WO2023174041A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2023174041A1
WO2023174041A1 PCT/CN2023/078418 CN2023078418W WO2023174041A1 WO 2023174041 A1 WO2023174041 A1 WO 2023174041A1 CN 2023078418 W CN2023078418 W CN 2023078418W WO 2023174041 A1 WO2023174041 A1 WO 2023174041A1
Authority
WO
WIPO (PCT)
Prior art keywords
indication information
drx cycle
timer
access network
data
Prior art date
Application number
PCT/CN2023/078418
Other languages
English (en)
French (fr)
Inventor
唐小伟
范强
徐小英
娄崇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023174041A1 publication Critical patent/WO2023174041A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of communication technology, and in particular, to a communication method and device.
  • Extended reality refers to various types of combined real and virtual environments generated by computing technology and wearable devices, as well as the interaction between humans and machines.
  • XR can include augmented reality (AR), mixed reality (MR), virtual reality (VR), etc.
  • XR is one of the fifth generation mobile communication technology (5G) multimedia applications currently being considered in the industrial field.
  • XR services usually generate data periodically at a certain frame rate. Therefore, introducing the discontinuous reception (DRX) function for terminal devices that receive XR services can reduce the power consumption of terminal devices.
  • DRX discontinuous reception
  • the embodiment of the present application discloses a communication method and device for reducing data transmission delay.
  • the present application discloses a communication method, which can be applied to a terminal device or a module (for example, a chip) in the terminal device.
  • the following description takes the execution subject being a terminal device as an example.
  • the communication method may include: the terminal device receives first instruction information and second instruction information from the access network device, the first instruction information is used to instruct the terminal device to start the first timer, and the second instruction information is used to start the first timer at the first timing. Adjust the activation period in the DRX cycle during the operating time of the controller.
  • the terminal equipment monitors the physical downlink control channel (PDCCH) during the activation period of the adjusted DRX cycle.
  • PDCCH physical downlink control channel
  • the terminal equipment may receive an instruction from the access network equipment to initiate the first First indication information of a timer, and second indication information for adjusting the activation period in the DRX cycle within the running time of the first timer, and then the adjusted Monitor the PDCCH during the activation period of the DRX cycle. It can be seen that when periodic services are transmitted between the terminal equipment and the access network equipment, and the transmission time of the next frame of data may deviate from the activation period of the DRX cycle, the terminal equipment can adjust the DRX cycle according to the instructions of the access network equipment.
  • the running time of the first timer may include multiple DRX cycles, which can avoid frequent starting of the first timer. Further, when the running time of the first timer can include multiple DRX cycles, the access network device only needs to send signaling once to complete the adjustment of multiple DRX cycle parameters without having to issue a signal for each DRX cycle. Send instruction information to adjust, thereby reducing signaling overhead.
  • the second indication information may indicate the first subframe, and the first subframe may be the starting subframe of the activation period of the adjusted DRX cycle.
  • the terminal equipment can adjust the activation period of the DRX cycle according to the instructions of the access network equipment.
  • the starting subframe can avoid the problem of missing the activation period of the DRX cycle due to data not arriving on time, thereby reducing the data transmission delay.
  • the second indication information may indicate a scaling factor
  • the scaling factor may be a ratio of the activation period length of the adjusted DRX cycle to the activation period length of the pre-adjusted DRX cycle.
  • the scaling factor may also be the ratio of the activation period length of the DRX cycle before adjustment to the activation period length of the DRX cycle after adjustment.
  • the terminal equipment can adjust the activation period of the DRX cycle according to the instructions of the access network equipment.
  • the length can avoid the problem of missing the activation period of the DRX cycle due to data not arriving on time, thereby reducing the data transmission delay.
  • the access network equipment may instruct the terminal equipment to adjust the starting subframe of the activation period of the DRX cycle, may also instruct the terminal equipment to adjust the length of the activation period of the DRX cycle, and may also instruct the terminal equipment to adjust the starting subframe and length of the activation period of the DRX cycle. , which specific parameters to adjust can be determined by the access network equipment based on the possible deviation time of the next frame of data arriving at the access network equipment in periodic services, thereby improving the rationality and accuracy of the adjustment.
  • the first indication information is also used to adjust the running time of the first timer.
  • the first timer is a timer for periodic services.
  • the access network device can instruct the terminal device to adjust the operation of the first timer based on the possible deviation time of the next frame of data to arrive at the access network device in the periodic service. time, so that the terminal equipment can monitor the PDCCH during the activation period of the adjusted DRX cycle within the running time period of the first timer, which can avoid the problem of missing the DRX activation period due to data not arriving on time, thus reducing the transmission of data. time delay. Further, the access network equipment can determine the adjustment of the running time of the first timer based on the possible deviation time of the next frame of data arriving at the access network equipment in the periodic service, which can improve the rationality and accuracy of the adjustment. .
  • the first indication information can be carried in the medium access control (MAC) control element (control element, CE) or in the downlink control information (DCI) middle.
  • MAC medium access control
  • CE control element
  • DCI downlink control information
  • the transmission rate of the first indication information can be increased.
  • the reliability of the transmission of the first indication information can be improved.
  • the second indication information can be carried in the MAC CE or in the DCI.
  • the transmission rate of the second indication information can be increased, and the terminal device can quickly adjust the activation period of the DRX cycle according to the second indication information, thereby avoiding data retransmission.
  • the second indication information is transmitted through DCI, the reliability of the transmission of the second indication information can be improved to ensure that the terminal device can successfully receive the second indication information, so that the terminal device can adjust the activation of the DRX cycle according to the second indication information. period, thereby avoiding data retransmission.
  • the communication method may further include: interrupting the first timer if the terminal device does not monitor the PDCCH during the activation period of the adjusted DRX cycle.
  • the PDCCH is not monitored within the activation period of the adjusted DRX cycle within the running time of the first timer, it indicates that the data may have missed the activation period of the adjusted DRX cycle, that is, the activation period of the adjusted DRX cycle. If it does not match the arrival time of the data, the started first timer and the adjusted DRX cycle lose their meaning. Therefore, the first timer can be interrupted, the first timer and the adjusted DRX cycle can be invalidated, and the first timer and the adjusted DRX cycle can be avoided. A timer and adjusted DRX Meaningless use of cycles.
  • the communication method may further include: the terminal device sending third indication information to the access network device, where the third indication information is used to indicate the first timer interruption.
  • the terminal device After interrupting the first timer, the terminal device can report to the access network device that the first timer has expired, so that after the access network device receives the failure of the first timer, in order to ensure that the terminal device can receive data in time, it can re-instruct The terminal device starts the first timer and adjusts the activation period of the DRX cycle.
  • the communication method can be applied to access network equipment or to modules (eg, chips) in the access network equipment.
  • the following description takes the execution subject being the access network device as an example.
  • the communication method may include: the access network device sending first indication information to the terminal device, where the first indication information is used to instruct the terminal device to start the first timer.
  • the access network device determines second indication information, and the second indication information is used to adjust the activation period in the DRX cycle within the running time of the first timer.
  • the access network device sends the second instruction information to the terminal device.
  • the running time of the first timer includes multiple DRX cycles.
  • the second indication information may indicate the first subframe, and the first subframe may be the starting subframe of the activation period of the adjusted DRX cycle.
  • the second indication information may indicate a scaling factor
  • the scaling factor may be a ratio of the activation period length of the adjusted DRX cycle to the activation period length of the pre-adjusted DRX cycle.
  • the first indication information is also used to adjust the running time of the first timer.
  • the first indication information may be carried in the MAC CE or the DCI.
  • the second indication information can be carried in the MAC CE or in the DCI.
  • the communication method may further include: the access network device receiving third indication information from the terminal device, and the third indication information may be used to indicate the first timer interruption.
  • the present application discloses a communication device.
  • the beneficial effects can be found in the description of the first aspect and will not be described again here.
  • the communication device has the function of implementing the behavior in the method example of the first aspect.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes: a transceiver module, configured to receive the first indication information and the second indication information from the access network equipment; and a processing module, configured to perform the adjustment within the activation period of the adjusted DRX cycle. Monitor PDCCH.
  • These modules can perform the corresponding functions in the above method examples of the first aspect. For details, please refer to the detailed description in the method examples, which will not be described again here.
  • the present application discloses a communication device.
  • the communication device has the function of implementing the behavior in the method example of the second aspect.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes: a transceiver module, used to send the first indication information to the terminal device; a processing module, used to determine the second indication information; and a transceiver module, also used to send the second indication information to the terminal device. Instructions. These modules can perform the corresponding functions in the above method examples of the second aspect. For details, please refer to the detailed description in the method examples, which will not be described again here.
  • the present application discloses a communication device, which can be the terminal device in the above method embodiment. equipment, or a chip installed in the terminal equipment.
  • the communication device includes a communication interface and a processor, and optionally, a memory.
  • the memory is used to store computer programs or instructions, and the processor is coupled to the memory and the communication interface.
  • the processor executes the computer program or instructions, the communication device causes the communication device to perform the method performed by the terminal device in the above method embodiment.
  • the present application discloses a communication device.
  • the communication device may be the access network device in the above method embodiment, or a chip provided in the access network device.
  • the communication device includes a communication interface and a processor, and optionally, a memory.
  • the memory is used to store computer programs or instructions
  • the processor is coupled to the memory and the communication interface.
  • the communication device is caused to perform the steps performed by the access network equipment in the above method embodiment. method.
  • the present application discloses a computer program product.
  • the computer program product includes: computer program code.
  • the methods executed by the terminal device in the above aspects are executed.
  • the present application discloses a computer program product.
  • the computer program product includes: computer program code.
  • the methods performed by the access network device in the above aspects are executed. .
  • the present application discloses a chip system.
  • the chip system includes a processor and is used to implement the functions of the terminal device in the methods of the above aspects.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • this application discloses a chip system.
  • the chip system includes a processor and is used to implement the functions of the access network device in the methods of the above aspects.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present application discloses a computer-readable storage medium that stores a computer program.
  • the methods executed by the terminal device in the above aspects are implemented.
  • the present application discloses a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the methods executed by the access network device in the above aspects are implemented.
  • Figure 1 is a schematic diagram of a network architecture disclosed in an embodiment of this application.
  • Figure 2 is a schematic diagram illustrating the deviation of the data transmission time from the activation period of the DRX cycle disclosed in the embodiment of the present application;
  • Figure 3 is a schematic flow chart of a communication method disclosed in the embodiment of the present application.
  • Figure 4 is a schematic diagram of a MAC CE disclosed in the embodiment of the present application.
  • Figure 5 is a schematic diagram of a DCI disclosed in the embodiment of the present application.
  • FIG. 6 is a schematic diagram of an SFN number disclosed in this application.
  • FIG. 7 is a schematic flowchart of another communication method disclosed in the embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a communication device disclosed in an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of another communication device disclosed in the embodiment of the present application.
  • the embodiment of the present application discloses a communication method and device for reducing data transmission delay. Each is explained in detail below.
  • FIG. 1 is a schematic diagram of a network architecture disclosed in an embodiment of this application.
  • the network architecture may include a terminal device 101, an access network device 102, a core network device 103, and an application server (application server, App) 104.
  • the terminal device 101 may send a first request for requesting service data to the access network device 102.
  • the access network device 102 may receive the first request from the terminal device 101, and send the second request for requesting service data to the core network device 103.
  • the core network device 103 may send a third request for requesting service data to the App 104.
  • App 104 for storing service data can send data (i.e., data frame) to core network device 103 after receiving the third request from core network device 103, and then the core network device 103 sends it to the access network device 102, and then the data frame is sent to the access network device 102.
  • the access network device 102 sends it to the terminal device 101.
  • Terminal equipment also known as user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • terminal devices are: mobile phones, tablets, laptops, PDAs, mobile Internet devices (MID), wearable devices, VR devices, AR devices, industrial control (industrial control) ), wireless terminals in self-driving, wireless terminals in remote medical surgery, wireless terminals in smart grid, wireless terminals in transportation safety Terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • Access network equipment refers to the radio access network (RAN) node (or equipment) that connects terminal equipment to the wireless network, and can also be called a base station.
