WO2023176361A1 - Display system, display method, display body, and method for manufacturing display body - Google Patents

Display system, display method, display body, and method for manufacturing display body Download PDF

Info

Publication number
WO2023176361A1
WO2023176361A1 PCT/JP2023/006729 JP2023006729W WO2023176361A1 WO 2023176361 A1 WO2023176361 A1 WO 2023176361A1 JP 2023006729 W JP2023006729 W JP 2023006729W WO 2023176361 A1 WO2023176361 A1 WO 2023176361A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
display element
half mirror
display system
light
Prior art date
Application number
PCT/JP2023/006729
Other languages
French (fr)
Japanese (ja)
Inventor
周作 後藤
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022077657A external-priority patent/JP2023134317A/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2023176361A1 publication Critical patent/WO2023176361A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus

Definitions

  • the present invention relates to a display system, a display method, a display body, and a method for manufacturing a display body.
  • Image display devices represented by liquid crystal display devices and electroluminescence (EL) display devices are rapidly becoming popular.
  • EL electroluminescence
  • optical members such as polarizing members and retardation members are generally used to realize image display and improve image display performance (see, for example, Patent Document 1).
  • VR goggles with a display for realizing Virtual Reality (VR) are beginning to be commercialized. Since VR goggles are being considered for use in a variety of situations, it is desired that they be lighter and have higher definition. Weight reduction can be achieved, for example, by making the lenses used in VR goggles thinner. On the other hand, there is also a desire for the development of optical members suitable for display systems using thin lenses.
  • the main purpose of the present invention is to provide a display system that can reduce the weight and increase the definition of VR goggles.
  • a display system that displays images to a user, a display element having a display surface that emits light representing an image forward through a polarizing member; a reflecting section disposed in front of the display element, including a reflective polarizing member, and reflecting light emitted from the display element; a first lens section disposed on an optical path between the display element and the reflection section; a half mirror disposed between the display element and the first lens part, which transmits the light emitted from the display element and reflects the light reflected by the reflection part toward the reflection part; a first ⁇ /4 member disposed on an optical path between the display element and the half mirror; a second ⁇ /4 member disposed on the optical path between the half mirror and the reflecting section; Equipped with A display system, wherein the first ⁇ /4 member and the second ⁇ /4 member each satisfy Re(450)/Re(550) ⁇ 0.90.
  • the first ⁇ /4 member and the second ⁇ /4 member each have Re(400)/Re(550) ⁇ 0.85, Re(650)/Re(550)>1.03, and Re(750)/Re(550)>1.05,
  • the angle between the absorption axis of the polarizing member included in the display element and the slow axis of the first ⁇ /4 member is 40° to 50°
  • the display system according to [1] or [2], wherein the angle between the absorption axis of the polarizing member and the slow axis of the second ⁇ /4 member included in the display element is 40° to 50°.
  • [4] The display system according to any one of [1] to [3], wherein the first lens portion and the half mirror are integrated.
  • [5] The display system according to any one of [1] to [4], including a second lens section disposed in front of the reflecting section.
  • [6] The display system according to any one of [1] to [5], wherein the reflecting section includes an absorbing polarizing member disposed in front of the reflective polarizing member.
  • the following display methods [8] to [9] are provided.
  • [8] Passing the light representing the image emitted through the polarizing member through the first ⁇ /4 member; a step of causing the light that has passed through the first ⁇ /4 member to pass through a half mirror and a first lens portion; passing the light that has passed through the half mirror and the first lens section through a second ⁇ /4 member; a step of reflecting the light that has passed through the second ⁇ /4 member toward the half mirror by a reflecting section including a reflective polarizing member; a step of allowing the light reflected by the reflection part and the half mirror to be transmitted through the reflection part by the second ⁇ /4 member;
  • a display method wherein the first ⁇ /4 member and the second ⁇ /4 member each satisfy Re(450)/Re(550) ⁇ 0.90.
  • the first ⁇ /4 member and the second ⁇ /4 member each have Re(400)/Re(550) ⁇ 0.85, Re(650)/Re(550)>1.03, and Re(750)/Re(550)>1.05,
  • the display method according to [8] which satisfies the following.
  • a display body comprising the display system according to any one of [1] to [7] above.
  • a method for manufacturing a display body comprising the display system according to any one of [1] to [7] above.
  • FIG. 1 is a schematic diagram showing a general configuration of a display system according to one embodiment of the present invention.
  • Refractive index (nx, ny, nz) "nx" is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny” is the direction perpendicular to the slow axis in the plane (i.e., fast axis direction) "nz” is the refractive index in the thickness direction.
  • Refractive index (nx, ny, nz) "nx" is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny” is the direction perpendicular to the slow axis in the plane (i.e., fast axis direction) "nz” is the refractive index in the thickness direction.
  • In-plane phase difference (Re) "Re( ⁇ )” is an in-plane retardation measured with light having a wavelength of ⁇ nm at 23°C.
  • Re(550) is an in-plane retardation measured with light having a wavelength of 550 nm at 23°C.
  • Phase difference in thickness direction (Rth) is a retardation in the thickness direction measured with light having a wavelength of ⁇ nm at 23°C.
  • Rth (550) is the retardation in the thickness direction measured with light having a wavelength of 550 nm at 23°C.
  • FIG. 1 is a schematic diagram showing the general configuration of a display system according to one embodiment of the present invention.
  • FIG. 1 schematically shows the arrangement, shape, etc. of each component of the display system 2.
  • the display system 2 includes a display element 12, a reflection section 14, a first lens section 16, a half mirror 18, a first retardation member 20, a second retardation member 22, and a second lens section 24.
  • the reflecting section 14 is arranged at the front of the display element 12 on the display surface 12a side, and can reflect the light emitted from the display element 12.
  • the first lens section 16 is arranged on the optical path between the display element 12 and the reflection section 14, and the half mirror 18 is arranged between the display element 12 and the first lens section 16.
  • the first retardation member 20 is arranged on the optical path between the display element 12 and the half mirror 18, and the second retardation member 22 is arranged on the optical path between the half mirror 18 and the reflection section 14.
  • lens section The components disposed in front of the half mirror (in the illustrated example, the half mirror 18, the first lens section 16, the second retardation member 22, the reflection section 14, and the second lens section 24) are collectively called a lens section (lens section). 4).
  • the display element 12 is, for example, a liquid crystal display or an organic EL display, and has a display surface 12a for displaying images.
  • the light emitted from the display surface 12a passes through a polarizing member (typically, a polarizing film) that may be included in the display element 12, and is emitted as first linearly polarized light.
  • a polarizing member typically, a polarizing film
  • the first retardation member 20 is a ⁇ /4 member that can convert the first linearly polarized light incident on the first retardation member 20 into first circularly polarized light (hereinafter, the first retardation member is referred to as the first (sometimes referred to as a ⁇ /4 member). Note that the first retardation member 20 may be provided integrally with the display element 12.
  • the half mirror 18 transmits the light emitted from the display element 12 and reflects the light reflected by the reflection section 14 toward the reflection section 14 .
  • the half mirror 18 is provided integrally with the first lens section 16.
  • the second retardation member 22 is a ⁇ /4 member that can transmit the light reflected by the reflection part 14 and the half mirror 18 through the reflection part 14 including a reflective polarizing member (hereinafter referred to as the second retardation member). (sometimes referred to as the second ⁇ /4 member). Note that the second retardation member 22 may be provided integrally with the first lens portion 16.
  • the first circularly polarized light emitted from the first ⁇ /4 member 20 passes through the half mirror 18 and the first lens section 16, and is converted into second linearly polarized light by the second ⁇ /4 member 22. .
  • the second linearly polarized light emitted from the second ⁇ /4 member 22 is reflected toward the half mirror 18 without passing through the reflective polarizing member included in the reflecting section 14 .
  • the polarization direction of the second linearly polarized light incident on the reflective polarizing member included in the reflecting section 14 is the same direction as the reflection axis of the reflective polarizing member. Therefore, the second linearly polarized light incident on the reflection section is reflected by the reflective polarizing member.
  • the second linearly polarized light reflected by the reflection section 14 is converted into second circularly polarized light by the second ⁇ /4 member 22, and the second circularly polarized light emitted from the second ⁇ /4 member 22 is converted into second circularly polarized light by the second ⁇ /4 member 22.
  • the light passes through one lens section 16 and is reflected by a half mirror 18.
  • the second circularly polarized light reflected by the half mirror 18 passes through the first lens section 16 and is converted into third linearly polarized light by the second ⁇ /4 member 22.
  • the third linearly polarized light passes through the reflective polarizing member included in the reflecting section 14.
  • the polarization direction of the third linearly polarized light incident on the reflective polarizing member included in the reflecting section 14 is the same direction as the transmission axis of the reflective polarizing member. Therefore, the third linearly polarized light that has entered the reflecting section 14 is transmitted through the reflective polarizing member.
  • the light that has passed through the reflection section 14 passes through the second lens section 24 and enters the user's eyes 26 .
  • the absorption axis of the polarizing member included in the display element 12 and the reflection axis of the reflective polarizing member included in the reflecting section 14 may be arranged substantially parallel to or substantially orthogonal to each other.
  • the angle between the absorption axis of the polarizing member included in the display element 12 and the slow axis of the first retardation member 20 is, for example, 40° to 50°, may be 42° to 48°, and is about 45°. It may be °.
  • the angle between the absorption axis of the polarizing member included in the display element 12 and the slow axis of the second retardation member 22 is, for example, 40° to 50°, may be 42° to 48°, and is about 45°. It may be °.
  • the in-plane retardation Re (550) of the first retardation member 20 is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. .
  • the first retardation member 20 preferably exhibits inverse dispersion wavelength characteristics in which the retardation value increases depending on the wavelength of the measurement light.
  • Re(450)/Re(550) of the first retardation member 20 is, for example, less than 1 and may be 0.95 or less, further less than 0.90, and even 0.85 or less. good.
  • Re(450)/Re(550) of the first retardation member 20 is, for example, 0.75 or more.
  • the first retardation member 20 has Re(400)/Re(550) ⁇ 0.85, Re(650)/Re(550)>1.03, and Re(750)/Re( 550)>1.05.
  • the first retardation member 20 has 0.65 ⁇ Re(400)/Re(550) ⁇ 0.80 (preferably 0.7 ⁇ Re(400)/Re(550) ⁇ 0.75), 1. 0 ⁇ Re(650)/Re(550) ⁇ 1.25 (preferably 1.05 ⁇ Re(650)/Re(550) ⁇ 1.20) and 1.05 ⁇ Re(750)/Re( 550) ⁇ 1.40 (preferably 1.08 ⁇ Re(750)/Re(550) ⁇ 1.36), more preferably at least two. More preferably, all of them are satisfied.
  • the first retardation member that exhibits inverse dispersion wavelength characteristics over a wide wavelength range coloring of transmitted light can be suppressed more suitably.
  • the first retardation member 20 preferably exhibits a refractive index characteristic of nx>ny ⁇ nz.
  • the Nz coefficient of the first retardation member 20 is preferably 0.9 to 3, more preferably 0.9 to 2.5, even more preferably 0.9 to 1.5, particularly preferably 0.9 to 1. It is 3.
  • the first retardation member 20 is formed of any suitable material that can satisfy the above characteristics.
  • the first retardation member 20 may be, for example, a stretched resin film or an oriented solidified layer of a liquid crystal compound.
  • the resins contained in the above resin film include polycarbonate resin, polyester carbonate resin, polyester resin, polyvinyl acetal resin, polyarylate resin, cyclic olefin resin, cellulose resin, polyvinyl alcohol resin, and polyamide resin. , polyimide resin, polyether resin, polystyrene resin, acrylic resin, and the like. These resins may be used alone or in combination (for example, blended or copolymerized).
  • a resin film containing a polycarbonate resin or a polyester carbonate resin hereinafter sometimes simply referred to as a polycarbonate resin
  • polycarbonate resins contain structural units derived from fluorene-based dihydroxy compounds, structural units derived from isosorbide-based dihydroxy compounds, alicyclic diols, alicyclic dimethanols, di-, tri-, or polyethylene glycols, and alkylene-based dihydroxy compounds. a structural unit derived from at least one dihydroxy compound selected from the group consisting of glycol or spiroglycol.
  • the polycarbonate resin contains a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, a structural unit derived from an alicyclic dimethanol, and/or a di, tri, or polyethylene glycol. More preferably, it contains a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, and a structural unit derived from di, tri or polyethylene glycol. .
  • the polycarbonate resin may contain structural units derived from other dihydroxy compounds as necessary.
  • the thickness of the first retardation member 20 made of a stretched resin film is, for example, 10 ⁇ m to 100 ⁇ m, preferably 10 ⁇ m to 70 ⁇ m, more preferably 10 ⁇ m to 40 ⁇ m, and still more preferably 20 ⁇ m to 30 ⁇ m.
  • the liquid crystal compound alignment and solidification layer is a layer in which the liquid crystal compound is aligned in a predetermined direction within the layer, and the alignment state is fixed.
  • the "alignment hardened layer” is a concept that includes an orientation hardened layer obtained by curing a liquid crystal monomer as described below.
  • rod-shaped liquid crystal compounds are typically aligned in the slow axis direction of the first retardation member (homogeneous alignment). Examples of rod-shaped liquid crystal compounds include liquid crystal polymers and liquid crystal monomers.
  • the liquid crystal compound is preferably polymerizable. If the liquid crystal compound is polymerizable, the alignment state of the liquid crystal compound can be fixed by aligning the liquid crystal compound and then polymerizing it.
  • the liquid crystal compound alignment and solidification layer is produced by subjecting the surface of a predetermined base material to an alignment treatment, applying a coating liquid containing the liquid crystal compound to the surface, and subjecting the liquid crystal compound to the alignment treatment. It can be formed by orienting it in a corresponding direction and fixing the orientation state. Any suitable orientation treatment may be employed as the orientation treatment. Specifically, mechanical alignment treatment, physical alignment treatment, and chemical alignment treatment can be mentioned. Specific examples of mechanical alignment treatment include rubbing treatment and stretching treatment. Specific examples of physical alignment treatment include magnetic field alignment treatment and electric field alignment treatment. Specific examples of chemical alignment treatment include oblique vapor deposition and photo alignment treatment. As the treatment conditions for various orientation treatments, any appropriate conditions may be adopted depending on the purpose.
  • the alignment of the liquid crystal compound is carried out by treatment at a temperature that exhibits a liquid crystal phase depending on the type of liquid crystal compound.
  • the liquid crystal compound assumes a liquid crystal state, and the liquid crystal compound is oriented in accordance with the orientation treatment direction of the substrate surface.
  • the alignment state is fixed by cooling the liquid crystal compound aligned as described above.
  • the alignment state is fixed by subjecting the liquid crystal compound aligned as described above to polymerization treatment or crosslinking treatment.
  • liquid crystal compound any suitable liquid crystal polymer and/or liquid crystal monomer can be used as the liquid crystal compound.
  • the liquid crystal polymer and the liquid crystal monomer may be used alone or in combination.
  • Specific examples of liquid crystal compounds and methods for producing liquid crystal alignment solidified layers are described in, for example, JP 2006-163343A, JP 2006-178389A, and WO 2018/123551A. The descriptions of these publications are incorporated herein by reference.
  • the thickness of the first retardation member 20 composed of the liquid crystal alignment solidified layer is, for example, 1 ⁇ m to 10 ⁇ m, preferably 1 ⁇ m to 8 ⁇ m, more preferably 1 ⁇ m to 6 ⁇ m, and still more preferably 1 ⁇ m to 4 ⁇ m.
  • the in-plane retardation Re (550) of the second retardation member 22 is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. .
  • the second retardation member 22 preferably exhibits inverse dispersion wavelength characteristics in which the retardation value increases depending on the wavelength of the measurement light.
  • Re(450)/Re(550) of the second retardation member 22 is, for example, less than 1 and may be 0.95 or less, further less than 0.90, and even 0.85 or less. good.
  • Re(450)/Re(550) of the second retardation member 22 is, for example, 0.75 or more.
  • the second retardation member 22 has Re(400)/Re(550) ⁇ 0.85, Re(650)/Re(550)>1.03, and Re(750)/Re( 550)>1.05.
  • the second retardation member 22 has 0.65 ⁇ Re(400)/Re(550) ⁇ 0.80 (preferably 0.7 ⁇ Re(400)/Re(550) ⁇ 0.75), 1. 0 ⁇ Re(650)/Re(550) ⁇ 1.25 (preferably 1.05 ⁇ Re(650)/Re(550) ⁇ 1.20) and 1.05 ⁇ Re(750)/Re( 550) ⁇ 1.40 (preferably 1.08 ⁇ Re(750)/Re(550) ⁇ 1.36), more preferably at least two. More preferably, all of them are satisfied.
  • the second retardation member that exhibits inverse dispersion wavelength characteristics over a wide wavelength range coloring of transmitted light can be suppressed more suitably.
  • the second retardation member 22 preferably exhibits a refractive index characteristic of nx>ny ⁇ nz.
  • the Nz coefficient of the second retardation member 22 is preferably 0.9 to 3, more preferably 0.9 to 2.5, even more preferably 0.9 to 1.5, particularly preferably 0.9 to 1. It is 3.
  • the second retardation member 22 is formed of any suitable material that can satisfy the above characteristics.
  • the second retardation member 22 may be, for example, a stretched resin film or an oriented solidified layer of a liquid crystal compound.
  • the same explanation as for the first retardation member 20 can be applied to the second retardation member 22 made of a stretched resin film or an oriented solidified layer of a liquid crystal compound.
  • the first retardation member 20 and the second retardation member 22 may have the same configuration (forming material, thickness, optical properties, etc.), or may have different configurations.
  • the reflecting section 14 may include an absorption type polarizing member (typically, an absorption type polarizing film).
  • the absorptive polarizing member may be placed in front of the reflective polarizing member.
  • the reflection axis of the reflective polarizing member and the absorption axis of the absorptive polarizing member may be arranged substantially parallel to each other.
  • the reflective polarizing member and the absorptive polarizing member may be laminated with an adhesive layer interposed therebetween, and the reflective section 14 may include a laminate having the reflective polarizing member and the absorbing polarizing member.
  • test and evaluation methods in Examples and the like are as follows.
  • parts when it is written as “parts”, it means “parts by weight” unless there are special notes, and when it is written as “%”, it means “wt%” unless there are special notes.
  • Thickness The thickness of 10 ⁇ m or less was measured using a scanning electron microscope (manufactured by JEOL Ltd., product name “JSM-7100F”). Thickness exceeding 10 ⁇ m was measured using a digital micrometer (manufactured by Anritsu Corporation, product name “KC-351C”).
  • In-plane phase difference Re( ⁇ ) A sample was prepared by cutting out the central part and both ends of the ⁇ /4 member in the width direction into a square having a width of 50 mm and a length of 50 mm, with one side parallel to the width direction of the member. The in-plane retardation of this sample at each wavelength at 23° C.
  • a long resin film with a thickness of 130 ⁇ m was produced using a film forming apparatus equipped with a chill roll (temperature setting: 120 to 130° C.), a winder and a winder.
  • the obtained long resin film was stretched in the width direction at a stretching temperature of 140° C. and a stretching ratio of 2.7 times.
  • a retardation film ( ⁇ /4 member A) having a thickness of 47 ⁇ m, a Re(590) of 143 nm, and an Nz coefficient of 1.2 was obtained.
  • thermoplastic resin base material a long, amorphous isophthalic copolymerized polyethylene terephthalate film (thickness: 100 ⁇ m) having a Tg of approximately 75° C. was used, and one side of the resin base material was subjected to corona treatment. Iodine was added to 100 parts by weight of a PVA resin prepared by mixing polyvinyl alcohol (degree of polymerization 4200, degree of saponification 99.2 mol%) and acetoacetyl-modified PVA (manufactured by Mitsubishi Chemical Corporation, product name "Gosenex Z410”) in a ratio of 9:1.
  • a PVA aqueous solution (coating liquid) was prepared by dissolving 13 parts by weight of potassium chloride in water.
  • the PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60° C. to form a PVA-based resin layer with a thickness of 13 ⁇ m, thereby producing a laminate.
  • the obtained laminate was uniaxially stretched 2.4 times in the vertical direction (longitudinal direction) in an oven at 130° C. (in-air auxiliary stretching treatment).
  • the laminate was immersed for 30 seconds in an insolubilization bath (boric acid aqueous solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) at a liquid temperature of 40° C.
  • Laminated body 1 was produced by laminating four ⁇ /4 members A on one side of the polarizing film obtained in Production Example 3. Lamination of each member was performed by pasting them together via an acrylic adhesive layer (manufactured by Nitto Denko Corporation, thickness 5 ⁇ m). At this time, the slow axes of the four ⁇ /4 members A are parallel to each other and 45° counterclockwise with respect to the absorption axis direction (0°) of the absorption type polarizing film when viewed from the polarizing film side. Each member was laminated so as to form an angle.
  • the measurement results of the single transmittance and hue of the laminates obtained in the above examples and comparative examples are shown in Table 1 together with the optical properties of the ⁇ /4 member.
  • the laminates produced in Examples and Comparative Examples are simple evaluation models of display systems according to embodiments of the present invention.
  • the hue of light incident on the ⁇ /4 member side of the laminate and emitted from the polarizing film side is linearly polarized light emitted forward from the display surface of the display element. After the light passes through the first retardation member and the second retardation member in this order, the light passes through the second retardation member two more times by reflection at the reflection part and re-reflection at the half mirror, and then passes through the reflection part. It can be evaluated as the hue of the light emitted forward.
  • the present invention is not limited to the above embodiments, and various modifications are possible.
  • it can be replaced with a configuration that is substantially the same as the configuration shown in the above embodiment, a configuration that has the same effect, or a configuration that can achieve the same purpose.
  • the display system according to the embodiment of the present invention can be used for a display body such as VR goggles, for example.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

The present invention provides a display system whereby weight reduction and improved definition of VR goggles can be achieved, and comprises: a display element having a display surface for emitting light in a forward direction via a polarizing member to represent an image; a reflecting part which is disposed in front of the display element and includes a reflective polarizing member, and reflects light emitted from the display element; a first lens part disposed on an optical path between the display element and the reflecting part; a half mirror which is disposed between the display element and the first lens part, and transmits light emitted from the display element and reflects, toward the reflecting part, light reflected by the reflecting part; a first λ/4 member disposed on the optical path between the display element and the half mirror; and a second λ/4 member disposed on the optical path between the half mirror and the reflecting part, the first λ/4 member and the second λ/4 member each satisfying the condition Re(450)/Re(550) < 0.90.

