば、上記実施形態では、ガスケットにおいて封口体の上面に対向する箇所に先細り溝を設けなかったが、そのような先細り溝を設けてもよい。また、ガスケットにおける封口体の側方に対向する部分のみに外部先細り溝を設けてもよく、ガスケットにおける外装缶の内周面に径方向に対向する箇所のみに内部先細り溝を設けてもよい。また、図1に示すように、円筒形電池10の軸方向上側の端面の中央部が軸方向下側に窪んでいる場合について説明したが、本開示の円筒形電池は、軸方向上側の端面の中央部が軸方向上側に突出する構成でもよい。また、先細り溝は、電極体側に行くにしたがって先細りとなる先細り部を含んでいればよい。先細り溝は、全長に亘って全ての部分が先細りになっていてもよく、又は、一部の延在方向の領域で溝幅が同一の部分を有してもよい。
 10,310 円筒形電池、 11 正極、 12 負極、 13 セパレータ、 14 電極体、 15 電池ケース、 16 外装缶、 17 封口体、 18 上部絶縁板、 19 下部絶縁板、 20 正極リード、 21 負極リード、 23 端子板、 23a 中央部、 23b 通気孔、 25 絶縁板、 25a 貫通孔、 25b 通気孔、 25c スカート部、 27 弁体、 27a 中央部、 27b 外周部、 27c 薄肉部、 27d 突起部、 27e 外周面、 28,128,328 ガスケット、 30 有底筒状部、 31 周縁部、 32 挟持部、 33 肩部、 35 環状溝、36 突出部、 51,151,251,351 内部先細り溝、 51a 下側先細り部、 52,152,252,353 外部先細り溝、 52a 上側先細り部、 54 ガスケットの下面、 55 ガスケットにおいて封口体の下面に軸方向に対向する上面、 59 封口体の下面、 64 変形前のガスケットの下面、 68 底板部、 371 外周側軸方向延在部、 372 内周側軸方向延在部、 381 外周側先細り部、 382 内周側先細り部。
 

Claims (7)

  1.  正極と負極がセパレータを介して巻回された電極体と、
     前記電極体を収容する有底筒状の外装缶と、
     前記外装缶の開口を封口する封口体と、
     前記封口体の径方向の外方側の外縁部を軸方向に挟持すると共に前記外縁部の外周面を覆うように配置される外縁被覆部を含み、前記外装缶と前記封口体を絶縁するガスケットと、を備え、
     前記ガスケットの外面に前記電極体側に行くにしたがって先細りとなる先細り部を含む1以上の先細り溝が設けられる、円筒形電池。
  2.  1以上の先細り溝が、前記ガスケットにおける軸方向の前記外装缶の底板部側の下面に設けられると共に径方向の内側に行くにしたがって先細りとなる下側先細り部を含む1以上の内部側先細り溝を含む、請求項1に記載の円筒形電池。
  3.  1以上の先細り溝が、前記ガスケットにおいて前記封口体の軸方向の前記外装缶の底板部側の下面に前記軸方向に対向する上面に設けられると共に径方向の内側に行くにしたがって先細りとなる上側先細り部を含む1以上の外部側先細り溝を含む、請求項1又は2に記載の円筒形電池。
  4.  前記1以上の内部側先細り溝のうちの少なくとも1つが、前記ガスケットにおいて前記外装缶に対向すると共に前記軸方向に延在する外周側軸方向延在部に設けられて前記軸方向における前記外装缶の底板部側に行くにしたがって先細りとなる外周側先細り部を含み、その外周側先細り部の前記軸方向の前記底板部側の端部が、前記下側先細り部の前記径方向の外方側の端部に連通している、請求項2に記載の円筒形電池。
  5.  前記1以上の外部先細り溝のうちの少なくとも1つが、前記ガスケットにおいて前記封口体の外周面に対向すると共に前記軸方向に延在する内周側軸方向延在部に設けられて前記軸方向における前記外装缶の底板部側に行くにしたがって先細りとなる内周側先細り部を含み、その内周側先細り部の前記軸方向の前記底板部側の端部が、前記上側先細り部の前記径方向の外方側の端部に連通している、請求項3に記載の円筒形電池。
  6.  前記ガスケットが、周方向の全周に亘って45°以下の間隔で配置される複数の前記内部側先細り溝を有する、請求項2又は4に記載の円筒形電池。
  7.  前記ガスケットが、周方向の全周に亘って45°以下の間隔で配置される複数の前記外部側先細り溝を有する、請求項3又は5に記載の円筒形電池。
PCT/JP2023/008048 2022-03-18 2023-03-03 円筒形電池 WO2023176511A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-043370 2022-03-18
JP2022043370 2022-03-18