  • RAN nodes are: Node B (NB), evolved Node B (gNB), transmission reception point (TRP), evolved Node B (eNB), Radio network controller (RNC), base station controller (BSC), base transceiver station (BTS), home base station (e.g., home evolved NodeB, or home Node B, HNB) , baseband unit (base band unit, BBU), or wireless fidelity (wireless fidelity, Wifi) access point (access point, AP), etc.
  • NB Node B
  • gNB evolved Node B
  • TRP transmission reception point
  • eNB evolved Node B
  • RNC Radio network controller
  • BSC base station controller
  • BTS base transceiver station
  • home base station e.g., home evolved NodeB, or home Node B, HNB
  • baseband unit base band unit, BBU
  • Core network equipment refers to equipment in the core network (CN) that provides business support for terminal equipment. It is mainly responsible for call connection, billing, mobility management, providing user connections, user management, and The business completes functions such as carrying, data processing and routing.
  • Core access network equipment can correspond to different equipment in different communication systems.
  • 4G fourth generation mobile communication technology
  • MME mobility management entity
  • serving gateway serving gateway
  • S-GW serving gateway
  • AMF access and mobility management function
  • SMF session management function
  • UPF user plane function
  • App is a server that provides various business data (application data) for terminal devices.
  • business data provided by the App in the embodiment of this application is business data with a fixed period, that is, periodic business data, such as XR business data, etc.
  • NB-IoT narrow band-internet of things
  • GSM global system for mobile communications
  • EDGE enhanced data rate GSM evolution
  • WCDMA wideband code division multiple access
  • CDMA2000 code division multiple access 2000
  • TD-SCDMA time division synchronous code division multiple access
  • WiFi systems long term evolution (LTE)
  • LTE long term evolution
  • 5G systems and sixth generation mobile communication technology (6G) that evolved after 5G Communication Systems.
  • 6G sixth generation mobile communication technology
  • XR refers to various types of real and virtual environments generated by computing technology and wearable devices, as well as the interaction between humans and machines.
  • XR can include AR, MR, VR, etc.
  • XR is one of the 5G multimedia applications currently being considered in the industrial field.
  • 3GPP 3rd generation partnership project
  • 3GPP 3rd generation partnership project
  • XR business will generate data periodically according to a certain frame rate.
  • the business model of downstream XR services can be roughly as follows:
  • the frame rate can be 60 frames per second (fps), that is, 60 frames of video images are generated per second, one video frame is generated approximately every 16.66ms, and the transmission rate is 20 bits per second (ie Bits) quantity (megabits per second, Mbps) or 45Mbps, etc.
  • the frame rate can also be 120fps, that is, 120 frames of video images per second, which generates a video frame approximately every 8.33ms.
  • the air interface transmission delay budget of a complete video frame is 10ms (milliseconds). That is to say, the timing starts when the access network device receives a frame of image from the UPF network element until the frame of image is successfully sent to the terminal device. , this period of time is called the air interface transmission delay budget of the video frame.
  • GC Cloud gaming
  • the frame rate is 60fps or 120fps, that is, 60 frames of video images are generated per second or 120 frames of video images are generated per second, and the transmission rate is 8Mbps, 30Mbps, etc.
  • the air interface transmission delay budget for a complete video frame is 15ms.
  • the time when the data (i.e., video frame or image frame) arrives at the access network device deviates, that is, the time when the data (i.e., the data frame) actually arrives at the access network device.
  • the time of the device is different from the time it should arrive at the access network device, that is, the actual arrival time of the data is different from the time it should arrive.
  • the deviation of the time when data arrives at the access network equipment can be considered to obey a truncated Gaussian distribution, and the truncation range is roughly [-4, 4] ms.
  • the time when data should arrive at the access network device can be determined based on the cycle of the data corresponding service.
  • the access network equipment can configure the DRX function for the terminal equipment.
  • the access network device may configure a DRX cycle (cycle) for the terminal device, where the DRX cycle may include a long cycle and a short cycle, and the long cycle is an integer multiple of the short cycle.
  • the terminal equipment can only monitor the PDCCH during the active period within the DRX cycle and enter the DRX sleep period at other times. It can be seen that the access network device can configure the DRX cycle to the terminal device so that the terminal device does not need to constantly monitor and parse the PDCCH to determine whether the access network device has scheduled resources for data transmission for itself.
  • Access network equipment can also configure the following information for terminal equipment:
  • DRX duration timer (drx-onDurationTimer): a continuous downlink duration during which the terminal device needs to continue to listen to the PDCCH. This timer indicates the time the terminal device remains awake after waking up. This timer is started at the drx-SlotOffset moment backward from the start position of each DRX cycle.
  • the access network device can also be configured with other information related to the DRX cycle, which will not be described again here.
  • XR business is usually cyclical. Therefore, for XR terminal equipment that transmits XR services, if the DRX cycle is configured for the XR terminal equipment, the power consumption of the XR terminal equipment can be effectively reduced.
  • the power consumption of the XR terminal equipment can be effectively reduced.
  • the time for the data to arrive at the access network device to deviate.
  • the time that should arrive at the access network equipment is such that the data transmission time may deviate from the activation period of the DRX cycle.
  • the time when the data in the dotted box should arrive at the access network device is in the activation period of the DRX cycle. Due to congestion during transmission of this data, the actual arrival time of the access network device deviates from the time it should have arrived, causing the actual arrival time to fall into the dormant period of the DRX cycle, resulting in the terminal device being unable to successfully receive this data. This requires The access network equipment continuously retransmits this data until the next The terminal device cannot successfully receive data until the activation period of a DRX cycle reaches it, resulting in a large data transmission delay.
  • embodiments of the present application provide a data transmission method for reducing the transmission delay of XR services.
  • Figure 3 is a schematic flowchart of a communication method disclosed in an embodiment of the present application. As shown in Figure 3, the communication method may include the following steps.
  • the access network device sends the first instruction information to the terminal device.
  • the terminal device receives the first indication information from the access network device.
  • the access network device may send the first indication information to the terminal device.
  • the access network device may send the first indication information to the terminal device through MAC CE, may also send the first indication information to the terminal device through DCI, or may send the first indication information to the terminal device through other signaling or messages. , such as system messages, radio resource control (RRC) signaling, etc.
  • RRC radio resource control
  • the first instruction information is used to instruct the terminal device to start the first timer.
  • the first timer is a timer for periodic services.
  • all periodic services correspond to the same first timer; or different periodic services correspond to different first timers; or multiple periodic services correspond to the same first timer, for example, in multiple When the periods of the periodic services are the same, these periodic services may correspond to the same first timer.
  • the access network device may configure the first timer by sending the first configuration information to the terminal device.
  • the first configuration information may include information about the first timer, such as the running time of the first timer, which is hereinafter referred to as the "first running time".
  • the first running time may include one or more DRX cycles, that is, the first running time is an integer multiple of the period length of the DRX cycle.
  • the first timer may be configured by the access network device when the terminal device accesses the access network device, or may be configured by the access network device when there is periodic service to be transmitted to the terminal device. This is not done here. limited.
  • the first indication information may also be used to indicate adjusting the running time of the first timer.
  • the first indication information may indicate the adjustment value.
  • the adjustment value may be the ratio between the running time of the first timer before adjustment (i.e., the first running time) and the second running time, where the second running time is the running time of the first timer after adjustment; adjust The value can also be the difference between the first run time and the second run time.
  • the meaning of the adjustment value may be specified by the protocol or configured by the access network device. When the meaning of the adjustment value is the configuration of the access network device, the access network device may also send fifth indication information to the terminal device, and the fifth indication information is used to indicate the meaning of the adjustment value.
  • the first indication information may also indicate the second running time.
  • the first indication information indicates an alternative way of adjusting the running time of the first timer: the access network device sends fourth indication information to the terminal device.
  • the fourth instruction information is used to instruct the adjustment of the running time of the first timer.
  • the access network device may send the first indication information, the fourth indication information and the fifth indication information to the terminal device through one signaling or message, or may send it to the terminal device through multiple signaling or messages.
  • the access network device may determine whether the running time of the first timer needs to be adjusted based on the possible deviation time of the next frame of data.
  • the possible deviation time of the next frame of data can be understood as the deviation time between the time when the next frame of data may arrive at the access network device and the time when it should arrive at the access network device.
  • the access network device can increase the running time of the first timer. If the possible deviation time of the next frame of data continues to deteriorate compared with the deviation time of the previous frame or several frames of data, the access network device may adjust the running time of the first timer.
  • increasing or decreasing the running time of the first timer is relative to the running time corresponding to the first timer started by the last first instruction information sent to the terminal device, rather than relative to the first running time. To say.
  • the specific amount to increase or decrease can be determined according to the rules.
  • the running time of the first timer can be increased by one step.
  • the running time of the first timer can be adjusted smaller by one step.
  • a and B can be numbers greater than 0.
  • the step size can be specified by the protocol or configured by the access network device.
  • the protocol can specify multiple adjustment values.
  • the difference between the possible deviation time of the next frame of data and the deviation time of the adjacent previous frame of data is different, and the corresponding adjustment values can be different.
  • the difference between the possible deviation time of the next frame of data and the deviation time of the adjacent previous frame of data is ⁇ t.
  • the running time of the first timer can be increased by 3 DRX cycles.
  • the running time of the first timer can be increased by 2 DRX cycles.
  • 2 ⁇ t ⁇ 4 the running time of the first timer can be increased by 1 DRX cycle.
  • ⁇ t>4 the running time of the first timer can remain unchanged.
  • the access network device may also determine whether the transmission time of the next frame of data may deviate from the activation period of the DRX cycle based on the possible deviation time of the next frame of data.
  • the access network device can delay sending the data to the terminal device by a corresponding time, so that the data can reach the terminal device within the activation period of the DRX cycle of the terminal device.
  • the possible deviation time of the next frame of data is equal to 0, it indicates that the next frame of data may arrive at the access network device on time, and the access network device can send the data to the terminal device on time so that the data can arrive at the terminal device at the predetermined time.
  • the transmission time of the next frame of data may not deviate from the activation period of the DRX cycle.
  • the transmission time of the next frame of data may deviate from the activation period of the DRX cycle. It can be seen that the possible deviation time of the next frame of data is needed to determine whether the transmission time of the next frame of data may deviate from the activation period of the DRX cycle. Therefore, the access network device needs to know the possible deviation time of the next frame of data.
  • the access network device may determine the possible deviation time of the next frame of data based on the deviation time of the previous M frames of data.
  • the deviation time of the first M frames of data can be understood as the deviation time between the actual arrival time and the expected arrival time of each frame of data in the first M frames of data.
  • the actual arrival time of each frame of data can be understood as the time when each frame of data actually arrives at the access network device.
  • the expected arrival time of each frame of data can be understood as the time that each frame of data should arrive at the access network device under ideal conditions.
  • M is an integer greater than or equal to 1.
  • the first M frame data may be all frame data before the next frame data in the same service data, or may be the M frame data closest to the current time interval in the same service data.
  • the access network equipment can determine the possible deviation time of the next frame of data based on Bayesian theory based on the deviation time of the previous M frames of data.
  • posterior probability prior probability * likelihood function.
  • the access network equipment can determine the prior probability based on the deviation time of the first M frame data, and can determine the deviation time of the first M frame data according to the order in which the first M frame data is received.
  • the deviation time of the first M frame data obeys the truncated Gaussian distribution.
  • the likelihood function can be determined based on the truncated Gaussian distribution.
  • the posterior probability is determined based on the prior probability and likelihood function, and then the possible deviation time of the next frame of data can be determined based on the posterior probability.
  • the access network device may determine the possible deviation time of the next frame of data based on the deviation time of the previous M frames of data and based on other theories or algorithms other than Bayesian theory.