Description

表示システム、表示方法、表示体および表示体の製造方法Display system, display method, display body and display body manufacturing method
 本発明は、表示システム、表示方法、表示体および表示体の製造方法に関する。 The present invention relates to a display system, a display method, a display body, and a method for manufacturing a display body.
 液晶表示装置およびエレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置)に代表される画像表示装置が急速に普及している。画像表示装置においては、画像表示を実現し、画像表示の性能を高めるために、一般的に、偏光部材、位相差部材等の光学部材が用いられている(例えば、特許文献1を参照)。 Image display devices represented by liquid crystal display devices and electroluminescence (EL) display devices (eg, organic EL display devices) are rapidly becoming popular. In image display devices, optical members such as polarizing members and retardation members are generally used to realize image display and improve image display performance (see, for example, Patent Document 1).
 近年、画像表示装置の新たな用途が開発されている。例えば、Virtual Reality(VR)を実現するためのディスプレイ付きゴーグル(VRゴーグル)が製品化され始めている。VRゴーグルは様々な場面での利用が検討されていることから、その軽量化、高精細化等が望まれている。軽量化は、例えば、VRゴーグルに用いられるレンズを薄型化することで達成され得る。一方で、薄型レンズを用いた表示システムに適した光学部材の開発も望まれている。 In recent years, new uses for image display devices have been developed. For example, goggles with a display (VR goggles) for realizing Virtual Reality (VR) are beginning to be commercialized. Since VR goggles are being considered for use in a variety of situations, it is desired that they be lighter and have higher definition. Weight reduction can be achieved, for example, by making the lenses used in VR goggles thinner. On the other hand, there is also a desire for the development of optical members suitable for display systems using thin lenses.
特開2021-103286号公報JP2021-103286A
 上記に鑑み、本発明はVRゴーグルの軽量化、高精細化を実現し得る表示システムの提供を主たる目的とする。 In view of the above, the main purpose of the present invention is to provide a display system that can reduce the weight and increase the definition of VR goggles.
 本発明の1つの局面によれば、以下の[1]~[7]の表示システムが提供される。
[1]ユーザに対して画像を表示する表示システムであって、
 偏光部材を介して画像を表す光を前方に出射する表示面を有する表示素子と、
 上記表示素子の前方に配置され、反射型偏光部材を含み、上記表示素子から出射された光を反射する反射部と、
 上記表示素子と上記反射部との間の光路上に配置される第一レンズ部と、
 上記表示素子と上記第一レンズ部との間に配置され、上記表示素子から出射された光を透過させ、上記反射部で反射された光を上記反射部に向けて反射させるハーフミラーと、
 上記表示素子と上記ハーフミラーとの間の光路上に配置される第1のλ/4部材と、
 上記ハーフミラーと上記反射部との間の光路上に配置される第2のλ/4部材と、
 を備え、
 上記第1のλ/4部材および上記第2のλ/4部材がそれぞれ、Re(450)/Re(550)<0.90を満たす、表示システム。
[2]上記第1のλ/4部材および上記第2のλ/4部材がそれぞれ、
 Re(400)/Re(550)<0.85、
 Re(650)/Re(550)>1.03、および
 Re(750)/Re(550)>1.05、
 を満たす、[1]に記載の表示システム。
[3]上記表示素子に含まれる上記偏光部材の吸収軸と上記第1のλ/4部材の遅相軸とのなす角度は40°~50°であり、
 上記表示素子に含まれる上記偏光部材の吸収軸と上記第2のλ/4部材の遅相軸とのなす角度は40°~50°である、[1]または[2]に記載の表示システム。
[4]上記第一レンズ部と上記ハーフミラーとが一体である、[1]~[3]のいずれかに記載の表示システム。
[5]上記反射部の前方に配置される第二レンズ部を備える、[1]~[4]のいずれかに記載の表示システム。
[6]上記反射部は、上記反射型偏光部材の前方に配置される吸収型偏光部材を含む、[1]~[5]のいずれかに記載の表示システム。
[7]上記反射型偏光部材の反射軸と上記吸収型偏光部材の吸収軸とは互いに平行に配置される、[6]に記載の表示システム。
According to one aspect of the present invention, the following display systems [1] to [7] are provided.
[1] A display system that displays images to a user,
a display element having a display surface that emits light representing an image forward through a polarizing member;
a reflecting section disposed in front of the display element, including a reflective polarizing member, and reflecting light emitted from the display element;
a first lens section disposed on an optical path between the display element and the reflection section;
a half mirror disposed between the display element and the first lens part, which transmits the light emitted from the display element and reflects the light reflected by the reflection part toward the reflection part;
a first λ/4 member disposed on an optical path between the display element and the half mirror;
a second λ/4 member disposed on the optical path between the half mirror and the reflecting section;
Equipped with
A display system, wherein the first λ/4 member and the second λ/4 member each satisfy Re(450)/Re(550)<0.90.
[2] The first λ/4 member and the second λ/4 member each have
Re(400)/Re(550)<0.85,
Re(650)/Re(550)>1.03, and Re(750)/Re(550)>1.05,
The display system according to [1], which satisfies the following.
[3] The angle between the absorption axis of the polarizing member included in the display element and the slow axis of the first λ/4 member is 40° to 50°,
The display system according to [1] or [2], wherein the angle between the absorption axis of the polarizing member and the slow axis of the second λ/4 member included in the display element is 40° to 50°. .
[4] The display system according to any one of [1] to [3], wherein the first lens portion and the half mirror are integrated.
[5] The display system according to any one of [1] to [4], including a second lens section disposed in front of the reflecting section.
[6] The display system according to any one of [1] to [5], wherein the reflecting section includes an absorbing polarizing member disposed in front of the reflective polarizing member.
[7] The display system according to [6], wherein the reflection axis of the reflective polarizing member and the absorption axis of the absorptive polarizing member are arranged parallel to each other.
 本発明の別の局面によれば、以下の[8]~[9]の表示方法が提供される。
[8]偏光部材を介して出射された画像を表す光を、第1のλ/4部材を通過させるステップと、
 上記第1のλ/4部材を通過した光を、ハーフミラーおよび第一レンズ部を通過させるステップと、
 上記ハーフミラーおよび上記第一レンズ部を通過した光を、第2のλ/4部材を通過させるステップと、
 上記第2のλ/4部材を通過した光を、反射型偏光部材を含む反射部で上記ハーフミラーに向けて反射させるステップと、
 上記反射部および上記ハーフミラーで反射させた光を、上記第2のλ/4部材により上記反射部を透過可能にするステップと、を有し、
 上記第1のλ/4部材および上記第2のλ/4部材がそれぞれ、Re(450)/Re(550)<0.90を満たす、表示方法。
[9]上記第1のλ/4部材および上記第2のλ/4部材がそれぞれ、
 Re(400)/Re(550)<0.85、
 Re(650)/Re(550)>1.03、および
 Re(750)/Re(550)>1.05、
 を満たす、[8]に記載の表示方法。
According to another aspect of the present invention, the following display methods [8] to [9] are provided.
[8] Passing the light representing the image emitted through the polarizing member through the first λ/4 member;
a step of causing the light that has passed through the first λ/4 member to pass through a half mirror and a first lens portion;
passing the light that has passed through the half mirror and the first lens section through a second λ/4 member;
a step of reflecting the light that has passed through the second λ/4 member toward the half mirror by a reflecting section including a reflective polarizing member;
a step of allowing the light reflected by the reflection part and the half mirror to be transmitted through the reflection part by the second λ/4 member;
A display method, wherein the first λ/4 member and the second λ/4 member each satisfy Re(450)/Re(550)<0.90.
[9] The first λ/4 member and the second λ/4 member each have
Re(400)/Re(550)<0.85,
Re(650)/Re(550)>1.03, and Re(750)/Re(550)>1.05,
The display method according to [8], which satisfies the following.
 本発明の別の局面によれば、上記[1]~[7]のいずれかに記載の表示システムを具備する表示体が提供される。
 本発明のさらに別の局面によれば、上記[1]~[7]のいずれかに記載の表示システムを具備する表示体の製造方法が提供される。
According to another aspect of the present invention, there is provided a display body comprising the display system according to any one of [1] to [7] above.
According to yet another aspect of the present invention, there is provided a method for manufacturing a display body comprising the display system according to any one of [1] to [7] above.
 本発明の実施形態による表示システムによれば、VRゴーグルの軽量化、高精細化を実現し得る。 According to the display system according to the embodiment of the present invention, it is possible to realize a lighter weight and higher definition of VR goggles.
本発明の1つの実施形態に係る表示システムの概略の構成を示す模式図である。1 is a schematic diagram showing a general configuration of a display system according to one embodiment of the present invention.
 以下、図面を参照して本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。また、図面は説明をより明確にするため、実施の形態に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to these embodiments. Further, in order to make the explanation more clear, the drawings may schematically represent the width, thickness, shape, etc. of each part compared to the embodiment, but this is just an example, and the interpretation of the present invention is It is not limited.
(用語および記号の定義)
 本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
 「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
 「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
 「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth(λ)=(nx-nz)×dによって求められる。
(4)Nz係数
 Nz係数は、Nz=Rth/Reによって求められる。
(5)角度
 本明細書において角度に言及するときは、特段の言及がない限り、当該角度は基準方向に対して時計回りおよび反時計回りの両方を包含する。したがって、例えば「45°」は±45°を意味する。
(Definition of terms and symbols)
Definitions of terms and symbols used herein are as follows.
(1) Refractive index (nx, ny, nz)
"nx" is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny" is the direction perpendicular to the slow axis in the plane (i.e., fast axis direction) "nz" is the refractive index in the thickness direction.
(2) In-plane phase difference (Re)
"Re(λ)" is an in-plane retardation measured with light having a wavelength of λnm at 23°C. For example, "Re(550)" is an in-plane retardation measured with light having a wavelength of 550 nm at 23°C. Re(λ) is determined by the formula: Re(λ)=(nx−ny)×d, where d (nm) is the thickness of the layer (film).
(3) Phase difference in thickness direction (Rth)
"Rth (λ)" is a retardation in the thickness direction measured with light having a wavelength of λ nm at 23°C. For example, "Rth (550)" is the retardation in the thickness direction measured with light having a wavelength of 550 nm at 23°C. Rth(λ) is determined by the formula: Rth(λ)=(nx−nz)×d, where d (nm) is the thickness of the layer (film).
(4) Nz coefficient The Nz coefficient is determined by Nz=Rth/Re.
(5) Angle When an angle is referred to in this specification, unless otherwise specified, the angle includes both clockwise and counterclockwise directions with respect to the reference direction. Therefore, for example, "45°" means ±45°.
