WO2023176242A1 - Electrochemical cell - Google Patents

Electrochemical cell Download PDF

Info

Publication number
WO2023176242A1
WO2023176242A1 PCT/JP2023/004783 JP2023004783W WO2023176242A1 WO 2023176242 A1 WO2023176242 A1 WO 2023176242A1 JP 2023004783 W JP2023004783 W JP 2023004783W WO 2023176242 A1 WO2023176242 A1 WO 2023176242A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
metal plate
pores
pore
hole
Prior art date
Application number
PCT/JP2023/004783
Other languages
French (fr)
Japanese (ja)
Inventor
玄太 寺澤
明浩 杉江
俊之 中村
誠 大森
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Publication of WO2023176242A1 publication Critical patent/WO2023176242A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • C25B11/032Gas diffusion electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/1226Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer

Definitions

  • the present invention relates to an electrochemical cell.
  • an electrochemical cell such as an electrolytic cell or a fuel cell
  • a structure in which a cell body is supported by a metal plate is known.
  • an electrode layer, an electrolyte layer, and a counter electrode layer are laminated in this order on a metal plate.
  • the metal plate has through holes for supplying gas to the electrode layer.
  • the electrode layer is arranged on a metal plate with through holes, the electrode layer is not supported on the through holes, so if the electrode layer is formed thin, cracks may occur in the electrode layer. There is a problem that occurs.
  • an object of the present invention is to suppress cracking of an electrode layer formed on a metal plate.
  • An electrochemical cell includes a cell main body and a metal plate.
  • the cell main body includes a first electrode layer, a second electrode layer, and an electrolyte layer.
  • An electrolyte layer is disposed between the first electrode layer and the second electrode layer.
  • the metal plate supports the cell body.
  • the metal plate has a first main surface, a second main surface, and a through hole.
  • the first electrode layer has a main body portion, a filling portion, at least one first pore, and at least one second pore.
  • the main body portion is arranged on the first main surface of the metal plate.
  • the filling part is arranged within the through hole.
  • the first pore is arranged within the main body.
  • the second pores are arranged within the filling part.
  • the equivalent circle diameter of the largest second pore among the second pores is larger than the equivalent circle diameter of the largest second pore among the first pores.
  • the filling portion of the first electrode layer is arranged within the through hole of the metal plate, cracking of the first electrode layer formed on the metal plate can be suppressed.
  • the filling part contracts during the reduction process, for example.
  • the maximum second pores which are larger than the maximum first pores, are arranged within the filling part. Therefore, the second pores stop the cracks generated within the filled portion from expanding. As a result, cracks can be prevented from extending and penetrating the electrolyte layer.
  • the largest second pores are arranged on the second main surface side within the filling part.
  • the largest second pores are spaced apart from the inner wall surface defining the through hole.
  • the largest second pores contact the inner wall surface defining the through hole.
  • FIG. 7 is an enlarged sectional view showing details of an electrolytic cell according to a modification.
  • FIG. 7 is an enlarged sectional view showing details of an electrolytic cell according to a modification.
  • FIG. 7 is an enlarged sectional view showing details of an electrolytic cell according to a modification.
  • FIG. 1 is a sectional view showing an electrolytic cell.
  • the solid oxide electrolytic cell will be abbreviated as "cell”.
  • the cell 1 includes a cell main body 10 and a metal plate 4. Further, the cell 1 further includes a flow path member 3.
  • the flow path member 3 is joined to the metal plate 4.
  • the channel member 3 has a channel 31 .
  • the flow path 31 is formed on the surface of the flow path member 3 that faces the metal plate 4 .
  • a flow path 31 is formed on the upper surface of the flow path member 3.
  • the flow path 31 is open toward the metal plate 4.
  • the flow path 31 is connected to a manifold (not shown) or the like. In this embodiment, raw material gas is supplied to the flow path 31.
  • the flow path member 3 can be made of an alloy material, for example.
  • the flow path member 3 may be formed of the same material as the metal plate 4.
  • the flow path member 3 has a frame 32 and an interconnector 33.
  • the frame body 32 is an annular member that surrounds the sides of the flow path 31 .
  • the frame body 32 is joined to the metal plate 4.
  • the interconnector 33 is a plate-like member that electrically connects the electrolytic cell 1 to an external power source or other electrolytic cells in series.
  • the interconnector 33 is joined to the frame 32.
  • the frame 32 and the interconnector 33 are separate members, but the frame 32 and the interconnector 33 may be composed of one member.
  • the metal plate 4 supports the cell main body part 10.
  • the metal plate 4 is formed into a plate shape.
  • the metal plate 4 may be flat or curved.
  • the thickness of the metal plate 4 is not particularly limited as long as it can maintain the strength of the cell 1, and may be, for example, 0.1 mm or more and 2.0 mm or less.
  • the metal plate 4 has a first main surface 41, a second main surface 42, and a plurality of through holes 43.
  • the first main surface 41 of the metal plate 4 supports the cell main body part 10.
  • the second main surface 42 of the metal plate 4 faces the flow path 31.
  • the upper surface of the metal plate 4 is the 1st main surface 41
  • the lower surface of the metal plate 4 is the 2nd main surface 42.
  • the frame 32 of the channel member 3 is connected to the second main surface 42 of the metal plate 4 .
  • the metal plate 4 has a rectangular shape in plan view. Note that the metal plate 4 may have other shapes such as a circular shape.
  • the plurality of through holes 43 are arranged along the longitudinal direction and the lateral direction of the metal plate 4.
  • the plurality of through holes 43 are formed in a region of the metal plate 4 that is joined to a hydrogen electrode layer 5, which will be described later.
  • the through hole 43 is open to the first main surface 41 .
  • the through hole 43 is also open to the second main surface 42 . That is, the through hole 43 penetrates the metal plate 4 in the thickness direction.
  • the through hole 43 communicates with the flow path 31 of the flow path member 3.
  • the through hole 43 has a substantially circular shape in plan view.
  • the area of the through hole 43 in plan view can be, for example, 0.00005 mm 2 or more and 1 mm 2 or less. Further, the diameter of the through hole 43 can be, for example, 10 ⁇ m or more and 1000 ⁇ m or less. Note that the through hole 43 may have a rectangular shape in plan view.
  • the source gas flowing through the flow path 31 is supplied to the hydrogen electrode layer 5 via the through hole 43.
  • a portion of the cell main body 10 is inserted into the through hole 43. Specifically, a part of the hydrogen electrode layer 5 of the cell main body 10 enters into the through hole 43.
  • the through hole 43 can be formed by mechanical processing (eg, punching), laser processing, chemical processing (eg, etching), or the like.
  • the metal plate 4 may also be made of porous metal in order to have gas permeability.
  • the metal plate 4 is made of a metal material.
  • the metal plate 4 is made of an alloy material containing Cr (chromium).
  • Cr chromium
  • Fe--Cr alloy steel stainless steel, etc.
  • Ni--Cr alloy steel etc.
  • the content of Cr in the metal plate 4 is not particularly limited, but may be 4% by mass or more and 30% by mass or less.
  • the metal plate 4 may contain Ti (titanium) or Zr (zirconium). Although the content rate of Ti in the metal plate 4 is not particularly limited, it can be set to 0.01 mol% or more and 1.0 mol% or less. Although the Zr content in the metal plate 4 is not particularly limited, it can be set to 0.01 mol% or more and 0.4 mol% or less.
  • the metal plate 4 may contain Ti as TiO 2 (titania), or may contain Zr as Zr (zirconium).
  • the metal plate 4 may have a chromium oxide film on its surface.
  • the chromium oxide film covers at least a portion of the surface of the metal plate 4.
  • the chromium oxide film only needs to cover at least a portion of the surface of the metal plate 4, but may cover substantially the entire surface. Further, the chromium oxide film may cover the inner wall surface of the through hole 43.
  • the chromium oxide film contains chromium oxide as a main component.
  • composition X "contains substance Y as a main component” means that substance Y accounts for 70% by weight or more of the entire composition X.
  • the thickness of the chromium oxide film is not particularly limited, but may be, for example, 0.1 ⁇ m or more and 20 ⁇ m or less.
  • the cell main body 10 is arranged on the first main surface 41 of the metal plate 4.
  • the cell main body 10 includes a hydrogen electrode layer 5 (cathode), an electrolyte layer 7, a reaction prevention layer 8, and an oxygen electrode layer 9 (anode).
  • the hydrogen electrode layer 5, the electrolyte layer 7, the reaction prevention layer 8, and the oxygen electrode layer 9 are laminated in this order from the metal plate 4 side. Note that the cell main body 10 does not need to have the reaction prevention layer 8.
  • the hydrogen electrode layer 5 is an example of the first electrode layer of the invention
  • the oxygen electrode layer 9 is an example of the second electrode layer of the invention.
  • Hydrogen electrode layer 5 is supported by metal plate 4 . Specifically, the hydrogen electrode layer 5 is arranged on the first main surface 41 of the metal plate 4. As shown in FIG. 2, the hydrogen electrode layer 5 is provided so as to cover a region of the metal plate 4 in which the plurality of through holes 43 are provided.
  • the hydrogen electrode layer 5 has a main body portion 51 and a plurality of filling portions 52.
  • the main body portion 51 is arranged on the first main surface 41 of the metal plate 4.
  • the thickness t of the main body portion 51 can be, for example, 1 ⁇ m or more and 100 ⁇ m or less.
  • the main body portion 51 is thinner than the metal plate 4.
  • the filling part 52 is arranged within the through hole 43.
  • the filling portion 52 may fill the entire through hole 43 as shown in FIG. 3, or may fill only a part of the through hole 43 as shown in FIG. Further, as shown in FIG. 5, the filling portion 52 may protrude from the through hole 43 toward the second main surface 42 side. In this case, the filling portion 52 may be joined to the second main surface 42.
  • the filling part 52 is formed integrally with the main body part 51.
  • the diameter of the filling part 52 is substantially the same as the diameter of the through hole 43.
  • the height h of the filling part 52 is greater than the thickness t of the main body part 51.
  • the height h of the filling portion 52 can be, for example, 100 ⁇ m or more and 1000 ⁇ m or less. Note that the height h of the filling portion 52 means the dimension in the vertical direction in FIG.
  • the hydrogen electrode layer 5 has a plurality of first pores 53 and a plurality of second pores 54.