  • the access network device can configure the DRX cycle for the terminal device.
  • the access network device may send the second configuration information to the terminal device.
  • the terminal device may receive the second configuration information from the access network device.
  • the second configuration information may include information about the DRX cycle, such as the length of the active period of the DRX cycle (ie, the length of the active period), the starting subframe of the active period of the DRX cycle, etc.
  • the DRX cycle may be configured by the access network device when the terminal device is connected to the access network device, or may be configured by the access network device after the terminal device is connected to the access network device.
  • the access network device determines the second indication information.
  • the access network device may also determine the second indication information.
  • the second indication information may indicate adjusting the activation period in the DRX cycle within the running time of the first timer. It can be seen that the DRX cycle adjusted according to the second indication information can only be valid within the running time period of the first timer that the first indication information indicates to start.
  • the second indication information may indicate the first subframe, and the first subframe may be the starting subframe of the activation period of the adjusted DRX cycle.
  • the access network device may first determine the first subframe, and then determine the second indication information based on the first subframe. For example, the access network device may indicate the first subframe through information such as the subframe number of the first subframe.
  • the second indication information may also indicate a scaling factor, and the scaling factor may be a ratio of the activation period length of the adjusted DRX cycle to the activation period length of the DRX cycle before adjustment.
  • the activation period length of the DRX cycle before adjustment can be understood as: the activation period length of the DRX cycle configured in the second configuration information (or it can also be understood as the activation period of the DRX cycle initially configured by the access network device for the terminal device). length), at this time, the scaling factor can be understood as: the ratio of the activation period length of the adjusted DRX cycle to the activation period length of the DRX cycle configured by the second configuration information (or initial configuration).
  • the activation period length of the DRX cycle before adjustment can also be understood as: the activation period length of the DRX cycle before the access network device sends the second indication information.
  • the scaling factor can be understood as: the second indication information indication The ratio of the activation period length of the adjusted DRX cycle to the activation period length of the DRX cycle before adjustment indicated by the second indication information.
  • the access network device may first determine the scaling factor, and then determine the second indication information based on the scaling factor. For example, the access network device may indicate the scaling factor through information such as the index and number of the scaling factor.
  • the second indication information may also indicate the first subframe and the scaling factor.
  • the access network device may first determine the first subframe and the scaling factor, and then determine the second indication information based on the first subframe and the scaling factor.
  • adjusting the activation period in the DRX cycle may be to adjust the starting subframe of the activation period of the DRX cycle, or to adjust the length of the activation period of the DRX cycle, or to adjust the starting subframe and length of the activation period of the DRX cycle.
  • the activation period of the DRX cycle before adjustment is different from that of the DRX cycle after adjustment, but the period length of the DRX cycle remains unchanged.
  • the activation period of the DRX cycle is different, which can be understood as the length of the activation period of the DRX cycle is different. It can also be understood as the starting subframe of the activation period of the DRX cycle is different. It can also be understood as the length and starting subframe of the activation period of the DRX cycle are different. .
  • the access network device may determine the scaling factor based on the deviation time of the previous M frames of data and the possible deviation time of the next frame of data.
  • the access network device can determine the scaling factor based on the deviation time of the previous M frames of data, the possible deviation time of the next frame of data, and formula (1).
  • a represents the scaling factor
  • b represents the number of bits required to transmit the scaling factor
  • s represents the standard deviation of the deviation time of the previous M frames of data relative to the possible deviation time of the next frame of data
  • t_on represents the DRX cycle before adjustment. The length of the activation period.
  • formula (1) is an exemplary description of determining the scaling factor based on the deviation time of the previous M frames of data and the possible deviation time of the next frame of data, and does not constitute a limitation thereon.
  • the access network device can determine the scaling factor through various modified formulas of formula (1).
  • the access network device can also determine the scaling factor through other formulas, as long as these formulas include the deviation time of the previous M frames of data and the possible deviation time of the next frame of data.
  • the access network device may determine the first subframe based on the possible deviation time of the next frame data and the scaling factor.
  • the access network device can determine the first subframe based on the possible deviation time of the next frame data, the scaling factor and formula (2).
  • Formula (2) can be expressed as follows:
  • Offset represents the first subframe
  • StartOffset0 represents the starting subframe of the activation period of the DRX cycle before adjustment
  • t_m represents the possible deviation time of the next frame data
  • t_sf represents the time length of the subframe.
  • formula (2) is an exemplary description of determining the first subframe based on the possible deviation time and scaling factor of the next frame data, and does not constitute a limitation thereon.
  • the access network device may determine the first subframe through various modified formulas of formula (2).
  • the access network device can also determine the first subframe through other formulas, as long as these formulas include the possible deviation time and scaling factor of the next frame data.
  • the access network device sends the second instruction information to the terminal device.
  • the terminal device receives the second indication information from the access network device.
  • the second indication information can be carried in MAC CE, DCI, or other signaling or messages, such as MAC, RRC, etc.
  • the access network device may carry the second indication information and the first indication information, or the second indication information, the first indication information and the fourth indication information in one MAC CE and send it to the terminal device.
  • the logical channel identifier (LCID) of the MAC subheader of this MAC CE can be any value among the existing downlink shared channel LCID reserved values.
  • the existing downlink shared channel LCID reservation value can be 35 to 46.
  • This MAC CE can be fixed.
  • This MAC CE may include one byte or multiple bytes in addition to the MAC subheader.
  • the remaining bits may be reserved (reserved, R) bits.
  • This MAC CE can include two fields in addition to the MAC subheader.
  • the first indication information and the second indication information can respectively occupy one of the two fields.
  • This MAC CE may also include three domains.
  • the first indication information may occupy one domain and the second indication information may occupy two domains. It may also be that the first indication information occupies two domains and the second indication information occupies one domain. Or, It may be that the first indication information occupies one domain, the second indication information occupies one domain, and the fourth indication information occupies one domain, which is not limited here.
  • This MAC CE can also include four domains. It can be that the first indication information occupies two domains and the second indication information occupies two domains. It can also be that the first indication information occupies one domain and the second indication information occupies two domains. The fourth indication information occupies one domain, which is not limited here.
  • This MAC CE may also include five domains.
  • the first indication information may occupy two domains, the second indication information may occupy two domains, and the sixth indication information may occupy one domain. It may also be that the first indication information occupies one domain and the third indication information occupies one domain.
  • the second indication information occupies two fields, the fourth indication information occupies one field, and the sixth indication information occupies one field, which are not limited here.
  • the sixth indication information is used to indicate whether to adjust the running time of the first timer.
  • Figure 4 is a schematic diagram of a MAC CE disclosed in the embodiment of the present application.
  • the MAC CE includes two bytes in addition to the MAC subheader. These two bytes include five fields.
  • the first field corresponds to the first indication information
  • the second field corresponds to the first indication indicated by the second indication information.
  • the third field corresponds to the scaling factor indicated by the second indication information
  • the fourth field corresponds to the sixth indication information
  • the fifth field corresponds to the fourth indication information.
  • the first field may occupy 1 bit, and when the value of this bit is 1 (or 0), the terminal device may be instructed to start the first timer.
  • the second field may occupy 8 bits and is used to indicate the subframe number of the first subframe.
  • the third field can occupy 4 bits and is used to indicate the scaling factor.
  • the first two bits can indicate the integer part of the scaling factor, and the last two bits can indicate the decimal part of the scaling factor.
  • the fourth field can occupy 1 bit. When the value of this field is 1 (or 0), it can indicate adjusting the running time of the first timer. When the value of this field is 0 (or 1), it can Instructions not to adjust The running time of the first timer.
  • the fifth field can occupy 2 bits and is used to indicate adjusting the running time of the first timer.
  • the field corresponding to the fifth field is an invalid field, that is, a meaningless field.
  • the value of these 2 bits can be 00.
  • the value of the bit is 01, it indicates that the running time of the first timer can be increased by the cycle length of 1 DRX cycle.
  • the value of these 2 bits is 10, it indicates that the running time of the first timer can be increased by 2.
  • the cycle length of DRX cycles When the value of these 2 bits is 11, it indicates that the running time of the first timer can be increased by the cycle length of 3 DRX cycles.
  • Figure 4 is an exemplary illustration of the access network device sending the first indication information, the second indication information, the fourth indication information and the sixth indication information to the terminal device through a MAC CE, and does not constitute a limitation thereon.
  • the access network device may carry the second indication information and the first indication information in one DCI and send it to the terminal device, or may carry the second indication information, the first indication information and the fourth indication information in one DCI. sent to the terminal device.
  • this DCI can also carry sixth indication information.
  • This DCI may have a fixed length, each of the above indication information may occupy one or more bits in the DCI, and the bits not occupied by the above indication information may be reserved bits.
  • FIG. 5 is a schematic diagram of a DCI disclosed in an embodiment of the present application.
  • DCI occupies 16 bits.
  • the first instruction information instructing the terminal device to start the first timer may occupy 1 bit. When the value of this bit is 1 (or 0), the terminal device is instructed to start the first timer.
  • the information indicating the first subframe may occupy 2 bits and may be the subframe number of the first subframe. For example, when the value of these two bits is 01, it means that the adjusted DRX cycle activates the drx-onDurationTimer at the first subframe in the second interval, which is the starting subframe of the activation period of the adjusted DRX cycle. is the first subframe in the second interval.
  • the information indicating the scaling factor can occupy 2 bits, the former bit can indicate the integer part of the scaling factor, and the latter bit can indicate the decimal part of the scaling factor.
  • the scaling factor can be a value between 0.5 and 1.5 and is an integer of 0.5
  • the length of the activation period of the DRX cycle before adjustment is the activation period of the DRX cycle before adjustment. half the length of the period.
  • the sixth indication information may occupy 1 bit. For example, when the value of this bit is 1, it indicates that the running time of the first timer is adjusted; when the value of this bit is 0, it indicates that the running time of the first timer is not adjusted.
  • the information indicating adjusting the running time of the first timer may occupy 2 bits.
  • the value of these 2 bits when the value of these 2 bits is 01, it indicates that the running time of the first timer can be increased by the cycle length of 1 DRX cycle. When the value of these 2 bits is 10, it indicates that the running time of the first timer can be increased by 1 DRX cycle. The running time can be increased by the period length of 2 DRX cycles. In the case where the value of these 2 bits is 11, it indicates that the running time of the first timer can be increased by the period length of 3 DRX cycles. In the case of indicating that the first timer is not adjusted, In the case of running time, the value of these 2 bits is 00. The remaining 8 bits are reserved bits.
  • DCI can be scrambled by a radio network temporary identifier (RNTI).
  • RNTI radio network temporary identifier
  • the value of the RNTI can be configured as any one of the reserved values, such as FFF3-FFFD.
  • the DCI can be DCI2_7 or other DCI, and is not limited here.
  • the terminal equipment monitors the PDCCH during the activation period of the adjusted DRX cycle.
  • the terminal device may determine the adjusted DRX cycle based on the second indication information.
  • the terminal device may adjust the starting subframe of the activation period of the DRX cycle to the first subframe to obtain the adjusted DRX cycle.
  • the terminal device may determine the activation period length of the adjusted DRX cycle based on the activation period length of the pre-adjusted DRX cycle and the scaling factor, and obtain the adjusted DRX cycle.
  • the terminal equipment can adjust the starting subframe of the activation period of the DRX cycle to the first subframe, and determine the activation period length of the adjusted DRX cycle based on the activation period length and scaling factor of the DRX cycle before adjustment, and obtain the adjustment.
  • the subsequent DRX cycle can be adjusted.
  • the terminal device may adjust the running time of the first timer according to the first indication information (or the fourth indication information).
  • the terminal equipment can start the first timer according to the first instruction information, enable the adjusted DRX cycle, and monitor the PDCCH during the activation period of the adjusted DRX cycle, that is, during the first timer Monitor the PDCCH during the activation period of the adjusted DRX cycle within the running time.