 図1は本発明の1つの実施形態に係る表示システムの概略の構成を示す模式図である。図1では、表示システム2の各構成要素の配置および形状等を模式的に図示している。表示システム2は、表示素子12と、反射部14と、第一レンズ部16と、ハーフミラー18と、第一位相差部材20と、第二位相差部材22と、第二レンズ部24とを備えている。反射部14は、表示素子12の表示面12a側である前方に配置され、表示素子12から出射された光を反射し得る。第一レンズ部16は表示素子12と反射部14との間の光路上に配置され、ハーフミラー18は表示素子12と第一レンズ部16との間に配置されている。第一位相差部材20は表示素子12とハーフミラー18との間の光路上に配置され、第二位相差部材22はハーフミラー18と反射部14との間の光路上に配置されている。 FIG. 1 is a schematic diagram showing the general configuration of a display system according to one embodiment of the present invention. FIG. 1 schematically shows the arrangement, shape, etc. of each component of the display system 2. As shown in FIG. The display system 2 includes a display element 12, a reflection section 14, a first lens section 16, a half mirror 18, a first retardation member 20, a second retardation member 22, and a second lens section 24. We are prepared. The reflecting section 14 is arranged at the front of the display element 12 on the display surface 12a side, and can reflect the light emitted from the display element 12. The first lens section 16 is arranged on the optical path between the display element 12 and the reflection section 14, and the half mirror 18 is arranged between the display element 12 and the first lens section 16. The first retardation member 20 is arranged on the optical path between the display element 12 and the half mirror 18, and the second retardation member 22 is arranged on the optical path between the half mirror 18 and the reflection section 14.
 ハーフミラーから前方に配置される構成要素(図示例では、ハーフミラー18、第一レンズ部16、第二位相差部材22、反射部14および第二レンズ部24)をまとめてレンズ部(レンズ部4)と称する場合がある。 The components disposed in front of the half mirror (in the illustrated example, the half mirror 18, the first lens section 16, the second retardation member 22, the reflection section 14, and the second lens section 24) are collectively called a lens section (lens section). 4).
 表示素子12は、例えば、液晶ディスプレイまたは有機ELディスプレイであり、画像を表示するための表示面12aを有している。表示面12aから出射される光は、例えば、表示素子12に含まれ得る偏光部材(代表的には、偏光フィルム)を通過して出射され、第1の直線偏光とされている。 The display element 12 is, for example, a liquid crystal display or an organic EL display, and has a display surface 12a for displaying images. The light emitted from the display surface 12a passes through a polarizing member (typically, a polarizing film) that may be included in the display element 12, and is emitted as first linearly polarized light.
 第一位相差部材20は、第一位相差部材20に入射した第1の直線偏光を第1の円偏光に変換し得るλ/4部材である(以下、第一位相差部材を第1のλ/4部材と称する場合がある)。なお、第一位相差部材20は、表示素子12に一体に設けられてもよい。 The first retardation member 20 is a λ/4 member that can convert the first linearly polarized light incident on the first retardation member 20 into first circularly polarized light (hereinafter, the first retardation member is referred to as the first (sometimes referred to as a λ/4 member). Note that the first retardation member 20 may be provided integrally with the display element 12.
 ハーフミラー18は、表示素子12から出射された光を透過させ、反射部14で反射された光を反射部14に向けて反射させる。ハーフミラー18は、第一レンズ部16に一体に設けられている。 The half mirror 18 transmits the light emitted from the display element 12 and reflects the light reflected by the reflection section 14 toward the reflection section 14 . The half mirror 18 is provided integrally with the first lens section 16.
 第二位相差部材22は、反射部14およびハーフミラー18で反射させた光を、反射型偏光部材を含む反射部14を透過させ得るλ/4部材である(以下、第二位相差部材を第2のλ/4部材と称する場合がある)。なお、第二位相差部材22は、第一レンズ部16に一体に設けられてもよい。 The second retardation member 22 is a λ/4 member that can transmit the light reflected by the reflection part 14 and the half mirror 18 through the reflection part 14 including a reflective polarizing member (hereinafter referred to as the second retardation member). (sometimes referred to as the second λ/4 member). Note that the second retardation member 22 may be provided integrally with the first lens portion 16.
 第1のλ/4部材20から出射された第1の円偏光は、ハーフミラー18および第一レンズ部16を通過し、第2のλ/4部材22により第2の直線偏光に変換される。第2のλ/4部材22から出射された第2の直線偏光は、反射部14に含まれる反射型偏光部材を透過せずにハーフミラー18に向けて反射される。このとき、反射部14に含まれる反射型偏光部材に入射した第2の直線偏光の偏光方向は、反射型偏光部材の反射軸と同方向である。そのため、反射部に入射した第2の直線偏光は、反射型偏光部材で反射される。 The first circularly polarized light emitted from the first λ/4 member 20 passes through the half mirror 18 and the first lens section 16, and is converted into second linearly polarized light by the second λ/4 member 22. . The second linearly polarized light emitted from the second λ/4 member 22 is reflected toward the half mirror 18 without passing through the reflective polarizing member included in the reflecting section 14 . At this time, the polarization direction of the second linearly polarized light incident on the reflective polarizing member included in the reflecting section 14 is the same direction as the reflection axis of the reflective polarizing member. Therefore, the second linearly polarized light incident on the reflection section is reflected by the reflective polarizing member.
 反射部14で反射された第2の直線偏光は第2のλ/4部材22により第2の円偏光に変換され、第2のλ/4部材22から出射された第2の円偏光は第一レンズ部16を通過してハーフミラー18で反射される。ハーフミラー18で反射された第2の円偏光は、第一レンズ部16を通過し、第2のλ/4部材22により第3の直線偏光に変換される。第3の直線偏光は、反射部14に含まれる反射型偏光部材を透過する。このとき、反射部14に含まれる反射型偏光部材に入射した第3の直線偏光の偏光方向は、反射型偏光部材の透過軸と同方向である。そのため、反射部14に入射した第3の直線偏光は、反射型偏光部材を透過する。 The second linearly polarized light reflected by the reflection section 14 is converted into second circularly polarized light by the second λ/4 member 22, and the second circularly polarized light emitted from the second λ/4 member 22 is converted into second circularly polarized light by the second λ/4 member 22. The light passes through one lens section 16 and is reflected by a half mirror 18. The second circularly polarized light reflected by the half mirror 18 passes through the first lens section 16 and is converted into third linearly polarized light by the second λ/4 member 22. The third linearly polarized light passes through the reflective polarizing member included in the reflecting section 14. At this time, the polarization direction of the third linearly polarized light incident on the reflective polarizing member included in the reflecting section 14 is the same direction as the transmission axis of the reflective polarizing member. Therefore, the third linearly polarized light that has entered the reflecting section 14 is transmitted through the reflective polarizing member.
 反射部14を透過した光は、第二レンズ部24を通過して、ユーザの目26に入射する。 The light that has passed through the reflection section 14 passes through the second lens section 24 and enters the user's eyes 26 .
 表示素子12に含まれる偏光部材の吸収軸と反射部14に含まれる反射型偏光部材の反射軸とは互いに略平行または略直交に配置され得る。表示素子12に含まれる偏光部材の吸収軸と第一位相差部材20の遅相軸とのなす角度は、例えば40°~50°であり、42°~48°であってもよく、約45°であってもよい。表示素子12に含まれる偏光部材の吸収軸と第二位相差部材22の遅相軸とのなす角度は、例えば40°~50°であり、42°~48°であってもよく、約45°であってもよい。 The absorption axis of the polarizing member included in the display element 12 and the reflection axis of the reflective polarizing member included in the reflecting section 14 may be arranged substantially parallel to or substantially orthogonal to each other. The angle between the absorption axis of the polarizing member included in the display element 12 and the slow axis of the first retardation member 20 is, for example, 40° to 50°, may be 42° to 48°, and is about 45°. It may be °. The angle between the absorption axis of the polarizing member included in the display element 12 and the slow axis of the second retardation member 22 is, for example, 40° to 50°, may be 42° to 48°, and is about 45°. It may be °.
 第一位相差部材20の面内位相差Re(550)は、例えば100nm~190nmであり、110nm~180nmであってもよく、130nm~160nmであってもよく、135nm~155nmであってもよい。 The in-plane retardation Re (550) of the first retardation member 20 is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. .
 第一位相差部材20は、好ましくは、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示す。第一位相差部材20のRe(450)/Re(550)は、例えば1未満であり、0.95以下であってよく、さらには0.90未満、さらには0.85以下であってもよい。第一位相差部材20のRe(450)/Re(550)は、例えば0.75以上である。逆分散波長特性を示す第一位相差部材を用いることにより、透過光の着色を抑制することができる。 The first retardation member 20 preferably exhibits inverse dispersion wavelength characteristics in which the retardation value increases depending on the wavelength of the measurement light. Re(450)/Re(550) of the first retardation member 20 is, for example, less than 1 and may be 0.95 or less, further less than 0.90, and even 0.85 or less. good. Re(450)/Re(550) of the first retardation member 20 is, for example, 0.75 or more. By using the first retardation member exhibiting reverse dispersion wavelength characteristics, coloring of transmitted light can be suppressed.
 1つの実施形態において、第一位相差部材20は、Re(400)/Re(550)<0.85、Re(650)/Re(550)>1.03、およびRe(750)/Re(550)>1.05を全て満たす。第一位相差部材20は、0.65<Re(400)/Re(550)<0.80(好ましくは、0.7<Re(400)/Re(550)<0.75)、1.0<Re(650)/Re(550)<1.25(好ましくは、1.05<Re(650)/Re(550)<1.20)、および1.05<Re(750)/Re(550)<1.40(好ましくは、1.08<Re(750)/Re(550)<1.36)から選択される少なくとも1つを満たすことが好ましく、より好ましくは少なくとも2つを満たし、さらに好ましくは全てを満たす。広い波長領域にわたって逆分散波長特性を示す第一位相差部材を用いることにより、透過光の着色をより好適に抑制することができる。 In one embodiment, the first retardation member 20 has Re(400)/Re(550)<0.85, Re(650)/Re(550)>1.03, and Re(750)/Re( 550)>1.05. The first retardation member 20 has 0.65<Re(400)/Re(550)<0.80 (preferably 0.7<Re(400)/Re(550)<0.75), 1. 0<Re(650)/Re(550)<1.25 (preferably 1.05<Re(650)/Re(550)<1.20) and 1.05<Re(750)/Re( 550)<1.40 (preferably 1.08<Re(750)/Re(550)<1.36), more preferably at least two. More preferably, all of them are satisfied. By using the first retardation member that exhibits inverse dispersion wavelength characteristics over a wide wavelength range, coloring of transmitted light can be suppressed more suitably.
 第一位相差部材20は、好ましくは屈折率特性がnx>ny≧nzの関係を示す。ここで「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。したがって、本発明の効果を損なわない範囲で、ny<nzとなる場合があり得る。第一位相差部材20のNz係数は、好ましくは0.9~3、より好ましくは0.9~2.5、さらに好ましくは0.9~1.5、特に好ましくは0.9~1.3である。 The first retardation member 20 preferably exhibits a refractive index characteristic of nx>ny≧nz. Here, "ny=nz" includes not only the case where ny and nz are completely equal, but also the case where ny and nz are substantially equal. Therefore, there may be a case where ny<nz within a range that does not impair the effects of the present invention. The Nz coefficient of the first retardation member 20 is preferably 0.9 to 3, more preferably 0.9 to 2.5, even more preferably 0.9 to 1.5, particularly preferably 0.9 to 1. It is 3.