  • the first pores 53 are arranged within the main body portion 51 . That is, the first pores 53 are arranged on the electrolyte layer 7 side with respect to the first main surface 41 of the metal plate 4.
  • the second pores 54 are arranged within the filling part 52. That is, the second pores 54 are arranged within the through holes 43 of the metal plate 4.
  • a plurality of second pores 54 are arranged within one filling part 52.
  • the largest second pore 54 is referred to as the largest second pore 54. Note that when only one second pore 54 is formed in one filling part 52, that one second pore 54 is the maximum second pore 54.
  • the largest second pores 54 are spaced apart from the inner wall surface defining the through hole 43. Moreover, it is preferable that the largest second pores 54 are arranged on the second main surface 42 side within the filling part 52 . Note that the largest second pores 54 may be arranged on the first main surface 41 side within the filling part 52. Further, the largest second pores 54 may be in contact with the inner wall surface defining the through hole 43.
  • a plurality of first pores 53 are arranged within the main body portion 51.
  • the largest first pore 53 is referred to as the largest first pore 53.
  • the equivalent circle diameter of the maximum second pores 54 is larger than the equivalent circle diameter of the maximum first pores 53.
  • the maximum equivalent circle diameter of the second pores 54 can be twice or more the equivalent circle diameter of the maximum first pores 53.
  • the maximum equivalent circle diameter of the second pores 54 can be 80 times or less the equivalent circle diameter of the maximum first pores 53.
  • the average value of the equivalent circle diameters of the plurality of second pores 54 arranged in one filling part 52 is larger than the average value of the equivalent circle diameters of the first pores 53.
  • the equivalent circular diameter of the maximum second pores 54 is measured as follows. First, as shown in FIG. 1, a cut surface is formed so that the through hole 43 can be confirmed. At this cut surface, the inside of the through hole 43 is photographed with a SEM (scanning electron microscope) at a magnification of 200, and the SEM photograph is subjected to image processing to measure the area of each second pore 54 in the filling portion 52.
  • the second pore 54 with the largest area is defined as the largest second pore 54, and the diameter of a circle having the same area as the largest second pore 54 is defined as the equivalent circular diameter of the largest second pore 54.
  • the equivalent circular diameter of the maximum first pore 53 is measured as follows. First, the cell main body 10 is filled with resin and cut near the center. The main body portion 51 is brought into a mirror state by mechanical polishing, and 20 SEM photographs are taken at a magnification of 1000. Then, each SEM photograph is subjected to image processing, and the largest pore among them is determined as the largest first pore 53. Then, the diameter of a circle having the same area as the maximum first pore 53 is defined as the circle equivalent diameter of the maximum first pore 53.
  • the equivalent circle diameter of the maximum second pore 54 formed in any one of the plurality of filling parts 52 is larger than the equivalent circle diameter of the maximum first pore 53. That is, all of the equivalent circle diameters of the maximum second pores 54 formed in each filling portion 52 do not need to be larger than the equivalent circle diameters of the maximum first pores 53.
  • the equivalent circle diameter of the maximum second pores 54 is larger than the equivalent circle diameter of the maximum first pores 53 in 10% or more of the plurality of filling portions 52 .
  • the above ratio is confirmed, for example, as follows. First, the maximum equivalent circle diameter of the second pores 54 in each of the 100 arbitrary filling portions 52 is measured. Then, among the 100 filled portions 52, the ratio of the filled portions 52 having the maximum second pores 54 having an equivalent circle diameter larger than the equivalent circle diameter of the maximum first pores 53 is checked. It is preferable that this ratio is 10% or more.
  • the maximum equivalent circle diameter of the second pores 54 is preferably 10% or more and 70% or less of the diameter of the through hole 43.
  • the hydrogen electrode layer 5 is porous. Although the porosity of the hydrogen electrode layer 5 is not particularly limited, it can be, for example, 20% or more and 70% or less.
  • Raw material gas is supplied to the hydrogen electrode layer 5 through the through hole 43 .
  • the source gas contains CO 2 and H 2 O.
  • the hydrogen electrode layer 5 generates H 2 , CO, and O 2 ⁇ from the raw material gas according to the electrochemical reaction of co-electrolysis shown in equation (1) below.
  • ⁇ Hydrogen electrode layer 5 CO 2 +H 2 O+4e - ⁇ CO+H 2 +2O 2 -...(1)
  • the hydrogen electrode layer 5 is made of a porous material having electron conductivity.
  • the hydrogen electrode layer 5 may have oxide ion conductivity.
  • the hydrogen electrode layer 5 is made of, for example, 8 mol% yttria-stabilized zirconia (8YSZ), calcia-stabilized zirconia (CSZ), scandia-stabilized zirconia (ScSZ), gadolinium-doped ceria (GDC), samarium-doped ceria (SDC), (La ,Sr)(Cr, Mn)O3, (La,Sr)TiO3, Sr2(Fe,Mo)2O6 , ( La , Sr) VO3 , (La,Sr) FeO3 , and among these It can be composed of a mixed material combining two or more of them, or a composite of one or more of these and NiO.
  • This hydrogen electrode layer 5 can be formed as follows. First, a paste for the main body portion 51 and a paste for the filling portion 52 are prepared.
  • the paste for the main body portion 51 includes any of the above-mentioned materials and a pore-forming material containing an organic component.
  • the paste for the filling part 52 is prepared in the same way as the paste for the main body part 51. Note that the pore-forming material contained in the paste for the filling portion 52 is larger than the pore-forming material contained in the paste for the main body portion 51 .
  • paste for the filling portion 52 is screen printed into the through hole 43 of the metal plate 4, and squeegeeing is performed to push the paste into the through hole 43 and remove the paste from above the first main surface 41. do.
  • a paste for the main body portion 51 is formed on the first main surface 41 of the metal plate 4 by a screen printing method.
  • the pore-forming material is removed by heating in an electric furnace to form pores, and then fired.
  • the hydrogen electrode layer 5 is formed on the metal plate 4.
  • the electrolyte layer 7 is arranged between the hydrogen electrode layer 5 and the oxygen electrode layer 9. In this embodiment, since the cell main body 10 has the reaction prevention layer 8 , the electrolyte layer 7 is interposed between the hydrogen electrode layer 5 and the reaction prevention layer 8 .
  • the thickness of the electrolyte layer 7 is not particularly limited, but may be, for example, 3 ⁇ m or more and 50 ⁇ m or less.
  • the electrolyte layer 7 is arranged to cover the entire hydrogen electrode layer 5.
  • the outer peripheral portion of the electrolyte layer 7 is joined to the first main surface 41 of the metal plate 4 . This ensures airtightness between the hydrogen electrode layer 5 side and the oxygen electrode layer 9 side, so there is no need to separately seal between the metal plate 4 and the electrolyte layer 7.
  • the electrolyte layer 7 transmits O 2 ⁇ generated in the hydrogen electrode layer 5 to the oxygen electrode layer 9.
  • Electrolyte layer 7 has oxide ion conductivity.
  • the electrolyte layer 7 is made of a dense material.
  • the porosity of the electrolyte layer 7 is about 0% or more and 7% or less.
  • the electrolyte layer 7 is a fired body made of a dense material that has ionic conductivity and no electronic conductivity.
  • the electrolyte layer 7 can be made of, for example, 8YSZ, GDC, ScSZ, SDC, LSGM (lanthanum gallate), or the like.
  • the method for forming the electrolyte layer 7 is not particularly limited, and can be formed by a baking method, a spray coating method, a PVD method, a CVD method, or the like.
  • Reaction prevention layer 8 is arranged on electrolyte layer 7 . Reaction prevention layer 8 is interposed between electrolyte layer 7 and oxygen electrode layer 9.
  • the thickness of the reaction prevention layer 8 is not particularly limited, but may be, for example, 3 ⁇ m or more and 50 ⁇ m or less.
  • the reaction prevention layer 8 prevents the constituent materials of the oxygen electrode layer 9 and the constituent materials of the electrolyte layer 7 from reacting to form a reaction layer with high electrical resistance.
  • the reaction prevention layer 8 is made of a material having oxide ion conductivity.
  • the reaction prevention layer 8 can be made of a ceria-based material such as GDC or SDC.
  • the porosity of the reaction prevention layer 8 is not particularly limited, but may be, for example, 0% or more and 50% or less.
  • the method for forming the reaction prevention layer 8 is not particularly limited, and can be formed by a baking method, a spray coating method, a PVD method, a CVD method, or the like.
  • the oxygen electrode layer 9 is arranged on the opposite side of the hydrogen electrode layer 5 with respect to the electrolyte layer 7. In this embodiment, since the cell 1 has the reaction prevention layer 8 , the oxygen electrode layer 9 is arranged on the reaction prevention layer 8 .
  • the oxygen electrode layer 9 is preferably porous.
  • the porosity of the oxygen electrode layer 9 is not particularly limited, but may be, for example, 20% or more and 70% or less.
  • the thickness of the oxygen electrode layer 9 is not particularly limited, but may be, for example, 10 ⁇ m or more and 100 ⁇ m or less.
  • the oxygen electrode layer 9 is made of a porous material having oxide ion conductivity and electron conductivity.
  • the oxygen electrode layer 9 is made of, for example, (La,Sr)(Co,Fe) O3 , (La,Sr) FeO3 , La(Ni,Fe) O3 , (La,Sr) CoO3 , and (Sm,Sr). ) CoO 3 and an oxide ion conductive material (GDC, etc.).
  • the method for forming the oxygen electrode layer 9 is not particularly limited, and can be formed by a baking method, a spray coating method, a PVD method, a CVD method, or the like.
  • the oxygen electrode layer 9 generates O 2 from O 2 ⁇ transmitted from the hydrogen electrode layer 5 via the electrolyte layer 7 according to the chemical reaction of equation (2) below.
  • ⁇ Oxygen electrode layer 9 2O 2- ⁇ O 2 +4e - (2)
  • the hydrogen electrode layer 5 was described as an example of the first electrode layer, and the oxygen electrode layer 9 was described as an example of the second electrode layer, but the reverse may be used. That is, as shown in FIG. 6, the first electrode layer may be the oxygen electrode layer 9, and the second electrode layer may be the hydrogen electrode layer 5. In this case, the oxygen electrode layer 9 is placed on the metal plate 4. Further, the oxygen electrode layer 9 has a main body portion 91 , a filling portion 92 , first pores 93 , and second pores 94 . Further, a reaction prevention layer 8 is disposed between the oxygen electrode layer 9 and the electrolyte layer 7.
  • the electrolytic cell 1 was described as an example of an electrochemical cell, but the electrochemical cell may be other than an electrolytic cell.
  • the electrochemical cell may be a fuel cell such as a solid oxide fuel cell.
  • the first electrode layer can be used as a fuel electrode (anode), and the second electrode layer can be used as an air electrode (cathode).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