  • the terminal equipment does not monitor the PDCCH within the activation period of the adjusted DRX cycle within the first timer running time, it indicates that the data may have missed the activation period of the adjusted DRX cycle, and the terminal equipment can interrupt.
  • the first timer uses the DRX cycle before adjustment in the next DRX cycle.
  • the terminal device may also send third indication information to the access network device.
  • the access network device may receive the third indication information from the terminal device.
  • the third indication information is used to indicate that the first timer is interrupted, that is, the first timer fails.
  • the access network device can re-deliver the information for starting the first timer and adjusting the activation period of the DRX cycle, that is, steps 301 to 304 can be re-executed.
  • the terminal equipment monitors the PDCCH during the activation period of the adjusted DRX cycle within the first timer running time, if the first timer running time arrives, that is, the timing time of the first timer ends. , then the first timer becomes invalid and the DRX cycle before adjustment is used in the next DRX cycle.
  • the access network device when periodic services are transmitted between the terminal device and the access network device, and the transmission time of the next frame of data may deviate from the activation period of the DRX cycle, the access network device can The terminal device sends information, and the terminal device can adjust the current period of the DRX cycle based on the information.
  • the next DRX cycle When the next DRX cycle is reached, it can start the first timer based on the information, use the adjusted DRX cycle, and monitor during the activation period of the adjusted DRX cycle.
  • PDCCH can avoid the problem of missing the activation period of the DRX cycle due to delayed data arrival, avoid data retransmission, and thus reduce the data transmission delay.
  • Embodiment 2 the relevant technology of Embodiment 2 will be described below.
  • FIG. 6 is a schematic diagram of a system frame number (SFN) number disclosed in this application.
  • SFN system frame number
  • SFN is numbered starting from 0 and ending at 1023, that is, the system frame restarts numbering every 1024 frames.
  • the terminal device can determine the starting subframe of the DRX cycle based on the SFN, subframe number and formula (3).
  • drx-ShortCycle represents the cycle length of the short cycle
  • Mod( ⁇ ) represents the modulus Operation.
  • the terminal device can determine the starting subframe of the DRX cycle based on the SFN, subframe number and formula (4).
  • drx-LongCycle represents the cycle length of the long cycle.
  • the terminal device starts drx-onDurationTimer at the drx-SlotOffset time offset from the DRX starting position.
  • Figure 7 is a schematic flow chart of another communication method disclosed in an embodiment of the present application. As shown in Figure 7, the communication method may include the following steps.
  • the terminal device determines the starting position of the first DRX cycle.
  • the terminal device starts the first DRX cycle at the starting position of the first DRX cycle.
  • the first DRX cycle is the current DRX cycle.
  • the terminal device determines the starting position of the subsequent DRX cycle as: the starting position of the first DRX cycle plus an integer multiple of the DRX cycle.
  • the starting position of the first DRX cycle after the first DRX cycle is: the starting position of the first DRX cycle plus one DRX cycle.
  • the starting position of the second DRX cycle after the first DRX cycle is: the starting position of the first DRX cycle plus two DRX cycles, and so on.
  • the terminal device determines the starting position of the subsequent DRX cycle of the first DRX cycle, the terminal device does not determine the starting position according to the above formula (3) or formula (4), but starts from the first DRX cycle,
  • the cycle length of every DRX cycle is considered to be a new DRX cycle.
  • the starting position of the first DRX cycle may be the time domain position determined by the terminal device according to the above formula (3) or formula (4), or it may be a time information configured by the access network device in the configuration information used to configure the DRX cycle.
  • this time information can be a specific SFN+subframe number.
  • this time information can be specific universal time coordinated (UTC)/global positioning system (GPS) time.
  • the terminal device can start the drx-onDurationTimer offset by the drx-SlotOffset time from the starting position of each DRX cycle determined above.
  • drx-SlotOffset is configured for the access network device.
  • the terminal equipment may monitor the PDCCH during the activation period of the first DRX cycle.
  • the access network equipment and the terminal equipment may determine the DRX cycle in the same manner.
  • the functions performed by the terminal device in the above communication method can also be performed by modules (for example, chips) in the terminal device, and the functions performed by the access network device in the above communication method can also be performed by the access network device.
  • module e.g., chip
  • Figures 8 and 9 are schematic structural diagrams of possible communication devices provided by embodiments of the present application. These communication devices can realize the functions of the terminal equipment or access network equipment in the above method embodiments, and therefore can also realize the functions of the above method embodiments. beneficial effects.
  • the communication device may be the terminal device 101 as shown in Figure 1, or the access network device 102 as shown in Figure 1, or it may be applied to the terminal device or the access network device. Modules (such as chips).
  • the communication device 800 includes a transceiver module 801 and a processing module 802 .
  • the communication device 800 may be used to implement the functions of the terminal device or the access network device in the method embodiment shown in FIG. 3 .
  • the processing module 802 is used to determine the second indication information.
  • Transceiver module 801 configured to send first indication information and second indication information.
  • the transceiver module 801 is used to receive the first indication information and the second indication information;
  • the processing module 802 is used to perform the adjusted DRX cycle Monitor PDCCH during the activation period.
  • the processing module 802 is used to determine the starting position of the first DRX cycle, and start the first DRX cycle at the starting position of the first DRX cycle. DRX cycle.
  • the transceiver module 801 is configured to monitor the PDCCH during the activation period of the first DRX cycle.
  • transceiver module 801 and processing module 802 For a more detailed description of the above-mentioned transceiver module 801 and processing module 802, reference may be made to the relevant descriptions in the above-mentioned method embodiments, which will not be described again here.
  • the communication device 900 includes a processor 910 and an interface circuit 920 .