 第一位相差部材20は、上記特性を満足し得る任意の適切な材料で形成される。第一位相差部材20は、例えば、樹脂フィルムの延伸フィルムまたは液晶化合物の配向固化層であり得る。 The first retardation member 20 is formed of any suitable material that can satisfy the above characteristics. The first retardation member 20 may be, for example, a stretched resin film or an oriented solidified layer of a liquid crystal compound.
 上記樹脂フィルムに含まれる樹脂としては、ポリカーボネート系樹脂、ポリエステルカーボネート系樹脂、ポリエステル系樹脂、ポリビニルアセタール系樹脂、ポリアリレート系樹脂、環状オレフィン系樹脂、セルロース系樹脂、ポリビニルアルコール系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリエーテル系樹脂、ポリスチレン系樹脂、アクリル系樹脂等が挙げられる。これらの樹脂は、単独で用いてもよく、組み合わせて(例えば、ブレンド、共重合)用いてもよい。第一位相差部材20が逆分散波長特性を示す場合、ポリカーボネート系樹脂またはポリエステルカーボネート系樹脂(以下、単にポリカーボネート系樹脂と称する場合がある)を含む樹脂フィルムが好適に用いられ得る。 The resins contained in the above resin film include polycarbonate resin, polyester carbonate resin, polyester resin, polyvinyl acetal resin, polyarylate resin, cyclic olefin resin, cellulose resin, polyvinyl alcohol resin, and polyamide resin. , polyimide resin, polyether resin, polystyrene resin, acrylic resin, and the like. These resins may be used alone or in combination (for example, blended or copolymerized). When the first retardation member 20 exhibits reverse dispersion wavelength characteristics, a resin film containing a polycarbonate resin or a polyester carbonate resin (hereinafter sometimes simply referred to as a polycarbonate resin) may be suitably used.
 上記ポリカーボネート系樹脂としては、本発明の効果が得られる限りにおいて、任意の適切なポリカーボネート系樹脂を用いることができる。例えば、ポリカーボネート系樹脂は、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、脂環式ジオール、脂環式ジメタノール、ジ、トリまたはポリエチレングリコール、ならびに、アルキレングリコールまたはスピログリコールからなる群から選択される少なくとも1つのジヒドロキシ化合物に由来する構造単位と、を含む。好ましくは、ポリカーボネート系樹脂は、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、脂環式ジメタノールに由来する構造単位ならびに/あるいはジ、トリまたはポリエチレングリコールに由来する構造単位と、を含み;さらに好ましくは、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、ジ、トリまたはポリエチレングリコールに由来する構造単位と、を含む。ポリカーボネート系樹脂は、必要に応じてその他のジヒドロキシ化合物に由来する構造単位を含んでいてもよい。なお、第一位相差部材に好適に用いられ得るポリカーボネート系樹脂および第一位相差部材の形成方法の詳細は、例えば、特開2014-10291号公報、特開2014-26266号公報、特開2015-212816号公報、特開2015-212817号公報、特開2015-212818号公報に記載されており、これらの公報の記載は本明細書に参考として援用される。 Any suitable polycarbonate resin can be used as the polycarbonate resin as long as the effects of the present invention can be obtained. For example, polycarbonate resins contain structural units derived from fluorene-based dihydroxy compounds, structural units derived from isosorbide-based dihydroxy compounds, alicyclic diols, alicyclic dimethanols, di-, tri-, or polyethylene glycols, and alkylene-based dihydroxy compounds. a structural unit derived from at least one dihydroxy compound selected from the group consisting of glycol or spiroglycol. Preferably, the polycarbonate resin contains a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, a structural unit derived from an alicyclic dimethanol, and/or a di, tri, or polyethylene glycol. More preferably, it contains a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, and a structural unit derived from di, tri or polyethylene glycol. . The polycarbonate resin may contain structural units derived from other dihydroxy compounds as necessary. Note that details of the polycarbonate-based resin that can be suitably used for the first retardation member and the method for forming the first retardation member can be found, for example, in JP-A No. 2014-10291, JP-A No. 2014-26266, and JP-A No. 2015-2015. It is described in JP-A-212816, JP-A-2015-212817, and JP-A-2015-212818, and the descriptions of these publications are incorporated herein by reference.
 樹脂フィルムの延伸フィルムで構成される第一位相差部材20の厚みは、例えば10μm~100μmであり、好ましくは10μm~70μm、より好ましくは10μm~40μm、さらに好ましくは20μm~30μmである。 The thickness of the first retardation member 20 made of a stretched resin film is, for example, 10 μm to 100 μm, preferably 10 μm to 70 μm, more preferably 10 μm to 40 μm, and still more preferably 20 μm to 30 μm.
 上記液晶化合物の配向固化層は、液晶化合物が層内で所定の方向に配向し、その配向状態が固定されている層である。なお、「配向固化層」は、後述のように液晶モノマーを硬化させて得られる配向硬化層を包含する概念である。第一位相差部材においては、代表的には、棒状の液晶化合物が第一位相差部材の遅相軸方向に並んだ状態で配向している(ホモジニアス配向)。棒状の液晶化合物として、例えば、液晶ポリマーおよび液晶モノマーが挙げられる。液晶化合物は、好ましくは、重合可能である。液晶化合物が重合可能であると、液晶化合物を配向させた後に重合させることで、液晶化合物の配向状態を固定できる。 The liquid crystal compound alignment and solidification layer is a layer in which the liquid crystal compound is aligned in a predetermined direction within the layer, and the alignment state is fixed. In addition, the "alignment hardened layer" is a concept that includes an orientation hardened layer obtained by curing a liquid crystal monomer as described below. In the first retardation member, rod-shaped liquid crystal compounds are typically aligned in the slow axis direction of the first retardation member (homogeneous alignment). Examples of rod-shaped liquid crystal compounds include liquid crystal polymers and liquid crystal monomers. The liquid crystal compound is preferably polymerizable. If the liquid crystal compound is polymerizable, the alignment state of the liquid crystal compound can be fixed by aligning the liquid crystal compound and then polymerizing it.
 上記液晶化合物の配向固化層(液晶配向固化層)は、所定の基材の表面に配向処理を施し、当該表面に液晶化合物を含む塗工液を塗工して当該液晶化合物を上記配向処理に対応する方向に配向させ、当該配向状態を固定することにより形成され得る。配向処理としては、任意の適切な配向処理が採用され得る。具体的には、機械的な配向処理、物理的な配向処理、化学的な配向処理が挙げられる。機械的な配向処理の具体例としては、ラビング処理、延伸処理が挙げられる。物理的な配向処理の具体例としては、磁場配向処理、電場配向処理が挙げられる。化学的な配向処理の具体例としては、斜方蒸着法、光配向処理が挙げられる。各種配向処理の処理条件は、目的に応じて任意の適切な条件が採用され得る。 The liquid crystal compound alignment and solidification layer (liquid crystal alignment solidification layer) is produced by subjecting the surface of a predetermined base material to an alignment treatment, applying a coating liquid containing the liquid crystal compound to the surface, and subjecting the liquid crystal compound to the alignment treatment. It can be formed by orienting it in a corresponding direction and fixing the orientation state. Any suitable orientation treatment may be employed as the orientation treatment. Specifically, mechanical alignment treatment, physical alignment treatment, and chemical alignment treatment can be mentioned. Specific examples of mechanical alignment treatment include rubbing treatment and stretching treatment. Specific examples of physical alignment treatment include magnetic field alignment treatment and electric field alignment treatment. Specific examples of chemical alignment treatment include oblique vapor deposition and photo alignment treatment. As the treatment conditions for various orientation treatments, any appropriate conditions may be adopted depending on the purpose.
 液晶化合物の配向は、液晶化合物の種類に応じて液晶相を示す温度で処理することにより行われる。このような温度処理を行うことにより、液晶化合物が液晶状態をとり、基材表面の配向処理方向に応じて当該液晶化合物が配向する。 The alignment of the liquid crystal compound is carried out by treatment at a temperature that exhibits a liquid crystal phase depending on the type of liquid crystal compound. By performing such temperature treatment, the liquid crystal compound assumes a liquid crystal state, and the liquid crystal compound is oriented in accordance with the orientation treatment direction of the substrate surface.
 配向状態の固定は、1つの実施形態においては、上記のように配向した液晶化合物を冷却することにより行われる。液晶化合物が重合性または架橋性である場合には、配向状態の固定は、上記のように配向した液晶化合物に重合処理または架橋処理を施すことにより行われる。 In one embodiment, the alignment state is fixed by cooling the liquid crystal compound aligned as described above. When the liquid crystal compound is polymerizable or crosslinkable, the alignment state is fixed by subjecting the liquid crystal compound aligned as described above to polymerization treatment or crosslinking treatment.
 上記液晶化合物としては、任意の適切な液晶ポリマーおよび/または液晶モノマーが用いられる。液晶ポリマーおよび液晶モノマーは、それぞれ単独で用いてもよく、組み合わせてもよい。液晶化合物の具体例および液晶配向固化層の作製方法は、例えば、特開2006-163343号公報、特開2006-178389号公報、国際公開第2018/123551号公報に記載されている。これらの公報の記載は本明細書に参考として援用される。 Any suitable liquid crystal polymer and/or liquid crystal monomer can be used as the liquid crystal compound. The liquid crystal polymer and the liquid crystal monomer may be used alone or in combination. Specific examples of liquid crystal compounds and methods for producing liquid crystal alignment solidified layers are described in, for example, JP 2006-163343A, JP 2006-178389A, and WO 2018/123551A. The descriptions of these publications are incorporated herein by reference.
 液晶配向固化層で構成される第一位相差部材20の厚みは、例えば1μm~10μmであり、好ましくは1μm~8μm、より好ましくは1μm~6μm、さらに好ましくは1μm~4μmである。 The thickness of the first retardation member 20 composed of the liquid crystal alignment solidified layer is, for example, 1 μm to 10 μm, preferably 1 μm to 8 μm, more preferably 1 μm to 6 μm, and still more preferably 1 μm to 4 μm.
 第二位相差部材22の面内位相差Re(550)は、例えば100nm~190nmであり、110nm~180nmであってもよく、130nm~160nmであってもよく、135nm~155nmであってもよい。 The in-plane retardation Re (550) of the second retardation member 22 is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. .
 第二位相差部材22は、好ましくは、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示す。第二位相差部材22のRe(450)/Re(550)は、例えば1未満であり、0.95以下であってよく、さらには0.90未満、さらには0.85以下であってもよい。第二位相差部材22のRe(450)/Re(550)は、例えば0.75以上である。逆分散波長特性を示す第二位相差部材を用いることにより、透過光の着色を抑制することができる。 The second retardation member 22 preferably exhibits inverse dispersion wavelength characteristics in which the retardation value increases depending on the wavelength of the measurement light. Re(450)/Re(550) of the second retardation member 22 is, for example, less than 1 and may be 0.95 or less, further less than 0.90, and even 0.85 or less. good. Re(450)/Re(550) of the second retardation member 22 is, for example, 0.75 or more. By using the second retardation member exhibiting reverse dispersion wavelength characteristics, coloring of transmitted light can be suppressed.