An electrochemical cell (1) is provided with a cell body section (10) and a metal plate (4). The cell body section (10) has a first electrode layer (5), a second electrode layer (9), and an electrolyte layer (7). The electrolyte layer (7) is disposed between the first electrode layer (5) and the second electrode layer (9). The metal plate (4) supports the cell body section (10). The metal plate (4) has a first principal surface (41), a second principal surface (42), and a through-hole (43). The first electrode layer (5) has a body section (51), a filling section (52), at least one first air hole (53), and at least one second air hole (54). The body section (51) is disposed on a first principal surface (51) of the metal plate (4). The filling section (52) is disposed in the through-hole (43). The first air hole (53) is disposed in the body section (51). The second air hole (54) is disposed in the filling section (52). The circle-equivalent diameter of the largest second air hole (54) of the second air hole (54) is larger than the circle-equivalent diameter of the largest first air hole (53) of the first air hole (53).

Description

電気化学セルelectrochemical cell
 本発明は、電気化学セルに関する。 The present invention relates to an electrochemical cell.
 電解セル又は燃料電池などの電気化学セルにおいて、金属板によってセル本体部を支持する構造が知られている。例えば、特許文献1に開示された電気化学セルは、金属板上に、電極層、電解質層、及び対極電極層がこの順で積層されている。金属板は、電極層へ気体を供給するために、貫通孔を有している。 In an electrochemical cell such as an electrolytic cell or a fuel cell, a structure in which a cell body is supported by a metal plate is known. For example, in the electrochemical cell disclosed in Patent Document 1, an electrode layer, an electrolyte layer, and a counter electrode layer are laminated in this order on a metal plate. The metal plate has through holes for supplying gas to the electrode layer.
国際公開第2018/181926号International Publication No. 2018/181926
 上述したように、貫通孔が形成された金属板上に電極層を配置した構成にすると、貫通孔上では電極層は支持されていないため、電極層を薄く形成した場合に電極層に割れが発生するという問題がある。 As mentioned above, if the electrode layer is arranged on a metal plate with through holes, the electrode layer is not supported on the through holes, so if the electrode layer is formed thin, cracks may occur in the electrode layer. There is a problem that occurs.
 そこで、本発明の課題は、金属板上に形成された電極層の割れを抑制することにある。 Therefore, an object of the present invention is to suppress cracking of an electrode layer formed on a metal plate.
 本発明のある側面に係る電気化学セルは、セル本体部と、金属板とを備える。セル本体部は、第1電極層、第2電極層、及び電解質層を有する。電解質層は、第1電極層と第2電極層との間に配置される。金属板は、セル本体部を支持する。金属板は、第1主面、第2主面、及び貫通孔を有する。第1電極層は、本体部と、充填部と、少なくとも一つの第1気孔と、少なくとも一つの第2気孔とを有する。本体部は、金属板の第1主面上に配置される。充填部は、貫通孔内に配置される。第1気孔は、本体部内に配置される。第2気孔は、充填部内に配置される。第2気孔のうち最も大きい最大第2気孔の円相当径は、第1気孔のうち最も大きい最大第1気孔の円相当径よりも大きい。 An electrochemical cell according to one aspect of the present invention includes a cell main body and a metal plate. The cell main body includes a first electrode layer, a second electrode layer, and an electrolyte layer. An electrolyte layer is disposed between the first electrode layer and the second electrode layer. The metal plate supports the cell body. The metal plate has a first main surface, a second main surface, and a through hole. The first electrode layer has a main body portion, a filling portion, at least one first pore, and at least one second pore. The main body portion is arranged on the first main surface of the metal plate. The filling part is arranged within the through hole. The first pore is arranged within the main body. The second pores are arranged within the filling part. The equivalent circle diameter of the largest second pore among the second pores is larger than the equivalent circle diameter of the largest second pore among the first pores.
 この構成によれば、第1電極層の充填部が金属板の貫通孔内に配置されているため、金属板上に形成された第1電極層の割れを抑制することができる。なお、このように充填部を配置すると、例えば還元過程において充填部が収縮する。この結果、充填部内にクラックが生じ、そのクラックが電解質層まで伸展し、電解質層を貫通してしまうおそれがある。これに対して、上記のように構成された電気化学セルでは、最大第1気孔よりも大きい最大第2気孔が充填部内に配置されている。このため、充填部内で生じたクラックの伸展が第2気孔によって止められる。この結果、クラックが伸展して電解質層を貫通することを抑制することができる。 According to this configuration, since the filling portion of the first electrode layer is arranged within the through hole of the metal plate, cracking of the first electrode layer formed on the metal plate can be suppressed. Note that when the filling part is arranged in this way, the filling part contracts during the reduction process, for example. As a result, there is a possibility that cracks will occur in the filling portion, and the cracks will extend to the electrolyte layer and penetrate the electrolyte layer. On the other hand, in the electrochemical cell configured as described above, the maximum second pores, which are larger than the maximum first pores, are arranged within the filling part. Therefore, the second pores stop the cracks generated within the filled portion from expanding. As a result, cracks can be prevented from extending and penetrating the electrolyte layer.
 好ましくは、最大第2気孔は、充填部内において、第2主面側に配置される。 Preferably, the largest second pores are arranged on the second main surface side within the filling part.
 好ましくは、最大第2気孔は、貫通孔を画定する内壁面と間隔をあけて配置される。 Preferably, the largest second pores are spaced apart from the inner wall surface defining the through hole.
 好ましくは、最大第2気孔は、貫通孔を画定する内壁面に接触する。 Preferably, the largest second pores contact the inner wall surface defining the through hole.
 本発明によれば、金属板上に形成された電極層の割れを抑制することができる。 According to the present invention, cracking of an electrode layer formed on a metal plate can be suppressed.
電解セルを示す断面図。A cross-sectional view showing an electrolytic cell. 金属板の平面図。A plan view of a metal plate. 電解セルの詳細を示す拡大断面図。An enlarged sectional view showing details of an electrolytic cell. 変形例に係る電解セルの詳細を示す拡大断面図。FIG. 7 is an enlarged sectional view showing details of an electrolytic cell according to a modification. 変形例に係る電解セルの詳細を示す拡大断面図。FIG. 7 is an enlarged sectional view showing details of an electrolytic cell according to a modification. 変形例に係る電解セルの詳細を示す拡大断面図。FIG. 7 is an enlarged sectional view showing details of an electrolytic cell according to a modification.
 以下、本実施形態に係る電解セル(電気化学セルの一例)について図面を参照しつつ説明する。なお、本実施形態では、電解セルの一例として固体酸化物形電解セル(SOEC)を用いて説明する。図1は電解セルを示す断面図である。以下の説明では、固体酸化物形電解セルを「セル」と略称する。 Hereinafter, an electrolytic cell (an example of an electrochemical cell) according to the present embodiment will be described with reference to the drawings. Note that this embodiment will be described using a solid oxide electrolytic cell (SOEC) as an example of an electrolytic cell. FIG. 1 is a sectional view showing an electrolytic cell. In the following description, the solid oxide electrolytic cell will be abbreviated as "cell".
 図1に示すように、セル1は、セル本体部10と、金属板4とを備える。また、セル1は、流路部材3をさらに備えている。 As shown in FIG. 1, the cell 1 includes a cell main body 10 and a metal plate 4. Further, the cell 1 further includes a flow path member 3.
  [流路部材3]
 流路部材3は、金属板4に接合される。流路部材3は、流路31を有する。流路31は、流路部材3の金属板4と対向する面に形成されている。本実施形態では、流路部材3の上面に流路31が形成されている。流路31は、金属板4に向かって開口している。流路31は、図示しないマニホールドなどに繋がる。本実施形態では、流路31に原料ガスが供給される。
[Flow path member 3]
The flow path member 3 is joined to the metal plate 4. The channel member 3 has a channel 31 . The flow path 31 is formed on the surface of the flow path member 3 that faces the metal plate 4 . In this embodiment, a flow path 31 is formed on the upper surface of the flow path member 3. The flow path 31 is open toward the metal plate 4. The flow path 31 is connected to a manifold (not shown) or the like. In this embodiment, raw material gas is supplied to the flow path 31.
 流路部材3は、例えば、合金材料によって構成することができる。流路部材3は、金属板4と同様の材料によって形成されていてもよい。 The flow path member 3 can be made of an alloy material, for example. The flow path member 3 may be formed of the same material as the metal plate 4.
 流路部材3は、枠体32及びインターコネクタ33を有する。枠体32は、流路31の側方を取り囲む環状部材である。枠体32は、金属板4に接合される。インターコネクタ33は、電解セル1を外部電源又は他の電解セルと電気的に直列に接続する板状部材である。インターコネクタ33は、枠体32に接合される。 The flow path member 3 has a frame 32 and an interconnector 33. The frame body 32 is an annular member that surrounds the sides of the flow path 31 . The frame body 32 is joined to the metal plate 4. The interconnector 33 is a plate-like member that electrically connects the electrolytic cell 1 to an external power source or other electrolytic cells in series. The interconnector 33 is joined to the frame 32.
 本実施形態に係る流路部材3では、枠体32及びインターコネクタ33が別部材となっているが、枠体32及びインターコネクタ33は1つの部材によって構成されていてもよい。 In the flow path member 3 according to the present embodiment, the frame 32 and the interconnector 33 are separate members, but the frame 32 and the interconnector 33 may be composed of one member.
  [金属板4]
 金属板4は、セル本体部10を支持する。本実施形態において、金属板4は、板状に形成されている。金属板4は、平板状であってもよいし、曲板状であってもよい。金属板4は、セル1の強度を保つことができればよく、その厚みは特に制限されないが、例えば0.1mm以上2.0mm以下とすることができる。