  • the processor 910 and the interface circuit 920 are coupled to each other.
  • the interface circuit 920 may be a transceiver or an input-output interface.
  • the communication device 900 may also include a memory 930 for storing instructions executed by the processor 910 or input data required for the processor 910 to run the instructions or data generated after the processor 910 executes the instructions.
  • the processor 910 is used to execute the function of the above processing module 802 and the interface circuit 920 is used to execute the function of the above transceiver module 801.
  • the terminal device chip implements the functions of the terminal device in the above method embodiment.
  • the terminal equipment chip receives information from other modules (such as radio frequency modules or antennas) in the terminal equipment, and the information is sent by the access network equipment to the terminal equipment; or, the terminal equipment chip sends information to other modules (such as radio frequency modules) in the terminal equipment. module or antenna) to send information, which is sent by the terminal device to the access network device.
  • the access network equipment chip When the above communication device is a chip applied to access network equipment, the access network equipment chip implements the functions of the access network equipment in the above method embodiment.
  • the access network equipment chip receives information from other modules (such as radio frequency modules or antennas) in the access network equipment, and the information is sent by the terminal equipment to the access network equipment; or, the access network equipment chip sends information to the access network equipment.
  • Other modules in the device (such as radio frequency modules or antennas) send information, which is sent by the access network device to the terminal device.
  • the processor in the embodiment of the present application can be a central processing unit (Central Processing Unit, CPU), or other general-purpose processor, digital signal processor (Digital Signal Processor, DSP), or application specific integrated circuit. (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor or any conventional processor.
  • the processor may be a random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable memory Except for programmable PROM (EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM), registers, hard disks, removable hard disks, CD-ROM or any other form of storage media well known in the art middle.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage media may be located in an ASIC. Additionally, the ASIC can be located in network equipment or terminal equipment. Of course, the processor and the storage medium can also exist as discrete components in network equipment or terminal equipment.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, a network device, a terminal device, or other programmable devices.
  • the computer program or instructions may be stored in or transmitted over a computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server that integrates one or more available media.
  • the available media may be magnetic media, such as floppy disks, hard disks, and magnetic tapes; they may also be optical media, such as DVDs; or they may be semiconductor media, such as solid state disks (SSD).
  • the term “multiple” in the embodiments of this application means two or more.
  • “And/or” describes the relationship between associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist simultaneously, and B alone exists, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are in an "or” relationship.
  • "At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • “at least one of A, B, and C” includes A, B, C, AB, AC, BC, or ABC.
  • the ordinal numbers such as “first” and “second” mentioned in the embodiments of this application are used to distinguish multiple objects and are not used to limit the order, timing, priority or importance of multiple objects. degree.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device. Instructions are provided for implementing a process or processes in a flow diagram and/or a block or blocks in a block diagram Steps for the function specified in each box.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开一种通信方法及装置,接入网设备向终端设备发送用于指示终端设备启动第一定时器的第一指示信息,以及用于在第一定时器的运行时间内调整非连续接收DRX周期中的激活期的第二指示信息,以便终端设备可以根据第一指示信息和第二指示信息在调整后的DRX周期的激活期内监听物理下行控制信道PDCCH。终端设备可以根据接入网设备的指示调整DRX周期的激活期,可以避免数据重传,从而可以降低数据的传输时延。

Description

一种通信方法及装置
本申请要求于2022年03月18日提交中国专利局、申请号为2022102703862、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
扩展现实(extended reality,XR)是指各类由计算技术以及可穿戴设备生成的现实和虚拟相结合的环境,以及人机之间的交互。XR可以包括增强现实(augmented reality,AR)、混合现实(mixed reality,MR)、虚拟现实(virtual reality,VR)等。
XR是目前工业领域重点考虑的第五代移动通信技术(5th generation mobile communication technology,5G)多媒体应用之一。XR业务通常会按照一定的帧率周期性地生成数据,因此,为接收XR业务的终端设备引入非连续接收(discontinuous reception,DRX)功能,可以降低终端设备的功耗。然而,如何解决在引入DRX功能后带来的业务传输时延增大的问题,还有待进一步研究。
发明内容
本申请实施例公开了一种通信方法及装置,用于降低数据的传输时延。
第一方面,本申请公开一种通信方法,该通信方法可以应用于终端设备,也可以应用于终端设备中的模块(例如,芯片)。下面以执行主体是终端设备为例进行描述。该通信方法可以包括:终端设备接收来自接入网设备的第一指示信息和第二指示信息,第一指示信息用于指示终端设备启动第一定时器,第二指示信息用于在第一定时器的运行时间内调整DRX周期中的激活期。终端设备在调整后的DRX周期的激活期内监听物理下行控制信道(physical downlink control channel,PDCCH)。
在终端设备与接入网设备之间传输周期性业务,且下一帧数据的传输时间可能偏离DRX周期的激活期的情况下,终端设备可以接收到来自接入网设备的用于指示启动第一定时器的第一指示信息,以及用于在第一定时器的运行时间内调整DRX周期中的激活期的第二指示信息,之后可以根据第一指示信息和第二指示信息在调整后的DRX周期的激活期内监听PDCCH。可见,在终端设备与接入网设备之间传输周期性业务,且下一帧数据的传输时间可能偏离DRX周期的激活期的情况下,终端设备可以根据接入网设备的指示调整DRX周期的激活期,并在第一定时器的运行时间内的调整后的DRX的周期监听PDCCH,可以避免由于数据无法准时到达而错过DRX周期的激活期的问题,可以避免数据重传,从而可以降低数据的传输时延。
作为一种可能的实施方式,第一定时器的运行时间可以包括多个DRX周期,可以避免第一定时器频繁启动。进一步地,当第一定时器的运行时间可以包括多个DRX周期时,接入网设备只需要发送一次信令就可以完成对多个DRX周期参数的调节,而不用针对每个DRX周期都下发指示信息来调整,从而可以减少信令开销。
作为一种可能的实施方式,第二指示信息可以指示第一子帧,第一子帧可以为调整后的DRX周期的激活期的开始子帧。
在终端设备与接入网设备之间传输周期性业务,且下一帧数据的传输时间可能偏离DRX周期的激活期的情况下,终端设备可以根据接入网设备的指示调整DRX周期的激活期的开始子帧,可以避免由于数据无法准时到达而错过DRX周期的激活期的问题,从而可以降低数据的传输时延。
作为一种可能的实施方式,第二指示信息可以指示缩放因子,缩放因子可以为调整后的DRX周期的激活期长度与调整前的DRX周期的激活期长度的比值。缩放因子也可以为调整前的DRX周期的激活期长度与调整后的DRX周期的激活期长度的比值。
在终端设备与接入网设备之间传输周期性业务,且下一帧数据的传输时间可能偏离DRX周期的激活期的情况下,终端设备可以根据接入网设备的指示调整DRX周期的激活期的长度,可以避免由于数据无法准时到达而错过DRX周期的激活期的问题,从而可以降低数据的传输时延。接入网设备可以指示终端设备调整DRX周期的激活期的开始子帧,也可以指示终端设备调整DRX周期的激活期的长度,还可以指示终端设备调整DRX周期的激活期的开始子帧和长度,具体调整哪些参数可以由接入网设备根据周期性业务中要到达接入网设备的下一帧数据的可能偏离时间来确定,从而可以提高调整的合理性和准确性。
作为一种可能的实施方式,第一指示信息还用于调整第一定时器的运行时间。
第一定时器是针对周期性业务的定时器,接入网设备可以根据周期性业务中要到达接入网设备的下一帧数据的可能偏离时间,来指示终端设备调整第一定时器的运行时间,以便终端设备在第一定时器的运行时间段内可以在调整后的DRX周期的激活期内监听PDCCH,可以避免由于数据无法准时到达而错过DRX激活期的问题,从而可以降低数据的传输时延。进一步地,接入网设备可以根据周期性业务中要到达接入网设备的下一帧数据的可能偏离时间,来确定第一定时器的运行时间的调整,可以提高调整的合理性和准确性。
作为一种可能的实施方式,第一指示信息可以携带在媒体接入控制(medium access control,MAC)控制单元(control element,CE)中,也可以携带在下行控制信息(downlink control information,DCI)中。
在第一指示信息通过MAC CE传输的情况下,可以提高第一指示信息的传输速率。在第一指示信息通过DCI传输的情况下,可以提高第一指示信息传输的可靠性。
作为一种可能的实施方式,第二指示信息可以携带在MAC CE中,也可以携带在DCI中。
在第二指示信息通过MAC CE传输的情况下,可以提高第二指示信息的传输速率,终端设备可以快速地根据第二指示信息调整DRX周期的激活期,从而可以避免数据重传。在第二指示信息通过DCI传输的情况下,可以提高第二指示信息传输的可靠性,保证终端设备能够成功的接收到第二指示信息,以便终端设备可以根据第二指示信息调整DRX周期的激活期,从而可以避免数据重传。
作为一种可能的实施方式,该通信方法还可以包括:终端设备在调整后的DRX周期的激活期内未监听到PDCCH的情况下,中断第一定时器。
在第一定时器的运行时间内的调整后的DRX周期的激活期内未监听到PDCCH的情况下,表明数据可能错过了调整后的DRX周期的激活期,即调整后的DRX周期的激活期与数据的到达时间不匹配,启动的第一定时器和调整后的DRX周期失去了意义,因此,可以中断第一定时器,可以使第一定时器和调整后的DRX周期失效,可以避免第一定时器和调整后的DRX 周期的无意义的使用。