 1つの実施形態において、第二位相差部材22は、Re(400)/Re(550)<0.85、Re(650)/Re(550)>1.03、およびRe(750)/Re(550)>1.05を全て満たす。第二位相差部材22は、0.65<Re(400)/Re(550)<0.80(好ましくは、0.7<Re(400)/Re(550)<0.75)、1.0<Re(650)/Re(550)<1.25(好ましくは、1.05<Re(650)/Re(550)<1.20)、および1.05<Re(750)/Re(550)<1.40(好ましくは、1.08<Re(750)/Re(550)<1.36)から選択される少なくとも1つを満たすことが好ましく、より好ましくは少なくとも2つを満たし、さらに好ましくは全てを満たす。広い波長領域にわたって逆分散波長特性を示す第二位相差部材を用いることにより、透過光の着色をより好適に抑制することができる。 In one embodiment, the second retardation member 22 has Re(400)/Re(550)<0.85, Re(650)/Re(550)>1.03, and Re(750)/Re( 550)>1.05. The second retardation member 22 has 0.65<Re(400)/Re(550)<0.80 (preferably 0.7<Re(400)/Re(550)<0.75), 1. 0<Re(650)/Re(550)<1.25 (preferably 1.05<Re(650)/Re(550)<1.20) and 1.05<Re(750)/Re( 550)<1.40 (preferably 1.08<Re(750)/Re(550)<1.36), more preferably at least two. More preferably, all of them are satisfied. By using the second retardation member that exhibits inverse dispersion wavelength characteristics over a wide wavelength range, coloring of transmitted light can be suppressed more suitably.
 第二位相差部材22は、好ましくは屈折率特性がnx>ny≧nzの関係を示す。ここで「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。したがって、本発明の効果を損なわない範囲で、ny<nzとなる場合があり得る。第二位相差部材22のNz係数は、好ましくは0.9~3、より好ましくは0.9~2.5、さらに好ましくは0.9~1.5、特に好ましくは0.9~1.3である。 The second retardation member 22 preferably exhibits a refractive index characteristic of nx>ny≧nz. Here, "ny=nz" includes not only the case where ny and nz are completely equal, but also the case where ny and nz are substantially equal. Therefore, there may be a case where ny<nz within a range that does not impair the effects of the present invention. The Nz coefficient of the second retardation member 22 is preferably 0.9 to 3, more preferably 0.9 to 2.5, even more preferably 0.9 to 1.5, particularly preferably 0.9 to 1. It is 3.
 第二位相差部材22は、上記特性を満足し得る任意の適切な材料で形成される。第二位相差部材22は、例えば、樹脂フィルムの延伸フィルムまたは液晶化合物の配向固化層であり得る。樹脂フィルムの延伸フィルムまたは液晶化合物の配向固化層で構成される第二位相差部材22については、第一位相差部材20と同様の説明を適用することができる。第一位相差部材20と第二位相差部材22とは、同じ構成(形成材料、厚み、光学特性等)の部材であってもよく、異なる構成の部材であってもよい。 The second retardation member 22 is formed of any suitable material that can satisfy the above characteristics. The second retardation member 22 may be, for example, a stretched resin film or an oriented solidified layer of a liquid crystal compound. The same explanation as for the first retardation member 20 can be applied to the second retardation member 22 made of a stretched resin film or an oriented solidified layer of a liquid crystal compound. The first retardation member 20 and the second retardation member 22 may have the same configuration (forming material, thickness, optical properties, etc.), or may have different configurations.
 反射部14は、吸収型偏光部材(代表的には、吸収型偏光フィルム)を含んでいてもよい。この場合、吸収型偏光部材は、反射型偏光部材の前方に配置され得る。反射型偏光部材の反射軸と吸収型偏光部材の吸収軸とは互いに略平行に配置され得る。例えば、反射型偏光部材と吸収型偏光部材とは接着層を介して積層され、反射部14は反射型偏光部材と吸収型偏光部材とを有する積層体を含んでいてもよい。 The reflecting section 14 may include an absorption type polarizing member (typically, an absorption type polarizing film). In this case, the absorptive polarizing member may be placed in front of the reflective polarizing member. The reflection axis of the reflective polarizing member and the absorption axis of the absorptive polarizing member may be arranged substantially parallel to each other. For example, the reflective polarizing member and the absorptive polarizing member may be laminated with an adhesive layer interposed therebetween, and the reflective section 14 may include a laminate having the reflective polarizing member and the absorbing polarizing member.
 以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例になんら限定されるものではない。なお、実施例等における、試験および評価方法は以下のとおりである。なお、「部」と記載されている場合は、特記事項がない限り「重量部」を意味し、「%」と記載されている場合は、特記事項がない限り「重量%」を意味する。 Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples in any way. In addition, the test and evaluation methods in Examples and the like are as follows. In addition, when it is written as "parts", it means "parts by weight" unless there are special notes, and when it is written as "%", it means "wt%" unless there are special notes.
(1)厚み
 10μm以下の厚みは、走査型電子顕微鏡(日本電子社製、製品名「JSM-7100F」)を用いて測定した。10μmを超える厚みは、デジタルマイクロメーター(アンリツ社製、製品名「KC-351C」)を用いて測定した。
(2)面内位相差Re(λ)
 λ/4部材の幅方向中央部および両端部を、一辺が当該部材の幅方向と平行となるようにして幅50mm、長さ50mmの正方形状に切り出して試料を作成した。この試料を、ミュラーマトリクス・ポラリメーター(Axometrics社製 製品名「Axoscan」)を用いて、23℃における各波長での面内位相差を測定した。
(3)単体透過率および偏光度
 分光光度計(大塚電子社製、「LPF-200」)を用いて、偏光フィルムまたは積層体の単体透過率Ts、平行透過率Tp、直交透過率Tcを測定した。これらのTs、TpおよびTcは、JIS Z8701の2度視野(C光源)により測定して視感度補正を行なったY値である。得られたTpおよびTcから、下記式を用いて偏光フィルムの偏光度を求めた。
   偏光度(%)={(Tp-Tc)/(Tp+Tc)}1/2×100 
(4)色相
 実施例および比較例で作製した積層体のλ/4部材側表面に光源からの偏光光を入射させ、偏光フィルム側表面から出射した光の直交色相(直交a値、直交b値)を、分光光度計(大塚電子社製、「LPF-200」)を用いて測定した。なお、光源側から見た場合において、λ/4部材の遅相軸方向は、偏光フィルム(実質的には、偏光フィルム中の偏光膜)の吸収軸方向に対して時計回りに45°の角度をなす方向であった。
(1) Thickness The thickness of 10 μm or less was measured using a scanning electron microscope (manufactured by JEOL Ltd., product name “JSM-7100F”). Thickness exceeding 10 μm was measured using a digital micrometer (manufactured by Anritsu Corporation, product name “KC-351C”).
(2) In-plane phase difference Re(λ)
A sample was prepared by cutting out the central part and both ends of the λ/4 member in the width direction into a square having a width of 50 mm and a length of 50 mm, with one side parallel to the width direction of the member. The in-plane retardation of this sample at each wavelength at 23° C. was measured using a Mueller matrix polarimeter (manufactured by Axometrics, product name “Axoscan”).
(3) Single transmittance and polarization degree Measure the single transmittance Ts, parallel transmittance Tp, and cross transmittance Tc of the polarizing film or laminate using a spectrophotometer (manufactured by Otsuka Electronics Co., Ltd., "LPF-200") did. These Ts, Tp, and Tc are Y values measured using a 2-degree visual field (C light source) according to JIS Z8701 and subjected to visibility correction. From the obtained Tp and Tc, the degree of polarization of the polarizing film was determined using the following formula.
Degree of polarization (%) = {(Tp-Tc)/(Tp+Tc)} 1/2 ×100
(4) Hue Polarized light from a light source is incident on the λ/4 member side surface of the laminates produced in Examples and Comparative Examples, and the orthogonal hue (orthogonal a * value, orthogonal b * value) was measured using a spectrophotometer (manufactured by Otsuka Electronics Co., Ltd., "LPF-200"). Note that when viewed from the light source side, the slow axis direction of the λ/4 member is at an angle of 45° clockwise with respect to the absorption axis direction of the polarizing film (substantially, the polarizing film in the polarizing film). The direction was to do so.
[製造例1:λ/4部材Aの作製]
 撹拌翼および100℃に制御された還流冷却器を具備した縦型反応器2器からなるバッチ重合装置に、ビス[9-(2-フェノキシカルボニルエチル)フルオレン-9-イル]メタン29.60重量部(0.046mol)、イソソルビド(ISB)29.21重量部(0.200mol)、スピログリコール(SPG)42.28重量部(0.139mol)、ジフェニルカーボネート(DPC)63.77重量部(0.298mol)、および、触媒として酢酸カルシウム1水和物1.19×10-2重量部(6.78×10-5mol)を仕込んだ。反応器内を減圧窒素置換した後、熱媒で加温を行い、内温が100℃になった時点で撹拌を開始した。昇温開始40分後に内温を220℃に到達させ、この温度を保持するように制御すると同時に減圧を開始し、220℃に到達してから90分で13.3kPaにした。重合反応とともに副生するフェノール蒸気を100℃の還流冷却器に導き、フェノール蒸気中に若干量含まれるモノマー成分を反応器に戻し、凝縮しないフェノール蒸気は45℃の凝縮器に導いて回収した。第1反応器に窒素を導入して一旦大気圧まで復圧させた後、第1反応器内のオリゴマー化された反応液を第2反応器に移した。次いで、第2反応器内の昇温および減圧を開始して、50分で内温240℃、圧力0.2kPaにした。その後、所定の攪拌動力となるまで重合を進行させた。所定動力に到達した時点で反応器に窒素を導入して復圧し、生成したポリエステルカーボネート系樹脂を水中に押し出し、ストランドをカッティングしてペレットを得た。
 得られたポリエステルカーボネート系樹脂(ペレット)を80℃で5時間真空乾燥をした後、単軸押出機(東芝機械社製、シリンダー設定温度:250℃)、Tダイ(幅200mm、設定温度:250℃)、チルロール(設定温度:120~130℃)および巻取機を備えたフィルム製膜装置を用いて、厚み130μmの長尺状の樹脂フィルムを作製した。得られた長尺状の樹脂フィルムを、幅方向に、延伸温度140℃、延伸倍率2.7倍で延伸した。これにより、厚みが47μmであり、Re(590)が143nmであり、Nz係数が1.2である位相差フィルム(λ/4部材A)を得た。
[Manufacturing Example 1: Fabrication of λ/4 member A]
29.60 weight of bis[9-(2-phenoxycarbonylethyl)fluoren-9-yl]methane was added to a batch polymerization apparatus consisting of two vertical reactors equipped with a stirring blade and a reflux condenser controlled at 100°C. part (0.046 mol), isosorbide (ISB) 29.21 parts by weight (0.200 mol), spiroglycol (SPG) 42.28 parts by weight (0.139 mol), diphenyl carbonate (DPC) 63.77 parts by weight (0 .298 mol) and 1.19×10 −2 parts by weight (6.78×10 −5 mol) of calcium acetate monohydrate as a catalyst were charged. After the inside of the reactor was replaced with nitrogen under reduced pressure, it was heated with a heating medium, and when the internal temperature reached 100°C, stirring was started. 40 minutes after the start of temperature rise, the internal temperature was controlled to reach 220°C, and at the same time, pressure reduction was started to maintain this temperature, and the pressure was reduced to 13.3 kPa in 90 minutes after reaching 220°C. Phenol vapor produced as a by-product during the polymerization reaction was led to a reflux condenser at 100°C, a small amount of monomer component contained in the phenol vapor was returned to the reactor, and uncondensed phenol vapor was led to a condenser at 45°C for recovery. After nitrogen was introduced into the first reactor and the pressure was once restored to atmospheric pressure, the oligomerized reaction liquid in the first reactor was transferred to the second reactor. Next, temperature increase and pressure reduction in the second reactor were started, and the internal temperature was 240° C. and the pressure was 0.2 kPa in 50 minutes. Thereafter, polymerization was allowed to proceed until a predetermined stirring power was reached. When a predetermined power was reached, nitrogen was introduced into the reactor to restore the pressure, the produced polyester carbonate resin was extruded into water, and the strands were cut to obtain pellets.
After vacuum drying the obtained polyester carbonate resin (pellets) at 80°C for 5 hours, a single-screw extruder (manufactured by Toshiba Machine Co., Ltd., cylinder temperature setting: 250°C) and a T-die (width 200mm, setting temperature: 250°C) were used. A long resin film with a thickness of 130 μm was produced using a film forming apparatus equipped with a chill roll (temperature setting: 120 to 130° C.), a winder and a winder. The obtained long resin film was stretched in the width direction at a stretching temperature of 140° C. and a stretching ratio of 2.7 times. As a result, a retardation film (λ/4 member A) having a thickness of 47 μm, a Re(590) of 143 nm, and an Nz coefficient of 1.2 was obtained.