[Metal plate 4]
The metal plate 4 supports the cell main body part 10. In this embodiment, the metal plate 4 is formed into a plate shape. The metal plate 4 may be flat or curved. The thickness of the metal plate 4 is not particularly limited as long as it can maintain the strength of the cell 1, and may be, for example, 0.1 mm or more and 2.0 mm or less.
 金属板4は、第1主面41、第2主面42、及び複数の貫通孔43を有している。金属板4の第1主面41は、セル本体部10を支持している。金属板4の第2主面42は、流路31と対向している。なお、本実施形態では、金属板4の上面が第1主面41であり、金属板4の下面が第2主面42である。金属板4の第2主面42に流路部材3の枠体32が接続されている。 The metal plate 4 has a first main surface 41, a second main surface 42, and a plurality of through holes 43. The first main surface 41 of the metal plate 4 supports the cell main body part 10. The second main surface 42 of the metal plate 4 faces the flow path 31. In addition, in this embodiment, the upper surface of the metal plate 4 is the 1st main surface 41, and the lower surface of the metal plate 4 is the 2nd main surface 42. The frame 32 of the channel member 3 is connected to the second main surface 42 of the metal plate 4 .
 図2に示すように、金属板4は、平面視において矩形状である。なお、金属板4は、円形状など他の形状であってもよい。複数の貫通孔43は、金属板4の長手方向及び短手方向に沿って配列している。複数の貫通孔43は、金属板4のうち後述する水素極層5に接合される領域に形成されている。貫通孔43は、第1主面41に開口している。また、貫通孔43は、第2主面42にも開口している。すなわち、貫通孔43は、金属板4を厚さ方向に貫通している。貫通孔43は、流路部材3の流路31と連通している。 As shown in FIG. 2, the metal plate 4 has a rectangular shape in plan view. Note that the metal plate 4 may have other shapes such as a circular shape. The plurality of through holes 43 are arranged along the longitudinal direction and the lateral direction of the metal plate 4. The plurality of through holes 43 are formed in a region of the metal plate 4 that is joined to a hydrogen electrode layer 5, which will be described later. The through hole 43 is open to the first main surface 41 . Furthermore, the through hole 43 is also open to the second main surface 42 . That is, the through hole 43 penetrates the metal plate 4 in the thickness direction. The through hole 43 communicates with the flow path 31 of the flow path member 3.
 貫通孔43は、平面視において略円形状である。平面視における貫通孔43の面積は、例えば、0.00005mm以上1mm以下とすることができる。また、貫通孔43の直径は、例えば、10μm以上1000μm以下とすることができる。なお、貫通孔43は、平面視において矩形状であってもよい。 The through hole 43 has a substantially circular shape in plan view. The area of the through hole 43 in plan view can be, for example, 0.00005 mm 2 or more and 1 mm 2 or less. Further, the diameter of the through hole 43 can be, for example, 10 μm or more and 1000 μm or less. Note that the through hole 43 may have a rectangular shape in plan view.
 流路31を流れる原料ガスは、貫通孔43を介して、水素極層5に供給される。この貫通孔43内にセル本体部10の一部が入り込んでいる。詳細には、セル本体部10の水素極層5の一部が貫通孔43内に入り込んでいる。 The source gas flowing through the flow path 31 is supplied to the hydrogen electrode layer 5 via the through hole 43. A portion of the cell main body 10 is inserted into the through hole 43. Specifically, a part of the hydrogen electrode layer 5 of the cell main body 10 enters into the through hole 43.
 貫通孔43は、機械加工(例えば、パンチング加工)、レーザ加工、或いは、化学加工(例えば、エッチング加工)などによって形成することができる。金属板4は、ガス透過性を持たせるために、多孔質金属を用いることもできる。 The through hole 43 can be formed by mechanical processing (eg, punching), laser processing, chemical processing (eg, etching), or the like. The metal plate 4 may also be made of porous metal in order to have gas permeability.
 金属板4は、金属材料によって構成されている。例えば、金属板4は、Cr(クロム)を含有する合金材料によって構成される。このような金属材料としては、Fe-Cr系合金鋼(ステンレス鋼など)やNi-Cr系合金鋼などを用いることができる。金属板4におけるCrの含有率は特に制限されないが、4質量%以上30質量%以下とすることができる。 The metal plate 4 is made of a metal material. For example, the metal plate 4 is made of an alloy material containing Cr (chromium). As such a metal material, Fe--Cr alloy steel (stainless steel, etc.), Ni--Cr alloy steel, etc. can be used. The content of Cr in the metal plate 4 is not particularly limited, but may be 4% by mass or more and 30% by mass or less.
 金属板4は、Ti(チタン)やZr(ジルコニウム)を含有していてもよい。金属板4におけるTiの含有率は特に制限されないが、0.01mol%以上1.0mol%以下とすることができる。金属板4におけるZrの含有率は特に制限されないが、0.01mol%以上0.4mol%以下とすることができる。金属板4は、TiをTiO(チタニア)として含有していてもよいし、ZrをZr(ジルコニウム)として含有していてもよい。 The metal plate 4 may contain Ti (titanium) or Zr (zirconium). Although the content rate of Ti in the metal plate 4 is not particularly limited, it can be set to 0.01 mol% or more and 1.0 mol% or less. Although the Zr content in the metal plate 4 is not particularly limited, it can be set to 0.01 mol% or more and 0.4 mol% or less. The metal plate 4 may contain Ti as TiO 2 (titania), or may contain Zr as Zr (zirconium).
 金属板4は、表面に酸化クロム膜を有していてもよい。酸化クロム膜は、金属板4の表面のうち少なくとも一部を覆う。酸化クロム膜は、金属板4の表面のうち少なくとも一部を覆っていればよいが、表面の略全面を覆っていてもよい。また、酸化クロム膜は、貫通孔43の内壁面を覆っていてもよい。 The metal plate 4 may have a chromium oxide film on its surface. The chromium oxide film covers at least a portion of the surface of the metal plate 4. The chromium oxide film only needs to cover at least a portion of the surface of the metal plate 4, but may cover substantially the entire surface. Further, the chromium oxide film may cover the inner wall surface of the through hole 43.
 酸化クロム膜は、酸化クロムを主成分として含有する。本実施形態において、組成物Xが物質Yを「主成分として含む」とは、組成物X全体のうち、物質Yが70重量%以上を占めることを意味する。酸化クロム膜の厚みは特に制限されないが、例えば0.1μm以上20μm以下とすることができる。 The chromium oxide film contains chromium oxide as a main component. In this embodiment, composition X "contains substance Y as a main component" means that substance Y accounts for 70% by weight or more of the entire composition X. The thickness of the chromium oxide film is not particularly limited, but may be, for example, 0.1 μm or more and 20 μm or less.
 [セル本体部10]
 図1に示すように、セル本体部10は、金属板4の第1主面41上に配置されている。セル本体部10は、水素極層5(カソード)、電解質層7、反応防止層8、及び酸素極層9(アノード)を有する。水素極層5、電解質層7、反応防止層8、及び酸素極層9は、この順で金属板4側から積層されている。なお、セル本体部10は、反応防止層8を有していなくてもよい。また、水素極層5は、本発明の第1電極層の一例であり、酸素極層9は、本発明の第2電極層の一例である。
[Cell body part 10]
As shown in FIG. 1, the cell main body 10 is arranged on the first main surface 41 of the metal plate 4. As shown in FIG. The cell main body 10 includes a hydrogen electrode layer 5 (cathode), an electrolyte layer 7, a reaction prevention layer 8, and an oxygen electrode layer 9 (anode). The hydrogen electrode layer 5, the electrolyte layer 7, the reaction prevention layer 8, and the oxygen electrode layer 9 are laminated in this order from the metal plate 4 side. Note that the cell main body 10 does not need to have the reaction prevention layer 8. Furthermore, the hydrogen electrode layer 5 is an example of the first electrode layer of the invention, and the oxygen electrode layer 9 is an example of the second electrode layer of the invention.
  [水素極層5]
 水素極層5は、金属板4によって支持される。詳細には、水素極層5は、金属板4の第1主面41上に配置される。図2に示すように、水素極層5は、金属板4のうち複数の貫通孔43が設けられた領域を覆うように設けられる。
[Hydrogen pole layer 5]
Hydrogen electrode layer 5 is supported by metal plate 4 . Specifically, the hydrogen electrode layer 5 is arranged on the first main surface 41 of the metal plate 4. As shown in FIG. 2, the hydrogen electrode layer 5 is provided so as to cover a region of the metal plate 4 in which the plurality of through holes 43 are provided.
 図3に示すように、水素極層5は、本体部51と、複数の充填部52とを有している。本体部51は、金属板4の第1主面41上に配置されている。本体部51の厚さtは、例えば、1μm以上100μm以下とすることができる。本体部51は、金属板4よりも薄い。 As shown in FIG. 3, the hydrogen electrode layer 5 has a main body portion 51 and a plurality of filling portions 52. The main body portion 51 is arranged on the first main surface 41 of the metal plate 4. The thickness t of the main body portion 51 can be, for example, 1 μm or more and 100 μm or less. The main body portion 51 is thinner than the metal plate 4.
 充填部52は、貫通孔43内に配置されている。充填部52は、図3に示すように貫通孔43全体に充填されていてもよいし、図4に示すように貫通孔43の一部のみに充填されていてもよい。また、図5に示すように、充填部52は、貫通孔43から第2主面42側にはみ出していてもよい。この場合、充填部52は、第2主面42と接合していてもよい。充填部52は、本体部51と一体的に形成されている。充填部52の直径は、貫通孔43の直径と実質的に同じである。 The filling part 52 is arranged within the through hole 43. The filling portion 52 may fill the entire through hole 43 as shown in FIG. 3, or may fill only a part of the through hole 43 as shown in FIG. Further, as shown in FIG. 5, the filling portion 52 may protrude from the through hole 43 toward the second main surface 42 side. In this case, the filling portion 52 may be joined to the second main surface 42. The filling part 52 is formed integrally with the main body part 51. The diameter of the filling part 52 is substantially the same as the diameter of the through hole 43.
 図3に示すように、充填部52の高さhは、本体部51の厚さtよりも大きい。充填部52の高さhは、例えば、100μm以上1000μm以下とすることができる。なお、充填部52の高さhとは、図3の上下方向の寸法を意味する。 As shown in FIG. 3, the height h of the filling part 52 is greater than the thickness t of the main body part 51. The height h of the filling portion 52 can be, for example, 100 μm or more and 1000 μm or less. Note that the height h of the filling portion 52 means the dimension in the vertical direction in FIG.