作为一种可能的实施方式,该通信方法还可以包括:终端设备向接入网设备发送第三指示信息,第三指示信息用于指示第一定时器中断。
中断第一定时器之后,终端设备可以向接入网设备上报第一定时器失效了,以便接入网设备接收到第一定时器失效之后,为了保证终端设备能够及时接收到数据,可以重新指示终端设备启动第一定时器和调整DRX周期的激活期。
第二方面,本申请公开一种通信方法,有益效果可以参见第一方面的描述此处不再赘述。该通信方法可以应用于接入网设备,也可以应用于接入网设备中的模块(例如,芯片)。下面以执行主体是接入网设备为例进行描述。该通信方法可以包括:接入网设备向终端设备发送第一指示信息,第一指示信息用于指示终端设备启动第一定时器。接入网设备确定第二指示信息,第二指示信息用于在第一定时器的运行时间内调整DRX周期中的激活期。接入网设备向终端设备发送第二指示信息。
作为一种可能的实施方式,第一定时器的运行时间包括多个DRX周期。
作为一种可能的实施方式,第二指示信息可以指示第一子帧,第一子帧可以为调整后的DRX周期的激活期的开始子帧。
作为一种可能的实施方式,第二指示信息可以指示缩放因子,缩放因子可以为调整后的DRX周期的激活期长度与调整前的DRX周期的激活期长度的比值。
作为一种可能的实施方式,第一指示信息还用于调整第一定时器的运行时间。
作为一种可能的实施方式,第一指示信息可以携带在MAC CE中,也可以携带在DCI中。
作为一种可能的实施方式,第二指示信息可以携带在MAC CE中,也可以携带在DCI中。
作为一种可能的实施方式,该通信方法还可以包括:接入网设备接收来自终端设备的第三指示信息,第三指示信息可以用于指示第一定时器中断。
第三方面,本申请公开一种通信装置,有益效果可以参见第一方面的描述此处不再赘述。所述通信装置具有实现上述第一方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括:收发模块,用于接收来自接入网设备的第一指示信息和第二指示信息;处理模块,用于在调整后的DRX周期的激活期内监听PDCCH。这些模块可以执行上述第一方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第四方面,本申请公开一种通信装置,有益效果可以参见第二方面的描述此处不再赘述。所述通信装置具有实现上述第二方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括:收发模块,用于向终端设备发送第一指示信息;处理模块,用于确定第二指示信息;收发模块,还用于向终端设备发送第二指示信息。这些模块可以执行上述第二方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第五方面,本申请公开了一种通信装置,该通信装置可以为上述方法实施例中的终端设 备,或者为设置在终端设备中的芯片。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述方法实施例中由终端设备所执行的方法。
第六方面,本申请公开了一种通信装置,该通信装置可以为上述方法实施例中的接入网设备,或者为设置在接入网设备中的芯片。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述方法实施例中由接入网设备所执行的方法。
第七方面,本申请公开了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码并运行时,使得上述各方面中由终端设备执行的方法被执行。
第八方面,本申请公开了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,使得上述各方面中由接入网设备执行的方法被执行。
第九方面,本申请公开了一种芯片***,该芯片***包括处理器,用于实现上述各方面的方法中终端设备的功能。在一种可能的设计中,所述芯片***还包括存储器,用于保存程序指令和/或数据。该芯片***,可以由芯片构成,也可以包括芯片和其他分立器件。
第十方面,本申请公开了一种芯片***,该芯片***包括处理器,用于实现上述各方面的方法中接入网设备的功能。在一种可能的设计中,所述芯片***还包括存储器,用于保存程序指令和/或数据。该芯片***,可以由芯片构成,也可以包括芯片和其他分立器件。
第十一方面,本申请公开了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述各方面中由终端设备执行的方法。
第十二方面,本申请公开了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述各方面中由接入网设备执行的方法。
附图说明
图1是本申请实施例公开的一种网络架构示意图;
图2是本申请实施例公开的一种数据的传输时间偏离DRX周期的激活期的示意图;
图3是本申请实施例公开的一种通信方法的流程示意图;
图4是本申请实施例公开的一种MAC CE的示意图;
图5是本申请实施例公开的一种DCI的示意图;
图6是本申请公开的一种SFN编号的示意图;
图7是本申请实施例公开的另一种通信方法的流程示意图;
图8是本申请实施例公开的一种通信装置的结构示意图;
图9是本申请实施例公开的另一种通信装置的结构示意图。
具体实施方式
本申请实施例公开了一种通信方法及装置,用于降低数据的传输时延。以下分别进行详细说明。
图1是本申请实施例公开的一种网络架构示意图。如图1所示,该网络架构可以包括终端设备101、接入网设备102、核心网设备103和应用服务器(application server,App)104。 终端设备101可以向接入网设备102发送用于请求业务数据的第一请求。相应地,接入网设备102可以接收来自终端设备101的第一请求,并向核心网设备103发送用于请求业务数据的第二请求。核心网设备103接收来自接入网设备102的第二请求后,可以向App104发送用于请求业务数据的第三请求。用于存储业务数据的App104,在接收来自核心网设备103的第三请求后可以向核心网设备103发送数据(即数据帧),再由核心网设备103发送给接入网设备102,进而由接入网设备102发送给终端设备101。
(1)终端设备又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是指向用户提供语音和/或数据连通性的设备。例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端设备的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,VR设备、AR设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
(2)接入网设备是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备),又可以称为基站。目前,一些RAN节点的举例为:节点B(Node B,NB)、继续演进的节点B(gNB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。
(3)核心网设备是指为终端设备提供业务支持的核心网(core network,CN)中的设备,主要负责呼叫的接续、计费,移动性管理,提供用户连接、对用户的管理以及对业务完成承载,数据的处理和路由等功能。核心接入网设备在不同的通信***可以对应不同的设备。例如,在***移动通信技术(4th generation mobile networks,4G)中可以对应移动管理实体(mobility management entity,MME)、服务网关(serving gateway,S-GW)等中的一个或多个。再例如,在5G中可以对应接入和移动性管理功能(access and mobility management function,AMF)网元、会话管理功能(session management function,SMF)网元、用户面功能(user plane function,UPF)网元等中的一个或多个网元。
(4)App是为终端设备提供各种不同的业务数据(应用数据)的服务器。
应理解,本申请实施例中App提供的业务数据为具有固定周期的业务数据,即周期性业务数据,如XR业务数据等。
需要说明的是,上述网络架构可以应用于窄带物联网***(narrow band-internet of things,NB-IoT)、全球移动通信***(global system for mobile communications,GSM)、增强型数据速率GSM演进***(enhanced data rate for GSM evolution,EDGE)、宽带码分多址***(wideband code division multiple access,WCDMA)、码分多址2000***(code division multiple access,CDMA2000)、时分同步码分多址***(time division-synchronization code division multiple access,TD-SCDMA)、WiFi***,长期演进(long term evolution,LTE)、5G***、以及第六代移动通信技术(6th generation mobile communication technology,6G)等5G之后演进的通信***。
为了更好地理解本申请实施例,下面先对本申请实施例的相关技术进行描述。
一、XR
XR是指各类由计算技术以及可穿戴设备生成的现实和虚拟相结合的环境,以及人机之间的交互。XR可以包括AR、MR、VR等。
XR是目前工业领域重点考虑的5G多媒体应用之一。第三代合作伙伴计划(3rd generation partnership project,3GPP)Rel-17对XR的业务特征进行了建模分析,通常XR业务会按照一定的帧率周期性地生成数据。例如,下行XR业务的业务模型大致可以为:
AR/VR:帧率可以是60每秒传输帧数(frame per second,fps),即每秒生成60帧视频图像,约每16.66ms生成一个视频帧,传输速率为20每秒传输位(即比特)数量(megabits per second,Mbps)或45Mbps等。帧率也可以是120fps,即每秒120帧视频图像,约每8.33ms生成一个视频帧。一个完整的视频帧的空口传输时延预算是10ms(毫秒),也就是说,从接入网设备接收到来自UPF网元的一帧图像开始计时,直到将这一帧图像成功发送到终端设备,这段时长称为视频帧的空口传输时延预算。
云游戏(cloud gaming,GC):帧率为60fps或120fps,即每秒生成60帧视频图像或每秒生成120帧视频图像,传输速率为8Mbps、30Mbps等。一个完整的视频帧的空口传输时延预算是15ms。
然而,在实际的传输***中,由于编码时延、网络传输延迟等会导致数据(即视频帧或图像帧)到达接入网设备的时间出现偏离,即数据(数据帧)实际到达接入网设备的时间与应该到达接入网设备的时间不同,也即数据的实际到达时间与应该到达时间不同。通常数据到达接入网设备时间的偏离可以认为服从截断高斯分布,截断的范围大致在[-4,4]ms。数据应该到达接入网设备的时间可以根据数据对应业务的周期确定。
二、DRX
接入网设备可以为终端设备配置DRX功能。具体地,接入网设备可以为终端设备配置DRX周期(cycle),其中,DRX周期可以包括长周期和短周期,长周期是短周期的整数倍。终端设备可以仅在DRX周期内的激活期监听PDCCH,而在其他时间进入DRX休眠期。可见,接入网设备可以通过向终端设备配置DRX周期,使终端设备不需要一直监听和解析PDCCH来确定接入网设备是否为自身调度了用于进行数据传输的资源。
接入网设备还可以为终端设备配置以下信息:
DRX持续时间定时器(drx-onDurationTimer):一段连续的下行时长,在这段时间内终端设备需要持续侦听PDCCH,该定时器表示终端设备醒来后维持醒着的时间。该定时器在每个DRX周期的开始位置向后偏移drx-SlotOffset时刻启动。
接入网设备除配置上述信息之外,还可以配置有其他与DRX周期有关的信息,在此不再赘述。
由上述描述可知,XR业务通常为周期性的。因此,对于传输XR业务的XR终端设备,若为XR终端设备配置DRX周期,可以有效降低XR终端设备的功耗。然而,在某些情况下,例如,XR业务的下行数据帧在核心网或数据网络(data network,DN)传输中遇到排队、拥塞等情况时,会导致数据到达接入网设备的时间偏离应该到达接入网设备的时间的情况,以致数据的传输时间可能会偏离DRX周期的激活期。如图2所示,虚线框内的数据本应到达接入网设备的时刻处于DRX周期的激活期。由于该数据在传输时发生拥塞,使得实际到达接入网设备的时刻与本应到达的时刻发生偏离,从而使得实际到达时刻落入DRX周期的休眠期,导致终端设备无法成功接收这个数据,需要接入网设备对这个数据进行不断的重传,直到下 一个DRX周期的激活期到达终端设备才能成功接收到数据,以致数据传输时延较大。
有鉴于此,本申请实施例提供了一种数据传输方法,用于降低XR业务的传输时延。
实施例一
请参阅图3,图3是本申请实施例公开的一种通信方法的流程示意图。如图3所示,该通信方法可以包括以下步骤。
301.接入网设备向终端设备发送第一指示信息。相应地,终端设备接收来自接入网设备的第一指示信息。
在下一帧数据的传输时间可能会偏离DRX周期的激活期的情况下,接入网设备可以向终端设备发送第一指示信息。示例性地,接入网设备可以通过MAC CE向终端设备发送第一指示信息,也可以通过DCI向终端设备发送第一指示信息,还可以通过其他信令或消息向终端设备发送第一指示信息,如***消息、无线资源控制(radio resource control,RRC)信令等。
第一指示信息用于指示终端设备启动第一定时器。其中,第一定时器是针对周期性业务的定时器。可选地,所有的周期性业务对应同一第一定时器;或者,不同周期性业务分别对应不同的第一定时器;又或者,多个周期性业务对应同一第一定时器,例如,在多个周期性业务的周期相同的情况下,这多个周期性业务可以对应同一第一定时器。
接入网设备可以通过向终端设备发送第一配置信息来配置第一定时器。第一配置信息可以包括第一定时器的信息,如第一定时器的运行时间,以下称为“第一运行时间”。第一运行时间可以包括一个或多个DRX周期,即第一运行时间为DRX周期的周期长度的整数倍。
可选地,第一定时器可以是接入网设备在终端设备接入接入网设备时配置的,也可以是接入网设备存在待传输给终端设备的周期性业务时配置的,这里不作限定。
可选地,第一指示信息还可以用于指示调整第一定时器的运行时间。第一指示信息可以指示调整值。调整值可以为调整前的第一定时器的运行时间(即第一运行时间)与第二运行时间之间的比值,其中,第二运行时间为调整后的第一定时器的运行时间;调整值也可以为第一运行时间与第二运行时间之间的差值。调整值的含义可以是协议规定的,也可以是接入网设备配置的。在调整值的含义是接入网设备配置的情况下,接入网设备还可以向终端设备发送第五指示信息,第五指示信息用于指示调整值的含义。
第一指示信息也可以指示第二运行时间。
可选地,第一指示信息指示调整第一定时器的运行时间的替代方式为:接入网设备向终端设备发送第四指示信息。其中,第四指示信息用于指示调整第一定时器的运行时间。
应理解,接入网设备可以将第一指示信息、第四指示信息和第五指示信息通过一条信令或消息发送给终端设备,也可以通过多条信令或消息发送给终端设备。
可选地,接入网设备可以根据下一帧数据的可能偏离时间确定是否需要调整第一定时器的运行时间。下一帧数据的可能偏离时间,可以理解为下一帧数据的可能到达接入网设备的时间与应该到达接入网设备的时间之间的偏离时间。
在下一帧数据的可能偏离时间与前一帧或几帧数据的偏离时间相比有所改善的情况下,接入网设备可以调大第一定时器的运行时间。在下一帧数据的可能偏离时间与前一帧或几帧数据的偏离时间相比继续恶化的情况下,接入网设备可以调小第一定时器的运行时间。此处调大或调小第一定时器的运行时间是相对于上一次向终端设备发送的第一指示信息启动的第一定时器对应的运行时间来说的,而不是相对于第一运行时间来说的。具体调大或调小多少,可以根据规则来确定。
示例性的,在下一帧数据的可能偏离时间与相邻前一帧数据的偏离时间相比改善了A毫秒(millisecond,ms)的情况下,第一定时器的运行时间可以调大一个步长;在下一帧数据的可能偏离时间与相邻的前一帧数据的偏离时间相比恶化了Bms的情况下,第一定时器的运行时间可以调小一个步长。A、B可以为大于0的数。步长可以是协议规定的,也可以是接入网设备配置的。
示例性的,协议可以规定多种调整值,下一帧数据的可能偏离时间与相邻的前一帧数据的偏离时间之间的差值不同,对应的调整值可以不同。例如,假设下一帧数据的可能偏离时间与相邻的前一帧数据的偏离时间之间的差值为Δt。当Δt<0时,第一定时器的运行时间可以调大3个DRX周期。当0<Δt≤2时,第一定时器的运行时间可以调大2个DRX周期。当2<Δt≤4时,第一定时器的运行时间可以调大1个DRX周期。当Δt>4时,第一定时器的运行时间可以保持不变。