[製造例2:λ/4部材Bの作製]
 フラットな分散波長特性を示すノルボルネン系フィルム(日本ゼオン社製、商品名「ゼオノア」、厚み100μm)を、延伸温度130℃で幅方向に延伸倍率3倍で固定端延伸して、厚みが30μmであり、Re(590)が140nmであり、Nz係数が1.6である位相差フィルム(λ/4部材B)を得た。
[Production Example 2: Production of λ/4 member B]
A norbornene-based film (manufactured by Nippon Zeon Co., Ltd., trade name "Zeonor", thickness 100 μm) exhibiting flat dispersion wavelength characteristics was fixed-end stretched at a stretching temperature of 130°C and a stretching ratio of 3 times in the width direction until the thickness was 30 μm. A retardation film (λ/4 member B) having a Re(590) of 140 nm and an Nz coefficient of 1.6 was obtained.
[製造例3:偏光フィルムの作製]
 熱可塑性樹脂基材として、長尺状で、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用い、樹脂基材の片面に、コロナ処理を施した。
 ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(三菱ケミカル社製、商品名「ゴーセネックスZ410」)を9:1で混合したPVA系樹脂100重量部に、ヨウ化カリウム13重量部を添加したものを水に溶かし、PVA水溶液(塗布液)を調製した。
 樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
 得られた積層体を、130℃のオーブン内で縦方向(長手方向)に2.4倍に一軸延伸した(空中補助延伸処理)。
 次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
 次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる吸収型偏光膜の単体透過率(Ts)が所望の値となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
 次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
 その後、積層体を、液温70℃のホウ酸水溶液(ホウ酸濃度4重量%、ヨウ化カリウム濃度5重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
 その後、積層体を液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
 その後、約90℃に保たれたオーブン中で乾燥しながら、表面温度が約75℃に保たれたSUS製の加熱ロールに接触させた(乾燥収縮処理)。乾燥収縮処理による積層体の幅方向の収縮率は5.2%であった。
 このようにして、樹脂基材上に厚み約5μmの吸収型偏光膜を形成した。
 得られた吸収型偏光膜の表面(樹脂基材とは反対側の面)に、保護層としてのシクロオレフィン系樹脂フィルム(厚み:25μm)を、紫外線硬化型接着剤を介して貼り合せた。具体的には、硬化型接着剤の総厚みが約1μmになるように塗工し、ロール機を使用して貼り合わせた。その後、UV光線をシクロオレフィン系樹脂フィルム側から照射して接着剤を硬化させた。次いで、樹脂基材を剥離した。
 これによって、シクロオレフィン系樹脂フィルム/吸収型偏光膜の構成を有する偏光フィルムを得た。偏光フィルムの単体透過率(Ts)は43.4%であり、偏光度は99.993%、直交a値は0.1、直交b値は-0.1であった。
[Production Example 3: Production of polarizing film]
As the thermoplastic resin base material, a long, amorphous isophthalic copolymerized polyethylene terephthalate film (thickness: 100 μm) having a Tg of approximately 75° C. was used, and one side of the resin base material was subjected to corona treatment.
Iodine was added to 100 parts by weight of a PVA resin prepared by mixing polyvinyl alcohol (degree of polymerization 4200, degree of saponification 99.2 mol%) and acetoacetyl-modified PVA (manufactured by Mitsubishi Chemical Corporation, product name "Gosenex Z410") in a ratio of 9:1. A PVA aqueous solution (coating liquid) was prepared by dissolving 13 parts by weight of potassium chloride in water.
The PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60° C. to form a PVA-based resin layer with a thickness of 13 μm, thereby producing a laminate.
The obtained laminate was uniaxially stretched 2.4 times in the vertical direction (longitudinal direction) in an oven at 130° C. (in-air auxiliary stretching treatment).
Next, the laminate was immersed for 30 seconds in an insolubilization bath (boric acid aqueous solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) at a liquid temperature of 40° C. (insolubilization treatment).
Next, the finally obtained absorption type polarized light was added to a dyeing bath (an iodine aqueous solution obtained by blending iodine and potassium iodide at a weight ratio of 1:7 to 100 parts by weight of water) at a liquid temperature of 30°C. The membrane was immersed for 60 seconds while adjusting the concentration so that the single transmittance (Ts) of the membrane became a desired value (staining treatment).
Next, it was immersed for 30 seconds in a crosslinking bath (an aqueous boric acid solution obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water) at a liquid temperature of 40°C. (Crosslinking treatment).
Thereafter, while immersing the laminate in a boric acid aqueous solution (boric acid concentration: 4% by weight, potassium iodide concentration: 5% by weight) at a liquid temperature of 70°C, the laminate was completely rolled in the longitudinal direction (longitudinal direction) between rolls having different circumferential speeds. Uniaxial stretching was performed so that the stretching ratio was 5.5 times (underwater stretching treatment).
Thereafter, the laminate was immersed in a cleaning bath (an aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water) at a liquid temperature of 20° C. (cleaning treatment).
Thereafter, while drying in an oven kept at about 90°C, it was brought into contact with a SUS heating roll whose surface temperature was kept at about 75°C (drying shrinkage treatment). The shrinkage rate of the laminate in the width direction due to the drying shrinkage treatment was 5.2%.
In this way, an absorption type polarizing film with a thickness of about 5 μm was formed on the resin base material.
A cycloolefin resin film (thickness: 25 μm) as a protective layer was bonded to the surface of the obtained absorption polarizing film (the surface opposite to the resin base material) via an ultraviolet curable adhesive. Specifically, the curable adhesive was coated to a total thickness of about 1 μm, and then bonded together using a roll machine. Thereafter, UV light was irradiated from the cycloolefin resin film side to cure the adhesive. Then, the resin base material was peeled off.
As a result, a polarizing film having a structure of cycloolefin resin film/absorption type polarizing film was obtained. The single transmittance (Ts) of the polarizing film was 43.4%, the degree of polarization was 99.993%, the orthogonal a * value was 0.1, and the orthogonal b * value was -0.1.
[実施例1]
 製造例3で得た偏光フィルムの片側に、λ/4部材Aを4つ積層して積層体1を作製した。各部材の積層は、アクリル系粘着剤層(日東電工社製、厚み5μm)を介して貼り合せることによって行った。このとき、4つのλ/4部材Aの遅相軸方向が互いに平行、かつ、偏光フィルム側からみたときの吸収型偏光膜の吸収軸方向(0°)に対して反時計回りに45°の角度をなすように各部材を積層した。
[Example 1]
Laminated body 1 was produced by laminating four λ/4 members A on one side of the polarizing film obtained in Production Example 3. Lamination of each member was performed by pasting them together via an acrylic adhesive layer (manufactured by Nitto Denko Corporation, thickness 5 μm). At this time, the slow axes of the four λ/4 members A are parallel to each other and 45° counterclockwise with respect to the absorption axis direction (0°) of the absorption type polarizing film when viewed from the polarizing film side. Each member was laminated so as to form an angle.
[比較例1]
 λ/4部材Aの代わりにλ/4部材Bを用いたこと以外は実施例1と同様にして、製造例3で得た偏光フィルムの保護層側表面に、λ/4部材Bを4つ積層して積層体C1を作製した。
[Comparative example 1]
Four λ/4 members B were placed on the protective layer side surface of the polarizing film obtained in Production Example 3 in the same manner as in Example 1 except that λ/4 member B was used instead of λ/4 member A. A laminate C1 was produced by laminating them.
 上記実施例および比較例で得られた積層体の単体透過率および色相の測定結果を、λ/4部材の光学特性と併せて表1に示す。なお、実施例および比較例で作製した積層体は、本発明の実施形態による表示システムの簡易評価モデルである。具体的には、積層体のλ/4部材側に入射し、偏光フィルム側から出射した光の色相は、本発明の実施形態による表示システムにおいて、表示素子の表示面から前方に出射した直線偏光光が第一位相差部材および第二位相差部材をこの順に透過後、反射部での反射およびハーフミラーでの再反射により第二位相差部材をさらに2回透過し、反射部を透過して前方に出射した光の色相として評価することができる。
Figure JPOXMLDOC01-appb-T000001
The measurement results of the single transmittance and hue of the laminates obtained in the above examples and comparative examples are shown in Table 1 together with the optical properties of the λ/4 member. Note that the laminates produced in Examples and Comparative Examples are simple evaluation models of display systems according to embodiments of the present invention. Specifically, in the display system according to the embodiment of the present invention, the hue of light incident on the λ/4 member side of the laminate and emitted from the polarizing film side is linearly polarized light emitted forward from the display surface of the display element. After the light passes through the first retardation member and the second retardation member in this order, the light passes through the second retardation member two more times by reflection at the reflection part and re-reflection at the half mirror, and then passes through the reflection part. It can be evaluated as the hue of the light emitted forward.
Figure JPOXMLDOC01-appb-T000001
 表1に示されるとおり、第一位相差部材および第二位相差部材として、広い波長領域にわたって逆分散波長特性を示すλ/4部材を用いることにより、2つのλ/4部材を計4回透過した場合であっても、着色が抑制されたニュートラルな色相が得られた。 As shown in Table 1, by using λ/4 members that exhibit inverse dispersion wavelength characteristics over a wide wavelength range as the first retardation member and the second retardation member, the two λ/4 members are transmitted a total of four times. Even in this case, a neutral hue with suppressed coloring was obtained.
 本発明は、上記実施形態に限定されるものではなく、種々の変形が可能である。例えば、上記実施形態で示した構成と実質的に同一の構成、同一の作用効果を奏する構成または同一の目的を達成することができる構成で置き換えることができる。 The present invention is not limited to the above embodiments, and various modifications are possible. For example, it can be replaced with a configuration that is substantially the same as the configuration shown in the above embodiment, a configuration that has the same effect, or a configuration that can achieve the same purpose.
 本発明の実施形態に係る表示システムは、例えば、VRゴーグル等の表示体に用いられ得る。 The display system according to the embodiment of the present invention can be used for a display body such as VR goggles, for example.
  2   表示システム
  4   レンズ部
 12   表示素子
 14   反射部
 16   第一レンズ部
 18   ハーフミラー
 20   第一位相差部材
 22   第二位相差部材
 24   第二レンズ部
2 Display system 4 Lens section 12 Display element 14 Reflection section 16 First lens section 18 Half mirror 20 First retardation member 22 Second retardation member 24 Second lens section