 水素極層5は、複数の第1気孔53と、複数の第2気孔54とを有している。第1気孔53は、本体部51内に配置される。すなわち、第1気孔53は、金属板4の第1主面41に対して、電解質層7側に配置されている。 The hydrogen electrode layer 5 has a plurality of first pores 53 and a plurality of second pores 54. The first pores 53 are arranged within the main body portion 51 . That is, the first pores 53 are arranged on the electrolyte layer 7 side with respect to the first main surface 41 of the metal plate 4.
 第2気孔54は、充填部52内に配置されている。すなわち、第2気孔54は、金属板4の貫通孔43内に配置されている。 The second pores 54 are arranged within the filling part 52. That is, the second pores 54 are arranged within the through holes 43 of the metal plate 4.
 1つの充填部52内に複数の第2気孔54が配置されている。この1つの充填部52内に配置された複数の第2気孔54のうち、最も大きい第2気孔54を最大第2気孔54と言う。なお、1つの充填部52内に1つしか第2気孔54が形成されていない場合、その1つの第2気孔54が最大第2気孔54である。 A plurality of second pores 54 are arranged within one filling part 52. Among the plurality of second pores 54 arranged in this one filling part 52, the largest second pore 54 is referred to as the largest second pore 54. Note that when only one second pore 54 is formed in one filling part 52, that one second pore 54 is the maximum second pore 54.
 最大第2気孔54は、貫通孔43を画定する内壁面と間隔をあけて配置されている。また、最大第2気孔54は、充填部52内において、第2主面42側に配置されていることが好ましい。なお、最大第2気孔54は、充填部52内において、第1主面41側に配置されていてもよい。また、最大第2気孔54は、貫通孔43を画定する内壁面に接触していてもよい。 The largest second pores 54 are spaced apart from the inner wall surface defining the through hole 43. Moreover, it is preferable that the largest second pores 54 are arranged on the second main surface 42 side within the filling part 52 . Note that the largest second pores 54 may be arranged on the first main surface 41 side within the filling part 52. Further, the largest second pores 54 may be in contact with the inner wall surface defining the through hole 43.
 また、本体部51内に複数の第1気孔53が配置されている。この本体部51内に配置された複数の第1気孔53のうち、最も大きい第1気孔53を最大第1気孔53と言う。 Additionally, a plurality of first pores 53 are arranged within the main body portion 51. Among the plurality of first pores 53 arranged in the main body portion 51, the largest first pore 53 is referred to as the largest first pore 53.
 最大第2気孔54の円相当径は、最大第1気孔53の円相当径よりも大きい。例えば、最大第2気孔54の円相当径は、最大第1気孔53の円相当径の2倍以上とすることができる。また、最大第2気孔54の円相当径は、最大第1気孔53の円相当径の80倍以下とすることができる。なお、好ましくは、1つの充填部52内に配置される複数の第2気孔54の円相当径の平均値は、第1気孔53の円相当径の平均値よりも大きい。 The equivalent circle diameter of the maximum second pores 54 is larger than the equivalent circle diameter of the maximum first pores 53. For example, the maximum equivalent circle diameter of the second pores 54 can be twice or more the equivalent circle diameter of the maximum first pores 53. Further, the maximum equivalent circle diameter of the second pores 54 can be 80 times or less the equivalent circle diameter of the maximum first pores 53. Preferably, the average value of the equivalent circle diameters of the plurality of second pores 54 arranged in one filling part 52 is larger than the average value of the equivalent circle diameters of the first pores 53.
 最大第2気孔54の円相当径は、以下のようにして測定する。まず、図1のように、貫通孔43が確認できるように切断面を形成する。この切断面において、貫通孔43内をSEM(走査型電子顕微鏡)によって倍率200で撮影し、そのSEM写真を画像処理することで、充填部52内の各第2気孔54の面積を測定する。そして、最も面積の大きい第2気孔54を最大第2気孔54とし、その最大第2気孔54の面積と同じ面積を有する円の直径を最大第2気孔54の円相当径とする。 The equivalent circular diameter of the maximum second pores 54 is measured as follows. First, as shown in FIG. 1, a cut surface is formed so that the through hole 43 can be confirmed. At this cut surface, the inside of the through hole 43 is photographed with a SEM (scanning electron microscope) at a magnification of 200, and the SEM photograph is subjected to image processing to measure the area of each second pore 54 in the filling portion 52. The second pore 54 with the largest area is defined as the largest second pore 54, and the diameter of a circle having the same area as the largest second pore 54 is defined as the equivalent circular diameter of the largest second pore 54.
 また、最大第1気孔53の円相当径は、以下のようにして測定する。まず、セル本体部10を樹脂埋めし、中央部付近を切断する。機械研磨によって本体部51を鏡面状態にし、倍率1000でSEM写真を20枚撮影する。そして、各SEM写真を画像処理し、その中で最も大きい気孔を最大第1気孔53とする。そして、その最大第1気孔53の面積と同じ面積を有する円の直径を最大第1気孔53の円相当径とする。 Furthermore, the equivalent circular diameter of the maximum first pore 53 is measured as follows. First, the cell main body 10 is filled with resin and cut near the center. The main body portion 51 is brought into a mirror state by mechanical polishing, and 20 SEM photographs are taken at a magnification of 1000. Then, each SEM photograph is subjected to image processing, and the largest pore among them is determined as the largest first pore 53. Then, the diameter of a circle having the same area as the maximum first pore 53 is defined as the circle equivalent diameter of the maximum first pore 53.
 なお、複数の充填部52のうち、いずれかの充填部52内に形成された最大第2気孔54の円相当径が、最大第1気孔53の円相当径よりも大きければよい。すなわち、各充填部52内に形成された最大第2気孔54の円相当径の全てが、最大第1気孔53の円相当径よりも大きい必要はない。 Note that it is sufficient that the equivalent circle diameter of the maximum second pore 54 formed in any one of the plurality of filling parts 52 is larger than the equivalent circle diameter of the maximum first pore 53. That is, all of the equivalent circle diameters of the maximum second pores 54 formed in each filling portion 52 do not need to be larger than the equivalent circle diameters of the maximum first pores 53.
 好ましくは、複数の充填部52のうち、10%以上の充填部52において、最大第2気孔54の円相当径が、最大第1気孔53の円相当径よりも大きい。なお、全ての充填部52において最大第2気孔54の円相当径を確認することは困難であるため、例えば、以下のようにして、上記の割合を確認する。まず、任意の100個の充填部52のそれぞれにおいて、最大第2気孔54の円相当径を測定する。そして、その100個の充填部52のうち、最大第1気孔53の円相当径よりも大きい円相当径の最大第2気孔54を有する充填部52の割合を確認する。この割合が、10%以上であることが好ましい。 Preferably, the equivalent circle diameter of the maximum second pores 54 is larger than the equivalent circle diameter of the maximum first pores 53 in 10% or more of the plurality of filling portions 52 . In addition, since it is difficult to confirm the maximum equivalent circle diameter of the second pores 54 in all the filling parts 52, the above ratio is confirmed, for example, as follows. First, the maximum equivalent circle diameter of the second pores 54 in each of the 100 arbitrary filling portions 52 is measured. Then, among the 100 filled portions 52, the ratio of the filled portions 52 having the maximum second pores 54 having an equivalent circle diameter larger than the equivalent circle diameter of the maximum first pores 53 is checked. It is preferable that this ratio is 10% or more.
 最大第2気孔54の円相当径は、貫通孔43の直径の10%以上70%以下とすることが好ましい。 The maximum equivalent circle diameter of the second pores 54 is preferably 10% or more and 70% or less of the diameter of the through hole 43.
 水素極層5は、多孔質であることが好ましい。水素極層5の気孔率は特に制限されないが、例えば20%以上70%以下とすることができる。 It is preferable that the hydrogen electrode layer 5 is porous. Although the porosity of the hydrogen electrode layer 5 is not particularly limited, it can be, for example, 20% or more and 70% or less.
 水素極層5には、貫通孔43を介して、原料ガスが供給される。原料ガスは、CO及びHOを含む。水素極層5は、下記(1)式に示す共電解の電気化学反応に従って、原料ガスから、H、CO、及びO2-を生成する。
 ・水素極層5:CO+HO+4e→CO+H+2O2-・・・(1)
Raw material gas is supplied to the hydrogen electrode layer 5 through the through hole 43 . The source gas contains CO 2 and H 2 O. The hydrogen electrode layer 5 generates H 2 , CO, and O 2− from the raw material gas according to the electrochemical reaction of co-electrolysis shown in equation (1) below.
・Hydrogen electrode layer 5: CO 2 +H 2 O+4e - →CO+H 2 +2O 2 -...(1)
 水素極層5は、電子伝導性を有する多孔質材料によって構成される。水素極層5は、酸化物イオン伝導性を有していてよい。水素極層5は、例えば、8mol%イットリア安定化ジルコニア(8YSZ)、カルシア安定化ジルコニア(CSZ)、スカンジア安定化ジルコニア(ScSZ)、ガドリニウムドープセリア(GDC)、サマリウムドープセリア(SDC)、(La,Sr)(Cr,Mn)O、(La,Sr)TiO、Sr(Fe,Mo)、(La,Sr)VO、(La,Sr)FeO、及びこれらのうち2つ以上を組み合わせた混合材料、或いは、これらのうち1以上とNiOとの複合物によって構成することができる。 The hydrogen electrode layer 5 is made of a porous material having electron conductivity. The hydrogen electrode layer 5 may have oxide ion conductivity. The hydrogen electrode layer 5 is made of, for example, 8 mol% yttria-stabilized zirconia (8YSZ), calcia-stabilized zirconia (CSZ), scandia-stabilized zirconia (ScSZ), gadolinium-doped ceria (GDC), samarium-doped ceria (SDC), (La ,Sr)(Cr, Mn)O3, (La,Sr)TiO3, Sr2(Fe,Mo)2O6 , ( La , Sr) VO3 , (La,Sr) FeO3 , and among these It can be composed of a mixed material combining two or more of them, or a composite of one or more of these and NiO.
 この水素極層5は、以下のようにして形成することができる。まず、本体部51用のペーストと、充填部52用のペーストを作製する。本体部51用のペーストは、上述したいずれかの材料と、有機成分を含有する造孔材と、を含む。充填部52用のペーストは、本体部51用のペーストと同様に作製する。なお、充填部52用のペーストに含まれる造孔材は、本体部51用のペーストに含まれる造孔剤よりも大きい。 This hydrogen electrode layer 5 can be formed as follows. First, a paste for the main body portion 51 and a paste for the filling portion 52 are prepared. The paste for the main body portion 51 includes any of the above-mentioned materials and a pore-forming material containing an organic component. The paste for the filling part 52 is prepared in the same way as the paste for the main body part 51. Note that the pore-forming material contained in the paste for the filling portion 52 is larger than the pore-forming material contained in the paste for the main body portion 51 .