应理解,上述是对调大或调小第一定时器的运行时间的示例性说明,并不对其进行限定。
可选地,接入网设备还可以根据下一帧数据的可能偏离时间,来确定下一帧数据的传输时间是否可能偏离DRX周期的激活期。
在下一帧数据的可能偏离时间大于0的情况下,表明下一帧数据可能延时到达接入网设备。在下一帧数据的可能偏离时间小于0的情况下,表明下一帧数据可能提前到达接入网设备。在数据提前到达接入网设备的情况下,接入网设备可以延时相应的时间向终端设备发送该数据,以便该数据可以在终端设备DRX周期的激活期内到达终端设备。在下一帧数据的可能偏离时间等于0的情况下,表明下一帧数据可能准时到达接入网设备,接入网设备可以准时向终端设备发送该数据,以便该数据可以按照既定时间到达终端设备,因此下一帧数据的传输时间可能不会偏离DRX周期的激活期。当下一帧数据可能延时到达接入网设备时,下一帧数据的传输时间可能偏离DRX周期的激活期。可见,需要下一帧数据的可能偏离时间来确定下一帧数据的传输时间是否可能偏离DRX周期的激活期,因此,接入网设备需要知道下一帧数据的可能偏离时间。
可选地,接入网设备可以根据前M帧数据的偏离时间,确定下一帧数据的可能偏离时间。
前M帧数据的偏离时间,可以理解为前M帧数据中每帧数据的实际到达时间与应该到达时间之间的偏离时间。每帧数据的实际到达时间,可以理解为每帧数据实际到达接入网设备的时间。每帧数据的应该到达时间,可以理解为在理想状态下每帧数据的应该到达接入网设备的时间。其中,M为大于或等于1的整数。
前M帧数据可以为同一业务数据中处于下一帧数据之前的所有帧数据,也可以为同一业务数据中与当前时间间隔最近的M帧数据。
接入网设备可以根据前M帧数据的偏离时间,基于贝叶斯理论确定下一帧数据的可能偏离时间。在贝叶斯理论中,后验概率=先验概率*似然函数。接入网设备可以根据前M帧数据的偏离时间确定先验概率,可以按照前M帧数据接收顺序确定前M帧数据的偏离时间服从截断高斯分布,可以根据截断高斯分布确定似然函数,可以根据先验概率和似然函数确定后验概率,进而可以根据后验概率确定下一帧数据的可能偏离时间。
应理解,上述是对根据前M帧数据的偏离时间确定下一帧数据的可能偏离时间的示例性说明,并不对其构成限定。例如,接入网设备可以根据前M帧数据的偏离时间,基于除贝叶斯理论之外的其他理论或算法确定下一帧数据的可能偏离时间。
可选地,接入网设备可以为终端设备配置DRX周期。接入网设备可以向终端设备发送第二配置信息。相应地,终端设备可以接收来自接入网设备的第二配置信息。第二配置信息用 于配置DRX周期。第二配置信息可以包括DRX周期的信息,如DRX周期的激活期长度(即激活期的长度)、DRX周期的激活期的开始子帧等。DRX周期可以是接入网设备在终端设备接入接入网设备时配置的,也可以是接入网设备在终端设备接入接入网设备之后配置的。
302.接入网设备确定第二指示信息。
在确定下一帧数据的传输时间可能会偏离DRX周期的激活期的情况下,接入网设备还可以确定第二指示信息。第二指示信息可以指示在第一定时器的运行时间内调整DRX周期中的激活期。可见,根据第二指示信息调整的DRX周期只能在第一指示信息指示启动的第一定时器的运行时间段内有效。
第二指示信息可以指示第一子帧,第一子帧可以为调整后的DRX周期的激活期的开始子帧。接入网设备可以先确定第一子帧,之后可以根据第一子帧确定第二指示信息。示例性的,接入网设备可以通过第一子帧的子帧号等信息指示第一子帧。
第二指示信息也可以指示缩放因子,缩放因子可以为调整后的DRX周期的激活期长度与调整前的DRX周期的激活期长度的比值。可选地,调整前的DRX周期的激活期长度可以理解为:第二配置信息配置的DRX周期的激活期长度(或者也可以理解为接入网设备为终端设备初始配置的DRX周期的激活期长度),此时,缩放因子可以理解为:调整后的DRX周期的激活期长度与第二配置信息配置(或者初始配置)的DRX周期的激活期长度的比值。可选地,调整前的DRX周期的激活期长度也可以理解为:接入网设备发送第二指示信息之前的DRX周期的激活期长度,此时,缩放因子可以理解为:第二指示信息指示调整后的DRX周期的激活期长度与第二指示信息指示调整前的DRX周期的激活期长度的比值。
接入网设备可以先确定缩放因子,之后可以根据缩放因子确定第二指示信息。示例性的,接入网设备可以通过缩放因子的索引、编号等信息指示缩放因子。
第二指示信息还可以指示第一子帧和缩放因子。接入网设备可以先确定第一子帧和缩放因子,之后可以根据第一子帧和缩放因子确定第二指示信息。
可见,调整DRX周期中的激活期可以为调整DRX周期的激活期的开始子帧,也可以为调整DRX周期的激活期的长度,还可以为调整DRX周期的激活期的开始子帧和长度。
应理解,调整前的DRX周期与调整后的DRX周期的激活期不同,但DRX周期的周期长度不变。DRX周期的激活期不同,可以理解为DRX周期的激活期的长度不同,也可以理解为DRX周期的激活期的开始子帧不同,还可以理解为DRX周期的激活期的长度和开始子帧不同。
可选地,接入网设备可以根据前M帧数据的偏离时间以及下一帧数据的可能偏离时间确定缩放因子。
示例性的,接入网设备可以根据前M帧数据的偏离时间、下一帧数据的可能偏离时间以及公式(1)确定缩放因子,公式(1)可以表示如下:
a=ceil{2b*s/t_on}/b  (1)
其中,a表示缩放因子,b表示传输缩放因子所需比特(bit)数,s表示前M帧数据的偏离时间相对于下一帧数据的可能偏离时间的标准差,t_on表示调整前的DRX周期的激活期的长度。
应理解,公式(1)是对根据前M帧数据的偏离时间以及下一帧数据的可能偏离时间确定缩放因子的示例性说明,并不对其构成限定。例如,接入网设备可以通过公式(1)的各种变形公式确定缩放因子。再例如,接入网设备也可以通过其他公式确定缩放因子,只要这些公式包括前M帧数据的偏离时间和下一帧数据的可能偏离时间即可。
可选地,接入网设备可以根据下一帧数据的可能偏离时间和缩放因子确定第一子帧。
示例性的,接入网设备可以根据下一帧数据的可能偏离时间、缩放因子以及公式(2)确定第一子帧,公式(2)可以表示如下:
其中,Offset表示第一子帧,StartOffset0表示调整前的DRX周期的激活期的开始子帧,t_m表示下一帧数据的可能偏离时间,t_sf表示子帧的时间长度。
应理解,公式(2)是对根据下一帧数据的可能偏离时间和缩放因子确定第一子帧的示例性说明,并不对其构成限定。例如,接入网设备可以通过公式(2)的各种变形公式确定第一子帧。再例如,接入网设备也可以通过其他公式确定第一子帧,只要这些公式中包括下一帧数据的可能偏离时间和缩放因子即可。
303.接入网设备向终端设备发送第二指示信息。
相应地,终端设备接收来自接入网设备的第二指示信息。
第二指示信息可以携带在MAC CE中,也可以携带在DCI中,还可以携带在其他信令或消息中,如MAC、RRC等。
可选地,接入网设备可以将第二指示信息与第一指示信息,或者将第二指示信息与第一指示信息和第四指示信息携带在一个MAC CE中发送给终端设备。这个MAC CE的MAC子头(subheader)的逻辑信道标识(logical channel identifiers,LCID)可以为现有下行共享信道LCID预留值中的任意一个值。现有下行共享信道LCID预留值可以为35~46。
这个MAC CE的长度可以是固定的。这个MAC CE除MAC子头外可以包括一个字节或多个字节。在传输上述指示信息所需比特小于这个MAC CE能够提供的用于传输信息比特的情况下,剩余比特可以为预留(reserved,R)比特。
这个MAC CE除MAC子头外可以包括两个域,第一指示信息和第二指示信息可以分别占用这两个域中的一个域。
这个MAC CE也可以包括三个域,可以是第一指示信息占用一个域、第二指示信息占用两个域,也可以是第一指示信息占用两个域、第二指示信息占用一个域,还可以是第一指示信息占用一个域、第二指示信息占用一个域、第四指示信息占用一个域,这里不作限定。
这个MAC CE还可以包括四个域,可以是第一指示信息占用两个域、第二指示信息占用两个域,也可以是第一指示信息占用一个域、第二指示信息占用两个域、第四指示信息占用一个域,这里不作限定。
这个MAC CE还可以包括五个域,可以是第一指示信息占用两个域、第二指示信息占用两个域、第六指示信息占用一个域,也可以是第一指示信息占用一个域、第二指示信息占用两个域、第四指示信息占用一个域、第六指示信息占用一个域,这里不作限定。第六指示信息用于指示是否调整第一定时器的运行时间。
示例性的,请参阅图4,图4是本申请实施例公开的一种MAC CE的示意图。如图4所示,MAC CE除MAC子头外包括两个字节,这两个字节包括五个域,第一域对应第一指示信息,第二域对应第二指示信息指示的第一子帧,第三域对应第二指示信息指示的缩放因子,第四域对应第六指示信息,第五域对应第四指示信息。
示例性的,第一域可以占用1比特,在这个比特的值为1(或0)的情况下,可以指示终端设备启动第一定时器。第二域可以占用8比特,用于指示第一子帧的子帧号。第三域可以占用4比特,用于指示缩放因子,前两个比特可以指示缩放因子的整数部分,后两个比特可以指示缩放因子的小数部分。第四域可以占用1比特,在这个域的值为1(或0)的情况下,可以指示调整第一定时器的运行时间,在这个域的值为0(或1)的情况下,可以指示不调整 第一定时器的运行时间。第五域可以占用2比特,用于指示调整第一定时器的运行时间。例如,在第四域指示不调整第一定时器的运行时间的情况下,第五域对应的域为无效域,即没有意义的域,此时这2比特的值可以为00,在这2比特的值为01的情况下,指示第一定时器的运行时间可以增加1个DRX周期的周期长度,在这2比特的值为10的情况下,指示第一定时器的运行时间可以增加2个DRX周期的周期长度,在这2比特的值为11的情况下,指示第一定时器的运行时间可以增加3个DRX周期的周期长度。
应理解,上述是对每个域所占比特的示例性说明,并不对所占比特的具体数量进行限定。
应理解,图4是接入网设备通过一个MAC CE向终端设备发送第一指示信息、第二指示信息、第四指示信息和第六指示信息的示例性说明,并不对其构成限定。
可选地,接入网设备可以将第二指示信息和第一指示信息携带在一个DCI中发送给终端设备,也可以将第二指示信息与第一指示信息和第四指示信息携带在一个DCI中发送给终端设备。此外,这个DCI还可以携带有第六指示信息。
这个DCI可以具有固定长度,上述每个指示信息可以占用DCI中的一个或多个比特,未被上述指示信息占用的比特可以为预留比特。
示例性的,请参阅图5,图5是本申请实施例公开的一种DCI的示意图。如图5所示,DCI占用16比特。其中,指示终端设备启动第一定时器的第一指示信息可以占用1比特,在这个比特的值为1(或0)的情况下,指示终端设备启动第一定时器。指示第一子帧的信息可以占用2比特,可以为第一子帧的子帧号。例如,当这两个比特的值为01时,表示调整后的DRX周期在第2个区间中的第一个子帧处激活drx-onDurationTimer,即调整后的DRX周期的激活期的开始子帧为第2个区间中的第一个子帧。指示缩放因子的信息可以占用2比特,前一个比特可以指示缩放因子的整数部分,后一个比特可以指示缩放因子的小数部分。例如,在缩放因子可以为0.5~1.5之间的值,且为0.5的整数的情况下,这两个比特为01时,调整前的DRX周期的激活期的长度为调整前的DRX周期的激活期的长度的一半。第六指示信息可以占用1比特。例如,在这比特的值为1的情况下,指示调整第一定时器的运行时间,在这个比特的值为0的情况下,指示不调整第一定时器的运行时间。指示调整第一定时器的运行时间的信息可以占用2比特。例如,在这2比特的值为01的情况下,指示第一定时器的运行时间可以增加1个DRX周期的周期长度,在这2比特的值为10的情况下,指示第一定时器的运行时间可以增加2个DRX周期的周期长度,在这2比特的值为11的情况下,指示第一定时器的运行时间可以增加3个DRX周期的周期长度,在指示不调整第一定时器的运行时间的情况下,这2个比特的值为00。剩余8比特为预留比特。
应理解,上述是对每个信息在DCI中所占比特的示例性说明,并不对所占比特的具体数量进行限定。
DCI可以由无线网络临时标识(radio network temporary identifier,RNTI)加扰,该RNTI的值可以配置为预留值中的任意一个值,如FFF3-FFFD。DCI可以为DCI2_7,也可以为其他DCI,在此不加限定。
304.终端设备在调整后的DRX周期的激活期内监听PDCCH。
终端设备接收到来自接入网设备的第二指示信息之后,可以根据第二指示信息确定调整后的DRX周期。在第二指示信息指示第一子帧的情况下,终端设备可以将DRX周期的激活期的开始子帧调整为第一子帧,得到调整后的DRX周期。在第二指示信息指示缩放因子的情况下,终端设备可以根据调整前的DRX周期的激活期长度和缩放因子,确定调整后的DRX周期的激活期长度,得到调整后的DRX周期。在第二指示信息指示第一子帧和缩放因子的情 况下,终端设备可以将DRX周期的激活期的开始子帧调整为第一子帧,以及根据调整前的DRX周期的激活期长度和缩放因子确定调整后的DRX周期的激活期长度,得到调整后的DRX周期。
终端设备接收到来自接入网设备的第一指示信息(或第四指示信息)之后,可以根据第一指示信息(或第四指示信息)调整第一定时器的运行时间。
在DRX周期的下一个周期到来时,终端设备可以根据第一指示信息启动第一定时器,同时启用调整后的DRX周期,在调整后的DRX周期的激活期监听PDCCH,即在第一定时器的运行时间内的调整后的DRX周期的激活期内监听PDCCH。
可选地,终端设备在第一定时器运行时间内的调整后的DRX周期的激活期内未监听到PDCCH的情况下,表明数据可能错过了调整后的DRX周期的激活期,终端设备可以中断第一定时器,在下一个DRX周期使用调整前的DRX周期。
终端设备中断第一定时器之后,还可以向接入网设备发送第三指示信息。相应地,接入网设备可以接收来自终端设备的第三指示信息。第三指示信息用于指示第一定时器中断,即第一定时器失效。接入网设备接收到来自终端设备的第三指示信息之后,可以重新下发用于启动第一定时器和调整DRX周期的激活期的信息,即可以重新执行步骤301-步骤304。
可选地,终端设备在第一定时器运行时间内的调整后的DRX周期的激活期内均监听到PDCCH的情况下,如果第一定时器运行时间到达,即第一定时器的定时时间结束,则第一定时器失效,同时在下一个DRX周期使用调整前的DRX周期。
图3所描述的通信方法中,在终端设备与接入网设备之间传输周期性业务,且下一帧数据的传输时间可能会偏离DRX周期的激活期的情况下,接入网设备可以向终端设备发送信息,终端设备可以根据信息调整DRX周期的期活期,在下一个DRX周期达到时可以根据信息启动第一定时器,使用调整后的DRX周期,以及在调整后的DRX周期的激活期监听PDCCH,可以避免由于数据延时到达而错过DRX周期的激活期的问题,可以避免数据重传,从而可以降低数据的传输时延。
实施例二
为了更好地理解实施例二,下面先对实施例二的相关技术进行描述。
请参阅图6,图6是本申请公开的一种***帧号(system frame number,SFN)编号的示意图。如图6所示,SFN是从0开始编号,到1023结束,即***帧每隔1024个帧重新开始编号。当终端设备使用的DRX周期为短周期的情况下,终端设备可以根据SFN、子帧号(subframe number)和公式(3)确定DRX周期的开始子帧,公式(3)可以表示如下:
[(SFN×10)+子帧号]mod(drx-ShortCycle)=(drx-StartOffset)mod(drx-ShortCycle)   (3)
其中,drx-ShortCycle表示短周期的周期长度;drx-StartOffset为计算DRX周期的一个补偿(offset)参数,是相对于SFN=0位置的时间偏移,单位为ms;Mod(·)表示取模运算。
当终端设备使用的DRX周期为长周期的情况下,终端设备可以根据SFN、子帧号和公式(4)确定DRX周期的开始子帧,公式(4)可以表示如下:
[(SFN×10)+子帧号]mod(drx-LongCycle)=drx-ShortCycle   (4)
其中,drx-LongCycle表示长周期的周期长度。终端设备在DRX起始位置偏移drx-SlotOffset时间启动drx-onDurationTimer。
举例说明,假设drx-ShortCycle=35ms,(drx-StartOffset)mod(drx-ShortCycle)=0,drx-onDurationTimer=30ms,终端设备根据公式(3)可以确定在SFN=1022处为一个DRX周 期的起始位置,可以启动drx-onDurationTimer。当SFN翻转,即SFN从0开始重新编号时,SFN=0处应该为一个新的DRX周期的起始位置,但由于drx-onDurationTimer仍在运行,因此,终端设备不会重启一个DRX周期,终端设备在SFN=0的帧内继续监听PDCCH,在SFN=1处停止监听PDCCH,一直到下一个DRX周期的起始位置。可以认为SFN=1022对应的DRX的周期长度变为55ms,也可以认为SFN=0对应的DRX周期的drx-onDurationTimer=10ms。可见,从SFN=1到下一个DRX周期到来之前,有25ms的时间终端设备无法监听PDCCH,以致终端设备无法及时接收信息,增加了信息的传输时延。