Publications (1)

Publication Number Publication Date
WO2023176511A1 true WO2023176511A1 (ja) 2023-09-21

Family

ID=88023009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008048 WO2023176511A1 (ja) 2022-03-18 2023-03-03 円筒形電池

Country Status (1)

Country Link
WO (1) WO2023176511A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53166023U (ja) * 1977-06-03 1978-12-26
JPH0231978Y2 (ja) * 1984-10-15 1990-08-29
JP2009283209A (ja) * 2008-05-20 2009-12-03 Fdk Energy Co Ltd 筒形非水電解液電池
JP2011216855A (ja) * 2010-03-15 2011-10-27 Seiko Instruments Inc 電気化学セル用ガスケット及び電気化学セル
US20120028090A1 (en) * 2009-09-14 2012-02-02 Oh Kyung-Su Secondary battery
JP2022513751A (ja) * 2019-06-18 2022-02-09 エルジー エナジー ソリューション リミテッド 溝が形成されたガスケットを含む円筒型二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53166023U (ja) * 1977-06-03 1978-12-26
JPH0231978Y2 (ja) * 1984-10-15 1990-08-29
JP2009283209A (ja) * 2008-05-20 2009-12-03 Fdk Energy Co Ltd 筒形非水電解液電池
US20120028090A1 (en) * 2009-09-14 2012-02-02 Oh Kyung-Su Secondary battery
JP2011216855A (ja) * 2010-03-15 2011-10-27 Seiko Instruments Inc 電気化学セル用ガスケット及び電気化学セル
JP2022513751A (ja) * 2019-06-18 2022-02-09 エルジー エナジー ソリューション リミテッド 溝が形成されたガスケットを含む円筒型二次電池

Similar Documents

Publication Publication Date Title
JP7422680B2 (ja) ガスケット、及び円筒形電池
JP7410880B2 (ja) 円筒形電池
EP4239764A1 (en) Cylindrical battery
WO2022202395A1 (ja) 円筒形電池
WO2023176511A1 (ja) 円筒形電池
WO2023176471A1 (ja) 円筒形電池
JP7320166B2 (ja) 二次電池
WO2022158378A1 (ja) 円筒形電池
WO2023210590A1 (ja) 円筒形電池
WO2023223791A1 (ja) 円筒形電池
WO2024048145A1 (ja) 円筒形電池
WO2024048147A1 (ja) 円筒形電池
WO2023189792A1 (ja) 円筒形電池
WO2024070513A1 (ja) 円筒形電池
WO2023120499A1 (ja) 円筒形電池
WO2023162710A1 (ja) 円筒形の非水電解質二次電池
WO2022181338A1 (ja) 円筒形電池
WO2023189790A1 (ja) 円筒形電池
EP4270613A1 (en) Hermetically sealed battery
WO2023085030A1 (ja) 円筒形電池
EP4303974A1 (en) Cylindrical battery
WO2023281973A1 (ja) 円筒形電池
WO2023145830A1 (ja) 蓄電装置
WO2023054005A1 (ja) 円筒形電池
US20240145883A1 (en) Cylindrical battery and manufacturing method for same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770468

Country of ref document: EP

Kind code of ref document: A1