 次に、充填部52用のペーストを金属板4の貫通孔43内にスクリーン印刷し、貫通孔43内へのペーストの押し込み、及び第1主面41上からのペーストの除去を兼ねてスキージングする。続いて、本体部51用のペーストをスクリーン印刷法によって、金属板4の第1主面41上に形成する。そして、電気炉で加熱することで造孔材を除去することで気孔を形成したのちに焼成する。以上により、金属板4上に水素極層5が形成される。 Next, paste for the filling portion 52 is screen printed into the through hole 43 of the metal plate 4, and squeegeeing is performed to push the paste into the through hole 43 and remove the paste from above the first main surface 41. do. Subsequently, a paste for the main body portion 51 is formed on the first main surface 41 of the metal plate 4 by a screen printing method. Then, the pore-forming material is removed by heating in an electric furnace to form pores, and then fired. Through the above steps, the hydrogen electrode layer 5 is formed on the metal plate 4.
  [電解質層7]
 図1に示すように、電解質層7は、水素極層5と酸素極層9との間に配置される。本実施形態では、セル本体部10が反応防止層8を有しているため、電解質層7は、水素極層5と反応防止層8との間に介挿されている。電解質層7の厚さは特に制限されないが、例えば3μm以上50μm以下とすることができる。
[Electrolyte layer 7]
As shown in FIG. 1, the electrolyte layer 7 is arranged between the hydrogen electrode layer 5 and the oxygen electrode layer 9. In this embodiment, since the cell main body 10 has the reaction prevention layer 8 , the electrolyte layer 7 is interposed between the hydrogen electrode layer 5 and the reaction prevention layer 8 . The thickness of the electrolyte layer 7 is not particularly limited, but may be, for example, 3 μm or more and 50 μm or less.
 本実施形態において、電解質層7は、水素極層5全体を覆うように配置されている。電解質層7の外周部は、金属板4の第1主面41に接合されている。これにより、水素極層5側と酸素極層9側との間の気密性を確保できるため、金属板4と電解質層7との間を別途封止する必要がない。 In this embodiment, the electrolyte layer 7 is arranged to cover the entire hydrogen electrode layer 5. The outer peripheral portion of the electrolyte layer 7 is joined to the first main surface 41 of the metal plate 4 . This ensures airtightness between the hydrogen electrode layer 5 side and the oxygen electrode layer 9 side, so there is no need to separately seal between the metal plate 4 and the electrolyte layer 7.
 電解質層7は、水素極層5において生成されたO2-を酸素極層9に伝達させる。電解質層7は、酸化物イオン伝導性を有する。電解質層7は、緻密質材料によって構成される。電解質層7の気孔率は、0%以上7%以下程度である。電解質層7は、イオン伝導性を有し且つ電子伝導性を有さない緻密な材料から構成される焼成体である。電解質層7は、例えば、8YSZ、GDC、ScSZ、SDC、LSGM(ランタンガレート)などによって構成することができる。 The electrolyte layer 7 transmits O 2− generated in the hydrogen electrode layer 5 to the oxygen electrode layer 9. Electrolyte layer 7 has oxide ion conductivity. The electrolyte layer 7 is made of a dense material. The porosity of the electrolyte layer 7 is about 0% or more and 7% or less. The electrolyte layer 7 is a fired body made of a dense material that has ionic conductivity and no electronic conductivity. The electrolyte layer 7 can be made of, for example, 8YSZ, GDC, ScSZ, SDC, LSGM (lanthanum gallate), or the like.
 電解質層7の形成方法は特に制限されず、焼成法、スプレーコーティング法、PVD法、CVD法などにより形成することができる。 The method for forming the electrolyte layer 7 is not particularly limited, and can be formed by a baking method, a spray coating method, a PVD method, a CVD method, or the like.
  [反応防止層8]
 反応防止層8は、電解質層7上に配置される。反応防止層8は、電解質層7と酸素極層9との間に介挿される。反応防止層8の厚さは特に制限されないが、例えば3μm以上50μm以下とすることができる。反応防止層8は、酸素極層9の構成材料と電解質層7の構成材料とが反応して電気抵抗の大きい反応層が形成されることを抑制する。
[Reaction prevention layer 8]
Reaction prevention layer 8 is arranged on electrolyte layer 7 . Reaction prevention layer 8 is interposed between electrolyte layer 7 and oxygen electrode layer 9. The thickness of the reaction prevention layer 8 is not particularly limited, but may be, for example, 3 μm or more and 50 μm or less. The reaction prevention layer 8 prevents the constituent materials of the oxygen electrode layer 9 and the constituent materials of the electrolyte layer 7 from reacting to form a reaction layer with high electrical resistance.
 反応防止層8は、酸化物イオン伝導性を有する材料によって構成される。反応防止層8は、GDC、SDCなどのセリア系材料によって構成することができる。反応防止層8の気孔率は特に制限されないが、例えば0%以上50%以下とすることができる。反応防止層8の形成方法は特に制限されず、焼成法、スプレーコーティング法、PVD法、CVD法などにより形成することができる。 The reaction prevention layer 8 is made of a material having oxide ion conductivity. The reaction prevention layer 8 can be made of a ceria-based material such as GDC or SDC. The porosity of the reaction prevention layer 8 is not particularly limited, but may be, for example, 0% or more and 50% or less. The method for forming the reaction prevention layer 8 is not particularly limited, and can be formed by a baking method, a spray coating method, a PVD method, a CVD method, or the like.
  [酸素極層9]
 酸素極層9は、電解質層7を基準として、水素極層5の反対側に配置される。本実施形態では、セル1が反応防止層8を有しているため、酸素極層9は、反応防止層8上に配置される。
[Oxygen electrode layer 9]
The oxygen electrode layer 9 is arranged on the opposite side of the hydrogen electrode layer 5 with respect to the electrolyte layer 7. In this embodiment, since the cell 1 has the reaction prevention layer 8 , the oxygen electrode layer 9 is arranged on the reaction prevention layer 8 .
 酸素極層9は、多孔質であることが好ましい。酸素極層9の気孔率は特に制限されないが、例えば20%以上70%以下とすることができる。酸素極層9の厚さは特に制限されないが、例えば10μm以上100μm以下とすることができる。 The oxygen electrode layer 9 is preferably porous. The porosity of the oxygen electrode layer 9 is not particularly limited, but may be, for example, 20% or more and 70% or less. The thickness of the oxygen electrode layer 9 is not particularly limited, but may be, for example, 10 μm or more and 100 μm or less.
 酸素極層9は、酸化物イオン伝導性及び電子伝導性を有する多孔質材料によって構成される。酸素極層9は、例えば(La,Sr)(Co,Fe)O、(La,Sr)FeO、La(Ni,Fe)O、(La,Sr)CoO、及び(Sm,Sr)CoOのうち1以上と酸化物イオン伝導材料(GDCなど)との複合物によって構成することができる。 The oxygen electrode layer 9 is made of a porous material having oxide ion conductivity and electron conductivity. The oxygen electrode layer 9 is made of, for example, (La,Sr)(Co,Fe) O3 , (La,Sr) FeO3 , La(Ni,Fe) O3 , (La,Sr) CoO3 , and (Sm,Sr). ) CoO 3 and an oxide ion conductive material (GDC, etc.).
 酸素極層9の形成方法は特に制限されず、焼成法、スプレーコーティング法、PVD法、CVD法などにより形成することができる。 The method for forming the oxygen electrode layer 9 is not particularly limited, and can be formed by a baking method, a spray coating method, a PVD method, a CVD method, or the like.
 酸素極層9は、下記(2)式の化学反応に従って、水素極層5から電解質層7を介して伝達されるO2-からOを生成する。
 ・酸素極層9:2O2-→O+4e・・・(2)
The oxygen electrode layer 9 generates O 2 from O 2− transmitted from the hydrogen electrode layer 5 via the electrolyte layer 7 according to the chemical reaction of equation (2) below.
・Oxygen electrode layer 9: 2O 2- →O 2 +4e - (2)
 [変形例]
 以上、本発明の実施形態について説明したが、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。
[Modified example]
Although the embodiments of the present invention have been described above, the present invention is not limited to these, and various changes can be made without departing from the spirit of the present invention.
 (a)上記実施形態では、第1電極層の一例として水素極層5、第2電極層の一例として酸素極層9を説明したが、逆であってもよい。すなわち、図6に示すように、第1電極層が酸素極層9であり、第2電極層が水素極層5であってもよい。この場合、酸素極層9が金属板4上に配置される。また、酸素極層9が、本体部91、充填部92、第1気孔93、及び第2気孔94を有する。また、酸素極層9と電解質層7との間に、反応防止層8を配置する。 (a) In the above embodiment, the hydrogen electrode layer 5 was described as an example of the first electrode layer, and the oxygen electrode layer 9 was described as an example of the second electrode layer, but the reverse may be used. That is, as shown in FIG. 6, the first electrode layer may be the oxygen electrode layer 9, and the second electrode layer may be the hydrogen electrode layer 5. In this case, the oxygen electrode layer 9 is placed on the metal plate 4. Further, the oxygen electrode layer 9 has a main body portion 91 , a filling portion 92 , first pores 93 , and second pores 94 . Further, a reaction prevention layer 8 is disposed between the oxygen electrode layer 9 and the electrolyte layer 7.
 (b)上記実施形態では、電気化学セルの一例として、電解セル1を説明したが、電気化学セルは電解セル以外であってもよい。例えば、固体酸化物系燃料電池などの燃料電池セルであってもよい。この場合、第1電極層を燃料極(アノード)とし、第2電極層を空気極(カソード)とすることができる。 (b) In the above embodiment, the electrolytic cell 1 was described as an example of an electrochemical cell, but the electrochemical cell may be other than an electrolytic cell. For example, it may be a fuel cell such as a solid oxide fuel cell. In this case, the first electrode layer can be used as a fuel electrode (anode), and the second electrode layer can be used as an air electrode (cathode).
1  :セル
4  :金属板
41  :第1主面
42  :第2主面
43  :貫通孔
5  :水素極層
51  :本体部
52  :充填部
53  :第1気孔
54  :第2気孔
7  :電解質層
9  :酸素極層
10 :セル本体部
1 : Cell 4 : Metal plate 41 : First main surface 42 : Second main surface 43 : Through hole 5 : Hydrogen electrode layer 51 : Main body part 52 : Filling part 53 : First pore 54 : Second pore 7 : Electrolyte layer 9: Oxygen electrode layer 10: Cell main body