可见,在SFN上一轮编号结束时,如果DRX周期没有结束的话,在SFN下一轮编号中终端设备无法及时开始一个新的DRX周期,导致终端设备无法及时监听PDCCH,以致信息的传输时延较大。
基于上述网络架构,请参阅图7,图7是本申请实施例公开的另一种通信方法的流程示意图。如图7所示,该通信方法可以包括以下步骤。
701.终端设备确定第一DRX周期的起始位置。
702.终端设备在第一DRX周期的起始位置开启第一DRX周期。其中,第一DRX周期为当前的DRX周期。
703.终端设备确定后续DRX周期的起始位置为:第一DRX周期的起始位置加上DRX周期的整数倍。例如第一DRX周期之后的第一个DRX周期的起始位置为:第一DRX周期的起始位置加上一个DRX周期。再例如,第一DRX周期之后的第二个DRX周期的起始位置为:第一DRX周期的起始位置加上两个DRX周期,依次类推。
也就是说,当终端设备确定第一DRX周期的后续DRX周期的起始位置时,终端设备不按照上述公式(3)或公式(4)确定起始位置,而是从第一DRX周期开始,每隔DRX周期的周期长度,即认为进入一个新的DRX周期。
第一DRX周期的起始位置可以是终端设备根据上述公式(3)或公式(4)确定的时域位置,也可以是接入网设备在用于配置DRX周期的配置信息配置的一个时间信息。例如,这个时间信息可以为具体的SFN+子帧号。再例如,这个时间信息可以为具体的世界标准时(universal time coordinated,UTC)/全球定位***(global positioning system,GPS)时间。
可选地,终端设备可以在上述确定的每一个DRX周期的起始位置偏移drx-SlotOffset时间启动drx-onDurationTimer。其中,drx-SlotOffset为接入网设备配置的。
终端设备在第一DRX周期的起始位置开启第一DRX周期之后,可以在第一DRX周期的激活期监听PDCCH。
应理解,即接入网设备与终端设备确定DRX周期的方式可以相同。
应理解,上述通信方法中不同步骤或不同位置中相同信息或相应信息的相关描述可以相互参考。
应理解,上述通信方法中由终端设备执行的功能也可以由终端设备中的模块(例如,芯片)来执行,上述通信方法中由接入网设备执行的功能也可以由接入网设备中的模块(例如,芯片)来执行。
图8和图9为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以实现上述方法实施例中终端设备或接入网设备的功能,因此也能实现上述方法实施例所具备 的有益效果。在本申请实施例中,该通信装置可以是如图1所示的终端设备101,也可以是如图1所示的接入网设备102,还可以是应用于终端设备或接入网设备的模块(如芯片)。
如图8所示,通信装置800包括收发模块801和处理模块802。通信装置800可用于实现上述图3所示的方法实施例中终端设备或接入网设备的功能。
当通信装置800用于实现图3所述方法实施例中接入网设备的功能时:处理模块802,用于确定第二指示信息。收发模块801,用于发送第一指示信息和第二指示信息。
当通信装置800用于实现图3所述方法实施例中终端设备的功能时:收发模块801,用于接收第一指示信息和第二指示信息;处理模块802,用于在调整后的DRX周期的激活期监听PDCCH。
当通信装置800用于实现图7所述方法实施例中终端设备的功能时:处理模块802,用于确定第一DRX周期的起始位置,以及在第一DRX周期的起始位置开启第一DRX周期。收发模块801,用于在第一DRX周期的激活期监听PDCCH。
关于上述收发模块801和处理模块802更详细的描述,可参考上述方法实施例中的相关描述,在此不再说明。
如图9所示,通信装置900包括处理器910和接口电路920。处理器910和接口电路920之间相互耦合。可以理解的是,接口电路920可以为收发器或输入输出接口。可选的,通信装置900还可以包括存储器930,用于存储处理器910执行的指令或存储处理器910运行指令所需要的输入数据或存储处理器910运行指令后产生的数据。
当通信装置900用于实现上述方法实施例中的方法时,处理器910用于执行上述处理模块802的功能,接口电路920用于执行上述收发模块801的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是接入网设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给接入网设备的。
当上述通信装置为应用于接入网设备的芯片时,该接入网设备芯片实现上述方法实施例中接入网设备的功能。该接入网设备芯片从接入网设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给接入网设备的;或者,该接入网设备芯片向接入网设备中的其它模块(如射频模块或天线)发送信息,该信息是接入网设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中处理器可以是随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、终端设备、或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,DVD;还可以是半导体介质,例如,固态硬盘(solid state disk,SSD)。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。
本申请实施例中的术语“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A、同时存在A和B、单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如“A,B和C中的至少一个”包括A,B,C,AB,AC,BC或ABC。以及,除非有特别说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多 个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (21)

  1. 一种通信方法,其特征在于,包括:
    接收来自接入网设备的第一指示信息和第二指示信息,所述第一指示信息用于指示终端设备启动第一定时器,所述第二指示信息用于在所述第一定时器的运行时间内调整非连续接收DRX周期中的激活期;
    在调整后的DRX周期的激活期内监听物理下行控制信道PDCCH。
  2. 根据权利要求1所述的方法,其特征在于,所述第一定时器的运行时间包括多个所述DRX周期。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第二指示信息指示第一子帧,所述第一子帧为所述调整后的DRX周期的激活期的开始子帧。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第二指示信息指示缩放因子,所述缩放因子为所述调整后的DRX周期的激活期长度与调整前的DRX周期的激活期长度的比值。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一指示信息还用于调整所述第一定时器的运行时间。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一指示信息携带在媒体接入控制MAC控制单元CE或下行控制信息DCI中。
  7. 根据权利要求1-5任一项所述的方法,其特征在于,所述第二指示信息携带在MAC CE或DCI中。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:
    在所述调整后的DRX周期的激活期内未监听到PDCCH的情况下,中断所述第一定时器。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    向所述接入网设备发送第三指示信息,所述第三指示信息用于指示所述第一定时器中断。
  10. 一种通信方法,其特征在于,包括:
    向终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备启动第一定时器;
    确定第二指示信息,所述第二指示信息用于在所述第一定时器的运行时间内调整非连续接收DRX周期中的激活期;
    向所述终端设备发送所述第二指示信息。
  11. 根据权利要求10所述的方法,其特征在于,所述第一定时器的运行时间包括多个所述DRX周期。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第二指示信息指示第一子帧,所述第一子帧为调整后的DRX周期的激活期的开始子帧。
  13. 根据权利要求10-12任一项所述的方法,其特征在于,所述第二指示信息指示缩放因子,所述缩放因子为调整后的DRX周期的激活期长度与调整前的DRX周期的激活期长度的比值。
  14. 根据权利要求10-13任一项所述的方法,其特征在于,所述第一指示信息还用于调整所述第一定时器的运行时间。
  15. 根据权利要求10-14任一项所述的方法,其特征在于,所述第一指示信息携带在媒体接入控制MAC控制单元CE或下行控制信息DCI中。
  16. 根据权利要求10-14任一项所述的方法,其特征在于,所述第二指示信息携带在MACCE或DCI中。
  17. 根据权利要求10-16任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述终端设备的第三指示信息,所述第三指示信息用于指示所述第一定时器中断。
  18. 一种通信装置,其特征在于,包括用于执行如权利要求1至9或10至17中的任一项所述方法的模块。
  19. 一种通信装置,其特征在于,包括处理器和通信接口,所述通信接口用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至9或10至17中任一项所述的方法。
  20. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或计算机指令,当所述计算机程序或计算机指令被运行时,实现如权利要求1至9或10至17任一项所述的方法。
  21. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码被运行时,实现如权利要求1至9或10至17任一项所述的方法。
PCT/CN2023/078418 2022-03-18 2023-02-27 一种通信方法及装置 WO2023174041A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210270386.2A CN116806030A (zh) 2022-03-18 2022-03-18 一种通信方法及装置
CN202210270386.2 2022-03-18

Publications (1)

Publication Number Publication Date
WO2023174041A1 true WO2023174041A1 (zh) 2023-09-21

Family

ID=88022354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078418 WO2023174041A1 (zh) 2022-03-18 2023-02-27 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN116806030A (zh)
WO (1) WO2023174041A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140065998A1 (en) * 2012-08-30 2014-03-06 Nokia Siemens Networks Oy Sending bcch modification info/etws information to ues in enhanced cell pch in one drx cycle
CN105122858A (zh) * 2013-04-03 2015-12-02 美国博通公司 在无线网络中处理下行链路半持续调度重传
WO2021081838A1 (zh) * 2019-10-30 2021-05-06 Oppo广东移动通信有限公司 一种drx配置方法及装置、终端设备、网络设备
CN113518478A (zh) * 2020-04-10 2021-10-19 华为技术有限公司 一种drx控制方法及装置
CN115604794A (zh) * 2021-07-09 2023-01-13 华为技术有限公司(Cn) 一种通信方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140065998A1 (en) * 2012-08-30 2014-03-06 Nokia Siemens Networks Oy Sending bcch modification info/etws information to ues in enhanced cell pch in one drx cycle
CN105122858A (zh) * 2013-04-03 2015-12-02 美国博通公司 在无线网络中处理下行链路半持续调度重传
WO2021081838A1 (zh) * 2019-10-30 2021-05-06 Oppo广东移动通信有限公司 一种drx配置方法及装置、终端设备、网络设备
CN113518478A (zh) * 2020-04-10 2021-10-19 华为技术有限公司 一种drx控制方法及装置
CN115604794A (zh) * 2021-07-09 2023-01-13 华为技术有限公司(Cn) 一种通信方法及装置

Also Published As

Publication number Publication date
CN116806030A (zh) 2023-09-26

Similar Documents

Publication Publication Date Title
US11871349B2 (en) Sleep method for terminal device and apparatus
JP6898992B2 (ja) 不連続受信のための方法及び装置
WO2020221093A1 (zh) 搜索空间的监测、配置方法及装置
WO2020259254A1 (zh) 搜索空间的监测方法及装置
WO2013174122A1 (zh) 一种ue上报辅助信息的方法
WO2021254335A1 (zh) 一种切换控制方法及通信装置
WO2020052572A1 (zh) 一种信息检测方法及装置
WO2021027551A1 (zh) 一种通信方法及装置
WO2023046196A1 (zh) 辅助信息上报方法、业务配置方法、终端及网络侧设备
WO2017117793A1 (zh) 一种***信息发送、更新方法及设备
WO2021128341A1 (zh) 非连续接收控制方法、设备及存储介质
CN110859013B (zh) 传输控制方法和装置
WO2023174041A1 (zh) 一种通信方法及装置
WO2024067107A1 (zh) 一种网络配置方法、装置及设备
WO2024012231A1 (zh) 通信方法及装置
WO2024066908A1 (zh) 基于drx配置的通信方法、通信装置及通信***
WO2024032402A1 (zh) 通信方法和通信装置
WO2024032796A1 (zh) 通信方法及相关装置
WO2023207927A9 (zh) 一种节能方法、装置及存储介质
WO2023000588A1 (zh) 一种部分带宽切换方法及相关装置
EP4319385A1 (en) Communication method and apparatus
WO2024140267A1 (zh) 一种通信方法、装置及设备
WO2023020330A1 (zh) 资源使用方法及装置、计算机可读存储介质、接入设备、网络设备
WO2024067292A1 (zh) 下行控制信息的传输方法和装置
WO2020038402A1 (zh) 传输控制方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23769549

Country of ref document: EP

Kind code of ref document: A1