Claims (11)

  1.  ユーザに対して画像を表示する表示システムであって、
     偏光部材を介して画像を表す光を前方に出射する表示面を有する表示素子と、
     前記表示素子の前方に配置され、反射型偏光部材を含み、前記表示素子から出射された光を反射する反射部と、
     前記表示素子と前記反射部との間の光路上に配置される第一レンズ部と、
     前記表示素子と前記第一レンズ部との間に配置され、前記表示素子から出射された光を透過させ、前記反射部で反射された光を前記反射部に向けて反射させるハーフミラーと、
     前記表示素子と前記ハーフミラーとの間の光路上に配置される第1のλ/4部材と、
     前記ハーフミラーと前記反射部との間の光路上に配置される第2のλ/4部材と、
     を備え、
     前記第1のλ/4部材および前記第2のλ/4部材がそれぞれ、Re(450)/Re(550)<0.90を満たす、表示システム。
    A display system for displaying images to a user, the display system comprising:
    a display element having a display surface that emits light representing an image forward through a polarizing member;
    a reflecting section disposed in front of the display element, including a reflective polarizing member, and reflecting light emitted from the display element;
    a first lens section disposed on an optical path between the display element and the reflection section;
    a half mirror disposed between the display element and the first lens part, which transmits the light emitted from the display element and reflects the light reflected by the reflection part toward the reflection part;
    a first λ/4 member disposed on an optical path between the display element and the half mirror;
    a second λ/4 member disposed on the optical path between the half mirror and the reflection section;
    Equipped with
    A display system in which the first λ/4 member and the second λ/4 member each satisfy Re(450)/Re(550)<0.90.
  2.  前記第1のλ/4部材および前記第2のλ/4部材がそれぞれ、
     Re(400)/Re(550)<0.85、
     Re(650)/Re(550)>1.03、および
     Re(750)/Re(550)>1.05、
     を満たす、請求項1に記載の表示システム。
    The first λ/4 member and the second λ/4 member each have
    Re(400)/Re(550)<0.85,
    Re(650)/Re(550)>1.03, and Re(750)/Re(550)>1.05,
    The display system according to claim 1, which satisfies the following.
  3.  前記表示素子に含まれる前記偏光部材の吸収軸と前記第1のλ/4部材の遅相軸とのなす角度は40°~50°であり、
     前記表示素子に含まれる前記偏光部材の吸収軸と前記第2のλ/4部材の遅相軸とのなす角度は40°~50°である、請求項1に記載の表示システム。
    The angle between the absorption axis of the polarizing member included in the display element and the slow axis of the first λ/4 member is 40° to 50°,
    The display system according to claim 1, wherein the angle between the absorption axis of the polarizing member and the slow axis of the second λ/4 member included in the display element is 40° to 50°.
  4.  前記第一レンズ部と前記ハーフミラーとが一体である、請求項1に記載の表示システム。 The display system according to claim 1, wherein the first lens portion and the half mirror are integrated.
  5.  前記反射部の前方に配置される第二レンズ部を備える、請求項1に記載の表示システム。 The display system according to claim 1, further comprising a second lens section disposed in front of the reflecting section.
  6.  前記反射部は、前記反射型偏光部材の前方に配置される吸収型偏光部材を含む、請求項1に記載の表示システム。 The display system according to claim 1, wherein the reflective section includes an absorbing polarizing member disposed in front of the reflective polarizing member.
  7.  前記反射型偏光部材の反射軸と前記吸収型偏光部材の吸収軸とは互いに平行に配置される、請求項6に記載の表示システム。 The display system according to claim 6, wherein the reflection axis of the reflective polarizing member and the absorption axis of the absorptive polarizing member are arranged parallel to each other.
  8.  偏光部材を介して出射された画像を表す光を、第1のλ/4部材を通過させるステップと、
     前記第1のλ/4部材を通過した光を、ハーフミラーおよび第一レンズ部を通過させるステップと、
     前記ハーフミラーおよび前記第一レンズ部を通過した光を、第2のλ/4部材を通過させるステップと、
     前記第2のλ/4部材を通過した光を、反射型偏光部材を含む反射部で前記ハーフミラーに向けて反射させるステップと、
     前記反射部および前記ハーフミラーで反射させた光を、前記第2のλ/4部材により前記反射部を透過可能にするステップと、を有し、
     前記第1のλ/4部材および前記第2のλ/4部材がそれぞれ、Re(450)/Re(550)<0.90を満たす、表示方法。
    passing the light representing the image emitted through the polarizing member through the first λ/4 member;
    a step of causing the light that has passed through the first λ/4 member to pass through a half mirror and a first lens portion;
    passing the light that has passed through the half mirror and the first lens section through a second λ/4 member;
    reflecting the light that has passed through the second λ/4 member toward the half mirror by a reflecting section including a reflective polarizing member;
    a step of allowing the light reflected by the reflection part and the half mirror to pass through the reflection part by the second λ/4 member;
    A display method, wherein the first λ/4 member and the second λ/4 member each satisfy Re(450)/Re(550)<0.90.
  9.  前記第1のλ/4部材および前記第2のλ/4部材がそれぞれ、
     Re(400)/Re(550)<0.85、
     Re(650)/Re(550)>1.03、および
     Re(750)/Re(550)>1.05、
     を満たす、請求項8に記載の表示方法。
    The first λ/4 member and the second λ/4 member each have
    Re(400)/Re(550)<0.85,
    Re(650)/Re(550)>1.03, and Re(750)/Re(550)>1.05,
    The display method according to claim 8, which satisfies the following.
  10.  請求項1から7のいずれか一項に記載の表示システムを具備する表示体。 A display body comprising the display system according to any one of claims 1 to 7.
  11.  請求項1から7のいずれか一項に記載の表示システムを具備する表示体の製造方法。 A method for manufacturing a display body comprising the display system according to any one of claims 1 to 7.
PCT/JP2023/006729 2022-03-14 2023-02-24 Display system, display method, display body, and method for manufacturing display body WO2023176361A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-039286 2022-03-14
JP2022039286 2022-03-14
JP2022-077657 2022-05-10
JP2022077657A JP2023134317A (en) 2022-03-14 2022-05-10 Display system, display method, display body, and display body production method