Claims (4)

  1.  第1電極層、第2電極層、及び前記第1電極層と前記第2電極層との間に配置される電解質層、を有するセル本体部と、
     第1主面、第2主面、及び貫通孔を有し、前記セル本体部を支持する金属板と、
    を備え、
     前記第1電極層は、前記金属板の第1主面上に配置される本体部と、前記貫通孔内に配置される充填部と、前記本体部内に配置される少なくとも一つの第1気孔と、前記充填部内に配置される少なくとも一つの第2気孔と、を有し、
     前記第2気孔のうち最も大きい最大第2気孔の円相当径は、前記第1気孔のうち最も大きい最大第1気孔の円相当径よりも大きい、
    電気化学セル。
    a cell main body having a first electrode layer, a second electrode layer, and an electrolyte layer disposed between the first electrode layer and the second electrode layer;
    a metal plate having a first main surface, a second main surface, and a through hole and supporting the cell main body;
    Equipped with
    The first electrode layer includes a main body disposed on the first main surface of the metal plate, a filling part disposed in the through hole, and at least one first pore disposed in the main body. , at least one second pore disposed within the filling part,
    The equivalent circle diameter of the largest maximum second pore among the second pores is larger than the equivalent circle diameter of the largest maximum first pore among the first pores,
    electrochemical cell.
  2.  前記最大第2気孔は、前記充填部内において、前記第2主面側に配置される、
    請求項1に記載の電気化学セル。
    The largest second pores are arranged on the second main surface side in the filling part,
    An electrochemical cell according to claim 1.
  3.  前記最大第2気孔は、前記貫通孔を画定する内壁面と間隔をあけて配置される、
    請求項1又は2に記載の電気化学セル。
    The largest second pore is spaced apart from the inner wall surface defining the through hole.
    The electrochemical cell according to claim 1 or 2.
  4.  前記最大第2気孔は、前記貫通孔を画定する内壁面に接触する、
    請求項1又は2に記載の電気化学セル。
    The largest second pore is in contact with an inner wall surface defining the through hole.
    The electrochemical cell according to claim 1 or 2.
PCT/JP2023/004783 2022-03-14 2023-02-13 Electrochemical cell WO2023176242A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-039313 2022-03-14
JP2022039313 2022-03-14

Publications (1)

Publication Number Publication Date
WO2023176242A1 true WO2023176242A1 (en) 2023-09-21

Family

ID=88022888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004783 WO2023176242A1 (en) 2022-03-14 2023-02-13 Electrochemical cell

Country Status (1)

Country Link
WO (1) WO2023176242A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004207088A (en) * 2002-12-26 2004-07-22 Nissan Motor Co Ltd Gas permeable substrate and solid oxide fuel cell using the same
JP2007173243A (en) * 2005-12-21 2007-07-05 Samsung Electro Mech Co Ltd Fuel cell and manufacturing method of the same
JP2008257885A (en) * 2007-03-30 2008-10-23 Dainippon Printing Co Ltd Solid oxide fuel cell
JP2016015308A (en) * 2014-04-01 2016-01-28 ゼネラル・エレクトリック・カンパニイ Interconnection solid-state electrolytic fuel cell device
JP2021158026A (en) * 2020-03-27 2021-10-07 大阪瓦斯株式会社 Metal support for electrochemical element, electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and solid oxide electrolytic cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004207088A (en) * 2002-12-26 2004-07-22 Nissan Motor Co Ltd Gas permeable substrate and solid oxide fuel cell using the same
JP2007173243A (en) * 2005-12-21 2007-07-05 Samsung Electro Mech Co Ltd Fuel cell and manufacturing method of the same
JP2008257885A (en) * 2007-03-30 2008-10-23 Dainippon Printing Co Ltd Solid oxide fuel cell
JP2016015308A (en) * 2014-04-01 2016-01-28 ゼネラル・エレクトリック・カンパニイ Interconnection solid-state electrolytic fuel cell device
JP2021158026A (en) * 2020-03-27 2021-10-07 大阪瓦斯株式会社 Metal support for electrochemical element, electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and solid oxide electrolytic cell

Similar Documents

Publication Publication Date Title
JP5208518B2 (en) Method for producing a reversible solid oxide fuel cell
CN107078318B (en) Electrochemical element, solid oxide fuel cell, and methods for producing same
GB2400723A (en) Solid oxide fuel cell for a novel substrate and a method for fabricating the same
US11522202B2 (en) Alloy member, cell stack, and cell stack device
JP6134085B1 (en) Electrochemical cell
WO2023176242A1 (en) Electrochemical cell
CN110431698B (en) Method for manufacturing electrochemical element and electrochemical element
US9831517B2 (en) Unit cell of solid oxide fuel cell, stack using the unit cell, and methods of manufacturing the unit cell and the stack
JP7280991B1 (en) electrochemical cell
JP5981001B1 (en) Fuel cell
WO2023176241A1 (en) Electrochemical cell
WO2023171276A1 (en) Electrochemical cell
JP2019215991A (en) Alloy member, cell stack, and cell stack device
JP2005085522A (en) Supporting membrane type solid oxide fuel cell
WO2023188936A1 (en) Electrochemical cell
WO2023013205A1 (en) Electrochemical cell
WO2023171299A1 (en) Electrochemical cell
WO2023171297A1 (en) Electrochemical cell
US11916262B2 (en) Alloy member, cell stack, and cell stack device
JP7394189B1 (en) electrochemical cell
JP6679652B2 (en) Fuel cell
WO2023203870A1 (en) Electrochemical cell
JP6559301B1 (en) Alloy member, cell stack and cell stack apparatus
JP6484382B1 (en) Alloy member, cell stack and cell stack apparatus
JP5981000B1 (en) Fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770203

Country of ref document: EP

Kind code of ref document: A1