Publications (1)

Publication Number Publication Date
WO2023176361A1 true WO2023176361A1 (en) 2023-09-21

Family

ID=88023403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006729 WO2023176361A1 (en) 2022-03-14 2023-02-24 Display system, display method, display body, and method for manufacturing display body

Country Status (2)

Country Link
TW (1) TW202401085A (en)
WO (1) WO2023176361A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019505854A (en) * 2016-01-28 2019-02-28 深▲セン▼多▲ドゥオ▼新技術有限責任公司Shenzhen Dlodlo New Technology Co., Ltd. Short distance light expansion module, short distance light expansion method and short distance light expansion system
WO2020137529A1 (en) * 2018-12-28 2020-07-02 日本ゼオン株式会社 Retardation film, method for producing same and polarizing plate
JP2020166014A (en) * 2019-03-28 2020-10-08 大日本印刷株式会社 Reflection screen, projection system using the same, and reflection screen manufacturing method
WO2021145446A1 (en) * 2020-01-15 2021-07-22 富士フイルム株式会社 Optical system
CN113448101A (en) * 2021-06-28 2021-09-28 歌尔股份有限公司 Optical module and head-mounted display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019505854A (en) * 2016-01-28 2019-02-28 深▲セン▼多▲ドゥオ▼新技術有限責任公司Shenzhen Dlodlo New Technology Co., Ltd. Short distance light expansion module, short distance light expansion method and short distance light expansion system
WO2020137529A1 (en) * 2018-12-28 2020-07-02 日本ゼオン株式会社 Retardation film, method for producing same and polarizing plate
JP2020166014A (en) * 2019-03-28 2020-10-08 大日本印刷株式会社 Reflection screen, projection system using the same, and reflection screen manufacturing method
WO2021145446A1 (en) * 2020-01-15 2021-07-22 富士フイルム株式会社 Optical system
CN113448101A (en) * 2021-06-28 2021-09-28 歌尔股份有限公司 Optical module and head-mounted display device

Also Published As

Publication number Publication date
TW202401085A (en) 2024-01-01

Similar Documents

Publication Publication Date Title
WO2023176631A1 (en) Optical laminate, lens part, and display method
WO2023176361A1 (en) Display system, display method, display body, and method for manufacturing display body
WO2023176363A1 (en) Display system, display method, display body, and display body manufacturing method
WO2023176627A1 (en) Display system, display method, display body, and method for manufacturing display body
WO2023176626A1 (en) Display system, display method, display body, and method for manufacturing display body
JP2023134317A (en) Display system, display method, display body, and display body production method
WO2023176692A1 (en) Display system, display method, display body, and method for manufacturing display body
WO2023176691A1 (en) Display system, display method, display body, and method for manufacturing display body
WO2023176362A1 (en) Display system, display method, display body, and method for manufacturing display body
WO2023176693A1 (en) Display system, display method, display body, and method for manufacturing display body
WO2023176365A1 (en) Lens unit, laminate, display body, method for manufacturing display body, and display method
JP2023166841A (en) Display system, display method, display body, and method for manufacturing display body
WO2023176366A1 (en) Lens unit, layered body, display body, display body manufacturing method, and display method
WO2023176368A1 (en) Lens part, laminate, display body, and manufacturing method and display method for display body
WO2023176367A1 (en) Lens part, laminated body, display body, display body production method, and display method
WO2023176625A1 (en) Lens part, display body, and display method
WO2023176624A1 (en) Lens part, display body, and display method
WO2023176690A1 (en) Display system, optical layered body, and display system manufacturing method
JP2023166840A (en) Display system, display method, display body, and method for manufacturing display body
WO2023176630A1 (en) Optical laminate, lens unit, and display method
JP2023166851A (en) Lens portion, laminate, display body, method for manufacturing display body, and display method
JP2023166852A (en) Lens portion, laminate, display body, method for manufacturing display body, and display method
JP2023166854A (en) Lens portion, laminate, display body, method for manufacturing display body, and display method
JP2023166853A (en) Lens portion, laminate, display body, method for manufacturing display body, and display method
WO2023176629A1 (en) Optical laminate, lens portion, and display method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770320

Country of ref document: EP

Kind code of ref document: A1